Merge branch 'lorenzo/pci/dwc-fixes'
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38 #define NVME_MINORS             (1U << MINORBITS)
39
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61                  "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102
103 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
104 {
105         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
106                 return -EBUSY;
107         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
108                 return -EBUSY;
109         return 0;
110 }
111 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
112
113 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
114 {
115         int ret;
116
117         ret = nvme_reset_ctrl(ctrl);
118         if (!ret) {
119                 flush_work(&ctrl->reset_work);
120                 if (ctrl->state != NVME_CTRL_LIVE)
121                         ret = -ENETRESET;
122         }
123
124         return ret;
125 }
126 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
127
128 static void nvme_delete_ctrl_work(struct work_struct *work)
129 {
130         struct nvme_ctrl *ctrl =
131                 container_of(work, struct nvme_ctrl, delete_work);
132
133         dev_info(ctrl->device,
134                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
135
136         flush_work(&ctrl->reset_work);
137         nvme_stop_ctrl(ctrl);
138         nvme_remove_namespaces(ctrl);
139         ctrl->ops->delete_ctrl(ctrl);
140         nvme_uninit_ctrl(ctrl);
141         nvme_put_ctrl(ctrl);
142 }
143
144 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
145 {
146         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
147                 return -EBUSY;
148         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
149                 return -EBUSY;
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
153
154 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
155 {
156         int ret = 0;
157
158         /*
159          * Keep a reference until the work is flushed since ->delete_ctrl
160          * can free the controller.
161          */
162         nvme_get_ctrl(ctrl);
163         ret = nvme_delete_ctrl(ctrl);
164         if (!ret)
165                 flush_work(&ctrl->delete_work);
166         nvme_put_ctrl(ctrl);
167         return ret;
168 }
169 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
170
171 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
172 {
173         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
174 }
175
176 static blk_status_t nvme_error_status(struct request *req)
177 {
178         switch (nvme_req(req)->status & 0x7ff) {
179         case NVME_SC_SUCCESS:
180                 return BLK_STS_OK;
181         case NVME_SC_CAP_EXCEEDED:
182                 return BLK_STS_NOSPC;
183         case NVME_SC_LBA_RANGE:
184                 return BLK_STS_TARGET;
185         case NVME_SC_BAD_ATTRIBUTES:
186         case NVME_SC_ONCS_NOT_SUPPORTED:
187         case NVME_SC_INVALID_OPCODE:
188         case NVME_SC_INVALID_FIELD:
189         case NVME_SC_INVALID_NS:
190                 return BLK_STS_NOTSUPP;
191         case NVME_SC_WRITE_FAULT:
192         case NVME_SC_READ_ERROR:
193         case NVME_SC_UNWRITTEN_BLOCK:
194         case NVME_SC_ACCESS_DENIED:
195         case NVME_SC_READ_ONLY:
196         case NVME_SC_COMPARE_FAILED:
197                 return BLK_STS_MEDIUM;
198         case NVME_SC_GUARD_CHECK:
199         case NVME_SC_APPTAG_CHECK:
200         case NVME_SC_REFTAG_CHECK:
201         case NVME_SC_INVALID_PI:
202                 return BLK_STS_PROTECTION;
203         case NVME_SC_RESERVATION_CONFLICT:
204                 return BLK_STS_NEXUS;
205         default:
206                 return BLK_STS_IOERR;
207         }
208 }
209
210 static inline bool nvme_req_needs_retry(struct request *req)
211 {
212         if (blk_noretry_request(req))
213                 return false;
214         if (nvme_req(req)->status & NVME_SC_DNR)
215                 return false;
216         if (nvme_req(req)->retries >= nvme_max_retries)
217                 return false;
218         return true;
219 }
220
221 void nvme_complete_rq(struct request *req)
222 {
223         blk_status_t status = nvme_error_status(req);
224
225         trace_nvme_complete_rq(req);
226
227         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
228                 if (nvme_req_needs_failover(req, status)) {
229                         nvme_failover_req(req);
230                         return;
231                 }
232
233                 if (!blk_queue_dying(req->q)) {
234                         nvme_req(req)->retries++;
235                         blk_mq_requeue_request(req, true);
236                         return;
237                 }
238         }
239         blk_mq_end_request(req, status);
240 }
241 EXPORT_SYMBOL_GPL(nvme_complete_rq);
242
243 void nvme_cancel_request(struct request *req, void *data, bool reserved)
244 {
245         if (!blk_mq_request_started(req))
246                 return;
247
248         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
249                                 "Cancelling I/O %d", req->tag);
250
251         nvme_req(req)->status = NVME_SC_ABORT_REQ;
252         blk_mq_complete_request(req);
253
254 }
255 EXPORT_SYMBOL_GPL(nvme_cancel_request);
256
257 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
258                 enum nvme_ctrl_state new_state)
259 {
260         enum nvme_ctrl_state old_state;
261         unsigned long flags;
262         bool changed = false;
263
264         spin_lock_irqsave(&ctrl->lock, flags);
265
266         old_state = ctrl->state;
267         switch (new_state) {
268         case NVME_CTRL_ADMIN_ONLY:
269                 switch (old_state) {
270                 case NVME_CTRL_CONNECTING:
271                         changed = true;
272                         /* FALLTHRU */
273                 default:
274                         break;
275                 }
276                 break;
277         case NVME_CTRL_LIVE:
278                 switch (old_state) {
279                 case NVME_CTRL_NEW:
280                 case NVME_CTRL_RESETTING:
281                 case NVME_CTRL_CONNECTING:
282                         changed = true;
283                         /* FALLTHRU */
284                 default:
285                         break;
286                 }
287                 break;
288         case NVME_CTRL_RESETTING:
289                 switch (old_state) {
290                 case NVME_CTRL_NEW:
291                 case NVME_CTRL_LIVE:
292                 case NVME_CTRL_ADMIN_ONLY:
293                         changed = true;
294                         /* FALLTHRU */
295                 default:
296                         break;
297                 }
298                 break;
299         case NVME_CTRL_CONNECTING:
300                 switch (old_state) {
301                 case NVME_CTRL_NEW:
302                 case NVME_CTRL_RESETTING:
303                         changed = true;
304                         /* FALLTHRU */
305                 default:
306                         break;
307                 }
308                 break;
309         case NVME_CTRL_DELETING:
310                 switch (old_state) {
311                 case NVME_CTRL_LIVE:
312                 case NVME_CTRL_ADMIN_ONLY:
313                 case NVME_CTRL_RESETTING:
314                 case NVME_CTRL_CONNECTING:
315                         changed = true;
316                         /* FALLTHRU */
317                 default:
318                         break;
319                 }
320                 break;
321         case NVME_CTRL_DEAD:
322                 switch (old_state) {
323                 case NVME_CTRL_DELETING:
324                         changed = true;
325                         /* FALLTHRU */
326                 default:
327                         break;
328                 }
329                 break;
330         default:
331                 break;
332         }
333
334         if (changed)
335                 ctrl->state = new_state;
336
337         spin_unlock_irqrestore(&ctrl->lock, flags);
338         if (changed && ctrl->state == NVME_CTRL_LIVE)
339                 nvme_kick_requeue_lists(ctrl);
340         return changed;
341 }
342 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
343
344 static void nvme_free_ns_head(struct kref *ref)
345 {
346         struct nvme_ns_head *head =
347                 container_of(ref, struct nvme_ns_head, ref);
348
349         nvme_mpath_remove_disk(head);
350         ida_simple_remove(&head->subsys->ns_ida, head->instance);
351         list_del_init(&head->entry);
352         cleanup_srcu_struct(&head->srcu);
353         kfree(head);
354 }
355
356 static void nvme_put_ns_head(struct nvme_ns_head *head)
357 {
358         kref_put(&head->ref, nvme_free_ns_head);
359 }
360
361 static void nvme_free_ns(struct kref *kref)
362 {
363         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
364
365         if (ns->ndev)
366                 nvme_nvm_unregister(ns);
367
368         put_disk(ns->disk);
369         nvme_put_ns_head(ns->head);
370         nvme_put_ctrl(ns->ctrl);
371         kfree(ns);
372 }
373
374 static void nvme_put_ns(struct nvme_ns *ns)
375 {
376         kref_put(&ns->kref, nvme_free_ns);
377 }
378
379 static inline void nvme_clear_nvme_request(struct request *req)
380 {
381         if (!(req->rq_flags & RQF_DONTPREP)) {
382                 nvme_req(req)->retries = 0;
383                 nvme_req(req)->flags = 0;
384                 req->rq_flags |= RQF_DONTPREP;
385         }
386 }
387
388 struct request *nvme_alloc_request(struct request_queue *q,
389                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
390 {
391         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
392         struct request *req;
393
394         if (qid == NVME_QID_ANY) {
395                 req = blk_mq_alloc_request(q, op, flags);
396         } else {
397                 req = blk_mq_alloc_request_hctx(q, op, flags,
398                                 qid ? qid - 1 : 0);
399         }
400         if (IS_ERR(req))
401                 return req;
402
403         req->cmd_flags |= REQ_FAILFAST_DRIVER;
404         nvme_clear_nvme_request(req);
405         nvme_req(req)->cmd = cmd;
406
407         return req;
408 }
409 EXPORT_SYMBOL_GPL(nvme_alloc_request);
410
411 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
412 {
413         struct nvme_command c;
414
415         memset(&c, 0, sizeof(c));
416
417         c.directive.opcode = nvme_admin_directive_send;
418         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
419         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
420         c.directive.dtype = NVME_DIR_IDENTIFY;
421         c.directive.tdtype = NVME_DIR_STREAMS;
422         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
423
424         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
425 }
426
427 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
428 {
429         return nvme_toggle_streams(ctrl, false);
430 }
431
432 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
433 {
434         return nvme_toggle_streams(ctrl, true);
435 }
436
437 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
438                                   struct streams_directive_params *s, u32 nsid)
439 {
440         struct nvme_command c;
441
442         memset(&c, 0, sizeof(c));
443         memset(s, 0, sizeof(*s));
444
445         c.directive.opcode = nvme_admin_directive_recv;
446         c.directive.nsid = cpu_to_le32(nsid);
447         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
448         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
449         c.directive.dtype = NVME_DIR_STREAMS;
450
451         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
452 }
453
454 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
455 {
456         struct streams_directive_params s;
457         int ret;
458
459         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
460                 return 0;
461         if (!streams)
462                 return 0;
463
464         ret = nvme_enable_streams(ctrl);
465         if (ret)
466                 return ret;
467
468         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
469         if (ret)
470                 return ret;
471
472         ctrl->nssa = le16_to_cpu(s.nssa);
473         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
474                 dev_info(ctrl->device, "too few streams (%u) available\n",
475                                         ctrl->nssa);
476                 nvme_disable_streams(ctrl);
477                 return 0;
478         }
479
480         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
481         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
482         return 0;
483 }
484
485 /*
486  * Check if 'req' has a write hint associated with it. If it does, assign
487  * a valid namespace stream to the write.
488  */
489 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
490                                      struct request *req, u16 *control,
491                                      u32 *dsmgmt)
492 {
493         enum rw_hint streamid = req->write_hint;
494
495         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
496                 streamid = 0;
497         else {
498                 streamid--;
499                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
500                         return;
501
502                 *control |= NVME_RW_DTYPE_STREAMS;
503                 *dsmgmt |= streamid << 16;
504         }
505
506         if (streamid < ARRAY_SIZE(req->q->write_hints))
507                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
508 }
509
510 static inline void nvme_setup_flush(struct nvme_ns *ns,
511                 struct nvme_command *cmnd)
512 {
513         memset(cmnd, 0, sizeof(*cmnd));
514         cmnd->common.opcode = nvme_cmd_flush;
515         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
516 }
517
518 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
519                 struct nvme_command *cmnd)
520 {
521         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
522         struct nvme_dsm_range *range;
523         struct bio *bio;
524
525         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
526         if (!range)
527                 return BLK_STS_RESOURCE;
528
529         __rq_for_each_bio(bio, req) {
530                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
531                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
532
533                 if (n < segments) {
534                         range[n].cattr = cpu_to_le32(0);
535                         range[n].nlb = cpu_to_le32(nlb);
536                         range[n].slba = cpu_to_le64(slba);
537                 }
538                 n++;
539         }
540
541         if (WARN_ON_ONCE(n != segments)) {
542                 kfree(range);
543                 return BLK_STS_IOERR;
544         }
545
546         memset(cmnd, 0, sizeof(*cmnd));
547         cmnd->dsm.opcode = nvme_cmd_dsm;
548         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
549         cmnd->dsm.nr = cpu_to_le32(segments - 1);
550         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
551
552         req->special_vec.bv_page = virt_to_page(range);
553         req->special_vec.bv_offset = offset_in_page(range);
554         req->special_vec.bv_len = sizeof(*range) * segments;
555         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
556
557         return BLK_STS_OK;
558 }
559
560 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
561                 struct request *req, struct nvme_command *cmnd)
562 {
563         struct nvme_ctrl *ctrl = ns->ctrl;
564         u16 control = 0;
565         u32 dsmgmt = 0;
566
567         if (req->cmd_flags & REQ_FUA)
568                 control |= NVME_RW_FUA;
569         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
570                 control |= NVME_RW_LR;
571
572         if (req->cmd_flags & REQ_RAHEAD)
573                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
574
575         memset(cmnd, 0, sizeof(*cmnd));
576         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
577         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
578         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
579         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
580
581         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
582                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
583
584         if (ns->ms) {
585                 /*
586                  * If formated with metadata, the block layer always provides a
587                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
588                  * we enable the PRACT bit for protection information or set the
589                  * namespace capacity to zero to prevent any I/O.
590                  */
591                 if (!blk_integrity_rq(req)) {
592                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
593                                 return BLK_STS_NOTSUPP;
594                         control |= NVME_RW_PRINFO_PRACT;
595                 }
596
597                 switch (ns->pi_type) {
598                 case NVME_NS_DPS_PI_TYPE3:
599                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
600                         break;
601                 case NVME_NS_DPS_PI_TYPE1:
602                 case NVME_NS_DPS_PI_TYPE2:
603                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
604                                         NVME_RW_PRINFO_PRCHK_REF;
605                         cmnd->rw.reftag = cpu_to_le32(
606                                         nvme_block_nr(ns, blk_rq_pos(req)));
607                         break;
608                 }
609         }
610
611         cmnd->rw.control = cpu_to_le16(control);
612         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
613         return 0;
614 }
615
616 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
617                 struct nvme_command *cmd)
618 {
619         blk_status_t ret = BLK_STS_OK;
620
621         nvme_clear_nvme_request(req);
622
623         switch (req_op(req)) {
624         case REQ_OP_DRV_IN:
625         case REQ_OP_DRV_OUT:
626                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
627                 break;
628         case REQ_OP_FLUSH:
629                 nvme_setup_flush(ns, cmd);
630                 break;
631         case REQ_OP_WRITE_ZEROES:
632                 /* currently only aliased to deallocate for a few ctrls: */
633         case REQ_OP_DISCARD:
634                 ret = nvme_setup_discard(ns, req, cmd);
635                 break;
636         case REQ_OP_READ:
637         case REQ_OP_WRITE:
638                 ret = nvme_setup_rw(ns, req, cmd);
639                 break;
640         default:
641                 WARN_ON_ONCE(1);
642                 return BLK_STS_IOERR;
643         }
644
645         cmd->common.command_id = req->tag;
646         if (ns)
647                 trace_nvme_setup_nvm_cmd(req->q->id, cmd);
648         else
649                 trace_nvme_setup_admin_cmd(cmd);
650         return ret;
651 }
652 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
653
654 /*
655  * Returns 0 on success.  If the result is negative, it's a Linux error code;
656  * if the result is positive, it's an NVM Express status code
657  */
658 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
659                 union nvme_result *result, void *buffer, unsigned bufflen,
660                 unsigned timeout, int qid, int at_head,
661                 blk_mq_req_flags_t flags)
662 {
663         struct request *req;
664         int ret;
665
666         req = nvme_alloc_request(q, cmd, flags, qid);
667         if (IS_ERR(req))
668                 return PTR_ERR(req);
669
670         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
671
672         if (buffer && bufflen) {
673                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
674                 if (ret)
675                         goto out;
676         }
677
678         blk_execute_rq(req->q, NULL, req, at_head);
679         if (result)
680                 *result = nvme_req(req)->result;
681         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
682                 ret = -EINTR;
683         else
684                 ret = nvme_req(req)->status;
685  out:
686         blk_mq_free_request(req);
687         return ret;
688 }
689 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
690
691 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
692                 void *buffer, unsigned bufflen)
693 {
694         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
695                         NVME_QID_ANY, 0, 0);
696 }
697 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
698
699 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
700                 unsigned len, u32 seed, bool write)
701 {
702         struct bio_integrity_payload *bip;
703         int ret = -ENOMEM;
704         void *buf;
705
706         buf = kmalloc(len, GFP_KERNEL);
707         if (!buf)
708                 goto out;
709
710         ret = -EFAULT;
711         if (write && copy_from_user(buf, ubuf, len))
712                 goto out_free_meta;
713
714         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
715         if (IS_ERR(bip)) {
716                 ret = PTR_ERR(bip);
717                 goto out_free_meta;
718         }
719
720         bip->bip_iter.bi_size = len;
721         bip->bip_iter.bi_sector = seed;
722         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
723                         offset_in_page(buf));
724         if (ret == len)
725                 return buf;
726         ret = -ENOMEM;
727 out_free_meta:
728         kfree(buf);
729 out:
730         return ERR_PTR(ret);
731 }
732
733 static int nvme_submit_user_cmd(struct request_queue *q,
734                 struct nvme_command *cmd, void __user *ubuffer,
735                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
736                 u32 meta_seed, u32 *result, unsigned timeout)
737 {
738         bool write = nvme_is_write(cmd);
739         struct nvme_ns *ns = q->queuedata;
740         struct gendisk *disk = ns ? ns->disk : NULL;
741         struct request *req;
742         struct bio *bio = NULL;
743         void *meta = NULL;
744         int ret;
745
746         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
747         if (IS_ERR(req))
748                 return PTR_ERR(req);
749
750         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
751         nvme_req(req)->flags |= NVME_REQ_USERCMD;
752
753         if (ubuffer && bufflen) {
754                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
755                                 GFP_KERNEL);
756                 if (ret)
757                         goto out;
758                 bio = req->bio;
759                 bio->bi_disk = disk;
760                 if (disk && meta_buffer && meta_len) {
761                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
762                                         meta_seed, write);
763                         if (IS_ERR(meta)) {
764                                 ret = PTR_ERR(meta);
765                                 goto out_unmap;
766                         }
767                 }
768         }
769
770         blk_execute_rq(req->q, disk, req, 0);
771         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
772                 ret = -EINTR;
773         else
774                 ret = nvme_req(req)->status;
775         if (result)
776                 *result = le32_to_cpu(nvme_req(req)->result.u32);
777         if (meta && !ret && !write) {
778                 if (copy_to_user(meta_buffer, meta, meta_len))
779                         ret = -EFAULT;
780         }
781         kfree(meta);
782  out_unmap:
783         if (bio)
784                 blk_rq_unmap_user(bio);
785  out:
786         blk_mq_free_request(req);
787         return ret;
788 }
789
790 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
791 {
792         struct nvme_ctrl *ctrl = rq->end_io_data;
793
794         blk_mq_free_request(rq);
795
796         if (status) {
797                 dev_err(ctrl->device,
798                         "failed nvme_keep_alive_end_io error=%d\n",
799                                 status);
800                 return;
801         }
802
803         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
804 }
805
806 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
807 {
808         struct request *rq;
809
810         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
811                         NVME_QID_ANY);
812         if (IS_ERR(rq))
813                 return PTR_ERR(rq);
814
815         rq->timeout = ctrl->kato * HZ;
816         rq->end_io_data = ctrl;
817
818         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
819
820         return 0;
821 }
822
823 static void nvme_keep_alive_work(struct work_struct *work)
824 {
825         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
826                         struct nvme_ctrl, ka_work);
827
828         if (nvme_keep_alive(ctrl)) {
829                 /* allocation failure, reset the controller */
830                 dev_err(ctrl->device, "keep-alive failed\n");
831                 nvme_reset_ctrl(ctrl);
832                 return;
833         }
834 }
835
836 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
837 {
838         if (unlikely(ctrl->kato == 0))
839                 return;
840
841         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
842         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
843         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
844         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
845 }
846
847 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
848 {
849         if (unlikely(ctrl->kato == 0))
850                 return;
851
852         cancel_delayed_work_sync(&ctrl->ka_work);
853 }
854 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
855
856 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
857 {
858         struct nvme_command c = { };
859         int error;
860
861         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
862         c.identify.opcode = nvme_admin_identify;
863         c.identify.cns = NVME_ID_CNS_CTRL;
864
865         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
866         if (!*id)
867                 return -ENOMEM;
868
869         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
870                         sizeof(struct nvme_id_ctrl));
871         if (error)
872                 kfree(*id);
873         return error;
874 }
875
876 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
877                 struct nvme_ns_ids *ids)
878 {
879         struct nvme_command c = { };
880         int status;
881         void *data;
882         int pos;
883         int len;
884
885         c.identify.opcode = nvme_admin_identify;
886         c.identify.nsid = cpu_to_le32(nsid);
887         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
888
889         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
890         if (!data)
891                 return -ENOMEM;
892
893         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
894                                       NVME_IDENTIFY_DATA_SIZE);
895         if (status)
896                 goto free_data;
897
898         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
899                 struct nvme_ns_id_desc *cur = data + pos;
900
901                 if (cur->nidl == 0)
902                         break;
903
904                 switch (cur->nidt) {
905                 case NVME_NIDT_EUI64:
906                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
907                                 dev_warn(ctrl->device,
908                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
909                                          cur->nidl);
910                                 goto free_data;
911                         }
912                         len = NVME_NIDT_EUI64_LEN;
913                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
914                         break;
915                 case NVME_NIDT_NGUID:
916                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
917                                 dev_warn(ctrl->device,
918                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
919                                          cur->nidl);
920                                 goto free_data;
921                         }
922                         len = NVME_NIDT_NGUID_LEN;
923                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
924                         break;
925                 case NVME_NIDT_UUID:
926                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
927                                 dev_warn(ctrl->device,
928                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
929                                          cur->nidl);
930                                 goto free_data;
931                         }
932                         len = NVME_NIDT_UUID_LEN;
933                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
934                         break;
935                 default:
936                         /* Skip unnkown types */
937                         len = cur->nidl;
938                         break;
939                 }
940
941                 len += sizeof(*cur);
942         }
943 free_data:
944         kfree(data);
945         return status;
946 }
947
948 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
949 {
950         struct nvme_command c = { };
951
952         c.identify.opcode = nvme_admin_identify;
953         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
954         c.identify.nsid = cpu_to_le32(nsid);
955         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
956                                     NVME_IDENTIFY_DATA_SIZE);
957 }
958
959 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
960                 unsigned nsid)
961 {
962         struct nvme_id_ns *id;
963         struct nvme_command c = { };
964         int error;
965
966         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
967         c.identify.opcode = nvme_admin_identify;
968         c.identify.nsid = cpu_to_le32(nsid);
969         c.identify.cns = NVME_ID_CNS_NS;
970
971         id = kmalloc(sizeof(*id), GFP_KERNEL);
972         if (!id)
973                 return NULL;
974
975         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
976         if (error) {
977                 dev_warn(ctrl->device, "Identify namespace failed\n");
978                 kfree(id);
979                 return NULL;
980         }
981
982         return id;
983 }
984
985 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
986                       void *buffer, size_t buflen, u32 *result)
987 {
988         struct nvme_command c;
989         union nvme_result res;
990         int ret;
991
992         memset(&c, 0, sizeof(c));
993         c.features.opcode = nvme_admin_set_features;
994         c.features.fid = cpu_to_le32(fid);
995         c.features.dword11 = cpu_to_le32(dword11);
996
997         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
998                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
999         if (ret >= 0 && result)
1000                 *result = le32_to_cpu(res.u32);
1001         return ret;
1002 }
1003
1004 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1005 {
1006         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1007         u32 result;
1008         int status, nr_io_queues;
1009
1010         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1011                         &result);
1012         if (status < 0)
1013                 return status;
1014
1015         /*
1016          * Degraded controllers might return an error when setting the queue
1017          * count.  We still want to be able to bring them online and offer
1018          * access to the admin queue, as that might be only way to fix them up.
1019          */
1020         if (status > 0) {
1021                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1022                 *count = 0;
1023         } else {
1024                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1025                 *count = min(*count, nr_io_queues);
1026         }
1027
1028         return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1031
1032 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1033 {
1034         struct nvme_user_io io;
1035         struct nvme_command c;
1036         unsigned length, meta_len;
1037         void __user *metadata;
1038
1039         if (copy_from_user(&io, uio, sizeof(io)))
1040                 return -EFAULT;
1041         if (io.flags)
1042                 return -EINVAL;
1043
1044         switch (io.opcode) {
1045         case nvme_cmd_write:
1046         case nvme_cmd_read:
1047         case nvme_cmd_compare:
1048                 break;
1049         default:
1050                 return -EINVAL;
1051         }
1052
1053         length = (io.nblocks + 1) << ns->lba_shift;
1054         meta_len = (io.nblocks + 1) * ns->ms;
1055         metadata = (void __user *)(uintptr_t)io.metadata;
1056
1057         if (ns->ext) {
1058                 length += meta_len;
1059                 meta_len = 0;
1060         } else if (meta_len) {
1061                 if ((io.metadata & 3) || !io.metadata)
1062                         return -EINVAL;
1063         }
1064
1065         memset(&c, 0, sizeof(c));
1066         c.rw.opcode = io.opcode;
1067         c.rw.flags = io.flags;
1068         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1069         c.rw.slba = cpu_to_le64(io.slba);
1070         c.rw.length = cpu_to_le16(io.nblocks);
1071         c.rw.control = cpu_to_le16(io.control);
1072         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1073         c.rw.reftag = cpu_to_le32(io.reftag);
1074         c.rw.apptag = cpu_to_le16(io.apptag);
1075         c.rw.appmask = cpu_to_le16(io.appmask);
1076
1077         return nvme_submit_user_cmd(ns->queue, &c,
1078                         (void __user *)(uintptr_t)io.addr, length,
1079                         metadata, meta_len, io.slba, NULL, 0);
1080 }
1081
1082 static u32 nvme_known_admin_effects(u8 opcode)
1083 {
1084         switch (opcode) {
1085         case nvme_admin_format_nvm:
1086                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1087                                         NVME_CMD_EFFECTS_CSE_MASK;
1088         case nvme_admin_sanitize_nvm:
1089                 return NVME_CMD_EFFECTS_CSE_MASK;
1090         default:
1091                 break;
1092         }
1093         return 0;
1094 }
1095
1096 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1097                                                                 u8 opcode)
1098 {
1099         u32 effects = 0;
1100
1101         if (ns) {
1102                 if (ctrl->effects)
1103                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1104                 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1105                         dev_warn(ctrl->device,
1106                                  "IO command:%02x has unhandled effects:%08x\n",
1107                                  opcode, effects);
1108                 return 0;
1109         }
1110
1111         if (ctrl->effects)
1112                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1113         else
1114                 effects = nvme_known_admin_effects(opcode);
1115
1116         /*
1117          * For simplicity, IO to all namespaces is quiesced even if the command
1118          * effects say only one namespace is affected.
1119          */
1120         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1121                 nvme_start_freeze(ctrl);
1122                 nvme_wait_freeze(ctrl);
1123         }
1124         return effects;
1125 }
1126
1127 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1128 {
1129         struct nvme_ns *ns, *next;
1130         LIST_HEAD(rm_list);
1131
1132         down_write(&ctrl->namespaces_rwsem);
1133         list_for_each_entry(ns, &ctrl->namespaces, list) {
1134                 if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1135                         list_move_tail(&ns->list, &rm_list);
1136                 }
1137         }
1138         up_write(&ctrl->namespaces_rwsem);
1139
1140         list_for_each_entry_safe(ns, next, &rm_list, list)
1141                 nvme_ns_remove(ns);
1142 }
1143
1144 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1145 {
1146         /*
1147          * Revalidate LBA changes prior to unfreezing. This is necessary to
1148          * prevent memory corruption if a logical block size was changed by
1149          * this command.
1150          */
1151         if (effects & NVME_CMD_EFFECTS_LBCC)
1152                 nvme_update_formats(ctrl);
1153         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1154                 nvme_unfreeze(ctrl);
1155         if (effects & NVME_CMD_EFFECTS_CCC)
1156                 nvme_init_identify(ctrl);
1157         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1158                 nvme_queue_scan(ctrl);
1159 }
1160
1161 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1162                         struct nvme_passthru_cmd __user *ucmd)
1163 {
1164         struct nvme_passthru_cmd cmd;
1165         struct nvme_command c;
1166         unsigned timeout = 0;
1167         u32 effects;
1168         int status;
1169
1170         if (!capable(CAP_SYS_ADMIN))
1171                 return -EACCES;
1172         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1173                 return -EFAULT;
1174         if (cmd.flags)
1175                 return -EINVAL;
1176
1177         memset(&c, 0, sizeof(c));
1178         c.common.opcode = cmd.opcode;
1179         c.common.flags = cmd.flags;
1180         c.common.nsid = cpu_to_le32(cmd.nsid);
1181         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1182         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1183         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1184         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1185         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1186         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1187         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1188         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1189
1190         if (cmd.timeout_ms)
1191                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1192
1193         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1194         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1195                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1196                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1197                         0, &cmd.result, timeout);
1198         nvme_passthru_end(ctrl, effects);
1199
1200         if (status >= 0) {
1201                 if (put_user(cmd.result, &ucmd->result))
1202                         return -EFAULT;
1203         }
1204
1205         return status;
1206 }
1207
1208 /*
1209  * Issue ioctl requests on the first available path.  Note that unlike normal
1210  * block layer requests we will not retry failed request on another controller.
1211  */
1212 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1213                 struct nvme_ns_head **head, int *srcu_idx)
1214 {
1215 #ifdef CONFIG_NVME_MULTIPATH
1216         if (disk->fops == &nvme_ns_head_ops) {
1217                 *head = disk->private_data;
1218                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1219                 return nvme_find_path(*head);
1220         }
1221 #endif
1222         *head = NULL;
1223         *srcu_idx = -1;
1224         return disk->private_data;
1225 }
1226
1227 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1228 {
1229         if (head)
1230                 srcu_read_unlock(&head->srcu, idx);
1231 }
1232
1233 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1234 {
1235         switch (cmd) {
1236         case NVME_IOCTL_ID:
1237                 force_successful_syscall_return();
1238                 return ns->head->ns_id;
1239         case NVME_IOCTL_ADMIN_CMD:
1240                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1241         case NVME_IOCTL_IO_CMD:
1242                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1243         case NVME_IOCTL_SUBMIT_IO:
1244                 return nvme_submit_io(ns, (void __user *)arg);
1245         default:
1246 #ifdef CONFIG_NVM
1247                 if (ns->ndev)
1248                         return nvme_nvm_ioctl(ns, cmd, arg);
1249 #endif
1250                 if (is_sed_ioctl(cmd))
1251                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1252                                          (void __user *) arg);
1253                 return -ENOTTY;
1254         }
1255 }
1256
1257 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1258                 unsigned int cmd, unsigned long arg)
1259 {
1260         struct nvme_ns_head *head = NULL;
1261         struct nvme_ns *ns;
1262         int srcu_idx, ret;
1263
1264         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1265         if (unlikely(!ns))
1266                 ret = -EWOULDBLOCK;
1267         else
1268                 ret = nvme_ns_ioctl(ns, cmd, arg);
1269         nvme_put_ns_from_disk(head, srcu_idx);
1270         return ret;
1271 }
1272
1273 static int nvme_open(struct block_device *bdev, fmode_t mode)
1274 {
1275         struct nvme_ns *ns = bdev->bd_disk->private_data;
1276
1277 #ifdef CONFIG_NVME_MULTIPATH
1278         /* should never be called due to GENHD_FL_HIDDEN */
1279         if (WARN_ON_ONCE(ns->head->disk))
1280                 goto fail;
1281 #endif
1282         if (!kref_get_unless_zero(&ns->kref))
1283                 goto fail;
1284         if (!try_module_get(ns->ctrl->ops->module))
1285                 goto fail_put_ns;
1286
1287         return 0;
1288
1289 fail_put_ns:
1290         nvme_put_ns(ns);
1291 fail:
1292         return -ENXIO;
1293 }
1294
1295 static void nvme_release(struct gendisk *disk, fmode_t mode)
1296 {
1297         struct nvme_ns *ns = disk->private_data;
1298
1299         module_put(ns->ctrl->ops->module);
1300         nvme_put_ns(ns);
1301 }
1302
1303 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1304 {
1305         /* some standard values */
1306         geo->heads = 1 << 6;
1307         geo->sectors = 1 << 5;
1308         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1309         return 0;
1310 }
1311
1312 #ifdef CONFIG_BLK_DEV_INTEGRITY
1313 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1314 {
1315         struct blk_integrity integrity;
1316
1317         memset(&integrity, 0, sizeof(integrity));
1318         switch (pi_type) {
1319         case NVME_NS_DPS_PI_TYPE3:
1320                 integrity.profile = &t10_pi_type3_crc;
1321                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1322                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1323                 break;
1324         case NVME_NS_DPS_PI_TYPE1:
1325         case NVME_NS_DPS_PI_TYPE2:
1326                 integrity.profile = &t10_pi_type1_crc;
1327                 integrity.tag_size = sizeof(u16);
1328                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1329                 break;
1330         default:
1331                 integrity.profile = NULL;
1332                 break;
1333         }
1334         integrity.tuple_size = ms;
1335         blk_integrity_register(disk, &integrity);
1336         blk_queue_max_integrity_segments(disk->queue, 1);
1337 }
1338 #else
1339 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1340 {
1341 }
1342 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1343
1344 static void nvme_set_chunk_size(struct nvme_ns *ns)
1345 {
1346         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1347         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1348 }
1349
1350 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1351                 unsigned stream_alignment, struct request_queue *queue)
1352 {
1353         u32 size = queue_logical_block_size(queue);
1354
1355         if (stream_alignment)
1356                 size *= stream_alignment;
1357
1358         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1359                         NVME_DSM_MAX_RANGES);
1360
1361         queue->limits.discard_alignment = 0;
1362         queue->limits.discard_granularity = size;
1363
1364         blk_queue_max_discard_sectors(queue, UINT_MAX);
1365         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1366         blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue);
1367
1368         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1369                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1370 }
1371
1372 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1373                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1374 {
1375         memset(ids, 0, sizeof(*ids));
1376
1377         if (ctrl->vs >= NVME_VS(1, 1, 0))
1378                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1379         if (ctrl->vs >= NVME_VS(1, 2, 0))
1380                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1381         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1382                  /* Don't treat error as fatal we potentially
1383                   * already have a NGUID or EUI-64
1384                   */
1385                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1386                         dev_warn(ctrl->device,
1387                                  "%s: Identify Descriptors failed\n", __func__);
1388         }
1389 }
1390
1391 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1392 {
1393         return !uuid_is_null(&ids->uuid) ||
1394                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1395                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1396 }
1397
1398 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1399 {
1400         return uuid_equal(&a->uuid, &b->uuid) &&
1401                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1402                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1403 }
1404
1405 static void nvme_update_disk_info(struct gendisk *disk,
1406                 struct nvme_ns *ns, struct nvme_id_ns *id)
1407 {
1408         sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1409         unsigned short bs = 1 << ns->lba_shift;
1410         unsigned stream_alignment = 0;
1411
1412         if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1413                 stream_alignment = ns->sws * ns->sgs;
1414
1415         blk_mq_freeze_queue(disk->queue);
1416         blk_integrity_unregister(disk);
1417
1418         blk_queue_logical_block_size(disk->queue, bs);
1419         blk_queue_physical_block_size(disk->queue, bs);
1420         blk_queue_io_min(disk->queue, bs);
1421
1422         if (ns->ms && !ns->ext &&
1423             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1424                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1425         if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1426                 capacity = 0;
1427         set_capacity(disk, capacity);
1428
1429         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1430                 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1431         blk_mq_unfreeze_queue(disk->queue);
1432 }
1433
1434 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1435 {
1436         struct nvme_ns *ns = disk->private_data;
1437
1438         /*
1439          * If identify namespace failed, use default 512 byte block size so
1440          * block layer can use before failing read/write for 0 capacity.
1441          */
1442         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1443         if (ns->lba_shift == 0)
1444                 ns->lba_shift = 9;
1445         ns->noiob = le16_to_cpu(id->noiob);
1446         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1447         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1448         /* the PI implementation requires metadata equal t10 pi tuple size */
1449         if (ns->ms == sizeof(struct t10_pi_tuple))
1450                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1451         else
1452                 ns->pi_type = 0;
1453
1454         if (ns->noiob)
1455                 nvme_set_chunk_size(ns);
1456         nvme_update_disk_info(disk, ns, id);
1457         if (ns->ndev)
1458                 nvme_nvm_update_nvm_info(ns);
1459 #ifdef CONFIG_NVME_MULTIPATH
1460         if (ns->head->disk)
1461                 nvme_update_disk_info(ns->head->disk, ns, id);
1462 #endif
1463 }
1464
1465 static int nvme_revalidate_disk(struct gendisk *disk)
1466 {
1467         struct nvme_ns *ns = disk->private_data;
1468         struct nvme_ctrl *ctrl = ns->ctrl;
1469         struct nvme_id_ns *id;
1470         struct nvme_ns_ids ids;
1471         int ret = 0;
1472
1473         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1474                 set_capacity(disk, 0);
1475                 return -ENODEV;
1476         }
1477
1478         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1479         if (!id)
1480                 return -ENODEV;
1481
1482         if (id->ncap == 0) {
1483                 ret = -ENODEV;
1484                 goto out;
1485         }
1486
1487         __nvme_revalidate_disk(disk, id);
1488         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1489         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1490                 dev_err(ctrl->device,
1491                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1492                 ret = -ENODEV;
1493         }
1494
1495 out:
1496         kfree(id);
1497         return ret;
1498 }
1499
1500 static char nvme_pr_type(enum pr_type type)
1501 {
1502         switch (type) {
1503         case PR_WRITE_EXCLUSIVE:
1504                 return 1;
1505         case PR_EXCLUSIVE_ACCESS:
1506                 return 2;
1507         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1508                 return 3;
1509         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1510                 return 4;
1511         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1512                 return 5;
1513         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1514                 return 6;
1515         default:
1516                 return 0;
1517         }
1518 };
1519
1520 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1521                                 u64 key, u64 sa_key, u8 op)
1522 {
1523         struct nvme_ns_head *head = NULL;
1524         struct nvme_ns *ns;
1525         struct nvme_command c;
1526         int srcu_idx, ret;
1527         u8 data[16] = { 0, };
1528
1529         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1530         if (unlikely(!ns))
1531                 return -EWOULDBLOCK;
1532
1533         put_unaligned_le64(key, &data[0]);
1534         put_unaligned_le64(sa_key, &data[8]);
1535
1536         memset(&c, 0, sizeof(c));
1537         c.common.opcode = op;
1538         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1539         c.common.cdw10[0] = cpu_to_le32(cdw10);
1540
1541         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1542         nvme_put_ns_from_disk(head, srcu_idx);
1543         return ret;
1544 }
1545
1546 static int nvme_pr_register(struct block_device *bdev, u64 old,
1547                 u64 new, unsigned flags)
1548 {
1549         u32 cdw10;
1550
1551         if (flags & ~PR_FL_IGNORE_KEY)
1552                 return -EOPNOTSUPP;
1553
1554         cdw10 = old ? 2 : 0;
1555         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1556         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1557         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1558 }
1559
1560 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1561                 enum pr_type type, unsigned flags)
1562 {
1563         u32 cdw10;
1564
1565         if (flags & ~PR_FL_IGNORE_KEY)
1566                 return -EOPNOTSUPP;
1567
1568         cdw10 = nvme_pr_type(type) << 8;
1569         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1570         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1571 }
1572
1573 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1574                 enum pr_type type, bool abort)
1575 {
1576         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1577         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1578 }
1579
1580 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1581 {
1582         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1583         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1584 }
1585
1586 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1587 {
1588         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1589         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1590 }
1591
1592 static const struct pr_ops nvme_pr_ops = {
1593         .pr_register    = nvme_pr_register,
1594         .pr_reserve     = nvme_pr_reserve,
1595         .pr_release     = nvme_pr_release,
1596         .pr_preempt     = nvme_pr_preempt,
1597         .pr_clear       = nvme_pr_clear,
1598 };
1599
1600 #ifdef CONFIG_BLK_SED_OPAL
1601 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1602                 bool send)
1603 {
1604         struct nvme_ctrl *ctrl = data;
1605         struct nvme_command cmd;
1606
1607         memset(&cmd, 0, sizeof(cmd));
1608         if (send)
1609                 cmd.common.opcode = nvme_admin_security_send;
1610         else
1611                 cmd.common.opcode = nvme_admin_security_recv;
1612         cmd.common.nsid = 0;
1613         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1614         cmd.common.cdw10[1] = cpu_to_le32(len);
1615
1616         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1617                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1618 }
1619 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1620 #endif /* CONFIG_BLK_SED_OPAL */
1621
1622 static const struct block_device_operations nvme_fops = {
1623         .owner          = THIS_MODULE,
1624         .ioctl          = nvme_ioctl,
1625         .compat_ioctl   = nvme_ioctl,
1626         .open           = nvme_open,
1627         .release        = nvme_release,
1628         .getgeo         = nvme_getgeo,
1629         .revalidate_disk= nvme_revalidate_disk,
1630         .pr_ops         = &nvme_pr_ops,
1631 };
1632
1633 #ifdef CONFIG_NVME_MULTIPATH
1634 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1635 {
1636         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1637
1638         if (!kref_get_unless_zero(&head->ref))
1639                 return -ENXIO;
1640         return 0;
1641 }
1642
1643 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1644 {
1645         nvme_put_ns_head(disk->private_data);
1646 }
1647
1648 const struct block_device_operations nvme_ns_head_ops = {
1649         .owner          = THIS_MODULE,
1650         .open           = nvme_ns_head_open,
1651         .release        = nvme_ns_head_release,
1652         .ioctl          = nvme_ioctl,
1653         .compat_ioctl   = nvme_ioctl,
1654         .getgeo         = nvme_getgeo,
1655         .pr_ops         = &nvme_pr_ops,
1656 };
1657 #endif /* CONFIG_NVME_MULTIPATH */
1658
1659 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1660 {
1661         unsigned long timeout =
1662                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1663         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1664         int ret;
1665
1666         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1667                 if (csts == ~0)
1668                         return -ENODEV;
1669                 if ((csts & NVME_CSTS_RDY) == bit)
1670                         break;
1671
1672                 msleep(100);
1673                 if (fatal_signal_pending(current))
1674                         return -EINTR;
1675                 if (time_after(jiffies, timeout)) {
1676                         dev_err(ctrl->device,
1677                                 "Device not ready; aborting %s\n", enabled ?
1678                                                 "initialisation" : "reset");
1679                         return -ENODEV;
1680                 }
1681         }
1682
1683         return ret;
1684 }
1685
1686 /*
1687  * If the device has been passed off to us in an enabled state, just clear
1688  * the enabled bit.  The spec says we should set the 'shutdown notification
1689  * bits', but doing so may cause the device to complete commands to the
1690  * admin queue ... and we don't know what memory that might be pointing at!
1691  */
1692 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1693 {
1694         int ret;
1695
1696         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1697         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1698
1699         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1700         if (ret)
1701                 return ret;
1702
1703         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1704                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1705
1706         return nvme_wait_ready(ctrl, cap, false);
1707 }
1708 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1709
1710 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1711 {
1712         /*
1713          * Default to a 4K page size, with the intention to update this
1714          * path in the future to accomodate architectures with differing
1715          * kernel and IO page sizes.
1716          */
1717         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1718         int ret;
1719
1720         if (page_shift < dev_page_min) {
1721                 dev_err(ctrl->device,
1722                         "Minimum device page size %u too large for host (%u)\n",
1723                         1 << dev_page_min, 1 << page_shift);
1724                 return -ENODEV;
1725         }
1726
1727         ctrl->page_size = 1 << page_shift;
1728
1729         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1730         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1731         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1732         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1733         ctrl->ctrl_config |= NVME_CC_ENABLE;
1734
1735         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1736         if (ret)
1737                 return ret;
1738         return nvme_wait_ready(ctrl, cap, true);
1739 }
1740 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1741
1742 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1743 {
1744         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1745         u32 csts;
1746         int ret;
1747
1748         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1749         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1750
1751         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1752         if (ret)
1753                 return ret;
1754
1755         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1756                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1757                         break;
1758
1759                 msleep(100);
1760                 if (fatal_signal_pending(current))
1761                         return -EINTR;
1762                 if (time_after(jiffies, timeout)) {
1763                         dev_err(ctrl->device,
1764                                 "Device shutdown incomplete; abort shutdown\n");
1765                         return -ENODEV;
1766                 }
1767         }
1768
1769         return ret;
1770 }
1771 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1772
1773 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1774                 struct request_queue *q)
1775 {
1776         bool vwc = false;
1777
1778         if (ctrl->max_hw_sectors) {
1779                 u32 max_segments =
1780                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1781
1782                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1783                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1784         }
1785         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1786             is_power_of_2(ctrl->max_hw_sectors))
1787                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1788         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1789         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1790                 vwc = true;
1791         blk_queue_write_cache(q, vwc, vwc);
1792 }
1793
1794 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1795 {
1796         __le64 ts;
1797         int ret;
1798
1799         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1800                 return 0;
1801
1802         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1803         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1804                         NULL);
1805         if (ret)
1806                 dev_warn_once(ctrl->device,
1807                         "could not set timestamp (%d)\n", ret);
1808         return ret;
1809 }
1810
1811 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1812 {
1813         /*
1814          * APST (Autonomous Power State Transition) lets us program a
1815          * table of power state transitions that the controller will
1816          * perform automatically.  We configure it with a simple
1817          * heuristic: we are willing to spend at most 2% of the time
1818          * transitioning between power states.  Therefore, when running
1819          * in any given state, we will enter the next lower-power
1820          * non-operational state after waiting 50 * (enlat + exlat)
1821          * microseconds, as long as that state's exit latency is under
1822          * the requested maximum latency.
1823          *
1824          * We will not autonomously enter any non-operational state for
1825          * which the total latency exceeds ps_max_latency_us.  Users
1826          * can set ps_max_latency_us to zero to turn off APST.
1827          */
1828
1829         unsigned apste;
1830         struct nvme_feat_auto_pst *table;
1831         u64 max_lat_us = 0;
1832         int max_ps = -1;
1833         int ret;
1834
1835         /*
1836          * If APST isn't supported or if we haven't been initialized yet,
1837          * then don't do anything.
1838          */
1839         if (!ctrl->apsta)
1840                 return 0;
1841
1842         if (ctrl->npss > 31) {
1843                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1844                 return 0;
1845         }
1846
1847         table = kzalloc(sizeof(*table), GFP_KERNEL);
1848         if (!table)
1849                 return 0;
1850
1851         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1852                 /* Turn off APST. */
1853                 apste = 0;
1854                 dev_dbg(ctrl->device, "APST disabled\n");
1855         } else {
1856                 __le64 target = cpu_to_le64(0);
1857                 int state;
1858
1859                 /*
1860                  * Walk through all states from lowest- to highest-power.
1861                  * According to the spec, lower-numbered states use more
1862                  * power.  NPSS, despite the name, is the index of the
1863                  * lowest-power state, not the number of states.
1864                  */
1865                 for (state = (int)ctrl->npss; state >= 0; state--) {
1866                         u64 total_latency_us, exit_latency_us, transition_ms;
1867
1868                         if (target)
1869                                 table->entries[state] = target;
1870
1871                         /*
1872                          * Don't allow transitions to the deepest state
1873                          * if it's quirked off.
1874                          */
1875                         if (state == ctrl->npss &&
1876                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1877                                 continue;
1878
1879                         /*
1880                          * Is this state a useful non-operational state for
1881                          * higher-power states to autonomously transition to?
1882                          */
1883                         if (!(ctrl->psd[state].flags &
1884                               NVME_PS_FLAGS_NON_OP_STATE))
1885                                 continue;
1886
1887                         exit_latency_us =
1888                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1889                         if (exit_latency_us > ctrl->ps_max_latency_us)
1890                                 continue;
1891
1892                         total_latency_us =
1893                                 exit_latency_us +
1894                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1895
1896                         /*
1897                          * This state is good.  Use it as the APST idle
1898                          * target for higher power states.
1899                          */
1900                         transition_ms = total_latency_us + 19;
1901                         do_div(transition_ms, 20);
1902                         if (transition_ms > (1 << 24) - 1)
1903                                 transition_ms = (1 << 24) - 1;
1904
1905                         target = cpu_to_le64((state << 3) |
1906                                              (transition_ms << 8));
1907
1908                         if (max_ps == -1)
1909                                 max_ps = state;
1910
1911                         if (total_latency_us > max_lat_us)
1912                                 max_lat_us = total_latency_us;
1913                 }
1914
1915                 apste = 1;
1916
1917                 if (max_ps == -1) {
1918                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1919                 } else {
1920                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1921                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1922                 }
1923         }
1924
1925         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1926                                 table, sizeof(*table), NULL);
1927         if (ret)
1928                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1929
1930         kfree(table);
1931         return ret;
1932 }
1933
1934 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1935 {
1936         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1937         u64 latency;
1938
1939         switch (val) {
1940         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1941         case PM_QOS_LATENCY_ANY:
1942                 latency = U64_MAX;
1943                 break;
1944
1945         default:
1946                 latency = val;
1947         }
1948
1949         if (ctrl->ps_max_latency_us != latency) {
1950                 ctrl->ps_max_latency_us = latency;
1951                 nvme_configure_apst(ctrl);
1952         }
1953 }
1954
1955 struct nvme_core_quirk_entry {
1956         /*
1957          * NVMe model and firmware strings are padded with spaces.  For
1958          * simplicity, strings in the quirk table are padded with NULLs
1959          * instead.
1960          */
1961         u16 vid;
1962         const char *mn;
1963         const char *fr;
1964         unsigned long quirks;
1965 };
1966
1967 static const struct nvme_core_quirk_entry core_quirks[] = {
1968         {
1969                 /*
1970                  * This Toshiba device seems to die using any APST states.  See:
1971                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1972                  */
1973                 .vid = 0x1179,
1974                 .mn = "THNSF5256GPUK TOSHIBA",
1975                 .quirks = NVME_QUIRK_NO_APST,
1976         }
1977 };
1978
1979 /* match is null-terminated but idstr is space-padded. */
1980 static bool string_matches(const char *idstr, const char *match, size_t len)
1981 {
1982         size_t matchlen;
1983
1984         if (!match)
1985                 return true;
1986
1987         matchlen = strlen(match);
1988         WARN_ON_ONCE(matchlen > len);
1989
1990         if (memcmp(idstr, match, matchlen))
1991                 return false;
1992
1993         for (; matchlen < len; matchlen++)
1994                 if (idstr[matchlen] != ' ')
1995                         return false;
1996
1997         return true;
1998 }
1999
2000 static bool quirk_matches(const struct nvme_id_ctrl *id,
2001                           const struct nvme_core_quirk_entry *q)
2002 {
2003         return q->vid == le16_to_cpu(id->vid) &&
2004                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2005                 string_matches(id->fr, q->fr, sizeof(id->fr));
2006 }
2007
2008 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2009                 struct nvme_id_ctrl *id)
2010 {
2011         size_t nqnlen;
2012         int off;
2013
2014         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2015         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2016                 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2017                 return;
2018         }
2019
2020         if (ctrl->vs >= NVME_VS(1, 2, 1))
2021                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2022
2023         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2024         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2025                         "nqn.2014.08.org.nvmexpress:%4x%4x",
2026                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2027         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2028         off += sizeof(id->sn);
2029         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2030         off += sizeof(id->mn);
2031         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2032 }
2033
2034 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2035 {
2036         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2037         kfree(subsys);
2038 }
2039
2040 static void nvme_release_subsystem(struct device *dev)
2041 {
2042         __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2043 }
2044
2045 static void nvme_destroy_subsystem(struct kref *ref)
2046 {
2047         struct nvme_subsystem *subsys =
2048                         container_of(ref, struct nvme_subsystem, ref);
2049
2050         mutex_lock(&nvme_subsystems_lock);
2051         list_del(&subsys->entry);
2052         mutex_unlock(&nvme_subsystems_lock);
2053
2054         ida_destroy(&subsys->ns_ida);
2055         device_del(&subsys->dev);
2056         put_device(&subsys->dev);
2057 }
2058
2059 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2060 {
2061         kref_put(&subsys->ref, nvme_destroy_subsystem);
2062 }
2063
2064 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2065 {
2066         struct nvme_subsystem *subsys;
2067
2068         lockdep_assert_held(&nvme_subsystems_lock);
2069
2070         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2071                 if (strcmp(subsys->subnqn, subsysnqn))
2072                         continue;
2073                 if (!kref_get_unless_zero(&subsys->ref))
2074                         continue;
2075                 return subsys;
2076         }
2077
2078         return NULL;
2079 }
2080
2081 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2082         struct device_attribute subsys_attr_##_name = \
2083                 __ATTR(_name, _mode, _show, NULL)
2084
2085 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2086                                     struct device_attribute *attr,
2087                                     char *buf)
2088 {
2089         struct nvme_subsystem *subsys =
2090                 container_of(dev, struct nvme_subsystem, dev);
2091
2092         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2093 }
2094 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2095
2096 #define nvme_subsys_show_str_function(field)                            \
2097 static ssize_t subsys_##field##_show(struct device *dev,                \
2098                             struct device_attribute *attr, char *buf)   \
2099 {                                                                       \
2100         struct nvme_subsystem *subsys =                                 \
2101                 container_of(dev, struct nvme_subsystem, dev);          \
2102         return sprintf(buf, "%.*s\n",                                   \
2103                        (int)sizeof(subsys->field), subsys->field);      \
2104 }                                                                       \
2105 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2106
2107 nvme_subsys_show_str_function(model);
2108 nvme_subsys_show_str_function(serial);
2109 nvme_subsys_show_str_function(firmware_rev);
2110
2111 static struct attribute *nvme_subsys_attrs[] = {
2112         &subsys_attr_model.attr,
2113         &subsys_attr_serial.attr,
2114         &subsys_attr_firmware_rev.attr,
2115         &subsys_attr_subsysnqn.attr,
2116         NULL,
2117 };
2118
2119 static struct attribute_group nvme_subsys_attrs_group = {
2120         .attrs = nvme_subsys_attrs,
2121 };
2122
2123 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2124         &nvme_subsys_attrs_group,
2125         NULL,
2126 };
2127
2128 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2129 {
2130         int count = 0;
2131         struct nvme_ctrl *ctrl;
2132
2133         mutex_lock(&subsys->lock);
2134         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2135                 if (ctrl->state != NVME_CTRL_DELETING &&
2136                     ctrl->state != NVME_CTRL_DEAD)
2137                         count++;
2138         }
2139         mutex_unlock(&subsys->lock);
2140
2141         return count;
2142 }
2143
2144 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2145 {
2146         struct nvme_subsystem *subsys, *found;
2147         int ret;
2148
2149         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2150         if (!subsys)
2151                 return -ENOMEM;
2152         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2153         if (ret < 0) {
2154                 kfree(subsys);
2155                 return ret;
2156         }
2157         subsys->instance = ret;
2158         mutex_init(&subsys->lock);
2159         kref_init(&subsys->ref);
2160         INIT_LIST_HEAD(&subsys->ctrls);
2161         INIT_LIST_HEAD(&subsys->nsheads);
2162         nvme_init_subnqn(subsys, ctrl, id);
2163         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2164         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2165         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2166         subsys->vendor_id = le16_to_cpu(id->vid);
2167         subsys->cmic = id->cmic;
2168
2169         subsys->dev.class = nvme_subsys_class;
2170         subsys->dev.release = nvme_release_subsystem;
2171         subsys->dev.groups = nvme_subsys_attrs_groups;
2172         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2173         device_initialize(&subsys->dev);
2174
2175         mutex_lock(&nvme_subsystems_lock);
2176         found = __nvme_find_get_subsystem(subsys->subnqn);
2177         if (found) {
2178                 /*
2179                  * Verify that the subsystem actually supports multiple
2180                  * controllers, else bail out.
2181                  */
2182                 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2183                         dev_err(ctrl->device,
2184                                 "ignoring ctrl due to duplicate subnqn (%s).\n",
2185                                 found->subnqn);
2186                         nvme_put_subsystem(found);
2187                         ret = -EINVAL;
2188                         goto out_unlock;
2189                 }
2190
2191                 __nvme_release_subsystem(subsys);
2192                 subsys = found;
2193         } else {
2194                 ret = device_add(&subsys->dev);
2195                 if (ret) {
2196                         dev_err(ctrl->device,
2197                                 "failed to register subsystem device.\n");
2198                         goto out_unlock;
2199                 }
2200                 ida_init(&subsys->ns_ida);
2201                 list_add_tail(&subsys->entry, &nvme_subsystems);
2202         }
2203
2204         ctrl->subsys = subsys;
2205         mutex_unlock(&nvme_subsystems_lock);
2206
2207         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2208                         dev_name(ctrl->device))) {
2209                 dev_err(ctrl->device,
2210                         "failed to create sysfs link from subsystem.\n");
2211                 /* the transport driver will eventually put the subsystem */
2212                 return -EINVAL;
2213         }
2214
2215         mutex_lock(&subsys->lock);
2216         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2217         mutex_unlock(&subsys->lock);
2218
2219         return 0;
2220
2221 out_unlock:
2222         mutex_unlock(&nvme_subsystems_lock);
2223         put_device(&subsys->dev);
2224         return ret;
2225 }
2226
2227 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2228                      u8 log_page, void *log,
2229                      size_t size, u64 offset)
2230 {
2231         struct nvme_command c = { };
2232         unsigned long dwlen = size / 4 - 1;
2233
2234         c.get_log_page.opcode = nvme_admin_get_log_page;
2235
2236         if (ns)
2237                 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2238         else
2239                 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2240
2241         c.get_log_page.lid = log_page;
2242         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2243         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2244         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2245         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2246
2247         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2248 }
2249
2250 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2251                         size_t size)
2252 {
2253         return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2254 }
2255
2256 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2257 {
2258         int ret;
2259
2260         if (!ctrl->effects)
2261                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2262
2263         if (!ctrl->effects)
2264                 return 0;
2265
2266         ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2267                                         sizeof(*ctrl->effects));
2268         if (ret) {
2269                 kfree(ctrl->effects);
2270                 ctrl->effects = NULL;
2271         }
2272         return ret;
2273 }
2274
2275 /*
2276  * Initialize the cached copies of the Identify data and various controller
2277  * register in our nvme_ctrl structure.  This should be called as soon as
2278  * the admin queue is fully up and running.
2279  */
2280 int nvme_init_identify(struct nvme_ctrl *ctrl)
2281 {
2282         struct nvme_id_ctrl *id;
2283         u64 cap;
2284         int ret, page_shift;
2285         u32 max_hw_sectors;
2286         bool prev_apst_enabled;
2287
2288         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2289         if (ret) {
2290                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2291                 return ret;
2292         }
2293
2294         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2295         if (ret) {
2296                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2297                 return ret;
2298         }
2299         page_shift = NVME_CAP_MPSMIN(cap) + 12;
2300
2301         if (ctrl->vs >= NVME_VS(1, 1, 0))
2302                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2303
2304         ret = nvme_identify_ctrl(ctrl, &id);
2305         if (ret) {
2306                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2307                 return -EIO;
2308         }
2309
2310         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2311                 ret = nvme_get_effects_log(ctrl);
2312                 if (ret < 0)
2313                         return ret;
2314         }
2315
2316         if (!ctrl->identified) {
2317                 int i;
2318
2319                 ret = nvme_init_subsystem(ctrl, id);
2320                 if (ret)
2321                         goto out_free;
2322
2323                 /*
2324                  * Check for quirks.  Quirk can depend on firmware version,
2325                  * so, in principle, the set of quirks present can change
2326                  * across a reset.  As a possible future enhancement, we
2327                  * could re-scan for quirks every time we reinitialize
2328                  * the device, but we'd have to make sure that the driver
2329                  * behaves intelligently if the quirks change.
2330                  */
2331                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2332                         if (quirk_matches(id, &core_quirks[i]))
2333                                 ctrl->quirks |= core_quirks[i].quirks;
2334                 }
2335         }
2336
2337         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2338                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2339                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2340         }
2341
2342         ctrl->oacs = le16_to_cpu(id->oacs);
2343         ctrl->oncs = le16_to_cpup(&id->oncs);
2344         atomic_set(&ctrl->abort_limit, id->acl + 1);
2345         ctrl->vwc = id->vwc;
2346         ctrl->cntlid = le16_to_cpup(&id->cntlid);
2347         if (id->mdts)
2348                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2349         else
2350                 max_hw_sectors = UINT_MAX;
2351         ctrl->max_hw_sectors =
2352                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2353
2354         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2355         ctrl->sgls = le32_to_cpu(id->sgls);
2356         ctrl->kas = le16_to_cpu(id->kas);
2357
2358         if (id->rtd3e) {
2359                 /* us -> s */
2360                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2361
2362                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2363                                                  shutdown_timeout, 60);
2364
2365                 if (ctrl->shutdown_timeout != shutdown_timeout)
2366                         dev_info(ctrl->device,
2367                                  "Shutdown timeout set to %u seconds\n",
2368                                  ctrl->shutdown_timeout);
2369         } else
2370                 ctrl->shutdown_timeout = shutdown_timeout;
2371
2372         ctrl->npss = id->npss;
2373         ctrl->apsta = id->apsta;
2374         prev_apst_enabled = ctrl->apst_enabled;
2375         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2376                 if (force_apst && id->apsta) {
2377                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2378                         ctrl->apst_enabled = true;
2379                 } else {
2380                         ctrl->apst_enabled = false;
2381                 }
2382         } else {
2383                 ctrl->apst_enabled = id->apsta;
2384         }
2385         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2386
2387         if (ctrl->ops->flags & NVME_F_FABRICS) {
2388                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2389                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2390                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2391                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2392
2393                 /*
2394                  * In fabrics we need to verify the cntlid matches the
2395                  * admin connect
2396                  */
2397                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2398                         ret = -EINVAL;
2399                         goto out_free;
2400                 }
2401
2402                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2403                         dev_err(ctrl->device,
2404                                 "keep-alive support is mandatory for fabrics\n");
2405                         ret = -EINVAL;
2406                         goto out_free;
2407                 }
2408         } else {
2409                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2410                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2411                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2412                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2413                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2414         }
2415
2416         kfree(id);
2417
2418         if (ctrl->apst_enabled && !prev_apst_enabled)
2419                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2420         else if (!ctrl->apst_enabled && prev_apst_enabled)
2421                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2422
2423         ret = nvme_configure_apst(ctrl);
2424         if (ret < 0)
2425                 return ret;
2426         
2427         ret = nvme_configure_timestamp(ctrl);
2428         if (ret < 0)
2429                 return ret;
2430
2431         ret = nvme_configure_directives(ctrl);
2432         if (ret < 0)
2433                 return ret;
2434
2435         ctrl->identified = true;
2436
2437         return 0;
2438
2439 out_free:
2440         kfree(id);
2441         return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(nvme_init_identify);
2444
2445 static int nvme_dev_open(struct inode *inode, struct file *file)
2446 {
2447         struct nvme_ctrl *ctrl =
2448                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2449
2450         switch (ctrl->state) {
2451         case NVME_CTRL_LIVE:
2452         case NVME_CTRL_ADMIN_ONLY:
2453                 break;
2454         default:
2455                 return -EWOULDBLOCK;
2456         }
2457
2458         file->private_data = ctrl;
2459         return 0;
2460 }
2461
2462 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2463 {
2464         struct nvme_ns *ns;
2465         int ret;
2466
2467         down_read(&ctrl->namespaces_rwsem);
2468         if (list_empty(&ctrl->namespaces)) {
2469                 ret = -ENOTTY;
2470                 goto out_unlock;
2471         }
2472
2473         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2474         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2475                 dev_warn(ctrl->device,
2476                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2477                 ret = -EINVAL;
2478                 goto out_unlock;
2479         }
2480
2481         dev_warn(ctrl->device,
2482                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2483         kref_get(&ns->kref);
2484         up_read(&ctrl->namespaces_rwsem);
2485
2486         ret = nvme_user_cmd(ctrl, ns, argp);
2487         nvme_put_ns(ns);
2488         return ret;
2489
2490 out_unlock:
2491         up_read(&ctrl->namespaces_rwsem);
2492         return ret;
2493 }
2494
2495 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2496                 unsigned long arg)
2497 {
2498         struct nvme_ctrl *ctrl = file->private_data;
2499         void __user *argp = (void __user *)arg;
2500
2501         switch (cmd) {
2502         case NVME_IOCTL_ADMIN_CMD:
2503                 return nvme_user_cmd(ctrl, NULL, argp);
2504         case NVME_IOCTL_IO_CMD:
2505                 return nvme_dev_user_cmd(ctrl, argp);
2506         case NVME_IOCTL_RESET:
2507                 dev_warn(ctrl->device, "resetting controller\n");
2508                 return nvme_reset_ctrl_sync(ctrl);
2509         case NVME_IOCTL_SUBSYS_RESET:
2510                 return nvme_reset_subsystem(ctrl);
2511         case NVME_IOCTL_RESCAN:
2512                 nvme_queue_scan(ctrl);
2513                 return 0;
2514         default:
2515                 return -ENOTTY;
2516         }
2517 }
2518
2519 static const struct file_operations nvme_dev_fops = {
2520         .owner          = THIS_MODULE,
2521         .open           = nvme_dev_open,
2522         .unlocked_ioctl = nvme_dev_ioctl,
2523         .compat_ioctl   = nvme_dev_ioctl,
2524 };
2525
2526 static ssize_t nvme_sysfs_reset(struct device *dev,
2527                                 struct device_attribute *attr, const char *buf,
2528                                 size_t count)
2529 {
2530         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2531         int ret;
2532
2533         ret = nvme_reset_ctrl_sync(ctrl);
2534         if (ret < 0)
2535                 return ret;
2536         return count;
2537 }
2538 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2539
2540 static ssize_t nvme_sysfs_rescan(struct device *dev,
2541                                 struct device_attribute *attr, const char *buf,
2542                                 size_t count)
2543 {
2544         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2545
2546         nvme_queue_scan(ctrl);
2547         return count;
2548 }
2549 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2550
2551 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2552 {
2553         struct gendisk *disk = dev_to_disk(dev);
2554
2555         if (disk->fops == &nvme_fops)
2556                 return nvme_get_ns_from_dev(dev)->head;
2557         else
2558                 return disk->private_data;
2559 }
2560
2561 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2562                 char *buf)
2563 {
2564         struct nvme_ns_head *head = dev_to_ns_head(dev);
2565         struct nvme_ns_ids *ids = &head->ids;
2566         struct nvme_subsystem *subsys = head->subsys;
2567         int serial_len = sizeof(subsys->serial);
2568         int model_len = sizeof(subsys->model);
2569
2570         if (!uuid_is_null(&ids->uuid))
2571                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2572
2573         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2574                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2575
2576         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2577                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2578
2579         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2580                                   subsys->serial[serial_len - 1] == '\0'))
2581                 serial_len--;
2582         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2583                                  subsys->model[model_len - 1] == '\0'))
2584                 model_len--;
2585
2586         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2587                 serial_len, subsys->serial, model_len, subsys->model,
2588                 head->ns_id);
2589 }
2590 static DEVICE_ATTR_RO(wwid);
2591
2592 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2593                 char *buf)
2594 {
2595         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2596 }
2597 static DEVICE_ATTR_RO(nguid);
2598
2599 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2600                 char *buf)
2601 {
2602         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2603
2604         /* For backward compatibility expose the NGUID to userspace if
2605          * we have no UUID set
2606          */
2607         if (uuid_is_null(&ids->uuid)) {
2608                 printk_ratelimited(KERN_WARNING
2609                                    "No UUID available providing old NGUID\n");
2610                 return sprintf(buf, "%pU\n", ids->nguid);
2611         }
2612         return sprintf(buf, "%pU\n", &ids->uuid);
2613 }
2614 static DEVICE_ATTR_RO(uuid);
2615
2616 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2617                 char *buf)
2618 {
2619         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2620 }
2621 static DEVICE_ATTR_RO(eui);
2622
2623 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2624                 char *buf)
2625 {
2626         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2627 }
2628 static DEVICE_ATTR_RO(nsid);
2629
2630 static struct attribute *nvme_ns_id_attrs[] = {
2631         &dev_attr_wwid.attr,
2632         &dev_attr_uuid.attr,
2633         &dev_attr_nguid.attr,
2634         &dev_attr_eui.attr,
2635         &dev_attr_nsid.attr,
2636         NULL,
2637 };
2638
2639 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2640                 struct attribute *a, int n)
2641 {
2642         struct device *dev = container_of(kobj, struct device, kobj);
2643         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2644
2645         if (a == &dev_attr_uuid.attr) {
2646                 if (uuid_is_null(&ids->uuid) &&
2647                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2648                         return 0;
2649         }
2650         if (a == &dev_attr_nguid.attr) {
2651                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2652                         return 0;
2653         }
2654         if (a == &dev_attr_eui.attr) {
2655                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2656                         return 0;
2657         }
2658         return a->mode;
2659 }
2660
2661 const struct attribute_group nvme_ns_id_attr_group = {
2662         .attrs          = nvme_ns_id_attrs,
2663         .is_visible     = nvme_ns_id_attrs_are_visible,
2664 };
2665
2666 #define nvme_show_str_function(field)                                           \
2667 static ssize_t  field##_show(struct device *dev,                                \
2668                             struct device_attribute *attr, char *buf)           \
2669 {                                                                               \
2670         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2671         return sprintf(buf, "%.*s\n",                                           \
2672                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2673 }                                                                               \
2674 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2675
2676 nvme_show_str_function(model);
2677 nvme_show_str_function(serial);
2678 nvme_show_str_function(firmware_rev);
2679
2680 #define nvme_show_int_function(field)                                           \
2681 static ssize_t  field##_show(struct device *dev,                                \
2682                             struct device_attribute *attr, char *buf)           \
2683 {                                                                               \
2684         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2685         return sprintf(buf, "%d\n", ctrl->field);       \
2686 }                                                                               \
2687 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2688
2689 nvme_show_int_function(cntlid);
2690
2691 static ssize_t nvme_sysfs_delete(struct device *dev,
2692                                 struct device_attribute *attr, const char *buf,
2693                                 size_t count)
2694 {
2695         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2696
2697         if (device_remove_file_self(dev, attr))
2698                 nvme_delete_ctrl_sync(ctrl);
2699         return count;
2700 }
2701 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2702
2703 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2704                                          struct device_attribute *attr,
2705                                          char *buf)
2706 {
2707         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2708
2709         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2710 }
2711 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2712
2713 static ssize_t nvme_sysfs_show_state(struct device *dev,
2714                                      struct device_attribute *attr,
2715                                      char *buf)
2716 {
2717         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2718         static const char *const state_name[] = {
2719                 [NVME_CTRL_NEW]         = "new",
2720                 [NVME_CTRL_LIVE]        = "live",
2721                 [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
2722                 [NVME_CTRL_RESETTING]   = "resetting",
2723                 [NVME_CTRL_CONNECTING]  = "connecting",
2724                 [NVME_CTRL_DELETING]    = "deleting",
2725                 [NVME_CTRL_DEAD]        = "dead",
2726         };
2727
2728         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2729             state_name[ctrl->state])
2730                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2731
2732         return sprintf(buf, "unknown state\n");
2733 }
2734
2735 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2736
2737 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2738                                          struct device_attribute *attr,
2739                                          char *buf)
2740 {
2741         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2742
2743         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2744 }
2745 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2746
2747 static ssize_t nvme_sysfs_show_address(struct device *dev,
2748                                          struct device_attribute *attr,
2749                                          char *buf)
2750 {
2751         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2752
2753         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2754 }
2755 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2756
2757 static struct attribute *nvme_dev_attrs[] = {
2758         &dev_attr_reset_controller.attr,
2759         &dev_attr_rescan_controller.attr,
2760         &dev_attr_model.attr,
2761         &dev_attr_serial.attr,
2762         &dev_attr_firmware_rev.attr,
2763         &dev_attr_cntlid.attr,
2764         &dev_attr_delete_controller.attr,
2765         &dev_attr_transport.attr,
2766         &dev_attr_subsysnqn.attr,
2767         &dev_attr_address.attr,
2768         &dev_attr_state.attr,
2769         NULL
2770 };
2771
2772 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2773                 struct attribute *a, int n)
2774 {
2775         struct device *dev = container_of(kobj, struct device, kobj);
2776         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2777
2778         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2779                 return 0;
2780         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2781                 return 0;
2782
2783         return a->mode;
2784 }
2785
2786 static struct attribute_group nvme_dev_attrs_group = {
2787         .attrs          = nvme_dev_attrs,
2788         .is_visible     = nvme_dev_attrs_are_visible,
2789 };
2790
2791 static const struct attribute_group *nvme_dev_attr_groups[] = {
2792         &nvme_dev_attrs_group,
2793         NULL,
2794 };
2795
2796 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2797                 unsigned nsid)
2798 {
2799         struct nvme_ns_head *h;
2800
2801         lockdep_assert_held(&subsys->lock);
2802
2803         list_for_each_entry(h, &subsys->nsheads, entry) {
2804                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2805                         return h;
2806         }
2807
2808         return NULL;
2809 }
2810
2811 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2812                 struct nvme_ns_head *new)
2813 {
2814         struct nvme_ns_head *h;
2815
2816         lockdep_assert_held(&subsys->lock);
2817
2818         list_for_each_entry(h, &subsys->nsheads, entry) {
2819                 if (nvme_ns_ids_valid(&new->ids) &&
2820                     !list_empty(&h->list) &&
2821                     nvme_ns_ids_equal(&new->ids, &h->ids))
2822                         return -EINVAL;
2823         }
2824
2825         return 0;
2826 }
2827
2828 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2829                 unsigned nsid, struct nvme_id_ns *id)
2830 {
2831         struct nvme_ns_head *head;
2832         int ret = -ENOMEM;
2833
2834         head = kzalloc(sizeof(*head), GFP_KERNEL);
2835         if (!head)
2836                 goto out;
2837         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2838         if (ret < 0)
2839                 goto out_free_head;
2840         head->instance = ret;
2841         INIT_LIST_HEAD(&head->list);
2842         ret = init_srcu_struct(&head->srcu);
2843         if (ret)
2844                 goto out_ida_remove;
2845         head->subsys = ctrl->subsys;
2846         head->ns_id = nsid;
2847         kref_init(&head->ref);
2848
2849         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2850
2851         ret = __nvme_check_ids(ctrl->subsys, head);
2852         if (ret) {
2853                 dev_err(ctrl->device,
2854                         "duplicate IDs for nsid %d\n", nsid);
2855                 goto out_cleanup_srcu;
2856         }
2857
2858         ret = nvme_mpath_alloc_disk(ctrl, head);
2859         if (ret)
2860                 goto out_cleanup_srcu;
2861
2862         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2863         return head;
2864 out_cleanup_srcu:
2865         cleanup_srcu_struct(&head->srcu);
2866 out_ida_remove:
2867         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2868 out_free_head:
2869         kfree(head);
2870 out:
2871         return ERR_PTR(ret);
2872 }
2873
2874 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2875                 struct nvme_id_ns *id)
2876 {
2877         struct nvme_ctrl *ctrl = ns->ctrl;
2878         bool is_shared = id->nmic & (1 << 0);
2879         struct nvme_ns_head *head = NULL;
2880         int ret = 0;
2881
2882         mutex_lock(&ctrl->subsys->lock);
2883         if (is_shared)
2884                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2885         if (!head) {
2886                 head = nvme_alloc_ns_head(ctrl, nsid, id);
2887                 if (IS_ERR(head)) {
2888                         ret = PTR_ERR(head);
2889                         goto out_unlock;
2890                 }
2891         } else {
2892                 struct nvme_ns_ids ids;
2893
2894                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2895                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2896                         dev_err(ctrl->device,
2897                                 "IDs don't match for shared namespace %d\n",
2898                                         nsid);
2899                         ret = -EINVAL;
2900                         goto out_unlock;
2901                 }
2902         }
2903
2904         list_add_tail(&ns->siblings, &head->list);
2905         ns->head = head;
2906
2907 out_unlock:
2908         mutex_unlock(&ctrl->subsys->lock);
2909         return ret;
2910 }
2911
2912 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2913 {
2914         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2915         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2916
2917         return nsa->head->ns_id - nsb->head->ns_id;
2918 }
2919
2920 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2921 {
2922         struct nvme_ns *ns, *ret = NULL;
2923
2924         down_read(&ctrl->namespaces_rwsem);
2925         list_for_each_entry(ns, &ctrl->namespaces, list) {
2926                 if (ns->head->ns_id == nsid) {
2927                         if (!kref_get_unless_zero(&ns->kref))
2928                                 continue;
2929                         ret = ns;
2930                         break;
2931                 }
2932                 if (ns->head->ns_id > nsid)
2933                         break;
2934         }
2935         up_read(&ctrl->namespaces_rwsem);
2936         return ret;
2937 }
2938
2939 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2940 {
2941         struct streams_directive_params s;
2942         int ret;
2943
2944         if (!ctrl->nr_streams)
2945                 return 0;
2946
2947         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2948         if (ret)
2949                 return ret;
2950
2951         ns->sws = le32_to_cpu(s.sws);
2952         ns->sgs = le16_to_cpu(s.sgs);
2953
2954         if (ns->sws) {
2955                 unsigned int bs = 1 << ns->lba_shift;
2956
2957                 blk_queue_io_min(ns->queue, bs * ns->sws);
2958                 if (ns->sgs)
2959                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2960         }
2961
2962         return 0;
2963 }
2964
2965 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2966 {
2967         struct nvme_ns *ns;
2968         struct gendisk *disk;
2969         struct nvme_id_ns *id;
2970         char disk_name[DISK_NAME_LEN];
2971         int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2972
2973         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2974         if (!ns)
2975                 return;
2976
2977         ns->queue = blk_mq_init_queue(ctrl->tagset);
2978         if (IS_ERR(ns->queue))
2979                 goto out_free_ns;
2980         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2981         ns->queue->queuedata = ns;
2982         ns->ctrl = ctrl;
2983
2984         kref_init(&ns->kref);
2985         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2986
2987         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2988         nvme_set_queue_limits(ctrl, ns->queue);
2989
2990         id = nvme_identify_ns(ctrl, nsid);
2991         if (!id)
2992                 goto out_free_queue;
2993
2994         if (id->ncap == 0)
2995                 goto out_free_id;
2996
2997         if (nvme_init_ns_head(ns, nsid, id))
2998                 goto out_free_id;
2999         nvme_setup_streams_ns(ctrl, ns);
3000         
3001 #ifdef CONFIG_NVME_MULTIPATH
3002         /*
3003          * If multipathing is enabled we need to always use the subsystem
3004          * instance number for numbering our devices to avoid conflicts
3005          * between subsystems that have multiple controllers and thus use
3006          * the multipath-aware subsystem node and those that have a single
3007          * controller and use the controller node directly.
3008          */
3009         if (ns->head->disk) {
3010                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3011                                 ctrl->cntlid, ns->head->instance);
3012                 flags = GENHD_FL_HIDDEN;
3013         } else {
3014                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
3015                                 ns->head->instance);
3016         }
3017 #else
3018         /*
3019          * But without the multipath code enabled, multiple controller per
3020          * subsystems are visible as devices and thus we cannot use the
3021          * subsystem instance.
3022          */
3023         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
3024 #endif
3025
3026         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3027                 if (nvme_nvm_register(ns, disk_name, node)) {
3028                         dev_warn(ctrl->device, "LightNVM init failure\n");
3029                         goto out_unlink_ns;
3030                 }
3031         }
3032
3033         disk = alloc_disk_node(0, node);
3034         if (!disk)
3035                 goto out_unlink_ns;
3036
3037         disk->fops = &nvme_fops;
3038         disk->private_data = ns;
3039         disk->queue = ns->queue;
3040         disk->flags = flags;
3041         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3042         ns->disk = disk;
3043
3044         __nvme_revalidate_disk(disk, id);
3045
3046         down_write(&ctrl->namespaces_rwsem);
3047         list_add_tail(&ns->list, &ctrl->namespaces);
3048         up_write(&ctrl->namespaces_rwsem);
3049
3050         nvme_get_ctrl(ctrl);
3051
3052         kfree(id);
3053
3054         device_add_disk(ctrl->device, ns->disk);
3055         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3056                                         &nvme_ns_id_attr_group))
3057                 pr_warn("%s: failed to create sysfs group for identification\n",
3058                         ns->disk->disk_name);
3059         if (ns->ndev && nvme_nvm_register_sysfs(ns))
3060                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3061                         ns->disk->disk_name);
3062
3063         nvme_mpath_add_disk(ns->head);
3064         nvme_fault_inject_init(ns);
3065         return;
3066  out_unlink_ns:
3067         mutex_lock(&ctrl->subsys->lock);
3068         list_del_rcu(&ns->siblings);
3069         mutex_unlock(&ctrl->subsys->lock);
3070  out_free_id:
3071         kfree(id);
3072  out_free_queue:
3073         blk_cleanup_queue(ns->queue);
3074  out_free_ns:
3075         kfree(ns);
3076 }
3077
3078 static void nvme_ns_remove(struct nvme_ns *ns)
3079 {
3080         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3081                 return;
3082
3083         nvme_fault_inject_fini(ns);
3084         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3085                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3086                                         &nvme_ns_id_attr_group);
3087                 if (ns->ndev)
3088                         nvme_nvm_unregister_sysfs(ns);
3089                 del_gendisk(ns->disk);
3090                 blk_cleanup_queue(ns->queue);
3091                 if (blk_get_integrity(ns->disk))
3092                         blk_integrity_unregister(ns->disk);
3093         }
3094
3095         mutex_lock(&ns->ctrl->subsys->lock);
3096         nvme_mpath_clear_current_path(ns);
3097         list_del_rcu(&ns->siblings);
3098         mutex_unlock(&ns->ctrl->subsys->lock);
3099
3100         down_write(&ns->ctrl->namespaces_rwsem);
3101         list_del_init(&ns->list);
3102         up_write(&ns->ctrl->namespaces_rwsem);
3103
3104         synchronize_srcu(&ns->head->srcu);
3105         nvme_mpath_check_last_path(ns);
3106         nvme_put_ns(ns);
3107 }
3108
3109 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3110 {
3111         struct nvme_ns *ns;
3112
3113         ns = nvme_find_get_ns(ctrl, nsid);
3114         if (ns) {
3115                 if (ns->disk && revalidate_disk(ns->disk))
3116                         nvme_ns_remove(ns);
3117                 nvme_put_ns(ns);
3118         } else
3119                 nvme_alloc_ns(ctrl, nsid);
3120 }
3121
3122 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3123                                         unsigned nsid)
3124 {
3125         struct nvme_ns *ns, *next;
3126         LIST_HEAD(rm_list);
3127
3128         down_write(&ctrl->namespaces_rwsem);
3129         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3130                 if (ns->head->ns_id > nsid)
3131                         list_move_tail(&ns->list, &rm_list);
3132         }
3133         up_write(&ctrl->namespaces_rwsem);
3134
3135         list_for_each_entry_safe(ns, next, &rm_list, list)
3136                 nvme_ns_remove(ns);
3137
3138 }
3139
3140 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3141 {
3142         struct nvme_ns *ns;
3143         __le32 *ns_list;
3144         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3145         int ret = 0;
3146
3147         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3148         if (!ns_list)
3149                 return -ENOMEM;
3150
3151         for (i = 0; i < num_lists; i++) {
3152                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3153                 if (ret)
3154                         goto free;
3155
3156                 for (j = 0; j < min(nn, 1024U); j++) {
3157                         nsid = le32_to_cpu(ns_list[j]);
3158                         if (!nsid)
3159                                 goto out;
3160
3161                         nvme_validate_ns(ctrl, nsid);
3162
3163                         while (++prev < nsid) {
3164                                 ns = nvme_find_get_ns(ctrl, prev);
3165                                 if (ns) {
3166                                         nvme_ns_remove(ns);
3167                                         nvme_put_ns(ns);
3168                                 }
3169                         }
3170                 }
3171                 nn -= j;
3172         }
3173  out:
3174         nvme_remove_invalid_namespaces(ctrl, prev);
3175  free:
3176         kfree(ns_list);
3177         return ret;
3178 }
3179
3180 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3181 {
3182         unsigned i;
3183
3184         for (i = 1; i <= nn; i++)
3185                 nvme_validate_ns(ctrl, i);
3186
3187         nvme_remove_invalid_namespaces(ctrl, nn);
3188 }
3189
3190 static void nvme_scan_work(struct work_struct *work)
3191 {
3192         struct nvme_ctrl *ctrl =
3193                 container_of(work, struct nvme_ctrl, scan_work);
3194         struct nvme_id_ctrl *id;
3195         unsigned nn;
3196
3197         if (ctrl->state != NVME_CTRL_LIVE)
3198                 return;
3199
3200         WARN_ON_ONCE(!ctrl->tagset);
3201
3202         if (nvme_identify_ctrl(ctrl, &id))
3203                 return;
3204
3205         nn = le32_to_cpu(id->nn);
3206         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3207             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3208                 if (!nvme_scan_ns_list(ctrl, nn))
3209                         goto done;
3210         }
3211         nvme_scan_ns_sequential(ctrl, nn);
3212  done:
3213         down_write(&ctrl->namespaces_rwsem);
3214         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3215         up_write(&ctrl->namespaces_rwsem);
3216         kfree(id);
3217 }
3218
3219 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3220 {
3221         /*
3222          * Only new queue scan work when admin and IO queues are both alive
3223          */
3224         if (ctrl->state == NVME_CTRL_LIVE)
3225                 queue_work(nvme_wq, &ctrl->scan_work);
3226 }
3227 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3228
3229 /*
3230  * This function iterates the namespace list unlocked to allow recovery from
3231  * controller failure. It is up to the caller to ensure the namespace list is
3232  * not modified by scan work while this function is executing.
3233  */
3234 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3235 {
3236         struct nvme_ns *ns, *next;
3237         LIST_HEAD(ns_list);
3238
3239         /*
3240          * The dead states indicates the controller was not gracefully
3241          * disconnected. In that case, we won't be able to flush any data while
3242          * removing the namespaces' disks; fail all the queues now to avoid
3243          * potentially having to clean up the failed sync later.
3244          */
3245         if (ctrl->state == NVME_CTRL_DEAD)
3246                 nvme_kill_queues(ctrl);
3247
3248         down_write(&ctrl->namespaces_rwsem);
3249         list_splice_init(&ctrl->namespaces, &ns_list);
3250         up_write(&ctrl->namespaces_rwsem);
3251
3252         list_for_each_entry_safe(ns, next, &ns_list, list)
3253                 nvme_ns_remove(ns);
3254 }
3255 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3256
3257 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3258 {
3259         char *envp[2] = { NULL, NULL };
3260         u32 aen_result = ctrl->aen_result;
3261
3262         ctrl->aen_result = 0;
3263         if (!aen_result)
3264                 return;
3265
3266         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3267         if (!envp[0])
3268                 return;
3269         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3270         kfree(envp[0]);
3271 }
3272
3273 static void nvme_async_event_work(struct work_struct *work)
3274 {
3275         struct nvme_ctrl *ctrl =
3276                 container_of(work, struct nvme_ctrl, async_event_work);
3277
3278         nvme_aen_uevent(ctrl);
3279         ctrl->ops->submit_async_event(ctrl);
3280 }
3281
3282 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3283 {
3284
3285         u32 csts;
3286
3287         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3288                 return false;
3289
3290         if (csts == ~0)
3291                 return false;
3292
3293         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3294 }
3295
3296 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3297 {
3298         struct nvme_fw_slot_info_log *log;
3299
3300         log = kmalloc(sizeof(*log), GFP_KERNEL);
3301         if (!log)
3302                 return;
3303
3304         if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3305                 dev_warn(ctrl->device,
3306                                 "Get FW SLOT INFO log error\n");
3307         kfree(log);
3308 }
3309
3310 static void nvme_fw_act_work(struct work_struct *work)
3311 {
3312         struct nvme_ctrl *ctrl = container_of(work,
3313                                 struct nvme_ctrl, fw_act_work);
3314         unsigned long fw_act_timeout;
3315
3316         if (ctrl->mtfa)
3317                 fw_act_timeout = jiffies +
3318                                 msecs_to_jiffies(ctrl->mtfa * 100);
3319         else
3320                 fw_act_timeout = jiffies +
3321                                 msecs_to_jiffies(admin_timeout * 1000);
3322
3323         nvme_stop_queues(ctrl);
3324         while (nvme_ctrl_pp_status(ctrl)) {
3325                 if (time_after(jiffies, fw_act_timeout)) {
3326                         dev_warn(ctrl->device,
3327                                 "Fw activation timeout, reset controller\n");
3328                         nvme_reset_ctrl(ctrl);
3329                         break;
3330                 }
3331                 msleep(100);
3332         }
3333
3334         if (ctrl->state != NVME_CTRL_LIVE)
3335                 return;
3336
3337         nvme_start_queues(ctrl);
3338         /* read FW slot information to clear the AER */
3339         nvme_get_fw_slot_info(ctrl);
3340 }
3341
3342 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3343                 union nvme_result *res)
3344 {
3345         u32 result = le32_to_cpu(res->u32);
3346
3347         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3348                 return;
3349
3350         switch (result & 0x7) {
3351         case NVME_AER_ERROR:
3352         case NVME_AER_SMART:
3353         case NVME_AER_CSS:
3354         case NVME_AER_VS:
3355                 ctrl->aen_result = result;
3356                 break;
3357         default:
3358                 break;
3359         }
3360
3361         switch (result & 0xff07) {
3362         case NVME_AER_NOTICE_NS_CHANGED:
3363                 dev_info(ctrl->device, "rescanning\n");
3364                 nvme_queue_scan(ctrl);
3365                 break;
3366         case NVME_AER_NOTICE_FW_ACT_STARTING:
3367                 queue_work(nvme_wq, &ctrl->fw_act_work);
3368                 break;
3369         default:
3370                 dev_warn(ctrl->device, "async event result %08x\n", result);
3371         }
3372         queue_work(nvme_wq, &ctrl->async_event_work);
3373 }
3374 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3375
3376 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3377 {
3378         nvme_stop_keep_alive(ctrl);
3379         flush_work(&ctrl->async_event_work);
3380         flush_work(&ctrl->scan_work);
3381         cancel_work_sync(&ctrl->fw_act_work);
3382         if (ctrl->ops->stop_ctrl)
3383                 ctrl->ops->stop_ctrl(ctrl);
3384 }
3385 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3386
3387 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3388 {
3389         if (ctrl->kato)
3390                 nvme_start_keep_alive(ctrl);
3391
3392         if (ctrl->queue_count > 1) {
3393                 nvme_queue_scan(ctrl);
3394                 queue_work(nvme_wq, &ctrl->async_event_work);
3395                 nvme_start_queues(ctrl);
3396         }
3397 }
3398 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3399
3400 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3401 {
3402         cdev_device_del(&ctrl->cdev, ctrl->device);
3403 }
3404 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3405
3406 static void nvme_free_ctrl(struct device *dev)
3407 {
3408         struct nvme_ctrl *ctrl =
3409                 container_of(dev, struct nvme_ctrl, ctrl_device);
3410         struct nvme_subsystem *subsys = ctrl->subsys;
3411
3412         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3413         kfree(ctrl->effects);
3414
3415         if (subsys) {
3416                 mutex_lock(&subsys->lock);
3417                 list_del(&ctrl->subsys_entry);
3418                 mutex_unlock(&subsys->lock);
3419                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3420         }
3421
3422         ctrl->ops->free_ctrl(ctrl);
3423
3424         if (subsys)
3425                 nvme_put_subsystem(subsys);
3426 }
3427
3428 /*
3429  * Initialize a NVMe controller structures.  This needs to be called during
3430  * earliest initialization so that we have the initialized structured around
3431  * during probing.
3432  */
3433 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3434                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3435 {
3436         int ret;
3437
3438         ctrl->state = NVME_CTRL_NEW;
3439         spin_lock_init(&ctrl->lock);
3440         INIT_LIST_HEAD(&ctrl->namespaces);
3441         init_rwsem(&ctrl->namespaces_rwsem);
3442         ctrl->dev = dev;
3443         ctrl->ops = ops;
3444         ctrl->quirks = quirks;
3445         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3446         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3447         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3448         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3449
3450         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3451         if (ret < 0)
3452                 goto out;
3453         ctrl->instance = ret;
3454
3455         device_initialize(&ctrl->ctrl_device);
3456         ctrl->device = &ctrl->ctrl_device;
3457         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3458         ctrl->device->class = nvme_class;
3459         ctrl->device->parent = ctrl->dev;
3460         ctrl->device->groups = nvme_dev_attr_groups;
3461         ctrl->device->release = nvme_free_ctrl;
3462         dev_set_drvdata(ctrl->device, ctrl);
3463         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3464         if (ret)
3465                 goto out_release_instance;
3466
3467         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3468         ctrl->cdev.owner = ops->module;
3469         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3470         if (ret)
3471                 goto out_free_name;
3472
3473         /*
3474          * Initialize latency tolerance controls.  The sysfs files won't
3475          * be visible to userspace unless the device actually supports APST.
3476          */
3477         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3478         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3479                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3480
3481         return 0;
3482 out_free_name:
3483         kfree_const(dev->kobj.name);
3484 out_release_instance:
3485         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3486 out:
3487         return ret;
3488 }
3489 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3490
3491 /**
3492  * nvme_kill_queues(): Ends all namespace queues
3493  * @ctrl: the dead controller that needs to end
3494  *
3495  * Call this function when the driver determines it is unable to get the
3496  * controller in a state capable of servicing IO.
3497  */
3498 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3499 {
3500         struct nvme_ns *ns;
3501
3502         down_read(&ctrl->namespaces_rwsem);
3503
3504         /* Forcibly unquiesce queues to avoid blocking dispatch */
3505         if (ctrl->admin_q)
3506                 blk_mq_unquiesce_queue(ctrl->admin_q);
3507
3508         list_for_each_entry(ns, &ctrl->namespaces, list) {
3509                 /*
3510                  * Revalidating a dead namespace sets capacity to 0. This will
3511                  * end buffered writers dirtying pages that can't be synced.
3512                  */
3513                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3514                         continue;
3515                 revalidate_disk(ns->disk);
3516                 blk_set_queue_dying(ns->queue);
3517
3518                 /* Forcibly unquiesce queues to avoid blocking dispatch */
3519                 blk_mq_unquiesce_queue(ns->queue);
3520         }
3521         up_read(&ctrl->namespaces_rwsem);
3522 }
3523 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3524
3525 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3526 {
3527         struct nvme_ns *ns;
3528
3529         down_read(&ctrl->namespaces_rwsem);
3530         list_for_each_entry(ns, &ctrl->namespaces, list)
3531                 blk_mq_unfreeze_queue(ns->queue);
3532         up_read(&ctrl->namespaces_rwsem);
3533 }
3534 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3535
3536 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3537 {
3538         struct nvme_ns *ns;
3539
3540         down_read(&ctrl->namespaces_rwsem);
3541         list_for_each_entry(ns, &ctrl->namespaces, list) {
3542                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3543                 if (timeout <= 0)
3544                         break;
3545         }
3546         up_read(&ctrl->namespaces_rwsem);
3547 }
3548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3549
3550 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3551 {
3552         struct nvme_ns *ns;
3553
3554         down_read(&ctrl->namespaces_rwsem);
3555         list_for_each_entry(ns, &ctrl->namespaces, list)
3556                 blk_mq_freeze_queue_wait(ns->queue);
3557         up_read(&ctrl->namespaces_rwsem);
3558 }
3559 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3560
3561 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3562 {
3563         struct nvme_ns *ns;
3564
3565         down_read(&ctrl->namespaces_rwsem);
3566         list_for_each_entry(ns, &ctrl->namespaces, list)
3567                 blk_freeze_queue_start(ns->queue);
3568         up_read(&ctrl->namespaces_rwsem);
3569 }
3570 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3571
3572 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3573 {
3574         struct nvme_ns *ns;
3575
3576         down_read(&ctrl->namespaces_rwsem);
3577         list_for_each_entry(ns, &ctrl->namespaces, list)
3578                 blk_mq_quiesce_queue(ns->queue);
3579         up_read(&ctrl->namespaces_rwsem);
3580 }
3581 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3582
3583 void nvme_start_queues(struct nvme_ctrl *ctrl)
3584 {
3585         struct nvme_ns *ns;
3586
3587         down_read(&ctrl->namespaces_rwsem);
3588         list_for_each_entry(ns, &ctrl->namespaces, list)
3589                 blk_mq_unquiesce_queue(ns->queue);
3590         up_read(&ctrl->namespaces_rwsem);
3591 }
3592 EXPORT_SYMBOL_GPL(nvme_start_queues);
3593
3594 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3595 {
3596         if (!ctrl->ops->reinit_request)
3597                 return 0;
3598
3599         return blk_mq_tagset_iter(set, set->driver_data,
3600                         ctrl->ops->reinit_request);
3601 }
3602 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3603
3604 int __init nvme_core_init(void)
3605 {
3606         int result = -ENOMEM;
3607
3608         nvme_wq = alloc_workqueue("nvme-wq",
3609                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3610         if (!nvme_wq)
3611                 goto out;
3612
3613         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3614                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3615         if (!nvme_reset_wq)
3616                 goto destroy_wq;
3617
3618         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3619                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3620         if (!nvme_delete_wq)
3621                 goto destroy_reset_wq;
3622
3623         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3624         if (result < 0)
3625                 goto destroy_delete_wq;
3626
3627         nvme_class = class_create(THIS_MODULE, "nvme");
3628         if (IS_ERR(nvme_class)) {
3629                 result = PTR_ERR(nvme_class);
3630                 goto unregister_chrdev;
3631         }
3632
3633         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3634         if (IS_ERR(nvme_subsys_class)) {
3635                 result = PTR_ERR(nvme_subsys_class);
3636                 goto destroy_class;
3637         }
3638         return 0;
3639
3640 destroy_class:
3641         class_destroy(nvme_class);
3642 unregister_chrdev:
3643         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3644 destroy_delete_wq:
3645         destroy_workqueue(nvme_delete_wq);
3646 destroy_reset_wq:
3647         destroy_workqueue(nvme_reset_wq);
3648 destroy_wq:
3649         destroy_workqueue(nvme_wq);
3650 out:
3651         return result;
3652 }
3653
3654 void nvme_core_exit(void)
3655 {
3656         ida_destroy(&nvme_subsystems_ida);
3657         class_destroy(nvme_subsys_class);
3658         class_destroy(nvme_class);
3659         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3660         destroy_workqueue(nvme_delete_wq);
3661         destroy_workqueue(nvme_reset_wq);
3662         destroy_workqueue(nvme_wq);
3663 }
3664
3665 MODULE_LICENSE("GPL");
3666 MODULE_VERSION("1.0");
3667 module_init(nvme_core_init);
3668 module_exit(nvme_core_exit);