Merge remote-tracking branches 'asoc/fix/rt5663', 'asoc/fix/rt5665', 'asoc/fix/samsun...
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61                  "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
79 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
80 {
81         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
82                 return -EBUSY;
83         if (!queue_work(nvme_wq, &ctrl->reset_work))
84                 return -EBUSY;
85         return 0;
86 }
87 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
88
89 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
90 {
91         int ret;
92
93         ret = nvme_reset_ctrl(ctrl);
94         if (!ret)
95                 flush_work(&ctrl->reset_work);
96         return ret;
97 }
98
99 static blk_status_t nvme_error_status(struct request *req)
100 {
101         switch (nvme_req(req)->status & 0x7ff) {
102         case NVME_SC_SUCCESS:
103                 return BLK_STS_OK;
104         case NVME_SC_CAP_EXCEEDED:
105                 return BLK_STS_NOSPC;
106         case NVME_SC_ONCS_NOT_SUPPORTED:
107                 return BLK_STS_NOTSUPP;
108         case NVME_SC_WRITE_FAULT:
109         case NVME_SC_READ_ERROR:
110         case NVME_SC_UNWRITTEN_BLOCK:
111                 return BLK_STS_MEDIUM;
112         default:
113                 return BLK_STS_IOERR;
114         }
115 }
116
117 static inline bool nvme_req_needs_retry(struct request *req)
118 {
119         if (blk_noretry_request(req))
120                 return false;
121         if (nvme_req(req)->status & NVME_SC_DNR)
122                 return false;
123         if (jiffies - req->start_time >= req->timeout)
124                 return false;
125         if (nvme_req(req)->retries >= nvme_max_retries)
126                 return false;
127         return true;
128 }
129
130 void nvme_complete_rq(struct request *req)
131 {
132         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
133                 nvme_req(req)->retries++;
134                 blk_mq_requeue_request(req, true);
135                 return;
136         }
137
138         blk_mq_end_request(req, nvme_error_status(req));
139 }
140 EXPORT_SYMBOL_GPL(nvme_complete_rq);
141
142 void nvme_cancel_request(struct request *req, void *data, bool reserved)
143 {
144         int status;
145
146         if (!blk_mq_request_started(req))
147                 return;
148
149         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
150                                 "Cancelling I/O %d", req->tag);
151
152         status = NVME_SC_ABORT_REQ;
153         if (blk_queue_dying(req->q))
154                 status |= NVME_SC_DNR;
155         nvme_req(req)->status = status;
156         blk_mq_complete_request(req);
157
158 }
159 EXPORT_SYMBOL_GPL(nvme_cancel_request);
160
161 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
162                 enum nvme_ctrl_state new_state)
163 {
164         enum nvme_ctrl_state old_state;
165         bool changed = false;
166
167         spin_lock_irq(&ctrl->lock);
168
169         old_state = ctrl->state;
170         switch (new_state) {
171         case NVME_CTRL_LIVE:
172                 switch (old_state) {
173                 case NVME_CTRL_NEW:
174                 case NVME_CTRL_RESETTING:
175                 case NVME_CTRL_RECONNECTING:
176                         changed = true;
177                         /* FALLTHRU */
178                 default:
179                         break;
180                 }
181                 break;
182         case NVME_CTRL_RESETTING:
183                 switch (old_state) {
184                 case NVME_CTRL_NEW:
185                 case NVME_CTRL_LIVE:
186                         changed = true;
187                         /* FALLTHRU */
188                 default:
189                         break;
190                 }
191                 break;
192         case NVME_CTRL_RECONNECTING:
193                 switch (old_state) {
194                 case NVME_CTRL_LIVE:
195                         changed = true;
196                         /* FALLTHRU */
197                 default:
198                         break;
199                 }
200                 break;
201         case NVME_CTRL_DELETING:
202                 switch (old_state) {
203                 case NVME_CTRL_LIVE:
204                 case NVME_CTRL_RESETTING:
205                 case NVME_CTRL_RECONNECTING:
206                         changed = true;
207                         /* FALLTHRU */
208                 default:
209                         break;
210                 }
211                 break;
212         case NVME_CTRL_DEAD:
213                 switch (old_state) {
214                 case NVME_CTRL_DELETING:
215                         changed = true;
216                         /* FALLTHRU */
217                 default:
218                         break;
219                 }
220                 break;
221         default:
222                 break;
223         }
224
225         if (changed)
226                 ctrl->state = new_state;
227
228         spin_unlock_irq(&ctrl->lock);
229
230         return changed;
231 }
232 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
233
234 static void nvme_free_ns(struct kref *kref)
235 {
236         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
237
238         if (ns->ndev)
239                 nvme_nvm_unregister(ns);
240
241         if (ns->disk) {
242                 spin_lock(&dev_list_lock);
243                 ns->disk->private_data = NULL;
244                 spin_unlock(&dev_list_lock);
245         }
246
247         put_disk(ns->disk);
248         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
249         nvme_put_ctrl(ns->ctrl);
250         kfree(ns);
251 }
252
253 static void nvme_put_ns(struct nvme_ns *ns)
254 {
255         kref_put(&ns->kref, nvme_free_ns);
256 }
257
258 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
259 {
260         struct nvme_ns *ns;
261
262         spin_lock(&dev_list_lock);
263         ns = disk->private_data;
264         if (ns) {
265                 if (!kref_get_unless_zero(&ns->kref))
266                         goto fail;
267                 if (!try_module_get(ns->ctrl->ops->module))
268                         goto fail_put_ns;
269         }
270         spin_unlock(&dev_list_lock);
271
272         return ns;
273
274 fail_put_ns:
275         kref_put(&ns->kref, nvme_free_ns);
276 fail:
277         spin_unlock(&dev_list_lock);
278         return NULL;
279 }
280
281 struct request *nvme_alloc_request(struct request_queue *q,
282                 struct nvme_command *cmd, unsigned int flags, int qid)
283 {
284         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
285         struct request *req;
286
287         if (qid == NVME_QID_ANY) {
288                 req = blk_mq_alloc_request(q, op, flags);
289         } else {
290                 req = blk_mq_alloc_request_hctx(q, op, flags,
291                                 qid ? qid - 1 : 0);
292         }
293         if (IS_ERR(req))
294                 return req;
295
296         req->cmd_flags |= REQ_FAILFAST_DRIVER;
297         nvme_req(req)->cmd = cmd;
298
299         return req;
300 }
301 EXPORT_SYMBOL_GPL(nvme_alloc_request);
302
303 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
304 {
305         struct nvme_command c;
306
307         memset(&c, 0, sizeof(c));
308
309         c.directive.opcode = nvme_admin_directive_send;
310         c.directive.nsid = cpu_to_le32(0xffffffff);
311         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
312         c.directive.dtype = NVME_DIR_IDENTIFY;
313         c.directive.tdtype = NVME_DIR_STREAMS;
314         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
315
316         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
317 }
318
319 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
320 {
321         return nvme_toggle_streams(ctrl, false);
322 }
323
324 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
325 {
326         return nvme_toggle_streams(ctrl, true);
327 }
328
329 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
330                                   struct streams_directive_params *s, u32 nsid)
331 {
332         struct nvme_command c;
333
334         memset(&c, 0, sizeof(c));
335         memset(s, 0, sizeof(*s));
336
337         c.directive.opcode = nvme_admin_directive_recv;
338         c.directive.nsid = cpu_to_le32(nsid);
339         c.directive.numd = cpu_to_le32(sizeof(*s));
340         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
341         c.directive.dtype = NVME_DIR_STREAMS;
342
343         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
344 }
345
346 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
347 {
348         struct streams_directive_params s;
349         int ret;
350
351         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
352                 return 0;
353         if (!streams)
354                 return 0;
355
356         ret = nvme_enable_streams(ctrl);
357         if (ret)
358                 return ret;
359
360         ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
361         if (ret)
362                 return ret;
363
364         ctrl->nssa = le16_to_cpu(s.nssa);
365         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
366                 dev_info(ctrl->device, "too few streams (%u) available\n",
367                                         ctrl->nssa);
368                 nvme_disable_streams(ctrl);
369                 return 0;
370         }
371
372         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
373         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
374         return 0;
375 }
376
377 /*
378  * Check if 'req' has a write hint associated with it. If it does, assign
379  * a valid namespace stream to the write.
380  */
381 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
382                                      struct request *req, u16 *control,
383                                      u32 *dsmgmt)
384 {
385         enum rw_hint streamid = req->write_hint;
386
387         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
388                 streamid = 0;
389         else {
390                 streamid--;
391                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
392                         return;
393
394                 *control |= NVME_RW_DTYPE_STREAMS;
395                 *dsmgmt |= streamid << 16;
396         }
397
398         if (streamid < ARRAY_SIZE(req->q->write_hints))
399                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
400 }
401
402 static inline void nvme_setup_flush(struct nvme_ns *ns,
403                 struct nvme_command *cmnd)
404 {
405         memset(cmnd, 0, sizeof(*cmnd));
406         cmnd->common.opcode = nvme_cmd_flush;
407         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
408 }
409
410 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
411                 struct nvme_command *cmnd)
412 {
413         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
414         struct nvme_dsm_range *range;
415         struct bio *bio;
416
417         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
418         if (!range)
419                 return BLK_STS_RESOURCE;
420
421         __rq_for_each_bio(bio, req) {
422                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
423                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
424
425                 range[n].cattr = cpu_to_le32(0);
426                 range[n].nlb = cpu_to_le32(nlb);
427                 range[n].slba = cpu_to_le64(slba);
428                 n++;
429         }
430
431         if (WARN_ON_ONCE(n != segments)) {
432                 kfree(range);
433                 return BLK_STS_IOERR;
434         }
435
436         memset(cmnd, 0, sizeof(*cmnd));
437         cmnd->dsm.opcode = nvme_cmd_dsm;
438         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
439         cmnd->dsm.nr = cpu_to_le32(segments - 1);
440         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
441
442         req->special_vec.bv_page = virt_to_page(range);
443         req->special_vec.bv_offset = offset_in_page(range);
444         req->special_vec.bv_len = sizeof(*range) * segments;
445         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
446
447         return BLK_STS_OK;
448 }
449
450 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
451                 struct request *req, struct nvme_command *cmnd)
452 {
453         struct nvme_ctrl *ctrl = ns->ctrl;
454         u16 control = 0;
455         u32 dsmgmt = 0;
456
457         /*
458          * If formated with metadata, require the block layer provide a buffer
459          * unless this namespace is formated such that the metadata can be
460          * stripped/generated by the controller with PRACT=1.
461          */
462         if (ns && ns->ms &&
463             (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
464             !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
465                 return BLK_STS_NOTSUPP;
466
467         if (req->cmd_flags & REQ_FUA)
468                 control |= NVME_RW_FUA;
469         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
470                 control |= NVME_RW_LR;
471
472         if (req->cmd_flags & REQ_RAHEAD)
473                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
474
475         memset(cmnd, 0, sizeof(*cmnd));
476         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
477         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
478         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
479         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
480
481         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
482                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
483
484         if (ns->ms) {
485                 switch (ns->pi_type) {
486                 case NVME_NS_DPS_PI_TYPE3:
487                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
488                         break;
489                 case NVME_NS_DPS_PI_TYPE1:
490                 case NVME_NS_DPS_PI_TYPE2:
491                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
492                                         NVME_RW_PRINFO_PRCHK_REF;
493                         cmnd->rw.reftag = cpu_to_le32(
494                                         nvme_block_nr(ns, blk_rq_pos(req)));
495                         break;
496                 }
497                 if (!blk_integrity_rq(req))
498                         control |= NVME_RW_PRINFO_PRACT;
499         }
500
501         cmnd->rw.control = cpu_to_le16(control);
502         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
503         return 0;
504 }
505
506 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
507                 struct nvme_command *cmd)
508 {
509         blk_status_t ret = BLK_STS_OK;
510
511         if (!(req->rq_flags & RQF_DONTPREP)) {
512                 nvme_req(req)->retries = 0;
513                 nvme_req(req)->flags = 0;
514                 req->rq_flags |= RQF_DONTPREP;
515         }
516
517         switch (req_op(req)) {
518         case REQ_OP_DRV_IN:
519         case REQ_OP_DRV_OUT:
520                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
521                 break;
522         case REQ_OP_FLUSH:
523                 nvme_setup_flush(ns, cmd);
524                 break;
525         case REQ_OP_WRITE_ZEROES:
526                 /* currently only aliased to deallocate for a few ctrls: */
527         case REQ_OP_DISCARD:
528                 ret = nvme_setup_discard(ns, req, cmd);
529                 break;
530         case REQ_OP_READ:
531         case REQ_OP_WRITE:
532                 ret = nvme_setup_rw(ns, req, cmd);
533                 break;
534         default:
535                 WARN_ON_ONCE(1);
536                 return BLK_STS_IOERR;
537         }
538
539         cmd->common.command_id = req->tag;
540         return ret;
541 }
542 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
543
544 /*
545  * Returns 0 on success.  If the result is negative, it's a Linux error code;
546  * if the result is positive, it's an NVM Express status code
547  */
548 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
549                 union nvme_result *result, void *buffer, unsigned bufflen,
550                 unsigned timeout, int qid, int at_head, int flags)
551 {
552         struct request *req;
553         int ret;
554
555         req = nvme_alloc_request(q, cmd, flags, qid);
556         if (IS_ERR(req))
557                 return PTR_ERR(req);
558
559         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
560
561         if (buffer && bufflen) {
562                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
563                 if (ret)
564                         goto out;
565         }
566
567         blk_execute_rq(req->q, NULL, req, at_head);
568         if (result)
569                 *result = nvme_req(req)->result;
570         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
571                 ret = -EINTR;
572         else
573                 ret = nvme_req(req)->status;
574  out:
575         blk_mq_free_request(req);
576         return ret;
577 }
578 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
579
580 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
581                 void *buffer, unsigned bufflen)
582 {
583         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
584                         NVME_QID_ANY, 0, 0);
585 }
586 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
587
588 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
589                 void __user *ubuffer, unsigned bufflen,
590                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
591                 u32 *result, unsigned timeout)
592 {
593         bool write = nvme_is_write(cmd);
594         struct nvme_ns *ns = q->queuedata;
595         struct gendisk *disk = ns ? ns->disk : NULL;
596         struct request *req;
597         struct bio *bio = NULL;
598         void *meta = NULL;
599         int ret;
600
601         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
602         if (IS_ERR(req))
603                 return PTR_ERR(req);
604
605         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
606
607         if (ubuffer && bufflen) {
608                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
609                                 GFP_KERNEL);
610                 if (ret)
611                         goto out;
612                 bio = req->bio;
613
614                 if (!disk)
615                         goto submit;
616                 bio->bi_bdev = bdget_disk(disk, 0);
617                 if (!bio->bi_bdev) {
618                         ret = -ENODEV;
619                         goto out_unmap;
620                 }
621
622                 if (meta_buffer && meta_len) {
623                         struct bio_integrity_payload *bip;
624
625                         meta = kmalloc(meta_len, GFP_KERNEL);
626                         if (!meta) {
627                                 ret = -ENOMEM;
628                                 goto out_unmap;
629                         }
630
631                         if (write) {
632                                 if (copy_from_user(meta, meta_buffer,
633                                                 meta_len)) {
634                                         ret = -EFAULT;
635                                         goto out_free_meta;
636                                 }
637                         }
638
639                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
640                         if (IS_ERR(bip)) {
641                                 ret = PTR_ERR(bip);
642                                 goto out_free_meta;
643                         }
644
645                         bip->bip_iter.bi_size = meta_len;
646                         bip->bip_iter.bi_sector = meta_seed;
647
648                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
649                                         meta_len, offset_in_page(meta));
650                         if (ret != meta_len) {
651                                 ret = -ENOMEM;
652                                 goto out_free_meta;
653                         }
654                 }
655         }
656  submit:
657         blk_execute_rq(req->q, disk, req, 0);
658         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
659                 ret = -EINTR;
660         else
661                 ret = nvme_req(req)->status;
662         if (result)
663                 *result = le32_to_cpu(nvme_req(req)->result.u32);
664         if (meta && !ret && !write) {
665                 if (copy_to_user(meta_buffer, meta, meta_len))
666                         ret = -EFAULT;
667         }
668  out_free_meta:
669         kfree(meta);
670  out_unmap:
671         if (bio) {
672                 if (disk && bio->bi_bdev)
673                         bdput(bio->bi_bdev);
674                 blk_rq_unmap_user(bio);
675         }
676  out:
677         blk_mq_free_request(req);
678         return ret;
679 }
680
681 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
682                 void __user *ubuffer, unsigned bufflen, u32 *result,
683                 unsigned timeout)
684 {
685         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
686                         result, timeout);
687 }
688
689 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
690 {
691         struct nvme_ctrl *ctrl = rq->end_io_data;
692
693         blk_mq_free_request(rq);
694
695         if (status) {
696                 dev_err(ctrl->device,
697                         "failed nvme_keep_alive_end_io error=%d\n",
698                                 status);
699                 return;
700         }
701
702         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
703 }
704
705 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
706 {
707         struct nvme_command c;
708         struct request *rq;
709
710         memset(&c, 0, sizeof(c));
711         c.common.opcode = nvme_admin_keep_alive;
712
713         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
714                         NVME_QID_ANY);
715         if (IS_ERR(rq))
716                 return PTR_ERR(rq);
717
718         rq->timeout = ctrl->kato * HZ;
719         rq->end_io_data = ctrl;
720
721         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
722
723         return 0;
724 }
725
726 static void nvme_keep_alive_work(struct work_struct *work)
727 {
728         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
729                         struct nvme_ctrl, ka_work);
730
731         if (nvme_keep_alive(ctrl)) {
732                 /* allocation failure, reset the controller */
733                 dev_err(ctrl->device, "keep-alive failed\n");
734                 nvme_reset_ctrl(ctrl);
735                 return;
736         }
737 }
738
739 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
740 {
741         if (unlikely(ctrl->kato == 0))
742                 return;
743
744         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
745         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
746 }
747 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
748
749 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
750 {
751         if (unlikely(ctrl->kato == 0))
752                 return;
753
754         cancel_delayed_work_sync(&ctrl->ka_work);
755 }
756 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
757
758 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
759 {
760         struct nvme_command c = { };
761         int error;
762
763         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
764         c.identify.opcode = nvme_admin_identify;
765         c.identify.cns = NVME_ID_CNS_CTRL;
766
767         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
768         if (!*id)
769                 return -ENOMEM;
770
771         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
772                         sizeof(struct nvme_id_ctrl));
773         if (error)
774                 kfree(*id);
775         return error;
776 }
777
778 static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
779 {
780         struct nvme_command c = { };
781         int status;
782         void *data;
783         int pos;
784         int len;
785
786         c.identify.opcode = nvme_admin_identify;
787         c.identify.nsid = cpu_to_le32(nsid);
788         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
789
790         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
791         if (!data)
792                 return -ENOMEM;
793
794         status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
795                                       NVME_IDENTIFY_DATA_SIZE);
796         if (status)
797                 goto free_data;
798
799         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
800                 struct nvme_ns_id_desc *cur = data + pos;
801
802                 if (cur->nidl == 0)
803                         break;
804
805                 switch (cur->nidt) {
806                 case NVME_NIDT_EUI64:
807                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
808                                 dev_warn(ns->ctrl->device,
809                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
810                                          cur->nidl);
811                                 goto free_data;
812                         }
813                         len = NVME_NIDT_EUI64_LEN;
814                         memcpy(ns->eui, data + pos + sizeof(*cur), len);
815                         break;
816                 case NVME_NIDT_NGUID:
817                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
818                                 dev_warn(ns->ctrl->device,
819                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
820                                          cur->nidl);
821                                 goto free_data;
822                         }
823                         len = NVME_NIDT_NGUID_LEN;
824                         memcpy(ns->nguid, data + pos + sizeof(*cur), len);
825                         break;
826                 case NVME_NIDT_UUID:
827                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
828                                 dev_warn(ns->ctrl->device,
829                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
830                                          cur->nidl);
831                                 goto free_data;
832                         }
833                         len = NVME_NIDT_UUID_LEN;
834                         uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
835                         break;
836                 default:
837                         /* Skip unnkown types */
838                         len = cur->nidl;
839                         break;
840                 }
841
842                 len += sizeof(*cur);
843         }
844 free_data:
845         kfree(data);
846         return status;
847 }
848
849 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
850 {
851         struct nvme_command c = { };
852
853         c.identify.opcode = nvme_admin_identify;
854         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
855         c.identify.nsid = cpu_to_le32(nsid);
856         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
857 }
858
859 static int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
860                 struct nvme_id_ns **id)
861 {
862         struct nvme_command c = { };
863         int error;
864
865         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866         c.identify.opcode = nvme_admin_identify;
867         c.identify.nsid = cpu_to_le32(nsid);
868         c.identify.cns = NVME_ID_CNS_NS;
869
870         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
871         if (!*id)
872                 return -ENOMEM;
873
874         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
875                         sizeof(struct nvme_id_ns));
876         if (error)
877                 kfree(*id);
878         return error;
879 }
880
881 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
882                       void *buffer, size_t buflen, u32 *result)
883 {
884         struct nvme_command c;
885         union nvme_result res;
886         int ret;
887
888         memset(&c, 0, sizeof(c));
889         c.features.opcode = nvme_admin_set_features;
890         c.features.fid = cpu_to_le32(fid);
891         c.features.dword11 = cpu_to_le32(dword11);
892
893         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
894                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
895         if (ret >= 0 && result)
896                 *result = le32_to_cpu(res.u32);
897         return ret;
898 }
899
900 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
901 {
902         u32 q_count = (*count - 1) | ((*count - 1) << 16);
903         u32 result;
904         int status, nr_io_queues;
905
906         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
907                         &result);
908         if (status < 0)
909                 return status;
910
911         /*
912          * Degraded controllers might return an error when setting the queue
913          * count.  We still want to be able to bring them online and offer
914          * access to the admin queue, as that might be only way to fix them up.
915          */
916         if (status > 0) {
917                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
918                 *count = 0;
919         } else {
920                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
921                 *count = min(*count, nr_io_queues);
922         }
923
924         return 0;
925 }
926 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
927
928 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
929 {
930         struct nvme_user_io io;
931         struct nvme_command c;
932         unsigned length, meta_len;
933         void __user *metadata;
934
935         if (copy_from_user(&io, uio, sizeof(io)))
936                 return -EFAULT;
937         if (io.flags)
938                 return -EINVAL;
939
940         switch (io.opcode) {
941         case nvme_cmd_write:
942         case nvme_cmd_read:
943         case nvme_cmd_compare:
944                 break;
945         default:
946                 return -EINVAL;
947         }
948
949         length = (io.nblocks + 1) << ns->lba_shift;
950         meta_len = (io.nblocks + 1) * ns->ms;
951         metadata = (void __user *)(uintptr_t)io.metadata;
952
953         if (ns->ext) {
954                 length += meta_len;
955                 meta_len = 0;
956         } else if (meta_len) {
957                 if ((io.metadata & 3) || !io.metadata)
958                         return -EINVAL;
959         }
960
961         memset(&c, 0, sizeof(c));
962         c.rw.opcode = io.opcode;
963         c.rw.flags = io.flags;
964         c.rw.nsid = cpu_to_le32(ns->ns_id);
965         c.rw.slba = cpu_to_le64(io.slba);
966         c.rw.length = cpu_to_le16(io.nblocks);
967         c.rw.control = cpu_to_le16(io.control);
968         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
969         c.rw.reftag = cpu_to_le32(io.reftag);
970         c.rw.apptag = cpu_to_le16(io.apptag);
971         c.rw.appmask = cpu_to_le16(io.appmask);
972
973         return __nvme_submit_user_cmd(ns->queue, &c,
974                         (void __user *)(uintptr_t)io.addr, length,
975                         metadata, meta_len, io.slba, NULL, 0);
976 }
977
978 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
979                         struct nvme_passthru_cmd __user *ucmd)
980 {
981         struct nvme_passthru_cmd cmd;
982         struct nvme_command c;
983         unsigned timeout = 0;
984         int status;
985
986         if (!capable(CAP_SYS_ADMIN))
987                 return -EACCES;
988         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
989                 return -EFAULT;
990         if (cmd.flags)
991                 return -EINVAL;
992
993         memset(&c, 0, sizeof(c));
994         c.common.opcode = cmd.opcode;
995         c.common.flags = cmd.flags;
996         c.common.nsid = cpu_to_le32(cmd.nsid);
997         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
998         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
999         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1000         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1001         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1002         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1003         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1004         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1005
1006         if (cmd.timeout_ms)
1007                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1008
1009         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1010                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1011                         &cmd.result, timeout);
1012         if (status >= 0) {
1013                 if (put_user(cmd.result, &ucmd->result))
1014                         return -EFAULT;
1015         }
1016
1017         return status;
1018 }
1019
1020 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1021                 unsigned int cmd, unsigned long arg)
1022 {
1023         struct nvme_ns *ns = bdev->bd_disk->private_data;
1024
1025         switch (cmd) {
1026         case NVME_IOCTL_ID:
1027                 force_successful_syscall_return();
1028                 return ns->ns_id;
1029         case NVME_IOCTL_ADMIN_CMD:
1030                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1031         case NVME_IOCTL_IO_CMD:
1032                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1033         case NVME_IOCTL_SUBMIT_IO:
1034                 return nvme_submit_io(ns, (void __user *)arg);
1035         default:
1036 #ifdef CONFIG_NVM
1037                 if (ns->ndev)
1038                         return nvme_nvm_ioctl(ns, cmd, arg);
1039 #endif
1040                 if (is_sed_ioctl(cmd))
1041                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1042                                          (void __user *) arg);
1043                 return -ENOTTY;
1044         }
1045 }
1046
1047 #ifdef CONFIG_COMPAT
1048 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1049                         unsigned int cmd, unsigned long arg)
1050 {
1051         return nvme_ioctl(bdev, mode, cmd, arg);
1052 }
1053 #else
1054 #define nvme_compat_ioctl       NULL
1055 #endif
1056
1057 static int nvme_open(struct block_device *bdev, fmode_t mode)
1058 {
1059         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1060 }
1061
1062 static void nvme_release(struct gendisk *disk, fmode_t mode)
1063 {
1064         struct nvme_ns *ns = disk->private_data;
1065
1066         module_put(ns->ctrl->ops->module);
1067         nvme_put_ns(ns);
1068 }
1069
1070 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1071 {
1072         /* some standard values */
1073         geo->heads = 1 << 6;
1074         geo->sectors = 1 << 5;
1075         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1076         return 0;
1077 }
1078
1079 #ifdef CONFIG_BLK_DEV_INTEGRITY
1080 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1081                 u16 bs)
1082 {
1083         struct nvme_ns *ns = disk->private_data;
1084         u16 old_ms = ns->ms;
1085         u8 pi_type = 0;
1086
1087         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1088         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1089
1090         /* PI implementation requires metadata equal t10 pi tuple size */
1091         if (ns->ms == sizeof(struct t10_pi_tuple))
1092                 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1093
1094         if (blk_get_integrity(disk) &&
1095             (ns->pi_type != pi_type || ns->ms != old_ms ||
1096              bs != queue_logical_block_size(disk->queue) ||
1097              (ns->ms && ns->ext)))
1098                 blk_integrity_unregister(disk);
1099
1100         ns->pi_type = pi_type;
1101 }
1102
1103 static void nvme_init_integrity(struct nvme_ns *ns)
1104 {
1105         struct blk_integrity integrity;
1106
1107         memset(&integrity, 0, sizeof(integrity));
1108         switch (ns->pi_type) {
1109         case NVME_NS_DPS_PI_TYPE3:
1110                 integrity.profile = &t10_pi_type3_crc;
1111                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1112                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1113                 break;
1114         case NVME_NS_DPS_PI_TYPE1:
1115         case NVME_NS_DPS_PI_TYPE2:
1116                 integrity.profile = &t10_pi_type1_crc;
1117                 integrity.tag_size = sizeof(u16);
1118                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1119                 break;
1120         default:
1121                 integrity.profile = NULL;
1122                 break;
1123         }
1124         integrity.tuple_size = ns->ms;
1125         blk_integrity_register(ns->disk, &integrity);
1126         blk_queue_max_integrity_segments(ns->queue, 1);
1127 }
1128 #else
1129 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1130                 u16 bs)
1131 {
1132 }
1133 static void nvme_init_integrity(struct nvme_ns *ns)
1134 {
1135 }
1136 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1137
1138 static void nvme_set_chunk_size(struct nvme_ns *ns)
1139 {
1140         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1141         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1142 }
1143
1144 static void nvme_config_discard(struct nvme_ns *ns)
1145 {
1146         struct nvme_ctrl *ctrl = ns->ctrl;
1147         u32 logical_block_size = queue_logical_block_size(ns->queue);
1148
1149         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1150                         NVME_DSM_MAX_RANGES);
1151
1152         if (ctrl->nr_streams && ns->sws && ns->sgs) {
1153                 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1154
1155                 ns->queue->limits.discard_alignment = sz;
1156                 ns->queue->limits.discard_granularity = sz;
1157         } else {
1158                 ns->queue->limits.discard_alignment = logical_block_size;
1159                 ns->queue->limits.discard_granularity = logical_block_size;
1160         }
1161         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1162         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1163         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1164
1165         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1166                 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1167 }
1168
1169 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1170 {
1171         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1172                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1173                 return -ENODEV;
1174         }
1175
1176         if ((*id)->ncap == 0) {
1177                 kfree(*id);
1178                 return -ENODEV;
1179         }
1180
1181         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1182                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1183         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1184                 memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1185         if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
1186                  /* Don't treat error as fatal we potentially
1187                   * already have a NGUID or EUI-64
1188                   */
1189                 if (nvme_identify_ns_descs(ns, ns->ns_id))
1190                         dev_warn(ns->ctrl->device,
1191                                  "%s: Identify Descriptors failed\n", __func__);
1192         }
1193
1194         return 0;
1195 }
1196
1197 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1198 {
1199         struct nvme_ns *ns = disk->private_data;
1200         struct nvme_ctrl *ctrl = ns->ctrl;
1201         u16 bs;
1202
1203         /*
1204          * If identify namespace failed, use default 512 byte block size so
1205          * block layer can use before failing read/write for 0 capacity.
1206          */
1207         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1208         if (ns->lba_shift == 0)
1209                 ns->lba_shift = 9;
1210         bs = 1 << ns->lba_shift;
1211         ns->noiob = le16_to_cpu(id->noiob);
1212
1213         blk_mq_freeze_queue(disk->queue);
1214
1215         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1216                 nvme_prep_integrity(disk, id, bs);
1217         blk_queue_logical_block_size(ns->queue, bs);
1218         if (ns->noiob)
1219                 nvme_set_chunk_size(ns);
1220         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1221                 nvme_init_integrity(ns);
1222         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1223                 set_capacity(disk, 0);
1224         else
1225                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1226
1227         if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1228                 nvme_config_discard(ns);
1229         blk_mq_unfreeze_queue(disk->queue);
1230 }
1231
1232 static int nvme_revalidate_disk(struct gendisk *disk)
1233 {
1234         struct nvme_ns *ns = disk->private_data;
1235         struct nvme_id_ns *id = NULL;
1236         int ret;
1237
1238         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1239                 set_capacity(disk, 0);
1240                 return -ENODEV;
1241         }
1242
1243         ret = nvme_revalidate_ns(ns, &id);
1244         if (ret)
1245                 return ret;
1246
1247         __nvme_revalidate_disk(disk, id);
1248         kfree(id);
1249
1250         return 0;
1251 }
1252
1253 static char nvme_pr_type(enum pr_type type)
1254 {
1255         switch (type) {
1256         case PR_WRITE_EXCLUSIVE:
1257                 return 1;
1258         case PR_EXCLUSIVE_ACCESS:
1259                 return 2;
1260         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1261                 return 3;
1262         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1263                 return 4;
1264         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1265                 return 5;
1266         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1267                 return 6;
1268         default:
1269                 return 0;
1270         }
1271 };
1272
1273 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1274                                 u64 key, u64 sa_key, u8 op)
1275 {
1276         struct nvme_ns *ns = bdev->bd_disk->private_data;
1277         struct nvme_command c;
1278         u8 data[16] = { 0, };
1279
1280         put_unaligned_le64(key, &data[0]);
1281         put_unaligned_le64(sa_key, &data[8]);
1282
1283         memset(&c, 0, sizeof(c));
1284         c.common.opcode = op;
1285         c.common.nsid = cpu_to_le32(ns->ns_id);
1286         c.common.cdw10[0] = cpu_to_le32(cdw10);
1287
1288         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1289 }
1290
1291 static int nvme_pr_register(struct block_device *bdev, u64 old,
1292                 u64 new, unsigned flags)
1293 {
1294         u32 cdw10;
1295
1296         if (flags & ~PR_FL_IGNORE_KEY)
1297                 return -EOPNOTSUPP;
1298
1299         cdw10 = old ? 2 : 0;
1300         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1301         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1302         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1303 }
1304
1305 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1306                 enum pr_type type, unsigned flags)
1307 {
1308         u32 cdw10;
1309
1310         if (flags & ~PR_FL_IGNORE_KEY)
1311                 return -EOPNOTSUPP;
1312
1313         cdw10 = nvme_pr_type(type) << 8;
1314         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1315         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1316 }
1317
1318 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1319                 enum pr_type type, bool abort)
1320 {
1321         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1322         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1323 }
1324
1325 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1326 {
1327         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1328         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1329 }
1330
1331 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1332 {
1333         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1334         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1335 }
1336
1337 static const struct pr_ops nvme_pr_ops = {
1338         .pr_register    = nvme_pr_register,
1339         .pr_reserve     = nvme_pr_reserve,
1340         .pr_release     = nvme_pr_release,
1341         .pr_preempt     = nvme_pr_preempt,
1342         .pr_clear       = nvme_pr_clear,
1343 };
1344
1345 #ifdef CONFIG_BLK_SED_OPAL
1346 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1347                 bool send)
1348 {
1349         struct nvme_ctrl *ctrl = data;
1350         struct nvme_command cmd;
1351
1352         memset(&cmd, 0, sizeof(cmd));
1353         if (send)
1354                 cmd.common.opcode = nvme_admin_security_send;
1355         else
1356                 cmd.common.opcode = nvme_admin_security_recv;
1357         cmd.common.nsid = 0;
1358         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1359         cmd.common.cdw10[1] = cpu_to_le32(len);
1360
1361         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1362                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1363 }
1364 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1365 #endif /* CONFIG_BLK_SED_OPAL */
1366
1367 static const struct block_device_operations nvme_fops = {
1368         .owner          = THIS_MODULE,
1369         .ioctl          = nvme_ioctl,
1370         .compat_ioctl   = nvme_compat_ioctl,
1371         .open           = nvme_open,
1372         .release        = nvme_release,
1373         .getgeo         = nvme_getgeo,
1374         .revalidate_disk= nvme_revalidate_disk,
1375         .pr_ops         = &nvme_pr_ops,
1376 };
1377
1378 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1379 {
1380         unsigned long timeout =
1381                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1382         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1383         int ret;
1384
1385         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1386                 if (csts == ~0)
1387                         return -ENODEV;
1388                 if ((csts & NVME_CSTS_RDY) == bit)
1389                         break;
1390
1391                 msleep(100);
1392                 if (fatal_signal_pending(current))
1393                         return -EINTR;
1394                 if (time_after(jiffies, timeout)) {
1395                         dev_err(ctrl->device,
1396                                 "Device not ready; aborting %s\n", enabled ?
1397                                                 "initialisation" : "reset");
1398                         return -ENODEV;
1399                 }
1400         }
1401
1402         return ret;
1403 }
1404
1405 /*
1406  * If the device has been passed off to us in an enabled state, just clear
1407  * the enabled bit.  The spec says we should set the 'shutdown notification
1408  * bits', but doing so may cause the device to complete commands to the
1409  * admin queue ... and we don't know what memory that might be pointing at!
1410  */
1411 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1412 {
1413         int ret;
1414
1415         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1416         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1417
1418         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1419         if (ret)
1420                 return ret;
1421
1422         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1423                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1424
1425         return nvme_wait_ready(ctrl, cap, false);
1426 }
1427 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1428
1429 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1430 {
1431         /*
1432          * Default to a 4K page size, with the intention to update this
1433          * path in the future to accomodate architectures with differing
1434          * kernel and IO page sizes.
1435          */
1436         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1437         int ret;
1438
1439         if (page_shift < dev_page_min) {
1440                 dev_err(ctrl->device,
1441                         "Minimum device page size %u too large for host (%u)\n",
1442                         1 << dev_page_min, 1 << page_shift);
1443                 return -ENODEV;
1444         }
1445
1446         ctrl->page_size = 1 << page_shift;
1447
1448         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1449         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1450         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1451         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1452         ctrl->ctrl_config |= NVME_CC_ENABLE;
1453
1454         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1455         if (ret)
1456                 return ret;
1457         return nvme_wait_ready(ctrl, cap, true);
1458 }
1459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1460
1461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1462 {
1463         unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1464         u32 csts;
1465         int ret;
1466
1467         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1468         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1469
1470         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1471         if (ret)
1472                 return ret;
1473
1474         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1475                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1476                         break;
1477
1478                 msleep(100);
1479                 if (fatal_signal_pending(current))
1480                         return -EINTR;
1481                 if (time_after(jiffies, timeout)) {
1482                         dev_err(ctrl->device,
1483                                 "Device shutdown incomplete; abort shutdown\n");
1484                         return -ENODEV;
1485                 }
1486         }
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1491
1492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1493                 struct request_queue *q)
1494 {
1495         bool vwc = false;
1496
1497         if (ctrl->max_hw_sectors) {
1498                 u32 max_segments =
1499                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1500
1501                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1502                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1503         }
1504         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1505                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1506         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1507         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1508                 vwc = true;
1509         blk_queue_write_cache(q, vwc, vwc);
1510 }
1511
1512 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1513 {
1514         /*
1515          * APST (Autonomous Power State Transition) lets us program a
1516          * table of power state transitions that the controller will
1517          * perform automatically.  We configure it with a simple
1518          * heuristic: we are willing to spend at most 2% of the time
1519          * transitioning between power states.  Therefore, when running
1520          * in any given state, we will enter the next lower-power
1521          * non-operational state after waiting 50 * (enlat + exlat)
1522          * microseconds, as long as that state's exit latency is under
1523          * the requested maximum latency.
1524          *
1525          * We will not autonomously enter any non-operational state for
1526          * which the total latency exceeds ps_max_latency_us.  Users
1527          * can set ps_max_latency_us to zero to turn off APST.
1528          */
1529
1530         unsigned apste;
1531         struct nvme_feat_auto_pst *table;
1532         u64 max_lat_us = 0;
1533         int max_ps = -1;
1534         int ret;
1535
1536         /*
1537          * If APST isn't supported or if we haven't been initialized yet,
1538          * then don't do anything.
1539          */
1540         if (!ctrl->apsta)
1541                 return;
1542
1543         if (ctrl->npss > 31) {
1544                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1545                 return;
1546         }
1547
1548         table = kzalloc(sizeof(*table), GFP_KERNEL);
1549         if (!table)
1550                 return;
1551
1552         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1553                 /* Turn off APST. */
1554                 apste = 0;
1555                 dev_dbg(ctrl->device, "APST disabled\n");
1556         } else {
1557                 __le64 target = cpu_to_le64(0);
1558                 int state;
1559
1560                 /*
1561                  * Walk through all states from lowest- to highest-power.
1562                  * According to the spec, lower-numbered states use more
1563                  * power.  NPSS, despite the name, is the index of the
1564                  * lowest-power state, not the number of states.
1565                  */
1566                 for (state = (int)ctrl->npss; state >= 0; state--) {
1567                         u64 total_latency_us, exit_latency_us, transition_ms;
1568
1569                         if (target)
1570                                 table->entries[state] = target;
1571
1572                         /*
1573                          * Don't allow transitions to the deepest state
1574                          * if it's quirked off.
1575                          */
1576                         if (state == ctrl->npss &&
1577                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1578                                 continue;
1579
1580                         /*
1581                          * Is this state a useful non-operational state for
1582                          * higher-power states to autonomously transition to?
1583                          */
1584                         if (!(ctrl->psd[state].flags &
1585                               NVME_PS_FLAGS_NON_OP_STATE))
1586                                 continue;
1587
1588                         exit_latency_us =
1589                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1590                         if (exit_latency_us > ctrl->ps_max_latency_us)
1591                                 continue;
1592
1593                         total_latency_us =
1594                                 exit_latency_us +
1595                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1596
1597                         /*
1598                          * This state is good.  Use it as the APST idle
1599                          * target for higher power states.
1600                          */
1601                         transition_ms = total_latency_us + 19;
1602                         do_div(transition_ms, 20);
1603                         if (transition_ms > (1 << 24) - 1)
1604                                 transition_ms = (1 << 24) - 1;
1605
1606                         target = cpu_to_le64((state << 3) |
1607                                              (transition_ms << 8));
1608
1609                         if (max_ps == -1)
1610                                 max_ps = state;
1611
1612                         if (total_latency_us > max_lat_us)
1613                                 max_lat_us = total_latency_us;
1614                 }
1615
1616                 apste = 1;
1617
1618                 if (max_ps == -1) {
1619                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1620                 } else {
1621                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1622                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1623                 }
1624         }
1625
1626         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1627                                 table, sizeof(*table), NULL);
1628         if (ret)
1629                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1630
1631         kfree(table);
1632 }
1633
1634 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1635 {
1636         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1637         u64 latency;
1638
1639         switch (val) {
1640         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1641         case PM_QOS_LATENCY_ANY:
1642                 latency = U64_MAX;
1643                 break;
1644
1645         default:
1646                 latency = val;
1647         }
1648
1649         if (ctrl->ps_max_latency_us != latency) {
1650                 ctrl->ps_max_latency_us = latency;
1651                 nvme_configure_apst(ctrl);
1652         }
1653 }
1654
1655 struct nvme_core_quirk_entry {
1656         /*
1657          * NVMe model and firmware strings are padded with spaces.  For
1658          * simplicity, strings in the quirk table are padded with NULLs
1659          * instead.
1660          */
1661         u16 vid;
1662         const char *mn;
1663         const char *fr;
1664         unsigned long quirks;
1665 };
1666
1667 static const struct nvme_core_quirk_entry core_quirks[] = {
1668         {
1669                 /*
1670                  * This Toshiba device seems to die using any APST states.  See:
1671                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1672                  */
1673                 .vid = 0x1179,
1674                 .mn = "THNSF5256GPUK TOSHIBA",
1675                 .quirks = NVME_QUIRK_NO_APST,
1676         }
1677 };
1678
1679 /* match is null-terminated but idstr is space-padded. */
1680 static bool string_matches(const char *idstr, const char *match, size_t len)
1681 {
1682         size_t matchlen;
1683
1684         if (!match)
1685                 return true;
1686
1687         matchlen = strlen(match);
1688         WARN_ON_ONCE(matchlen > len);
1689
1690         if (memcmp(idstr, match, matchlen))
1691                 return false;
1692
1693         for (; matchlen < len; matchlen++)
1694                 if (idstr[matchlen] != ' ')
1695                         return false;
1696
1697         return true;
1698 }
1699
1700 static bool quirk_matches(const struct nvme_id_ctrl *id,
1701                           const struct nvme_core_quirk_entry *q)
1702 {
1703         return q->vid == le16_to_cpu(id->vid) &&
1704                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1705                 string_matches(id->fr, q->fr, sizeof(id->fr));
1706 }
1707
1708 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1709 {
1710         size_t nqnlen;
1711         int off;
1712
1713         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1714         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1715                 strcpy(ctrl->subnqn, id->subnqn);
1716                 return;
1717         }
1718
1719         if (ctrl->vs >= NVME_VS(1, 2, 1))
1720                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1721
1722         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1723         off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1724                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1725                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1726         memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1727         off += sizeof(id->sn);
1728         memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1729         off += sizeof(id->mn);
1730         memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1731 }
1732
1733 /*
1734  * Initialize the cached copies of the Identify data and various controller
1735  * register in our nvme_ctrl structure.  This should be called as soon as
1736  * the admin queue is fully up and running.
1737  */
1738 int nvme_init_identify(struct nvme_ctrl *ctrl)
1739 {
1740         struct nvme_id_ctrl *id;
1741         u64 cap;
1742         int ret, page_shift;
1743         u32 max_hw_sectors;
1744         bool prev_apst_enabled;
1745
1746         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1747         if (ret) {
1748                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1749                 return ret;
1750         }
1751
1752         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1753         if (ret) {
1754                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1755                 return ret;
1756         }
1757         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1758
1759         if (ctrl->vs >= NVME_VS(1, 1, 0))
1760                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1761
1762         ret = nvme_identify_ctrl(ctrl, &id);
1763         if (ret) {
1764                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1765                 return -EIO;
1766         }
1767
1768         nvme_init_subnqn(ctrl, id);
1769
1770         if (!ctrl->identified) {
1771                 /*
1772                  * Check for quirks.  Quirk can depend on firmware version,
1773                  * so, in principle, the set of quirks present can change
1774                  * across a reset.  As a possible future enhancement, we
1775                  * could re-scan for quirks every time we reinitialize
1776                  * the device, but we'd have to make sure that the driver
1777                  * behaves intelligently if the quirks change.
1778                  */
1779
1780                 int i;
1781
1782                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1783                         if (quirk_matches(id, &core_quirks[i]))
1784                                 ctrl->quirks |= core_quirks[i].quirks;
1785                 }
1786         }
1787
1788         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1789                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1790                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1791         }
1792
1793         ctrl->oacs = le16_to_cpu(id->oacs);
1794         ctrl->vid = le16_to_cpu(id->vid);
1795         ctrl->oncs = le16_to_cpup(&id->oncs);
1796         atomic_set(&ctrl->abort_limit, id->acl + 1);
1797         ctrl->vwc = id->vwc;
1798         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1799         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1800         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1801         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1802         if (id->mdts)
1803                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1804         else
1805                 max_hw_sectors = UINT_MAX;
1806         ctrl->max_hw_sectors =
1807                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1808
1809         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1810         ctrl->sgls = le32_to_cpu(id->sgls);
1811         ctrl->kas = le16_to_cpu(id->kas);
1812
1813         ctrl->npss = id->npss;
1814         ctrl->apsta = id->apsta;
1815         prev_apst_enabled = ctrl->apst_enabled;
1816         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1817                 if (force_apst && id->apsta) {
1818                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1819                         ctrl->apst_enabled = true;
1820                 } else {
1821                         ctrl->apst_enabled = false;
1822                 }
1823         } else {
1824                 ctrl->apst_enabled = id->apsta;
1825         }
1826         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1827
1828         if (ctrl->ops->flags & NVME_F_FABRICS) {
1829                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1830                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1831                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1832                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1833
1834                 /*
1835                  * In fabrics we need to verify the cntlid matches the
1836                  * admin connect
1837                  */
1838                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1839                         ret = -EINVAL;
1840
1841                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1842                         dev_err(ctrl->device,
1843                                 "keep-alive support is mandatory for fabrics\n");
1844                         ret = -EINVAL;
1845                 }
1846         } else {
1847                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1848                 ctrl->hmpre = le32_to_cpu(id->hmpre);
1849                 ctrl->hmmin = le32_to_cpu(id->hmmin);
1850         }
1851
1852         kfree(id);
1853
1854         if (ctrl->apst_enabled && !prev_apst_enabled)
1855                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1856         else if (!ctrl->apst_enabled && prev_apst_enabled)
1857                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1858
1859         nvme_configure_apst(ctrl);
1860         nvme_configure_directives(ctrl);
1861
1862         ctrl->identified = true;
1863
1864         return ret;
1865 }
1866 EXPORT_SYMBOL_GPL(nvme_init_identify);
1867
1868 static int nvme_dev_open(struct inode *inode, struct file *file)
1869 {
1870         struct nvme_ctrl *ctrl;
1871         int instance = iminor(inode);
1872         int ret = -ENODEV;
1873
1874         spin_lock(&dev_list_lock);
1875         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1876                 if (ctrl->instance != instance)
1877                         continue;
1878
1879                 if (!ctrl->admin_q) {
1880                         ret = -EWOULDBLOCK;
1881                         break;
1882                 }
1883                 if (!kref_get_unless_zero(&ctrl->kref))
1884                         break;
1885                 file->private_data = ctrl;
1886                 ret = 0;
1887                 break;
1888         }
1889         spin_unlock(&dev_list_lock);
1890
1891         return ret;
1892 }
1893
1894 static int nvme_dev_release(struct inode *inode, struct file *file)
1895 {
1896         nvme_put_ctrl(file->private_data);
1897         return 0;
1898 }
1899
1900 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1901 {
1902         struct nvme_ns *ns;
1903         int ret;
1904
1905         mutex_lock(&ctrl->namespaces_mutex);
1906         if (list_empty(&ctrl->namespaces)) {
1907                 ret = -ENOTTY;
1908                 goto out_unlock;
1909         }
1910
1911         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1912         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1913                 dev_warn(ctrl->device,
1914                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1915                 ret = -EINVAL;
1916                 goto out_unlock;
1917         }
1918
1919         dev_warn(ctrl->device,
1920                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1921         kref_get(&ns->kref);
1922         mutex_unlock(&ctrl->namespaces_mutex);
1923
1924         ret = nvme_user_cmd(ctrl, ns, argp);
1925         nvme_put_ns(ns);
1926         return ret;
1927
1928 out_unlock:
1929         mutex_unlock(&ctrl->namespaces_mutex);
1930         return ret;
1931 }
1932
1933 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1934                 unsigned long arg)
1935 {
1936         struct nvme_ctrl *ctrl = file->private_data;
1937         void __user *argp = (void __user *)arg;
1938
1939         switch (cmd) {
1940         case NVME_IOCTL_ADMIN_CMD:
1941                 return nvme_user_cmd(ctrl, NULL, argp);
1942         case NVME_IOCTL_IO_CMD:
1943                 return nvme_dev_user_cmd(ctrl, argp);
1944         case NVME_IOCTL_RESET:
1945                 dev_warn(ctrl->device, "resetting controller\n");
1946                 return nvme_reset_ctrl_sync(ctrl);
1947         case NVME_IOCTL_SUBSYS_RESET:
1948                 return nvme_reset_subsystem(ctrl);
1949         case NVME_IOCTL_RESCAN:
1950                 nvme_queue_scan(ctrl);
1951                 return 0;
1952         default:
1953                 return -ENOTTY;
1954         }
1955 }
1956
1957 static const struct file_operations nvme_dev_fops = {
1958         .owner          = THIS_MODULE,
1959         .open           = nvme_dev_open,
1960         .release        = nvme_dev_release,
1961         .unlocked_ioctl = nvme_dev_ioctl,
1962         .compat_ioctl   = nvme_dev_ioctl,
1963 };
1964
1965 static ssize_t nvme_sysfs_reset(struct device *dev,
1966                                 struct device_attribute *attr, const char *buf,
1967                                 size_t count)
1968 {
1969         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1970         int ret;
1971
1972         ret = nvme_reset_ctrl_sync(ctrl);
1973         if (ret < 0)
1974                 return ret;
1975         return count;
1976 }
1977 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1978
1979 static ssize_t nvme_sysfs_rescan(struct device *dev,
1980                                 struct device_attribute *attr, const char *buf,
1981                                 size_t count)
1982 {
1983         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1984
1985         nvme_queue_scan(ctrl);
1986         return count;
1987 }
1988 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1989
1990 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1991                                                                 char *buf)
1992 {
1993         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1994         struct nvme_ctrl *ctrl = ns->ctrl;
1995         int serial_len = sizeof(ctrl->serial);
1996         int model_len = sizeof(ctrl->model);
1997
1998         if (!uuid_is_null(&ns->uuid))
1999                 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2000
2001         if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2002                 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2003
2004         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2005                 return sprintf(buf, "eui.%8phN\n", ns->eui);
2006
2007         while (ctrl->serial[serial_len - 1] == ' ')
2008                 serial_len--;
2009         while (ctrl->model[model_len - 1] == ' ')
2010                 model_len--;
2011
2012         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2013                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2014 }
2015 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2016
2017 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2018                           char *buf)
2019 {
2020         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2021         return sprintf(buf, "%pU\n", ns->nguid);
2022 }
2023 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2024
2025 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2026                                                                 char *buf)
2027 {
2028         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2029
2030         /* For backward compatibility expose the NGUID to userspace if
2031          * we have no UUID set
2032          */
2033         if (uuid_is_null(&ns->uuid)) {
2034                 printk_ratelimited(KERN_WARNING
2035                                    "No UUID available providing old NGUID\n");
2036                 return sprintf(buf, "%pU\n", ns->nguid);
2037         }
2038         return sprintf(buf, "%pU\n", &ns->uuid);
2039 }
2040 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2041
2042 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2043                                                                 char *buf)
2044 {
2045         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2046         return sprintf(buf, "%8phd\n", ns->eui);
2047 }
2048 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2049
2050 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2051                                                                 char *buf)
2052 {
2053         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2054         return sprintf(buf, "%d\n", ns->ns_id);
2055 }
2056 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2057
2058 static struct attribute *nvme_ns_attrs[] = {
2059         &dev_attr_wwid.attr,
2060         &dev_attr_uuid.attr,
2061         &dev_attr_nguid.attr,
2062         &dev_attr_eui.attr,
2063         &dev_attr_nsid.attr,
2064         NULL,
2065 };
2066
2067 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2068                 struct attribute *a, int n)
2069 {
2070         struct device *dev = container_of(kobj, struct device, kobj);
2071         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2072
2073         if (a == &dev_attr_uuid.attr) {
2074                 if (uuid_is_null(&ns->uuid) ||
2075                     !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2076                         return 0;
2077         }
2078         if (a == &dev_attr_nguid.attr) {
2079                 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2080                         return 0;
2081         }
2082         if (a == &dev_attr_eui.attr) {
2083                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2084                         return 0;
2085         }
2086         return a->mode;
2087 }
2088
2089 static const struct attribute_group nvme_ns_attr_group = {
2090         .attrs          = nvme_ns_attrs,
2091         .is_visible     = nvme_ns_attrs_are_visible,
2092 };
2093
2094 #define nvme_show_str_function(field)                                           \
2095 static ssize_t  field##_show(struct device *dev,                                \
2096                             struct device_attribute *attr, char *buf)           \
2097 {                                                                               \
2098         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2099         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
2100 }                                                                               \
2101 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2102
2103 #define nvme_show_int_function(field)                                           \
2104 static ssize_t  field##_show(struct device *dev,                                \
2105                             struct device_attribute *attr, char *buf)           \
2106 {                                                                               \
2107         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2108         return sprintf(buf, "%d\n", ctrl->field);       \
2109 }                                                                               \
2110 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2111
2112 nvme_show_str_function(model);
2113 nvme_show_str_function(serial);
2114 nvme_show_str_function(firmware_rev);
2115 nvme_show_int_function(cntlid);
2116
2117 static ssize_t nvme_sysfs_delete(struct device *dev,
2118                                 struct device_attribute *attr, const char *buf,
2119                                 size_t count)
2120 {
2121         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2122
2123         if (device_remove_file_self(dev, attr))
2124                 ctrl->ops->delete_ctrl(ctrl);
2125         return count;
2126 }
2127 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2128
2129 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2130                                          struct device_attribute *attr,
2131                                          char *buf)
2132 {
2133         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2134
2135         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2136 }
2137 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2138
2139 static ssize_t nvme_sysfs_show_state(struct device *dev,
2140                                      struct device_attribute *attr,
2141                                      char *buf)
2142 {
2143         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2144         static const char *const state_name[] = {
2145                 [NVME_CTRL_NEW]         = "new",
2146                 [NVME_CTRL_LIVE]        = "live",
2147                 [NVME_CTRL_RESETTING]   = "resetting",
2148                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2149                 [NVME_CTRL_DELETING]    = "deleting",
2150                 [NVME_CTRL_DEAD]        = "dead",
2151         };
2152
2153         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2154             state_name[ctrl->state])
2155                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2156
2157         return sprintf(buf, "unknown state\n");
2158 }
2159
2160 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2161
2162 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2163                                          struct device_attribute *attr,
2164                                          char *buf)
2165 {
2166         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2167
2168         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2169 }
2170 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2171
2172 static ssize_t nvme_sysfs_show_address(struct device *dev,
2173                                          struct device_attribute *attr,
2174                                          char *buf)
2175 {
2176         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2177
2178         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2179 }
2180 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2181
2182 static struct attribute *nvme_dev_attrs[] = {
2183         &dev_attr_reset_controller.attr,
2184         &dev_attr_rescan_controller.attr,
2185         &dev_attr_model.attr,
2186         &dev_attr_serial.attr,
2187         &dev_attr_firmware_rev.attr,
2188         &dev_attr_cntlid.attr,
2189         &dev_attr_delete_controller.attr,
2190         &dev_attr_transport.attr,
2191         &dev_attr_subsysnqn.attr,
2192         &dev_attr_address.attr,
2193         &dev_attr_state.attr,
2194         NULL
2195 };
2196
2197 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2198                 struct attribute *a, int n)
2199 {
2200         struct device *dev = container_of(kobj, struct device, kobj);
2201         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2202
2203         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2204                 return 0;
2205         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2206                 return 0;
2207
2208         return a->mode;
2209 }
2210
2211 static struct attribute_group nvme_dev_attrs_group = {
2212         .attrs          = nvme_dev_attrs,
2213         .is_visible     = nvme_dev_attrs_are_visible,
2214 };
2215
2216 static const struct attribute_group *nvme_dev_attr_groups[] = {
2217         &nvme_dev_attrs_group,
2218         NULL,
2219 };
2220
2221 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2222 {
2223         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2224         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2225
2226         return nsa->ns_id - nsb->ns_id;
2227 }
2228
2229 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2230 {
2231         struct nvme_ns *ns, *ret = NULL;
2232
2233         mutex_lock(&ctrl->namespaces_mutex);
2234         list_for_each_entry(ns, &ctrl->namespaces, list) {
2235                 if (ns->ns_id == nsid) {
2236                         kref_get(&ns->kref);
2237                         ret = ns;
2238                         break;
2239                 }
2240                 if (ns->ns_id > nsid)
2241                         break;
2242         }
2243         mutex_unlock(&ctrl->namespaces_mutex);
2244         return ret;
2245 }
2246
2247 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2248 {
2249         struct streams_directive_params s;
2250         int ret;
2251
2252         if (!ctrl->nr_streams)
2253                 return 0;
2254
2255         ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2256         if (ret)
2257                 return ret;
2258
2259         ns->sws = le32_to_cpu(s.sws);
2260         ns->sgs = le16_to_cpu(s.sgs);
2261
2262         if (ns->sws) {
2263                 unsigned int bs = 1 << ns->lba_shift;
2264
2265                 blk_queue_io_min(ns->queue, bs * ns->sws);
2266                 if (ns->sgs)
2267                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2268         }
2269
2270         return 0;
2271 }
2272
2273 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2274 {
2275         struct nvme_ns *ns;
2276         struct gendisk *disk;
2277         struct nvme_id_ns *id;
2278         char disk_name[DISK_NAME_LEN];
2279         int node = dev_to_node(ctrl->dev);
2280
2281         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2282         if (!ns)
2283                 return;
2284
2285         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2286         if (ns->instance < 0)
2287                 goto out_free_ns;
2288
2289         ns->queue = blk_mq_init_queue(ctrl->tagset);
2290         if (IS_ERR(ns->queue))
2291                 goto out_release_instance;
2292         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2293         ns->queue->queuedata = ns;
2294         ns->ctrl = ctrl;
2295
2296         kref_init(&ns->kref);
2297         ns->ns_id = nsid;
2298         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2299
2300         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2301         nvme_set_queue_limits(ctrl, ns->queue);
2302         nvme_setup_streams_ns(ctrl, ns);
2303
2304         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2305
2306         if (nvme_revalidate_ns(ns, &id))
2307                 goto out_free_queue;
2308
2309         if (nvme_nvm_ns_supported(ns, id) &&
2310                                 nvme_nvm_register(ns, disk_name, node)) {
2311                 dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2312                 goto out_free_id;
2313         }
2314
2315         disk = alloc_disk_node(0, node);
2316         if (!disk)
2317                 goto out_free_id;
2318
2319         disk->fops = &nvme_fops;
2320         disk->private_data = ns;
2321         disk->queue = ns->queue;
2322         disk->flags = GENHD_FL_EXT_DEVT;
2323         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2324         ns->disk = disk;
2325
2326         __nvme_revalidate_disk(disk, id);
2327
2328         mutex_lock(&ctrl->namespaces_mutex);
2329         list_add_tail(&ns->list, &ctrl->namespaces);
2330         mutex_unlock(&ctrl->namespaces_mutex);
2331
2332         kref_get(&ctrl->kref);
2333
2334         kfree(id);
2335
2336         device_add_disk(ctrl->device, ns->disk);
2337         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2338                                         &nvme_ns_attr_group))
2339                 pr_warn("%s: failed to create sysfs group for identification\n",
2340                         ns->disk->disk_name);
2341         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2342                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2343                         ns->disk->disk_name);
2344         return;
2345  out_free_id:
2346         kfree(id);
2347  out_free_queue:
2348         blk_cleanup_queue(ns->queue);
2349  out_release_instance:
2350         ida_simple_remove(&ctrl->ns_ida, ns->instance);
2351  out_free_ns:
2352         kfree(ns);
2353 }
2354
2355 static void nvme_ns_remove(struct nvme_ns *ns)
2356 {
2357         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2358                 return;
2359
2360         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2361                 if (blk_get_integrity(ns->disk))
2362                         blk_integrity_unregister(ns->disk);
2363                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2364                                         &nvme_ns_attr_group);
2365                 if (ns->ndev)
2366                         nvme_nvm_unregister_sysfs(ns);
2367                 del_gendisk(ns->disk);
2368                 blk_cleanup_queue(ns->queue);
2369         }
2370
2371         mutex_lock(&ns->ctrl->namespaces_mutex);
2372         list_del_init(&ns->list);
2373         mutex_unlock(&ns->ctrl->namespaces_mutex);
2374
2375         nvme_put_ns(ns);
2376 }
2377
2378 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2379 {
2380         struct nvme_ns *ns;
2381
2382         ns = nvme_find_get_ns(ctrl, nsid);
2383         if (ns) {
2384                 if (ns->disk && revalidate_disk(ns->disk))
2385                         nvme_ns_remove(ns);
2386                 nvme_put_ns(ns);
2387         } else
2388                 nvme_alloc_ns(ctrl, nsid);
2389 }
2390
2391 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2392                                         unsigned nsid)
2393 {
2394         struct nvme_ns *ns, *next;
2395
2396         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2397                 if (ns->ns_id > nsid)
2398                         nvme_ns_remove(ns);
2399         }
2400 }
2401
2402 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2403 {
2404         struct nvme_ns *ns;
2405         __le32 *ns_list;
2406         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2407         int ret = 0;
2408
2409         ns_list = kzalloc(0x1000, GFP_KERNEL);
2410         if (!ns_list)
2411                 return -ENOMEM;
2412
2413         for (i = 0; i < num_lists; i++) {
2414                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2415                 if (ret)
2416                         goto free;
2417
2418                 for (j = 0; j < min(nn, 1024U); j++) {
2419                         nsid = le32_to_cpu(ns_list[j]);
2420                         if (!nsid)
2421                                 goto out;
2422
2423                         nvme_validate_ns(ctrl, nsid);
2424
2425                         while (++prev < nsid) {
2426                                 ns = nvme_find_get_ns(ctrl, prev);
2427                                 if (ns) {
2428                                         nvme_ns_remove(ns);
2429                                         nvme_put_ns(ns);
2430                                 }
2431                         }
2432                 }
2433                 nn -= j;
2434         }
2435  out:
2436         nvme_remove_invalid_namespaces(ctrl, prev);
2437  free:
2438         kfree(ns_list);
2439         return ret;
2440 }
2441
2442 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2443 {
2444         unsigned i;
2445
2446         for (i = 1; i <= nn; i++)
2447                 nvme_validate_ns(ctrl, i);
2448
2449         nvme_remove_invalid_namespaces(ctrl, nn);
2450 }
2451
2452 static void nvme_scan_work(struct work_struct *work)
2453 {
2454         struct nvme_ctrl *ctrl =
2455                 container_of(work, struct nvme_ctrl, scan_work);
2456         struct nvme_id_ctrl *id;
2457         unsigned nn;
2458
2459         if (ctrl->state != NVME_CTRL_LIVE)
2460                 return;
2461
2462         if (nvme_identify_ctrl(ctrl, &id))
2463                 return;
2464
2465         nn = le32_to_cpu(id->nn);
2466         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2467             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2468                 if (!nvme_scan_ns_list(ctrl, nn))
2469                         goto done;
2470         }
2471         nvme_scan_ns_sequential(ctrl, nn);
2472  done:
2473         mutex_lock(&ctrl->namespaces_mutex);
2474         list_sort(NULL, &ctrl->namespaces, ns_cmp);
2475         mutex_unlock(&ctrl->namespaces_mutex);
2476         kfree(id);
2477 }
2478
2479 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2480 {
2481         /*
2482          * Do not queue new scan work when a controller is reset during
2483          * removal.
2484          */
2485         if (ctrl->state == NVME_CTRL_LIVE)
2486                 queue_work(nvme_wq, &ctrl->scan_work);
2487 }
2488 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2489
2490 /*
2491  * This function iterates the namespace list unlocked to allow recovery from
2492  * controller failure. It is up to the caller to ensure the namespace list is
2493  * not modified by scan work while this function is executing.
2494  */
2495 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2496 {
2497         struct nvme_ns *ns, *next;
2498
2499         /*
2500          * The dead states indicates the controller was not gracefully
2501          * disconnected. In that case, we won't be able to flush any data while
2502          * removing the namespaces' disks; fail all the queues now to avoid
2503          * potentially having to clean up the failed sync later.
2504          */
2505         if (ctrl->state == NVME_CTRL_DEAD)
2506                 nvme_kill_queues(ctrl);
2507
2508         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2509                 nvme_ns_remove(ns);
2510 }
2511 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2512
2513 static void nvme_async_event_work(struct work_struct *work)
2514 {
2515         struct nvme_ctrl *ctrl =
2516                 container_of(work, struct nvme_ctrl, async_event_work);
2517
2518         spin_lock_irq(&ctrl->lock);
2519         while (ctrl->event_limit > 0) {
2520                 int aer_idx = --ctrl->event_limit;
2521
2522                 spin_unlock_irq(&ctrl->lock);
2523                 ctrl->ops->submit_async_event(ctrl, aer_idx);
2524                 spin_lock_irq(&ctrl->lock);
2525         }
2526         spin_unlock_irq(&ctrl->lock);
2527 }
2528
2529 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2530                 union nvme_result *res)
2531 {
2532         u32 result = le32_to_cpu(res->u32);
2533         bool done = true;
2534
2535         switch (le16_to_cpu(status) >> 1) {
2536         case NVME_SC_SUCCESS:
2537                 done = false;
2538                 /*FALLTHRU*/
2539         case NVME_SC_ABORT_REQ:
2540                 ++ctrl->event_limit;
2541                 queue_work(nvme_wq, &ctrl->async_event_work);
2542                 break;
2543         default:
2544                 break;
2545         }
2546
2547         if (done)
2548                 return;
2549
2550         switch (result & 0xff07) {
2551         case NVME_AER_NOTICE_NS_CHANGED:
2552                 dev_info(ctrl->device, "rescanning\n");
2553                 nvme_queue_scan(ctrl);
2554                 break;
2555         default:
2556                 dev_warn(ctrl->device, "async event result %08x\n", result);
2557         }
2558 }
2559 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2560
2561 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2562 {
2563         ctrl->event_limit = NVME_NR_AERS;
2564         queue_work(nvme_wq, &ctrl->async_event_work);
2565 }
2566 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2567
2568 static DEFINE_IDA(nvme_instance_ida);
2569
2570 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2571 {
2572         int instance, error;
2573
2574         do {
2575                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2576                         return -ENODEV;
2577
2578                 spin_lock(&dev_list_lock);
2579                 error = ida_get_new(&nvme_instance_ida, &instance);
2580                 spin_unlock(&dev_list_lock);
2581         } while (error == -EAGAIN);
2582
2583         if (error)
2584                 return -ENODEV;
2585
2586         ctrl->instance = instance;
2587         return 0;
2588 }
2589
2590 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2591 {
2592         spin_lock(&dev_list_lock);
2593         ida_remove(&nvme_instance_ida, ctrl->instance);
2594         spin_unlock(&dev_list_lock);
2595 }
2596
2597 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2598 {
2599         nvme_stop_keep_alive(ctrl);
2600         flush_work(&ctrl->async_event_work);
2601         flush_work(&ctrl->scan_work);
2602 }
2603 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2604
2605 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2606 {
2607         if (ctrl->kato)
2608                 nvme_start_keep_alive(ctrl);
2609
2610         if (ctrl->queue_count > 1) {
2611                 nvme_queue_scan(ctrl);
2612                 nvme_queue_async_events(ctrl);
2613                 nvme_start_queues(ctrl);
2614         }
2615 }
2616 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2617
2618 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2619 {
2620         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2621
2622         spin_lock(&dev_list_lock);
2623         list_del(&ctrl->node);
2624         spin_unlock(&dev_list_lock);
2625 }
2626 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2627
2628 static void nvme_free_ctrl(struct kref *kref)
2629 {
2630         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2631
2632         put_device(ctrl->device);
2633         nvme_release_instance(ctrl);
2634         ida_destroy(&ctrl->ns_ida);
2635
2636         ctrl->ops->free_ctrl(ctrl);
2637 }
2638
2639 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2640 {
2641         kref_put(&ctrl->kref, nvme_free_ctrl);
2642 }
2643 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2644
2645 /*
2646  * Initialize a NVMe controller structures.  This needs to be called during
2647  * earliest initialization so that we have the initialized structured around
2648  * during probing.
2649  */
2650 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2651                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2652 {
2653         int ret;
2654
2655         ctrl->state = NVME_CTRL_NEW;
2656         spin_lock_init(&ctrl->lock);
2657         INIT_LIST_HEAD(&ctrl->namespaces);
2658         mutex_init(&ctrl->namespaces_mutex);
2659         kref_init(&ctrl->kref);
2660         ctrl->dev = dev;
2661         ctrl->ops = ops;
2662         ctrl->quirks = quirks;
2663         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2664         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2665
2666         ret = nvme_set_instance(ctrl);
2667         if (ret)
2668                 goto out;
2669
2670         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2671                                 MKDEV(nvme_char_major, ctrl->instance),
2672                                 ctrl, nvme_dev_attr_groups,
2673                                 "nvme%d", ctrl->instance);
2674         if (IS_ERR(ctrl->device)) {
2675                 ret = PTR_ERR(ctrl->device);
2676                 goto out_release_instance;
2677         }
2678         get_device(ctrl->device);
2679         ida_init(&ctrl->ns_ida);
2680
2681         spin_lock(&dev_list_lock);
2682         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2683         spin_unlock(&dev_list_lock);
2684
2685         /*
2686          * Initialize latency tolerance controls.  The sysfs files won't
2687          * be visible to userspace unless the device actually supports APST.
2688          */
2689         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2690         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2691                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2692
2693         return 0;
2694 out_release_instance:
2695         nvme_release_instance(ctrl);
2696 out:
2697         return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2700
2701 /**
2702  * nvme_kill_queues(): Ends all namespace queues
2703  * @ctrl: the dead controller that needs to end
2704  *
2705  * Call this function when the driver determines it is unable to get the
2706  * controller in a state capable of servicing IO.
2707  */
2708 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2709 {
2710         struct nvme_ns *ns;
2711
2712         mutex_lock(&ctrl->namespaces_mutex);
2713
2714         /* Forcibly unquiesce queues to avoid blocking dispatch */
2715         if (ctrl->admin_q)
2716                 blk_mq_unquiesce_queue(ctrl->admin_q);
2717
2718         list_for_each_entry(ns, &ctrl->namespaces, list) {
2719                 /*
2720                  * Revalidating a dead namespace sets capacity to 0. This will
2721                  * end buffered writers dirtying pages that can't be synced.
2722                  */
2723                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2724                         continue;
2725                 revalidate_disk(ns->disk);
2726                 blk_set_queue_dying(ns->queue);
2727
2728                 /* Forcibly unquiesce queues to avoid blocking dispatch */
2729                 blk_mq_unquiesce_queue(ns->queue);
2730         }
2731         mutex_unlock(&ctrl->namespaces_mutex);
2732 }
2733 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2734
2735 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2736 {
2737         struct nvme_ns *ns;
2738
2739         mutex_lock(&ctrl->namespaces_mutex);
2740         list_for_each_entry(ns, &ctrl->namespaces, list)
2741                 blk_mq_unfreeze_queue(ns->queue);
2742         mutex_unlock(&ctrl->namespaces_mutex);
2743 }
2744 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2745
2746 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2747 {
2748         struct nvme_ns *ns;
2749
2750         mutex_lock(&ctrl->namespaces_mutex);
2751         list_for_each_entry(ns, &ctrl->namespaces, list) {
2752                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2753                 if (timeout <= 0)
2754                         break;
2755         }
2756         mutex_unlock(&ctrl->namespaces_mutex);
2757 }
2758 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2759
2760 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2761 {
2762         struct nvme_ns *ns;
2763
2764         mutex_lock(&ctrl->namespaces_mutex);
2765         list_for_each_entry(ns, &ctrl->namespaces, list)
2766                 blk_mq_freeze_queue_wait(ns->queue);
2767         mutex_unlock(&ctrl->namespaces_mutex);
2768 }
2769 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2770
2771 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2772 {
2773         struct nvme_ns *ns;
2774
2775         mutex_lock(&ctrl->namespaces_mutex);
2776         list_for_each_entry(ns, &ctrl->namespaces, list)
2777                 blk_freeze_queue_start(ns->queue);
2778         mutex_unlock(&ctrl->namespaces_mutex);
2779 }
2780 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2781
2782 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2783 {
2784         struct nvme_ns *ns;
2785
2786         mutex_lock(&ctrl->namespaces_mutex);
2787         list_for_each_entry(ns, &ctrl->namespaces, list)
2788                 blk_mq_quiesce_queue(ns->queue);
2789         mutex_unlock(&ctrl->namespaces_mutex);
2790 }
2791 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2792
2793 void nvme_start_queues(struct nvme_ctrl *ctrl)
2794 {
2795         struct nvme_ns *ns;
2796
2797         mutex_lock(&ctrl->namespaces_mutex);
2798         list_for_each_entry(ns, &ctrl->namespaces, list)
2799                 blk_mq_unquiesce_queue(ns->queue);
2800         mutex_unlock(&ctrl->namespaces_mutex);
2801 }
2802 EXPORT_SYMBOL_GPL(nvme_start_queues);
2803
2804 int __init nvme_core_init(void)
2805 {
2806         int result;
2807
2808         nvme_wq = alloc_workqueue("nvme-wq",
2809                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2810         if (!nvme_wq)
2811                 return -ENOMEM;
2812
2813         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2814                                                         &nvme_dev_fops);
2815         if (result < 0)
2816                 goto destroy_wq;
2817         else if (result > 0)
2818                 nvme_char_major = result;
2819
2820         nvme_class = class_create(THIS_MODULE, "nvme");
2821         if (IS_ERR(nvme_class)) {
2822                 result = PTR_ERR(nvme_class);
2823                 goto unregister_chrdev;
2824         }
2825
2826         return 0;
2827
2828 unregister_chrdev:
2829         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2830 destroy_wq:
2831         destroy_workqueue(nvme_wq);
2832         return result;
2833 }
2834
2835 void nvme_core_exit(void)
2836 {
2837         class_destroy(nvme_class);
2838         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2839         destroy_workqueue(nvme_wq);
2840 }
2841
2842 MODULE_LICENSE("GPL");
2843 MODULE_VERSION("1.0");
2844 module_init(nvme_core_init);
2845 module_exit(nvme_core_exit);