Merge tag 'for-linus-2019-08-17' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #include "nvme.h"
29 #include "fabrics.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static DEFINE_IDA(nvme_subsystems_ida);
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         revalidate_disk(ns->disk);
107         blk_set_queue_dying(ns->queue);
108         /* Forcibly unquiesce queues to avoid blocking dispatch */
109         blk_mq_unquiesce_queue(ns->queue);
110 }
111
112 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
113 {
114         /*
115          * Only new queue scan work when admin and IO queues are both alive
116          */
117         if (ctrl->state == NVME_CTRL_LIVE)
118                 queue_work(nvme_wq, &ctrl->scan_work);
119 }
120
121 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
122 {
123         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
124                 return -EBUSY;
125         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
126                 return -EBUSY;
127         return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
130
131 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133         int ret;
134
135         ret = nvme_reset_ctrl(ctrl);
136         if (!ret) {
137                 flush_work(&ctrl->reset_work);
138                 if (ctrl->state != NVME_CTRL_LIVE &&
139                     ctrl->state != NVME_CTRL_ADMIN_ONLY)
140                         ret = -ENETRESET;
141         }
142
143         return ret;
144 }
145 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
146
147 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
148 {
149         dev_info(ctrl->device,
150                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
151
152         flush_work(&ctrl->reset_work);
153         nvme_stop_ctrl(ctrl);
154         nvme_remove_namespaces(ctrl);
155         ctrl->ops->delete_ctrl(ctrl);
156         nvme_uninit_ctrl(ctrl);
157         nvme_put_ctrl(ctrl);
158 }
159
160 static void nvme_delete_ctrl_work(struct work_struct *work)
161 {
162         struct nvme_ctrl *ctrl =
163                 container_of(work, struct nvme_ctrl, delete_work);
164
165         nvme_do_delete_ctrl(ctrl);
166 }
167
168 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
169 {
170         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
171                 return -EBUSY;
172         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
173                 return -EBUSY;
174         return 0;
175 }
176 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
177
178 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
179 {
180         int ret = 0;
181
182         /*
183          * Keep a reference until nvme_do_delete_ctrl() complete,
184          * since ->delete_ctrl can free the controller.
185          */
186         nvme_get_ctrl(ctrl);
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 ret = -EBUSY;
189         if (!ret)
190                 nvme_do_delete_ctrl(ctrl);
191         nvme_put_ctrl(ctrl);
192         return ret;
193 }
194
195 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
196 {
197         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
198 }
199
200 static blk_status_t nvme_error_status(struct request *req)
201 {
202         switch (nvme_req(req)->status & 0x7ff) {
203         case NVME_SC_SUCCESS:
204                 return BLK_STS_OK;
205         case NVME_SC_CAP_EXCEEDED:
206                 return BLK_STS_NOSPC;
207         case NVME_SC_LBA_RANGE:
208                 return BLK_STS_TARGET;
209         case NVME_SC_BAD_ATTRIBUTES:
210         case NVME_SC_ONCS_NOT_SUPPORTED:
211         case NVME_SC_INVALID_OPCODE:
212         case NVME_SC_INVALID_FIELD:
213         case NVME_SC_INVALID_NS:
214                 return BLK_STS_NOTSUPP;
215         case NVME_SC_WRITE_FAULT:
216         case NVME_SC_READ_ERROR:
217         case NVME_SC_UNWRITTEN_BLOCK:
218         case NVME_SC_ACCESS_DENIED:
219         case NVME_SC_READ_ONLY:
220         case NVME_SC_COMPARE_FAILED:
221                 return BLK_STS_MEDIUM;
222         case NVME_SC_GUARD_CHECK:
223         case NVME_SC_APPTAG_CHECK:
224         case NVME_SC_REFTAG_CHECK:
225         case NVME_SC_INVALID_PI:
226                 return BLK_STS_PROTECTION;
227         case NVME_SC_RESERVATION_CONFLICT:
228                 return BLK_STS_NEXUS;
229         default:
230                 return BLK_STS_IOERR;
231         }
232 }
233
234 static inline bool nvme_req_needs_retry(struct request *req)
235 {
236         if (blk_noretry_request(req))
237                 return false;
238         if (nvme_req(req)->status & NVME_SC_DNR)
239                 return false;
240         if (nvme_req(req)->retries >= nvme_max_retries)
241                 return false;
242         return true;
243 }
244
245 static void nvme_retry_req(struct request *req)
246 {
247         struct nvme_ns *ns = req->q->queuedata;
248         unsigned long delay = 0;
249         u16 crd;
250
251         /* The mask and shift result must be <= 3 */
252         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
253         if (ns && crd)
254                 delay = ns->ctrl->crdt[crd - 1] * 100;
255
256         nvme_req(req)->retries++;
257         blk_mq_requeue_request(req, false);
258         blk_mq_delay_kick_requeue_list(req->q, delay);
259 }
260
261 void nvme_complete_rq(struct request *req)
262 {
263         blk_status_t status = nvme_error_status(req);
264
265         trace_nvme_complete_rq(req);
266
267         if (nvme_req(req)->ctrl->kas)
268                 nvme_req(req)->ctrl->comp_seen = true;
269
270         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
271                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
272                     blk_path_error(status)) {
273                         nvme_failover_req(req);
274                         return;
275                 }
276
277                 if (!blk_queue_dying(req->q)) {
278                         nvme_retry_req(req);
279                         return;
280                 }
281         }
282         blk_mq_end_request(req, status);
283 }
284 EXPORT_SYMBOL_GPL(nvme_complete_rq);
285
286 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
287 {
288         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
289                                 "Cancelling I/O %d", req->tag);
290
291         nvme_req(req)->status = NVME_SC_ABORT_REQ;
292         blk_mq_complete_request_sync(req);
293         return true;
294 }
295 EXPORT_SYMBOL_GPL(nvme_cancel_request);
296
297 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
298                 enum nvme_ctrl_state new_state)
299 {
300         enum nvme_ctrl_state old_state;
301         unsigned long flags;
302         bool changed = false;
303
304         spin_lock_irqsave(&ctrl->lock, flags);
305
306         old_state = ctrl->state;
307         switch (new_state) {
308         case NVME_CTRL_ADMIN_ONLY:
309                 switch (old_state) {
310                 case NVME_CTRL_CONNECTING:
311                         changed = true;
312                         /* FALLTHRU */
313                 default:
314                         break;
315                 }
316                 break;
317         case NVME_CTRL_LIVE:
318                 switch (old_state) {
319                 case NVME_CTRL_NEW:
320                 case NVME_CTRL_RESETTING:
321                 case NVME_CTRL_CONNECTING:
322                         changed = true;
323                         /* FALLTHRU */
324                 default:
325                         break;
326                 }
327                 break;
328         case NVME_CTRL_RESETTING:
329                 switch (old_state) {
330                 case NVME_CTRL_NEW:
331                 case NVME_CTRL_LIVE:
332                 case NVME_CTRL_ADMIN_ONLY:
333                         changed = true;
334                         /* FALLTHRU */
335                 default:
336                         break;
337                 }
338                 break;
339         case NVME_CTRL_CONNECTING:
340                 switch (old_state) {
341                 case NVME_CTRL_NEW:
342                 case NVME_CTRL_RESETTING:
343                         changed = true;
344                         /* FALLTHRU */
345                 default:
346                         break;
347                 }
348                 break;
349         case NVME_CTRL_DELETING:
350                 switch (old_state) {
351                 case NVME_CTRL_LIVE:
352                 case NVME_CTRL_ADMIN_ONLY:
353                 case NVME_CTRL_RESETTING:
354                 case NVME_CTRL_CONNECTING:
355                         changed = true;
356                         /* FALLTHRU */
357                 default:
358                         break;
359                 }
360                 break;
361         case NVME_CTRL_DEAD:
362                 switch (old_state) {
363                 case NVME_CTRL_DELETING:
364                         changed = true;
365                         /* FALLTHRU */
366                 default:
367                         break;
368                 }
369                 break;
370         default:
371                 break;
372         }
373
374         if (changed)
375                 ctrl->state = new_state;
376
377         spin_unlock_irqrestore(&ctrl->lock, flags);
378         if (changed && ctrl->state == NVME_CTRL_LIVE)
379                 nvme_kick_requeue_lists(ctrl);
380         return changed;
381 }
382 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
383
384 static void nvme_free_ns_head(struct kref *ref)
385 {
386         struct nvme_ns_head *head =
387                 container_of(ref, struct nvme_ns_head, ref);
388
389         nvme_mpath_remove_disk(head);
390         ida_simple_remove(&head->subsys->ns_ida, head->instance);
391         list_del_init(&head->entry);
392         cleanup_srcu_struct(&head->srcu);
393         nvme_put_subsystem(head->subsys);
394         kfree(head);
395 }
396
397 static void nvme_put_ns_head(struct nvme_ns_head *head)
398 {
399         kref_put(&head->ref, nvme_free_ns_head);
400 }
401
402 static void nvme_free_ns(struct kref *kref)
403 {
404         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
405
406         if (ns->ndev)
407                 nvme_nvm_unregister(ns);
408
409         put_disk(ns->disk);
410         nvme_put_ns_head(ns->head);
411         nvme_put_ctrl(ns->ctrl);
412         kfree(ns);
413 }
414
415 static void nvme_put_ns(struct nvme_ns *ns)
416 {
417         kref_put(&ns->kref, nvme_free_ns);
418 }
419
420 static inline void nvme_clear_nvme_request(struct request *req)
421 {
422         if (!(req->rq_flags & RQF_DONTPREP)) {
423                 nvme_req(req)->retries = 0;
424                 nvme_req(req)->flags = 0;
425                 req->rq_flags |= RQF_DONTPREP;
426         }
427 }
428
429 struct request *nvme_alloc_request(struct request_queue *q,
430                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
431 {
432         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
433         struct request *req;
434
435         if (qid == NVME_QID_ANY) {
436                 req = blk_mq_alloc_request(q, op, flags);
437         } else {
438                 req = blk_mq_alloc_request_hctx(q, op, flags,
439                                 qid ? qid - 1 : 0);
440         }
441         if (IS_ERR(req))
442                 return req;
443
444         req->cmd_flags |= REQ_FAILFAST_DRIVER;
445         nvme_clear_nvme_request(req);
446         nvme_req(req)->cmd = cmd;
447
448         return req;
449 }
450 EXPORT_SYMBOL_GPL(nvme_alloc_request);
451
452 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
453 {
454         struct nvme_command c;
455
456         memset(&c, 0, sizeof(c));
457
458         c.directive.opcode = nvme_admin_directive_send;
459         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
460         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
461         c.directive.dtype = NVME_DIR_IDENTIFY;
462         c.directive.tdtype = NVME_DIR_STREAMS;
463         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
464
465         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
466 }
467
468 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
469 {
470         return nvme_toggle_streams(ctrl, false);
471 }
472
473 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
474 {
475         return nvme_toggle_streams(ctrl, true);
476 }
477
478 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
479                                   struct streams_directive_params *s, u32 nsid)
480 {
481         struct nvme_command c;
482
483         memset(&c, 0, sizeof(c));
484         memset(s, 0, sizeof(*s));
485
486         c.directive.opcode = nvme_admin_directive_recv;
487         c.directive.nsid = cpu_to_le32(nsid);
488         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
489         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
490         c.directive.dtype = NVME_DIR_STREAMS;
491
492         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
493 }
494
495 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
496 {
497         struct streams_directive_params s;
498         int ret;
499
500         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
501                 return 0;
502         if (!streams)
503                 return 0;
504
505         ret = nvme_enable_streams(ctrl);
506         if (ret)
507                 return ret;
508
509         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
510         if (ret)
511                 return ret;
512
513         ctrl->nssa = le16_to_cpu(s.nssa);
514         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
515                 dev_info(ctrl->device, "too few streams (%u) available\n",
516                                         ctrl->nssa);
517                 nvme_disable_streams(ctrl);
518                 return 0;
519         }
520
521         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
522         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
523         return 0;
524 }
525
526 /*
527  * Check if 'req' has a write hint associated with it. If it does, assign
528  * a valid namespace stream to the write.
529  */
530 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
531                                      struct request *req, u16 *control,
532                                      u32 *dsmgmt)
533 {
534         enum rw_hint streamid = req->write_hint;
535
536         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
537                 streamid = 0;
538         else {
539                 streamid--;
540                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
541                         return;
542
543                 *control |= NVME_RW_DTYPE_STREAMS;
544                 *dsmgmt |= streamid << 16;
545         }
546
547         if (streamid < ARRAY_SIZE(req->q->write_hints))
548                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
549 }
550
551 static inline void nvme_setup_flush(struct nvme_ns *ns,
552                 struct nvme_command *cmnd)
553 {
554         cmnd->common.opcode = nvme_cmd_flush;
555         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
556 }
557
558 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
559                 struct nvme_command *cmnd)
560 {
561         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
562         struct nvme_dsm_range *range;
563         struct bio *bio;
564
565         range = kmalloc_array(segments, sizeof(*range),
566                                 GFP_ATOMIC | __GFP_NOWARN);
567         if (!range) {
568                 /*
569                  * If we fail allocation our range, fallback to the controller
570                  * discard page. If that's also busy, it's safe to return
571                  * busy, as we know we can make progress once that's freed.
572                  */
573                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
574                         return BLK_STS_RESOURCE;
575
576                 range = page_address(ns->ctrl->discard_page);
577         }
578
579         __rq_for_each_bio(bio, req) {
580                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
581                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
582
583                 if (n < segments) {
584                         range[n].cattr = cpu_to_le32(0);
585                         range[n].nlb = cpu_to_le32(nlb);
586                         range[n].slba = cpu_to_le64(slba);
587                 }
588                 n++;
589         }
590
591         if (WARN_ON_ONCE(n != segments)) {
592                 if (virt_to_page(range) == ns->ctrl->discard_page)
593                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
594                 else
595                         kfree(range);
596                 return BLK_STS_IOERR;
597         }
598
599         cmnd->dsm.opcode = nvme_cmd_dsm;
600         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
601         cmnd->dsm.nr = cpu_to_le32(segments - 1);
602         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
603
604         req->special_vec.bv_page = virt_to_page(range);
605         req->special_vec.bv_offset = offset_in_page(range);
606         req->special_vec.bv_len = sizeof(*range) * segments;
607         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
608
609         return BLK_STS_OK;
610 }
611
612 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
613                 struct request *req, struct nvme_command *cmnd)
614 {
615         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
616                 return nvme_setup_discard(ns, req, cmnd);
617
618         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
619         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
620         cmnd->write_zeroes.slba =
621                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
622         cmnd->write_zeroes.length =
623                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
624         cmnd->write_zeroes.control = 0;
625         return BLK_STS_OK;
626 }
627
628 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
629                 struct request *req, struct nvme_command *cmnd)
630 {
631         struct nvme_ctrl *ctrl = ns->ctrl;
632         u16 control = 0;
633         u32 dsmgmt = 0;
634
635         if (req->cmd_flags & REQ_FUA)
636                 control |= NVME_RW_FUA;
637         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
638                 control |= NVME_RW_LR;
639
640         if (req->cmd_flags & REQ_RAHEAD)
641                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
642
643         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
644         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
645         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
646         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
647
648         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
649                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
650
651         if (ns->ms) {
652                 /*
653                  * If formated with metadata, the block layer always provides a
654                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
655                  * we enable the PRACT bit for protection information or set the
656                  * namespace capacity to zero to prevent any I/O.
657                  */
658                 if (!blk_integrity_rq(req)) {
659                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
660                                 return BLK_STS_NOTSUPP;
661                         control |= NVME_RW_PRINFO_PRACT;
662                 } else if (req_op(req) == REQ_OP_WRITE) {
663                         t10_pi_prepare(req, ns->pi_type);
664                 }
665
666                 switch (ns->pi_type) {
667                 case NVME_NS_DPS_PI_TYPE3:
668                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
669                         break;
670                 case NVME_NS_DPS_PI_TYPE1:
671                 case NVME_NS_DPS_PI_TYPE2:
672                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
673                                         NVME_RW_PRINFO_PRCHK_REF;
674                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
675                         break;
676                 }
677         }
678
679         cmnd->rw.control = cpu_to_le16(control);
680         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
681         return 0;
682 }
683
684 void nvme_cleanup_cmd(struct request *req)
685 {
686         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
687             nvme_req(req)->status == 0) {
688                 struct nvme_ns *ns = req->rq_disk->private_data;
689
690                 t10_pi_complete(req, ns->pi_type,
691                                 blk_rq_bytes(req) >> ns->lba_shift);
692         }
693         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
694                 struct nvme_ns *ns = req->rq_disk->private_data;
695                 struct page *page = req->special_vec.bv_page;
696
697                 if (page == ns->ctrl->discard_page)
698                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
699                 else
700                         kfree(page_address(page) + req->special_vec.bv_offset);
701         }
702 }
703 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
704
705 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
706                 struct nvme_command *cmd)
707 {
708         blk_status_t ret = BLK_STS_OK;
709
710         nvme_clear_nvme_request(req);
711
712         memset(cmd, 0, sizeof(*cmd));
713         switch (req_op(req)) {
714         case REQ_OP_DRV_IN:
715         case REQ_OP_DRV_OUT:
716                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
717                 break;
718         case REQ_OP_FLUSH:
719                 nvme_setup_flush(ns, cmd);
720                 break;
721         case REQ_OP_WRITE_ZEROES:
722                 ret = nvme_setup_write_zeroes(ns, req, cmd);
723                 break;
724         case REQ_OP_DISCARD:
725                 ret = nvme_setup_discard(ns, req, cmd);
726                 break;
727         case REQ_OP_READ:
728         case REQ_OP_WRITE:
729                 ret = nvme_setup_rw(ns, req, cmd);
730                 break;
731         default:
732                 WARN_ON_ONCE(1);
733                 return BLK_STS_IOERR;
734         }
735
736         cmd->common.command_id = req->tag;
737         trace_nvme_setup_cmd(req, cmd);
738         return ret;
739 }
740 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
741
742 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
743 {
744         struct completion *waiting = rq->end_io_data;
745
746         rq->end_io_data = NULL;
747         complete(waiting);
748 }
749
750 static void nvme_execute_rq_polled(struct request_queue *q,
751                 struct gendisk *bd_disk, struct request *rq, int at_head)
752 {
753         DECLARE_COMPLETION_ONSTACK(wait);
754
755         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
756
757         rq->cmd_flags |= REQ_HIPRI;
758         rq->end_io_data = &wait;
759         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
760
761         while (!completion_done(&wait)) {
762                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
763                 cond_resched();
764         }
765 }
766
767 /*
768  * Returns 0 on success.  If the result is negative, it's a Linux error code;
769  * if the result is positive, it's an NVM Express status code
770  */
771 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
772                 union nvme_result *result, void *buffer, unsigned bufflen,
773                 unsigned timeout, int qid, int at_head,
774                 blk_mq_req_flags_t flags, bool poll)
775 {
776         struct request *req;
777         int ret;
778
779         req = nvme_alloc_request(q, cmd, flags, qid);
780         if (IS_ERR(req))
781                 return PTR_ERR(req);
782
783         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
784
785         if (buffer && bufflen) {
786                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
787                 if (ret)
788                         goto out;
789         }
790
791         if (poll)
792                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
793         else
794                 blk_execute_rq(req->q, NULL, req, at_head);
795         if (result)
796                 *result = nvme_req(req)->result;
797         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
798                 ret = -EINTR;
799         else
800                 ret = nvme_req(req)->status;
801  out:
802         blk_mq_free_request(req);
803         return ret;
804 }
805 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
806
807 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
808                 void *buffer, unsigned bufflen)
809 {
810         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
811                         NVME_QID_ANY, 0, 0, false);
812 }
813 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
814
815 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
816                 unsigned len, u32 seed, bool write)
817 {
818         struct bio_integrity_payload *bip;
819         int ret = -ENOMEM;
820         void *buf;
821
822         buf = kmalloc(len, GFP_KERNEL);
823         if (!buf)
824                 goto out;
825
826         ret = -EFAULT;
827         if (write && copy_from_user(buf, ubuf, len))
828                 goto out_free_meta;
829
830         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
831         if (IS_ERR(bip)) {
832                 ret = PTR_ERR(bip);
833                 goto out_free_meta;
834         }
835
836         bip->bip_iter.bi_size = len;
837         bip->bip_iter.bi_sector = seed;
838         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
839                         offset_in_page(buf));
840         if (ret == len)
841                 return buf;
842         ret = -ENOMEM;
843 out_free_meta:
844         kfree(buf);
845 out:
846         return ERR_PTR(ret);
847 }
848
849 static int nvme_submit_user_cmd(struct request_queue *q,
850                 struct nvme_command *cmd, void __user *ubuffer,
851                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
852                 u32 meta_seed, u32 *result, unsigned timeout)
853 {
854         bool write = nvme_is_write(cmd);
855         struct nvme_ns *ns = q->queuedata;
856         struct gendisk *disk = ns ? ns->disk : NULL;
857         struct request *req;
858         struct bio *bio = NULL;
859         void *meta = NULL;
860         int ret;
861
862         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
863         if (IS_ERR(req))
864                 return PTR_ERR(req);
865
866         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
867         nvme_req(req)->flags |= NVME_REQ_USERCMD;
868
869         if (ubuffer && bufflen) {
870                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
871                                 GFP_KERNEL);
872                 if (ret)
873                         goto out;
874                 bio = req->bio;
875                 bio->bi_disk = disk;
876                 if (disk && meta_buffer && meta_len) {
877                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
878                                         meta_seed, write);
879                         if (IS_ERR(meta)) {
880                                 ret = PTR_ERR(meta);
881                                 goto out_unmap;
882                         }
883                         req->cmd_flags |= REQ_INTEGRITY;
884                 }
885         }
886
887         blk_execute_rq(req->q, disk, req, 0);
888         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
889                 ret = -EINTR;
890         else
891                 ret = nvme_req(req)->status;
892         if (result)
893                 *result = le32_to_cpu(nvme_req(req)->result.u32);
894         if (meta && !ret && !write) {
895                 if (copy_to_user(meta_buffer, meta, meta_len))
896                         ret = -EFAULT;
897         }
898         kfree(meta);
899  out_unmap:
900         if (bio)
901                 blk_rq_unmap_user(bio);
902  out:
903         blk_mq_free_request(req);
904         return ret;
905 }
906
907 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
908 {
909         struct nvme_ctrl *ctrl = rq->end_io_data;
910         unsigned long flags;
911         bool startka = false;
912
913         blk_mq_free_request(rq);
914
915         if (status) {
916                 dev_err(ctrl->device,
917                         "failed nvme_keep_alive_end_io error=%d\n",
918                                 status);
919                 return;
920         }
921
922         ctrl->comp_seen = false;
923         spin_lock_irqsave(&ctrl->lock, flags);
924         if (ctrl->state == NVME_CTRL_LIVE ||
925             ctrl->state == NVME_CTRL_CONNECTING)
926                 startka = true;
927         spin_unlock_irqrestore(&ctrl->lock, flags);
928         if (startka)
929                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
930 }
931
932 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
933 {
934         struct request *rq;
935
936         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
937                         NVME_QID_ANY);
938         if (IS_ERR(rq))
939                 return PTR_ERR(rq);
940
941         rq->timeout = ctrl->kato * HZ;
942         rq->end_io_data = ctrl;
943
944         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
945
946         return 0;
947 }
948
949 static void nvme_keep_alive_work(struct work_struct *work)
950 {
951         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
952                         struct nvme_ctrl, ka_work);
953         bool comp_seen = ctrl->comp_seen;
954
955         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
956                 dev_dbg(ctrl->device,
957                         "reschedule traffic based keep-alive timer\n");
958                 ctrl->comp_seen = false;
959                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
960                 return;
961         }
962
963         if (nvme_keep_alive(ctrl)) {
964                 /* allocation failure, reset the controller */
965                 dev_err(ctrl->device, "keep-alive failed\n");
966                 nvme_reset_ctrl(ctrl);
967                 return;
968         }
969 }
970
971 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
972 {
973         if (unlikely(ctrl->kato == 0))
974                 return;
975
976         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
977 }
978
979 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
980 {
981         if (unlikely(ctrl->kato == 0))
982                 return;
983
984         cancel_delayed_work_sync(&ctrl->ka_work);
985 }
986 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
987
988 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
989 {
990         struct nvme_command c = { };
991         int error;
992
993         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
994         c.identify.opcode = nvme_admin_identify;
995         c.identify.cns = NVME_ID_CNS_CTRL;
996
997         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
998         if (!*id)
999                 return -ENOMEM;
1000
1001         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1002                         sizeof(struct nvme_id_ctrl));
1003         if (error)
1004                 kfree(*id);
1005         return error;
1006 }
1007
1008 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1009                 struct nvme_ns_ids *ids)
1010 {
1011         struct nvme_command c = { };
1012         int status;
1013         void *data;
1014         int pos;
1015         int len;
1016
1017         c.identify.opcode = nvme_admin_identify;
1018         c.identify.nsid = cpu_to_le32(nsid);
1019         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1020
1021         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1022         if (!data)
1023                 return -ENOMEM;
1024
1025         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1026                                       NVME_IDENTIFY_DATA_SIZE);
1027         if (status)
1028                 goto free_data;
1029
1030         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1031                 struct nvme_ns_id_desc *cur = data + pos;
1032
1033                 if (cur->nidl == 0)
1034                         break;
1035
1036                 switch (cur->nidt) {
1037                 case NVME_NIDT_EUI64:
1038                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1039                                 dev_warn(ctrl->device,
1040                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1041                                          cur->nidl);
1042                                 goto free_data;
1043                         }
1044                         len = NVME_NIDT_EUI64_LEN;
1045                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1046                         break;
1047                 case NVME_NIDT_NGUID:
1048                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1049                                 dev_warn(ctrl->device,
1050                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1051                                          cur->nidl);
1052                                 goto free_data;
1053                         }
1054                         len = NVME_NIDT_NGUID_LEN;
1055                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1056                         break;
1057                 case NVME_NIDT_UUID:
1058                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1059                                 dev_warn(ctrl->device,
1060                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1061                                          cur->nidl);
1062                                 goto free_data;
1063                         }
1064                         len = NVME_NIDT_UUID_LEN;
1065                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1066                         break;
1067                 default:
1068                         /* Skip unknown types */
1069                         len = cur->nidl;
1070                         break;
1071                 }
1072
1073                 len += sizeof(*cur);
1074         }
1075 free_data:
1076         kfree(data);
1077         return status;
1078 }
1079
1080 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1081 {
1082         struct nvme_command c = { };
1083
1084         c.identify.opcode = nvme_admin_identify;
1085         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1086         c.identify.nsid = cpu_to_le32(nsid);
1087         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1088                                     NVME_IDENTIFY_DATA_SIZE);
1089 }
1090
1091 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1092                 unsigned nsid)
1093 {
1094         struct nvme_id_ns *id;
1095         struct nvme_command c = { };
1096         int error;
1097
1098         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1099         c.identify.opcode = nvme_admin_identify;
1100         c.identify.nsid = cpu_to_le32(nsid);
1101         c.identify.cns = NVME_ID_CNS_NS;
1102
1103         id = kmalloc(sizeof(*id), GFP_KERNEL);
1104         if (!id)
1105                 return NULL;
1106
1107         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1108         if (error) {
1109                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1110                 kfree(id);
1111                 return NULL;
1112         }
1113
1114         return id;
1115 }
1116
1117 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1118                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1119 {
1120         struct nvme_command c;
1121         union nvme_result res;
1122         int ret;
1123
1124         memset(&c, 0, sizeof(c));
1125         c.features.opcode = op;
1126         c.features.fid = cpu_to_le32(fid);
1127         c.features.dword11 = cpu_to_le32(dword11);
1128
1129         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1130                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1131         if (ret >= 0 && result)
1132                 *result = le32_to_cpu(res.u32);
1133         return ret;
1134 }
1135
1136 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1137                       unsigned int dword11, void *buffer, size_t buflen,
1138                       u32 *result)
1139 {
1140         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1141                              buflen, result);
1142 }
1143 EXPORT_SYMBOL_GPL(nvme_set_features);
1144
1145 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1146                       unsigned int dword11, void *buffer, size_t buflen,
1147                       u32 *result)
1148 {
1149         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1150                              buflen, result);
1151 }
1152 EXPORT_SYMBOL_GPL(nvme_get_features);
1153
1154 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1155 {
1156         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1157         u32 result;
1158         int status, nr_io_queues;
1159
1160         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1161                         &result);
1162         if (status < 0)
1163                 return status;
1164
1165         /*
1166          * Degraded controllers might return an error when setting the queue
1167          * count.  We still want to be able to bring them online and offer
1168          * access to the admin queue, as that might be only way to fix them up.
1169          */
1170         if (status > 0) {
1171                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1172                 *count = 0;
1173         } else {
1174                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1175                 *count = min(*count, nr_io_queues);
1176         }
1177
1178         return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1181
1182 #define NVME_AEN_SUPPORTED \
1183         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1184
1185 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1186 {
1187         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1188         int status;
1189
1190         if (!supported_aens)
1191                 return;
1192
1193         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1194                         NULL, 0, &result);
1195         if (status)
1196                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1197                          supported_aens);
1198 }
1199
1200 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1201 {
1202         struct nvme_user_io io;
1203         struct nvme_command c;
1204         unsigned length, meta_len;
1205         void __user *metadata;
1206
1207         if (copy_from_user(&io, uio, sizeof(io)))
1208                 return -EFAULT;
1209         if (io.flags)
1210                 return -EINVAL;
1211
1212         switch (io.opcode) {
1213         case nvme_cmd_write:
1214         case nvme_cmd_read:
1215         case nvme_cmd_compare:
1216                 break;
1217         default:
1218                 return -EINVAL;
1219         }
1220
1221         length = (io.nblocks + 1) << ns->lba_shift;
1222         meta_len = (io.nblocks + 1) * ns->ms;
1223         metadata = (void __user *)(uintptr_t)io.metadata;
1224
1225         if (ns->ext) {
1226                 length += meta_len;
1227                 meta_len = 0;
1228         } else if (meta_len) {
1229                 if ((io.metadata & 3) || !io.metadata)
1230                         return -EINVAL;
1231         }
1232
1233         memset(&c, 0, sizeof(c));
1234         c.rw.opcode = io.opcode;
1235         c.rw.flags = io.flags;
1236         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1237         c.rw.slba = cpu_to_le64(io.slba);
1238         c.rw.length = cpu_to_le16(io.nblocks);
1239         c.rw.control = cpu_to_le16(io.control);
1240         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1241         c.rw.reftag = cpu_to_le32(io.reftag);
1242         c.rw.apptag = cpu_to_le16(io.apptag);
1243         c.rw.appmask = cpu_to_le16(io.appmask);
1244
1245         return nvme_submit_user_cmd(ns->queue, &c,
1246                         (void __user *)(uintptr_t)io.addr, length,
1247                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1248 }
1249
1250 static u32 nvme_known_admin_effects(u8 opcode)
1251 {
1252         switch (opcode) {
1253         case nvme_admin_format_nvm:
1254                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1255                                         NVME_CMD_EFFECTS_CSE_MASK;
1256         case nvme_admin_sanitize_nvm:
1257                 return NVME_CMD_EFFECTS_CSE_MASK;
1258         default:
1259                 break;
1260         }
1261         return 0;
1262 }
1263
1264 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1265                                                                 u8 opcode)
1266 {
1267         u32 effects = 0;
1268
1269         if (ns) {
1270                 if (ctrl->effects)
1271                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1272                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1273                         dev_warn(ctrl->device,
1274                                  "IO command:%02x has unhandled effects:%08x\n",
1275                                  opcode, effects);
1276                 return 0;
1277         }
1278
1279         if (ctrl->effects)
1280                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1281         effects |= nvme_known_admin_effects(opcode);
1282
1283         /*
1284          * For simplicity, IO to all namespaces is quiesced even if the command
1285          * effects say only one namespace is affected.
1286          */
1287         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1288                 mutex_lock(&ctrl->scan_lock);
1289                 mutex_lock(&ctrl->subsys->lock);
1290                 nvme_mpath_start_freeze(ctrl->subsys);
1291                 nvme_mpath_wait_freeze(ctrl->subsys);
1292                 nvme_start_freeze(ctrl);
1293                 nvme_wait_freeze(ctrl);
1294         }
1295         return effects;
1296 }
1297
1298 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1299 {
1300         struct nvme_ns *ns;
1301
1302         down_read(&ctrl->namespaces_rwsem);
1303         list_for_each_entry(ns, &ctrl->namespaces, list)
1304                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1305                         nvme_set_queue_dying(ns);
1306         up_read(&ctrl->namespaces_rwsem);
1307
1308         nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1309 }
1310
1311 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1312 {
1313         /*
1314          * Revalidate LBA changes prior to unfreezing. This is necessary to
1315          * prevent memory corruption if a logical block size was changed by
1316          * this command.
1317          */
1318         if (effects & NVME_CMD_EFFECTS_LBCC)
1319                 nvme_update_formats(ctrl);
1320         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1321                 nvme_unfreeze(ctrl);
1322                 nvme_mpath_unfreeze(ctrl->subsys);
1323                 mutex_unlock(&ctrl->subsys->lock);
1324                 mutex_unlock(&ctrl->scan_lock);
1325         }
1326         if (effects & NVME_CMD_EFFECTS_CCC)
1327                 nvme_init_identify(ctrl);
1328         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1329                 nvme_queue_scan(ctrl);
1330 }
1331
1332 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1333                         struct nvme_passthru_cmd __user *ucmd)
1334 {
1335         struct nvme_passthru_cmd cmd;
1336         struct nvme_command c;
1337         unsigned timeout = 0;
1338         u32 effects;
1339         int status;
1340
1341         if (!capable(CAP_SYS_ADMIN))
1342                 return -EACCES;
1343         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1344                 return -EFAULT;
1345         if (cmd.flags)
1346                 return -EINVAL;
1347
1348         memset(&c, 0, sizeof(c));
1349         c.common.opcode = cmd.opcode;
1350         c.common.flags = cmd.flags;
1351         c.common.nsid = cpu_to_le32(cmd.nsid);
1352         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1353         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1354         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1355         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1356         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1357         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1358         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1359         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1360
1361         if (cmd.timeout_ms)
1362                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1363
1364         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1365         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1366                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1367                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1368                         0, &cmd.result, timeout);
1369         nvme_passthru_end(ctrl, effects);
1370
1371         if (status >= 0) {
1372                 if (put_user(cmd.result, &ucmd->result))
1373                         return -EFAULT;
1374         }
1375
1376         return status;
1377 }
1378
1379 /*
1380  * Issue ioctl requests on the first available path.  Note that unlike normal
1381  * block layer requests we will not retry failed request on another controller.
1382  */
1383 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1384                 struct nvme_ns_head **head, int *srcu_idx)
1385 {
1386 #ifdef CONFIG_NVME_MULTIPATH
1387         if (disk->fops == &nvme_ns_head_ops) {
1388                 struct nvme_ns *ns;
1389
1390                 *head = disk->private_data;
1391                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1392                 ns = nvme_find_path(*head);
1393                 if (!ns)
1394                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1395                 return ns;
1396         }
1397 #endif
1398         *head = NULL;
1399         *srcu_idx = -1;
1400         return disk->private_data;
1401 }
1402
1403 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1404 {
1405         if (head)
1406                 srcu_read_unlock(&head->srcu, idx);
1407 }
1408
1409 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1410                 unsigned int cmd, unsigned long arg)
1411 {
1412         struct nvme_ns_head *head = NULL;
1413         void __user *argp = (void __user *)arg;
1414         struct nvme_ns *ns;
1415         int srcu_idx, ret;
1416
1417         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1418         if (unlikely(!ns))
1419                 return -EWOULDBLOCK;
1420
1421         /*
1422          * Handle ioctls that apply to the controller instead of the namespace
1423          * seperately and drop the ns SRCU reference early.  This avoids a
1424          * deadlock when deleting namespaces using the passthrough interface.
1425          */
1426         if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1427                 struct nvme_ctrl *ctrl = ns->ctrl;
1428
1429                 nvme_get_ctrl(ns->ctrl);
1430                 nvme_put_ns_from_disk(head, srcu_idx);
1431
1432                 if (cmd == NVME_IOCTL_ADMIN_CMD)
1433                         ret = nvme_user_cmd(ctrl, NULL, argp);
1434                 else
1435                         ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1436
1437                 nvme_put_ctrl(ctrl);
1438                 return ret;
1439         }
1440
1441         switch (cmd) {
1442         case NVME_IOCTL_ID:
1443                 force_successful_syscall_return();
1444                 ret = ns->head->ns_id;
1445                 break;
1446         case NVME_IOCTL_IO_CMD:
1447                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1448                 break;
1449         case NVME_IOCTL_SUBMIT_IO:
1450                 ret = nvme_submit_io(ns, argp);
1451                 break;
1452         default:
1453                 if (ns->ndev)
1454                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1455                 else
1456                         ret = -ENOTTY;
1457         }
1458
1459         nvme_put_ns_from_disk(head, srcu_idx);
1460         return ret;
1461 }
1462
1463 static int nvme_open(struct block_device *bdev, fmode_t mode)
1464 {
1465         struct nvme_ns *ns = bdev->bd_disk->private_data;
1466
1467 #ifdef CONFIG_NVME_MULTIPATH
1468         /* should never be called due to GENHD_FL_HIDDEN */
1469         if (WARN_ON_ONCE(ns->head->disk))
1470                 goto fail;
1471 #endif
1472         if (!kref_get_unless_zero(&ns->kref))
1473                 goto fail;
1474         if (!try_module_get(ns->ctrl->ops->module))
1475                 goto fail_put_ns;
1476
1477         return 0;
1478
1479 fail_put_ns:
1480         nvme_put_ns(ns);
1481 fail:
1482         return -ENXIO;
1483 }
1484
1485 static void nvme_release(struct gendisk *disk, fmode_t mode)
1486 {
1487         struct nvme_ns *ns = disk->private_data;
1488
1489         module_put(ns->ctrl->ops->module);
1490         nvme_put_ns(ns);
1491 }
1492
1493 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1494 {
1495         /* some standard values */
1496         geo->heads = 1 << 6;
1497         geo->sectors = 1 << 5;
1498         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1499         return 0;
1500 }
1501
1502 #ifdef CONFIG_BLK_DEV_INTEGRITY
1503 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1504 {
1505         struct blk_integrity integrity;
1506
1507         memset(&integrity, 0, sizeof(integrity));
1508         switch (pi_type) {
1509         case NVME_NS_DPS_PI_TYPE3:
1510                 integrity.profile = &t10_pi_type3_crc;
1511                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1512                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1513                 break;
1514         case NVME_NS_DPS_PI_TYPE1:
1515         case NVME_NS_DPS_PI_TYPE2:
1516                 integrity.profile = &t10_pi_type1_crc;
1517                 integrity.tag_size = sizeof(u16);
1518                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1519                 break;
1520         default:
1521                 integrity.profile = NULL;
1522                 break;
1523         }
1524         integrity.tuple_size = ms;
1525         blk_integrity_register(disk, &integrity);
1526         blk_queue_max_integrity_segments(disk->queue, 1);
1527 }
1528 #else
1529 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1530 {
1531 }
1532 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1533
1534 static void nvme_set_chunk_size(struct nvme_ns *ns)
1535 {
1536         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1537         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1538 }
1539
1540 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1541 {
1542         struct nvme_ctrl *ctrl = ns->ctrl;
1543         struct request_queue *queue = disk->queue;
1544         u32 size = queue_logical_block_size(queue);
1545
1546         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1547                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1548                 return;
1549         }
1550
1551         if (ctrl->nr_streams && ns->sws && ns->sgs)
1552                 size *= ns->sws * ns->sgs;
1553
1554         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1555                         NVME_DSM_MAX_RANGES);
1556
1557         queue->limits.discard_alignment = 0;
1558         queue->limits.discard_granularity = size;
1559
1560         /* If discard is already enabled, don't reset queue limits */
1561         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1562                 return;
1563
1564         blk_queue_max_discard_sectors(queue, UINT_MAX);
1565         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1566
1567         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1568                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1569 }
1570
1571 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1572 {
1573         u32 max_sectors;
1574         unsigned short bs = 1 << ns->lba_shift;
1575
1576         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1577             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1578                 return;
1579         /*
1580          * Even though NVMe spec explicitly states that MDTS is not
1581          * applicable to the write-zeroes:- "The restriction does not apply to
1582          * commands that do not transfer data between the host and the
1583          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1584          * In order to be more cautious use controller's max_hw_sectors value
1585          * to configure the maximum sectors for the write-zeroes which is
1586          * configured based on the controller's MDTS field in the
1587          * nvme_init_identify() if available.
1588          */
1589         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1590                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1591         else
1592                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1593
1594         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1595 }
1596
1597 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1598                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1599 {
1600         memset(ids, 0, sizeof(*ids));
1601
1602         if (ctrl->vs >= NVME_VS(1, 1, 0))
1603                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1604         if (ctrl->vs >= NVME_VS(1, 2, 0))
1605                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1606         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1607                  /* Don't treat error as fatal we potentially
1608                   * already have a NGUID or EUI-64
1609                   */
1610                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1611                         dev_warn(ctrl->device,
1612                                  "%s: Identify Descriptors failed\n", __func__);
1613         }
1614 }
1615
1616 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1617 {
1618         return !uuid_is_null(&ids->uuid) ||
1619                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1620                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1621 }
1622
1623 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1624 {
1625         return uuid_equal(&a->uuid, &b->uuid) &&
1626                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1627                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1628 }
1629
1630 static void nvme_update_disk_info(struct gendisk *disk,
1631                 struct nvme_ns *ns, struct nvme_id_ns *id)
1632 {
1633         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1634         unsigned short bs = 1 << ns->lba_shift;
1635         u32 atomic_bs, phys_bs, io_opt;
1636
1637         if (ns->lba_shift > PAGE_SHIFT) {
1638                 /* unsupported block size, set capacity to 0 later */
1639                 bs = (1 << 9);
1640         }
1641         blk_mq_freeze_queue(disk->queue);
1642         blk_integrity_unregister(disk);
1643
1644         if (id->nabo == 0) {
1645                 /*
1646                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1647                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1648                  * 0 then AWUPF must be used instead.
1649                  */
1650                 if (id->nsfeat & (1 << 1) && id->nawupf)
1651                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1652                 else
1653                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1654         } else {
1655                 atomic_bs = bs;
1656         }
1657         phys_bs = bs;
1658         io_opt = bs;
1659         if (id->nsfeat & (1 << 4)) {
1660                 /* NPWG = Namespace Preferred Write Granularity */
1661                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1662                 /* NOWS = Namespace Optimal Write Size */
1663                 io_opt *= 1 + le16_to_cpu(id->nows);
1664         }
1665
1666         blk_queue_logical_block_size(disk->queue, bs);
1667         /*
1668          * Linux filesystems assume writing a single physical block is
1669          * an atomic operation. Hence limit the physical block size to the
1670          * value of the Atomic Write Unit Power Fail parameter.
1671          */
1672         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1673         blk_queue_io_min(disk->queue, phys_bs);
1674         blk_queue_io_opt(disk->queue, io_opt);
1675
1676         if (ns->ms && !ns->ext &&
1677             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1678                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1679         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1680             ns->lba_shift > PAGE_SHIFT)
1681                 capacity = 0;
1682
1683         set_capacity(disk, capacity);
1684
1685         nvme_config_discard(disk, ns);
1686         nvme_config_write_zeroes(disk, ns);
1687
1688         if (id->nsattr & (1 << 0))
1689                 set_disk_ro(disk, true);
1690         else
1691                 set_disk_ro(disk, false);
1692
1693         blk_mq_unfreeze_queue(disk->queue);
1694 }
1695
1696 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1697 {
1698         struct nvme_ns *ns = disk->private_data;
1699
1700         /*
1701          * If identify namespace failed, use default 512 byte block size so
1702          * block layer can use before failing read/write for 0 capacity.
1703          */
1704         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1705         if (ns->lba_shift == 0)
1706                 ns->lba_shift = 9;
1707         ns->noiob = le16_to_cpu(id->noiob);
1708         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1709         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1710         /* the PI implementation requires metadata equal t10 pi tuple size */
1711         if (ns->ms == sizeof(struct t10_pi_tuple))
1712                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1713         else
1714                 ns->pi_type = 0;
1715
1716         if (ns->noiob)
1717                 nvme_set_chunk_size(ns);
1718         nvme_update_disk_info(disk, ns, id);
1719 #ifdef CONFIG_NVME_MULTIPATH
1720         if (ns->head->disk) {
1721                 nvme_update_disk_info(ns->head->disk, ns, id);
1722                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1723                 revalidate_disk(ns->head->disk);
1724         }
1725 #endif
1726 }
1727
1728 static int nvme_revalidate_disk(struct gendisk *disk)
1729 {
1730         struct nvme_ns *ns = disk->private_data;
1731         struct nvme_ctrl *ctrl = ns->ctrl;
1732         struct nvme_id_ns *id;
1733         struct nvme_ns_ids ids;
1734         int ret = 0;
1735
1736         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1737                 set_capacity(disk, 0);
1738                 return -ENODEV;
1739         }
1740
1741         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1742         if (!id)
1743                 return -ENODEV;
1744
1745         if (id->ncap == 0) {
1746                 ret = -ENODEV;
1747                 goto out;
1748         }
1749
1750         __nvme_revalidate_disk(disk, id);
1751         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1752         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1753                 dev_err(ctrl->device,
1754                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1755                 ret = -ENODEV;
1756         }
1757
1758 out:
1759         kfree(id);
1760         return ret;
1761 }
1762
1763 static char nvme_pr_type(enum pr_type type)
1764 {
1765         switch (type) {
1766         case PR_WRITE_EXCLUSIVE:
1767                 return 1;
1768         case PR_EXCLUSIVE_ACCESS:
1769                 return 2;
1770         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1771                 return 3;
1772         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1773                 return 4;
1774         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1775                 return 5;
1776         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1777                 return 6;
1778         default:
1779                 return 0;
1780         }
1781 };
1782
1783 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1784                                 u64 key, u64 sa_key, u8 op)
1785 {
1786         struct nvme_ns_head *head = NULL;
1787         struct nvme_ns *ns;
1788         struct nvme_command c;
1789         int srcu_idx, ret;
1790         u8 data[16] = { 0, };
1791
1792         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1793         if (unlikely(!ns))
1794                 return -EWOULDBLOCK;
1795
1796         put_unaligned_le64(key, &data[0]);
1797         put_unaligned_le64(sa_key, &data[8]);
1798
1799         memset(&c, 0, sizeof(c));
1800         c.common.opcode = op;
1801         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1802         c.common.cdw10 = cpu_to_le32(cdw10);
1803
1804         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1805         nvme_put_ns_from_disk(head, srcu_idx);
1806         return ret;
1807 }
1808
1809 static int nvme_pr_register(struct block_device *bdev, u64 old,
1810                 u64 new, unsigned flags)
1811 {
1812         u32 cdw10;
1813
1814         if (flags & ~PR_FL_IGNORE_KEY)
1815                 return -EOPNOTSUPP;
1816
1817         cdw10 = old ? 2 : 0;
1818         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1819         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1820         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1821 }
1822
1823 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1824                 enum pr_type type, unsigned flags)
1825 {
1826         u32 cdw10;
1827
1828         if (flags & ~PR_FL_IGNORE_KEY)
1829                 return -EOPNOTSUPP;
1830
1831         cdw10 = nvme_pr_type(type) << 8;
1832         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1833         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1834 }
1835
1836 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1837                 enum pr_type type, bool abort)
1838 {
1839         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1840         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1841 }
1842
1843 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1844 {
1845         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1846         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1847 }
1848
1849 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1850 {
1851         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1852         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1853 }
1854
1855 static const struct pr_ops nvme_pr_ops = {
1856         .pr_register    = nvme_pr_register,
1857         .pr_reserve     = nvme_pr_reserve,
1858         .pr_release     = nvme_pr_release,
1859         .pr_preempt     = nvme_pr_preempt,
1860         .pr_clear       = nvme_pr_clear,
1861 };
1862
1863 #ifdef CONFIG_BLK_SED_OPAL
1864 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1865                 bool send)
1866 {
1867         struct nvme_ctrl *ctrl = data;
1868         struct nvme_command cmd;
1869
1870         memset(&cmd, 0, sizeof(cmd));
1871         if (send)
1872                 cmd.common.opcode = nvme_admin_security_send;
1873         else
1874                 cmd.common.opcode = nvme_admin_security_recv;
1875         cmd.common.nsid = 0;
1876         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1877         cmd.common.cdw11 = cpu_to_le32(len);
1878
1879         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1880                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1881 }
1882 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1883 #endif /* CONFIG_BLK_SED_OPAL */
1884
1885 static const struct block_device_operations nvme_fops = {
1886         .owner          = THIS_MODULE,
1887         .ioctl          = nvme_ioctl,
1888         .compat_ioctl   = nvme_ioctl,
1889         .open           = nvme_open,
1890         .release        = nvme_release,
1891         .getgeo         = nvme_getgeo,
1892         .revalidate_disk= nvme_revalidate_disk,
1893         .pr_ops         = &nvme_pr_ops,
1894 };
1895
1896 #ifdef CONFIG_NVME_MULTIPATH
1897 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1898 {
1899         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1900
1901         if (!kref_get_unless_zero(&head->ref))
1902                 return -ENXIO;
1903         return 0;
1904 }
1905
1906 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1907 {
1908         nvme_put_ns_head(disk->private_data);
1909 }
1910
1911 const struct block_device_operations nvme_ns_head_ops = {
1912         .owner          = THIS_MODULE,
1913         .open           = nvme_ns_head_open,
1914         .release        = nvme_ns_head_release,
1915         .ioctl          = nvme_ioctl,
1916         .compat_ioctl   = nvme_ioctl,
1917         .getgeo         = nvme_getgeo,
1918         .pr_ops         = &nvme_pr_ops,
1919 };
1920 #endif /* CONFIG_NVME_MULTIPATH */
1921
1922 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1923 {
1924         unsigned long timeout =
1925                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1926         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1927         int ret;
1928
1929         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1930                 if (csts == ~0)
1931                         return -ENODEV;
1932                 if ((csts & NVME_CSTS_RDY) == bit)
1933                         break;
1934
1935                 msleep(100);
1936                 if (fatal_signal_pending(current))
1937                         return -EINTR;
1938                 if (time_after(jiffies, timeout)) {
1939                         dev_err(ctrl->device,
1940                                 "Device not ready; aborting %s\n", enabled ?
1941                                                 "initialisation" : "reset");
1942                         return -ENODEV;
1943                 }
1944         }
1945
1946         return ret;
1947 }
1948
1949 /*
1950  * If the device has been passed off to us in an enabled state, just clear
1951  * the enabled bit.  The spec says we should set the 'shutdown notification
1952  * bits', but doing so may cause the device to complete commands to the
1953  * admin queue ... and we don't know what memory that might be pointing at!
1954  */
1955 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1956 {
1957         int ret;
1958
1959         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1960         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1961
1962         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1963         if (ret)
1964                 return ret;
1965
1966         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1967                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1968
1969         return nvme_wait_ready(ctrl, cap, false);
1970 }
1971 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1972
1973 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1974 {
1975         /*
1976          * Default to a 4K page size, with the intention to update this
1977          * path in the future to accomodate architectures with differing
1978          * kernel and IO page sizes.
1979          */
1980         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1981         int ret;
1982
1983         if (page_shift < dev_page_min) {
1984                 dev_err(ctrl->device,
1985                         "Minimum device page size %u too large for host (%u)\n",
1986                         1 << dev_page_min, 1 << page_shift);
1987                 return -ENODEV;
1988         }
1989
1990         ctrl->page_size = 1 << page_shift;
1991
1992         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1993         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1994         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1995         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1996         ctrl->ctrl_config |= NVME_CC_ENABLE;
1997
1998         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1999         if (ret)
2000                 return ret;
2001         return nvme_wait_ready(ctrl, cap, true);
2002 }
2003 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2004
2005 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2006 {
2007         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2008         u32 csts;
2009         int ret;
2010
2011         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2012         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2013
2014         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2015         if (ret)
2016                 return ret;
2017
2018         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2019                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2020                         break;
2021
2022                 msleep(100);
2023                 if (fatal_signal_pending(current))
2024                         return -EINTR;
2025                 if (time_after(jiffies, timeout)) {
2026                         dev_err(ctrl->device,
2027                                 "Device shutdown incomplete; abort shutdown\n");
2028                         return -ENODEV;
2029                 }
2030         }
2031
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2035
2036 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2037                 struct request_queue *q)
2038 {
2039         bool vwc = false;
2040
2041         if (ctrl->max_hw_sectors) {
2042                 u32 max_segments =
2043                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2044
2045                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2046                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2047                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2048         }
2049         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2050             is_power_of_2(ctrl->max_hw_sectors))
2051                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2052         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2053         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2054                 vwc = true;
2055         blk_queue_write_cache(q, vwc, vwc);
2056 }
2057
2058 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2059 {
2060         __le64 ts;
2061         int ret;
2062
2063         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2064                 return 0;
2065
2066         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2067         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2068                         NULL);
2069         if (ret)
2070                 dev_warn_once(ctrl->device,
2071                         "could not set timestamp (%d)\n", ret);
2072         return ret;
2073 }
2074
2075 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2076 {
2077         struct nvme_feat_host_behavior *host;
2078         int ret;
2079
2080         /* Don't bother enabling the feature if retry delay is not reported */
2081         if (!ctrl->crdt[0])
2082                 return 0;
2083
2084         host = kzalloc(sizeof(*host), GFP_KERNEL);
2085         if (!host)
2086                 return 0;
2087
2088         host->acre = NVME_ENABLE_ACRE;
2089         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2090                                 host, sizeof(*host), NULL);
2091         kfree(host);
2092         return ret;
2093 }
2094
2095 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2096 {
2097         /*
2098          * APST (Autonomous Power State Transition) lets us program a
2099          * table of power state transitions that the controller will
2100          * perform automatically.  We configure it with a simple
2101          * heuristic: we are willing to spend at most 2% of the time
2102          * transitioning between power states.  Therefore, when running
2103          * in any given state, we will enter the next lower-power
2104          * non-operational state after waiting 50 * (enlat + exlat)
2105          * microseconds, as long as that state's exit latency is under
2106          * the requested maximum latency.
2107          *
2108          * We will not autonomously enter any non-operational state for
2109          * which the total latency exceeds ps_max_latency_us.  Users
2110          * can set ps_max_latency_us to zero to turn off APST.
2111          */
2112
2113         unsigned apste;
2114         struct nvme_feat_auto_pst *table;
2115         u64 max_lat_us = 0;
2116         int max_ps = -1;
2117         int ret;
2118
2119         /*
2120          * If APST isn't supported or if we haven't been initialized yet,
2121          * then don't do anything.
2122          */
2123         if (!ctrl->apsta)
2124                 return 0;
2125
2126         if (ctrl->npss > 31) {
2127                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2128                 return 0;
2129         }
2130
2131         table = kzalloc(sizeof(*table), GFP_KERNEL);
2132         if (!table)
2133                 return 0;
2134
2135         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2136                 /* Turn off APST. */
2137                 apste = 0;
2138                 dev_dbg(ctrl->device, "APST disabled\n");
2139         } else {
2140                 __le64 target = cpu_to_le64(0);
2141                 int state;
2142
2143                 /*
2144                  * Walk through all states from lowest- to highest-power.
2145                  * According to the spec, lower-numbered states use more
2146                  * power.  NPSS, despite the name, is the index of the
2147                  * lowest-power state, not the number of states.
2148                  */
2149                 for (state = (int)ctrl->npss; state >= 0; state--) {
2150                         u64 total_latency_us, exit_latency_us, transition_ms;
2151
2152                         if (target)
2153                                 table->entries[state] = target;
2154
2155                         /*
2156                          * Don't allow transitions to the deepest state
2157                          * if it's quirked off.
2158                          */
2159                         if (state == ctrl->npss &&
2160                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2161                                 continue;
2162
2163                         /*
2164                          * Is this state a useful non-operational state for
2165                          * higher-power states to autonomously transition to?
2166                          */
2167                         if (!(ctrl->psd[state].flags &
2168                               NVME_PS_FLAGS_NON_OP_STATE))
2169                                 continue;
2170
2171                         exit_latency_us =
2172                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2173                         if (exit_latency_us > ctrl->ps_max_latency_us)
2174                                 continue;
2175
2176                         total_latency_us =
2177                                 exit_latency_us +
2178                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2179
2180                         /*
2181                          * This state is good.  Use it as the APST idle
2182                          * target for higher power states.
2183                          */
2184                         transition_ms = total_latency_us + 19;
2185                         do_div(transition_ms, 20);
2186                         if (transition_ms > (1 << 24) - 1)
2187                                 transition_ms = (1 << 24) - 1;
2188
2189                         target = cpu_to_le64((state << 3) |
2190                                              (transition_ms << 8));
2191
2192                         if (max_ps == -1)
2193                                 max_ps = state;
2194
2195                         if (total_latency_us > max_lat_us)
2196                                 max_lat_us = total_latency_us;
2197                 }
2198
2199                 apste = 1;
2200
2201                 if (max_ps == -1) {
2202                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2203                 } else {
2204                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2205                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2206                 }
2207         }
2208
2209         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2210                                 table, sizeof(*table), NULL);
2211         if (ret)
2212                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2213
2214         kfree(table);
2215         return ret;
2216 }
2217
2218 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2219 {
2220         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2221         u64 latency;
2222
2223         switch (val) {
2224         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2225         case PM_QOS_LATENCY_ANY:
2226                 latency = U64_MAX;
2227                 break;
2228
2229         default:
2230                 latency = val;
2231         }
2232
2233         if (ctrl->ps_max_latency_us != latency) {
2234                 ctrl->ps_max_latency_us = latency;
2235                 nvme_configure_apst(ctrl);
2236         }
2237 }
2238
2239 struct nvme_core_quirk_entry {
2240         /*
2241          * NVMe model and firmware strings are padded with spaces.  For
2242          * simplicity, strings in the quirk table are padded with NULLs
2243          * instead.
2244          */
2245         u16 vid;
2246         const char *mn;
2247         const char *fr;
2248         unsigned long quirks;
2249 };
2250
2251 static const struct nvme_core_quirk_entry core_quirks[] = {
2252         {
2253                 /*
2254                  * This Toshiba device seems to die using any APST states.  See:
2255                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2256                  */
2257                 .vid = 0x1179,
2258                 .mn = "THNSF5256GPUK TOSHIBA",
2259                 .quirks = NVME_QUIRK_NO_APST,
2260         }
2261 };
2262
2263 /* match is null-terminated but idstr is space-padded. */
2264 static bool string_matches(const char *idstr, const char *match, size_t len)
2265 {
2266         size_t matchlen;
2267
2268         if (!match)
2269                 return true;
2270
2271         matchlen = strlen(match);
2272         WARN_ON_ONCE(matchlen > len);
2273
2274         if (memcmp(idstr, match, matchlen))
2275                 return false;
2276
2277         for (; matchlen < len; matchlen++)
2278                 if (idstr[matchlen] != ' ')
2279                         return false;
2280
2281         return true;
2282 }
2283
2284 static bool quirk_matches(const struct nvme_id_ctrl *id,
2285                           const struct nvme_core_quirk_entry *q)
2286 {
2287         return q->vid == le16_to_cpu(id->vid) &&
2288                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2289                 string_matches(id->fr, q->fr, sizeof(id->fr));
2290 }
2291
2292 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2293                 struct nvme_id_ctrl *id)
2294 {
2295         size_t nqnlen;
2296         int off;
2297
2298         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2299                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2300                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2301                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2302                         return;
2303                 }
2304
2305                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2306                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2307         }
2308
2309         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2310         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2311                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2312                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2313         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2314         off += sizeof(id->sn);
2315         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2316         off += sizeof(id->mn);
2317         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2318 }
2319
2320 static void nvme_release_subsystem(struct device *dev)
2321 {
2322         struct nvme_subsystem *subsys =
2323                 container_of(dev, struct nvme_subsystem, dev);
2324
2325         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2326         kfree(subsys);
2327 }
2328
2329 static void nvme_destroy_subsystem(struct kref *ref)
2330 {
2331         struct nvme_subsystem *subsys =
2332                         container_of(ref, struct nvme_subsystem, ref);
2333
2334         mutex_lock(&nvme_subsystems_lock);
2335         list_del(&subsys->entry);
2336         mutex_unlock(&nvme_subsystems_lock);
2337
2338         ida_destroy(&subsys->ns_ida);
2339         device_del(&subsys->dev);
2340         put_device(&subsys->dev);
2341 }
2342
2343 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2344 {
2345         kref_put(&subsys->ref, nvme_destroy_subsystem);
2346 }
2347
2348 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2349 {
2350         struct nvme_subsystem *subsys;
2351
2352         lockdep_assert_held(&nvme_subsystems_lock);
2353
2354         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2355                 if (strcmp(subsys->subnqn, subsysnqn))
2356                         continue;
2357                 if (!kref_get_unless_zero(&subsys->ref))
2358                         continue;
2359                 return subsys;
2360         }
2361
2362         return NULL;
2363 }
2364
2365 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2366         struct device_attribute subsys_attr_##_name = \
2367                 __ATTR(_name, _mode, _show, NULL)
2368
2369 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2370                                     struct device_attribute *attr,
2371                                     char *buf)
2372 {
2373         struct nvme_subsystem *subsys =
2374                 container_of(dev, struct nvme_subsystem, dev);
2375
2376         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2377 }
2378 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2379
2380 #define nvme_subsys_show_str_function(field)                            \
2381 static ssize_t subsys_##field##_show(struct device *dev,                \
2382                             struct device_attribute *attr, char *buf)   \
2383 {                                                                       \
2384         struct nvme_subsystem *subsys =                                 \
2385                 container_of(dev, struct nvme_subsystem, dev);          \
2386         return sprintf(buf, "%.*s\n",                                   \
2387                        (int)sizeof(subsys->field), subsys->field);      \
2388 }                                                                       \
2389 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2390
2391 nvme_subsys_show_str_function(model);
2392 nvme_subsys_show_str_function(serial);
2393 nvme_subsys_show_str_function(firmware_rev);
2394
2395 static struct attribute *nvme_subsys_attrs[] = {
2396         &subsys_attr_model.attr,
2397         &subsys_attr_serial.attr,
2398         &subsys_attr_firmware_rev.attr,
2399         &subsys_attr_subsysnqn.attr,
2400 #ifdef CONFIG_NVME_MULTIPATH
2401         &subsys_attr_iopolicy.attr,
2402 #endif
2403         NULL,
2404 };
2405
2406 static struct attribute_group nvme_subsys_attrs_group = {
2407         .attrs = nvme_subsys_attrs,
2408 };
2409
2410 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2411         &nvme_subsys_attrs_group,
2412         NULL,
2413 };
2414
2415 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2416                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2417 {
2418         struct nvme_ctrl *tmp;
2419
2420         lockdep_assert_held(&nvme_subsystems_lock);
2421
2422         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2423                 if (tmp->state == NVME_CTRL_DELETING ||
2424                     tmp->state == NVME_CTRL_DEAD)
2425                         continue;
2426
2427                 if (tmp->cntlid == ctrl->cntlid) {
2428                         dev_err(ctrl->device,
2429                                 "Duplicate cntlid %u with %s, rejecting\n",
2430                                 ctrl->cntlid, dev_name(tmp->device));
2431                         return false;
2432                 }
2433
2434                 if ((id->cmic & (1 << 1)) ||
2435                     (ctrl->opts && ctrl->opts->discovery_nqn))
2436                         continue;
2437
2438                 dev_err(ctrl->device,
2439                         "Subsystem does not support multiple controllers\n");
2440                 return false;
2441         }
2442
2443         return true;
2444 }
2445
2446 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2447 {
2448         struct nvme_subsystem *subsys, *found;
2449         int ret;
2450
2451         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2452         if (!subsys)
2453                 return -ENOMEM;
2454         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2455         if (ret < 0) {
2456                 kfree(subsys);
2457                 return ret;
2458         }
2459         subsys->instance = ret;
2460         mutex_init(&subsys->lock);
2461         kref_init(&subsys->ref);
2462         INIT_LIST_HEAD(&subsys->ctrls);
2463         INIT_LIST_HEAD(&subsys->nsheads);
2464         nvme_init_subnqn(subsys, ctrl, id);
2465         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2466         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2467         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2468         subsys->vendor_id = le16_to_cpu(id->vid);
2469         subsys->cmic = id->cmic;
2470         subsys->awupf = le16_to_cpu(id->awupf);
2471 #ifdef CONFIG_NVME_MULTIPATH
2472         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2473 #endif
2474
2475         subsys->dev.class = nvme_subsys_class;
2476         subsys->dev.release = nvme_release_subsystem;
2477         subsys->dev.groups = nvme_subsys_attrs_groups;
2478         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2479         device_initialize(&subsys->dev);
2480
2481         mutex_lock(&nvme_subsystems_lock);
2482         found = __nvme_find_get_subsystem(subsys->subnqn);
2483         if (found) {
2484                 put_device(&subsys->dev);
2485                 subsys = found;
2486
2487                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2488                         ret = -EINVAL;
2489                         goto out_put_subsystem;
2490                 }
2491         } else {
2492                 ret = device_add(&subsys->dev);
2493                 if (ret) {
2494                         dev_err(ctrl->device,
2495                                 "failed to register subsystem device.\n");
2496                         put_device(&subsys->dev);
2497                         goto out_unlock;
2498                 }
2499                 ida_init(&subsys->ns_ida);
2500                 list_add_tail(&subsys->entry, &nvme_subsystems);
2501         }
2502
2503         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2504                         dev_name(ctrl->device))) {
2505                 dev_err(ctrl->device,
2506                         "failed to create sysfs link from subsystem.\n");
2507                 goto out_put_subsystem;
2508         }
2509
2510         ctrl->subsys = subsys;
2511         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2512         mutex_unlock(&nvme_subsystems_lock);
2513         return 0;
2514
2515 out_put_subsystem:
2516         nvme_put_subsystem(subsys);
2517 out_unlock:
2518         mutex_unlock(&nvme_subsystems_lock);
2519         return ret;
2520 }
2521
2522 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2523                 void *log, size_t size, u64 offset)
2524 {
2525         struct nvme_command c = { };
2526         unsigned long dwlen = size / 4 - 1;
2527
2528         c.get_log_page.opcode = nvme_admin_get_log_page;
2529         c.get_log_page.nsid = cpu_to_le32(nsid);
2530         c.get_log_page.lid = log_page;
2531         c.get_log_page.lsp = lsp;
2532         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2533         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2534         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2535         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2536
2537         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2538 }
2539
2540 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2541 {
2542         int ret;
2543
2544         if (!ctrl->effects)
2545                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2546
2547         if (!ctrl->effects)
2548                 return 0;
2549
2550         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2551                         ctrl->effects, sizeof(*ctrl->effects), 0);
2552         if (ret) {
2553                 kfree(ctrl->effects);
2554                 ctrl->effects = NULL;
2555         }
2556         return ret;
2557 }
2558
2559 /*
2560  * Initialize the cached copies of the Identify data and various controller
2561  * register in our nvme_ctrl structure.  This should be called as soon as
2562  * the admin queue is fully up and running.
2563  */
2564 int nvme_init_identify(struct nvme_ctrl *ctrl)
2565 {
2566         struct nvme_id_ctrl *id;
2567         u64 cap;
2568         int ret, page_shift;
2569         u32 max_hw_sectors;
2570         bool prev_apst_enabled;
2571
2572         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2573         if (ret) {
2574                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2575                 return ret;
2576         }
2577
2578         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2579         if (ret) {
2580                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2581                 return ret;
2582         }
2583         page_shift = NVME_CAP_MPSMIN(cap) + 12;
2584
2585         if (ctrl->vs >= NVME_VS(1, 1, 0))
2586                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2587
2588         ret = nvme_identify_ctrl(ctrl, &id);
2589         if (ret) {
2590                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2591                 return -EIO;
2592         }
2593
2594         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2595                 ret = nvme_get_effects_log(ctrl);
2596                 if (ret < 0)
2597                         goto out_free;
2598         }
2599
2600         if (!ctrl->identified) {
2601                 int i;
2602
2603                 ret = nvme_init_subsystem(ctrl, id);
2604                 if (ret)
2605                         goto out_free;
2606
2607                 /*
2608                  * Check for quirks.  Quirk can depend on firmware version,
2609                  * so, in principle, the set of quirks present can change
2610                  * across a reset.  As a possible future enhancement, we
2611                  * could re-scan for quirks every time we reinitialize
2612                  * the device, but we'd have to make sure that the driver
2613                  * behaves intelligently if the quirks change.
2614                  */
2615                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2616                         if (quirk_matches(id, &core_quirks[i]))
2617                                 ctrl->quirks |= core_quirks[i].quirks;
2618                 }
2619         }
2620
2621         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2622                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2623                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2624         }
2625
2626         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2627         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2628         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2629
2630         ctrl->oacs = le16_to_cpu(id->oacs);
2631         ctrl->oncs = le16_to_cpu(id->oncs);
2632         ctrl->mtfa = le16_to_cpu(id->mtfa);
2633         ctrl->oaes = le32_to_cpu(id->oaes);
2634         atomic_set(&ctrl->abort_limit, id->acl + 1);
2635         ctrl->vwc = id->vwc;
2636         if (id->mdts)
2637                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2638         else
2639                 max_hw_sectors = UINT_MAX;
2640         ctrl->max_hw_sectors =
2641                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2642
2643         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2644         ctrl->sgls = le32_to_cpu(id->sgls);
2645         ctrl->kas = le16_to_cpu(id->kas);
2646         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2647         ctrl->ctratt = le32_to_cpu(id->ctratt);
2648
2649         if (id->rtd3e) {
2650                 /* us -> s */
2651                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2652
2653                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2654                                                  shutdown_timeout, 60);
2655
2656                 if (ctrl->shutdown_timeout != shutdown_timeout)
2657                         dev_info(ctrl->device,
2658                                  "Shutdown timeout set to %u seconds\n",
2659                                  ctrl->shutdown_timeout);
2660         } else
2661                 ctrl->shutdown_timeout = shutdown_timeout;
2662
2663         ctrl->npss = id->npss;
2664         ctrl->apsta = id->apsta;
2665         prev_apst_enabled = ctrl->apst_enabled;
2666         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2667                 if (force_apst && id->apsta) {
2668                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2669                         ctrl->apst_enabled = true;
2670                 } else {
2671                         ctrl->apst_enabled = false;
2672                 }
2673         } else {
2674                 ctrl->apst_enabled = id->apsta;
2675         }
2676         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2677
2678         if (ctrl->ops->flags & NVME_F_FABRICS) {
2679                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2680                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2681                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2682                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2683
2684                 /*
2685                  * In fabrics we need to verify the cntlid matches the
2686                  * admin connect
2687                  */
2688                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2689                         ret = -EINVAL;
2690                         goto out_free;
2691                 }
2692
2693                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2694                         dev_err(ctrl->device,
2695                                 "keep-alive support is mandatory for fabrics\n");
2696                         ret = -EINVAL;
2697                         goto out_free;
2698                 }
2699         } else {
2700                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2701                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2702                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2703                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2704                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2705         }
2706
2707         ret = nvme_mpath_init(ctrl, id);
2708         kfree(id);
2709
2710         if (ret < 0)
2711                 return ret;
2712
2713         if (ctrl->apst_enabled && !prev_apst_enabled)
2714                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2715         else if (!ctrl->apst_enabled && prev_apst_enabled)
2716                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2717
2718         ret = nvme_configure_apst(ctrl);
2719         if (ret < 0)
2720                 return ret;
2721         
2722         ret = nvme_configure_timestamp(ctrl);
2723         if (ret < 0)
2724                 return ret;
2725
2726         ret = nvme_configure_directives(ctrl);
2727         if (ret < 0)
2728                 return ret;
2729
2730         ret = nvme_configure_acre(ctrl);
2731         if (ret < 0)
2732                 return ret;
2733
2734         ctrl->identified = true;
2735
2736         return 0;
2737
2738 out_free:
2739         kfree(id);
2740         return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(nvme_init_identify);
2743
2744 static int nvme_dev_open(struct inode *inode, struct file *file)
2745 {
2746         struct nvme_ctrl *ctrl =
2747                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2748
2749         switch (ctrl->state) {
2750         case NVME_CTRL_LIVE:
2751         case NVME_CTRL_ADMIN_ONLY:
2752                 break;
2753         default:
2754                 return -EWOULDBLOCK;
2755         }
2756
2757         file->private_data = ctrl;
2758         return 0;
2759 }
2760
2761 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2762 {
2763         struct nvme_ns *ns;
2764         int ret;
2765
2766         down_read(&ctrl->namespaces_rwsem);
2767         if (list_empty(&ctrl->namespaces)) {
2768                 ret = -ENOTTY;
2769                 goto out_unlock;
2770         }
2771
2772         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2773         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2774                 dev_warn(ctrl->device,
2775                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2776                 ret = -EINVAL;
2777                 goto out_unlock;
2778         }
2779
2780         dev_warn(ctrl->device,
2781                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2782         kref_get(&ns->kref);
2783         up_read(&ctrl->namespaces_rwsem);
2784
2785         ret = nvme_user_cmd(ctrl, ns, argp);
2786         nvme_put_ns(ns);
2787         return ret;
2788
2789 out_unlock:
2790         up_read(&ctrl->namespaces_rwsem);
2791         return ret;
2792 }
2793
2794 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2795                 unsigned long arg)
2796 {
2797         struct nvme_ctrl *ctrl = file->private_data;
2798         void __user *argp = (void __user *)arg;
2799
2800         switch (cmd) {
2801         case NVME_IOCTL_ADMIN_CMD:
2802                 return nvme_user_cmd(ctrl, NULL, argp);
2803         case NVME_IOCTL_IO_CMD:
2804                 return nvme_dev_user_cmd(ctrl, argp);
2805         case NVME_IOCTL_RESET:
2806                 dev_warn(ctrl->device, "resetting controller\n");
2807                 return nvme_reset_ctrl_sync(ctrl);
2808         case NVME_IOCTL_SUBSYS_RESET:
2809                 return nvme_reset_subsystem(ctrl);
2810         case NVME_IOCTL_RESCAN:
2811                 nvme_queue_scan(ctrl);
2812                 return 0;
2813         default:
2814                 return -ENOTTY;
2815         }
2816 }
2817
2818 static const struct file_operations nvme_dev_fops = {
2819         .owner          = THIS_MODULE,
2820         .open           = nvme_dev_open,
2821         .unlocked_ioctl = nvme_dev_ioctl,
2822         .compat_ioctl   = nvme_dev_ioctl,
2823 };
2824
2825 static ssize_t nvme_sysfs_reset(struct device *dev,
2826                                 struct device_attribute *attr, const char *buf,
2827                                 size_t count)
2828 {
2829         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2830         int ret;
2831
2832         ret = nvme_reset_ctrl_sync(ctrl);
2833         if (ret < 0)
2834                 return ret;
2835         return count;
2836 }
2837 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2838
2839 static ssize_t nvme_sysfs_rescan(struct device *dev,
2840                                 struct device_attribute *attr, const char *buf,
2841                                 size_t count)
2842 {
2843         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2844
2845         nvme_queue_scan(ctrl);
2846         return count;
2847 }
2848 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2849
2850 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2851 {
2852         struct gendisk *disk = dev_to_disk(dev);
2853
2854         if (disk->fops == &nvme_fops)
2855                 return nvme_get_ns_from_dev(dev)->head;
2856         else
2857                 return disk->private_data;
2858 }
2859
2860 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2861                 char *buf)
2862 {
2863         struct nvme_ns_head *head = dev_to_ns_head(dev);
2864         struct nvme_ns_ids *ids = &head->ids;
2865         struct nvme_subsystem *subsys = head->subsys;
2866         int serial_len = sizeof(subsys->serial);
2867         int model_len = sizeof(subsys->model);
2868
2869         if (!uuid_is_null(&ids->uuid))
2870                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2871
2872         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2873                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2874
2875         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2876                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2877
2878         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2879                                   subsys->serial[serial_len - 1] == '\0'))
2880                 serial_len--;
2881         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2882                                  subsys->model[model_len - 1] == '\0'))
2883                 model_len--;
2884
2885         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2886                 serial_len, subsys->serial, model_len, subsys->model,
2887                 head->ns_id);
2888 }
2889 static DEVICE_ATTR_RO(wwid);
2890
2891 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2892                 char *buf)
2893 {
2894         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2895 }
2896 static DEVICE_ATTR_RO(nguid);
2897
2898 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2899                 char *buf)
2900 {
2901         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2902
2903         /* For backward compatibility expose the NGUID to userspace if
2904          * we have no UUID set
2905          */
2906         if (uuid_is_null(&ids->uuid)) {
2907                 printk_ratelimited(KERN_WARNING
2908                                    "No UUID available providing old NGUID\n");
2909                 return sprintf(buf, "%pU\n", ids->nguid);
2910         }
2911         return sprintf(buf, "%pU\n", &ids->uuid);
2912 }
2913 static DEVICE_ATTR_RO(uuid);
2914
2915 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2916                 char *buf)
2917 {
2918         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2919 }
2920 static DEVICE_ATTR_RO(eui);
2921
2922 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2923                 char *buf)
2924 {
2925         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2926 }
2927 static DEVICE_ATTR_RO(nsid);
2928
2929 static struct attribute *nvme_ns_id_attrs[] = {
2930         &dev_attr_wwid.attr,
2931         &dev_attr_uuid.attr,
2932         &dev_attr_nguid.attr,
2933         &dev_attr_eui.attr,
2934         &dev_attr_nsid.attr,
2935 #ifdef CONFIG_NVME_MULTIPATH
2936         &dev_attr_ana_grpid.attr,
2937         &dev_attr_ana_state.attr,
2938 #endif
2939         NULL,
2940 };
2941
2942 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2943                 struct attribute *a, int n)
2944 {
2945         struct device *dev = container_of(kobj, struct device, kobj);
2946         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2947
2948         if (a == &dev_attr_uuid.attr) {
2949                 if (uuid_is_null(&ids->uuid) &&
2950                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2951                         return 0;
2952         }
2953         if (a == &dev_attr_nguid.attr) {
2954                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2955                         return 0;
2956         }
2957         if (a == &dev_attr_eui.attr) {
2958                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2959                         return 0;
2960         }
2961 #ifdef CONFIG_NVME_MULTIPATH
2962         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2963                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2964                         return 0;
2965                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2966                         return 0;
2967         }
2968 #endif
2969         return a->mode;
2970 }
2971
2972 static const struct attribute_group nvme_ns_id_attr_group = {
2973         .attrs          = nvme_ns_id_attrs,
2974         .is_visible     = nvme_ns_id_attrs_are_visible,
2975 };
2976
2977 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2978         &nvme_ns_id_attr_group,
2979 #ifdef CONFIG_NVM
2980         &nvme_nvm_attr_group,
2981 #endif
2982         NULL,
2983 };
2984
2985 #define nvme_show_str_function(field)                                           \
2986 static ssize_t  field##_show(struct device *dev,                                \
2987                             struct device_attribute *attr, char *buf)           \
2988 {                                                                               \
2989         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2990         return sprintf(buf, "%.*s\n",                                           \
2991                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2992 }                                                                               \
2993 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2994
2995 nvme_show_str_function(model);
2996 nvme_show_str_function(serial);
2997 nvme_show_str_function(firmware_rev);
2998
2999 #define nvme_show_int_function(field)                                           \
3000 static ssize_t  field##_show(struct device *dev,                                \
3001                             struct device_attribute *attr, char *buf)           \
3002 {                                                                               \
3003         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3004         return sprintf(buf, "%d\n", ctrl->field);       \
3005 }                                                                               \
3006 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3007
3008 nvme_show_int_function(cntlid);
3009 nvme_show_int_function(numa_node);
3010
3011 static ssize_t nvme_sysfs_delete(struct device *dev,
3012                                 struct device_attribute *attr, const char *buf,
3013                                 size_t count)
3014 {
3015         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3016
3017         if (device_remove_file_self(dev, attr))
3018                 nvme_delete_ctrl_sync(ctrl);
3019         return count;
3020 }
3021 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3022
3023 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3024                                          struct device_attribute *attr,
3025                                          char *buf)
3026 {
3027         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3028
3029         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3030 }
3031 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3032
3033 static ssize_t nvme_sysfs_show_state(struct device *dev,
3034                                      struct device_attribute *attr,
3035                                      char *buf)
3036 {
3037         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3038         static const char *const state_name[] = {
3039                 [NVME_CTRL_NEW]         = "new",
3040                 [NVME_CTRL_LIVE]        = "live",
3041                 [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
3042                 [NVME_CTRL_RESETTING]   = "resetting",
3043                 [NVME_CTRL_CONNECTING]  = "connecting",
3044                 [NVME_CTRL_DELETING]    = "deleting",
3045                 [NVME_CTRL_DEAD]        = "dead",
3046         };
3047
3048         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3049             state_name[ctrl->state])
3050                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3051
3052         return sprintf(buf, "unknown state\n");
3053 }
3054
3055 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3056
3057 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3058                                          struct device_attribute *attr,
3059                                          char *buf)
3060 {
3061         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3062
3063         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3064 }
3065 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3066
3067 static ssize_t nvme_sysfs_show_address(struct device *dev,
3068                                          struct device_attribute *attr,
3069                                          char *buf)
3070 {
3071         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3072
3073         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3074 }
3075 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3076
3077 static struct attribute *nvme_dev_attrs[] = {
3078         &dev_attr_reset_controller.attr,
3079         &dev_attr_rescan_controller.attr,
3080         &dev_attr_model.attr,
3081         &dev_attr_serial.attr,
3082         &dev_attr_firmware_rev.attr,
3083         &dev_attr_cntlid.attr,
3084         &dev_attr_delete_controller.attr,
3085         &dev_attr_transport.attr,
3086         &dev_attr_subsysnqn.attr,
3087         &dev_attr_address.attr,
3088         &dev_attr_state.attr,
3089         &dev_attr_numa_node.attr,
3090         NULL
3091 };
3092
3093 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3094                 struct attribute *a, int n)
3095 {
3096         struct device *dev = container_of(kobj, struct device, kobj);
3097         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3098
3099         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3100                 return 0;
3101         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3102                 return 0;
3103
3104         return a->mode;
3105 }
3106
3107 static struct attribute_group nvme_dev_attrs_group = {
3108         .attrs          = nvme_dev_attrs,
3109         .is_visible     = nvme_dev_attrs_are_visible,
3110 };
3111
3112 static const struct attribute_group *nvme_dev_attr_groups[] = {
3113         &nvme_dev_attrs_group,
3114         NULL,
3115 };
3116
3117 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3118                 unsigned nsid)
3119 {
3120         struct nvme_ns_head *h;
3121
3122         lockdep_assert_held(&subsys->lock);
3123
3124         list_for_each_entry(h, &subsys->nsheads, entry) {
3125                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3126                         return h;
3127         }
3128
3129         return NULL;
3130 }
3131
3132 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3133                 struct nvme_ns_head *new)
3134 {
3135         struct nvme_ns_head *h;
3136
3137         lockdep_assert_held(&subsys->lock);
3138
3139         list_for_each_entry(h, &subsys->nsheads, entry) {
3140                 if (nvme_ns_ids_valid(&new->ids) &&
3141                     !list_empty(&h->list) &&
3142                     nvme_ns_ids_equal(&new->ids, &h->ids))
3143                         return -EINVAL;
3144         }
3145
3146         return 0;
3147 }
3148
3149 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3150                 unsigned nsid, struct nvme_id_ns *id)
3151 {
3152         struct nvme_ns_head *head;
3153         size_t size = sizeof(*head);
3154         int ret = -ENOMEM;
3155
3156 #ifdef CONFIG_NVME_MULTIPATH
3157         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3158 #endif
3159
3160         head = kzalloc(size, GFP_KERNEL);
3161         if (!head)
3162                 goto out;
3163         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3164         if (ret < 0)
3165                 goto out_free_head;
3166         head->instance = ret;
3167         INIT_LIST_HEAD(&head->list);
3168         ret = init_srcu_struct(&head->srcu);
3169         if (ret)
3170                 goto out_ida_remove;
3171         head->subsys = ctrl->subsys;
3172         head->ns_id = nsid;
3173         kref_init(&head->ref);
3174
3175         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3176
3177         ret = __nvme_check_ids(ctrl->subsys, head);
3178         if (ret) {
3179                 dev_err(ctrl->device,
3180                         "duplicate IDs for nsid %d\n", nsid);
3181                 goto out_cleanup_srcu;
3182         }
3183
3184         ret = nvme_mpath_alloc_disk(ctrl, head);
3185         if (ret)
3186                 goto out_cleanup_srcu;
3187
3188         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3189
3190         kref_get(&ctrl->subsys->ref);
3191
3192         return head;
3193 out_cleanup_srcu:
3194         cleanup_srcu_struct(&head->srcu);
3195 out_ida_remove:
3196         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3197 out_free_head:
3198         kfree(head);
3199 out:
3200         return ERR_PTR(ret);
3201 }
3202
3203 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3204                 struct nvme_id_ns *id)
3205 {
3206         struct nvme_ctrl *ctrl = ns->ctrl;
3207         bool is_shared = id->nmic & (1 << 0);
3208         struct nvme_ns_head *head = NULL;
3209         int ret = 0;
3210
3211         mutex_lock(&ctrl->subsys->lock);
3212         if (is_shared)
3213                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3214         if (!head) {
3215                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3216                 if (IS_ERR(head)) {
3217                         ret = PTR_ERR(head);
3218                         goto out_unlock;
3219                 }
3220         } else {
3221                 struct nvme_ns_ids ids;
3222
3223                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
3224                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3225                         dev_err(ctrl->device,
3226                                 "IDs don't match for shared namespace %d\n",
3227                                         nsid);
3228                         ret = -EINVAL;
3229                         goto out_unlock;
3230                 }
3231         }
3232
3233         list_add_tail(&ns->siblings, &head->list);
3234         ns->head = head;
3235
3236 out_unlock:
3237         mutex_unlock(&ctrl->subsys->lock);
3238         return ret;
3239 }
3240
3241 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3242 {
3243         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3244         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3245
3246         return nsa->head->ns_id - nsb->head->ns_id;
3247 }
3248
3249 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3250 {
3251         struct nvme_ns *ns, *ret = NULL;
3252
3253         down_read(&ctrl->namespaces_rwsem);
3254         list_for_each_entry(ns, &ctrl->namespaces, list) {
3255                 if (ns->head->ns_id == nsid) {
3256                         if (!kref_get_unless_zero(&ns->kref))
3257                                 continue;
3258                         ret = ns;
3259                         break;
3260                 }
3261                 if (ns->head->ns_id > nsid)
3262                         break;
3263         }
3264         up_read(&ctrl->namespaces_rwsem);
3265         return ret;
3266 }
3267
3268 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3269 {
3270         struct streams_directive_params s;
3271         int ret;
3272
3273         if (!ctrl->nr_streams)
3274                 return 0;
3275
3276         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3277         if (ret)
3278                 return ret;
3279
3280         ns->sws = le32_to_cpu(s.sws);
3281         ns->sgs = le16_to_cpu(s.sgs);
3282
3283         if (ns->sws) {
3284                 unsigned int bs = 1 << ns->lba_shift;
3285
3286                 blk_queue_io_min(ns->queue, bs * ns->sws);
3287                 if (ns->sgs)
3288                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3289         }
3290
3291         return 0;
3292 }
3293
3294 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3295 {
3296         struct nvme_ns *ns;
3297         struct gendisk *disk;
3298         struct nvme_id_ns *id;
3299         char disk_name[DISK_NAME_LEN];
3300         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3301
3302         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3303         if (!ns)
3304                 return -ENOMEM;
3305
3306         ns->queue = blk_mq_init_queue(ctrl->tagset);
3307         if (IS_ERR(ns->queue)) {
3308                 ret = PTR_ERR(ns->queue);
3309                 goto out_free_ns;
3310         }
3311
3312         if (ctrl->opts && ctrl->opts->data_digest)
3313                 ns->queue->backing_dev_info->capabilities
3314                         |= BDI_CAP_STABLE_WRITES;
3315
3316         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3317         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3318                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3319
3320         ns->queue->queuedata = ns;
3321         ns->ctrl = ctrl;
3322
3323         kref_init(&ns->kref);
3324         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3325
3326         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3327         nvme_set_queue_limits(ctrl, ns->queue);
3328
3329         id = nvme_identify_ns(ctrl, nsid);
3330         if (!id) {
3331                 ret = -EIO;
3332                 goto out_free_queue;
3333         }
3334
3335         if (id->ncap == 0) {
3336                 ret = -EINVAL;
3337                 goto out_free_id;
3338         }
3339
3340         ret = nvme_init_ns_head(ns, nsid, id);
3341         if (ret)
3342                 goto out_free_id;
3343         nvme_setup_streams_ns(ctrl, ns);
3344         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3345
3346         disk = alloc_disk_node(0, node);
3347         if (!disk) {
3348                 ret = -ENOMEM;
3349                 goto out_unlink_ns;
3350         }
3351
3352         disk->fops = &nvme_fops;
3353         disk->private_data = ns;
3354         disk->queue = ns->queue;
3355         disk->flags = flags;
3356         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3357         ns->disk = disk;
3358
3359         __nvme_revalidate_disk(disk, id);
3360
3361         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3362                 ret = nvme_nvm_register(ns, disk_name, node);
3363                 if (ret) {
3364                         dev_warn(ctrl->device, "LightNVM init failure\n");
3365                         goto out_put_disk;
3366                 }
3367         }
3368
3369         down_write(&ctrl->namespaces_rwsem);
3370         list_add_tail(&ns->list, &ctrl->namespaces);
3371         up_write(&ctrl->namespaces_rwsem);
3372
3373         nvme_get_ctrl(ctrl);
3374
3375         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3376
3377         nvme_mpath_add_disk(ns, id);
3378         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3379         kfree(id);
3380
3381         return 0;
3382  out_put_disk:
3383         put_disk(ns->disk);
3384  out_unlink_ns:
3385         mutex_lock(&ctrl->subsys->lock);
3386         list_del_rcu(&ns->siblings);
3387         mutex_unlock(&ctrl->subsys->lock);
3388         nvme_put_ns_head(ns->head);
3389  out_free_id:
3390         kfree(id);
3391  out_free_queue:
3392         blk_cleanup_queue(ns->queue);
3393  out_free_ns:
3394         kfree(ns);
3395         return ret;
3396 }
3397
3398 static void nvme_ns_remove(struct nvme_ns *ns)
3399 {
3400         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3401                 return;
3402
3403         nvme_fault_inject_fini(&ns->fault_inject);
3404
3405         mutex_lock(&ns->ctrl->subsys->lock);
3406         list_del_rcu(&ns->siblings);
3407         mutex_unlock(&ns->ctrl->subsys->lock);
3408         synchronize_rcu(); /* guarantee not available in head->list */
3409         nvme_mpath_clear_current_path(ns);
3410         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3411
3412         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3413                 del_gendisk(ns->disk);
3414                 blk_cleanup_queue(ns->queue);
3415                 if (blk_get_integrity(ns->disk))
3416                         blk_integrity_unregister(ns->disk);
3417         }
3418
3419         down_write(&ns->ctrl->namespaces_rwsem);
3420         list_del_init(&ns->list);
3421         up_write(&ns->ctrl->namespaces_rwsem);
3422
3423         nvme_mpath_check_last_path(ns);
3424         nvme_put_ns(ns);
3425 }
3426
3427 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3428 {
3429         struct nvme_ns *ns;
3430
3431         ns = nvme_find_get_ns(ctrl, nsid);
3432         if (ns) {
3433                 if (ns->disk && revalidate_disk(ns->disk))
3434                         nvme_ns_remove(ns);
3435                 nvme_put_ns(ns);
3436         } else
3437                 nvme_alloc_ns(ctrl, nsid);
3438 }
3439
3440 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3441                                         unsigned nsid)
3442 {
3443         struct nvme_ns *ns, *next;
3444         LIST_HEAD(rm_list);
3445
3446         down_write(&ctrl->namespaces_rwsem);
3447         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3448                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3449                         list_move_tail(&ns->list, &rm_list);
3450         }
3451         up_write(&ctrl->namespaces_rwsem);
3452
3453         list_for_each_entry_safe(ns, next, &rm_list, list)
3454                 nvme_ns_remove(ns);
3455
3456 }
3457
3458 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3459 {
3460         struct nvme_ns *ns;
3461         __le32 *ns_list;
3462         unsigned i, j, nsid, prev = 0;
3463         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3464         int ret = 0;
3465
3466         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3467         if (!ns_list)
3468                 return -ENOMEM;
3469
3470         for (i = 0; i < num_lists; i++) {
3471                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3472                 if (ret)
3473                         goto free;
3474
3475                 for (j = 0; j < min(nn, 1024U); j++) {
3476                         nsid = le32_to_cpu(ns_list[j]);
3477                         if (!nsid)
3478                                 goto out;
3479
3480                         nvme_validate_ns(ctrl, nsid);
3481
3482                         while (++prev < nsid) {
3483                                 ns = nvme_find_get_ns(ctrl, prev);
3484                                 if (ns) {
3485                                         nvme_ns_remove(ns);
3486                                         nvme_put_ns(ns);
3487                                 }
3488                         }
3489                 }
3490                 nn -= j;
3491         }
3492  out:
3493         nvme_remove_invalid_namespaces(ctrl, prev);
3494  free:
3495         kfree(ns_list);
3496         return ret;
3497 }
3498
3499 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3500 {
3501         unsigned i;
3502
3503         for (i = 1; i <= nn; i++)
3504                 nvme_validate_ns(ctrl, i);
3505
3506         nvme_remove_invalid_namespaces(ctrl, nn);
3507 }
3508
3509 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3510 {
3511         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3512         __le32 *log;
3513         int error;
3514
3515         log = kzalloc(log_size, GFP_KERNEL);
3516         if (!log)
3517                 return;
3518
3519         /*
3520          * We need to read the log to clear the AEN, but we don't want to rely
3521          * on it for the changed namespace information as userspace could have
3522          * raced with us in reading the log page, which could cause us to miss
3523          * updates.
3524          */
3525         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3526                         log_size, 0);
3527         if (error)
3528                 dev_warn(ctrl->device,
3529                         "reading changed ns log failed: %d\n", error);
3530
3531         kfree(log);
3532 }
3533
3534 static void nvme_scan_work(struct work_struct *work)
3535 {
3536         struct nvme_ctrl *ctrl =
3537                 container_of(work, struct nvme_ctrl, scan_work);
3538         struct nvme_id_ctrl *id;
3539         unsigned nn;
3540
3541         if (ctrl->state != NVME_CTRL_LIVE)
3542                 return;
3543
3544         WARN_ON_ONCE(!ctrl->tagset);
3545
3546         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3547                 dev_info(ctrl->device, "rescanning namespaces.\n");
3548                 nvme_clear_changed_ns_log(ctrl);
3549         }
3550
3551         if (nvme_identify_ctrl(ctrl, &id))
3552                 return;
3553
3554         mutex_lock(&ctrl->scan_lock);
3555         nn = le32_to_cpu(id->nn);
3556         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3557             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3558                 if (!nvme_scan_ns_list(ctrl, nn))
3559                         goto out_free_id;
3560         }
3561         nvme_scan_ns_sequential(ctrl, nn);
3562 out_free_id:
3563         mutex_unlock(&ctrl->scan_lock);
3564         kfree(id);
3565         down_write(&ctrl->namespaces_rwsem);
3566         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3567         up_write(&ctrl->namespaces_rwsem);
3568 }
3569
3570 /*
3571  * This function iterates the namespace list unlocked to allow recovery from
3572  * controller failure. It is up to the caller to ensure the namespace list is
3573  * not modified by scan work while this function is executing.
3574  */
3575 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3576 {
3577         struct nvme_ns *ns, *next;
3578         LIST_HEAD(ns_list);
3579
3580         /*
3581          * make sure to requeue I/O to all namespaces as these
3582          * might result from the scan itself and must complete
3583          * for the scan_work to make progress
3584          */
3585         nvme_mpath_clear_ctrl_paths(ctrl);
3586
3587         /* prevent racing with ns scanning */
3588         flush_work(&ctrl->scan_work);
3589
3590         /*
3591          * The dead states indicates the controller was not gracefully
3592          * disconnected. In that case, we won't be able to flush any data while
3593          * removing the namespaces' disks; fail all the queues now to avoid
3594          * potentially having to clean up the failed sync later.
3595          */
3596         if (ctrl->state == NVME_CTRL_DEAD)
3597                 nvme_kill_queues(ctrl);
3598
3599         down_write(&ctrl->namespaces_rwsem);
3600         list_splice_init(&ctrl->namespaces, &ns_list);
3601         up_write(&ctrl->namespaces_rwsem);
3602
3603         list_for_each_entry_safe(ns, next, &ns_list, list)
3604                 nvme_ns_remove(ns);
3605 }
3606 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3607
3608 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3609 {
3610         char *envp[2] = { NULL, NULL };
3611         u32 aen_result = ctrl->aen_result;
3612
3613         ctrl->aen_result = 0;
3614         if (!aen_result)
3615                 return;
3616
3617         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3618         if (!envp[0])
3619                 return;
3620         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3621         kfree(envp[0]);
3622 }
3623
3624 static void nvme_async_event_work(struct work_struct *work)
3625 {
3626         struct nvme_ctrl *ctrl =
3627                 container_of(work, struct nvme_ctrl, async_event_work);
3628
3629         nvme_aen_uevent(ctrl);
3630         ctrl->ops->submit_async_event(ctrl);
3631 }
3632
3633 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3634 {
3635
3636         u32 csts;
3637
3638         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3639                 return false;
3640
3641         if (csts == ~0)
3642                 return false;
3643
3644         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3645 }
3646
3647 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3648 {
3649         struct nvme_fw_slot_info_log *log;
3650
3651         log = kmalloc(sizeof(*log), GFP_KERNEL);
3652         if (!log)
3653                 return;
3654
3655         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3656                         sizeof(*log), 0))
3657                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3658         kfree(log);
3659 }
3660
3661 static void nvme_fw_act_work(struct work_struct *work)
3662 {
3663         struct nvme_ctrl *ctrl = container_of(work,
3664                                 struct nvme_ctrl, fw_act_work);
3665         unsigned long fw_act_timeout;
3666
3667         if (ctrl->mtfa)
3668                 fw_act_timeout = jiffies +
3669                                 msecs_to_jiffies(ctrl->mtfa * 100);
3670         else
3671                 fw_act_timeout = jiffies +
3672                                 msecs_to_jiffies(admin_timeout * 1000);
3673
3674         nvme_stop_queues(ctrl);
3675         while (nvme_ctrl_pp_status(ctrl)) {
3676                 if (time_after(jiffies, fw_act_timeout)) {
3677                         dev_warn(ctrl->device,
3678                                 "Fw activation timeout, reset controller\n");
3679                         nvme_reset_ctrl(ctrl);
3680                         break;
3681                 }
3682                 msleep(100);
3683         }
3684
3685         if (ctrl->state != NVME_CTRL_LIVE)
3686                 return;
3687
3688         nvme_start_queues(ctrl);
3689         /* read FW slot information to clear the AER */
3690         nvme_get_fw_slot_info(ctrl);
3691 }
3692
3693 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3694 {
3695         u32 aer_notice_type = (result & 0xff00) >> 8;
3696
3697         trace_nvme_async_event(ctrl, aer_notice_type);
3698
3699         switch (aer_notice_type) {
3700         case NVME_AER_NOTICE_NS_CHANGED:
3701                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3702                 nvme_queue_scan(ctrl);
3703                 break;
3704         case NVME_AER_NOTICE_FW_ACT_STARTING:
3705                 queue_work(nvme_wq, &ctrl->fw_act_work);
3706                 break;
3707 #ifdef CONFIG_NVME_MULTIPATH
3708         case NVME_AER_NOTICE_ANA:
3709                 if (!ctrl->ana_log_buf)
3710                         break;
3711                 queue_work(nvme_wq, &ctrl->ana_work);
3712                 break;
3713 #endif
3714         default:
3715                 dev_warn(ctrl->device, "async event result %08x\n", result);
3716         }
3717 }
3718
3719 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3720                 volatile union nvme_result *res)
3721 {
3722         u32 result = le32_to_cpu(res->u32);
3723         u32 aer_type = result & 0x07;
3724
3725         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3726                 return;
3727
3728         switch (aer_type) {
3729         case NVME_AER_NOTICE:
3730                 nvme_handle_aen_notice(ctrl, result);
3731                 break;
3732         case NVME_AER_ERROR:
3733         case NVME_AER_SMART:
3734         case NVME_AER_CSS:
3735         case NVME_AER_VS:
3736                 trace_nvme_async_event(ctrl, aer_type);
3737                 ctrl->aen_result = result;
3738                 break;
3739         default:
3740                 break;
3741         }
3742         queue_work(nvme_wq, &ctrl->async_event_work);
3743 }
3744 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3745
3746 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3747 {
3748         nvme_mpath_stop(ctrl);
3749         nvme_stop_keep_alive(ctrl);
3750         flush_work(&ctrl->async_event_work);
3751         cancel_work_sync(&ctrl->fw_act_work);
3752 }
3753 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3754
3755 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3756 {
3757         if (ctrl->kato)
3758                 nvme_start_keep_alive(ctrl);
3759
3760         if (ctrl->queue_count > 1) {
3761                 nvme_queue_scan(ctrl);
3762                 nvme_enable_aen(ctrl);
3763                 queue_work(nvme_wq, &ctrl->async_event_work);
3764                 nvme_start_queues(ctrl);
3765         }
3766 }
3767 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3768
3769 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3770 {
3771         nvme_fault_inject_fini(&ctrl->fault_inject);
3772         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3773         cdev_device_del(&ctrl->cdev, ctrl->device);
3774 }
3775 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3776
3777 static void nvme_free_ctrl(struct device *dev)
3778 {
3779         struct nvme_ctrl *ctrl =
3780                 container_of(dev, struct nvme_ctrl, ctrl_device);
3781         struct nvme_subsystem *subsys = ctrl->subsys;
3782
3783         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3784         kfree(ctrl->effects);
3785         nvme_mpath_uninit(ctrl);
3786         __free_page(ctrl->discard_page);
3787
3788         if (subsys) {
3789                 mutex_lock(&nvme_subsystems_lock);
3790                 list_del(&ctrl->subsys_entry);
3791                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3792                 mutex_unlock(&nvme_subsystems_lock);
3793         }
3794
3795         ctrl->ops->free_ctrl(ctrl);
3796
3797         if (subsys)
3798                 nvme_put_subsystem(subsys);
3799 }
3800
3801 /*
3802  * Initialize a NVMe controller structures.  This needs to be called during
3803  * earliest initialization so that we have the initialized structured around
3804  * during probing.
3805  */
3806 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3807                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3808 {
3809         int ret;
3810
3811         ctrl->state = NVME_CTRL_NEW;
3812         spin_lock_init(&ctrl->lock);
3813         mutex_init(&ctrl->scan_lock);
3814         INIT_LIST_HEAD(&ctrl->namespaces);
3815         init_rwsem(&ctrl->namespaces_rwsem);
3816         ctrl->dev = dev;
3817         ctrl->ops = ops;
3818         ctrl->quirks = quirks;
3819         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3820         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3821         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3822         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3823
3824         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3825         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3826         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3827
3828         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3829                         PAGE_SIZE);
3830         ctrl->discard_page = alloc_page(GFP_KERNEL);
3831         if (!ctrl->discard_page) {
3832                 ret = -ENOMEM;
3833                 goto out;
3834         }
3835
3836         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3837         if (ret < 0)
3838                 goto out;
3839         ctrl->instance = ret;
3840
3841         device_initialize(&ctrl->ctrl_device);
3842         ctrl->device = &ctrl->ctrl_device;
3843         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3844         ctrl->device->class = nvme_class;
3845         ctrl->device->parent = ctrl->dev;
3846         ctrl->device->groups = nvme_dev_attr_groups;
3847         ctrl->device->release = nvme_free_ctrl;
3848         dev_set_drvdata(ctrl->device, ctrl);
3849         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3850         if (ret)
3851                 goto out_release_instance;
3852
3853         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3854         ctrl->cdev.owner = ops->module;
3855         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3856         if (ret)
3857                 goto out_free_name;
3858
3859         /*
3860          * Initialize latency tolerance controls.  The sysfs files won't
3861          * be visible to userspace unless the device actually supports APST.
3862          */
3863         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3864         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3865                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3866
3867         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3868
3869         return 0;
3870 out_free_name:
3871         kfree_const(ctrl->device->kobj.name);
3872 out_release_instance:
3873         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3874 out:
3875         if (ctrl->discard_page)
3876                 __free_page(ctrl->discard_page);
3877         return ret;
3878 }
3879 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3880
3881 /**
3882  * nvme_kill_queues(): Ends all namespace queues
3883  * @ctrl: the dead controller that needs to end
3884  *
3885  * Call this function when the driver determines it is unable to get the
3886  * controller in a state capable of servicing IO.
3887  */
3888 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3889 {
3890         struct nvme_ns *ns;
3891
3892         down_read(&ctrl->namespaces_rwsem);
3893
3894         /* Forcibly unquiesce queues to avoid blocking dispatch */
3895         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3896                 blk_mq_unquiesce_queue(ctrl->admin_q);
3897
3898         list_for_each_entry(ns, &ctrl->namespaces, list)
3899                 nvme_set_queue_dying(ns);
3900
3901         up_read(&ctrl->namespaces_rwsem);
3902 }
3903 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3904
3905 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3906 {
3907         struct nvme_ns *ns;
3908
3909         down_read(&ctrl->namespaces_rwsem);
3910         list_for_each_entry(ns, &ctrl->namespaces, list)
3911                 blk_mq_unfreeze_queue(ns->queue);
3912         up_read(&ctrl->namespaces_rwsem);
3913 }
3914 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3915
3916 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3917 {
3918         struct nvme_ns *ns;
3919
3920         down_read(&ctrl->namespaces_rwsem);
3921         list_for_each_entry(ns, &ctrl->namespaces, list) {
3922                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3923                 if (timeout <= 0)
3924                         break;
3925         }
3926         up_read(&ctrl->namespaces_rwsem);
3927 }
3928 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3929
3930 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3931 {
3932         struct nvme_ns *ns;
3933
3934         down_read(&ctrl->namespaces_rwsem);
3935         list_for_each_entry(ns, &ctrl->namespaces, list)
3936                 blk_mq_freeze_queue_wait(ns->queue);
3937         up_read(&ctrl->namespaces_rwsem);
3938 }
3939 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3940
3941 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3942 {
3943         struct nvme_ns *ns;
3944
3945         down_read(&ctrl->namespaces_rwsem);
3946         list_for_each_entry(ns, &ctrl->namespaces, list)
3947                 blk_freeze_queue_start(ns->queue);
3948         up_read(&ctrl->namespaces_rwsem);
3949 }
3950 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3951
3952 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3953 {
3954         struct nvme_ns *ns;
3955
3956         down_read(&ctrl->namespaces_rwsem);
3957         list_for_each_entry(ns, &ctrl->namespaces, list)
3958                 blk_mq_quiesce_queue(ns->queue);
3959         up_read(&ctrl->namespaces_rwsem);
3960 }
3961 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3962
3963 void nvme_start_queues(struct nvme_ctrl *ctrl)
3964 {
3965         struct nvme_ns *ns;
3966
3967         down_read(&ctrl->namespaces_rwsem);
3968         list_for_each_entry(ns, &ctrl->namespaces, list)
3969                 blk_mq_unquiesce_queue(ns->queue);
3970         up_read(&ctrl->namespaces_rwsem);
3971 }
3972 EXPORT_SYMBOL_GPL(nvme_start_queues);
3973
3974
3975 void nvme_sync_queues(struct nvme_ctrl *ctrl)
3976 {
3977         struct nvme_ns *ns;
3978
3979         down_read(&ctrl->namespaces_rwsem);
3980         list_for_each_entry(ns, &ctrl->namespaces, list)
3981                 blk_sync_queue(ns->queue);
3982         up_read(&ctrl->namespaces_rwsem);
3983 }
3984 EXPORT_SYMBOL_GPL(nvme_sync_queues);
3985
3986 /*
3987  * Check we didn't inadvertently grow the command structure sizes:
3988  */
3989 static inline void _nvme_check_size(void)
3990 {
3991         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
3992         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
3993         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
3994         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
3995         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
3996         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
3997         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
3998         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
3999         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4000         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4001         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4002         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4003         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4004         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4005         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4006         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4007         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4008 }
4009
4010
4011 static int __init nvme_core_init(void)
4012 {
4013         int result = -ENOMEM;
4014
4015         _nvme_check_size();
4016
4017         nvme_wq = alloc_workqueue("nvme-wq",
4018                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4019         if (!nvme_wq)
4020                 goto out;
4021
4022         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4023                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4024         if (!nvme_reset_wq)
4025                 goto destroy_wq;
4026
4027         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4028                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4029         if (!nvme_delete_wq)
4030                 goto destroy_reset_wq;
4031
4032         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4033         if (result < 0)
4034                 goto destroy_delete_wq;
4035
4036         nvme_class = class_create(THIS_MODULE, "nvme");
4037         if (IS_ERR(nvme_class)) {
4038                 result = PTR_ERR(nvme_class);
4039                 goto unregister_chrdev;
4040         }
4041
4042         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4043         if (IS_ERR(nvme_subsys_class)) {
4044                 result = PTR_ERR(nvme_subsys_class);
4045                 goto destroy_class;
4046         }
4047         return 0;
4048
4049 destroy_class:
4050         class_destroy(nvme_class);
4051 unregister_chrdev:
4052         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4053 destroy_delete_wq:
4054         destroy_workqueue(nvme_delete_wq);
4055 destroy_reset_wq:
4056         destroy_workqueue(nvme_reset_wq);
4057 destroy_wq:
4058         destroy_workqueue(nvme_wq);
4059 out:
4060         return result;
4061 }
4062
4063 static void __exit nvme_core_exit(void)
4064 {
4065         ida_destroy(&nvme_subsystems_ida);
4066         class_destroy(nvme_subsys_class);
4067         class_destroy(nvme_class);
4068         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4069         destroy_workqueue(nvme_delete_wq);
4070         destroy_workqueue(nvme_reset_wq);
4071         destroy_workqueue(nvme_wq);
4072 }
4073
4074 MODULE_LICENSE("GPL");
4075 MODULE_VERSION("1.0");
4076 module_init(nvme_core_init);
4077 module_exit(nvme_core_exit);