Linux 6.9-rc4
[sfrench/cifs-2.6.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/kstrtox.h>
21 #include <linux/vmalloc.h>
22 #include <linux/blk-mq.h>
23 #include <linux/pfn_t.h>
24 #include <linux/slab.h>
25 #include <linux/uio.h>
26 #include <linux/dax.h>
27 #include <linux/nd.h>
28 #include <linux/mm.h>
29 #include <asm/cacheflush.h>
30 #include "pmem.h"
31 #include "btt.h"
32 #include "pfn.h"
33 #include "nd.h"
34
35 static struct device *to_dev(struct pmem_device *pmem)
36 {
37         /*
38          * nvdimm bus services need a 'dev' parameter, and we record the device
39          * at init in bb.dev.
40          */
41         return pmem->bb.dev;
42 }
43
44 static struct nd_region *to_region(struct pmem_device *pmem)
45 {
46         return to_nd_region(to_dev(pmem)->parent);
47 }
48
49 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
50 {
51         return pmem->phys_addr + offset;
52 }
53
54 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
55 {
56         return (offset - pmem->data_offset) >> SECTOR_SHIFT;
57 }
58
59 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
60 {
61         return (sector << SECTOR_SHIFT) + pmem->data_offset;
62 }
63
64 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
65                 unsigned int len)
66 {
67         phys_addr_t phys = pmem_to_phys(pmem, offset);
68         unsigned long pfn_start, pfn_end, pfn;
69
70         /* only pmem in the linear map supports HWPoison */
71         if (is_vmalloc_addr(pmem->virt_addr))
72                 return;
73
74         pfn_start = PHYS_PFN(phys);
75         pfn_end = pfn_start + PHYS_PFN(len);
76         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
77                 struct page *page = pfn_to_page(pfn);
78
79                 /*
80                  * Note, no need to hold a get_dev_pagemap() reference
81                  * here since we're in the driver I/O path and
82                  * outstanding I/O requests pin the dev_pagemap.
83                  */
84                 if (test_and_clear_pmem_poison(page))
85                         clear_mce_nospec(pfn);
86         }
87 }
88
89 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
90 {
91         if (blks == 0)
92                 return;
93         badblocks_clear(&pmem->bb, sector, blks);
94         if (pmem->bb_state)
95                 sysfs_notify_dirent(pmem->bb_state);
96 }
97
98 static long __pmem_clear_poison(struct pmem_device *pmem,
99                 phys_addr_t offset, unsigned int len)
100 {
101         phys_addr_t phys = pmem_to_phys(pmem, offset);
102         long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
103
104         if (cleared > 0) {
105                 pmem_mkpage_present(pmem, offset, cleared);
106                 arch_invalidate_pmem(pmem->virt_addr + offset, len);
107         }
108         return cleared;
109 }
110
111 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
112                 phys_addr_t offset, unsigned int len)
113 {
114         long cleared = __pmem_clear_poison(pmem, offset, len);
115
116         if (cleared < 0)
117                 return BLK_STS_IOERR;
118
119         pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
120         if (cleared < len)
121                 return BLK_STS_IOERR;
122         return BLK_STS_OK;
123 }
124
125 static void write_pmem(void *pmem_addr, struct page *page,
126                 unsigned int off, unsigned int len)
127 {
128         unsigned int chunk;
129         void *mem;
130
131         while (len) {
132                 mem = kmap_atomic(page);
133                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
134                 memcpy_flushcache(pmem_addr, mem + off, chunk);
135                 kunmap_atomic(mem);
136                 len -= chunk;
137                 off = 0;
138                 page++;
139                 pmem_addr += chunk;
140         }
141 }
142
143 static blk_status_t read_pmem(struct page *page, unsigned int off,
144                 void *pmem_addr, unsigned int len)
145 {
146         unsigned int chunk;
147         unsigned long rem;
148         void *mem;
149
150         while (len) {
151                 mem = kmap_atomic(page);
152                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
153                 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
154                 kunmap_atomic(mem);
155                 if (rem)
156                         return BLK_STS_IOERR;
157                 len -= chunk;
158                 off = 0;
159                 page++;
160                 pmem_addr += chunk;
161         }
162         return BLK_STS_OK;
163 }
164
165 static blk_status_t pmem_do_read(struct pmem_device *pmem,
166                         struct page *page, unsigned int page_off,
167                         sector_t sector, unsigned int len)
168 {
169         blk_status_t rc;
170         phys_addr_t pmem_off = to_offset(pmem, sector);
171         void *pmem_addr = pmem->virt_addr + pmem_off;
172
173         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
174                 return BLK_STS_IOERR;
175
176         rc = read_pmem(page, page_off, pmem_addr, len);
177         flush_dcache_page(page);
178         return rc;
179 }
180
181 static blk_status_t pmem_do_write(struct pmem_device *pmem,
182                         struct page *page, unsigned int page_off,
183                         sector_t sector, unsigned int len)
184 {
185         phys_addr_t pmem_off = to_offset(pmem, sector);
186         void *pmem_addr = pmem->virt_addr + pmem_off;
187
188         if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
189                 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
190
191                 if (rc != BLK_STS_OK)
192                         return rc;
193         }
194
195         flush_dcache_page(page);
196         write_pmem(pmem_addr, page, page_off, len);
197
198         return BLK_STS_OK;
199 }
200
201 static void pmem_submit_bio(struct bio *bio)
202 {
203         int ret = 0;
204         blk_status_t rc = 0;
205         bool do_acct;
206         unsigned long start;
207         struct bio_vec bvec;
208         struct bvec_iter iter;
209         struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
210         struct nd_region *nd_region = to_region(pmem);
211
212         if (bio->bi_opf & REQ_PREFLUSH)
213                 ret = nvdimm_flush(nd_region, bio);
214
215         do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
216         if (do_acct)
217                 start = bio_start_io_acct(bio);
218         bio_for_each_segment(bvec, bio, iter) {
219                 if (op_is_write(bio_op(bio)))
220                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
221                                 iter.bi_sector, bvec.bv_len);
222                 else
223                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
224                                 iter.bi_sector, bvec.bv_len);
225                 if (rc) {
226                         bio->bi_status = rc;
227                         break;
228                 }
229         }
230         if (do_acct)
231                 bio_end_io_acct(bio, start);
232
233         if (bio->bi_opf & REQ_FUA)
234                 ret = nvdimm_flush(nd_region, bio);
235
236         if (ret)
237                 bio->bi_status = errno_to_blk_status(ret);
238
239         bio_endio(bio);
240 }
241
242 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
243 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
244                 long nr_pages, enum dax_access_mode mode, void **kaddr,
245                 pfn_t *pfn)
246 {
247         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
248         sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
249         unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
250         struct badblocks *bb = &pmem->bb;
251         sector_t first_bad;
252         int num_bad;
253
254         if (kaddr)
255                 *kaddr = pmem->virt_addr + offset;
256         if (pfn)
257                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
258
259         if (bb->count &&
260             badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
261                 long actual_nr;
262
263                 if (mode != DAX_RECOVERY_WRITE)
264                         return -EHWPOISON;
265
266                 /*
267                  * Set the recovery stride is set to kernel page size because
268                  * the underlying driver and firmware clear poison functions
269                  * don't appear to handle large chunk(such as 2MiB) reliably.
270                  */
271                 actual_nr = PHYS_PFN(
272                         PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
273                 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
274                                 sector, nr_pages, first_bad, actual_nr);
275                 if (actual_nr)
276                         return actual_nr;
277                 return 1;
278         }
279
280         /*
281          * If badblocks are present but not in the range, limit known good range
282          * to the requested range.
283          */
284         if (bb->count)
285                 return nr_pages;
286         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
287 }
288
289 static const struct block_device_operations pmem_fops = {
290         .owner =                THIS_MODULE,
291         .submit_bio =           pmem_submit_bio,
292 };
293
294 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
295                                     size_t nr_pages)
296 {
297         struct pmem_device *pmem = dax_get_private(dax_dev);
298
299         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
300                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
301                                    PAGE_SIZE));
302 }
303
304 static long pmem_dax_direct_access(struct dax_device *dax_dev,
305                 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
306                 void **kaddr, pfn_t *pfn)
307 {
308         struct pmem_device *pmem = dax_get_private(dax_dev);
309
310         return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
311 }
312
313 /*
314  * The recovery write thread started out as a normal pwrite thread and
315  * when the filesystem was told about potential media error in the
316  * range, filesystem turns the normal pwrite to a dax_recovery_write.
317  *
318  * The recovery write consists of clearing media poison, clearing page
319  * HWPoison bit, reenable page-wide read-write permission, flush the
320  * caches and finally write.  A competing pread thread will be held
321  * off during the recovery process since data read back might not be
322  * valid, and this is achieved by clearing the badblock records after
323  * the recovery write is complete. Competing recovery write threads
324  * are already serialized by writer lock held by dax_iomap_rw().
325  */
326 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
327                 void *addr, size_t bytes, struct iov_iter *i)
328 {
329         struct pmem_device *pmem = dax_get_private(dax_dev);
330         size_t olen, len, off;
331         phys_addr_t pmem_off;
332         struct device *dev = pmem->bb.dev;
333         long cleared;
334
335         off = offset_in_page(addr);
336         len = PFN_PHYS(PFN_UP(off + bytes));
337         if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
338                 return _copy_from_iter_flushcache(addr, bytes, i);
339
340         /*
341          * Not page-aligned range cannot be recovered. This should not
342          * happen unless something else went wrong.
343          */
344         if (off || !PAGE_ALIGNED(bytes)) {
345                 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
346                         addr, bytes);
347                 return 0;
348         }
349
350         pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
351         cleared = __pmem_clear_poison(pmem, pmem_off, len);
352         if (cleared > 0 && cleared < len) {
353                 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
354                         cleared, len);
355                 return 0;
356         }
357         if (cleared < 0) {
358                 dev_dbg(dev, "poison clear failed: %ld\n", cleared);
359                 return 0;
360         }
361
362         olen = _copy_from_iter_flushcache(addr, bytes, i);
363         pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
364
365         return olen;
366 }
367
368 static const struct dax_operations pmem_dax_ops = {
369         .direct_access = pmem_dax_direct_access,
370         .zero_page_range = pmem_dax_zero_page_range,
371         .recovery_write = pmem_recovery_write,
372 };
373
374 static ssize_t write_cache_show(struct device *dev,
375                 struct device_attribute *attr, char *buf)
376 {
377         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
378
379         return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
380 }
381
382 static ssize_t write_cache_store(struct device *dev,
383                 struct device_attribute *attr, const char *buf, size_t len)
384 {
385         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
386         bool write_cache;
387         int rc;
388
389         rc = kstrtobool(buf, &write_cache);
390         if (rc)
391                 return rc;
392         dax_write_cache(pmem->dax_dev, write_cache);
393         return len;
394 }
395 static DEVICE_ATTR_RW(write_cache);
396
397 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
398 {
399 #ifndef CONFIG_ARCH_HAS_PMEM_API
400         if (a == &dev_attr_write_cache.attr)
401                 return 0;
402 #endif
403         return a->mode;
404 }
405
406 static struct attribute *dax_attributes[] = {
407         &dev_attr_write_cache.attr,
408         NULL,
409 };
410
411 static const struct attribute_group dax_attribute_group = {
412         .name           = "dax",
413         .attrs          = dax_attributes,
414         .is_visible     = dax_visible,
415 };
416
417 static const struct attribute_group *pmem_attribute_groups[] = {
418         &dax_attribute_group,
419         NULL,
420 };
421
422 static void pmem_release_disk(void *__pmem)
423 {
424         struct pmem_device *pmem = __pmem;
425
426         dax_remove_host(pmem->disk);
427         kill_dax(pmem->dax_dev);
428         put_dax(pmem->dax_dev);
429         del_gendisk(pmem->disk);
430
431         put_disk(pmem->disk);
432 }
433
434 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
435                 unsigned long pfn, unsigned long nr_pages, int mf_flags)
436 {
437         struct pmem_device *pmem =
438                         container_of(pgmap, struct pmem_device, pgmap);
439         u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
440         u64 len = nr_pages << PAGE_SHIFT;
441
442         return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
443 }
444
445 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
446         .memory_failure         = pmem_pagemap_memory_failure,
447 };
448
449 static int pmem_attach_disk(struct device *dev,
450                 struct nd_namespace_common *ndns)
451 {
452         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
453         struct nd_region *nd_region = to_nd_region(dev->parent);
454         struct queue_limits lim = {
455                 .logical_block_size     = pmem_sector_size(ndns),
456                 .physical_block_size    = PAGE_SIZE,
457                 .max_hw_sectors         = UINT_MAX,
458         };
459         int nid = dev_to_node(dev), fua;
460         struct resource *res = &nsio->res;
461         struct range bb_range;
462         struct nd_pfn *nd_pfn = NULL;
463         struct dax_device *dax_dev;
464         struct nd_pfn_sb *pfn_sb;
465         struct pmem_device *pmem;
466         struct request_queue *q;
467         struct gendisk *disk;
468         void *addr;
469         int rc;
470
471         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
472         if (!pmem)
473                 return -ENOMEM;
474
475         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
476         if (rc)
477                 return rc;
478
479         /* while nsio_rw_bytes is active, parse a pfn info block if present */
480         if (is_nd_pfn(dev)) {
481                 nd_pfn = to_nd_pfn(dev);
482                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
483                 if (rc)
484                         return rc;
485         }
486
487         /* we're attaching a block device, disable raw namespace access */
488         devm_namespace_disable(dev, ndns);
489
490         dev_set_drvdata(dev, pmem);
491         pmem->phys_addr = res->start;
492         pmem->size = resource_size(res);
493         fua = nvdimm_has_flush(nd_region);
494         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
495                 dev_warn(dev, "unable to guarantee persistence of writes\n");
496                 fua = 0;
497         }
498
499         if (!devm_request_mem_region(dev, res->start, resource_size(res),
500                                 dev_name(&ndns->dev))) {
501                 dev_warn(dev, "could not reserve region %pR\n", res);
502                 return -EBUSY;
503         }
504
505         disk = blk_alloc_disk(&lim, nid);
506         if (IS_ERR(disk))
507                 return PTR_ERR(disk);
508         q = disk->queue;
509
510         pmem->disk = disk;
511         pmem->pgmap.owner = pmem;
512         pmem->pfn_flags = PFN_DEV;
513         if (is_nd_pfn(dev)) {
514                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
515                 pmem->pgmap.ops = &fsdax_pagemap_ops;
516                 addr = devm_memremap_pages(dev, &pmem->pgmap);
517                 pfn_sb = nd_pfn->pfn_sb;
518                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
519                 pmem->pfn_pad = resource_size(res) -
520                         range_len(&pmem->pgmap.range);
521                 pmem->pfn_flags |= PFN_MAP;
522                 bb_range = pmem->pgmap.range;
523                 bb_range.start += pmem->data_offset;
524         } else if (pmem_should_map_pages(dev)) {
525                 pmem->pgmap.range.start = res->start;
526                 pmem->pgmap.range.end = res->end;
527                 pmem->pgmap.nr_range = 1;
528                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
529                 pmem->pgmap.ops = &fsdax_pagemap_ops;
530                 addr = devm_memremap_pages(dev, &pmem->pgmap);
531                 pmem->pfn_flags |= PFN_MAP;
532                 bb_range = pmem->pgmap.range;
533         } else {
534                 addr = devm_memremap(dev, pmem->phys_addr,
535                                 pmem->size, ARCH_MEMREMAP_PMEM);
536                 bb_range.start =  res->start;
537                 bb_range.end = res->end;
538         }
539
540         if (IS_ERR(addr)) {
541                 rc = PTR_ERR(addr);
542                 goto out;
543         }
544         pmem->virt_addr = addr;
545
546         blk_queue_write_cache(q, true, fua);
547         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
548         blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q);
549         if (pmem->pfn_flags & PFN_MAP)
550                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
551
552         disk->fops              = &pmem_fops;
553         disk->private_data      = pmem;
554         nvdimm_namespace_disk_name(ndns, disk->disk_name);
555         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
556                         / 512);
557         if (devm_init_badblocks(dev, &pmem->bb))
558                 return -ENOMEM;
559         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
560         disk->bb = &pmem->bb;
561
562         dax_dev = alloc_dax(pmem, &pmem_dax_ops);
563         if (IS_ERR(dax_dev)) {
564                 rc = PTR_ERR(dax_dev);
565                 if (rc != -EOPNOTSUPP)
566                         goto out;
567         } else {
568                 set_dax_nocache(dax_dev);
569                 set_dax_nomc(dax_dev);
570                 if (is_nvdimm_sync(nd_region))
571                         set_dax_synchronous(dax_dev);
572                 pmem->dax_dev = dax_dev;
573                 rc = dax_add_host(dax_dev, disk);
574                 if (rc)
575                         goto out_cleanup_dax;
576                 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
577         }
578         rc = device_add_disk(dev, disk, pmem_attribute_groups);
579         if (rc)
580                 goto out_remove_host;
581         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
582                 return -ENOMEM;
583
584         nvdimm_check_and_set_ro(disk);
585
586         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
587                                           "badblocks");
588         if (!pmem->bb_state)
589                 dev_warn(dev, "'badblocks' notification disabled\n");
590         return 0;
591
592 out_remove_host:
593         dax_remove_host(pmem->disk);
594 out_cleanup_dax:
595         kill_dax(pmem->dax_dev);
596         put_dax(pmem->dax_dev);
597 out:
598         put_disk(pmem->disk);
599         return rc;
600 }
601
602 static int nd_pmem_probe(struct device *dev)
603 {
604         int ret;
605         struct nd_namespace_common *ndns;
606
607         ndns = nvdimm_namespace_common_probe(dev);
608         if (IS_ERR(ndns))
609                 return PTR_ERR(ndns);
610
611         if (is_nd_btt(dev))
612                 return nvdimm_namespace_attach_btt(ndns);
613
614         if (is_nd_pfn(dev))
615                 return pmem_attach_disk(dev, ndns);
616
617         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
618         if (ret)
619                 return ret;
620
621         ret = nd_btt_probe(dev, ndns);
622         if (ret == 0)
623                 return -ENXIO;
624
625         /*
626          * We have two failure conditions here, there is no
627          * info reserver block or we found a valid info reserve block
628          * but failed to initialize the pfn superblock.
629          *
630          * For the first case consider namespace as a raw pmem namespace
631          * and attach a disk.
632          *
633          * For the latter, consider this a success and advance the namespace
634          * seed.
635          */
636         ret = nd_pfn_probe(dev, ndns);
637         if (ret == 0)
638                 return -ENXIO;
639         else if (ret == -EOPNOTSUPP)
640                 return ret;
641
642         ret = nd_dax_probe(dev, ndns);
643         if (ret == 0)
644                 return -ENXIO;
645         else if (ret == -EOPNOTSUPP)
646                 return ret;
647
648         /* probe complete, attach handles namespace enabling */
649         devm_namespace_disable(dev, ndns);
650
651         return pmem_attach_disk(dev, ndns);
652 }
653
654 static void nd_pmem_remove(struct device *dev)
655 {
656         struct pmem_device *pmem = dev_get_drvdata(dev);
657
658         if (is_nd_btt(dev))
659                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
660         else {
661                 /*
662                  * Note, this assumes device_lock() context to not
663                  * race nd_pmem_notify()
664                  */
665                 sysfs_put(pmem->bb_state);
666                 pmem->bb_state = NULL;
667         }
668         nvdimm_flush(to_nd_region(dev->parent), NULL);
669 }
670
671 static void nd_pmem_shutdown(struct device *dev)
672 {
673         nvdimm_flush(to_nd_region(dev->parent), NULL);
674 }
675
676 static void pmem_revalidate_poison(struct device *dev)
677 {
678         struct nd_region *nd_region;
679         resource_size_t offset = 0, end_trunc = 0;
680         struct nd_namespace_common *ndns;
681         struct nd_namespace_io *nsio;
682         struct badblocks *bb;
683         struct range range;
684         struct kernfs_node *bb_state;
685
686         if (is_nd_btt(dev)) {
687                 struct nd_btt *nd_btt = to_nd_btt(dev);
688
689                 ndns = nd_btt->ndns;
690                 nd_region = to_nd_region(ndns->dev.parent);
691                 nsio = to_nd_namespace_io(&ndns->dev);
692                 bb = &nsio->bb;
693                 bb_state = NULL;
694         } else {
695                 struct pmem_device *pmem = dev_get_drvdata(dev);
696
697                 nd_region = to_region(pmem);
698                 bb = &pmem->bb;
699                 bb_state = pmem->bb_state;
700
701                 if (is_nd_pfn(dev)) {
702                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
703                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
704
705                         ndns = nd_pfn->ndns;
706                         offset = pmem->data_offset +
707                                         __le32_to_cpu(pfn_sb->start_pad);
708                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
709                 } else {
710                         ndns = to_ndns(dev);
711                 }
712
713                 nsio = to_nd_namespace_io(&ndns->dev);
714         }
715
716         range.start = nsio->res.start + offset;
717         range.end = nsio->res.end - end_trunc;
718         nvdimm_badblocks_populate(nd_region, bb, &range);
719         if (bb_state)
720                 sysfs_notify_dirent(bb_state);
721 }
722
723 static void pmem_revalidate_region(struct device *dev)
724 {
725         struct pmem_device *pmem;
726
727         if (is_nd_btt(dev)) {
728                 struct nd_btt *nd_btt = to_nd_btt(dev);
729                 struct btt *btt = nd_btt->btt;
730
731                 nvdimm_check_and_set_ro(btt->btt_disk);
732                 return;
733         }
734
735         pmem = dev_get_drvdata(dev);
736         nvdimm_check_and_set_ro(pmem->disk);
737 }
738
739 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
740 {
741         switch (event) {
742         case NVDIMM_REVALIDATE_POISON:
743                 pmem_revalidate_poison(dev);
744                 break;
745         case NVDIMM_REVALIDATE_REGION:
746                 pmem_revalidate_region(dev);
747                 break;
748         default:
749                 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
750                 break;
751         }
752 }
753
754 MODULE_ALIAS("pmem");
755 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
756 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
757 static struct nd_device_driver nd_pmem_driver = {
758         .probe = nd_pmem_probe,
759         .remove = nd_pmem_remove,
760         .notify = nd_pmem_notify,
761         .shutdown = nd_pmem_shutdown,
762         .drv = {
763                 .name = "nd_pmem",
764         },
765         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
766 };
767
768 module_nd_driver(nd_pmem_driver);
769
770 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
771 MODULE_LICENSE("GPL v2");