Merge branches 'pm-cpufreq' and 'pm-cpuidle'
[sfrench/cifs-2.6.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38         struct nd_namespace_common *ndns;
39
40         /* One contiguous memory region per device */
41         phys_addr_t             phys_addr;
42         /* when non-zero this device is hosting a 'pfn' instance */
43         phys_addr_t             data_offset;
44         u64                     pfn_flags;
45         void __pmem             *virt_addr;
46         size_t                  size;
47         struct badblocks        bb;
48 };
49
50 static int pmem_major;
51
52 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
53 {
54         if (bb->count) {
55                 sector_t first_bad;
56                 int num_bad;
57
58                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
59                                 &num_bad);
60         }
61
62         return false;
63 }
64
65 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
66                         unsigned int len, unsigned int off, int rw,
67                         sector_t sector)
68 {
69         void *mem = kmap_atomic(page);
70         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
71         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
72
73         if (rw == READ) {
74                 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
75                         return -EIO;
76                 memcpy_from_pmem(mem + off, pmem_addr, len);
77                 flush_dcache_page(page);
78         } else {
79                 flush_dcache_page(page);
80                 memcpy_to_pmem(pmem_addr, mem + off, len);
81         }
82
83         kunmap_atomic(mem);
84         return 0;
85 }
86
87 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
88 {
89         int rc = 0;
90         bool do_acct;
91         unsigned long start;
92         struct bio_vec bvec;
93         struct bvec_iter iter;
94         struct block_device *bdev = bio->bi_bdev;
95         struct pmem_device *pmem = bdev->bd_disk->private_data;
96
97         do_acct = nd_iostat_start(bio, &start);
98         bio_for_each_segment(bvec, bio, iter) {
99                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
100                                 bvec.bv_offset, bio_data_dir(bio),
101                                 iter.bi_sector);
102                 if (rc) {
103                         bio->bi_error = rc;
104                         break;
105                 }
106         }
107         if (do_acct)
108                 nd_iostat_end(bio, start);
109
110         if (bio_data_dir(bio))
111                 wmb_pmem();
112
113         bio_endio(bio);
114         return BLK_QC_T_NONE;
115 }
116
117 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
118                        struct page *page, int rw)
119 {
120         struct pmem_device *pmem = bdev->bd_disk->private_data;
121         int rc;
122
123         rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
124         if (rw & WRITE)
125                 wmb_pmem();
126
127         /*
128          * The ->rw_page interface is subtle and tricky.  The core
129          * retries on any error, so we can only invoke page_endio() in
130          * the successful completion case.  Otherwise, we'll see crashes
131          * caused by double completion.
132          */
133         if (rc == 0)
134                 page_endio(page, rw & WRITE, 0);
135
136         return rc;
137 }
138
139 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
140                       void __pmem **kaddr, pfn_t *pfn)
141 {
142         struct pmem_device *pmem = bdev->bd_disk->private_data;
143         resource_size_t offset = sector * 512 + pmem->data_offset;
144
145         *kaddr = pmem->virt_addr + offset;
146         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
147
148         return pmem->size - offset;
149 }
150
151 static const struct block_device_operations pmem_fops = {
152         .owner =                THIS_MODULE,
153         .rw_page =              pmem_rw_page,
154         .direct_access =        pmem_direct_access,
155         .revalidate_disk =      nvdimm_revalidate_disk,
156 };
157
158 static struct pmem_device *pmem_alloc(struct device *dev,
159                 struct resource *res, int id)
160 {
161         struct pmem_device *pmem;
162         struct request_queue *q;
163
164         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
165         if (!pmem)
166                 return ERR_PTR(-ENOMEM);
167
168         pmem->phys_addr = res->start;
169         pmem->size = resource_size(res);
170         if (!arch_has_wmb_pmem())
171                 dev_warn(dev, "unable to guarantee persistence of writes\n");
172
173         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
174                         dev_name(dev))) {
175                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
176                                 &pmem->phys_addr, pmem->size);
177                 return ERR_PTR(-EBUSY);
178         }
179
180         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
181         if (!q)
182                 return ERR_PTR(-ENOMEM);
183
184         pmem->pfn_flags = PFN_DEV;
185         if (pmem_should_map_pages(dev)) {
186                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
187                                 &q->q_usage_counter, NULL);
188                 pmem->pfn_flags |= PFN_MAP;
189         } else
190                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
191                                 pmem->phys_addr, pmem->size,
192                                 ARCH_MEMREMAP_PMEM);
193
194         if (IS_ERR(pmem->virt_addr)) {
195                 blk_cleanup_queue(q);
196                 return (void __force *) pmem->virt_addr;
197         }
198
199         pmem->pmem_queue = q;
200         return pmem;
201 }
202
203 static void pmem_detach_disk(struct pmem_device *pmem)
204 {
205         if (!pmem->pmem_disk)
206                 return;
207
208         del_gendisk(pmem->pmem_disk);
209         put_disk(pmem->pmem_disk);
210         blk_cleanup_queue(pmem->pmem_queue);
211 }
212
213 static int pmem_attach_disk(struct device *dev,
214                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
215 {
216         int nid = dev_to_node(dev);
217         struct gendisk *disk;
218
219         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
220         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
221         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
222         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
223         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
224
225         disk = alloc_disk_node(0, nid);
226         if (!disk) {
227                 blk_cleanup_queue(pmem->pmem_queue);
228                 return -ENOMEM;
229         }
230
231         disk->major             = pmem_major;
232         disk->first_minor       = 0;
233         disk->fops              = &pmem_fops;
234         disk->private_data      = pmem;
235         disk->queue             = pmem->pmem_queue;
236         disk->flags             = GENHD_FL_EXT_DEVT;
237         nvdimm_namespace_disk_name(ndns, disk->disk_name);
238         disk->driverfs_dev = dev;
239         set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
240         pmem->pmem_disk = disk;
241         devm_exit_badblocks(dev, &pmem->bb);
242         if (devm_init_badblocks(dev, &pmem->bb))
243                 return -ENOMEM;
244         nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
245
246         disk->bb = &pmem->bb;
247         add_disk(disk);
248         revalidate_disk(disk);
249
250         return 0;
251 }
252
253 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
254                 resource_size_t offset, void *buf, size_t size, int rw)
255 {
256         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
257
258         if (unlikely(offset + size > pmem->size)) {
259                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
260                 return -EFAULT;
261         }
262
263         if (rw == READ) {
264                 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
265
266                 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
267                         return -EIO;
268                 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
269         } else {
270                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
271                 wmb_pmem();
272         }
273
274         return 0;
275 }
276
277 static int nd_pfn_init(struct nd_pfn *nd_pfn)
278 {
279         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
280         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
281         struct nd_namespace_common *ndns = nd_pfn->ndns;
282         struct nd_region *nd_region;
283         unsigned long npfns;
284         phys_addr_t offset;
285         u64 checksum;
286         int rc;
287
288         if (!pfn_sb)
289                 return -ENOMEM;
290
291         nd_pfn->pfn_sb = pfn_sb;
292         rc = nd_pfn_validate(nd_pfn);
293         if (rc == -ENODEV)
294                 /* no info block, do init */;
295         else
296                 return rc;
297
298         nd_region = to_nd_region(nd_pfn->dev.parent);
299         if (nd_region->ro) {
300                 dev_info(&nd_pfn->dev,
301                                 "%s is read-only, unable to init metadata\n",
302                                 dev_name(&nd_region->dev));
303                 goto err;
304         }
305
306         memset(pfn_sb, 0, sizeof(*pfn_sb));
307         npfns = (pmem->size - SZ_8K) / SZ_4K;
308         /*
309          * Note, we use 64 here for the standard size of struct page,
310          * debugging options may cause it to be larger in which case the
311          * implementation will limit the pfns advertised through
312          * ->direct_access() to those that are included in the memmap.
313          */
314         if (nd_pfn->mode == PFN_MODE_PMEM)
315                 offset = ALIGN(SZ_8K + 64 * npfns, nd_pfn->align);
316         else if (nd_pfn->mode == PFN_MODE_RAM)
317                 offset = ALIGN(SZ_8K, nd_pfn->align);
318         else
319                 goto err;
320
321         npfns = (pmem->size - offset) / SZ_4K;
322         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
323         pfn_sb->dataoff = cpu_to_le64(offset);
324         pfn_sb->npfns = cpu_to_le64(npfns);
325         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
326         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
327         memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
328         pfn_sb->version_major = cpu_to_le16(1);
329         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
330         pfn_sb->checksum = cpu_to_le64(checksum);
331
332         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
333         if (rc)
334                 goto err;
335
336         return 0;
337  err:
338         nd_pfn->pfn_sb = NULL;
339         kfree(pfn_sb);
340         return -ENXIO;
341 }
342
343 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
344 {
345         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
346         struct pmem_device *pmem;
347
348         /* free pmem disk */
349         pmem = dev_get_drvdata(&nd_pfn->dev);
350         pmem_detach_disk(pmem);
351
352         /* release nd_pfn resources */
353         kfree(nd_pfn->pfn_sb);
354         nd_pfn->pfn_sb = NULL;
355
356         return 0;
357 }
358
359 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
360 {
361         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
362         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
363         struct device *dev = &nd_pfn->dev;
364         struct nd_region *nd_region;
365         struct vmem_altmap *altmap;
366         struct nd_pfn_sb *pfn_sb;
367         struct pmem_device *pmem;
368         struct request_queue *q;
369         phys_addr_t offset;
370         int rc;
371         struct vmem_altmap __altmap = {
372                 .base_pfn = __phys_to_pfn(nsio->res.start),
373                 .reserve = __phys_to_pfn(SZ_8K),
374         };
375
376         if (!nd_pfn->uuid || !nd_pfn->ndns)
377                 return -ENODEV;
378
379         nd_region = to_nd_region(dev->parent);
380         rc = nd_pfn_init(nd_pfn);
381         if (rc)
382                 return rc;
383
384         pfn_sb = nd_pfn->pfn_sb;
385         offset = le64_to_cpu(pfn_sb->dataoff);
386         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
387         if (nd_pfn->mode == PFN_MODE_RAM) {
388                 if (offset < SZ_8K)
389                         return -EINVAL;
390                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
391                 altmap = NULL;
392         } else if (nd_pfn->mode == PFN_MODE_PMEM) {
393                 nd_pfn->npfns = (resource_size(&nsio->res) - offset)
394                         / PAGE_SIZE;
395                 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
396                         dev_info(&nd_pfn->dev,
397                                         "number of pfns truncated from %lld to %ld\n",
398                                         le64_to_cpu(nd_pfn->pfn_sb->npfns),
399                                         nd_pfn->npfns);
400                 altmap = & __altmap;
401                 altmap->free = __phys_to_pfn(offset - SZ_8K);
402                 altmap->alloc = 0;
403         } else {
404                 rc = -ENXIO;
405                 goto err;
406         }
407
408         /* establish pfn range for lookup, and switch to direct map */
409         pmem = dev_get_drvdata(dev);
410         q = pmem->pmem_queue;
411         devm_memunmap(dev, (void __force *) pmem->virt_addr);
412         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res,
413                         &q->q_usage_counter, altmap);
414         pmem->pfn_flags |= PFN_MAP;
415         if (IS_ERR(pmem->virt_addr)) {
416                 rc = PTR_ERR(pmem->virt_addr);
417                 goto err;
418         }
419
420         /* attach pmem disk in "pfn-mode" */
421         pmem->data_offset = offset;
422         rc = pmem_attach_disk(dev, ndns, pmem);
423         if (rc)
424                 goto err;
425
426         return rc;
427  err:
428         nvdimm_namespace_detach_pfn(ndns);
429         return rc;
430 }
431
432 static int nd_pmem_probe(struct device *dev)
433 {
434         struct nd_region *nd_region = to_nd_region(dev->parent);
435         struct nd_namespace_common *ndns;
436         struct nd_namespace_io *nsio;
437         struct pmem_device *pmem;
438
439         ndns = nvdimm_namespace_common_probe(dev);
440         if (IS_ERR(ndns))
441                 return PTR_ERR(ndns);
442
443         nsio = to_nd_namespace_io(&ndns->dev);
444         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
445         if (IS_ERR(pmem))
446                 return PTR_ERR(pmem);
447
448         pmem->ndns = ndns;
449         dev_set_drvdata(dev, pmem);
450         ndns->rw_bytes = pmem_rw_bytes;
451         if (devm_init_badblocks(dev, &pmem->bb))
452                 return -ENOMEM;
453         nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
454
455         if (is_nd_btt(dev)) {
456                 /* btt allocates its own request_queue */
457                 blk_cleanup_queue(pmem->pmem_queue);
458                 pmem->pmem_queue = NULL;
459                 return nvdimm_namespace_attach_btt(ndns);
460         }
461
462         if (is_nd_pfn(dev))
463                 return nvdimm_namespace_attach_pfn(ndns);
464
465         if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
466                 /*
467                  * We'll come back as either btt-pmem, or pfn-pmem, so
468                  * drop the queue allocation for now.
469                  */
470                 blk_cleanup_queue(pmem->pmem_queue);
471                 return -ENXIO;
472         }
473
474         return pmem_attach_disk(dev, ndns, pmem);
475 }
476
477 static int nd_pmem_remove(struct device *dev)
478 {
479         struct pmem_device *pmem = dev_get_drvdata(dev);
480
481         if (is_nd_btt(dev))
482                 nvdimm_namespace_detach_btt(pmem->ndns);
483         else if (is_nd_pfn(dev))
484                 nvdimm_namespace_detach_pfn(pmem->ndns);
485         else
486                 pmem_detach_disk(pmem);
487
488         return 0;
489 }
490
491 MODULE_ALIAS("pmem");
492 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
493 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
494 static struct nd_device_driver nd_pmem_driver = {
495         .probe = nd_pmem_probe,
496         .remove = nd_pmem_remove,
497         .drv = {
498                 .name = "nd_pmem",
499         },
500         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
501 };
502
503 static int __init pmem_init(void)
504 {
505         int error;
506
507         pmem_major = register_blkdev(0, "pmem");
508         if (pmem_major < 0)
509                 return pmem_major;
510
511         error = nd_driver_register(&nd_pmem_driver);
512         if (error) {
513                 unregister_blkdev(pmem_major, "pmem");
514                 return error;
515         }
516
517         return 0;
518 }
519 module_init(pmem_init);
520
521 static void pmem_exit(void)
522 {
523         driver_unregister(&nd_pmem_driver.drv);
524         unregister_blkdev(pmem_major, "pmem");
525 }
526 module_exit(pmem_exit);
527
528 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
529 MODULE_LICENSE("GPL v2");