Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[sfrench/cifs-2.6.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         /* ZD1211B */
51         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
52         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
53         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
54         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
55         /* "Driverless" devices that need ejecting */
56         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
57         {}
58 };
59
60 MODULE_LICENSE("GPL");
61 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
62 MODULE_AUTHOR("Ulrich Kunitz");
63 MODULE_AUTHOR("Daniel Drake");
64 MODULE_VERSION("1.0");
65 MODULE_DEVICE_TABLE(usb, usb_ids);
66
67 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
68 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
69
70 /* register address handling */
71
72 #ifdef DEBUG
73 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
74 {
75         u32 base = ZD_ADDR_BASE(addr);
76         u32 offset = ZD_OFFSET(addr);
77
78         if ((u32)addr & ADDR_ZERO_MASK)
79                 goto invalid_address;
80         switch (base) {
81         case USB_BASE:
82                 break;
83         case CR_BASE:
84                 if (offset > CR_MAX_OFFSET) {
85                         dev_dbg(zd_usb_dev(usb),
86                                 "CR offset %#010x larger than"
87                                 " CR_MAX_OFFSET %#10x\n",
88                                 offset, CR_MAX_OFFSET);
89                         goto invalid_address;
90                 }
91                 if (offset & 1) {
92                         dev_dbg(zd_usb_dev(usb),
93                                 "CR offset %#010x is not a multiple of 2\n",
94                                 offset);
95                         goto invalid_address;
96                 }
97                 break;
98         case E2P_BASE:
99                 if (offset > E2P_MAX_OFFSET) {
100                         dev_dbg(zd_usb_dev(usb),
101                                 "E2P offset %#010x larger than"
102                                 " E2P_MAX_OFFSET %#010x\n",
103                                 offset, E2P_MAX_OFFSET);
104                         goto invalid_address;
105                 }
106                 break;
107         case FW_BASE:
108                 if (!usb->fw_base_offset) {
109                         dev_dbg(zd_usb_dev(usb),
110                                "ERROR: fw base offset has not been set\n");
111                         return -EAGAIN;
112                 }
113                 if (offset > FW_MAX_OFFSET) {
114                         dev_dbg(zd_usb_dev(usb),
115                                 "FW offset %#10x is larger than"
116                                 " FW_MAX_OFFSET %#010x\n",
117                                 offset, FW_MAX_OFFSET);
118                         goto invalid_address;
119                 }
120                 break;
121         default:
122                 dev_dbg(zd_usb_dev(usb),
123                         "address has unsupported base %#010x\n", addr);
124                 goto invalid_address;
125         }
126
127         return 0;
128 invalid_address:
129         dev_dbg(zd_usb_dev(usb),
130                 "ERROR: invalid address: %#010x\n", addr);
131         return -EINVAL;
132 }
133 #endif /* DEBUG */
134
135 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
136 {
137         u32 base;
138         u16 offset;
139
140         base = ZD_ADDR_BASE(addr);
141         offset = ZD_OFFSET(addr);
142
143         ZD_ASSERT(check_addr(usb, addr) == 0);
144
145         switch (base) {
146         case CR_BASE:
147                 offset += CR_BASE_OFFSET;
148                 break;
149         case E2P_BASE:
150                 offset += E2P_BASE_OFFSET;
151                 break;
152         case FW_BASE:
153                 offset += usb->fw_base_offset;
154                 break;
155         }
156
157         return offset;
158 }
159
160 /* USB device initialization */
161
162 static int request_fw_file(
163         const struct firmware **fw, const char *name, struct device *device)
164 {
165         int r;
166
167         dev_dbg_f(device, "fw name %s\n", name);
168
169         r = request_firmware(fw, name, device);
170         if (r)
171                 dev_err(device,
172                        "Could not load firmware file %s. Error number %d\n",
173                        name, r);
174         return r;
175 }
176
177 static inline u16 get_bcdDevice(const struct usb_device *udev)
178 {
179         return le16_to_cpu(udev->descriptor.bcdDevice);
180 }
181
182 enum upload_code_flags {
183         REBOOT = 1,
184 };
185
186 /* Ensures that MAX_TRANSFER_SIZE is even. */
187 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
188
189 static int upload_code(struct usb_device *udev,
190         const u8 *data, size_t size, u16 code_offset, int flags)
191 {
192         u8 *p;
193         int r;
194
195         /* USB request blocks need "kmalloced" buffers.
196          */
197         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
198         if (!p) {
199                 dev_err(&udev->dev, "out of memory\n");
200                 r = -ENOMEM;
201                 goto error;
202         }
203
204         size &= ~1;
205         while (size > 0) {
206                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
207                         size : MAX_TRANSFER_SIZE;
208
209                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
210
211                 memcpy(p, data, transfer_size);
212                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
213                         USB_REQ_FIRMWARE_DOWNLOAD,
214                         USB_DIR_OUT | USB_TYPE_VENDOR,
215                         code_offset, 0, p, transfer_size, 1000 /* ms */);
216                 if (r < 0) {
217                         dev_err(&udev->dev,
218                                "USB control request for firmware upload"
219                                " failed. Error number %d\n", r);
220                         goto error;
221                 }
222                 transfer_size = r & ~1;
223
224                 size -= transfer_size;
225                 data += transfer_size;
226                 code_offset += transfer_size/sizeof(u16);
227         }
228
229         if (flags & REBOOT) {
230                 u8 ret;
231
232                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
233                         USB_REQ_FIRMWARE_CONFIRM,
234                         USB_DIR_IN | USB_TYPE_VENDOR,
235                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
236                 if (r != sizeof(ret)) {
237                         dev_err(&udev->dev,
238                                 "control request firmeware confirmation failed."
239                                 " Return value %d\n", r);
240                         if (r >= 0)
241                                 r = -ENODEV;
242                         goto error;
243                 }
244                 if (ret & 0x80) {
245                         dev_err(&udev->dev,
246                                 "Internal error while downloading."
247                                 " Firmware confirm return value %#04x\n",
248                                 (unsigned int)ret);
249                         r = -ENODEV;
250                         goto error;
251                 }
252                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
253                         (unsigned int)ret);
254         }
255
256         r = 0;
257 error:
258         kfree(p);
259         return r;
260 }
261
262 static u16 get_word(const void *data, u16 offset)
263 {
264         const __le16 *p = data;
265         return le16_to_cpu(p[offset]);
266 }
267
268 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
269                        const char* postfix)
270 {
271         scnprintf(buffer, size, "%s%s",
272                 device_type == DEVICE_ZD1211B ?
273                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
274                 postfix);
275         return buffer;
276 }
277
278 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
279         const struct firmware *ub_fw)
280 {
281         const struct firmware *ur_fw = NULL;
282         int offset;
283         int r = 0;
284         char fw_name[128];
285
286         r = request_fw_file(&ur_fw,
287                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
288                 &udev->dev);
289         if (r)
290                 goto error;
291
292         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
293                 REBOOT);
294         if (r)
295                 goto error;
296
297         offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
298         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
299                 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
300
301         /* At this point, the vendor driver downloads the whole firmware
302          * image, hacks around with version IDs, and uploads it again,
303          * completely overwriting the boot code. We do not do this here as
304          * it is not required on any tested devices, and it is suspected to
305          * cause problems. */
306 error:
307         release_firmware(ur_fw);
308         return r;
309 }
310
311 static int upload_firmware(struct usb_device *udev, u8 device_type)
312 {
313         int r;
314         u16 fw_bcdDevice;
315         u16 bcdDevice;
316         const struct firmware *ub_fw = NULL;
317         const struct firmware *uph_fw = NULL;
318         char fw_name[128];
319
320         bcdDevice = get_bcdDevice(udev);
321
322         r = request_fw_file(&ub_fw,
323                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
324                 &udev->dev);
325         if (r)
326                 goto error;
327
328         fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
329
330         if (fw_bcdDevice != bcdDevice) {
331                 dev_info(&udev->dev,
332                         "firmware version %#06x and device bootcode version "
333                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
334                 if (bcdDevice <= 0x4313)
335                         dev_warn(&udev->dev, "device has old bootcode, please "
336                                 "report success or failure\n");
337
338                 r = handle_version_mismatch(udev, device_type, ub_fw);
339                 if (r)
340                         goto error;
341         } else {
342                 dev_dbg_f(&udev->dev,
343                         "firmware device id %#06x is equal to the "
344                         "actual device id\n", fw_bcdDevice);
345         }
346
347
348         r = request_fw_file(&uph_fw,
349                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
350                 &udev->dev);
351         if (r)
352                 goto error;
353
354         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
355                         REBOOT);
356         if (r) {
357                 dev_err(&udev->dev,
358                         "Could not upload firmware code uph. Error number %d\n",
359                         r);
360         }
361
362         /* FALL-THROUGH */
363 error:
364         release_firmware(ub_fw);
365         release_firmware(uph_fw);
366         return r;
367 }
368
369 #define urb_dev(urb) (&(urb)->dev->dev)
370
371 static inline void handle_regs_int(struct urb *urb)
372 {
373         struct zd_usb *usb = urb->context;
374         struct zd_usb_interrupt *intr = &usb->intr;
375         int len;
376
377         ZD_ASSERT(in_interrupt());
378         spin_lock(&intr->lock);
379
380         if (intr->read_regs_enabled) {
381                 intr->read_regs.length = len = urb->actual_length;
382
383                 if (len > sizeof(intr->read_regs.buffer))
384                         len = sizeof(intr->read_regs.buffer);
385                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
386                 intr->read_regs_enabled = 0;
387                 complete(&intr->read_regs.completion);
388                 goto out;
389         }
390
391         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
392 out:
393         spin_unlock(&intr->lock);
394 }
395
396 static inline void handle_retry_failed_int(struct urb *urb)
397 {
398         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
399 }
400
401
402 static void int_urb_complete(struct urb *urb)
403 {
404         int r;
405         struct usb_int_header *hdr;
406
407         switch (urb->status) {
408         case 0:
409                 break;
410         case -ESHUTDOWN:
411         case -EINVAL:
412         case -ENODEV:
413         case -ENOENT:
414         case -ECONNRESET:
415         case -EPIPE:
416                 goto kfree;
417         default:
418                 goto resubmit;
419         }
420
421         if (urb->actual_length < sizeof(hdr)) {
422                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
423                 goto resubmit;
424         }
425
426         hdr = urb->transfer_buffer;
427         if (hdr->type != USB_INT_TYPE) {
428                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
429                 goto resubmit;
430         }
431
432         switch (hdr->id) {
433         case USB_INT_ID_REGS:
434                 handle_regs_int(urb);
435                 break;
436         case USB_INT_ID_RETRY_FAILED:
437                 handle_retry_failed_int(urb);
438                 break;
439         default:
440                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
441                         (unsigned int)hdr->id);
442                 goto resubmit;
443         }
444
445 resubmit:
446         r = usb_submit_urb(urb, GFP_ATOMIC);
447         if (r) {
448                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
449                 goto kfree;
450         }
451         return;
452 kfree:
453         kfree(urb->transfer_buffer);
454 }
455
456 static inline int int_urb_interval(struct usb_device *udev)
457 {
458         switch (udev->speed) {
459         case USB_SPEED_HIGH:
460                 return 4;
461         case USB_SPEED_LOW:
462                 return 10;
463         case USB_SPEED_FULL:
464         default:
465                 return 1;
466         }
467 }
468
469 static inline int usb_int_enabled(struct zd_usb *usb)
470 {
471         unsigned long flags;
472         struct zd_usb_interrupt *intr = &usb->intr;
473         struct urb *urb;
474
475         spin_lock_irqsave(&intr->lock, flags);
476         urb = intr->urb;
477         spin_unlock_irqrestore(&intr->lock, flags);
478         return urb != NULL;
479 }
480
481 int zd_usb_enable_int(struct zd_usb *usb)
482 {
483         int r;
484         struct usb_device *udev;
485         struct zd_usb_interrupt *intr = &usb->intr;
486         void *transfer_buffer = NULL;
487         struct urb *urb;
488
489         dev_dbg_f(zd_usb_dev(usb), "\n");
490
491         urb = usb_alloc_urb(0, GFP_NOFS);
492         if (!urb) {
493                 r = -ENOMEM;
494                 goto out;
495         }
496
497         ZD_ASSERT(!irqs_disabled());
498         spin_lock_irq(&intr->lock);
499         if (intr->urb) {
500                 spin_unlock_irq(&intr->lock);
501                 r = 0;
502                 goto error_free_urb;
503         }
504         intr->urb = urb;
505         spin_unlock_irq(&intr->lock);
506
507         /* TODO: make it a DMA buffer */
508         r = -ENOMEM;
509         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
510         if (!transfer_buffer) {
511                 dev_dbg_f(zd_usb_dev(usb),
512                         "couldn't allocate transfer_buffer\n");
513                 goto error_set_urb_null;
514         }
515
516         udev = zd_usb_to_usbdev(usb);
517         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
518                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
519                          int_urb_complete, usb,
520                          intr->interval);
521
522         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
523         r = usb_submit_urb(urb, GFP_NOFS);
524         if (r) {
525                 dev_dbg_f(zd_usb_dev(usb),
526                          "Couldn't submit urb. Error number %d\n", r);
527                 goto error;
528         }
529
530         return 0;
531 error:
532         kfree(transfer_buffer);
533 error_set_urb_null:
534         spin_lock_irq(&intr->lock);
535         intr->urb = NULL;
536         spin_unlock_irq(&intr->lock);
537 error_free_urb:
538         usb_free_urb(urb);
539 out:
540         return r;
541 }
542
543 void zd_usb_disable_int(struct zd_usb *usb)
544 {
545         unsigned long flags;
546         struct zd_usb_interrupt *intr = &usb->intr;
547         struct urb *urb;
548
549         spin_lock_irqsave(&intr->lock, flags);
550         urb = intr->urb;
551         if (!urb) {
552                 spin_unlock_irqrestore(&intr->lock, flags);
553                 return;
554         }
555         intr->urb = NULL;
556         spin_unlock_irqrestore(&intr->lock, flags);
557
558         usb_kill_urb(urb);
559         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
560         usb_free_urb(urb);
561 }
562
563 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
564                              unsigned int length)
565 {
566         int i;
567         struct zd_mac *mac = zd_usb_to_mac(usb);
568         const struct rx_length_info *length_info;
569
570         if (length < sizeof(struct rx_length_info)) {
571                 /* It's not a complete packet anyhow. */
572                 return;
573         }
574         length_info = (struct rx_length_info *)
575                 (buffer + length - sizeof(struct rx_length_info));
576
577         /* It might be that three frames are merged into a single URB
578          * transaction. We have to check for the length info tag.
579          *
580          * While testing we discovered that length_info might be unaligned,
581          * because if USB transactions are merged, the last packet will not
582          * be padded. Unaligned access might also happen if the length_info
583          * structure is not present.
584          */
585         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
586         {
587                 unsigned int l, k, n;
588                 for (i = 0, l = 0;; i++) {
589                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
590                         n = l+k;
591                         if (n > length)
592                                 return;
593                         zd_mac_rx(mac, buffer+l, k);
594                         if (i >= 2)
595                                 return;
596                         l = (n+3) & ~3;
597                 }
598         } else {
599                 zd_mac_rx(mac, buffer, length);
600         }
601 }
602
603 static void rx_urb_complete(struct urb *urb)
604 {
605         struct zd_usb *usb;
606         struct zd_usb_rx *rx;
607         const u8 *buffer;
608         unsigned int length;
609
610         switch (urb->status) {
611         case 0:
612                 break;
613         case -ESHUTDOWN:
614         case -EINVAL:
615         case -ENODEV:
616         case -ENOENT:
617         case -ECONNRESET:
618         case -EPIPE:
619                 return;
620         default:
621                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
622                 goto resubmit;
623         }
624
625         buffer = urb->transfer_buffer;
626         length = urb->actual_length;
627         usb = urb->context;
628         rx = &usb->rx;
629
630         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
631                 /* If there is an old first fragment, we don't care. */
632                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
633                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
634                 spin_lock(&rx->lock);
635                 memcpy(rx->fragment, buffer, length);
636                 rx->fragment_length = length;
637                 spin_unlock(&rx->lock);
638                 goto resubmit;
639         }
640
641         spin_lock(&rx->lock);
642         if (rx->fragment_length > 0) {
643                 /* We are on a second fragment, we believe */
644                 ZD_ASSERT(length + rx->fragment_length <=
645                           ARRAY_SIZE(rx->fragment));
646                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
647                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
648                 handle_rx_packet(usb, rx->fragment,
649                                  rx->fragment_length + length);
650                 rx->fragment_length = 0;
651                 spin_unlock(&rx->lock);
652         } else {
653                 spin_unlock(&rx->lock);
654                 handle_rx_packet(usb, buffer, length);
655         }
656
657 resubmit:
658         usb_submit_urb(urb, GFP_ATOMIC);
659 }
660
661 static struct urb *alloc_urb(struct zd_usb *usb)
662 {
663         struct usb_device *udev = zd_usb_to_usbdev(usb);
664         struct urb *urb;
665         void *buffer;
666
667         urb = usb_alloc_urb(0, GFP_NOFS);
668         if (!urb)
669                 return NULL;
670         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
671                                   &urb->transfer_dma);
672         if (!buffer) {
673                 usb_free_urb(urb);
674                 return NULL;
675         }
676
677         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
678                           buffer, USB_MAX_RX_SIZE,
679                           rx_urb_complete, usb);
680         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
681
682         return urb;
683 }
684
685 static void free_urb(struct urb *urb)
686 {
687         if (!urb)
688                 return;
689         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
690                         urb->transfer_buffer, urb->transfer_dma);
691         usb_free_urb(urb);
692 }
693
694 int zd_usb_enable_rx(struct zd_usb *usb)
695 {
696         int i, r;
697         struct zd_usb_rx *rx = &usb->rx;
698         struct urb **urbs;
699
700         dev_dbg_f(zd_usb_dev(usb), "\n");
701
702         r = -ENOMEM;
703         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
704         if (!urbs)
705                 goto error;
706         for (i = 0; i < URBS_COUNT; i++) {
707                 urbs[i] = alloc_urb(usb);
708                 if (!urbs[i])
709                         goto error;
710         }
711
712         ZD_ASSERT(!irqs_disabled());
713         spin_lock_irq(&rx->lock);
714         if (rx->urbs) {
715                 spin_unlock_irq(&rx->lock);
716                 r = 0;
717                 goto error;
718         }
719         rx->urbs = urbs;
720         rx->urbs_count = URBS_COUNT;
721         spin_unlock_irq(&rx->lock);
722
723         for (i = 0; i < URBS_COUNT; i++) {
724                 r = usb_submit_urb(urbs[i], GFP_NOFS);
725                 if (r)
726                         goto error_submit;
727         }
728
729         return 0;
730 error_submit:
731         for (i = 0; i < URBS_COUNT; i++) {
732                 usb_kill_urb(urbs[i]);
733         }
734         spin_lock_irq(&rx->lock);
735         rx->urbs = NULL;
736         rx->urbs_count = 0;
737         spin_unlock_irq(&rx->lock);
738 error:
739         if (urbs) {
740                 for (i = 0; i < URBS_COUNT; i++)
741                         free_urb(urbs[i]);
742         }
743         return r;
744 }
745
746 void zd_usb_disable_rx(struct zd_usb *usb)
747 {
748         int i;
749         unsigned long flags;
750         struct urb **urbs;
751         unsigned int count;
752         struct zd_usb_rx *rx = &usb->rx;
753
754         spin_lock_irqsave(&rx->lock, flags);
755         urbs = rx->urbs;
756         count = rx->urbs_count;
757         spin_unlock_irqrestore(&rx->lock, flags);
758         if (!urbs)
759                 return;
760
761         for (i = 0; i < count; i++) {
762                 usb_kill_urb(urbs[i]);
763                 free_urb(urbs[i]);
764         }
765         kfree(urbs);
766
767         spin_lock_irqsave(&rx->lock, flags);
768         rx->urbs = NULL;
769         rx->urbs_count = 0;
770         spin_unlock_irqrestore(&rx->lock, flags);
771 }
772
773 static void tx_urb_complete(struct urb *urb)
774 {
775         int r;
776
777         switch (urb->status) {
778         case 0:
779                 break;
780         case -ESHUTDOWN:
781         case -EINVAL:
782         case -ENODEV:
783         case -ENOENT:
784         case -ECONNRESET:
785         case -EPIPE:
786                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
787                 break;
788         default:
789                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
790                 goto resubmit;
791         }
792 free_urb:
793         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
794                         urb->transfer_buffer, urb->transfer_dma);
795         usb_free_urb(urb);
796         return;
797 resubmit:
798         r = usb_submit_urb(urb, GFP_ATOMIC);
799         if (r) {
800                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
801                 goto free_urb;
802         }
803 }
804
805 /* Puts the frame on the USB endpoint. It doesn't wait for
806  * completion. The frame must contain the control set.
807  */
808 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
809 {
810         int r;
811         struct usb_device *udev = zd_usb_to_usbdev(usb);
812         struct urb *urb;
813         void *buffer;
814
815         urb = usb_alloc_urb(0, GFP_ATOMIC);
816         if (!urb) {
817                 r = -ENOMEM;
818                 goto out;
819         }
820
821         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
822                                   &urb->transfer_dma);
823         if (!buffer) {
824                 r = -ENOMEM;
825                 goto error_free_urb;
826         }
827         memcpy(buffer, frame, length);
828
829         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
830                           buffer, length, tx_urb_complete, NULL);
831         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
832
833         r = usb_submit_urb(urb, GFP_ATOMIC);
834         if (r)
835                 goto error;
836         return 0;
837 error:
838         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
839                         urb->transfer_dma);
840 error_free_urb:
841         usb_free_urb(urb);
842 out:
843         return r;
844 }
845
846 static inline void init_usb_interrupt(struct zd_usb *usb)
847 {
848         struct zd_usb_interrupt *intr = &usb->intr;
849
850         spin_lock_init(&intr->lock);
851         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
852         init_completion(&intr->read_regs.completion);
853         intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
854 }
855
856 static inline void init_usb_rx(struct zd_usb *usb)
857 {
858         struct zd_usb_rx *rx = &usb->rx;
859         spin_lock_init(&rx->lock);
860         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
861                 rx->usb_packet_size = 512;
862         } else {
863                 rx->usb_packet_size = 64;
864         }
865         ZD_ASSERT(rx->fragment_length == 0);
866 }
867
868 static inline void init_usb_tx(struct zd_usb *usb)
869 {
870         /* FIXME: at this point we will allocate a fixed number of urb's for
871          * use in a cyclic scheme */
872 }
873
874 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
875                  struct usb_interface *intf)
876 {
877         memset(usb, 0, sizeof(*usb));
878         usb->intf = usb_get_intf(intf);
879         usb_set_intfdata(usb->intf, netdev);
880         init_usb_interrupt(usb);
881         init_usb_tx(usb);
882         init_usb_rx(usb);
883 }
884
885 int zd_usb_init_hw(struct zd_usb *usb)
886 {
887         int r;
888         struct zd_chip *chip = zd_usb_to_chip(usb);
889
890         ZD_ASSERT(mutex_is_locked(&chip->mutex));
891         r = zd_ioread16_locked(chip, &usb->fw_base_offset,
892                         USB_REG((u16)FW_BASE_ADDR_OFFSET));
893         if (r)
894                 return r;
895         dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
896                  usb->fw_base_offset);
897
898         return 0;
899 }
900
901 void zd_usb_clear(struct zd_usb *usb)
902 {
903         usb_set_intfdata(usb->intf, NULL);
904         usb_put_intf(usb->intf);
905         ZD_MEMCLEAR(usb, sizeof(*usb));
906         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
907 }
908
909 static const char *speed(enum usb_device_speed speed)
910 {
911         switch (speed) {
912         case USB_SPEED_LOW:
913                 return "low";
914         case USB_SPEED_FULL:
915                 return "full";
916         case USB_SPEED_HIGH:
917                 return "high";
918         default:
919                 return "unknown speed";
920         }
921 }
922
923 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
924 {
925         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
926                 le16_to_cpu(udev->descriptor.idVendor),
927                 le16_to_cpu(udev->descriptor.idProduct),
928                 get_bcdDevice(udev),
929                 speed(udev->speed));
930 }
931
932 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
933 {
934         struct usb_device *udev = interface_to_usbdev(usb->intf);
935         return scnprint_id(udev, buffer, size);
936 }
937
938 #ifdef DEBUG
939 static void print_id(struct usb_device *udev)
940 {
941         char buffer[40];
942
943         scnprint_id(udev, buffer, sizeof(buffer));
944         buffer[sizeof(buffer)-1] = 0;
945         dev_dbg_f(&udev->dev, "%s\n", buffer);
946 }
947 #else
948 #define print_id(udev) do { } while (0)
949 #endif
950
951 static int eject_installer(struct usb_interface *intf)
952 {
953         struct usb_device *udev = interface_to_usbdev(intf);
954         struct usb_host_interface *iface_desc = &intf->altsetting[0];
955         struct usb_endpoint_descriptor *endpoint;
956         unsigned char *cmd;
957         u8 bulk_out_ep;
958         int r;
959
960         /* Find bulk out endpoint */
961         endpoint = &iface_desc->endpoint[1].desc;
962         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
963             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
964             USB_ENDPOINT_XFER_BULK) {
965                 bulk_out_ep = endpoint->bEndpointAddress;
966         } else {
967                 dev_err(&udev->dev,
968                         "zd1211rw: Could not find bulk out endpoint\n");
969                 return -ENODEV;
970         }
971
972         cmd = kzalloc(31, GFP_KERNEL);
973         if (cmd == NULL)
974                 return -ENODEV;
975
976         /* USB bulk command block */
977         cmd[0] = 0x55;  /* bulk command signature */
978         cmd[1] = 0x53;  /* bulk command signature */
979         cmd[2] = 0x42;  /* bulk command signature */
980         cmd[3] = 0x43;  /* bulk command signature */
981         cmd[14] = 6;    /* command length */
982
983         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
984         cmd[19] = 0x2;  /* eject disc */
985
986         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
987         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
988                 cmd, 31, NULL, 2000);
989         kfree(cmd);
990         if (r)
991                 return r;
992
993         /* At this point, the device disconnects and reconnects with the real
994          * ID numbers. */
995
996         usb_set_intfdata(intf, NULL);
997         return 0;
998 }
999
1000 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1001 {
1002         int r;
1003         struct usb_device *udev = interface_to_usbdev(intf);
1004         struct net_device *netdev = NULL;
1005
1006         print_id(udev);
1007
1008         if (id->driver_info & DEVICE_INSTALLER)
1009                 return eject_installer(intf);
1010
1011         switch (udev->speed) {
1012         case USB_SPEED_LOW:
1013         case USB_SPEED_FULL:
1014         case USB_SPEED_HIGH:
1015                 break;
1016         default:
1017                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1018                 r = -ENODEV;
1019                 goto error;
1020         }
1021
1022         netdev = zd_netdev_alloc(intf);
1023         if (netdev == NULL) {
1024                 r = -ENOMEM;
1025                 goto error;
1026         }
1027
1028         r = upload_firmware(udev, id->driver_info);
1029         if (r) {
1030                 dev_err(&intf->dev,
1031                        "couldn't load firmware. Error number %d\n", r);
1032                 goto error;
1033         }
1034
1035         r = usb_reset_configuration(udev);
1036         if (r) {
1037                 dev_dbg_f(&intf->dev,
1038                         "couldn't reset configuration. Error number %d\n", r);
1039                 goto error;
1040         }
1041
1042         /* At this point the interrupt endpoint is not generally enabled. We
1043          * save the USB bandwidth until the network device is opened. But
1044          * notify that the initialization of the MAC will require the
1045          * interrupts to be temporary enabled.
1046          */
1047         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
1048         if (r) {
1049                 dev_dbg_f(&intf->dev,
1050                          "couldn't initialize mac. Error number %d\n", r);
1051                 goto error;
1052         }
1053
1054         r = register_netdev(netdev);
1055         if (r) {
1056                 dev_dbg_f(&intf->dev,
1057                          "couldn't register netdev. Error number %d\n", r);
1058                 goto error;
1059         }
1060
1061         dev_dbg_f(&intf->dev, "successful\n");
1062         dev_info(&intf->dev,"%s\n", netdev->name);
1063         return 0;
1064 error:
1065         usb_reset_device(interface_to_usbdev(intf));
1066         zd_netdev_free(netdev);
1067         return r;
1068 }
1069
1070 static void disconnect(struct usb_interface *intf)
1071 {
1072         struct net_device *netdev = zd_intf_to_netdev(intf);
1073         struct zd_mac *mac = zd_netdev_mac(netdev);
1074         struct zd_usb *usb = &mac->chip.usb;
1075
1076         /* Either something really bad happened, or we're just dealing with
1077          * a DEVICE_INSTALLER. */
1078         if (netdev == NULL)
1079                 return;
1080
1081         dev_dbg_f(zd_usb_dev(usb), "\n");
1082
1083         zd_netdev_disconnect(netdev);
1084
1085         /* Just in case something has gone wrong! */
1086         zd_usb_disable_rx(usb);
1087         zd_usb_disable_int(usb);
1088
1089         /* If the disconnect has been caused by a removal of the
1090          * driver module, the reset allows reloading of the driver. If the
1091          * reset will not be executed here, the upload of the firmware in the
1092          * probe function caused by the reloading of the driver will fail.
1093          */
1094         usb_reset_device(interface_to_usbdev(intf));
1095
1096         zd_netdev_free(netdev);
1097         dev_dbg(&intf->dev, "disconnected\n");
1098 }
1099
1100 static struct usb_driver driver = {
1101         .name           = "zd1211rw",
1102         .id_table       = usb_ids,
1103         .probe          = probe,
1104         .disconnect     = disconnect,
1105 };
1106
1107 struct workqueue_struct *zd_workqueue;
1108
1109 static int __init usb_init(void)
1110 {
1111         int r;
1112
1113         pr_debug("usb_init()\n");
1114
1115         zd_workqueue = create_singlethread_workqueue(driver.name);
1116         if (zd_workqueue == NULL) {
1117                 printk(KERN_ERR "%s: couldn't create workqueue\n", driver.name);
1118                 return -ENOMEM;
1119         }
1120
1121         r = usb_register(&driver);
1122         if (r) {
1123                 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1124                 return r;
1125         }
1126
1127         pr_debug("zd1211rw initialized\n");
1128         return 0;
1129 }
1130
1131 static void __exit usb_exit(void)
1132 {
1133         pr_debug("usb_exit()\n");
1134         usb_deregister(&driver);
1135         destroy_workqueue(zd_workqueue);
1136 }
1137
1138 module_init(usb_init);
1139 module_exit(usb_exit);
1140
1141 static int usb_int_regs_length(unsigned int count)
1142 {
1143         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1144 }
1145
1146 static void prepare_read_regs_int(struct zd_usb *usb)
1147 {
1148         struct zd_usb_interrupt *intr = &usb->intr;
1149
1150         spin_lock_irq(&intr->lock);
1151         intr->read_regs_enabled = 1;
1152         INIT_COMPLETION(intr->read_regs.completion);
1153         spin_unlock_irq(&intr->lock);
1154 }
1155
1156 static void disable_read_regs_int(struct zd_usb *usb)
1157 {
1158         struct zd_usb_interrupt *intr = &usb->intr;
1159
1160         spin_lock_irq(&intr->lock);
1161         intr->read_regs_enabled = 0;
1162         spin_unlock_irq(&intr->lock);
1163 }
1164
1165 static int get_results(struct zd_usb *usb, u16 *values,
1166                        struct usb_req_read_regs *req, unsigned int count)
1167 {
1168         int r;
1169         int i;
1170         struct zd_usb_interrupt *intr = &usb->intr;
1171         struct read_regs_int *rr = &intr->read_regs;
1172         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1173
1174         spin_lock_irq(&intr->lock);
1175
1176         r = -EIO;
1177         /* The created block size seems to be larger than expected.
1178          * However results appear to be correct.
1179          */
1180         if (rr->length < usb_int_regs_length(count)) {
1181                 dev_dbg_f(zd_usb_dev(usb),
1182                          "error: actual length %d less than expected %d\n",
1183                          rr->length, usb_int_regs_length(count));
1184                 goto error_unlock;
1185         }
1186         if (rr->length > sizeof(rr->buffer)) {
1187                 dev_dbg_f(zd_usb_dev(usb),
1188                          "error: actual length %d exceeds buffer size %zu\n",
1189                          rr->length, sizeof(rr->buffer));
1190                 goto error_unlock;
1191         }
1192
1193         for (i = 0; i < count; i++) {
1194                 struct reg_data *rd = &regs->regs[i];
1195                 if (rd->addr != req->addr[i]) {
1196                         dev_dbg_f(zd_usb_dev(usb),
1197                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1198                                  le16_to_cpu(rd->addr),
1199                                  le16_to_cpu(req->addr[i]));
1200                         goto error_unlock;
1201                 }
1202                 values[i] = le16_to_cpu(rd->value);
1203         }
1204
1205         r = 0;
1206 error_unlock:
1207         spin_unlock_irq(&intr->lock);
1208         return r;
1209 }
1210
1211 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1212                      const zd_addr_t *addresses, unsigned int count)
1213 {
1214         int r;
1215         int i, req_len, actual_req_len;
1216         struct usb_device *udev;
1217         struct usb_req_read_regs *req = NULL;
1218         unsigned long timeout;
1219
1220         if (count < 1) {
1221                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1222                 return -EINVAL;
1223         }
1224         if (count > USB_MAX_IOREAD16_COUNT) {
1225                 dev_dbg_f(zd_usb_dev(usb),
1226                          "error: count %u exceeds possible max %u\n",
1227                          count, USB_MAX_IOREAD16_COUNT);
1228                 return -EINVAL;
1229         }
1230         if (in_atomic()) {
1231                 dev_dbg_f(zd_usb_dev(usb),
1232                          "error: io in atomic context not supported\n");
1233                 return -EWOULDBLOCK;
1234         }
1235         if (!usb_int_enabled(usb)) {
1236                  dev_dbg_f(zd_usb_dev(usb),
1237                           "error: usb interrupt not enabled\n");
1238                 return -EWOULDBLOCK;
1239         }
1240
1241         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1242         req = kmalloc(req_len, GFP_NOFS);
1243         if (!req)
1244                 return -ENOMEM;
1245         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1246         for (i = 0; i < count; i++)
1247                 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1248
1249         udev = zd_usb_to_usbdev(usb);
1250         prepare_read_regs_int(usb);
1251         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1252                          req, req_len, &actual_req_len, 1000 /* ms */);
1253         if (r) {
1254                 dev_dbg_f(zd_usb_dev(usb),
1255                         "error in usb_bulk_msg(). Error number %d\n", r);
1256                 goto error;
1257         }
1258         if (req_len != actual_req_len) {
1259                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1260                         " req_len %d != actual_req_len %d\n",
1261                         req_len, actual_req_len);
1262                 r = -EIO;
1263                 goto error;
1264         }
1265
1266         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1267                                               msecs_to_jiffies(1000));
1268         if (!timeout) {
1269                 disable_read_regs_int(usb);
1270                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1271                 r = -ETIMEDOUT;
1272                 goto error;
1273         }
1274
1275         r = get_results(usb, values, req, count);
1276 error:
1277         kfree(req);
1278         return r;
1279 }
1280
1281 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1282                       unsigned int count)
1283 {
1284         int r;
1285         struct usb_device *udev;
1286         struct usb_req_write_regs *req = NULL;
1287         int i, req_len, actual_req_len;
1288
1289         if (count == 0)
1290                 return 0;
1291         if (count > USB_MAX_IOWRITE16_COUNT) {
1292                 dev_dbg_f(zd_usb_dev(usb),
1293                         "error: count %u exceeds possible max %u\n",
1294                         count, USB_MAX_IOWRITE16_COUNT);
1295                 return -EINVAL;
1296         }
1297         if (in_atomic()) {
1298                 dev_dbg_f(zd_usb_dev(usb),
1299                         "error: io in atomic context not supported\n");
1300                 return -EWOULDBLOCK;
1301         }
1302
1303         req_len = sizeof(struct usb_req_write_regs) +
1304                   count * sizeof(struct reg_data);
1305         req = kmalloc(req_len, GFP_NOFS);
1306         if (!req)
1307                 return -ENOMEM;
1308
1309         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1310         for (i = 0; i < count; i++) {
1311                 struct reg_data *rw  = &req->reg_writes[i];
1312                 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1313                 rw->value = cpu_to_le16(ioreqs[i].value);
1314         }
1315
1316         udev = zd_usb_to_usbdev(usb);
1317         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1318                          req, req_len, &actual_req_len, 1000 /* ms */);
1319         if (r) {
1320                 dev_dbg_f(zd_usb_dev(usb),
1321                         "error in usb_bulk_msg(). Error number %d\n", r);
1322                 goto error;
1323         }
1324         if (req_len != actual_req_len) {
1325                 dev_dbg_f(zd_usb_dev(usb),
1326                         "error in usb_bulk_msg()"
1327                         " req_len %d != actual_req_len %d\n",
1328                         req_len, actual_req_len);
1329                 r = -EIO;
1330                 goto error;
1331         }
1332
1333         /* FALL-THROUGH with r == 0 */
1334 error:
1335         kfree(req);
1336         return r;
1337 }
1338
1339 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1340 {
1341         int r;
1342         struct usb_device *udev;
1343         struct usb_req_rfwrite *req = NULL;
1344         int i, req_len, actual_req_len;
1345         u16 bit_value_template;
1346
1347         if (in_atomic()) {
1348                 dev_dbg_f(zd_usb_dev(usb),
1349                         "error: io in atomic context not supported\n");
1350                 return -EWOULDBLOCK;
1351         }
1352         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1353                 dev_dbg_f(zd_usb_dev(usb),
1354                         "error: bits %d are smaller than"
1355                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1356                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1357                 return -EINVAL;
1358         }
1359         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1360                 dev_dbg_f(zd_usb_dev(usb),
1361                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1362                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1363                 return -EINVAL;
1364         }
1365 #ifdef DEBUG
1366         if (value & (~0UL << bits)) {
1367                 dev_dbg_f(zd_usb_dev(usb),
1368                         "error: value %#09x has bits >= %d set\n",
1369                         value, bits);
1370                 return -EINVAL;
1371         }
1372 #endif /* DEBUG */
1373
1374         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1375
1376         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1377         if (r) {
1378                 dev_dbg_f(zd_usb_dev(usb),
1379                         "error %d: Couldn't read CR203\n", r);
1380                 goto out;
1381         }
1382         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1383
1384         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1385         req = kmalloc(req_len, GFP_NOFS);
1386         if (!req)
1387                 return -ENOMEM;
1388
1389         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1390         /* 1: 3683a, but not used in ZYDAS driver */
1391         req->value = cpu_to_le16(2);
1392         req->bits = cpu_to_le16(bits);
1393
1394         for (i = 0; i < bits; i++) {
1395                 u16 bv = bit_value_template;
1396                 if (value & (1 << (bits-1-i)))
1397                         bv |= RF_DATA;
1398                 req->bit_values[i] = cpu_to_le16(bv);
1399         }
1400
1401         udev = zd_usb_to_usbdev(usb);
1402         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1403                          req, req_len, &actual_req_len, 1000 /* ms */);
1404         if (r) {
1405                 dev_dbg_f(zd_usb_dev(usb),
1406                         "error in usb_bulk_msg(). Error number %d\n", r);
1407                 goto out;
1408         }
1409         if (req_len != actual_req_len) {
1410                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1411                         " req_len %d != actual_req_len %d\n",
1412                         req_len, actual_req_len);
1413                 r = -EIO;
1414                 goto out;
1415         }
1416
1417         /* FALL-THROUGH with r == 0 */
1418 out:
1419         kfree(req);
1420         return r;
1421 }