Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500usb
21         Abstract: rt2500usb device specific routines.
22         Supported chipsets: RT2570.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59                                            const unsigned int offset,
60                                            u16 *value)
61 {
62         __le16 reg;
63         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64                                       USB_VENDOR_REQUEST_IN, offset,
65                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
66         *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70                                                 const unsigned int offset,
71                                                 u16 *value)
72 {
73         __le16 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
77         *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                                 const unsigned int offset,
82                                                 void *value, const u16 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length,
87                                       REGISTER_TIMEOUT16(length));
88 }
89
90 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
91                                             const unsigned int offset,
92                                             u16 value)
93 {
94         __le16 reg = cpu_to_le16(value);
95         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
96                                       USB_VENDOR_REQUEST_OUT, offset,
97                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
98 }
99
100 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
101                                                  const unsigned int offset,
102                                                  u16 value)
103 {
104         __le16 reg = cpu_to_le16(value);
105         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
106                                        USB_VENDOR_REQUEST_OUT, offset,
107                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
108 }
109
110 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
111                                                  const unsigned int offset,
112                                                  void *value, const u16 length)
113 {
114         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
115                                       USB_VENDOR_REQUEST_OUT, offset,
116                                       value, length,
117                                       REGISTER_TIMEOUT16(length));
118 }
119
120 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
121                                   const unsigned int offset,
122                                   struct rt2x00_field16 field,
123                                   u16 *reg)
124 {
125         unsigned int i;
126
127         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
128                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
129                 if (!rt2x00_get_field16(*reg, field))
130                         return 1;
131                 udelay(REGISTER_BUSY_DELAY);
132         }
133
134         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
135                    offset, *reg);
136         *reg = ~0;
137
138         return 0;
139 }
140
141 #define WAIT_FOR_BBP(__dev, __reg) \
142         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
143 #define WAIT_FOR_RF(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
145
146 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
147                                 const unsigned int word, const u8 value)
148 {
149         u16 reg;
150
151         mutex_lock(&rt2x00dev->csr_mutex);
152
153         /*
154          * Wait until the BBP becomes available, afterwards we
155          * can safely write the new data into the register.
156          */
157         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
158                 reg = 0;
159                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
160                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
161                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
162
163                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
164         }
165
166         mutex_unlock(&rt2x00dev->csr_mutex);
167 }
168
169 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
170                                const unsigned int word, u8 *value)
171 {
172         u16 reg;
173
174         mutex_lock(&rt2x00dev->csr_mutex);
175
176         /*
177          * Wait until the BBP becomes available, afterwards we
178          * can safely write the read request into the register.
179          * After the data has been written, we wait until hardware
180          * returns the correct value, if at any time the register
181          * doesn't become available in time, reg will be 0xffffffff
182          * which means we return 0xff to the caller.
183          */
184         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
185                 reg = 0;
186                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
187                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
188
189                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
190
191                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
192                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
193         }
194
195         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
196
197         mutex_unlock(&rt2x00dev->csr_mutex);
198 }
199
200 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
201                                const unsigned int word, const u32 value)
202 {
203         u16 reg;
204
205         mutex_lock(&rt2x00dev->csr_mutex);
206
207         /*
208          * Wait until the RF becomes available, afterwards we
209          * can safely write the new data into the register.
210          */
211         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
212                 reg = 0;
213                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
214                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
215
216                 reg = 0;
217                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
218                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
221
222                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
223                 rt2x00_rf_write(rt2x00dev, word, value);
224         }
225
226         mutex_unlock(&rt2x00dev->csr_mutex);
227 }
228
229 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
230 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
231                                      const unsigned int offset,
232                                      u32 *value)
233 {
234         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
235 }
236
237 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
238                                       const unsigned int offset,
239                                       u32 value)
240 {
241         rt2500usb_register_write(rt2x00dev, offset, value);
242 }
243
244 static const struct rt2x00debug rt2500usb_rt2x00debug = {
245         .owner  = THIS_MODULE,
246         .csr    = {
247                 .read           = _rt2500usb_register_read,
248                 .write          = _rt2500usb_register_write,
249                 .flags          = RT2X00DEBUGFS_OFFSET,
250                 .word_base      = CSR_REG_BASE,
251                 .word_size      = sizeof(u16),
252                 .word_count     = CSR_REG_SIZE / sizeof(u16),
253         },
254         .eeprom = {
255                 .read           = rt2x00_eeprom_read,
256                 .write          = rt2x00_eeprom_write,
257                 .word_base      = EEPROM_BASE,
258                 .word_size      = sizeof(u16),
259                 .word_count     = EEPROM_SIZE / sizeof(u16),
260         },
261         .bbp    = {
262                 .read           = rt2500usb_bbp_read,
263                 .write          = rt2500usb_bbp_write,
264                 .word_base      = BBP_BASE,
265                 .word_size      = sizeof(u8),
266                 .word_count     = BBP_SIZE / sizeof(u8),
267         },
268         .rf     = {
269                 .read           = rt2x00_rf_read,
270                 .write          = rt2500usb_rf_write,
271                 .word_base      = RF_BASE,
272                 .word_size      = sizeof(u32),
273                 .word_count     = RF_SIZE / sizeof(u32),
274         },
275 };
276 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
277
278 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
279 {
280         u16 reg;
281
282         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
283         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
284 }
285
286 #ifdef CONFIG_RT2X00_LIB_LEDS
287 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
288                                      enum led_brightness brightness)
289 {
290         struct rt2x00_led *led =
291             container_of(led_cdev, struct rt2x00_led, led_dev);
292         unsigned int enabled = brightness != LED_OFF;
293         u16 reg;
294
295         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
296
297         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
298                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
299         else if (led->type == LED_TYPE_ACTIVITY)
300                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
301
302         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
303 }
304
305 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
306                                unsigned long *delay_on,
307                                unsigned long *delay_off)
308 {
309         struct rt2x00_led *led =
310             container_of(led_cdev, struct rt2x00_led, led_dev);
311         u16 reg;
312
313         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
314         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
315         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
316         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
317
318         return 0;
319 }
320
321 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
322                                struct rt2x00_led *led,
323                                enum led_type type)
324 {
325         led->rt2x00dev = rt2x00dev;
326         led->type = type;
327         led->led_dev.brightness_set = rt2500usb_brightness_set;
328         led->led_dev.blink_set = rt2500usb_blink_set;
329         led->flags = LED_INITIALIZED;
330 }
331 #endif /* CONFIG_RT2X00_LIB_LEDS */
332
333 /*
334  * Configuration handlers.
335  */
336
337 /*
338  * rt2500usb does not differentiate between shared and pairwise
339  * keys, so we should use the same function for both key types.
340  */
341 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
342                                 struct rt2x00lib_crypto *crypto,
343                                 struct ieee80211_key_conf *key)
344 {
345         u32 mask;
346         u16 reg;
347         enum cipher curr_cipher;
348
349         if (crypto->cmd == SET_KEY) {
350                 /*
351                  * Disallow to set WEP key other than with index 0,
352                  * it is known that not work at least on some hardware.
353                  * SW crypto will be used in that case.
354                  */
355                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
356                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
357                     key->keyidx != 0)
358                         return -EOPNOTSUPP;
359
360                 /*
361                  * Pairwise key will always be entry 0, but this
362                  * could collide with a shared key on the same
363                  * position...
364                  */
365                 mask = TXRX_CSR0_KEY_ID.bit_mask;
366
367                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
368                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
369                 reg &= mask;
370
371                 if (reg && reg == mask)
372                         return -ENOSPC;
373
374                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
375
376                 key->hw_key_idx += reg ? ffz(reg) : 0;
377                 /*
378                  * Hardware requires that all keys use the same cipher
379                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
380                  * If this is not the first key, compare the cipher with the
381                  * first one and fall back to SW crypto if not the same.
382                  */
383                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
384                         return -EOPNOTSUPP;
385
386                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
387                                               crypto->key, sizeof(crypto->key));
388
389                 /*
390                  * The driver does not support the IV/EIV generation
391                  * in hardware. However it demands the data to be provided
392                  * both separately as well as inside the frame.
393                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
394                  * to ensure rt2x00lib will not strip the data from the
395                  * frame after the copy, now we must tell mac80211
396                  * to generate the IV/EIV data.
397                  */
398                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
400         }
401
402         /*
403          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
404          * a particular key is valid.
405          */
406         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
407         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
408         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
409
410         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
411         if (crypto->cmd == SET_KEY)
412                 mask |= 1 << key->hw_key_idx;
413         else if (crypto->cmd == DISABLE_KEY)
414                 mask &= ~(1 << key->hw_key_idx);
415         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
416         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
417
418         return 0;
419 }
420
421 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
422                                     const unsigned int filter_flags)
423 {
424         u16 reg;
425
426         /*
427          * Start configuration steps.
428          * Note that the version error will always be dropped
429          * and broadcast frames will always be accepted since
430          * there is no filter for it at this time.
431          */
432         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
434                            !(filter_flags & FIF_FCSFAIL));
435         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
436                            !(filter_flags & FIF_PLCPFAIL));
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
438                            !(filter_flags & FIF_CONTROL));
439         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
440                            !(filter_flags & FIF_PROMISC_IN_BSS));
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
443                            !rt2x00dev->intf_ap_count);
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
445         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
446                            !(filter_flags & FIF_ALLMULTI));
447         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
448         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
449 }
450
451 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
452                                   struct rt2x00_intf *intf,
453                                   struct rt2x00intf_conf *conf,
454                                   const unsigned int flags)
455 {
456         unsigned int bcn_preload;
457         u16 reg;
458
459         if (flags & CONFIG_UPDATE_TYPE) {
460                 /*
461                  * Enable beacon config
462                  */
463                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
464                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
465                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
466                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
467                                    2 * (conf->type != NL80211_IFTYPE_STATION));
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
469
470                 /*
471                  * Enable synchronisation.
472                  */
473                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
474                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
475                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
476
477                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
478                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
479                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
480         }
481
482         if (flags & CONFIG_UPDATE_MAC)
483                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
484                                               (3 * sizeof(__le16)));
485
486         if (flags & CONFIG_UPDATE_BSSID)
487                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
488                                               (3 * sizeof(__le16)));
489 }
490
491 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
492                                  struct rt2x00lib_erp *erp,
493                                  u32 changed)
494 {
495         u16 reg;
496
497         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
498                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
499                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
500                                    !!erp->short_preamble);
501                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
502         }
503
504         if (changed & BSS_CHANGED_BASIC_RATES)
505                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
506                                          erp->basic_rates);
507
508         if (changed & BSS_CHANGED_BEACON_INT) {
509                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
510                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
511                                    erp->beacon_int * 4);
512                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
513         }
514
515         if (changed & BSS_CHANGED_ERP_SLOT) {
516                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
517                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
518                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
519         }
520 }
521
522 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
523                                  struct antenna_setup *ant)
524 {
525         u8 r2;
526         u8 r14;
527         u16 csr5;
528         u16 csr6;
529
530         /*
531          * We should never come here because rt2x00lib is supposed
532          * to catch this and send us the correct antenna explicitely.
533          */
534         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
535                ant->tx == ANTENNA_SW_DIVERSITY);
536
537         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
538         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
539         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
540         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
541
542         /*
543          * Configure the TX antenna.
544          */
545         switch (ant->tx) {
546         case ANTENNA_HW_DIVERSITY:
547                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
548                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
549                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
550                 break;
551         case ANTENNA_A:
552                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
553                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
554                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
555                 break;
556         case ANTENNA_B:
557         default:
558                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
559                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
560                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
561                 break;
562         }
563
564         /*
565          * Configure the RX antenna.
566          */
567         switch (ant->rx) {
568         case ANTENNA_HW_DIVERSITY:
569                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
570                 break;
571         case ANTENNA_A:
572                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
573                 break;
574         case ANTENNA_B:
575         default:
576                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
577                 break;
578         }
579
580         /*
581          * RT2525E and RT5222 need to flip TX I/Q
582          */
583         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
584                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
585                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
586                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
587
588                 /*
589                  * RT2525E does not need RX I/Q Flip.
590                  */
591                 if (rt2x00_rf(rt2x00dev, RF2525E))
592                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
593         } else {
594                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
595                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
596         }
597
598         rt2500usb_bbp_write(rt2x00dev, 2, r2);
599         rt2500usb_bbp_write(rt2x00dev, 14, r14);
600         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
601         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
602 }
603
604 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
605                                      struct rf_channel *rf, const int txpower)
606 {
607         /*
608          * Set TXpower.
609          */
610         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
611
612         /*
613          * For RT2525E we should first set the channel to half band higher.
614          */
615         if (rt2x00_rf(rt2x00dev, RF2525E)) {
616                 static const u32 vals[] = {
617                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
618                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
619                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
620                         0x00000902, 0x00000906
621                 };
622
623                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
624                 if (rf->rf4)
625                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626         }
627
628         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
629         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
630         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
631         if (rf->rf4)
632                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
633 }
634
635 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
636                                      const int txpower)
637 {
638         u32 rf3;
639
640         rt2x00_rf_read(rt2x00dev, 3, &rf3);
641         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
642         rt2500usb_rf_write(rt2x00dev, 3, rf3);
643 }
644
645 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
646                                 struct rt2x00lib_conf *libconf)
647 {
648         enum dev_state state =
649             (libconf->conf->flags & IEEE80211_CONF_PS) ?
650                 STATE_SLEEP : STATE_AWAKE;
651         u16 reg;
652
653         if (state == STATE_SLEEP) {
654                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
655                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
656                                    rt2x00dev->beacon_int - 20);
657                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
658                                    libconf->conf->listen_interval - 1);
659
660                 /* We must first disable autowake before it can be enabled */
661                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
663
664                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
665                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666         } else {
667                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
668                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
669                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
670         }
671
672         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
673 }
674
675 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
676                              struct rt2x00lib_conf *libconf,
677                              const unsigned int flags)
678 {
679         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
680                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
681                                          libconf->conf->power_level);
682         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
683             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
684                 rt2500usb_config_txpower(rt2x00dev,
685                                          libconf->conf->power_level);
686         if (flags & IEEE80211_CONF_CHANGE_PS)
687                 rt2500usb_config_ps(rt2x00dev, libconf);
688 }
689
690 /*
691  * Link tuning
692  */
693 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
694                                  struct link_qual *qual)
695 {
696         u16 reg;
697
698         /*
699          * Update FCS error count from register.
700          */
701         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
702         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
703
704         /*
705          * Update False CCA count from register.
706          */
707         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
708         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
709 }
710
711 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
712                                   struct link_qual *qual)
713 {
714         u16 eeprom;
715         u16 value;
716
717         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
718         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
719         rt2500usb_bbp_write(rt2x00dev, 24, value);
720
721         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
722         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
723         rt2500usb_bbp_write(rt2x00dev, 25, value);
724
725         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
726         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
727         rt2500usb_bbp_write(rt2x00dev, 61, value);
728
729         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
730         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
731         rt2500usb_bbp_write(rt2x00dev, 17, value);
732
733         qual->vgc_level = value;
734 }
735
736 /*
737  * Queue handlers.
738  */
739 static void rt2500usb_start_queue(struct data_queue *queue)
740 {
741         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742         u16 reg;
743
744         switch (queue->qid) {
745         case QID_RX:
746                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
747                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
748                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
749                 break;
750         case QID_BEACON:
751                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
752                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
753                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
754                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
755                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
756                 break;
757         default:
758                 break;
759         }
760 }
761
762 static void rt2500usb_stop_queue(struct data_queue *queue)
763 {
764         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
765         u16 reg;
766
767         switch (queue->qid) {
768         case QID_RX:
769                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
770                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
771                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
772                 break;
773         case QID_BEACON:
774                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
775                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
776                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
777                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
778                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
779                 break;
780         default:
781                 break;
782         }
783 }
784
785 /*
786  * Initialization functions.
787  */
788 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
789 {
790         u16 reg;
791
792         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
793                                     USB_MODE_TEST, REGISTER_TIMEOUT);
794         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
795                                     0x00f0, REGISTER_TIMEOUT);
796
797         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
798         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
799         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
800
801         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
802         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
803
804         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
805         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
806         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
807         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
808         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
809
810         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
811         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
812         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
813         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
815
816         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
817         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
818         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
819         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
820         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
821         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
822
823         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
824         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
825         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
826         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
827         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
828         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
829
830         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
831         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
832         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
833         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
834         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
835         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
836
837         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
838         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
839         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
840         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
841         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
842         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
843
844         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
845         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
846         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
847         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
848         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
849         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
850
851         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
852         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
853
854         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
855                 return -EBUSY;
856
857         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
858         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
859         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
860         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
861         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
862
863         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
864                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
865                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
866         } else {
867                 reg = 0;
868                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
869                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
870         }
871         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
872
873         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
874         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
875         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
876         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
877
878         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
879         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
880                            rt2x00dev->rx->data_size);
881         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
882
883         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
884         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
885         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
886         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
887         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
888
889         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
890         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
891         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
892
893         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
894         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
895         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
896
897         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
898         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
899         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
900
901         return 0;
902 }
903
904 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
905 {
906         unsigned int i;
907         u8 value;
908
909         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
910                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
911                 if ((value != 0xff) && (value != 0x00))
912                         return 0;
913                 udelay(REGISTER_BUSY_DELAY);
914         }
915
916         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
917         return -EACCES;
918 }
919
920 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
921 {
922         unsigned int i;
923         u16 eeprom;
924         u8 value;
925         u8 reg_id;
926
927         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
928                 return -EACCES;
929
930         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
931         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
932         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
933         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
934         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
935         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
936         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
937         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
938         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
939         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
940         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
941         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
942         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
943         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
944         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
945         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
946         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
947         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
948         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
949         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
950         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
951         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
952         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
953         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
954         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
955         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
956         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
957         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
958         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
959         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
960         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
961
962         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
963                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
964
965                 if (eeprom != 0xffff && eeprom != 0x0000) {
966                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
967                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
968                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
969                 }
970         }
971
972         return 0;
973 }
974
975 /*
976  * Device state switch handlers.
977  */
978 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
979 {
980         /*
981          * Initialize all registers.
982          */
983         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
984                      rt2500usb_init_bbp(rt2x00dev)))
985                 return -EIO;
986
987         return 0;
988 }
989
990 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
991 {
992         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
993         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
994
995         /*
996          * Disable synchronisation.
997          */
998         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
999
1000         rt2x00usb_disable_radio(rt2x00dev);
1001 }
1002
1003 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1004                                enum dev_state state)
1005 {
1006         u16 reg;
1007         u16 reg2;
1008         unsigned int i;
1009         char put_to_sleep;
1010         char bbp_state;
1011         char rf_state;
1012
1013         put_to_sleep = (state != STATE_AWAKE);
1014
1015         reg = 0;
1016         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1017         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1018         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1019         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1020         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1021         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1022
1023         /*
1024          * Device is not guaranteed to be in the requested state yet.
1025          * We must wait until the register indicates that the
1026          * device has entered the correct state.
1027          */
1028         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1029                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1030                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1031                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1032                 if (bbp_state == state && rf_state == state)
1033                         return 0;
1034                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1035                 msleep(30);
1036         }
1037
1038         return -EBUSY;
1039 }
1040
1041 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1042                                       enum dev_state state)
1043 {
1044         int retval = 0;
1045
1046         switch (state) {
1047         case STATE_RADIO_ON:
1048                 retval = rt2500usb_enable_radio(rt2x00dev);
1049                 break;
1050         case STATE_RADIO_OFF:
1051                 rt2500usb_disable_radio(rt2x00dev);
1052                 break;
1053         case STATE_RADIO_IRQ_ON:
1054         case STATE_RADIO_IRQ_OFF:
1055                 /* No support, but no error either */
1056                 break;
1057         case STATE_DEEP_SLEEP:
1058         case STATE_SLEEP:
1059         case STATE_STANDBY:
1060         case STATE_AWAKE:
1061                 retval = rt2500usb_set_state(rt2x00dev, state);
1062                 break;
1063         default:
1064                 retval = -ENOTSUPP;
1065                 break;
1066         }
1067
1068         if (unlikely(retval))
1069                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1070                            state, retval);
1071
1072         return retval;
1073 }
1074
1075 /*
1076  * TX descriptor initialization
1077  */
1078 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1079                                     struct txentry_desc *txdesc)
1080 {
1081         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1082         __le32 *txd = (__le32 *) entry->skb->data;
1083         u32 word;
1084
1085         /*
1086          * Start writing the descriptor words.
1087          */
1088         rt2x00_desc_read(txd, 0, &word);
1089         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1090         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1091                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1092         rt2x00_set_field32(&word, TXD_W0_ACK,
1093                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1094         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1095                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1096         rt2x00_set_field32(&word, TXD_W0_OFDM,
1097                            (txdesc->rate_mode == RATE_MODE_OFDM));
1098         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1099                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1100         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1101         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1102         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1103         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1104         rt2x00_desc_write(txd, 0, word);
1105
1106         rt2x00_desc_read(txd, 1, &word);
1107         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1108         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1109         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1110         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1111         rt2x00_desc_write(txd, 1, word);
1112
1113         rt2x00_desc_read(txd, 2, &word);
1114         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1115         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1116         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1117                            txdesc->u.plcp.length_low);
1118         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1119                            txdesc->u.plcp.length_high);
1120         rt2x00_desc_write(txd, 2, word);
1121
1122         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1123                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1124                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1125         }
1126
1127         /*
1128          * Register descriptor details in skb frame descriptor.
1129          */
1130         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1131         skbdesc->desc = txd;
1132         skbdesc->desc_len = TXD_DESC_SIZE;
1133 }
1134
1135 /*
1136  * TX data initialization
1137  */
1138 static void rt2500usb_beacondone(struct urb *urb);
1139
1140 static void rt2500usb_write_beacon(struct queue_entry *entry,
1141                                    struct txentry_desc *txdesc)
1142 {
1143         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1144         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1145         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1146         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1147         int length;
1148         u16 reg, reg0;
1149
1150         /*
1151          * Disable beaconing while we are reloading the beacon data,
1152          * otherwise we might be sending out invalid data.
1153          */
1154         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1155         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1156         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1157
1158         /*
1159          * Add space for the descriptor in front of the skb.
1160          */
1161         skb_push(entry->skb, TXD_DESC_SIZE);
1162         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1163
1164         /*
1165          * Write the TX descriptor for the beacon.
1166          */
1167         rt2500usb_write_tx_desc(entry, txdesc);
1168
1169         /*
1170          * Dump beacon to userspace through debugfs.
1171          */
1172         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1173
1174         /*
1175          * USB devices cannot blindly pass the skb->len as the
1176          * length of the data to usb_fill_bulk_urb. Pass the skb
1177          * to the driver to determine what the length should be.
1178          */
1179         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1180
1181         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1182                           entry->skb->data, length, rt2500usb_beacondone,
1183                           entry);
1184
1185         /*
1186          * Second we need to create the guardian byte.
1187          * We only need a single byte, so lets recycle
1188          * the 'flags' field we are not using for beacons.
1189          */
1190         bcn_priv->guardian_data = 0;
1191         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1192                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1193                           entry);
1194
1195         /*
1196          * Send out the guardian byte.
1197          */
1198         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1199
1200         /*
1201          * Enable beaconing again.
1202          */
1203         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1204         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1205         reg0 = reg;
1206         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1207         /*
1208          * Beacon generation will fail initially.
1209          * To prevent this we need to change the TXRX_CSR19
1210          * register several times (reg0 is the same as reg
1211          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1212          * and 1 in reg).
1213          */
1214         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1216         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1217         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1218         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1219 }
1220
1221 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1222 {
1223         int length;
1224
1225         /*
1226          * The length _must_ be a multiple of 2,
1227          * but it must _not_ be a multiple of the USB packet size.
1228          */
1229         length = roundup(entry->skb->len, 2);
1230         length += (2 * !(length % entry->queue->usb_maxpacket));
1231
1232         return length;
1233 }
1234
1235 /*
1236  * RX control handlers
1237  */
1238 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1239                                   struct rxdone_entry_desc *rxdesc)
1240 {
1241         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1242         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1243         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1244         __le32 *rxd =
1245             (__le32 *)(entry->skb->data +
1246                        (entry_priv->urb->actual_length -
1247                         entry->queue->desc_size));
1248         u32 word0;
1249         u32 word1;
1250
1251         /*
1252          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1253          * frame data in rt2x00usb.
1254          */
1255         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1256         rxd = (__le32 *)skbdesc->desc;
1257
1258         /*
1259          * It is now safe to read the descriptor on all architectures.
1260          */
1261         rt2x00_desc_read(rxd, 0, &word0);
1262         rt2x00_desc_read(rxd, 1, &word1);
1263
1264         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1265                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1266         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1267                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1268
1269         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1270         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1271                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1272
1273         if (rxdesc->cipher != CIPHER_NONE) {
1274                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1275                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1276                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1277
1278                 /* ICV is located at the end of frame */
1279
1280                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1281                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1282                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1283                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1284                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1285         }
1286
1287         /*
1288          * Obtain the status about this packet.
1289          * When frame was received with an OFDM bitrate,
1290          * the signal is the PLCP value. If it was received with
1291          * a CCK bitrate the signal is the rate in 100kbit/s.
1292          */
1293         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1294         rxdesc->rssi =
1295             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1296         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1297
1298         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1299                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1300         else
1301                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1302         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1303                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1304
1305         /*
1306          * Adjust the skb memory window to the frame boundaries.
1307          */
1308         skb_trim(entry->skb, rxdesc->size);
1309 }
1310
1311 /*
1312  * Interrupt functions.
1313  */
1314 static void rt2500usb_beacondone(struct urb *urb)
1315 {
1316         struct queue_entry *entry = (struct queue_entry *)urb->context;
1317         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1318
1319         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1320                 return;
1321
1322         /*
1323          * Check if this was the guardian beacon,
1324          * if that was the case we need to send the real beacon now.
1325          * Otherwise we should free the sk_buffer, the device
1326          * should be doing the rest of the work now.
1327          */
1328         if (bcn_priv->guardian_urb == urb) {
1329                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1330         } else if (bcn_priv->urb == urb) {
1331                 dev_kfree_skb(entry->skb);
1332                 entry->skb = NULL;
1333         }
1334 }
1335
1336 /*
1337  * Device probe functions.
1338  */
1339 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1340 {
1341         u16 word;
1342         u8 *mac;
1343         u8 bbp;
1344
1345         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1346
1347         /*
1348          * Start validation of the data that has been read.
1349          */
1350         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1351         if (!is_valid_ether_addr(mac)) {
1352                 eth_random_addr(mac);
1353                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1354         }
1355
1356         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1357         if (word == 0xffff) {
1358                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1359                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1360                                    ANTENNA_SW_DIVERSITY);
1361                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1362                                    ANTENNA_SW_DIVERSITY);
1363                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1364                                    LED_MODE_DEFAULT);
1365                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1366                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1367                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1368                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1369                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1370         }
1371
1372         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1373         if (word == 0xffff) {
1374                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1375                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1376                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1377                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1378                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1379         }
1380
1381         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1382         if (word == 0xffff) {
1383                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1384                                    DEFAULT_RSSI_OFFSET);
1385                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1386                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1387                                   word);
1388         }
1389
1390         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1391         if (word == 0xffff) {
1392                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1393                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1394                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1395         }
1396
1397         /*
1398          * Switch lower vgc bound to current BBP R17 value,
1399          * lower the value a bit for better quality.
1400          */
1401         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1402         bbp -= 6;
1403
1404         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1405         if (word == 0xffff) {
1406                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1407                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1410         } else {
1411                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1412                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1413         }
1414
1415         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1416         if (word == 0xffff) {
1417                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1418                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1419                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1420                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1421         }
1422
1423         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1424         if (word == 0xffff) {
1425                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1426                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1427                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1428                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1429         }
1430
1431         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1432         if (word == 0xffff) {
1433                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1434                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1435                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1436                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1437         }
1438
1439         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1440         if (word == 0xffff) {
1441                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1442                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1443                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1444                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1451 {
1452         u16 reg;
1453         u16 value;
1454         u16 eeprom;
1455
1456         /*
1457          * Read EEPROM word for configuration.
1458          */
1459         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1460
1461         /*
1462          * Identify RF chipset.
1463          */
1464         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1465         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1466         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1467
1468         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1469                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1470                 return -ENODEV;
1471         }
1472
1473         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1474             !rt2x00_rf(rt2x00dev, RF2523) &&
1475             !rt2x00_rf(rt2x00dev, RF2524) &&
1476             !rt2x00_rf(rt2x00dev, RF2525) &&
1477             !rt2x00_rf(rt2x00dev, RF2525E) &&
1478             !rt2x00_rf(rt2x00dev, RF5222)) {
1479                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1480                 return -ENODEV;
1481         }
1482
1483         /*
1484          * Identify default antenna configuration.
1485          */
1486         rt2x00dev->default_ant.tx =
1487             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1488         rt2x00dev->default_ant.rx =
1489             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1490
1491         /*
1492          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1493          * I am not 100% sure about this, but the legacy drivers do not
1494          * indicate antenna swapping in software is required when
1495          * diversity is enabled.
1496          */
1497         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1498                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1499         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1500                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1501
1502         /*
1503          * Store led mode, for correct led behaviour.
1504          */
1505 #ifdef CONFIG_RT2X00_LIB_LEDS
1506         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1507
1508         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1509         if (value == LED_MODE_TXRX_ACTIVITY ||
1510             value == LED_MODE_DEFAULT ||
1511             value == LED_MODE_ASUS)
1512                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1513                                    LED_TYPE_ACTIVITY);
1514 #endif /* CONFIG_RT2X00_LIB_LEDS */
1515
1516         /*
1517          * Detect if this device has an hardware controlled radio.
1518          */
1519         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1520                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1521
1522         /*
1523          * Read the RSSI <-> dBm offset information.
1524          */
1525         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1526         rt2x00dev->rssi_offset =
1527             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * RF value list for RF2522
1534  * Supports: 2.4 GHz
1535  */
1536 static const struct rf_channel rf_vals_bg_2522[] = {
1537         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1538         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1539         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1540         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1541         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1542         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1543         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1544         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1545         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1546         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1547         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1548         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1549         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1550         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1551 };
1552
1553 /*
1554  * RF value list for RF2523
1555  * Supports: 2.4 GHz
1556  */
1557 static const struct rf_channel rf_vals_bg_2523[] = {
1558         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1559         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1560         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1561         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1562         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1563         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1564         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1565         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1566         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1567         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1568         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1569         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1570         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1571         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1572 };
1573
1574 /*
1575  * RF value list for RF2524
1576  * Supports: 2.4 GHz
1577  */
1578 static const struct rf_channel rf_vals_bg_2524[] = {
1579         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1580         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1581         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1582         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1583         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1584         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1585         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1586         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1587         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1588         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1589         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1590         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1591         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1592         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1593 };
1594
1595 /*
1596  * RF value list for RF2525
1597  * Supports: 2.4 GHz
1598  */
1599 static const struct rf_channel rf_vals_bg_2525[] = {
1600         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1601         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1602         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1603         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1604         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1605         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1606         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1607         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1608         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1609         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1610         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1611         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1612         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1613         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1614 };
1615
1616 /*
1617  * RF value list for RF2525e
1618  * Supports: 2.4 GHz
1619  */
1620 static const struct rf_channel rf_vals_bg_2525e[] = {
1621         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1622         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1623         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1624         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1625         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1626         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1627         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1628         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1629         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1630         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1631         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1632         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1633         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1634         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1635 };
1636
1637 /*
1638  * RF value list for RF5222
1639  * Supports: 2.4 GHz & 5.2 GHz
1640  */
1641 static const struct rf_channel rf_vals_5222[] = {
1642         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1643         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1644         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1645         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1646         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1647         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1648         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1649         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1650         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1651         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1652         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1653         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1654         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1655         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1656
1657         /* 802.11 UNI / HyperLan 2 */
1658         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1659         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1660         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1661         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1662         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1663         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1664         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1665         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1666
1667         /* 802.11 HyperLan 2 */
1668         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1669         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1670         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1671         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1672         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1673         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1674         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1675         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1676         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1677         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1678
1679         /* 802.11 UNII */
1680         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1681         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1682         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1683         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1684         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1685 };
1686
1687 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1688 {
1689         struct hw_mode_spec *spec = &rt2x00dev->spec;
1690         struct channel_info *info;
1691         char *tx_power;
1692         unsigned int i;
1693
1694         /*
1695          * Initialize all hw fields.
1696          *
1697          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1698          * capable of sending the buffered frames out after the DTIM
1699          * transmission using rt2x00lib_beacondone. This will send out
1700          * multicast and broadcast traffic immediately instead of buffering it
1701          * infinitly and thus dropping it after some time.
1702          */
1703         rt2x00dev->hw->flags =
1704             IEEE80211_HW_RX_INCLUDES_FCS |
1705             IEEE80211_HW_SIGNAL_DBM |
1706             IEEE80211_HW_SUPPORTS_PS |
1707             IEEE80211_HW_PS_NULLFUNC_STACK;
1708
1709         /*
1710          * Disable powersaving as default.
1711          */
1712         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1713
1714         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716                                 rt2x00_eeprom_addr(rt2x00dev,
1717                                                    EEPROM_MAC_ADDR_0));
1718
1719         /*
1720          * Initialize hw_mode information.
1721          */
1722         spec->supported_bands = SUPPORT_BAND_2GHZ;
1723         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1724
1725         if (rt2x00_rf(rt2x00dev, RF2522)) {
1726                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727                 spec->channels = rf_vals_bg_2522;
1728         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730                 spec->channels = rf_vals_bg_2523;
1731         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733                 spec->channels = rf_vals_bg_2524;
1734         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736                 spec->channels = rf_vals_bg_2525;
1737         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739                 spec->channels = rf_vals_bg_2525e;
1740         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743                 spec->channels = rf_vals_5222;
1744         }
1745
1746         /*
1747          * Create channel information array
1748          */
1749         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750         if (!info)
1751                 return -ENOMEM;
1752
1753         spec->channels_info = info;
1754
1755         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756         for (i = 0; i < 14; i++) {
1757                 info[i].max_power = MAX_TXPOWER;
1758                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759         }
1760
1761         if (spec->num_channels > 14) {
1762                 for (i = 14; i < spec->num_channels; i++) {
1763                         info[i].max_power = MAX_TXPOWER;
1764                         info[i].default_power1 = DEFAULT_TXPOWER;
1765                 }
1766         }
1767
1768         return 0;
1769 }
1770
1771 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1772 {
1773         int retval;
1774         u16 reg;
1775
1776         /*
1777          * Allocate eeprom data.
1778          */
1779         retval = rt2500usb_validate_eeprom(rt2x00dev);
1780         if (retval)
1781                 return retval;
1782
1783         retval = rt2500usb_init_eeprom(rt2x00dev);
1784         if (retval)
1785                 return retval;
1786
1787         /*
1788          * Enable rfkill polling by setting GPIO direction of the
1789          * rfkill switch GPIO pin correctly.
1790          */
1791         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794
1795         /*
1796          * Initialize hw specifications.
1797          */
1798         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799         if (retval)
1800                 return retval;
1801
1802         /*
1803          * This device requires the atim queue
1804          */
1805         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807         if (!modparam_nohwcrypt) {
1808                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1810         }
1811         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813
1814         /*
1815          * Set the rssi offset.
1816          */
1817         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1818
1819         return 0;
1820 }
1821
1822 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823         .tx                     = rt2x00mac_tx,
1824         .start                  = rt2x00mac_start,
1825         .stop                   = rt2x00mac_stop,
1826         .add_interface          = rt2x00mac_add_interface,
1827         .remove_interface       = rt2x00mac_remove_interface,
1828         .config                 = rt2x00mac_config,
1829         .configure_filter       = rt2x00mac_configure_filter,
1830         .set_tim                = rt2x00mac_set_tim,
1831         .set_key                = rt2x00mac_set_key,
1832         .sw_scan_start          = rt2x00mac_sw_scan_start,
1833         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1834         .get_stats              = rt2x00mac_get_stats,
1835         .bss_info_changed       = rt2x00mac_bss_info_changed,
1836         .conf_tx                = rt2x00mac_conf_tx,
1837         .rfkill_poll            = rt2x00mac_rfkill_poll,
1838         .flush                  = rt2x00mac_flush,
1839         .set_antenna            = rt2x00mac_set_antenna,
1840         .get_antenna            = rt2x00mac_get_antenna,
1841         .get_ringparam          = rt2x00mac_get_ringparam,
1842         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1843 };
1844
1845 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846         .probe_hw               = rt2500usb_probe_hw,
1847         .initialize             = rt2x00usb_initialize,
1848         .uninitialize           = rt2x00usb_uninitialize,
1849         .clear_entry            = rt2x00usb_clear_entry,
1850         .set_device_state       = rt2500usb_set_device_state,
1851         .rfkill_poll            = rt2500usb_rfkill_poll,
1852         .link_stats             = rt2500usb_link_stats,
1853         .reset_tuner            = rt2500usb_reset_tuner,
1854         .watchdog               = rt2x00usb_watchdog,
1855         .start_queue            = rt2500usb_start_queue,
1856         .kick_queue             = rt2x00usb_kick_queue,
1857         .stop_queue             = rt2500usb_stop_queue,
1858         .flush_queue            = rt2x00usb_flush_queue,
1859         .write_tx_desc          = rt2500usb_write_tx_desc,
1860         .write_beacon           = rt2500usb_write_beacon,
1861         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1862         .fill_rxdone            = rt2500usb_fill_rxdone,
1863         .config_shared_key      = rt2500usb_config_key,
1864         .config_pairwise_key    = rt2500usb_config_key,
1865         .config_filter          = rt2500usb_config_filter,
1866         .config_intf            = rt2500usb_config_intf,
1867         .config_erp             = rt2500usb_config_erp,
1868         .config_ant             = rt2500usb_config_ant,
1869         .config                 = rt2500usb_config,
1870 };
1871
1872 static void rt2500usb_queue_init(struct data_queue *queue)
1873 {
1874         switch (queue->qid) {
1875         case QID_RX:
1876                 queue->limit = 32;
1877                 queue->data_size = DATA_FRAME_SIZE;
1878                 queue->desc_size = RXD_DESC_SIZE;
1879                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880                 break;
1881
1882         case QID_AC_VO:
1883         case QID_AC_VI:
1884         case QID_AC_BE:
1885         case QID_AC_BK:
1886                 queue->limit = 32;
1887                 queue->data_size = DATA_FRAME_SIZE;
1888                 queue->desc_size = TXD_DESC_SIZE;
1889                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890                 break;
1891
1892         case QID_BEACON:
1893                 queue->limit = 1;
1894                 queue->data_size = MGMT_FRAME_SIZE;
1895                 queue->desc_size = TXD_DESC_SIZE;
1896                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897                 break;
1898
1899         case QID_ATIM:
1900                 queue->limit = 8;
1901                 queue->data_size = DATA_FRAME_SIZE;
1902                 queue->desc_size = TXD_DESC_SIZE;
1903                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904                 break;
1905
1906         default:
1907                 BUG();
1908                 break;
1909         }
1910 }
1911
1912 static const struct rt2x00_ops rt2500usb_ops = {
1913         .name                   = KBUILD_MODNAME,
1914         .max_ap_intf            = 1,
1915         .eeprom_size            = EEPROM_SIZE,
1916         .rf_size                = RF_SIZE,
1917         .tx_queues              = NUM_TX_QUEUES,
1918         .queue_init             = rt2500usb_queue_init,
1919         .lib                    = &rt2500usb_rt2x00_ops,
1920         .hw                     = &rt2500usb_mac80211_ops,
1921 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922         .debugfs                = &rt2500usb_rt2x00debug,
1923 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1924 };
1925
1926 /*
1927  * rt2500usb module information.
1928  */
1929 static struct usb_device_id rt2500usb_device_table[] = {
1930         /* ASUS */
1931         { USB_DEVICE(0x0b05, 0x1706) },
1932         { USB_DEVICE(0x0b05, 0x1707) },
1933         /* Belkin */
1934         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1935         { USB_DEVICE(0x050d, 0x7051) },
1936         /* Cisco Systems */
1937         { USB_DEVICE(0x13b1, 0x000d) },
1938         { USB_DEVICE(0x13b1, 0x0011) },
1939         { USB_DEVICE(0x13b1, 0x001a) },
1940         /* Conceptronic */
1941         { USB_DEVICE(0x14b2, 0x3c02) },
1942         /* D-LINK */
1943         { USB_DEVICE(0x2001, 0x3c00) },
1944         /* Gigabyte */
1945         { USB_DEVICE(0x1044, 0x8001) },
1946         { USB_DEVICE(0x1044, 0x8007) },
1947         /* Hercules */
1948         { USB_DEVICE(0x06f8, 0xe000) },
1949         /* Melco */
1950         { USB_DEVICE(0x0411, 0x005e) },
1951         { USB_DEVICE(0x0411, 0x0066) },
1952         { USB_DEVICE(0x0411, 0x0067) },
1953         { USB_DEVICE(0x0411, 0x008b) },
1954         { USB_DEVICE(0x0411, 0x0097) },
1955         /* MSI */
1956         { USB_DEVICE(0x0db0, 0x6861) },
1957         { USB_DEVICE(0x0db0, 0x6865) },
1958         { USB_DEVICE(0x0db0, 0x6869) },
1959         /* Ralink */
1960         { USB_DEVICE(0x148f, 0x1706) },
1961         { USB_DEVICE(0x148f, 0x2570) },
1962         { USB_DEVICE(0x148f, 0x9020) },
1963         /* Sagem */
1964         { USB_DEVICE(0x079b, 0x004b) },
1965         /* Siemens */
1966         { USB_DEVICE(0x0681, 0x3c06) },
1967         /* SMC */
1968         { USB_DEVICE(0x0707, 0xee13) },
1969         /* Spairon */
1970         { USB_DEVICE(0x114b, 0x0110) },
1971         /* SURECOM */
1972         { USB_DEVICE(0x0769, 0x11f3) },
1973         /* Trust */
1974         { USB_DEVICE(0x0eb0, 0x9020) },
1975         /* VTech */
1976         { USB_DEVICE(0x0f88, 0x3012) },
1977         /* Zinwell */
1978         { USB_DEVICE(0x5a57, 0x0260) },
1979         { 0, }
1980 };
1981
1982 MODULE_AUTHOR(DRV_PROJECT);
1983 MODULE_VERSION(DRV_VERSION);
1984 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987 MODULE_LICENSE("GPL");
1988
1989 static int rt2500usb_probe(struct usb_interface *usb_intf,
1990                            const struct usb_device_id *id)
1991 {
1992         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993 }
1994
1995 static struct usb_driver rt2500usb_driver = {
1996         .name           = KBUILD_MODNAME,
1997         .id_table       = rt2500usb_device_table,
1998         .probe          = rt2500usb_probe,
1999         .disconnect     = rt2x00usb_disconnect,
2000         .suspend        = rt2x00usb_suspend,
2001         .resume         = rt2x00usb_resume,
2002         .reset_resume   = rt2x00usb_resume,
2003         .disable_hub_initiated_lpm = 1,
2004 };
2005
2006 module_usb_driver(rt2500usb_driver);