Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[sfrench/cifs-2.6.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "debug.h"
16
17 static bool rtw_fw_support_lps;
18 unsigned int rtw_debug_mask;
19 EXPORT_SYMBOL(rtw_debug_mask);
20
21 module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
22 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
23
24 MODULE_PARM_DESC(support_lps, "Set Y to enable Leisure Power Save support, to turn radio off between beacons");
25 MODULE_PARM_DESC(debug_mask, "Debugging mask");
26
27 static struct ieee80211_channel rtw_channeltable_2g[] = {
28         {.center_freq = 2412, .hw_value = 1,},
29         {.center_freq = 2417, .hw_value = 2,},
30         {.center_freq = 2422, .hw_value = 3,},
31         {.center_freq = 2427, .hw_value = 4,},
32         {.center_freq = 2432, .hw_value = 5,},
33         {.center_freq = 2437, .hw_value = 6,},
34         {.center_freq = 2442, .hw_value = 7,},
35         {.center_freq = 2447, .hw_value = 8,},
36         {.center_freq = 2452, .hw_value = 9,},
37         {.center_freq = 2457, .hw_value = 10,},
38         {.center_freq = 2462, .hw_value = 11,},
39         {.center_freq = 2467, .hw_value = 12,},
40         {.center_freq = 2472, .hw_value = 13,},
41         {.center_freq = 2484, .hw_value = 14,},
42 };
43
44 static struct ieee80211_channel rtw_channeltable_5g[] = {
45         {.center_freq = 5180, .hw_value = 36,},
46         {.center_freq = 5200, .hw_value = 40,},
47         {.center_freq = 5220, .hw_value = 44,},
48         {.center_freq = 5240, .hw_value = 48,},
49         {.center_freq = 5260, .hw_value = 52,},
50         {.center_freq = 5280, .hw_value = 56,},
51         {.center_freq = 5300, .hw_value = 60,},
52         {.center_freq = 5320, .hw_value = 64,},
53         {.center_freq = 5500, .hw_value = 100,},
54         {.center_freq = 5520, .hw_value = 104,},
55         {.center_freq = 5540, .hw_value = 108,},
56         {.center_freq = 5560, .hw_value = 112,},
57         {.center_freq = 5580, .hw_value = 116,},
58         {.center_freq = 5600, .hw_value = 120,},
59         {.center_freq = 5620, .hw_value = 124,},
60         {.center_freq = 5640, .hw_value = 128,},
61         {.center_freq = 5660, .hw_value = 132,},
62         {.center_freq = 5680, .hw_value = 136,},
63         {.center_freq = 5700, .hw_value = 140,},
64         {.center_freq = 5745, .hw_value = 149,},
65         {.center_freq = 5765, .hw_value = 153,},
66         {.center_freq = 5785, .hw_value = 157,},
67         {.center_freq = 5805, .hw_value = 161,},
68         {.center_freq = 5825, .hw_value = 165,
69          .flags = IEEE80211_CHAN_NO_HT40MINUS},
70 };
71
72 static struct ieee80211_rate rtw_ratetable[] = {
73         {.bitrate = 10, .hw_value = 0x00,},
74         {.bitrate = 20, .hw_value = 0x01,},
75         {.bitrate = 55, .hw_value = 0x02,},
76         {.bitrate = 110, .hw_value = 0x03,},
77         {.bitrate = 60, .hw_value = 0x04,},
78         {.bitrate = 90, .hw_value = 0x05,},
79         {.bitrate = 120, .hw_value = 0x06,},
80         {.bitrate = 180, .hw_value = 0x07,},
81         {.bitrate = 240, .hw_value = 0x08,},
82         {.bitrate = 360, .hw_value = 0x09,},
83         {.bitrate = 480, .hw_value = 0x0a,},
84         {.bitrate = 540, .hw_value = 0x0b,},
85 };
86
87 static struct ieee80211_supported_band rtw_band_2ghz = {
88         .band = NL80211_BAND_2GHZ,
89
90         .channels = rtw_channeltable_2g,
91         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
92
93         .bitrates = rtw_ratetable,
94         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
95
96         .ht_cap = {0},
97         .vht_cap = {0},
98 };
99
100 static struct ieee80211_supported_band rtw_band_5ghz = {
101         .band = NL80211_BAND_5GHZ,
102
103         .channels = rtw_channeltable_5g,
104         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
105
106         /* 5G has no CCK rates */
107         .bitrates = rtw_ratetable + 4,
108         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
109
110         .ht_cap = {0},
111         .vht_cap = {0},
112 };
113
114 struct rtw_watch_dog_iter_data {
115         struct rtw_vif *rtwvif;
116         bool active;
117         u8 assoc_cnt;
118 };
119
120 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
121                                    struct ieee80211_vif *vif)
122 {
123         struct rtw_watch_dog_iter_data *iter_data = data;
124         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
125
126         if (vif->type == NL80211_IFTYPE_STATION) {
127                 if (vif->bss_conf.assoc) {
128                         iter_data->assoc_cnt++;
129                         iter_data->rtwvif = rtwvif;
130                 }
131                 if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
132                     rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
133                         iter_data->active = true;
134         } else {
135                 /* only STATION mode can enter lps */
136                 iter_data->active = true;
137         }
138
139         rtwvif->stats.tx_unicast = 0;
140         rtwvif->stats.rx_unicast = 0;
141         rtwvif->stats.tx_cnt = 0;
142         rtwvif->stats.rx_cnt = 0;
143 }
144
145 /* process TX/RX statistics periodically for hardware,
146  * the information helps hardware to enhance performance
147  */
148 static void rtw_watch_dog_work(struct work_struct *work)
149 {
150         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
151                                               watch_dog_work.work);
152         struct rtw_watch_dog_iter_data data = {};
153         bool busy_traffic = rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
154
155         if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING))
156                 return;
157
158         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
159                                      RTW_WATCH_DOG_DELAY_TIME);
160
161         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
162                 rtw_flag_set(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
163         else
164                 rtw_flag_clear(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
165
166         if (busy_traffic != rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC))
167                 rtw_coex_wl_status_change_notify(rtwdev);
168
169         /* reset tx/rx statictics */
170         rtwdev->stats.tx_unicast = 0;
171         rtwdev->stats.rx_unicast = 0;
172         rtwdev->stats.tx_cnt = 0;
173         rtwdev->stats.rx_cnt = 0;
174
175         /* use atomic version to avoid taking local->iflist_mtx mutex */
176         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
177
178         /* fw supports only one station associated to enter lps, if there are
179          * more than two stations associated to the AP, then we can not enter
180          * lps, because fw does not handle the overlapped beacon interval
181          */
182         if (rtw_fw_support_lps &&
183             data.rtwvif && !data.active && data.assoc_cnt == 1)
184                 rtw_enter_lps(rtwdev, data.rtwvif);
185
186         if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
187                 return;
188
189         rtw_phy_dynamic_mechanism(rtwdev);
190
191         rtwdev->watch_dog_cnt++;
192 }
193
194 static void rtw_c2h_work(struct work_struct *work)
195 {
196         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
197         struct sk_buff *skb, *tmp;
198
199         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
200                 skb_unlink(skb, &rtwdev->c2h_queue);
201                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
202                 dev_kfree_skb_any(skb);
203         }
204 }
205
206 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
207                             struct rtw_channel_params *chan_params)
208 {
209         struct ieee80211_channel *channel = chandef->chan;
210         enum nl80211_chan_width width = chandef->width;
211         u8 *cch_by_bw = chan_params->cch_by_bw;
212         u32 primary_freq, center_freq;
213         u8 center_chan;
214         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
215         u8 primary_chan_idx = 0;
216         u8 i;
217
218         center_chan = channel->hw_value;
219         primary_freq = channel->center_freq;
220         center_freq = chandef->center_freq1;
221
222         /* assign the center channel used while 20M bw is selected */
223         cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
224
225         switch (width) {
226         case NL80211_CHAN_WIDTH_20_NOHT:
227         case NL80211_CHAN_WIDTH_20:
228                 bandwidth = RTW_CHANNEL_WIDTH_20;
229                 primary_chan_idx = 0;
230                 break;
231         case NL80211_CHAN_WIDTH_40:
232                 bandwidth = RTW_CHANNEL_WIDTH_40;
233                 if (primary_freq > center_freq) {
234                         primary_chan_idx = 1;
235                         center_chan -= 2;
236                 } else {
237                         primary_chan_idx = 2;
238                         center_chan += 2;
239                 }
240                 break;
241         case NL80211_CHAN_WIDTH_80:
242                 bandwidth = RTW_CHANNEL_WIDTH_80;
243                 if (primary_freq > center_freq) {
244                         if (primary_freq - center_freq == 10) {
245                                 primary_chan_idx = 1;
246                                 center_chan -= 2;
247                         } else {
248                                 primary_chan_idx = 3;
249                                 center_chan -= 6;
250                         }
251                         /* assign the center channel used
252                          * while 40M bw is selected
253                          */
254                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
255                 } else {
256                         if (center_freq - primary_freq == 10) {
257                                 primary_chan_idx = 2;
258                                 center_chan += 2;
259                         } else {
260                                 primary_chan_idx = 4;
261                                 center_chan += 6;
262                         }
263                         /* assign the center channel used
264                          * while 40M bw is selected
265                          */
266                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
267                 }
268                 break;
269         default:
270                 center_chan = 0;
271                 break;
272         }
273
274         chan_params->center_chan = center_chan;
275         chan_params->bandwidth = bandwidth;
276         chan_params->primary_chan_idx = primary_chan_idx;
277
278         /* assign the center channel used while current bw is selected */
279         cch_by_bw[bandwidth] = center_chan;
280
281         for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
282                 cch_by_bw[i] = 0;
283 }
284
285 void rtw_set_channel(struct rtw_dev *rtwdev)
286 {
287         struct ieee80211_hw *hw = rtwdev->hw;
288         struct rtw_hal *hal = &rtwdev->hal;
289         struct rtw_chip_info *chip = rtwdev->chip;
290         struct rtw_channel_params ch_param;
291         u8 center_chan, bandwidth, primary_chan_idx;
292         u8 i;
293
294         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
295         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
296                 return;
297
298         center_chan = ch_param.center_chan;
299         bandwidth = ch_param.bandwidth;
300         primary_chan_idx = ch_param.primary_chan_idx;
301
302         hal->current_band_width = bandwidth;
303         hal->current_channel = center_chan;
304         hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
305
306         for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
307                 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
308
309         chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
310
311         if (hal->current_band_type == RTW_BAND_5G) {
312                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
313         } else {
314                 if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
315                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
316                 else
317                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
318         }
319
320         rtw_phy_set_tx_power_level(rtwdev, center_chan);
321 }
322
323 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
324 {
325         int i;
326
327         for (i = 0; i < ETH_ALEN; i++)
328                 rtw_write8(rtwdev, start + i, addr[i]);
329 }
330
331 void rtw_vif_port_config(struct rtw_dev *rtwdev,
332                          struct rtw_vif *rtwvif,
333                          u32 config)
334 {
335         u32 addr, mask;
336
337         if (config & PORT_SET_MAC_ADDR) {
338                 addr = rtwvif->conf->mac_addr.addr;
339                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
340         }
341         if (config & PORT_SET_BSSID) {
342                 addr = rtwvif->conf->bssid.addr;
343                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
344         }
345         if (config & PORT_SET_NET_TYPE) {
346                 addr = rtwvif->conf->net_type.addr;
347                 mask = rtwvif->conf->net_type.mask;
348                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
349         }
350         if (config & PORT_SET_AID) {
351                 addr = rtwvif->conf->aid.addr;
352                 mask = rtwvif->conf->aid.mask;
353                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
354         }
355         if (config & PORT_SET_BCN_CTRL) {
356                 addr = rtwvif->conf->bcn_ctrl.addr;
357                 mask = rtwvif->conf->bcn_ctrl.mask;
358                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
359         }
360 }
361
362 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
363 {
364         u8 bw = 0;
365
366         switch (bw_cap) {
367         case EFUSE_HW_CAP_IGNORE:
368         case EFUSE_HW_CAP_SUPP_BW80:
369                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
370                 /* fall through */
371         case EFUSE_HW_CAP_SUPP_BW40:
372                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
373                 /* fall through */
374         default:
375                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
376                 break;
377         }
378
379         return bw;
380 }
381
382 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
383 {
384         struct rtw_hal *hal = &rtwdev->hal;
385
386         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
387             hw_ant_num >= hal->rf_path_num)
388                 return;
389
390         switch (hw_ant_num) {
391         case 1:
392                 hal->rf_type = RF_1T1R;
393                 hal->rf_path_num = 1;
394                 hal->antenna_tx = BB_PATH_A;
395                 hal->antenna_rx = BB_PATH_A;
396                 break;
397         default:
398                 WARN(1, "invalid hw configuration from efuse\n");
399                 break;
400         }
401 }
402
403 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
404 {
405         u64 ra_mask = 0;
406         u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
407         u8 vht_mcs_cap;
408         int i, nss;
409
410         /* 4SS, every two bits for MCS7/8/9 */
411         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
412                 vht_mcs_cap = mcs_map & 0x3;
413                 switch (vht_mcs_cap) {
414                 case 2: /* MCS9 */
415                         ra_mask |= 0x3ffULL << nss;
416                         break;
417                 case 1: /* MCS8 */
418                         ra_mask |= 0x1ffULL << nss;
419                         break;
420                 case 0: /* MCS7 */
421                         ra_mask |= 0x0ffULL << nss;
422                         break;
423                 default:
424                         break;
425                 }
426         }
427
428         return ra_mask;
429 }
430
431 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
432 {
433         u8 rate_id = 0;
434
435         switch (wireless_set) {
436         case WIRELESS_CCK:
437                 rate_id = RTW_RATEID_B_20M;
438                 break;
439         case WIRELESS_OFDM:
440                 rate_id = RTW_RATEID_G;
441                 break;
442         case WIRELESS_CCK | WIRELESS_OFDM:
443                 rate_id = RTW_RATEID_BG;
444                 break;
445         case WIRELESS_OFDM | WIRELESS_HT:
446                 if (tx_num == 1)
447                         rate_id = RTW_RATEID_GN_N1SS;
448                 else if (tx_num == 2)
449                         rate_id = RTW_RATEID_GN_N2SS;
450                 else if (tx_num == 3)
451                         rate_id = RTW_RATEID_ARFR5_N_3SS;
452                 break;
453         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
454                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
455                         if (tx_num == 1)
456                                 rate_id = RTW_RATEID_BGN_40M_1SS;
457                         else if (tx_num == 2)
458                                 rate_id = RTW_RATEID_BGN_40M_2SS;
459                         else if (tx_num == 3)
460                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
461                         else if (tx_num == 4)
462                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
463                 } else {
464                         if (tx_num == 1)
465                                 rate_id = RTW_RATEID_BGN_20M_1SS;
466                         else if (tx_num == 2)
467                                 rate_id = RTW_RATEID_BGN_20M_2SS;
468                         else if (tx_num == 3)
469                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
470                         else if (tx_num == 4)
471                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
472                 }
473                 break;
474         case WIRELESS_OFDM | WIRELESS_VHT:
475                 if (tx_num == 1)
476                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
477                 else if (tx_num == 2)
478                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
479                 else if (tx_num == 3)
480                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
481                 else if (tx_num == 4)
482                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
483                 break;
484         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
485                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
486                         if (tx_num == 1)
487                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
488                         else if (tx_num == 2)
489                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
490                         else if (tx_num == 3)
491                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
492                         else if (tx_num == 4)
493                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
494                 } else {
495                         if (tx_num == 1)
496                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
497                         else if (tx_num == 2)
498                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
499                         else if (tx_num == 3)
500                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
501                         else if (tx_num == 4)
502                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
503                 }
504                 break;
505         default:
506                 break;
507         }
508
509         return rate_id;
510 }
511
512 #define RA_MASK_CCK_RATES       0x0000f
513 #define RA_MASK_OFDM_RATES      0x00ff0
514 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
515 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
516 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
517 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
518                                  RA_MASK_HT_RATES_2SS | \
519                                  RA_MASK_HT_RATES_3SS)
520 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
521 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
522 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
523 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
524                                  RA_MASK_VHT_RATES_2SS | \
525                                  RA_MASK_VHT_RATES_3SS)
526 #define RA_MASK_CCK_IN_HT       0x00005
527 #define RA_MASK_CCK_IN_VHT      0x00005
528 #define RA_MASK_OFDM_IN_VHT     0x00010
529 #define RA_MASK_OFDM_IN_HT_2G   0x00010
530 #define RA_MASK_OFDM_IN_HT_5G   0x00030
531
532 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
533 {
534         struct ieee80211_sta *sta = si->sta;
535         struct rtw_efuse *efuse = &rtwdev->efuse;
536         struct rtw_hal *hal = &rtwdev->hal;
537         u8 rssi_level;
538         u8 wireless_set;
539         u8 bw_mode;
540         u8 rate_id;
541         u8 rf_type = RF_1T1R;
542         u8 stbc_en = 0;
543         u8 ldpc_en = 0;
544         u8 tx_num = 1;
545         u64 ra_mask = 0;
546         bool is_vht_enable = false;
547         bool is_support_sgi = false;
548
549         if (sta->vht_cap.vht_supported) {
550                 is_vht_enable = true;
551                 ra_mask |= get_vht_ra_mask(sta);
552                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
553                         stbc_en = VHT_STBC_EN;
554                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
555                         ldpc_en = VHT_LDPC_EN;
556                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
557                         is_support_sgi = true;
558         } else if (sta->ht_cap.ht_supported) {
559                 ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) |
560                            (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12);
561                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
562                         stbc_en = HT_STBC_EN;
563                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
564                         ldpc_en = HT_LDPC_EN;
565                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
566                     sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
567                         is_support_sgi = true;
568         }
569
570         if (hal->current_band_type == RTW_BAND_5G) {
571                 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
572                 if (sta->vht_cap.vht_supported) {
573                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
574                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
575                 } else if (sta->ht_cap.ht_supported) {
576                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
577                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
578                 } else {
579                         wireless_set = WIRELESS_OFDM;
580                 }
581         } else if (hal->current_band_type == RTW_BAND_2G) {
582                 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
583                 if (sta->vht_cap.vht_supported) {
584                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
585                                    RA_MASK_OFDM_IN_VHT;
586                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
587                                        WIRELESS_HT | WIRELESS_VHT;
588                 } else if (sta->ht_cap.ht_supported) {
589                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
590                                    RA_MASK_OFDM_IN_HT_2G;
591                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
592                                        WIRELESS_HT;
593                 } else if (sta->supp_rates[0] <= 0xf) {
594                         wireless_set = WIRELESS_CCK;
595                 } else {
596                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
597                 }
598         } else {
599                 rtw_err(rtwdev, "Unknown band type\n");
600                 wireless_set = 0;
601         }
602
603         if (efuse->hw_cap.nss == 1) {
604                 ra_mask &= RA_MASK_VHT_RATES_1SS;
605                 ra_mask &= RA_MASK_HT_RATES_1SS;
606         }
607
608         switch (sta->bandwidth) {
609         case IEEE80211_STA_RX_BW_80:
610                 bw_mode = RTW_CHANNEL_WIDTH_80;
611                 break;
612         case IEEE80211_STA_RX_BW_40:
613                 bw_mode = RTW_CHANNEL_WIDTH_40;
614                 break;
615         default:
616                 bw_mode = RTW_CHANNEL_WIDTH_20;
617                 break;
618         }
619
620         if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
621                 tx_num = 2;
622                 rf_type = RF_2T2R;
623         } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
624                 tx_num = 2;
625                 rf_type = RF_2T2R;
626         }
627
628         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
629
630         if (wireless_set != WIRELESS_CCK) {
631                 rssi_level = si->rssi_level;
632                 if (rssi_level == 0)
633                         ra_mask &= 0xffffffffffffffffULL;
634                 else if (rssi_level == 1)
635                         ra_mask &= 0xfffffffffffffff0ULL;
636                 else if (rssi_level == 2)
637                         ra_mask &= 0xffffffffffffefe0ULL;
638                 else if (rssi_level == 3)
639                         ra_mask &= 0xffffffffffffcfc0ULL;
640                 else if (rssi_level == 4)
641                         ra_mask &= 0xffffffffffff8f80ULL;
642                 else if (rssi_level >= 5)
643                         ra_mask &= 0xffffffffffff0f00ULL;
644         }
645
646         si->bw_mode = bw_mode;
647         si->stbc_en = stbc_en;
648         si->ldpc_en = ldpc_en;
649         si->rf_type = rf_type;
650         si->wireless_set = wireless_set;
651         si->sgi_enable = is_support_sgi;
652         si->vht_enable = is_vht_enable;
653         si->ra_mask = ra_mask;
654         si->rate_id = rate_id;
655
656         rtw_fw_send_ra_info(rtwdev, si);
657 }
658
659 static int rtw_power_on(struct rtw_dev *rtwdev)
660 {
661         struct rtw_chip_info *chip = rtwdev->chip;
662         struct rtw_fw_state *fw = &rtwdev->fw;
663         bool wifi_only;
664         int ret;
665
666         ret = rtw_hci_setup(rtwdev);
667         if (ret) {
668                 rtw_err(rtwdev, "failed to setup hci\n");
669                 goto err;
670         }
671
672         /* power on MAC before firmware downloaded */
673         ret = rtw_mac_power_on(rtwdev);
674         if (ret) {
675                 rtw_err(rtwdev, "failed to power on mac\n");
676                 goto err;
677         }
678
679         wait_for_completion(&fw->completion);
680         if (!fw->firmware) {
681                 ret = -EINVAL;
682                 rtw_err(rtwdev, "failed to load firmware\n");
683                 goto err;
684         }
685
686         ret = rtw_download_firmware(rtwdev, fw);
687         if (ret) {
688                 rtw_err(rtwdev, "failed to download firmware\n");
689                 goto err_off;
690         }
691
692         /* config mac after firmware downloaded */
693         ret = rtw_mac_init(rtwdev);
694         if (ret) {
695                 rtw_err(rtwdev, "failed to configure mac\n");
696                 goto err_off;
697         }
698
699         chip->ops->phy_set_param(rtwdev);
700
701         ret = rtw_hci_start(rtwdev);
702         if (ret) {
703                 rtw_err(rtwdev, "failed to start hci\n");
704                 goto err_off;
705         }
706
707         /* send H2C after HCI has started */
708         rtw_fw_send_general_info(rtwdev);
709         rtw_fw_send_phydm_info(rtwdev);
710
711         wifi_only = !rtwdev->efuse.btcoex;
712         rtw_coex_power_on_setting(rtwdev);
713         rtw_coex_init_hw_config(rtwdev, wifi_only);
714
715         return 0;
716
717 err_off:
718         rtw_mac_power_off(rtwdev);
719
720 err:
721         return ret;
722 }
723
724 int rtw_core_start(struct rtw_dev *rtwdev)
725 {
726         int ret;
727
728         ret = rtw_power_on(rtwdev);
729         if (ret)
730                 return ret;
731
732         rtw_sec_enable_sec_engine(rtwdev);
733
734         /* rcr reset after powered on */
735         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
736
737         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
738                                      RTW_WATCH_DOG_DELAY_TIME);
739
740         rtw_flag_set(rtwdev, RTW_FLAG_RUNNING);
741
742         return 0;
743 }
744
745 static void rtw_power_off(struct rtw_dev *rtwdev)
746 {
747         rtwdev->hci.ops->stop(rtwdev);
748         rtw_mac_power_off(rtwdev);
749 }
750
751 void rtw_core_stop(struct rtw_dev *rtwdev)
752 {
753         struct rtw_coex *coex = &rtwdev->coex;
754
755         rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING);
756         rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING);
757
758         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
759         cancel_delayed_work_sync(&coex->bt_relink_work);
760         cancel_delayed_work_sync(&coex->bt_reenable_work);
761         cancel_delayed_work_sync(&coex->defreeze_work);
762
763         rtw_power_off(rtwdev);
764 }
765
766 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
767                             struct ieee80211_sta_ht_cap *ht_cap)
768 {
769         struct rtw_efuse *efuse = &rtwdev->efuse;
770
771         ht_cap->ht_supported = true;
772         ht_cap->cap = 0;
773         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
774                         IEEE80211_HT_CAP_MAX_AMSDU |
775                         IEEE80211_HT_CAP_LDPC_CODING |
776                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
777         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
778                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
779                                 IEEE80211_HT_CAP_DSSSCCK40 |
780                                 IEEE80211_HT_CAP_SGI_40;
781         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
782         ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
783         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
784         if (efuse->hw_cap.nss > 1) {
785                 ht_cap->mcs.rx_mask[0] = 0xFF;
786                 ht_cap->mcs.rx_mask[1] = 0xFF;
787                 ht_cap->mcs.rx_mask[4] = 0x01;
788                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
789         } else {
790                 ht_cap->mcs.rx_mask[0] = 0xFF;
791                 ht_cap->mcs.rx_mask[1] = 0x00;
792                 ht_cap->mcs.rx_mask[4] = 0x01;
793                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
794         }
795 }
796
797 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
798                              struct ieee80211_sta_vht_cap *vht_cap)
799 {
800         struct rtw_efuse *efuse = &rtwdev->efuse;
801         u16 mcs_map;
802         __le16 highest;
803
804         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
805             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
806                 return;
807
808         vht_cap->vht_supported = true;
809         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
810                        IEEE80211_VHT_CAP_RXLDPC |
811                        IEEE80211_VHT_CAP_SHORT_GI_80 |
812                        IEEE80211_VHT_CAP_TXSTBC |
813                        IEEE80211_VHT_CAP_RXSTBC_1 |
814                        IEEE80211_VHT_CAP_HTC_VHT |
815                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
816                        0;
817         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
818                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
819                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
820                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
821                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
822                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
823                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
824         if (efuse->hw_cap.nss > 1) {
825                 highest = cpu_to_le16(780);
826                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
827         } else {
828                 highest = cpu_to_le16(390);
829                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
830         }
831
832         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
833         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
834         vht_cap->vht_mcs.rx_highest = highest;
835         vht_cap->vht_mcs.tx_highest = highest;
836 }
837
838 static void rtw_set_supported_band(struct ieee80211_hw *hw,
839                                    struct rtw_chip_info *chip)
840 {
841         struct rtw_dev *rtwdev = hw->priv;
842         struct ieee80211_supported_band *sband;
843
844         if (chip->band & RTW_BAND_2G) {
845                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
846                 if (!sband)
847                         goto err_out;
848                 if (chip->ht_supported)
849                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
850                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
851         }
852
853         if (chip->band & RTW_BAND_5G) {
854                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
855                 if (!sband)
856                         goto err_out;
857                 if (chip->ht_supported)
858                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
859                 if (chip->vht_supported)
860                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
861                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
862         }
863
864         return;
865
866 err_out:
867         rtw_err(rtwdev, "failed to set supported band\n");
868         kfree(sband);
869 }
870
871 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
872                                      struct rtw_chip_info *chip)
873 {
874         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
875         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
876 }
877
878 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
879 {
880         struct rtw_dev *rtwdev = context;
881         struct rtw_fw_state *fw = &rtwdev->fw;
882
883         if (!firmware)
884                 rtw_err(rtwdev, "failed to request firmware\n");
885
886         fw->firmware = firmware;
887         complete_all(&fw->completion);
888 }
889
890 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
891 {
892         struct rtw_fw_state *fw = &rtwdev->fw;
893         int ret;
894
895         init_completion(&fw->completion);
896
897         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
898                                       GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
899         if (ret) {
900                 rtw_err(rtwdev, "async firmware request failed\n");
901                 return ret;
902         }
903
904         return 0;
905 }
906
907 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
908 {
909         struct rtw_chip_info *chip = rtwdev->chip;
910         struct rtw_hal *hal = &rtwdev->hal;
911         struct rtw_efuse *efuse = &rtwdev->efuse;
912         int ret = 0;
913
914         switch (rtw_hci_type(rtwdev)) {
915         case RTW_HCI_TYPE_PCIE:
916                 rtwdev->hci.rpwm_addr = 0x03d9;
917                 break;
918         default:
919                 rtw_err(rtwdev, "unsupported hci type\n");
920                 return -EINVAL;
921         }
922
923         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
924         hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
925         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
926         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
927         if (hal->chip_version & BIT_RF_TYPE_ID) {
928                 hal->rf_type = RF_2T2R;
929                 hal->rf_path_num = 2;
930                 hal->antenna_tx = BB_PATH_AB;
931                 hal->antenna_rx = BB_PATH_AB;
932         } else {
933                 hal->rf_type = RF_1T1R;
934                 hal->rf_path_num = 1;
935                 hal->antenna_tx = BB_PATH_A;
936                 hal->antenna_rx = BB_PATH_A;
937         }
938
939         if (hal->fab_version == 2)
940                 hal->fab_version = 1;
941         else if (hal->fab_version == 1)
942                 hal->fab_version = 2;
943
944         efuse->physical_size = chip->phy_efuse_size;
945         efuse->logical_size = chip->log_efuse_size;
946         efuse->protect_size = chip->ptct_efuse_size;
947
948         /* default use ack */
949         rtwdev->hal.rcr |= BIT_VHT_DACK;
950
951         return ret;
952 }
953
954 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
955 {
956         struct rtw_fw_state *fw = &rtwdev->fw;
957         int ret;
958
959         ret = rtw_hci_setup(rtwdev);
960         if (ret) {
961                 rtw_err(rtwdev, "failed to setup hci\n");
962                 goto err;
963         }
964
965         ret = rtw_mac_power_on(rtwdev);
966         if (ret) {
967                 rtw_err(rtwdev, "failed to power on mac\n");
968                 goto err;
969         }
970
971         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
972
973         wait_for_completion(&fw->completion);
974         if (!fw->firmware) {
975                 ret = -EINVAL;
976                 rtw_err(rtwdev, "failed to load firmware\n");
977                 goto err;
978         }
979
980         ret = rtw_download_firmware(rtwdev, fw);
981         if (ret) {
982                 rtw_err(rtwdev, "failed to download firmware\n");
983                 goto err_off;
984         }
985
986         return 0;
987
988 err_off:
989         rtw_mac_power_off(rtwdev);
990
991 err:
992         return ret;
993 }
994
995 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
996 {
997         struct rtw_efuse *efuse = &rtwdev->efuse;
998         u8 hw_feature[HW_FEATURE_LEN];
999         u8 id;
1000         u8 bw;
1001         int i;
1002
1003         id = rtw_read8(rtwdev, REG_C2HEVT);
1004         if (id != C2H_HW_FEATURE_REPORT) {
1005                 rtw_err(rtwdev, "failed to read hw feature report\n");
1006                 return -EBUSY;
1007         }
1008
1009         for (i = 0; i < HW_FEATURE_LEN; i++)
1010                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1011
1012         rtw_write8(rtwdev, REG_C2HEVT, 0);
1013
1014         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1015         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1016         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1017         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1018         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1019         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1020
1021         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1022
1023         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE)
1024                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1025
1026         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1027                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1028                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1029                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1030
1031         return 0;
1032 }
1033
1034 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1035 {
1036         rtw_hci_stop(rtwdev);
1037         rtw_mac_power_off(rtwdev);
1038 }
1039
1040 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1041 {
1042         struct rtw_efuse *efuse = &rtwdev->efuse;
1043         int ret;
1044
1045         mutex_lock(&rtwdev->mutex);
1046
1047         /* power on mac to read efuse */
1048         ret = rtw_chip_efuse_enable(rtwdev);
1049         if (ret)
1050                 goto out;
1051
1052         ret = rtw_parse_efuse_map(rtwdev);
1053         if (ret)
1054                 goto out;
1055
1056         ret = rtw_dump_hw_feature(rtwdev);
1057         if (ret)
1058                 goto out;
1059
1060         ret = rtw_check_supported_rfe(rtwdev);
1061         if (ret)
1062                 goto out;
1063
1064         if (efuse->crystal_cap == 0xff)
1065                 efuse->crystal_cap = 0;
1066         if (efuse->pa_type_2g == 0xff)
1067                 efuse->pa_type_2g = 0;
1068         if (efuse->pa_type_5g == 0xff)
1069                 efuse->pa_type_5g = 0;
1070         if (efuse->lna_type_2g == 0xff)
1071                 efuse->lna_type_2g = 0;
1072         if (efuse->lna_type_5g == 0xff)
1073                 efuse->lna_type_5g = 0;
1074         if (efuse->channel_plan == 0xff)
1075                 efuse->channel_plan = 0x7f;
1076         if (efuse->rf_board_option == 0xff)
1077                 efuse->rf_board_option = 0;
1078         if (efuse->bt_setting & BIT(0))
1079                 efuse->share_ant = true;
1080         if (efuse->regd == 0xff)
1081                 efuse->regd = 0;
1082
1083         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1084         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1085         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1086         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1087         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1088
1089         rtw_chip_efuse_disable(rtwdev);
1090
1091 out:
1092         mutex_unlock(&rtwdev->mutex);
1093         return ret;
1094 }
1095
1096 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1097 {
1098         struct rtw_hal *hal = &rtwdev->hal;
1099         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1100
1101         if (!rfe_def)
1102                 return -ENODEV;
1103
1104         rtw_phy_setup_phy_cond(rtwdev, 0);
1105
1106         rtw_phy_init_tx_power(rtwdev);
1107         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1108         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1109         rtw_phy_tx_power_by_rate_config(hal);
1110         rtw_phy_tx_power_limit_config(hal);
1111
1112         return 0;
1113 }
1114
1115 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1116 {
1117         int ret;
1118
1119         ret = rtw_chip_parameter_setup(rtwdev);
1120         if (ret) {
1121                 rtw_err(rtwdev, "failed to setup chip parameters\n");
1122                 goto err_out;
1123         }
1124
1125         ret = rtw_chip_efuse_info_setup(rtwdev);
1126         if (ret) {
1127                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1128                 goto err_out;
1129         }
1130
1131         ret = rtw_chip_board_info_setup(rtwdev);
1132         if (ret) {
1133                 rtw_err(rtwdev, "failed to setup chip board info\n");
1134                 goto err_out;
1135         }
1136
1137         return 0;
1138
1139 err_out:
1140         return ret;
1141 }
1142 EXPORT_SYMBOL(rtw_chip_info_setup);
1143
1144 int rtw_core_init(struct rtw_dev *rtwdev)
1145 {
1146         struct rtw_coex *coex = &rtwdev->coex;
1147         int ret;
1148
1149         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1150
1151         timer_setup(&rtwdev->tx_report.purge_timer,
1152                     rtw_tx_report_purge_timer, 0);
1153
1154         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1155         INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work);
1156         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1157         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1158         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1159         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1160         skb_queue_head_init(&rtwdev->c2h_queue);
1161         skb_queue_head_init(&rtwdev->coex.queue);
1162         skb_queue_head_init(&rtwdev->tx_report.queue);
1163
1164         spin_lock_init(&rtwdev->dm_lock);
1165         spin_lock_init(&rtwdev->rf_lock);
1166         spin_lock_init(&rtwdev->h2c.lock);
1167         spin_lock_init(&rtwdev->tx_report.q_lock);
1168
1169         mutex_init(&rtwdev->mutex);
1170         mutex_init(&rtwdev->coex.mutex);
1171         mutex_init(&rtwdev->hal.tx_power_mutex);
1172
1173         init_waitqueue_head(&rtwdev->coex.wait);
1174
1175         rtwdev->sec.total_cam_num = 32;
1176         rtwdev->hal.current_channel = 1;
1177         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1178
1179         mutex_lock(&rtwdev->mutex);
1180         rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1181         mutex_unlock(&rtwdev->mutex);
1182
1183         /* default rx filter setting */
1184         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1185                           BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1186                           BIT_AB | BIT_AM | BIT_APM;
1187
1188         ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1189         if (ret) {
1190                 rtw_warn(rtwdev, "no firmware loaded\n");
1191                 return ret;
1192         }
1193
1194         return 0;
1195 }
1196 EXPORT_SYMBOL(rtw_core_init);
1197
1198 void rtw_core_deinit(struct rtw_dev *rtwdev)
1199 {
1200         struct rtw_fw_state *fw = &rtwdev->fw;
1201         struct rtw_rsvd_page *rsvd_pkt, *tmp;
1202         unsigned long flags;
1203
1204         if (fw->firmware)
1205                 release_firmware(fw->firmware);
1206
1207         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1208         skb_queue_purge(&rtwdev->tx_report.queue);
1209         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1210
1211         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1212                 list_del(&rsvd_pkt->list);
1213                 kfree(rsvd_pkt);
1214         }
1215
1216         mutex_destroy(&rtwdev->mutex);
1217         mutex_destroy(&rtwdev->coex.mutex);
1218         mutex_destroy(&rtwdev->hal.tx_power_mutex);
1219 }
1220 EXPORT_SYMBOL(rtw_core_deinit);
1221
1222 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1223 {
1224         int max_tx_headroom = 0;
1225         int ret;
1226
1227         /* TODO: USB & SDIO may need extra room? */
1228         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1229
1230         hw->extra_tx_headroom = max_tx_headroom;
1231         hw->queues = IEEE80211_NUM_ACS;
1232         hw->sta_data_size = sizeof(struct rtw_sta_info);
1233         hw->vif_data_size = sizeof(struct rtw_vif);
1234
1235         ieee80211_hw_set(hw, SIGNAL_DBM);
1236         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1237         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1238         ieee80211_hw_set(hw, MFP_CAPABLE);
1239         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1240         ieee80211_hw_set(hw, SUPPORTS_PS);
1241         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1242         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1243         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1244
1245         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1246                                      BIT(NL80211_IFTYPE_AP) |
1247                                      BIT(NL80211_IFTYPE_ADHOC) |
1248                                      BIT(NL80211_IFTYPE_MESH_POINT);
1249
1250         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1251                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1252
1253         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1254
1255         rtw_set_supported_band(hw, rtwdev->chip);
1256         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1257
1258         rtw_regd_init(rtwdev, rtw_regd_notifier);
1259
1260         ret = ieee80211_register_hw(hw);
1261         if (ret) {
1262                 rtw_err(rtwdev, "failed to register hw\n");
1263                 return ret;
1264         }
1265
1266         if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1267                 rtw_err(rtwdev, "regulatory_hint fail\n");
1268
1269         rtw_debugfs_init(rtwdev);
1270
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(rtw_register_hw);
1274
1275 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1276 {
1277         struct rtw_chip_info *chip = rtwdev->chip;
1278
1279         ieee80211_unregister_hw(hw);
1280         rtw_unset_supported_band(hw, chip);
1281 }
1282 EXPORT_SYMBOL(rtw_unregister_hw);
1283
1284 MODULE_AUTHOR("Realtek Corporation");
1285 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1286 MODULE_LICENSE("Dual BSD/GPL");