1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
43 #ifdef CONFIG_IPW2200_DEBUG
49 #ifdef CONFIG_IPW2200_MONITOR
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
61 #ifdef CONFIG_IPW2200_RADIOTAP
67 #ifdef CONFIG_IPW2200_QOS
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
87 static int channel = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
224 out += snprintf(buf + out, count - out, "%c", c);
228 out += snprintf(buf + out, count - out, " ");
234 static void printk_buf(int level, const u8 * data, u32 len)
238 if (!(ipw_debug_level & level))
242 snprint_line(line, sizeof(line), &data[ofs],
244 printk(KERN_DEBUG "%s\n", line);
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
263 len -= min_t(size_t, len, 16U);
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
571 case IPW_FW_ERROR_OK:
573 case IPW_FW_ERROR_FAIL:
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
593 case IPW_FW_ERROR_DINO_ERROR:
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
747 priv->table2_addr + (ord << 3) +
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
923 if (priv->config & CFG_NO_LED)
926 if (priv->status & STATUS_RF_KILL_MASK)
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
954 void ipw_led_activity_on(struct ipw_priv *priv)
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
963 static void ipw_led_activity_off(struct ipw_priv *priv)
968 if (priv->config & CFG_NO_LED)
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1159 char *p = (char *)buf;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 if (p[0] == 'x' || p[0] == 'X')
1166 val = simple_strtoul(p, &p, 16);
1168 val = simple_strtoul(p, &p, 10);
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 IPW_ERROR("Memory allocation for firmware error log "
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1237 struct ipw_event *log;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1245 IPW_ERROR("Unable to allocate memory for log\n");
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1361 ipw_prom_free(priv);
1369 rc = ipw_prom_alloc(priv);
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1462 if (p[0] == 'x' || p[0] == 'X')
1464 val = simple_strtoul(p, &p, 16);
1466 val = simple_strtoul(p, &p, 10);
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1507 IPW_DEBUG_INFO("exit\n");
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", ®);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", ®);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1758 queue_work(priv->workqueue, &priv->down);
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1769 queue_work(priv->workqueue, &priv->up);
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1778 struct ipw_priv *priv = d->driver_data;
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1799 return sprintf(buf, "0\n");
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1824 while (*p == ' ' || *p == '\t')
1829 priv->config &= ~CFG_SPEED_SCAN;
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1853 priv->config |= CFG_NET_STATS;
1855 priv->config &= ~CFG_NET_STATS;
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1937 spin_lock_irqsave(&priv->lock, flags);
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2025 priv->error = ipw_alloc_error_log(priv);
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2063 spin_unlock_irqrestore(&priv->lock, flags);
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2078 IPW_CMD(ADAPTER_ADDRESS);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2122 IPW_CMD(PRODUCTION_COMMAND);
2128 #define HOST_COMPLETE_TIMEOUT HZ
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2133 unsigned long flags;
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2143 priv->status |= STATUS_HCMD_ACTIVE;
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2173 spin_unlock_irqrestore(&priv->lock, flags);
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2189 spin_unlock_irqrestore(&priv->lock, flags);
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2210 struct host_cmd cmd = {
2214 return __ipw_send_cmd(priv, &cmd);
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2220 struct host_cmd cmd = {
2226 return __ipw_send_cmd(priv, &cmd);
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2232 IPW_ERROR("Invalid args\n");
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2275 static void ipw_adapter_restart(void *adapter)
2277 struct ipw_priv *priv = adapter;
2279 if (priv->status & STATUS_RF_KILL_MASK)
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2289 IPW_ERROR("Failed to up device\n");
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2305 static void ipw_scan_check(void *data)
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2316 static void ipw_bg_scan_check(struct work_struct *work)
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2335 IPW_ERROR("Invalid args\n");
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2355 if (!priv || !associate) {
2356 IPW_ERROR("Invalid args\n");
2360 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365 struct ipw_supported_rates *rates)
2367 if (!priv || !rates) {
2368 IPW_ERROR("Invalid args\n");
2372 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2381 IPW_ERROR("Invalid args\n");
2385 get_random_bytes(&val, sizeof(val));
2387 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2392 __le32 v = cpu_to_le32(phy_off);
2394 IPW_ERROR("Invalid args\n");
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2401 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2403 if (!priv || !power) {
2404 IPW_ERROR("Invalid args\n");
2408 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2411 static int ipw_set_tx_power(struct ipw_priv *priv)
2413 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2414 struct ipw_tx_power tx_power;
2418 memset(&tx_power, 0, sizeof(tx_power));
2420 /* configure device for 'G' band */
2421 tx_power.ieee_mode = IPW_G_MODE;
2422 tx_power.num_channels = geo->bg_channels;
2423 for (i = 0; i < geo->bg_channels; i++) {
2424 max_power = geo->bg[i].max_power;
2425 tx_power.channels_tx_power[i].channel_number =
2427 tx_power.channels_tx_power[i].tx_power = max_power ?
2428 min(max_power, priv->tx_power) : priv->tx_power;
2430 if (ipw_send_tx_power(priv, &tx_power))
2433 /* configure device to also handle 'B' band */
2434 tx_power.ieee_mode = IPW_B_MODE;
2435 if (ipw_send_tx_power(priv, &tx_power))
2438 /* configure device to also handle 'A' band */
2439 if (priv->ieee->abg_true) {
2440 tx_power.ieee_mode = IPW_A_MODE;
2441 tx_power.num_channels = geo->a_channels;
2442 for (i = 0; i < tx_power.num_channels; i++) {
2443 max_power = geo->a[i].max_power;
2444 tx_power.channels_tx_power[i].channel_number =
2446 tx_power.channels_tx_power[i].tx_power = max_power ?
2447 min(max_power, priv->tx_power) : priv->tx_power;
2449 if (ipw_send_tx_power(priv, &tx_power))
2455 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2457 struct ipw_rts_threshold rts_threshold = {
2458 .rts_threshold = cpu_to_le16(rts),
2462 IPW_ERROR("Invalid args\n");
2466 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2467 sizeof(rts_threshold), &rts_threshold);
2470 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2472 struct ipw_frag_threshold frag_threshold = {
2473 .frag_threshold = cpu_to_le16(frag),
2477 IPW_ERROR("Invalid args\n");
2481 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2482 sizeof(frag_threshold), &frag_threshold);
2485 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490 IPW_ERROR("Invalid args\n");
2494 /* If on battery, set to 3, if AC set to CAM, else user
2497 case IPW_POWER_BATTERY:
2498 param = cpu_to_le32(IPW_POWER_INDEX_3);
2501 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2504 param = cpu_to_le32(mode);
2508 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2512 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2514 struct ipw_retry_limit retry_limit = {
2515 .short_retry_limit = slimit,
2516 .long_retry_limit = llimit
2520 IPW_ERROR("Invalid args\n");
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 * The IPW device contains a Microwire compatible EEPROM that stores
2530 * various data like the MAC address. Usually the firmware has exclusive
2531 * access to the eeprom, but during device initialization (before the
2532 * device driver has sent the HostComplete command to the firmware) the
2533 * device driver has read access to the EEPROM by way of indirect addressing
2534 * through a couple of memory mapped registers.
2536 * The following is a simplified implementation for pulling data out of the
2537 * the eeprom, along with some helper functions to find information in
2538 * the per device private data's copy of the eeprom.
2540 * NOTE: To better understand how these functions work (i.e what is a chip
2541 * select and why do have to keep driving the eeprom clock?), read
2542 * just about any data sheet for a Microwire compatible EEPROM.
2545 /* write a 32 bit value into the indirect accessor register */
2546 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2548 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2550 /* the eeprom requires some time to complete the operation */
2551 udelay(p->eeprom_delay);
2556 /* perform a chip select operation */
2557 static void eeprom_cs(struct ipw_priv *priv)
2559 eeprom_write_reg(priv, 0);
2560 eeprom_write_reg(priv, EEPROM_BIT_CS);
2561 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2562 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 /* perform a chip select operation */
2566 static void eeprom_disable_cs(struct ipw_priv *priv)
2568 eeprom_write_reg(priv, EEPROM_BIT_CS);
2569 eeprom_write_reg(priv, 0);
2570 eeprom_write_reg(priv, EEPROM_BIT_SK);
2573 /* push a single bit down to the eeprom */
2574 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2576 int d = (bit ? EEPROM_BIT_DI : 0);
2577 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2578 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2581 /* push an opcode followed by an address down to the eeprom */
2582 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2587 eeprom_write_bit(priv, 1);
2588 eeprom_write_bit(priv, op & 2);
2589 eeprom_write_bit(priv, op & 1);
2590 for (i = 7; i >= 0; i--) {
2591 eeprom_write_bit(priv, addr & (1 << i));
2595 /* pull 16 bits off the eeprom, one bit at a time */
2596 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2601 /* Send READ Opcode */
2602 eeprom_op(priv, EEPROM_CMD_READ, addr);
2604 /* Send dummy bit */
2605 eeprom_write_reg(priv, EEPROM_BIT_CS);
2607 /* Read the byte off the eeprom one bit at a time */
2608 for (i = 0; i < 16; i++) {
2610 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2611 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2613 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2616 /* Send another dummy bit */
2617 eeprom_write_reg(priv, 0);
2618 eeprom_disable_cs(priv);
2623 /* helper function for pulling the mac address out of the private */
2624 /* data's copy of the eeprom data */
2625 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2627 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2631 * Either the device driver (i.e. the host) or the firmware can
2632 * load eeprom data into the designated region in SRAM. If neither
2633 * happens then the FW will shutdown with a fatal error.
2635 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2636 * bit needs region of shared SRAM needs to be non-zero.
2638 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2641 __le16 *eeprom = (__le16 *) priv->eeprom;
2643 IPW_DEBUG_TRACE(">>\n");
2645 /* read entire contents of eeprom into private buffer */
2646 for (i = 0; i < 128; i++)
2647 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2650 If the data looks correct, then copy it to our private
2651 copy. Otherwise let the firmware know to perform the operation
2654 if (priv->eeprom[EEPROM_VERSION] != 0) {
2655 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2657 /* write the eeprom data to sram */
2658 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2659 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2661 /* Do not load eeprom data on fatal error or suspend */
2662 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2664 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2666 /* Load eeprom data on fatal error or suspend */
2667 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2670 IPW_DEBUG_TRACE("<<\n");
2673 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2678 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2680 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2683 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2685 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2686 CB_NUMBER_OF_ELEMENTS_SMALL *
2687 sizeof(struct command_block));
2690 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2691 { /* start dma engine but no transfers yet */
2693 IPW_DEBUG_FW(">> : \n");
2696 ipw_fw_dma_reset_command_blocks(priv);
2698 /* Write CB base address */
2699 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2701 IPW_DEBUG_FW("<< : \n");
2705 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2709 IPW_DEBUG_FW(">> :\n");
2711 /* set the Stop and Abort bit */
2712 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2713 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2714 priv->sram_desc.last_cb_index = 0;
2716 IPW_DEBUG_FW("<< \n");
2719 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2720 struct command_block *cb)
2723 IPW_SHARED_SRAM_DMA_CONTROL +
2724 (sizeof(struct command_block) * index);
2725 IPW_DEBUG_FW(">> :\n");
2727 ipw_write_indirect(priv, address, (u8 *) cb,
2728 (int)sizeof(struct command_block));
2730 IPW_DEBUG_FW("<< :\n");
2735 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2740 IPW_DEBUG_FW(">> :\n");
2742 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2743 ipw_fw_dma_write_command_block(priv, index,
2744 &priv->sram_desc.cb_list[index]);
2746 /* Enable the DMA in the CSR register */
2747 ipw_clear_bit(priv, IPW_RESET_REG,
2748 IPW_RESET_REG_MASTER_DISABLED |
2749 IPW_RESET_REG_STOP_MASTER);
2751 /* Set the Start bit. */
2752 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2753 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2755 IPW_DEBUG_FW("<< :\n");
2759 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2762 u32 register_value = 0;
2763 u32 cb_fields_address = 0;
2765 IPW_DEBUG_FW(">> :\n");
2766 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2767 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2769 /* Read the DMA Controlor register */
2770 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2771 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2773 /* Print the CB values */
2774 cb_fields_address = address;
2775 register_value = ipw_read_reg32(priv, cb_fields_address);
2776 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2778 cb_fields_address += sizeof(u32);
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2787 cb_fields_address += sizeof(u32);
2788 register_value = ipw_read_reg32(priv, cb_fields_address);
2789 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2791 IPW_DEBUG_FW(">> :\n");
2794 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2796 u32 current_cb_address = 0;
2797 u32 current_cb_index = 0;
2799 IPW_DEBUG_FW("<< :\n");
2800 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2802 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2803 sizeof(struct command_block);
2805 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2806 current_cb_index, current_cb_address);
2808 IPW_DEBUG_FW(">> :\n");
2809 return current_cb_index;
2813 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2817 int interrupt_enabled, int is_last)
2820 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2821 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2823 struct command_block *cb;
2824 u32 last_cb_element = 0;
2826 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2827 src_address, dest_address, length);
2829 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2832 last_cb_element = priv->sram_desc.last_cb_index;
2833 cb = &priv->sram_desc.cb_list[last_cb_element];
2834 priv->sram_desc.last_cb_index++;
2836 /* Calculate the new CB control word */
2837 if (interrupt_enabled)
2838 control |= CB_INT_ENABLED;
2841 control |= CB_LAST_VALID;
2845 /* Calculate the CB Element's checksum value */
2846 cb->status = control ^ src_address ^ dest_address;
2848 /* Copy the Source and Destination addresses */
2849 cb->dest_addr = dest_address;
2850 cb->source_addr = src_address;
2852 /* Copy the Control Word last */
2853 cb->control = control;
2858 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2859 u32 src_phys, u32 dest_address, u32 length)
2861 u32 bytes_left = length;
2863 u32 dest_offset = 0;
2865 IPW_DEBUG_FW(">> \n");
2866 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2867 src_phys, dest_address, length);
2868 while (bytes_left > CB_MAX_LENGTH) {
2869 status = ipw_fw_dma_add_command_block(priv,
2870 src_phys + src_offset,
2873 CB_MAX_LENGTH, 0, 0);
2875 IPW_DEBUG_FW_INFO(": Failed\n");
2878 IPW_DEBUG_FW_INFO(": Added new cb\n");
2880 src_offset += CB_MAX_LENGTH;
2881 dest_offset += CB_MAX_LENGTH;
2882 bytes_left -= CB_MAX_LENGTH;
2885 /* add the buffer tail */
2886 if (bytes_left > 0) {
2888 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2889 dest_address + dest_offset,
2892 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2896 (": Adding new cb - the buffer tail\n");
2899 IPW_DEBUG_FW("<< \n");
2903 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2905 u32 current_index = 0, previous_index;
2908 IPW_DEBUG_FW(">> : \n");
2910 current_index = ipw_fw_dma_command_block_index(priv);
2911 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2912 (int)priv->sram_desc.last_cb_index);
2914 while (current_index < priv->sram_desc.last_cb_index) {
2916 previous_index = current_index;
2917 current_index = ipw_fw_dma_command_block_index(priv);
2919 if (previous_index < current_index) {
2923 if (++watchdog > 400) {
2924 IPW_DEBUG_FW_INFO("Timeout\n");
2925 ipw_fw_dma_dump_command_block(priv);
2926 ipw_fw_dma_abort(priv);
2931 ipw_fw_dma_abort(priv);
2933 /*Disable the DMA in the CSR register */
2934 ipw_set_bit(priv, IPW_RESET_REG,
2935 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2937 IPW_DEBUG_FW("<< dmaWaitSync \n");
2941 static void ipw_remove_current_network(struct ipw_priv *priv)
2943 struct list_head *element, *safe;
2944 struct ieee80211_network *network = NULL;
2945 unsigned long flags;
2947 spin_lock_irqsave(&priv->ieee->lock, flags);
2948 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2949 network = list_entry(element, struct ieee80211_network, list);
2950 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2952 list_add_tail(&network->list,
2953 &priv->ieee->network_free_list);
2956 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2960 * Check that card is still alive.
2961 * Reads debug register from domain0.
2962 * If card is present, pre-defined value should
2966 * @return 1 if card is present, 0 otherwise
2968 static inline int ipw_alive(struct ipw_priv *priv)
2970 return ipw_read32(priv, 0x90) == 0xd55555d5;
2973 /* timeout in msec, attempted in 10-msec quanta */
2974 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2980 if ((ipw_read32(priv, addr) & mask) == mask)
2984 } while (i < timeout);
2989 /* These functions load the firmware and micro code for the operation of
2990 * the ipw hardware. It assumes the buffer has all the bits for the
2991 * image and the caller is handling the memory allocation and clean up.
2994 static int ipw_stop_master(struct ipw_priv *priv)
2998 IPW_DEBUG_TRACE(">> \n");
2999 /* stop master. typical delay - 0 */
3000 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3002 /* timeout is in msec, polled in 10-msec quanta */
3003 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3004 IPW_RESET_REG_MASTER_DISABLED, 100);
3006 IPW_ERROR("wait for stop master failed after 100ms\n");
3010 IPW_DEBUG_INFO("stop master %dms\n", rc);
3015 static void ipw_arc_release(struct ipw_priv *priv)
3017 IPW_DEBUG_TRACE(">> \n");
3020 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3022 /* no one knows timing, for safety add some delay */
3031 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3033 int rc = 0, i, addr;
3037 image = (__le16 *) data;
3039 IPW_DEBUG_TRACE(">> \n");
3041 rc = ipw_stop_master(priv);
3046 for (addr = IPW_SHARED_LOWER_BOUND;
3047 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3048 ipw_write32(priv, addr, 0);
3051 /* no ucode (yet) */
3052 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3053 /* destroy DMA queues */
3054 /* reset sequence */
3056 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3057 ipw_arc_release(priv);
3058 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3062 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3065 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3068 /* enable ucode store */
3069 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3070 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3076 * Do NOT set indirect address register once and then
3077 * store data to indirect data register in the loop.
3078 * It seems very reasonable, but in this case DINO do not
3079 * accept ucode. It is essential to set address each time.
3081 /* load new ipw uCode */
3082 for (i = 0; i < len / 2; i++)
3083 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3084 le16_to_cpu(image[i]));
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3090 /* this is where the igx / win driver deveates from the VAP driver. */
3092 /* wait for alive response */
3093 for (i = 0; i < 100; i++) {
3094 /* poll for incoming data */
3095 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3096 if (cr & DINO_RXFIFO_DATA)
3101 if (cr & DINO_RXFIFO_DATA) {
3102 /* alive_command_responce size is NOT multiple of 4 */
3103 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3105 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3106 response_buffer[i] =
3107 cpu_to_le32(ipw_read_reg32(priv,
3108 IPW_BASEBAND_RX_FIFO_READ));
3109 memcpy(&priv->dino_alive, response_buffer,
3110 sizeof(priv->dino_alive));
3111 if (priv->dino_alive.alive_command == 1
3112 && priv->dino_alive.ucode_valid == 1) {
3115 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3116 "of %02d/%02d/%02d %02d:%02d\n",
3117 priv->dino_alive.software_revision,
3118 priv->dino_alive.software_revision,
3119 priv->dino_alive.device_identifier,
3120 priv->dino_alive.device_identifier,
3121 priv->dino_alive.time_stamp[0],
3122 priv->dino_alive.time_stamp[1],
3123 priv->dino_alive.time_stamp[2],
3124 priv->dino_alive.time_stamp[3],
3125 priv->dino_alive.time_stamp[4]);
3127 IPW_DEBUG_INFO("Microcode is not alive\n");
3131 IPW_DEBUG_INFO("No alive response from DINO\n");
3135 /* disable DINO, otherwise for some reason
3136 firmware have problem getting alive resp. */
3137 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3142 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3146 struct fw_chunk *chunk;
3147 dma_addr_t shared_phys;
3150 IPW_DEBUG_TRACE("<< : \n");
3151 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3156 memmove(shared_virt, data, len);
3159 rc = ipw_fw_dma_enable(priv);
3161 if (priv->sram_desc.last_cb_index > 0) {
3162 /* the DMA is already ready this would be a bug. */
3168 chunk = (struct fw_chunk *)(data + offset);
3169 offset += sizeof(struct fw_chunk);
3170 /* build DMA packet and queue up for sending */
3171 /* dma to chunk->address, the chunk->length bytes from data +
3174 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3175 le32_to_cpu(chunk->address),
3176 le32_to_cpu(chunk->length));
3178 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3182 offset += le32_to_cpu(chunk->length);
3183 } while (offset < len);
3185 /* Run the DMA and wait for the answer */
3186 rc = ipw_fw_dma_kick(priv);
3188 IPW_ERROR("dmaKick Failed\n");
3192 rc = ipw_fw_dma_wait(priv);
3194 IPW_ERROR("dmaWaitSync Failed\n");
3198 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 static int ipw_stop_nic(struct ipw_priv *priv)
3208 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3210 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3211 IPW_RESET_REG_MASTER_DISABLED, 500);
3213 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3217 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3222 static void ipw_start_nic(struct ipw_priv *priv)
3224 IPW_DEBUG_TRACE(">>\n");
3226 /* prvHwStartNic release ARC */
3227 ipw_clear_bit(priv, IPW_RESET_REG,
3228 IPW_RESET_REG_MASTER_DISABLED |
3229 IPW_RESET_REG_STOP_MASTER |
3230 CBD_RESET_REG_PRINCETON_RESET);
3232 /* enable power management */
3233 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3234 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3236 IPW_DEBUG_TRACE("<<\n");
3239 static int ipw_init_nic(struct ipw_priv *priv)
3243 IPW_DEBUG_TRACE(">>\n");
3246 /* set "initialization complete" bit to move adapter to D0 state */
3247 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3249 /* low-level PLL activation */
3250 ipw_write32(priv, IPW_READ_INT_REGISTER,
3251 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3253 /* wait for clock stabilization */
3254 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3255 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3257 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3259 /* assert SW reset */
3260 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3264 /* set "initialization complete" bit to move adapter to D0 state */
3265 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3267 IPW_DEBUG_TRACE(">>\n");
3271 /* Call this function from process context, it will sleep in request_firmware.
3272 * Probe is an ok place to call this from.
3274 static int ipw_reset_nic(struct ipw_priv *priv)
3277 unsigned long flags;
3279 IPW_DEBUG_TRACE(">>\n");
3281 rc = ipw_init_nic(priv);
3283 spin_lock_irqsave(&priv->lock, flags);
3284 /* Clear the 'host command active' bit... */
3285 priv->status &= ~STATUS_HCMD_ACTIVE;
3286 wake_up_interruptible(&priv->wait_command_queue);
3287 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3288 wake_up_interruptible(&priv->wait_state);
3289 spin_unlock_irqrestore(&priv->lock, flags);
3291 IPW_DEBUG_TRACE("<<\n");
3304 static int ipw_get_fw(struct ipw_priv *priv,
3305 const struct firmware **raw, const char *name)
3310 /* ask firmware_class module to get the boot firmware off disk */
3311 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3313 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3317 if ((*raw)->size < sizeof(*fw)) {
3318 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3322 fw = (void *)(*raw)->data;
3324 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3325 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3326 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3327 name, (*raw)->size);
3331 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3333 le32_to_cpu(fw->ver) >> 16,
3334 le32_to_cpu(fw->ver) & 0xff,
3335 (*raw)->size - sizeof(*fw));
3339 #define IPW_RX_BUF_SIZE (3000)
3341 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3342 struct ipw_rx_queue *rxq)
3344 unsigned long flags;
3347 spin_lock_irqsave(&rxq->lock, flags);
3349 INIT_LIST_HEAD(&rxq->rx_free);
3350 INIT_LIST_HEAD(&rxq->rx_used);
3352 /* Fill the rx_used queue with _all_ of the Rx buffers */
3353 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3354 /* In the reset function, these buffers may have been allocated
3355 * to an SKB, so we need to unmap and free potential storage */
3356 if (rxq->pool[i].skb != NULL) {
3357 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3358 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3359 dev_kfree_skb(rxq->pool[i].skb);
3360 rxq->pool[i].skb = NULL;
3362 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3365 /* Set us so that we have processed and used all buffers, but have
3366 * not restocked the Rx queue with fresh buffers */
3367 rxq->read = rxq->write = 0;
3368 rxq->free_count = 0;
3369 spin_unlock_irqrestore(&rxq->lock, flags);
3373 static int fw_loaded = 0;
3374 static const struct firmware *raw = NULL;
3376 static void free_firmware(void)
3379 release_firmware(raw);
3385 #define free_firmware() do {} while (0)
3388 static int ipw_load(struct ipw_priv *priv)
3391 const struct firmware *raw = NULL;
3394 u8 *boot_img, *ucode_img, *fw_img;
3396 int rc = 0, retries = 3;
3398 switch (priv->ieee->iw_mode) {
3400 name = "ipw2200-ibss.fw";
3402 #ifdef CONFIG_IPW2200_MONITOR
3403 case IW_MODE_MONITOR:
3404 name = "ipw2200-sniffer.fw";
3408 name = "ipw2200-bss.fw";
3420 rc = ipw_get_fw(priv, &raw, name);
3427 fw = (void *)raw->data;
3428 boot_img = &fw->data[0];
3429 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3430 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3431 le32_to_cpu(fw->ucode_size)];
3437 priv->rxq = ipw_rx_queue_alloc(priv);
3439 ipw_rx_queue_reset(priv, priv->rxq);
3441 IPW_ERROR("Unable to initialize Rx queue\n");
3446 /* Ensure interrupts are disabled */
3447 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3448 priv->status &= ~STATUS_INT_ENABLED;
3450 /* ack pending interrupts */
3451 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3455 rc = ipw_reset_nic(priv);
3457 IPW_ERROR("Unable to reset NIC\n");
3461 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3462 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3464 /* DMA the initial boot firmware into the device */
3465 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3467 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3471 /* kick start the device */
3472 ipw_start_nic(priv);
3474 /* wait for the device to finish its initial startup sequence */
3475 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3476 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3478 IPW_ERROR("device failed to boot initial fw image\n");
3481 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3483 /* ack fw init done interrupt */
3484 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3486 /* DMA the ucode into the device */
3487 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3489 IPW_ERROR("Unable to load ucode: %d\n", rc);
3496 /* DMA bss firmware into the device */
3497 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3499 IPW_ERROR("Unable to load firmware: %d\n", rc);
3506 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3508 rc = ipw_queue_reset(priv);
3510 IPW_ERROR("Unable to initialize queues\n");
3514 /* Ensure interrupts are disabled */
3515 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3516 /* ack pending interrupts */
3517 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3519 /* kick start the device */
3520 ipw_start_nic(priv);
3522 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3524 IPW_WARNING("Parity error. Retrying init.\n");
3529 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 /* wait for the device */
3535 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3536 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3538 IPW_ERROR("device failed to start within 500ms\n");
3541 IPW_DEBUG_INFO("device response after %dms\n", rc);
3543 /* ack fw init done interrupt */
3544 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3546 /* read eeprom data and initialize the eeprom region of sram */
3547 priv->eeprom_delay = 1;
3548 ipw_eeprom_init_sram(priv);
3550 /* enable interrupts */
3551 ipw_enable_interrupts(priv);
3553 /* Ensure our queue has valid packets */
3554 ipw_rx_queue_replenish(priv);
3556 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3558 /* ack pending interrupts */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3562 release_firmware(raw);
3568 ipw_rx_queue_free(priv, priv->rxq);
3571 ipw_tx_queue_free(priv);
3573 release_firmware(raw);
3585 * Theory of operation
3587 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3588 * 2 empty entries always kept in the buffer to protect from overflow.
3590 * For Tx queue, there are low mark and high mark limits. If, after queuing
3591 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3592 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3595 * The IPW operates with six queues, one receive queue in the device's
3596 * sram, one transmit queue for sending commands to the device firmware,
3597 * and four transmit queues for data.
3599 * The four transmit queues allow for performing quality of service (qos)
3600 * transmissions as per the 802.11 protocol. Currently Linux does not
3601 * provide a mechanism to the user for utilizing prioritized queues, so
3602 * we only utilize the first data transmit queue (queue1).
3606 * Driver allocates buffers of this size for Rx
3610 * ipw_rx_queue_space - Return number of free slots available in queue.
3612 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3614 int s = q->read - q->write;
3617 /* keep some buffer to not confuse full and empty queue */
3624 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3626 int s = q->last_used - q->first_empty;
3629 s -= 2; /* keep some reserve to not confuse empty and full situations */
3635 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3637 return (++index == n_bd) ? 0 : index;
3641 * Initialize common DMA queue structure
3643 * @param q queue to init
3644 * @param count Number of BD's to allocate. Should be power of 2
3645 * @param read_register Address for 'read' register
3646 * (not offset within BAR, full address)
3647 * @param write_register Address for 'write' register
3648 * (not offset within BAR, full address)
3649 * @param base_register Address for 'base' register
3650 * (not offset within BAR, full address)
3651 * @param size Address for 'size' register
3652 * (not offset within BAR, full address)
3654 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3655 int count, u32 read, u32 write, u32 base, u32 size)
3659 q->low_mark = q->n_bd / 4;
3660 if (q->low_mark < 4)
3663 q->high_mark = q->n_bd / 8;
3664 if (q->high_mark < 2)
3667 q->first_empty = q->last_used = 0;
3671 ipw_write32(priv, base, q->dma_addr);
3672 ipw_write32(priv, size, count);
3673 ipw_write32(priv, read, 0);
3674 ipw_write32(priv, write, 0);
3676 _ipw_read32(priv, 0x90);
3679 static int ipw_queue_tx_init(struct ipw_priv *priv,
3680 struct clx2_tx_queue *q,
3681 int count, u32 read, u32 write, u32 base, u32 size)
3683 struct pci_dev *dev = priv->pci_dev;
3685 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3687 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3694 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3695 sizeof(q->bd[0]) * count);
3701 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 * Free one TFD, those at index [txq->q.last_used].
3707 * Do NOT advance any indexes
3712 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3713 struct clx2_tx_queue *txq)
3715 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3716 struct pci_dev *dev = priv->pci_dev;
3720 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3721 /* nothing to cleanup after for host commands */
3725 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3726 IPW_ERROR("Too many chunks: %i\n",
3727 le32_to_cpu(bd->u.data.num_chunks));
3728 /** @todo issue