Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[sfrench/cifs-2.6.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* If the interrupt is enabled, turn it off... */
1702         spin_lock_irqsave(&priv->low_lock, flags);
1703         ipw2100_disable_interrupts(priv);
1704
1705         /* Reset any fatal_error conditions */
1706         ipw2100_reset_fatalerror(priv);
1707         spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709         if (priv->status & STATUS_POWERED ||
1710             (priv->status & STATUS_RESET_PENDING)) {
1711                 /* Power cycle the card ... */
1712                 if (ipw2100_power_cycle_adapter(priv)) {
1713                         printk(KERN_WARNING DRV_NAME
1714                                ": %s: Could not cycle adapter.\n",
1715                                priv->net_dev->name);
1716                         rc = 1;
1717                         goto exit;
1718                 }
1719         } else
1720                 priv->status |= STATUS_POWERED;
1721
1722         /* Load the firmware, start the clocks, etc. */
1723         if (ipw2100_start_adapter(priv)) {
1724                 printk(KERN_ERR DRV_NAME
1725                        ": %s: Failed to start the firmware.\n",
1726                        priv->net_dev->name);
1727                 rc = 1;
1728                 goto exit;
1729         }
1730
1731         ipw2100_initialize_ordinals(priv);
1732
1733         /* Determine capabilities of this particular HW configuration */
1734         if (ipw2100_get_hw_features(priv)) {
1735                 printk(KERN_ERR DRV_NAME
1736                        ": %s: Failed to determine HW features.\n",
1737                        priv->net_dev->name);
1738                 rc = 1;
1739                 goto exit;
1740         }
1741
1742         /* Initialize the geo */
1743         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745                 return 0;
1746         }
1747         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749         lock = LOCK_NONE;
1750         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751                 printk(KERN_ERR DRV_NAME
1752                        ": %s: Failed to clear ordinal lock.\n",
1753                        priv->net_dev->name);
1754                 rc = 1;
1755                 goto exit;
1756         }
1757
1758         priv->status &= ~STATUS_SCANNING;
1759
1760         if (rf_kill_active(priv)) {
1761                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762                        priv->net_dev->name);
1763
1764                 if (priv->stop_rf_kill) {
1765                         priv->stop_rf_kill = 0;
1766                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767                 }
1768
1769                 deferred = 1;
1770         }
1771
1772         /* Turn on the interrupt so that commands can be processed */
1773         ipw2100_enable_interrupts(priv);
1774
1775         /* Send all of the commands that must be sent prior to
1776          * HOST_COMPLETE */
1777         if (ipw2100_adapter_setup(priv)) {
1778                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779                        priv->net_dev->name);
1780                 rc = 1;
1781                 goto exit;
1782         }
1783
1784         if (!deferred) {
1785                 /* Enable the adapter - sends HOST_COMPLETE */
1786                 if (ipw2100_enable_adapter(priv)) {
1787                         printk(KERN_ERR DRV_NAME ": "
1788                                "%s: failed in call to enable adapter.\n",
1789                                priv->net_dev->name);
1790                         ipw2100_hw_stop_adapter(priv);
1791                         rc = 1;
1792                         goto exit;
1793                 }
1794
1795                 /* Start a scan . . . */
1796                 ipw2100_set_scan_options(priv);
1797                 ipw2100_start_scan(priv);
1798         }
1799
1800       exit:
1801         return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807         struct ipw2100_priv *priv = ieee80211_priv(dev);
1808         return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813         unsigned long flags;
1814         union iwreq_data wrqu = {
1815                 .ap_addr = {
1816                             .sa_family = ARPHRD_ETHER}
1817         };
1818         int associated = priv->status & STATUS_ASSOCIATED;
1819
1820         /* Kill the RF switch timer */
1821         if (!priv->stop_rf_kill) {
1822                 priv->stop_rf_kill = 1;
1823                 cancel_delayed_work(&priv->rf_kill);
1824         }
1825
1826         /* Kill the firmare hang check timer */
1827         if (!priv->stop_hang_check) {
1828                 priv->stop_hang_check = 1;
1829                 cancel_delayed_work(&priv->hang_check);
1830         }
1831
1832         /* Kill any pending resets */
1833         if (priv->status & STATUS_RESET_PENDING)
1834                 cancel_delayed_work(&priv->reset_work);
1835
1836         /* Make sure the interrupt is on so that FW commands will be
1837          * processed correctly */
1838         spin_lock_irqsave(&priv->low_lock, flags);
1839         ipw2100_enable_interrupts(priv);
1840         spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842         if (ipw2100_hw_stop_adapter(priv))
1843                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844                        priv->net_dev->name);
1845
1846         /* Do not disable the interrupt until _after_ we disable
1847          * the adaptor.  Otherwise the CARD_DISABLE command will never
1848          * be ack'd by the firmware */
1849         spin_lock_irqsave(&priv->low_lock, flags);
1850         ipw2100_disable_interrupts(priv);
1851         spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854         if (priv->config & CFG_C3_DISABLED) {
1855                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856                 acpi_set_cstate_limit(priv->cstate_limit);
1857                 priv->config &= ~CFG_C3_DISABLED;
1858         }
1859 #endif
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872         unsigned long flags;
1873         union iwreq_data wrqu = {
1874                 .ap_addr = {
1875                             .sa_family = ARPHRD_ETHER}
1876         };
1877         int associated = priv->status & STATUS_ASSOCIATED;
1878
1879         spin_lock_irqsave(&priv->low_lock, flags);
1880         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881         priv->resets++;
1882         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883         priv->status |= STATUS_SECURITY_UPDATED;
1884
1885         /* Force a power cycle even if interface hasn't been opened
1886          * yet */
1887         cancel_delayed_work(&priv->reset_work);
1888         priv->status |= STATUS_RESET_PENDING;
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         mutex_lock(&priv->action_mutex);
1892         /* stop timed checks so that they don't interfere with reset */
1893         priv->stop_hang_check = 1;
1894         cancel_delayed_work(&priv->hang_check);
1895
1896         /* We have to signal any supplicant if we are disassociating */
1897         if (associated)
1898                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900         ipw2100_up(priv, 0);
1901         mutex_unlock(&priv->action_mutex);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909         int ret, len, essid_len;
1910         char essid[IW_ESSID_MAX_SIZE];
1911         u32 txrate;
1912         u32 chan;
1913         char *txratename;
1914         u8 bssid[ETH_ALEN];
1915
1916         /*
1917          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918          *      an actual MAC of the AP. Seems like FW sets this
1919          *      address too late. Read it later and expose through
1920          *      /proc or schedule a later task to query and update
1921          */
1922
1923         essid_len = IW_ESSID_MAX_SIZE;
1924         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925                                   essid, &essid_len);
1926         if (ret) {
1927                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928                                __LINE__);
1929                 return;
1930         }
1931
1932         len = sizeof(u32);
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934         if (ret) {
1935                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936                                __LINE__);
1937                 return;
1938         }
1939
1940         len = sizeof(u32);
1941         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942         if (ret) {
1943                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944                                __LINE__);
1945                 return;
1946         }
1947         len = ETH_ALEN;
1948         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949         if (ret) {
1950                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951                                __LINE__);
1952                 return;
1953         }
1954         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956         switch (txrate) {
1957         case TX_RATE_1_MBIT:
1958                 txratename = "1Mbps";
1959                 break;
1960         case TX_RATE_2_MBIT:
1961                 txratename = "2Mbsp";
1962                 break;
1963         case TX_RATE_5_5_MBIT:
1964                 txratename = "5.5Mbps";
1965                 break;
1966         case TX_RATE_11_MBIT:
1967                 txratename = "11Mbps";
1968                 break;
1969         default:
1970                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971                 txratename = "unknown rate";
1972                 break;
1973         }
1974
1975         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976                        MAC_FMT ")\n",
1977                        priv->net_dev->name, escape_essid(essid, essid_len),
1978                        txratename, chan, MAC_ARG(bssid));
1979
1980         /* now we copy read ssid into dev */
1981         if (!(priv->config & CFG_STATIC_ESSID)) {
1982                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983                 memcpy(priv->essid, essid, priv->essid_len);
1984         }
1985         priv->channel = chan;
1986         memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988         priv->status |= STATUS_ASSOCIATING;
1989         priv->connect_start = get_seconds();
1990
1991         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995                              int length, int batch_mode)
1996 {
1997         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998         struct host_command cmd = {
1999                 .host_command = SSID,
2000                 .host_command_sequence = 0,
2001                 .host_command_length = ssid_len
2002         };
2003         int err;
2004
2005         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007         if (ssid_len)
2008                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010         if (!batch_mode) {
2011                 err = ipw2100_disable_adapter(priv);
2012                 if (err)
2013                         return err;
2014         }
2015
2016         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017          * disable auto association -- so we cheat by setting a bogus SSID */
2018         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019                 int i;
2020                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022                         bogus[i] = 0x18 + i;
2023                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024         }
2025
2026         /* NOTE:  We always send the SSID command even if the provided ESSID is
2027          * the same as what we currently think is set. */
2028
2029         err = ipw2100_hw_send_command(priv, &cmd);
2030         if (!err) {
2031                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032                 memcpy(priv->essid, essid, ssid_len);
2033                 priv->essid_len = ssid_len;
2034         }
2035
2036         if (!batch_mode) {
2037                 if (ipw2100_enable_adapter(priv))
2038                         err = -EIO;
2039         }
2040
2041         return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047                   "disassociated: '%s' " MAC_FMT " \n",
2048                   escape_essid(priv->essid, priv->essid_len),
2049                   MAC_ARG(priv->bssid));
2050
2051         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053         if (priv->status & STATUS_STOPPING) {
2054                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055                 return;
2056         }
2057
2058         memset(priv->bssid, 0, ETH_ALEN);
2059         memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061         netif_carrier_off(priv->net_dev);
2062         netif_stop_queue(priv->net_dev);
2063
2064         if (!(priv->status & STATUS_RUNNING))
2065                 return;
2066
2067         if (priv->status & STATUS_SECURITY_UPDATED)
2068                 queue_work(priv->workqueue, &priv->security_work);
2069
2070         queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076                        priv->net_dev->name);
2077
2078         /* RF_KILL is now enabled (else we wouldn't be here) */
2079         priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082         if (priv->config & CFG_C3_DISABLED) {
2083                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084                 acpi_set_cstate_limit(priv->cstate_limit);
2085                 priv->config &= ~CFG_C3_DISABLED;
2086         }
2087 #endif
2088
2089         /* Make sure the RF Kill check timer is running */
2090         priv->stop_rf_kill = 0;
2091         cancel_delayed_work(&priv->rf_kill);
2092         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097         IPW_DEBUG_SCAN("scan complete\n");
2098         /* Age the scan results... */
2099         priv->ieee->scans++;
2100         priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106         int status;
2107         void (*cb) (struct ipw2100_priv * priv, u32 status);
2108         char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113         int status;
2114         void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif                          /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120         IPW_DEBUG_SCAN("Scanning...\n");
2121         priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137         IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142         int i;
2143
2144         if (status == IPW_STATE_SCANNING &&
2145             priv->status & STATUS_ASSOCIATED &&
2146             !(priv->status & STATUS_SCANNING)) {
2147                 IPW_DEBUG_INFO("Scan detected while associated, with "
2148                                "no scan request.  Restarting firmware.\n");
2149
2150                 /* Wake up any sleeping jobs */
2151                 schedule_reset(priv);
2152         }
2153
2154         for (i = 0; status_handlers[i].status != -1; i++) {
2155                 if (status == status_handlers[i].status) {
2156                         IPW_DEBUG_NOTIF("Status change: %s\n",
2157                                         status_handlers[i].name);
2158                         if (status_handlers[i].cb)
2159                                 status_handlers[i].cb(priv, status);
2160                         priv->wstats.status = status;
2161                         return;
2162                 }
2163         }
2164
2165         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169                                     struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174                              command_types[cmd->host_command_reg],
2175                              cmd->host_command_reg);
2176         }
2177 #endif
2178         if (cmd->host_command_reg == HOST_COMPLETE)
2179                 priv->status |= STATUS_ENABLED;
2180
2181         if (cmd->host_command_reg == CARD_DISABLE)
2182                 priv->status &= ~STATUS_ENABLED;
2183
2184         priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186         wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191         "COMMAND_STATUS_VAL",
2192         "STATUS_CHANGE_VAL",
2193         "P80211_DATA_VAL",
2194         "P8023_DATA_VAL",
2195         "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200                                     struct ipw2100_rx_packet *packet)
2201 {
2202         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203         if (!packet->skb)
2204                 return -ENOMEM;
2205
2206         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208                                           sizeof(struct ipw2100_rx),
2209                                           PCI_DMA_FROMDEVICE);
2210         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211          *       dma_addr */
2212
2213         return 0;
2214 }
2215
2216 #define SEARCH_ERROR   0xffffffff
2217 #define SEARCH_FAIL    0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225         int i;
2226         if (!priv->snapshot[0])
2227                 return;
2228         for (i = 0; i < 0x30; i++)
2229                 kfree(priv->snapshot[i]);
2230         priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236         int i;
2237         if (priv->snapshot[0])
2238                 return 1;
2239         for (i = 0; i < 0x30; i++) {
2240                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241                 if (!priv->snapshot[i]) {
2242                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243                                        "buffer %d\n", priv->net_dev->name, i);
2244                         while (i > 0)
2245                                 kfree(priv->snapshot[--i]);
2246                         priv->snapshot[0] = NULL;
2247                         return 0;
2248                 }
2249         }
2250
2251         return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255                                     size_t len, int mode)
2256 {
2257         u32 i, j;
2258         u32 tmp;
2259         u8 *s, *d;
2260         u32 ret;
2261
2262         s = in_buf;
2263         if (mode == SEARCH_SNAPSHOT) {
2264                 if (!ipw2100_snapshot_alloc(priv))
2265                         mode = SEARCH_DISCARD;
2266         }
2267
2268         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269                 read_nic_dword(priv->net_dev, i, &tmp);
2270                 if (mode == SEARCH_SNAPSHOT)
2271                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272                 if (ret == SEARCH_FAIL) {
2273                         d = (u8 *) & tmp;
2274                         for (j = 0; j < 4; j++) {
2275                                 if (*s != *d) {
2276                                         s = in_buf;
2277                                         continue;
2278                                 }
2279
2280                                 s++;
2281                                 d++;
2282
2283                                 if ((s - in_buf) == len)
2284                                         ret = (i + j) - len + 1;
2285                         }
2286                 } else if (mode == SEARCH_DISCARD)
2287                         return ret;
2288         }
2289
2290         return ret;
2291 }
2292 #endif
2293
2294 /*
2295  *
2296  * 0) Disconnect the SKB from the firmware (just unmap)
2297  * 1) Pack the ETH header into the SKB
2298  * 2) Pass the SKB to the network stack
2299  *
2300  * When packet is provided by the firmware, it contains the following:
2301  *
2302  * .  ieee80211_hdr
2303  * .  ieee80211_snap_hdr
2304  *
2305  * The size of the constructed ethernet
2306  *
2307  */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315         struct ipw2100_status *status = &priv->status_queue.drv[i];
2316         u32 match, reg;
2317         int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320         int limit;
2321 #endif
2322
2323         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324                        i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328         limit = acpi_get_cstate_limit();
2329         if (limit > 2) {
2330                 priv->cstate_limit = limit;
2331                 acpi_set_cstate_limit(2);
2332                 priv->config |= CFG_C3_DISABLED;
2333         }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337         /* Halt the fimrware so we can get a good image */
2338         write_register(priv->net_dev, IPW_REG_RESET_REG,
2339                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340         j = 5;
2341         do {
2342                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346                         break;
2347         } while (j--);
2348
2349         match = ipw2100_match_buf(priv, (u8 *) status,
2350                                   sizeof(struct ipw2100_status),
2351                                   SEARCH_SNAPSHOT);
2352         if (match < SEARCH_SUCCESS)
2353                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354                                "offset 0x%06X, length %d:\n",
2355                                priv->net_dev->name, match,
2356                                sizeof(struct ipw2100_status));
2357         else
2358                 IPW_DEBUG_INFO("%s: No DMA status match in "
2359                                "Firmware.\n", priv->net_dev->name);
2360
2361         printk_buf((u8 *) priv->status_queue.drv,
2362                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366         priv->ieee->stats.rx_errors++;
2367         schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371                           struct ieee80211_rx_stats *stats)
2372 {
2373         struct ipw2100_status *status = &priv->status_queue.drv[i];
2374         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376         IPW_DEBUG_RX("Handler...\n");
2377
2378         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380                                "  Dropping.\n",
2381                                priv->net_dev->name,
2382                                status->frame_size, skb_tailroom(packet->skb));
2383                 priv->ieee->stats.rx_errors++;
2384                 return;
2385         }
2386
2387         if (unlikely(!netif_running(priv->net_dev))) {
2388                 priv->ieee->stats.rx_errors++;
2389                 priv->wstats.discard.misc++;
2390                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391                 return;
2392         }
2393
2394         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2395                      !(priv->status & STATUS_ASSOCIATED))) {
2396                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2397                 priv->wstats.discard.misc++;
2398                 return;
2399         }
2400
2401         pci_unmap_single(priv->pci_dev,
2402                          packet->dma_addr,
2403                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2404
2405         skb_put(packet->skb, status->frame_size);
2406
2407 #ifdef CONFIG_IPW2100_RX_DEBUG
2408         /* Make a copy of the frame so we can dump it to the logs if
2409          * ieee80211_rx fails */
2410         memcpy(packet_data, packet->skb->data,
2411                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2412 #endif
2413
2414         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2415 #ifdef CONFIG_IPW2100_RX_DEBUG
2416                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2417                                priv->net_dev->name);
2418                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2419 #endif
2420                 priv->ieee->stats.rx_errors++;
2421
2422                 /* ieee80211_rx failed, so it didn't free the SKB */
2423                 dev_kfree_skb_any(packet->skb);
2424                 packet->skb = NULL;
2425         }
2426
2427         /* We need to allocate a new SKB and attach it to the RDB. */
2428         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2429                 printk(KERN_WARNING DRV_NAME ": "
2430                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2431                        "adapter.\n", priv->net_dev->name);
2432                 /* TODO: schedule adapter shutdown */
2433                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2434         }
2435
2436         /* Update the RDB entry */
2437         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2438 }
2439
2440 #ifdef CONFIG_IPW2100_MONITOR
2441
2442 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2443                    struct ieee80211_rx_stats *stats)
2444 {
2445         struct ipw2100_status *status = &priv->status_queue.drv[i];
2446         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2447
2448         /* Magic struct that slots into the radiotap header -- no reason
2449          * to build this manually element by element, we can write it much
2450          * more efficiently than we can parse it. ORDER MATTERS HERE */
2451         struct ipw_rt_hdr {
2452                 struct ieee80211_radiotap_header rt_hdr;
2453                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2454         } *ipw_rt;
2455
2456         IPW_DEBUG_RX("Handler...\n");
2457
2458         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2459                                 sizeof(struct ipw_rt_hdr))) {
2460                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2461                                "  Dropping.\n",
2462                                priv->net_dev->name,
2463                                status->frame_size,
2464                                skb_tailroom(packet->skb));
2465                 priv->ieee->stats.rx_errors++;
2466                 return;
2467         }
2468
2469         if (unlikely(!netif_running(priv->net_dev))) {
2470                 priv->ieee->stats.rx_errors++;
2471                 priv->wstats.discard.misc++;
2472                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2473                 return;
2474         }
2475
2476         if (unlikely(priv->config & CFG_CRC_CHECK &&
2477                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2478                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2479                 priv->ieee->stats.rx_errors++;
2480                 return;
2481         }
2482
2483         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2484                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2485         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2486                 packet->skb->data, status->frame_size);
2487
2488         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2489
2490         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2491         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2492         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2493
2494         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2495
2496         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2497
2498         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2499
2500         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2501                 priv->ieee->stats.rx_errors++;
2502
2503                 /* ieee80211_rx failed, so it didn't free the SKB */
2504                 dev_kfree_skb_any(packet->skb);
2505                 packet->skb = NULL;
2506         }
2507
2508         /* We need to allocate a new SKB and attach it to the RDB. */
2509         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2510                 IPW_DEBUG_WARNING(
2511                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2512                         "adapter.\n", priv->net_dev->name);
2513                 /* TODO: schedule adapter shutdown */
2514                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2515         }
2516
2517         /* Update the RDB entry */
2518         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2519 }
2520
2521 #endif
2522
2523 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2524 {
2525         struct ipw2100_status *status = &priv->status_queue.drv[i];
2526         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2527         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2528
2529         switch (frame_type) {
2530         case COMMAND_STATUS_VAL:
2531                 return (status->frame_size != sizeof(u->rx_data.command));
2532         case STATUS_CHANGE_VAL:
2533                 return (status->frame_size != sizeof(u->rx_data.status));
2534         case HOST_NOTIFICATION_VAL:
2535                 return (status->frame_size < sizeof(u->rx_data.notification));
2536         case P80211_DATA_VAL:
2537         case P8023_DATA_VAL:
2538 #ifdef CONFIG_IPW2100_MONITOR
2539                 return 0;
2540 #else
2541                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2542                 case IEEE80211_FTYPE_MGMT:
2543                 case IEEE80211_FTYPE_CTL:
2544                         return 0;
2545                 case IEEE80211_FTYPE_DATA:
2546                         return (status->frame_size >
2547                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2548                 }
2549 #endif
2550         }
2551
2552         return 1;
2553 }
2554
2555 /*
2556  * ipw2100 interrupts are disabled at this point, and the ISR
2557  * is the only code that calls this method.  So, we do not need
2558  * to play with any locks.
2559  *
2560  * RX Queue works as follows:
2561  *
2562  * Read index - firmware places packet in entry identified by the
2563  *              Read index and advances Read index.  In this manner,
2564  *              Read index will always point to the next packet to
2565  *              be filled--but not yet valid.
2566  *
2567  * Write index - driver fills this entry with an unused RBD entry.
2568  *               This entry has not filled by the firmware yet.
2569  *
2570  * In between the W and R indexes are the RBDs that have been received
2571  * but not yet processed.
2572  *
2573  * The process of handling packets will start at WRITE + 1 and advance
2574  * until it reaches the READ index.
2575  *
2576  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2577  *
2578  */
2579 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2580 {
2581         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2582         struct ipw2100_status_queue *sq = &priv->status_queue;
2583         struct ipw2100_rx_packet *packet;
2584         u16 frame_type;
2585         u32 r, w, i, s;
2586         struct ipw2100_rx *u;
2587         struct ieee80211_rx_stats stats = {
2588                 .mac_time = jiffies,
2589         };
2590
2591         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2592         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2593
2594         if (r >= rxq->entries) {
2595                 IPW_DEBUG_RX("exit - bad read index\n");
2596                 return;
2597         }
2598
2599         i = (rxq->next + 1) % rxq->entries;
2600         s = i;
2601         while (i != r) {
2602                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2603                    r, rxq->next, i); */
2604
2605                 packet = &priv->rx_buffers[i];
2606
2607                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2608                  * the correct values */
2609                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2610                                             sq->nic +
2611                                             sizeof(struct ipw2100_status) * i,
2612                                             sizeof(struct ipw2100_status),
2613                                             PCI_DMA_FROMDEVICE);
2614
2615                 /* Sync the DMA for the RX buffer so CPU is sure to get
2616                  * the correct values */
2617                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2618                                             sizeof(struct ipw2100_rx),
2619                                             PCI_DMA_FROMDEVICE);
2620
2621                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2622                         ipw2100_corruption_detected(priv, i);
2623                         goto increment;
2624                 }
2625
2626                 u = packet->rxp;
2627                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2628                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2629                 stats.len = sq->drv[i].frame_size;
2630
2631                 stats.mask = 0;
2632                 if (stats.rssi != 0)
2633                         stats.mask |= IEEE80211_STATMASK_RSSI;
2634                 stats.freq = IEEE80211_24GHZ_BAND;
2635
2636                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2637                              priv->net_dev->name, frame_types[frame_type],
2638                              stats.len);
2639
2640                 switch (frame_type) {
2641                 case COMMAND_STATUS_VAL:
2642                         /* Reset Rx watchdog */
2643                         isr_rx_complete_command(priv, &u->rx_data.command);
2644                         break;
2645
2646                 case STATUS_CHANGE_VAL:
2647                         isr_status_change(priv, u->rx_data.status);
2648                         break;
2649
2650                 case P80211_DATA_VAL:
2651                 case P8023_DATA_VAL:
2652 #ifdef CONFIG_IPW2100_MONITOR
2653                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2654                                 isr_rx_monitor(priv, i, &stats);
2655                                 break;
2656                         }
2657 #endif
2658                         if (stats.len < sizeof(u->rx_data.header))
2659                                 break;
2660                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2661                         case IEEE80211_FTYPE_MGMT:
2662                                 ieee80211_rx_mgt(priv->ieee,
2663                                                  &u->rx_data.header, &stats);
2664                                 break;
2665
2666                         case IEEE80211_FTYPE_CTL:
2667                                 break;
2668
2669                         case IEEE80211_FTYPE_DATA:
2670                                 isr_rx(priv, i, &stats);
2671                                 break;
2672
2673                         }
2674                         break;
2675                 }
2676
2677               increment:
2678                 /* clear status field associated with this RBD */
2679                 rxq->drv[i].status.info.field = 0;
2680
2681                 i = (i + 1) % rxq->entries;
2682         }
2683
2684         if (i != s) {
2685                 /* backtrack one entry, wrapping to end if at 0 */
2686                 rxq->next = (i ? i : rxq->entries) - 1;
2687
2688                 write_register(priv->net_dev,
2689                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2690         }
2691 }
2692
2693 /*
2694  * __ipw2100_tx_process
2695  *
2696  * This routine will determine whether the next packet on
2697  * the fw_pend_list has been processed by the firmware yet.
2698  *
2699  * If not, then it does nothing and returns.
2700  *
2701  * If so, then it removes the item from the fw_pend_list, frees
2702  * any associated storage, and places the item back on the
2703  * free list of its source (either msg_free_list or tx_free_list)
2704  *
2705  * TX Queue works as follows:
2706  *
2707  * Read index - points to the next TBD that the firmware will
2708  *              process.  The firmware will read the data, and once
2709  *              done processing, it will advance the Read index.
2710  *
2711  * Write index - driver fills this entry with an constructed TBD
2712  *               entry.  The Write index is not advanced until the
2713  *               packet has been configured.
2714  *
2715  * In between the W and R indexes are the TBDs that have NOT been
2716  * processed.  Lagging behind the R index are packets that have
2717  * been processed but have not been freed by the driver.
2718  *
2719  * In order to free old storage, an internal index will be maintained
2720  * that points to the next packet to be freed.  When all used
2721  * packets have been freed, the oldest index will be the same as the
2722  * firmware's read index.
2723  *
2724  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2725  *
2726  * Because the TBD structure can not contain arbitrary data, the
2727  * driver must keep an internal queue of cached allocations such that
2728  * it can put that data back into the tx_free_list and msg_free_list
2729  * for use by future command and data packets.
2730  *
2731  */
2732 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2733 {
2734         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2735         struct ipw2100_bd *tbd;
2736         struct list_head *element;
2737         struct ipw2100_tx_packet *packet;
2738         int descriptors_used;
2739         int e, i;
2740         u32 r, w, frag_num = 0;
2741
2742         if (list_empty(&priv->fw_pend_list))
2743                 return 0;
2744
2745         element = priv->fw_pend_list.next;
2746
2747         packet = list_entry(element, struct ipw2100_tx_packet, list);
2748         tbd = &txq->drv[packet->index];
2749
2750         /* Determine how many TBD entries must be finished... */
2751         switch (packet->type) {
2752         case COMMAND:
2753                 /* COMMAND uses only one slot; don't advance */
2754                 descriptors_used = 1;
2755                 e = txq->oldest;
2756                 break;
2757
2758         case DATA:
2759                 /* DATA uses two slots; advance and loop position. */
2760                 descriptors_used = tbd->num_fragments;
2761                 frag_num = tbd->num_fragments - 1;
2762                 e = txq->oldest + frag_num;
2763                 e %= txq->entries;
2764                 break;
2765
2766         default:
2767                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2768                        priv->net_dev->name);
2769                 return 0;
2770         }
2771
2772         /* if the last TBD is not done by NIC yet, then packet is
2773          * not ready to be released.
2774          *
2775          */
2776         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2777                       &r);
2778         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2779                       &w);
2780         if (w != txq->next)
2781                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2782                        priv->net_dev->name);
2783
2784         /*
2785          * txq->next is the index of the last packet written txq->oldest is
2786          * the index of the r is the index of the next packet to be read by
2787          * firmware
2788          */
2789
2790         /*
2791          * Quick graphic to help you visualize the following
2792          * if / else statement
2793          *
2794          * ===>|                     s---->|===============
2795          *                               e>|
2796          * | a | b | c | d | e | f | g | h | i | j | k | l
2797          *       r---->|
2798          *               w
2799          *
2800          * w - updated by driver
2801          * r - updated by firmware
2802          * s - start of oldest BD entry (txq->oldest)
2803          * e - end of oldest BD entry
2804          *
2805          */
2806         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2807                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2808                 return 0;
2809         }
2810
2811         list_del(element);
2812         DEC_STAT(&priv->fw_pend_stat);
2813
2814 #ifdef CONFIG_IPW2100_DEBUG
2815         {
2816                 int i = txq->oldest;
2817                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2818                              &txq->drv[i],
2819                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2820                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2821
2822                 if (packet->type == DATA) {
2823                         i = (i + 1) % txq->entries;
2824
2825                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2826                                      &txq->drv[i],
2827                                      (u32) (txq->nic + i *
2828                                             sizeof(struct ipw2100_bd)),
2829                                      (u32) txq->drv[i].host_addr,
2830                                      txq->drv[i].buf_length);
2831                 }
2832         }
2833 #endif
2834
2835         switch (packet->type) {
2836         case DATA:
2837                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2838                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2839                                "Expecting DATA TBD but pulled "
2840                                "something else: ids %d=%d.\n",
2841                                priv->net_dev->name, txq->oldest, packet->index);
2842
2843                 /* DATA packet; we have to unmap and free the SKB */
2844                 for (i = 0; i < frag_num; i++) {
2845                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2846
2847                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2848                                      (packet->index + 1 + i) % txq->entries,
2849                                      tbd->host_addr, tbd->buf_length);
2850
2851                         pci_unmap_single(priv->pci_dev,
2852                                          tbd->host_addr,
2853                                          tbd->buf_length, PCI_DMA_TODEVICE);
2854                 }
2855
2856                 ieee80211_txb_free(packet->info.d_struct.txb);
2857                 packet->info.d_struct.txb = NULL;
2858
2859                 list_add_tail(element, &priv->tx_free_list);
2860                 INC_STAT(&priv->tx_free_stat);
2861
2862                 /* We have a free slot in the Tx queue, so wake up the
2863                  * transmit layer if it is stopped. */
2864                 if (priv->status & STATUS_ASSOCIATED)
2865                         netif_wake_queue(priv->net_dev);
2866
2867                 /* A packet was processed by the hardware, so update the
2868                  * watchdog */
2869                 priv->net_dev->trans_start = jiffies;
2870
2871                 break;
2872
2873         case COMMAND:
2874                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2875                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2876                                "Expecting COMMAND TBD but pulled "
2877                                "something else: ids %d=%d.\n",
2878                                priv->net_dev->name, txq->oldest, packet->index);
2879
2880 #ifdef CONFIG_IPW2100_DEBUG
2881                 if (packet->info.c_struct.cmd->host_command_reg <
2882                     sizeof(command_types) / sizeof(*command_types))
2883                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2884                                      command_types[packet->info.c_struct.cmd->
2885                                                    host_command_reg],
2886                                      packet->info.c_struct.cmd->
2887                                      host_command_reg,
2888                                      packet->info.c_struct.cmd->cmd_status_reg);
2889 #endif
2890
2891                 list_add_tail(element, &priv->msg_free_list);
2892                 INC_STAT(&priv->msg_free_stat);
2893                 break;
2894         }
2895
2896         /* advance oldest used TBD pointer to start of next entry */
2897         txq->oldest = (e + 1) % txq->entries;
2898         /* increase available TBDs number */
2899         txq->available += descriptors_used;
2900         SET_STAT(&priv->txq_stat, txq->available);
2901
2902         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2903                      jiffies - packet->jiffy_start);
2904
2905         return (!list_empty(&priv->fw_pend_list));
2906 }
2907
2908 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2909 {
2910         int i = 0;
2911
2912         while (__ipw2100_tx_process(priv) && i < 200)
2913                 i++;
2914
2915         if (i == 200) {
2916                 printk(KERN_WARNING DRV_NAME ": "
2917                        "%s: Driver is running slow (%d iters).\n",
2918                        priv->net_dev->name, i);
2919         }
2920 }
2921
2922 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2923 {
2924         struct list_head *element;
2925         struct ipw2100_tx_packet *packet;
2926         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2927         struct ipw2100_bd *tbd;
2928         int next = txq->next;
2929
2930         while (!list_empty(&priv->msg_pend_list)) {
2931                 /* if there isn't enough space in TBD queue, then
2932                  * don't stuff a new one in.
2933                  * NOTE: 3 are needed as a command will take one,
2934                  *       and there is a minimum of 2 that must be
2935                  *       maintained between the r and w indexes
2936                  */
2937                 if (txq->available <= 3) {
2938                         IPW_DEBUG_TX("no room in tx_queue\n");
2939                         break;
2940                 }
2941
2942                 element = priv->msg_pend_list.next;
2943                 list_del(element);
2944                 DEC_STAT(&priv->msg_pend_stat);
2945
2946                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2947
2948                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2949                              &txq->drv[txq->next],
2950                              (void *)(txq->nic + txq->next *
2951                                       sizeof(struct ipw2100_bd)));
2952
2953                 packet->index = txq->next;
2954
2955                 tbd = &txq->drv[txq->next];
2956
2957                 /* initialize TBD */
2958                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2959                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2960                 /* not marking number of fragments causes problems
2961                  * with f/w debug version */
2962                 tbd->num_fragments = 1;
2963                 tbd->status.info.field =
2964                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2965                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2966
2967                 /* update TBD queue counters */
2968                 txq->next++;
2969                 txq->next %= txq->entries;
2970                 txq->available--;
2971                 DEC_STAT(&priv->txq_stat);
2972
2973                 list_add_tail(element, &priv->fw_pend_list);
2974                 INC_STAT(&priv->fw_pend_stat);
2975         }
2976
2977         if (txq->next != next) {
2978                 /* kick off the DMA by notifying firmware the
2979                  * write index has moved; make sure TBD stores are sync'd */
2980                 wmb();
2981                 write_register(priv->net_dev,
2982                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2983                                txq->next);
2984         }
2985 }
2986
2987 /*
2988  * ipw2100_tx_send_data
2989  *
2990  */
2991 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2992 {
2993         struct list_head *element;
2994         struct ipw2100_tx_packet *packet;
2995         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2996         struct ipw2100_bd *tbd;
2997         int next = txq->next;
2998         int i = 0;
2999         struct ipw2100_data_header *ipw_hdr;
3000         struct ieee80211_hdr_3addr *hdr;
3001
3002         while (!list_empty(&priv->tx_pend_list)) {
3003                 /* if there isn't enough space in TBD queue, then
3004                  * don't stuff a new one in.
3005                  * NOTE: 4 are needed as a data will take two,
3006                  *       and there is a minimum of 2 that must be
3007                  *       maintained between the r and w indexes
3008                  */
3009                 element = priv->tx_pend_list.next;
3010                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3011
3012                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3013                              IPW_MAX_BDS)) {
3014                         /* TODO: Support merging buffers if more than
3015                          * IPW_MAX_BDS are used */
3016                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3017                                        "Increase fragmentation level.\n",
3018                                        priv->net_dev->name);
3019                 }
3020
3021                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3022                         IPW_DEBUG_TX("no room in tx_queue\n");
3023                         break;
3024                 }
3025
3026                 list_del(element);
3027                 DEC_STAT(&priv->tx_pend_stat);
3028
3029                 tbd = &txq->drv[txq->next];
3030
3031                 packet->index = txq->next;
3032
3033                 ipw_hdr = packet->info.d_struct.data;
3034                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3035                     fragments[0]->data;
3036
3037                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3038                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3039                            Addr3 = DA */
3040                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3041                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3042                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3043                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3044                            Addr3 = BSSID */
3045                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3046                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3047                 }
3048
3049                 ipw_hdr->host_command_reg = SEND;
3050                 ipw_hdr->host_command_reg1 = 0;
3051
3052                 /* For now we only support host based encryption */
3053                 ipw_hdr->needs_encryption = 0;
3054                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3055                 if (packet->info.d_struct.txb->nr_frags > 1)
3056                         ipw_hdr->fragment_size =
3057                             packet->info.d_struct.txb->frag_size -
3058                             IEEE80211_3ADDR_LEN;
3059                 else
3060                         ipw_hdr->fragment_size = 0;
3061
3062                 tbd->host_addr = packet->info.d_struct.data_phys;
3063                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3064                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3065                 tbd->status.info.field =
3066                     IPW_BD_STATUS_TX_FRAME_802_3 |
3067                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3068                 txq->next++;
3069                 txq->next %= txq->entries;
3070
3071                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3072                              packet->index, tbd->host_addr, tbd->buf_length);
3073 #ifdef CONFIG_IPW2100_DEBUG
3074                 if (packet->info.d_struct.txb->nr_frags > 1)
3075                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3076                                        packet->info.d_struct.txb->nr_frags);
3077 #endif
3078
3079                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3080                         tbd = &txq->drv[txq->next];
3081                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3082                                 tbd->status.info.field =
3083                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3084                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3085                         else
3086                                 tbd->status.info.field =
3087                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3088                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3089
3090                         tbd->buf_length = packet->info.d_struct.txb->
3091                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3092
3093                         tbd->host_addr = pci_map_single(priv->pci_dev,
3094                                                         packet->info.d_struct.
3095                                                         txb->fragments[i]->
3096                                                         data +
3097                                                         IEEE80211_3ADDR_LEN,
3098                                                         tbd->buf_length,
3099                                                         PCI_DMA_TODEVICE);
3100
3101                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3102                                      txq->next, tbd->host_addr,
3103                                      tbd->buf_length);
3104
3105                         pci_dma_sync_single_for_device(priv->pci_dev,
3106                                                        tbd->host_addr,
3107                                                        tbd->buf_length,
3108                                                        PCI_DMA_TODEVICE);
3109
3110                         txq->next++;
3111                         txq->next %= txq->entries;
3112                 }
3113
3114                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3115                 SET_STAT(&priv->txq_stat, txq->available);
3116
3117                 list_add_tail(element, &priv->fw_pend_list);
3118                 INC_STAT(&priv->fw_pend_stat);
3119         }
3120
3121         if (txq->next != next) {
3122                 /* kick off the DMA by notifying firmware the
3123                  * write index has moved; make sure TBD stores are sync'd */
3124                 write_register(priv->net_dev,
3125                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3126                                txq->next);
3127         }
3128         return;
3129 }
3130
3131 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3132 {
3133         struct net_device *dev = priv->net_dev;
3134         unsigned long flags;
3135         u32 inta, tmp;