Merge tag 'linux-kselftest-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  * Copyright(c) 2018 Intel Corporation
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * The full GNU General Public License is included in this distribution in the
21  * file called LICENSE.
22  *
23  * Contact Information:
24  *  Intel Linux Wireless <linuxwifi@intel.com>
25  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26  *
27  *****************************************************************************/
28 #include <linux/sched.h>
29 #include <linux/wait.h>
30 #include <linux/gfp.h>
31
32 #include "iwl-prph.h"
33 #include "iwl-io.h"
34 #include "internal.h"
35 #include "iwl-op-mode.h"
36 #include "iwl-context-info-gen3.h"
37
38 /******************************************************************************
39  *
40  * RX path functions
41  *
42  ******************************************************************************/
43
44 /*
45  * Rx theory of operation
46  *
47  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48  * each of which point to Receive Buffers to be filled by the NIC.  These get
49  * used not only for Rx frames, but for any command response or notification
50  * from the NIC.  The driver and NIC manage the Rx buffers by means
51  * of indexes into the circular buffer.
52  *
53  * Rx Queue Indexes
54  * The host/firmware share two index registers for managing the Rx buffers.
55  *
56  * The READ index maps to the first position that the firmware may be writing
57  * to -- the driver can read up to (but not including) this position and get
58  * good data.
59  * The READ index is managed by the firmware once the card is enabled.
60  *
61  * The WRITE index maps to the last position the driver has read from -- the
62  * position preceding WRITE is the last slot the firmware can place a packet.
63  *
64  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65  * WRITE = READ.
66  *
67  * During initialization, the host sets up the READ queue position to the first
68  * INDEX position, and WRITE to the last (READ - 1 wrapped)
69  *
70  * When the firmware places a packet in a buffer, it will advance the READ index
71  * and fire the RX interrupt.  The driver can then query the READ index and
72  * process as many packets as possible, moving the WRITE index forward as it
73  * resets the Rx queue buffers with new memory.
74  *
75  * The management in the driver is as follows:
76  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
77  *   When the interrupt handler is called, the request is processed.
78  *   The page is either stolen - transferred to the upper layer
79  *   or reused - added immediately to the iwl->rxq->rx_free list.
80  * + When the page is stolen - the driver updates the matching queue's used
81  *   count, detaches the RBD and transfers it to the queue used list.
82  *   When there are two used RBDs - they are transferred to the allocator empty
83  *   list. Work is then scheduled for the allocator to start allocating
84  *   eight buffers.
85  *   When there are another 6 used RBDs - they are transferred to the allocator
86  *   empty list and the driver tries to claim the pre-allocated buffers and
87  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
88  *   until ready.
89  *   When there are 8+ buffers in the free list - either from allocation or from
90  *   8 reused unstolen pages - restock is called to update the FW and indexes.
91  * + In order to make sure the allocator always has RBDs to use for allocation
92  *   the allocator has initial pool in the size of num_queues*(8-2) - the
93  *   maximum missing RBDs per allocation request (request posted with 2
94  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
95  *   The queues supplies the recycle of the rest of the RBDs.
96  * + A received packet is processed and handed to the kernel network stack,
97  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
98  * + If there are no allocated buffers in iwl->rxq->rx_free,
99  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
100  *   If there were enough free buffers and RX_STALLED is set it is cleared.
101  *
102  *
103  * Driver sequence:
104  *
105  * iwl_rxq_alloc()            Allocates rx_free
106  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
107  *                            iwl_pcie_rxq_restock.
108  *                            Used only during initialization.
109  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
110  *                            queue, updates firmware pointers, and updates
111  *                            the WRITE index.
112  * iwl_pcie_rx_allocator()     Background work for allocating pages.
113  *
114  * -- enable interrupts --
115  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
116  *                            READ INDEX, detaching the SKB from the pool.
117  *                            Moves the packet buffer from queue to rx_used.
118  *                            Posts and claims requests to the allocator.
119  *                            Calls iwl_pcie_rxq_restock to refill any empty
120  *                            slots.
121  *
122  * RBD life-cycle:
123  *
124  * Init:
125  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
126  *
127  * Regular Receive interrupt:
128  * Page Stolen:
129  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
130  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
131  * Page not Stolen:
132  * rxq.queue -> rxq.rx_free -> rxq.queue
133  * ...
134  *
135  */
136
137 /*
138  * iwl_rxq_space - Return number of free slots available in queue.
139  */
140 static int iwl_rxq_space(const struct iwl_rxq *rxq)
141 {
142         /* Make sure rx queue size is a power of 2 */
143         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
144
145         /*
146          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
147          * between empty and completely full queues.
148          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
149          * defined for negative dividends.
150          */
151         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
152 }
153
154 /*
155  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
156  */
157 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
158 {
159         return cpu_to_le32((u32)(dma_addr >> 8));
160 }
161
162 /*
163  * iwl_pcie_rx_stop - stops the Rx DMA
164  */
165 int iwl_pcie_rx_stop(struct iwl_trans *trans)
166 {
167         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
168                 /* TODO: remove this for 22560 once fw does it */
169                 iwl_write_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
170                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS_GEN3,
171                                          RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
172         } else if (trans->cfg->mq_rx_supported) {
173                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
174                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
175                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
176         } else {
177                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
178                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
179                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
180                                            1000);
181         }
182 }
183
184 /*
185  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
186  */
187 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
188                                     struct iwl_rxq *rxq)
189 {
190         u32 reg;
191
192         lockdep_assert_held(&rxq->lock);
193
194         /*
195          * explicitly wake up the NIC if:
196          * 1. shadow registers aren't enabled
197          * 2. there is a chance that the NIC is asleep
198          */
199         if (!trans->cfg->base_params->shadow_reg_enable &&
200             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
201                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
202
203                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
204                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
205                                        reg);
206                         iwl_set_bit(trans, CSR_GP_CNTRL,
207                                     BIT(trans->cfg->csr->flag_mac_access_req));
208                         rxq->need_update = true;
209                         return;
210                 }
211         }
212
213         rxq->write_actual = round_down(rxq->write, 8);
214         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
215                 iwl_write32(trans, HBUS_TARG_WRPTR,
216                             (rxq->write_actual |
217                              ((FIRST_RX_QUEUE + rxq->id) << 16)));
218         else if (trans->cfg->mq_rx_supported)
219                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
220                             rxq->write_actual);
221         else
222                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
223 }
224
225 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
226 {
227         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
228         int i;
229
230         for (i = 0; i < trans->num_rx_queues; i++) {
231                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
232
233                 if (!rxq->need_update)
234                         continue;
235                 spin_lock(&rxq->lock);
236                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
237                 rxq->need_update = false;
238                 spin_unlock(&rxq->lock);
239         }
240 }
241
242 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
243                                 struct iwl_rxq *rxq,
244                                 struct iwl_rx_mem_buffer *rxb)
245 {
246         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
247                 struct iwl_rx_transfer_desc *bd = rxq->bd;
248
249                 bd[rxq->write].type_n_size =
250                         cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) |
251                         ((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK));
252                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
253                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
254         } else {
255                 __le64 *bd = rxq->bd;
256
257                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
258         }
259 }
260
261 /*
262  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
263  */
264 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
265                                   struct iwl_rxq *rxq)
266 {
267         struct iwl_rx_mem_buffer *rxb;
268
269         /*
270          * If the device isn't enabled - no need to try to add buffers...
271          * This can happen when we stop the device and still have an interrupt
272          * pending. We stop the APM before we sync the interrupts because we
273          * have to (see comment there). On the other hand, since the APM is
274          * stopped, we cannot access the HW (in particular not prph).
275          * So don't try to restock if the APM has been already stopped.
276          */
277         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
278                 return;
279
280         spin_lock(&rxq->lock);
281         while (rxq->free_count) {
282                 /* Get next free Rx buffer, remove from free list */
283                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
284                                        list);
285                 list_del(&rxb->list);
286                 rxb->invalid = false;
287                 /* 12 first bits are expected to be empty */
288                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
289                 /* Point to Rx buffer via next RBD in circular buffer */
290                 iwl_pcie_restock_bd(trans, rxq, rxb);
291                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
292                 rxq->free_count--;
293         }
294         spin_unlock(&rxq->lock);
295
296         /*
297          * If we've added more space for the firmware to place data, tell it.
298          * Increment device's write pointer in multiples of 8.
299          */
300         if (rxq->write_actual != (rxq->write & ~0x7)) {
301                 spin_lock(&rxq->lock);
302                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
303                 spin_unlock(&rxq->lock);
304         }
305 }
306
307 /*
308  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
309  */
310 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
311                                   struct iwl_rxq *rxq)
312 {
313         struct iwl_rx_mem_buffer *rxb;
314
315         /*
316          * If the device isn't enabled - not need to try to add buffers...
317          * This can happen when we stop the device and still have an interrupt
318          * pending. We stop the APM before we sync the interrupts because we
319          * have to (see comment there). On the other hand, since the APM is
320          * stopped, we cannot access the HW (in particular not prph).
321          * So don't try to restock if the APM has been already stopped.
322          */
323         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
324                 return;
325
326         spin_lock(&rxq->lock);
327         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
328                 __le32 *bd = (__le32 *)rxq->bd;
329                 /* The overwritten rxb must be a used one */
330                 rxb = rxq->queue[rxq->write];
331                 BUG_ON(rxb && rxb->page);
332
333                 /* Get next free Rx buffer, remove from free list */
334                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
335                                        list);
336                 list_del(&rxb->list);
337                 rxb->invalid = false;
338
339                 /* Point to Rx buffer via next RBD in circular buffer */
340                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
341                 rxq->queue[rxq->write] = rxb;
342                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
343                 rxq->free_count--;
344         }
345         spin_unlock(&rxq->lock);
346
347         /* If we've added more space for the firmware to place data, tell it.
348          * Increment device's write pointer in multiples of 8. */
349         if (rxq->write_actual != (rxq->write & ~0x7)) {
350                 spin_lock(&rxq->lock);
351                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
352                 spin_unlock(&rxq->lock);
353         }
354 }
355
356 /*
357  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
358  *
359  * If there are slots in the RX queue that need to be restocked,
360  * and we have free pre-allocated buffers, fill the ranks as much
361  * as we can, pulling from rx_free.
362  *
363  * This moves the 'write' index forward to catch up with 'processed', and
364  * also updates the memory address in the firmware to reference the new
365  * target buffer.
366  */
367 static
368 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
369 {
370         if (trans->cfg->mq_rx_supported)
371                 iwl_pcie_rxmq_restock(trans, rxq);
372         else
373                 iwl_pcie_rxsq_restock(trans, rxq);
374 }
375
376 /*
377  * iwl_pcie_rx_alloc_page - allocates and returns a page.
378  *
379  */
380 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
381                                            gfp_t priority)
382 {
383         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
384         struct page *page;
385         gfp_t gfp_mask = priority;
386
387         if (trans_pcie->rx_page_order > 0)
388                 gfp_mask |= __GFP_COMP;
389
390         /* Alloc a new receive buffer */
391         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
392         if (!page) {
393                 if (net_ratelimit())
394                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
395                                        trans_pcie->rx_page_order);
396                 /*
397                  * Issue an error if we don't have enough pre-allocated
398                   * buffers.
399 `                */
400                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
401                         IWL_CRIT(trans,
402                                  "Failed to alloc_pages\n");
403                 return NULL;
404         }
405         return page;
406 }
407
408 /*
409  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
410  *
411  * A used RBD is an Rx buffer that has been given to the stack. To use it again
412  * a page must be allocated and the RBD must point to the page. This function
413  * doesn't change the HW pointer but handles the list of pages that is used by
414  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
415  * allocated buffers.
416  */
417 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
418                             struct iwl_rxq *rxq)
419 {
420         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
421         struct iwl_rx_mem_buffer *rxb;
422         struct page *page;
423
424         while (1) {
425                 spin_lock(&rxq->lock);
426                 if (list_empty(&rxq->rx_used)) {
427                         spin_unlock(&rxq->lock);
428                         return;
429                 }
430                 spin_unlock(&rxq->lock);
431
432                 /* Alloc a new receive buffer */
433                 page = iwl_pcie_rx_alloc_page(trans, priority);
434                 if (!page)
435                         return;
436
437                 spin_lock(&rxq->lock);
438
439                 if (list_empty(&rxq->rx_used)) {
440                         spin_unlock(&rxq->lock);
441                         __free_pages(page, trans_pcie->rx_page_order);
442                         return;
443                 }
444                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
445                                        list);
446                 list_del(&rxb->list);
447                 spin_unlock(&rxq->lock);
448
449                 BUG_ON(rxb->page);
450                 rxb->page = page;
451                 /* Get physical address of the RB */
452                 rxb->page_dma =
453                         dma_map_page(trans->dev, page, 0,
454                                      PAGE_SIZE << trans_pcie->rx_page_order,
455                                      DMA_FROM_DEVICE);
456                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
457                         rxb->page = NULL;
458                         spin_lock(&rxq->lock);
459                         list_add(&rxb->list, &rxq->rx_used);
460                         spin_unlock(&rxq->lock);
461                         __free_pages(page, trans_pcie->rx_page_order);
462                         return;
463                 }
464
465                 spin_lock(&rxq->lock);
466
467                 list_add_tail(&rxb->list, &rxq->rx_free);
468                 rxq->free_count++;
469
470                 spin_unlock(&rxq->lock);
471         }
472 }
473
474 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
475 {
476         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
477         int i;
478
479         for (i = 0; i < RX_POOL_SIZE; i++) {
480                 if (!trans_pcie->rx_pool[i].page)
481                         continue;
482                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
483                                PAGE_SIZE << trans_pcie->rx_page_order,
484                                DMA_FROM_DEVICE);
485                 __free_pages(trans_pcie->rx_pool[i].page,
486                              trans_pcie->rx_page_order);
487                 trans_pcie->rx_pool[i].page = NULL;
488         }
489 }
490
491 /*
492  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
493  *
494  * Allocates for each received request 8 pages
495  * Called as a scheduled work item.
496  */
497 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
498 {
499         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
500         struct iwl_rb_allocator *rba = &trans_pcie->rba;
501         struct list_head local_empty;
502         int pending = atomic_xchg(&rba->req_pending, 0);
503
504         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
505
506         /* If we were scheduled - there is at least one request */
507         spin_lock(&rba->lock);
508         /* swap out the rba->rbd_empty to a local list */
509         list_replace_init(&rba->rbd_empty, &local_empty);
510         spin_unlock(&rba->lock);
511
512         while (pending) {
513                 int i;
514                 LIST_HEAD(local_allocated);
515                 gfp_t gfp_mask = GFP_KERNEL;
516
517                 /* Do not post a warning if there are only a few requests */
518                 if (pending < RX_PENDING_WATERMARK)
519                         gfp_mask |= __GFP_NOWARN;
520
521                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
522                         struct iwl_rx_mem_buffer *rxb;
523                         struct page *page;
524
525                         /* List should never be empty - each reused RBD is
526                          * returned to the list, and initial pool covers any
527                          * possible gap between the time the page is allocated
528                          * to the time the RBD is added.
529                          */
530                         BUG_ON(list_empty(&local_empty));
531                         /* Get the first rxb from the rbd list */
532                         rxb = list_first_entry(&local_empty,
533                                                struct iwl_rx_mem_buffer, list);
534                         BUG_ON(rxb->page);
535
536                         /* Alloc a new receive buffer */
537                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
538                         if (!page)
539                                 continue;
540                         rxb->page = page;
541
542                         /* Get physical address of the RB */
543                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
544                                         PAGE_SIZE << trans_pcie->rx_page_order,
545                                         DMA_FROM_DEVICE);
546                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
547                                 rxb->page = NULL;
548                                 __free_pages(page, trans_pcie->rx_page_order);
549                                 continue;
550                         }
551
552                         /* move the allocated entry to the out list */
553                         list_move(&rxb->list, &local_allocated);
554                         i++;
555                 }
556
557                 pending--;
558                 if (!pending) {
559                         pending = atomic_xchg(&rba->req_pending, 0);
560                         IWL_DEBUG_RX(trans,
561                                      "Pending allocation requests = %d\n",
562                                      pending);
563                 }
564
565                 spin_lock(&rba->lock);
566                 /* add the allocated rbds to the allocator allocated list */
567                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
568                 /* get more empty RBDs for current pending requests */
569                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
570                 spin_unlock(&rba->lock);
571
572                 atomic_inc(&rba->req_ready);
573         }
574
575         spin_lock(&rba->lock);
576         /* return unused rbds to the allocator empty list */
577         list_splice_tail(&local_empty, &rba->rbd_empty);
578         spin_unlock(&rba->lock);
579 }
580
581 /*
582  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
583 .*
584 .* Called by queue when the queue posted allocation request and
585  * has freed 8 RBDs in order to restock itself.
586  * This function directly moves the allocated RBs to the queue's ownership
587  * and updates the relevant counters.
588  */
589 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
590                                       struct iwl_rxq *rxq)
591 {
592         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
593         struct iwl_rb_allocator *rba = &trans_pcie->rba;
594         int i;
595
596         lockdep_assert_held(&rxq->lock);
597
598         /*
599          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
600          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
601          * function will return early, as there are no ready requests.
602          * atomic_dec_if_positive will perofrm the *actual* decrement only if
603          * req_ready > 0, i.e. - there are ready requests and the function
604          * hands one request to the caller.
605          */
606         if (atomic_dec_if_positive(&rba->req_ready) < 0)
607                 return;
608
609         spin_lock(&rba->lock);
610         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
611                 /* Get next free Rx buffer, remove it from free list */
612                 struct iwl_rx_mem_buffer *rxb =
613                         list_first_entry(&rba->rbd_allocated,
614                                          struct iwl_rx_mem_buffer, list);
615
616                 list_move(&rxb->list, &rxq->rx_free);
617         }
618         spin_unlock(&rba->lock);
619
620         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
621         rxq->free_count += RX_CLAIM_REQ_ALLOC;
622 }
623
624 void iwl_pcie_rx_allocator_work(struct work_struct *data)
625 {
626         struct iwl_rb_allocator *rba_p =
627                 container_of(data, struct iwl_rb_allocator, rx_alloc);
628         struct iwl_trans_pcie *trans_pcie =
629                 container_of(rba_p, struct iwl_trans_pcie, rba);
630
631         iwl_pcie_rx_allocator(trans_pcie->trans);
632 }
633
634 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
635 {
636         struct iwl_rx_transfer_desc *rx_td;
637
638         if (use_rx_td)
639                 return sizeof(*rx_td);
640         else
641                 return trans->cfg->mq_rx_supported ? sizeof(__le64) :
642                         sizeof(__le32);
643 }
644
645 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
646                                   struct iwl_rxq *rxq)
647 {
648         struct device *dev = trans->dev;
649         bool use_rx_td = (trans->cfg->device_family >=
650                           IWL_DEVICE_FAMILY_22560);
651         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
652
653         if (rxq->bd)
654                 dma_free_coherent(trans->dev,
655                                   free_size * rxq->queue_size,
656                                   rxq->bd, rxq->bd_dma);
657         rxq->bd_dma = 0;
658         rxq->bd = NULL;
659
660         if (rxq->rb_stts)
661                 dma_free_coherent(trans->dev,
662                                   use_rx_td ? sizeof(__le16) :
663                                   sizeof(struct iwl_rb_status),
664                                   rxq->rb_stts, rxq->rb_stts_dma);
665         rxq->rb_stts_dma = 0;
666         rxq->rb_stts = NULL;
667
668         if (rxq->used_bd)
669                 dma_free_coherent(trans->dev,
670                                   (use_rx_td ? sizeof(*rxq->cd) :
671                                    sizeof(__le32)) * rxq->queue_size,
672                                   rxq->used_bd, rxq->used_bd_dma);
673         rxq->used_bd_dma = 0;
674         rxq->used_bd = NULL;
675
676         if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
677                 return;
678
679         if (rxq->tr_tail)
680                 dma_free_coherent(dev, sizeof(__le16),
681                                   rxq->tr_tail, rxq->tr_tail_dma);
682         rxq->tr_tail_dma = 0;
683         rxq->tr_tail = NULL;
684
685         if (rxq->cr_tail)
686                 dma_free_coherent(dev, sizeof(__le16),
687                                   rxq->cr_tail, rxq->cr_tail_dma);
688         rxq->cr_tail_dma = 0;
689         rxq->cr_tail = NULL;
690 }
691
692 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
693                                   struct iwl_rxq *rxq)
694 {
695         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696         struct device *dev = trans->dev;
697         int i;
698         int free_size;
699         bool use_rx_td = (trans->cfg->device_family >=
700                           IWL_DEVICE_FAMILY_22560);
701
702         spin_lock_init(&rxq->lock);
703         if (trans->cfg->mq_rx_supported)
704                 rxq->queue_size = MQ_RX_TABLE_SIZE;
705         else
706                 rxq->queue_size = RX_QUEUE_SIZE;
707
708         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
709
710         /*
711          * Allocate the circular buffer of Read Buffer Descriptors
712          * (RBDs)
713          */
714         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
715                                      &rxq->bd_dma, GFP_KERNEL);
716         if (!rxq->bd)
717                 goto err;
718
719         if (trans->cfg->mq_rx_supported) {
720                 rxq->used_bd = dma_alloc_coherent(dev,
721                                                   (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
722                                                   &rxq->used_bd_dma,
723                                                   GFP_KERNEL);
724                 if (!rxq->used_bd)
725                         goto err;
726         }
727
728         /* Allocate the driver's pointer to receive buffer status */
729         rxq->rb_stts = dma_alloc_coherent(dev,
730                                           use_rx_td ? sizeof(__le16) : sizeof(struct iwl_rb_status),
731                                           &rxq->rb_stts_dma, GFP_KERNEL);
732         if (!rxq->rb_stts)
733                 goto err;
734
735         if (!use_rx_td)
736                 return 0;
737
738         /* Allocate the driver's pointer to TR tail */
739         rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
740                                           &rxq->tr_tail_dma, GFP_KERNEL);
741         if (!rxq->tr_tail)
742                 goto err;
743
744         /* Allocate the driver's pointer to CR tail */
745         rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
746                                           &rxq->cr_tail_dma, GFP_KERNEL);
747         if (!rxq->cr_tail)
748                 goto err;
749         /*
750          * W/A 22560 device step Z0 must be non zero bug
751          * TODO: remove this when stop supporting Z0
752          */
753         *rxq->cr_tail = cpu_to_le16(500);
754
755         return 0;
756
757 err:
758         for (i = 0; i < trans->num_rx_queues; i++) {
759                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
760
761                 iwl_pcie_free_rxq_dma(trans, rxq);
762         }
763         kfree(trans_pcie->rxq);
764
765         return -ENOMEM;
766 }
767
768 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
769 {
770         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
771         struct iwl_rb_allocator *rba = &trans_pcie->rba;
772         int i, ret;
773
774         if (WARN_ON(trans_pcie->rxq))
775                 return -EINVAL;
776
777         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
778                                   GFP_KERNEL);
779         if (!trans_pcie->rxq)
780                 return -EINVAL;
781
782         spin_lock_init(&rba->lock);
783
784         for (i = 0; i < trans->num_rx_queues; i++) {
785                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
786
787                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
788                 if (ret)
789                         return ret;
790         }
791         return 0;
792 }
793
794 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
795 {
796         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
797         u32 rb_size;
798         unsigned long flags;
799         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
800
801         switch (trans_pcie->rx_buf_size) {
802         case IWL_AMSDU_4K:
803                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
804                 break;
805         case IWL_AMSDU_8K:
806                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
807                 break;
808         case IWL_AMSDU_12K:
809                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
810                 break;
811         default:
812                 WARN_ON(1);
813                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
814         }
815
816         if (!iwl_trans_grab_nic_access(trans, &flags))
817                 return;
818
819         /* Stop Rx DMA */
820         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
821         /* reset and flush pointers */
822         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
823         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
824         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
825
826         /* Reset driver's Rx queue write index */
827         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
828
829         /* Tell device where to find RBD circular buffer in DRAM */
830         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
831                     (u32)(rxq->bd_dma >> 8));
832
833         /* Tell device where in DRAM to update its Rx status */
834         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
835                     rxq->rb_stts_dma >> 4);
836
837         /* Enable Rx DMA
838          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
839          *      the credit mechanism in 5000 HW RX FIFO
840          * Direct rx interrupts to hosts
841          * Rx buffer size 4 or 8k or 12k
842          * RB timeout 0x10
843          * 256 RBDs
844          */
845         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
846                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
847                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
848                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
849                     rb_size |
850                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
851                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
852
853         iwl_trans_release_nic_access(trans, &flags);
854
855         /* Set interrupt coalescing timer to default (2048 usecs) */
856         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
857
858         /* W/A for interrupt coalescing bug in 7260 and 3160 */
859         if (trans->cfg->host_interrupt_operation_mode)
860                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
861 }
862
863 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
864 {
865         if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
866                 return;
867
868         if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
869                 return;
870
871         if (!trans->cfg->integrated)
872                 return;
873
874         /*
875          * Turn on the chicken-bits that cause MAC wakeup for RX-related
876          * values.
877          * This costs some power, but needed for W/A 9000 integrated A-step
878          * bug where shadow registers are not in the retention list and their
879          * value is lost when NIC powers down
880          */
881         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
882                     CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
883         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
884                     CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
885 }
886
887 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
888 {
889         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
890         u32 rb_size, enabled = 0;
891         unsigned long flags;
892         int i;
893
894         switch (trans_pcie->rx_buf_size) {
895         case IWL_AMSDU_2K:
896                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
897                 break;
898         case IWL_AMSDU_4K:
899                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
900                 break;
901         case IWL_AMSDU_8K:
902                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
903                 break;
904         case IWL_AMSDU_12K:
905                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
906                 break;
907         default:
908                 WARN_ON(1);
909                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
910         }
911
912         if (!iwl_trans_grab_nic_access(trans, &flags))
913                 return;
914
915         /* Stop Rx DMA */
916         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
917         /* disable free amd used rx queue operation */
918         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
919
920         for (i = 0; i < trans->num_rx_queues; i++) {
921                 /* Tell device where to find RBD free table in DRAM */
922                 iwl_write_prph64_no_grab(trans,
923                                          RFH_Q_FRBDCB_BA_LSB(i),
924                                          trans_pcie->rxq[i].bd_dma);
925                 /* Tell device where to find RBD used table in DRAM */
926                 iwl_write_prph64_no_grab(trans,
927                                          RFH_Q_URBDCB_BA_LSB(i),
928                                          trans_pcie->rxq[i].used_bd_dma);
929                 /* Tell device where in DRAM to update its Rx status */
930                 iwl_write_prph64_no_grab(trans,
931                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
932                                          trans_pcie->rxq[i].rb_stts_dma);
933                 /* Reset device indice tables */
934                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
935                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
936                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
937
938                 enabled |= BIT(i) | BIT(i + 16);
939         }
940
941         /*
942          * Enable Rx DMA
943          * Rx buffer size 4 or 8k or 12k
944          * Min RB size 4 or 8
945          * Drop frames that exceed RB size
946          * 512 RBDs
947          */
948         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
949                                RFH_DMA_EN_ENABLE_VAL | rb_size |
950                                RFH_RXF_DMA_MIN_RB_4_8 |
951                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
952                                RFH_RXF_DMA_RBDCB_SIZE_512);
953
954         /*
955          * Activate DMA snooping.
956          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
957          * Default queue is 0
958          */
959         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
960                                RFH_GEN_CFG_RFH_DMA_SNOOP |
961                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
962                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
963                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
964                                                trans->cfg->integrated ?
965                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
966                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
967         /* Enable the relevant rx queues */
968         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
969
970         iwl_trans_release_nic_access(trans, &flags);
971
972         /* Set interrupt coalescing timer to default (2048 usecs) */
973         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
974
975         iwl_pcie_enable_rx_wake(trans, true);
976 }
977
978 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
979 {
980         lockdep_assert_held(&rxq->lock);
981
982         INIT_LIST_HEAD(&rxq->rx_free);
983         INIT_LIST_HEAD(&rxq->rx_used);
984         rxq->free_count = 0;
985         rxq->used_count = 0;
986 }
987
988 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
989 {
990         WARN_ON(1);
991         return 0;
992 }
993
994 int _iwl_pcie_rx_init(struct iwl_trans *trans)
995 {
996         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
997         struct iwl_rxq *def_rxq;
998         struct iwl_rb_allocator *rba = &trans_pcie->rba;
999         int i, err, queue_size, allocator_pool_size, num_alloc;
1000
1001         if (!trans_pcie->rxq) {
1002                 err = iwl_pcie_rx_alloc(trans);
1003                 if (err)
1004                         return err;
1005         }
1006         def_rxq = trans_pcie->rxq;
1007
1008         cancel_work_sync(&rba->rx_alloc);
1009
1010         spin_lock(&rba->lock);
1011         atomic_set(&rba->req_pending, 0);
1012         atomic_set(&rba->req_ready, 0);
1013         INIT_LIST_HEAD(&rba->rbd_allocated);
1014         INIT_LIST_HEAD(&rba->rbd_empty);
1015         spin_unlock(&rba->lock);
1016
1017         /* free all first - we might be reconfigured for a different size */
1018         iwl_pcie_free_rbs_pool(trans);
1019
1020         for (i = 0; i < RX_QUEUE_SIZE; i++)
1021                 def_rxq->queue[i] = NULL;
1022
1023         for (i = 0; i < trans->num_rx_queues; i++) {
1024                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1025
1026                 rxq->id = i;
1027
1028                 spin_lock(&rxq->lock);
1029                 /*
1030                  * Set read write pointer to reflect that we have processed
1031                  * and used all buffers, but have not restocked the Rx queue
1032                  * with fresh buffers
1033                  */
1034                 rxq->read = 0;
1035                 rxq->write = 0;
1036                 rxq->write_actual = 0;
1037                 memset(rxq->rb_stts, 0,
1038                        (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1039                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1040
1041                 iwl_pcie_rx_init_rxb_lists(rxq);
1042
1043                 if (!rxq->napi.poll)
1044                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1045                                        iwl_pcie_dummy_napi_poll, 64);
1046
1047                 spin_unlock(&rxq->lock);
1048         }
1049
1050         /* move the pool to the default queue and allocator ownerships */
1051         queue_size = trans->cfg->mq_rx_supported ?
1052                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1053         allocator_pool_size = trans->num_rx_queues *
1054                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1055         num_alloc = queue_size + allocator_pool_size;
1056         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1057                      ARRAY_SIZE(trans_pcie->rx_pool));
1058         for (i = 0; i < num_alloc; i++) {
1059                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1060
1061                 if (i < allocator_pool_size)
1062                         list_add(&rxb->list, &rba->rbd_empty);
1063                 else
1064                         list_add(&rxb->list, &def_rxq->rx_used);
1065                 trans_pcie->global_table[i] = rxb;
1066                 rxb->vid = (u16)(i + 1);
1067                 rxb->invalid = true;
1068         }
1069
1070         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1071
1072         return 0;
1073 }
1074
1075 int iwl_pcie_rx_init(struct iwl_trans *trans)
1076 {
1077         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1078         int ret = _iwl_pcie_rx_init(trans);
1079
1080         if (ret)
1081                 return ret;
1082
1083         if (trans->cfg->mq_rx_supported)
1084                 iwl_pcie_rx_mq_hw_init(trans);
1085         else
1086                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1087
1088         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1089
1090         spin_lock(&trans_pcie->rxq->lock);
1091         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1092         spin_unlock(&trans_pcie->rxq->lock);
1093
1094         return 0;
1095 }
1096
1097 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1098 {
1099         /* Set interrupt coalescing timer to default (2048 usecs) */
1100         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1101
1102         /*
1103          * We don't configure the RFH.
1104          * Restock will be done at alive, after firmware configured the RFH.
1105          */
1106         return _iwl_pcie_rx_init(trans);
1107 }
1108
1109 void iwl_pcie_rx_free(struct iwl_trans *trans)
1110 {
1111         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1112         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1113         int i;
1114
1115         /*
1116          * if rxq is NULL, it means that nothing has been allocated,
1117          * exit now
1118          */
1119         if (!trans_pcie->rxq) {
1120                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1121                 return;
1122         }
1123
1124         cancel_work_sync(&rba->rx_alloc);
1125
1126         iwl_pcie_free_rbs_pool(trans);
1127
1128         for (i = 0; i < trans->num_rx_queues; i++) {
1129                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1130
1131                 iwl_pcie_free_rxq_dma(trans, rxq);
1132
1133                 if (rxq->napi.poll)
1134                         netif_napi_del(&rxq->napi);
1135         }
1136         kfree(trans_pcie->rxq);
1137 }
1138
1139 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1140                                           struct iwl_rb_allocator *rba)
1141 {
1142         spin_lock(&rba->lock);
1143         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1144         spin_unlock(&rba->lock);
1145 }
1146
1147 /*
1148  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1149  *
1150  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1151  * When there are 2 empty RBDs - a request for allocation is posted
1152  */
1153 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1154                                   struct iwl_rx_mem_buffer *rxb,
1155                                   struct iwl_rxq *rxq, bool emergency)
1156 {
1157         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1158         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1159
1160         /* Move the RBD to the used list, will be moved to allocator in batches
1161          * before claiming or posting a request*/
1162         list_add_tail(&rxb->list, &rxq->rx_used);
1163
1164         if (unlikely(emergency))
1165                 return;
1166
1167         /* Count the allocator owned RBDs */
1168         rxq->used_count++;
1169
1170         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1171          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1172          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1173          * after but we still need to post another request.
1174          */
1175         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1176                 /* Move the 2 RBDs to the allocator ownership.
1177                  Allocator has another 6 from pool for the request completion*/
1178                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1179
1180                 atomic_inc(&rba->req_pending);
1181                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1182         }
1183 }
1184
1185 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1186                                 struct iwl_rxq *rxq,
1187                                 struct iwl_rx_mem_buffer *rxb,
1188                                 bool emergency,
1189                                 int i)
1190 {
1191         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1192         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1193         bool page_stolen = false;
1194         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1195         u32 offset = 0;
1196
1197         if (WARN_ON(!rxb))
1198                 return;
1199
1200         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1201
1202         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1203                 struct iwl_rx_packet *pkt;
1204                 u16 sequence;
1205                 bool reclaim;
1206                 int index, cmd_index, len;
1207                 struct iwl_rx_cmd_buffer rxcb = {
1208                         ._offset = offset,
1209                         ._rx_page_order = trans_pcie->rx_page_order,
1210                         ._page = rxb->page,
1211                         ._page_stolen = false,
1212                         .truesize = max_len,
1213                 };
1214
1215                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1216                         rxcb.status = rxq->cd[i].status;
1217
1218                 pkt = rxb_addr(&rxcb);
1219
1220                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1221                         IWL_DEBUG_RX(trans,
1222                                      "Q %d: RB end marker at offset %d\n",
1223                                      rxq->id, offset);
1224                         break;
1225                 }
1226
1227                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1228                         FH_RSCSR_RXQ_POS != rxq->id,
1229                      "frame on invalid queue - is on %d and indicates %d\n",
1230                      rxq->id,
1231                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1232                         FH_RSCSR_RXQ_POS);
1233
1234                 IWL_DEBUG_RX(trans,
1235                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1236                              rxq->id, offset,
1237                              iwl_get_cmd_string(trans,
1238                                                 iwl_cmd_id(pkt->hdr.cmd,
1239                                                            pkt->hdr.group_id,
1240                                                            0)),
1241                              pkt->hdr.group_id, pkt->hdr.cmd,
1242                              le16_to_cpu(pkt->hdr.sequence));
1243
1244                 len = iwl_rx_packet_len(pkt);
1245                 len += sizeof(u32); /* account for status word */
1246                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1247                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1248
1249                 /* Reclaim a command buffer only if this packet is a response
1250                  *   to a (driver-originated) command.
1251                  * If the packet (e.g. Rx frame) originated from uCode,
1252                  *   there is no command buffer to reclaim.
1253                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1254                  *   but apparently a few don't get set; catch them here. */
1255                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1256                 if (reclaim && !pkt->hdr.group_id) {
1257                         int i;
1258
1259                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1260                                 if (trans_pcie->no_reclaim_cmds[i] ==
1261                                                         pkt->hdr.cmd) {
1262                                         reclaim = false;
1263                                         break;
1264                                 }
1265                         }
1266                 }
1267
1268                 sequence = le16_to_cpu(pkt->hdr.sequence);
1269                 index = SEQ_TO_INDEX(sequence);
1270                 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1271
1272                 if (rxq->id == trans_pcie->def_rx_queue)
1273                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1274                                        &rxcb);
1275                 else
1276                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1277                                            &rxcb, rxq->id);
1278
1279                 if (reclaim) {
1280                         kzfree(txq->entries[cmd_index].free_buf);
1281                         txq->entries[cmd_index].free_buf = NULL;
1282                 }
1283
1284                 /*
1285                  * After here, we should always check rxcb._page_stolen,
1286                  * if it is true then one of the handlers took the page.
1287                  */
1288
1289                 if (reclaim) {
1290                         /* Invoke any callbacks, transfer the buffer to caller,
1291                          * and fire off the (possibly) blocking
1292                          * iwl_trans_send_cmd()
1293                          * as we reclaim the driver command queue */
1294                         if (!rxcb._page_stolen)
1295                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1296                         else
1297                                 IWL_WARN(trans, "Claim null rxb?\n");
1298                 }
1299
1300                 page_stolen |= rxcb._page_stolen;
1301                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1302                         break;
1303                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1304         }
1305
1306         /* page was stolen from us -- free our reference */
1307         if (page_stolen) {
1308                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1309                 rxb->page = NULL;
1310         }
1311
1312         /* Reuse the page if possible. For notification packets and
1313          * SKBs that fail to Rx correctly, add them back into the
1314          * rx_free list for reuse later. */
1315         if (rxb->page != NULL) {
1316                 rxb->page_dma =
1317                         dma_map_page(trans->dev, rxb->page, 0,
1318                                      PAGE_SIZE << trans_pcie->rx_page_order,
1319                                      DMA_FROM_DEVICE);
1320                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1321                         /*
1322                          * free the page(s) as well to not break
1323                          * the invariant that the items on the used
1324                          * list have no page(s)
1325                          */
1326                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1327                         rxb->page = NULL;
1328                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1329                 } else {
1330                         list_add_tail(&rxb->list, &rxq->rx_free);
1331                         rxq->free_count++;
1332                 }
1333         } else
1334                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1335 }
1336
1337 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1338                                                   struct iwl_rxq *rxq, int i)
1339 {
1340         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1341         struct iwl_rx_mem_buffer *rxb;
1342         u16 vid;
1343
1344         if (!trans->cfg->mq_rx_supported) {
1345                 rxb = rxq->queue[i];
1346                 rxq->queue[i] = NULL;
1347                 return rxb;
1348         }
1349
1350         /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1351         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1352                 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1353         else
1354                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1355
1356         if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1357                 goto out_err;
1358
1359         rxb = trans_pcie->global_table[vid - 1];
1360         if (rxb->invalid)
1361                 goto out_err;
1362
1363         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1364                 rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE;
1365
1366         rxb->invalid = true;
1367
1368         return rxb;
1369
1370 out_err:
1371         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1372         iwl_force_nmi(trans);
1373         return NULL;
1374 }
1375
1376 /*
1377  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1378  */
1379 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1380 {
1381         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1382         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1383         u32 r, i, count = 0;
1384         bool emergency = false;
1385
1386 restart:
1387         spin_lock(&rxq->lock);
1388         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1389          * buffer that the driver may process (last buffer filled by ucode). */
1390         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1391         i = rxq->read;
1392
1393         /* W/A 9000 device step A0 wrap-around bug */
1394         r &= (rxq->queue_size - 1);
1395
1396         /* Rx interrupt, but nothing sent from uCode */
1397         if (i == r)
1398                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1399
1400         while (i != r) {
1401                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1402                 struct iwl_rx_mem_buffer *rxb;
1403                 /* number of RBDs still waiting for page allocation */
1404                 u32 rb_pending_alloc =
1405                         atomic_read(&trans_pcie->rba.req_pending) *
1406                         RX_CLAIM_REQ_ALLOC;
1407
1408                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1409                              !emergency)) {
1410                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1411                         emergency = true;
1412                 }
1413
1414                 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1415                 if (!rxb)
1416                         goto out;
1417
1418                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1419                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1420
1421                 i = (i + 1) & (rxq->queue_size - 1);
1422
1423                 /*
1424                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1425                  * try to claim the pre-allocated buffers from the allocator.
1426                  * If not ready - will try to reclaim next time.
1427                  * There is no need to reschedule work - allocator exits only
1428                  * on success
1429                  */
1430                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1431                         iwl_pcie_rx_allocator_get(trans, rxq);
1432
1433                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1434                         /* Add the remaining empty RBDs for allocator use */
1435                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1436                 } else if (emergency) {
1437                         count++;
1438                         if (count == 8) {
1439                                 count = 0;
1440                                 if (rb_pending_alloc < rxq->queue_size / 3)
1441                                         emergency = false;
1442
1443                                 rxq->read = i;
1444                                 spin_unlock(&rxq->lock);
1445                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1446                                 iwl_pcie_rxq_restock(trans, rxq);
1447                                 goto restart;
1448                         }
1449                 }
1450         }
1451 out:
1452         /* Backtrack one entry */
1453         rxq->read = i;
1454         /* update cr tail with the rxq read pointer */
1455         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1456                 *rxq->cr_tail = cpu_to_le16(r);
1457         spin_unlock(&rxq->lock);
1458
1459         /*
1460          * handle a case where in emergency there are some unallocated RBDs.
1461          * those RBDs are in the used list, but are not tracked by the queue's
1462          * used_count which counts allocator owned RBDs.
1463          * unallocated emergency RBDs must be allocated on exit, otherwise
1464          * when called again the function may not be in emergency mode and
1465          * they will be handed to the allocator with no tracking in the RBD
1466          * allocator counters, which will lead to them never being claimed back
1467          * by the queue.
1468          * by allocating them here, they are now in the queue free list, and
1469          * will be restocked by the next call of iwl_pcie_rxq_restock.
1470          */
1471         if (unlikely(emergency && count))
1472                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1473
1474         if (rxq->napi.poll)
1475                 napi_gro_flush(&rxq->napi, false);
1476
1477         iwl_pcie_rxq_restock(trans, rxq);
1478 }
1479
1480 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1481 {
1482         u8 queue = entry->entry;
1483         struct msix_entry *entries = entry - queue;
1484
1485         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1486 }
1487
1488 /*
1489  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1490  * This interrupt handler should be used with RSS queue only.
1491  */
1492 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1493 {
1494         struct msix_entry *entry = dev_id;
1495         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1496         struct iwl_trans *trans = trans_pcie->trans;
1497
1498         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1499
1500         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1501                 return IRQ_NONE;
1502
1503         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1504
1505         local_bh_disable();
1506         iwl_pcie_rx_handle(trans, entry->entry);
1507         local_bh_enable();
1508
1509         iwl_pcie_clear_irq(trans, entry);
1510
1511         lock_map_release(&trans->sync_cmd_lockdep_map);
1512
1513         return IRQ_HANDLED;
1514 }
1515
1516 /*
1517  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1518  */
1519 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1520 {
1521         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1522         int i;
1523
1524         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1525         if (trans->cfg->internal_wimax_coex &&
1526             !trans->cfg->apmg_not_supported &&
1527             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1528                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1529              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1530                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1531                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1532                 iwl_op_mode_wimax_active(trans->op_mode);
1533                 wake_up(&trans_pcie->wait_command_queue);
1534                 return;
1535         }
1536
1537         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1538                 if (!trans_pcie->txq[i])
1539                         continue;
1540                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1541         }
1542
1543         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1544          * before we wake up the command caller, to ensure a proper cleanup. */
1545         iwl_trans_fw_error(trans);
1546
1547         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1548         wake_up(&trans_pcie->wait_command_queue);
1549 }
1550
1551 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1552 {
1553         u32 inta;
1554
1555         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1556
1557         trace_iwlwifi_dev_irq(trans->dev);
1558
1559         /* Discover which interrupts are active/pending */
1560         inta = iwl_read32(trans, CSR_INT);
1561
1562         /* the thread will service interrupts and re-enable them */
1563         return inta;
1564 }
1565
1566 /* a device (PCI-E) page is 4096 bytes long */
1567 #define ICT_SHIFT       12
1568 #define ICT_SIZE        (1 << ICT_SHIFT)
1569 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1570
1571 /* interrupt handler using ict table, with this interrupt driver will
1572  * stop using INTA register to get device's interrupt, reading this register
1573  * is expensive, device will write interrupts in ICT dram table, increment
1574  * index then will fire interrupt to driver, driver will OR all ICT table
1575  * entries from current index up to table entry with 0 value. the result is
1576  * the interrupt we need to service, driver will set the entries back to 0 and
1577  * set index.
1578  */
1579 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1580 {
1581         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1582         u32 inta;
1583         u32 val = 0;
1584         u32 read;
1585
1586         trace_iwlwifi_dev_irq(trans->dev);
1587
1588         /* Ignore interrupt if there's nothing in NIC to service.
1589          * This may be due to IRQ shared with another device,
1590          * or due to sporadic interrupts thrown from our NIC. */
1591         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1592         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1593         if (!read)
1594                 return 0;
1595
1596         /*
1597          * Collect all entries up to the first 0, starting from ict_index;
1598          * note we already read at ict_index.
1599          */
1600         do {
1601                 val |= read;
1602                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1603                                 trans_pcie->ict_index, read);
1604                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1605                 trans_pcie->ict_index =
1606                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1607
1608                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1609                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1610                                            read);
1611         } while (read);
1612
1613         /* We should not get this value, just ignore it. */
1614         if (val == 0xffffffff)
1615                 val = 0;
1616
1617         /*
1618          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1619          * (bit 15 before shifting it to 31) to clear when using interrupt
1620          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1621          * so we use them to decide on the real state of the Rx bit.
1622          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1623          */
1624         if (val & 0xC0000)
1625                 val |= 0x8000;
1626
1627         inta = (0xff & val) | ((0xff00 & val) << 16);
1628         return inta;
1629 }
1630
1631 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1632 {
1633         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1634         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1635         bool hw_rfkill, prev, report;
1636
1637         mutex_lock(&trans_pcie->mutex);
1638         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1639         hw_rfkill = iwl_is_rfkill_set(trans);
1640         if (hw_rfkill) {
1641                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1642                 set_bit(STATUS_RFKILL_HW, &trans->status);
1643         }
1644         if (trans_pcie->opmode_down)
1645                 report = hw_rfkill;
1646         else
1647                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1648
1649         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1650                  hw_rfkill ? "disable radio" : "enable radio");
1651
1652         isr_stats->rfkill++;
1653
1654         if (prev != report)
1655                 iwl_trans_pcie_rf_kill(trans, report);
1656         mutex_unlock(&trans_pcie->mutex);
1657
1658         if (hw_rfkill) {
1659                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1660                                        &trans->status))
1661                         IWL_DEBUG_RF_KILL(trans,
1662                                           "Rfkill while SYNC HCMD in flight\n");
1663                 wake_up(&trans_pcie->wait_command_queue);
1664         } else {
1665                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1666                 if (trans_pcie->opmode_down)
1667                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1668         }
1669 }
1670
1671 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1672 {
1673         struct iwl_trans *trans = dev_id;
1674         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1675         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1676         u32 inta = 0;
1677         u32 handled = 0;
1678
1679         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1680
1681         spin_lock(&trans_pcie->irq_lock);
1682
1683         /* dram interrupt table not set yet,
1684          * use legacy interrupt.
1685          */
1686         if (likely(trans_pcie->use_ict))
1687                 inta = iwl_pcie_int_cause_ict(trans);
1688         else
1689                 inta = iwl_pcie_int_cause_non_ict(trans);
1690
1691         if (iwl_have_debug_level(IWL_DL_ISR)) {
1692                 IWL_DEBUG_ISR(trans,
1693                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1694                               inta, trans_pcie->inta_mask,
1695                               iwl_read32(trans, CSR_INT_MASK),
1696                               iwl_read32(trans, CSR_FH_INT_STATUS));
1697                 if (inta & (~trans_pcie->inta_mask))
1698                         IWL_DEBUG_ISR(trans,
1699                                       "We got a masked interrupt (0x%08x)\n",
1700                                       inta & (~trans_pcie->inta_mask));
1701         }
1702
1703         inta &= trans_pcie->inta_mask;
1704
1705         /*
1706          * Ignore interrupt if there's nothing in NIC to service.
1707          * This may be due to IRQ shared with another device,
1708          * or due to sporadic interrupts thrown from our NIC.
1709          */
1710         if (unlikely(!inta)) {
1711                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1712                 /*
1713                  * Re-enable interrupts here since we don't
1714                  * have anything to service
1715                  */
1716                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1717                         _iwl_enable_interrupts(trans);
1718                 spin_unlock(&trans_pcie->irq_lock);
1719                 lock_map_release(&trans->sync_cmd_lockdep_map);
1720                 return IRQ_NONE;
1721         }
1722
1723         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1724                 /*
1725                  * Hardware disappeared. It might have
1726                  * already raised an interrupt.
1727                  */
1728                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1729                 spin_unlock(&trans_pcie->irq_lock);
1730                 goto out;
1731         }
1732
1733         /* Ack/clear/reset pending uCode interrupts.
1734          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1735          */
1736         /* There is a hardware bug in the interrupt mask function that some
1737          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1738          * they are disabled in the CSR_INT_MASK register. Furthermore the
1739          * ICT interrupt handling mechanism has another bug that might cause
1740          * these unmasked interrupts fail to be detected. We workaround the
1741          * hardware bugs here by ACKing all the possible interrupts so that
1742          * interrupt coalescing can still be achieved.
1743          */
1744         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1745
1746         if (iwl_have_debug_level(IWL_DL_ISR))
1747                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1748                               inta, iwl_read32(trans, CSR_INT_MASK));
1749
1750         spin_unlock(&trans_pcie->irq_lock);
1751
1752         /* Now service all interrupt bits discovered above. */
1753         if (inta & CSR_INT_BIT_HW_ERR) {
1754                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1755
1756                 /* Tell the device to stop sending interrupts */
1757                 iwl_disable_interrupts(trans);
1758
1759                 isr_stats->hw++;
1760                 iwl_pcie_irq_handle_error(trans);
1761
1762                 handled |= CSR_INT_BIT_HW_ERR;
1763
1764                 goto out;
1765         }
1766
1767         if (iwl_have_debug_level(IWL_DL_ISR)) {
1768                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1769                 if (inta & CSR_INT_BIT_SCD) {
1770                         IWL_DEBUG_ISR(trans,
1771                                       "Scheduler finished to transmit the frame/frames.\n");
1772                         isr_stats->sch++;
1773                 }
1774
1775                 /* Alive notification via Rx interrupt will do the real work */
1776                 if (inta & CSR_INT_BIT_ALIVE) {
1777                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1778                         isr_stats->alive++;
1779                         if (trans->cfg->gen2) {
1780                                 /*
1781                                  * We can restock, since firmware configured
1782                                  * the RFH
1783                                  */
1784                                 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1785                         }
1786                 }
1787         }
1788
1789         /* Safely ignore these bits for debug checks below */
1790         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1791
1792         /* HW RF KILL switch toggled */
1793         if (inta & CSR_INT_BIT_RF_KILL) {
1794                 iwl_pcie_handle_rfkill_irq(trans);
1795                 handled |= CSR_INT_BIT_RF_KILL;
1796         }
1797
1798         /* Chip got too hot and stopped itself */
1799         if (inta & CSR_INT_BIT_CT_KILL) {
1800                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1801                 isr_stats->ctkill++;
1802                 handled |= CSR_INT_BIT_CT_KILL;
1803         }
1804
1805         /* Error detected by uCode */
1806         if (inta & CSR_INT_BIT_SW_ERR) {
1807                 IWL_ERR(trans, "Microcode SW error detected. "
1808                         " Restarting 0x%X.\n", inta);
1809                 isr_stats->sw++;
1810                 iwl_pcie_irq_handle_error(trans);
1811                 handled |= CSR_INT_BIT_SW_ERR;
1812         }
1813
1814         /* uCode wakes up after power-down sleep */
1815         if (inta & CSR_INT_BIT_WAKEUP) {
1816                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1817                 iwl_pcie_rxq_check_wrptr(trans);
1818                 iwl_pcie_txq_check_wrptrs(trans);
1819
1820                 isr_stats->wakeup++;
1821
1822                 handled |= CSR_INT_BIT_WAKEUP;
1823         }
1824
1825         /* All uCode command responses, including Tx command responses,
1826          * Rx "responses" (frame-received notification), and other
1827          * notifications from uCode come through here*/
1828         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1829                     CSR_INT_BIT_RX_PERIODIC)) {
1830                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1831                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1832                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1833                         iwl_write32(trans, CSR_FH_INT_STATUS,
1834                                         CSR_FH_INT_RX_MASK);
1835                 }
1836                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1837                         handled |= CSR_INT_BIT_RX_PERIODIC;
1838                         iwl_write32(trans,
1839                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1840                 }
1841                 /* Sending RX interrupt require many steps to be done in the
1842                  * the device:
1843                  * 1- write interrupt to current index in ICT table.
1844                  * 2- dma RX frame.
1845                  * 3- update RX shared data to indicate last write index.
1846                  * 4- send interrupt.
1847                  * This could lead to RX race, driver could receive RX interrupt
1848                  * but the shared data changes does not reflect this;
1849                  * periodic interrupt will detect any dangling Rx activity.
1850                  */
1851
1852                 /* Disable periodic interrupt; we use it as just a one-shot. */
1853                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1854                             CSR_INT_PERIODIC_DIS);
1855
1856                 /*
1857                  * Enable periodic interrupt in 8 msec only if we received
1858                  * real RX interrupt (instead of just periodic int), to catch
1859                  * any dangling Rx interrupt.  If it was just the periodic
1860                  * interrupt, there was no dangling Rx activity, and no need
1861                  * to extend the periodic interrupt; one-shot is enough.
1862                  */
1863                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1864                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1865                                    CSR_INT_PERIODIC_ENA);
1866
1867                 isr_stats->rx++;
1868
1869                 local_bh_disable();
1870                 iwl_pcie_rx_handle(trans, 0);
1871                 local_bh_enable();
1872         }
1873
1874         /* This "Tx" DMA channel is used only for loading uCode */
1875         if (inta & CSR_INT_BIT_FH_TX) {
1876                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1877                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1878                 isr_stats->tx++;
1879                 handled |= CSR_INT_BIT_FH_TX;
1880                 /* Wake up uCode load routine, now that load is complete */
1881                 trans_pcie->ucode_write_complete = true;
1882                 wake_up(&trans_pcie->ucode_write_waitq);
1883         }
1884
1885         if (inta & ~handled) {
1886                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1887                 isr_stats->unhandled++;
1888         }
1889
1890         if (inta & ~(trans_pcie->inta_mask)) {
1891                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1892                          inta & ~trans_pcie->inta_mask);
1893         }
1894
1895         spin_lock(&trans_pcie->irq_lock);
1896         /* only Re-enable all interrupt if disabled by irq */
1897         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1898                 _iwl_enable_interrupts(trans);
1899         /* we are loading the firmware, enable FH_TX interrupt only */
1900         else if (handled & CSR_INT_BIT_FH_TX)
1901                 iwl_enable_fw_load_int(trans);
1902         /* Re-enable RF_KILL if it occurred */
1903         else if (handled & CSR_INT_BIT_RF_KILL)
1904                 iwl_enable_rfkill_int(trans);
1905         spin_unlock(&trans_pcie->irq_lock);
1906
1907 out:
1908         lock_map_release(&trans->sync_cmd_lockdep_map);
1909         return IRQ_HANDLED;
1910 }
1911
1912 /******************************************************************************
1913  *
1914  * ICT functions
1915  *
1916  ******************************************************************************/
1917
1918 /* Free dram table */
1919 void iwl_pcie_free_ict(struct iwl_trans *trans)
1920 {
1921         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1922
1923         if (trans_pcie->ict_tbl) {
1924                 dma_free_coherent(trans->dev, ICT_SIZE,
1925                                   trans_pcie->ict_tbl,
1926                                   trans_pcie->ict_tbl_dma);
1927                 trans_pcie->ict_tbl = NULL;
1928                 trans_pcie->ict_tbl_dma = 0;
1929         }
1930 }
1931
1932 /*
1933  * allocate dram shared table, it is an aligned memory
1934  * block of ICT_SIZE.
1935  * also reset all data related to ICT table interrupt.
1936  */
1937 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1938 {
1939         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1940
1941         trans_pcie->ict_tbl =
1942                 dma_alloc_coherent(trans->dev, ICT_SIZE,
1943                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
1944         if (!trans_pcie->ict_tbl)
1945                 return -ENOMEM;
1946
1947         /* just an API sanity check ... it is guaranteed to be aligned */
1948         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1949                 iwl_pcie_free_ict(trans);
1950                 return -EINVAL;
1951         }
1952
1953         return 0;
1954 }
1955
1956 /* Device is going up inform it about using ICT interrupt table,
1957  * also we need to tell the driver to start using ICT interrupt.
1958  */
1959 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1960 {
1961         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1962         u32 val;
1963
1964         if (!trans_pcie->ict_tbl)
1965                 return;
1966
1967         spin_lock(&trans_pcie->irq_lock);
1968         _iwl_disable_interrupts(trans);
1969
1970         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1971
1972         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1973
1974         val |= CSR_DRAM_INT_TBL_ENABLE |
1975                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1976                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1977
1978         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1979
1980         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1981         trans_pcie->use_ict = true;
1982         trans_pcie->ict_index = 0;
1983         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1984         _iwl_enable_interrupts(trans);
1985         spin_unlock(&trans_pcie->irq_lock);
1986 }
1987
1988 /* Device is going down disable ict interrupt usage */
1989 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1990 {
1991         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1992
1993         spin_lock(&trans_pcie->irq_lock);
1994         trans_pcie->use_ict = false;
1995         spin_unlock(&trans_pcie->irq_lock);
1996 }
1997
1998 irqreturn_t iwl_pcie_isr(int irq, void *data)
1999 {
2000         struct iwl_trans *trans = data;
2001
2002         if (!trans)
2003                 return IRQ_NONE;
2004
2005         /* Disable (but don't clear!) interrupts here to avoid
2006          * back-to-back ISRs and sporadic interrupts from our NIC.
2007          * If we have something to service, the tasklet will re-enable ints.
2008          * If we *don't* have something, we'll re-enable before leaving here.
2009          */
2010         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2011
2012         return IRQ_WAKE_THREAD;
2013 }
2014
2015 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2016 {
2017         return IRQ_WAKE_THREAD;
2018 }
2019
2020 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2021 {
2022         struct msix_entry *entry = dev_id;
2023         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2024         struct iwl_trans *trans = trans_pcie->trans;
2025         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2026         u32 inta_fh, inta_hw;
2027
2028         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2029
2030         spin_lock(&trans_pcie->irq_lock);
2031         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2032         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2033         /*
2034          * Clear causes registers to avoid being handling the same cause.
2035          */
2036         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2037         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2038         spin_unlock(&trans_pcie->irq_lock);
2039
2040         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2041
2042         if (unlikely(!(inta_fh | inta_hw))) {
2043                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2044                 lock_map_release(&trans->sync_cmd_lockdep_map);
2045                 return IRQ_NONE;
2046         }
2047
2048         if (iwl_have_debug_level(IWL_DL_ISR))
2049                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
2050                               inta_fh,
2051                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2052
2053         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2054             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2055                 local_bh_disable();
2056                 iwl_pcie_rx_handle(trans, 0);
2057                 local_bh_enable();
2058         }
2059
2060         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2061             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2062                 local_bh_disable();
2063                 iwl_pcie_rx_handle(trans, 1);
2064                 local_bh_enable();
2065         }
2066
2067         /* This "Tx" DMA channel is used only for loading uCode */
2068         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2069                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2070                 isr_stats->tx++;
2071                 /*
2072                  * Wake up uCode load routine,
2073                  * now that load is complete
2074                  */
2075                 trans_pcie->ucode_write_complete = true;
2076                 wake_up(&trans_pcie->ucode_write_waitq);
2077         }
2078
2079         /* Error detected by uCode */
2080         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2081             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2082             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2083                 IWL_ERR(trans,
2084                         "Microcode SW error detected. Restarting 0x%X.\n",
2085                         inta_fh);
2086                 isr_stats->sw++;
2087                 iwl_pcie_irq_handle_error(trans);
2088         }
2089
2090         /* After checking FH register check HW register */
2091         if (iwl_have_debug_level(IWL_DL_ISR))
2092                 IWL_DEBUG_ISR(trans,
2093                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
2094                               inta_hw,
2095                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2096
2097         /* Alive notification via Rx interrupt will do the real work */
2098         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2099                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2100                 isr_stats->alive++;
2101                 if (trans->cfg->gen2) {
2102                         /* We can restock, since firmware configured the RFH */
2103                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2104                 }
2105         }
2106
2107         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560 &&
2108             inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2109                 /* Reflect IML transfer status */
2110                 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2111
2112                 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2113                 if (res == IWL_IMAGE_RESP_FAIL) {
2114                         isr_stats->sw++;
2115                         iwl_pcie_irq_handle_error(trans);
2116                 }
2117         } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2118                 /* uCode wakes up after power-down sleep */
2119                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2120                 iwl_pcie_rxq_check_wrptr(trans);
2121                 iwl_pcie_txq_check_wrptrs(trans);
2122
2123                 isr_stats->wakeup++;
2124         }
2125
2126         /* Chip got too hot and stopped itself */
2127         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2128                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2129                 isr_stats->ctkill++;
2130         }
2131
2132         /* HW RF KILL switch toggled */
2133         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2134                 iwl_pcie_handle_rfkill_irq(trans);
2135
2136         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2137                 IWL_ERR(trans,
2138                         "Hardware error detected. Restarting.\n");
2139
2140                 isr_stats->hw++;
2141                 iwl_pcie_irq_handle_error(trans);
2142         }
2143
2144         iwl_pcie_clear_irq(trans, entry);
2145
2146         lock_map_release(&trans->sync_cmd_lockdep_map);
2147
2148         return IRQ_HANDLED;
2149 }