Merge branch 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[sfrench/cifs-2.6.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 static char *dev_info = "ath9k";
21
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
26
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
30
31 /* We use the hw_value as an index into our private channel structure */
32
33 #define CHAN2G(_freq, _idx)  { \
34         .center_freq = (_freq), \
35         .hw_value = (_idx), \
36         .max_power = 20, \
37 }
38
39 #define CHAN5G(_freq, _idx) { \
40         .band = IEEE80211_BAND_5GHZ, \
41         .center_freq = (_freq), \
42         .hw_value = (_idx), \
43         .max_power = 20, \
44 }
45
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47  * on 5 MHz steps, we support the channels which we know
48  * we have calibration data for all cards though to make
49  * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51         CHAN2G(2412, 0), /* Channel 1 */
52         CHAN2G(2417, 1), /* Channel 2 */
53         CHAN2G(2422, 2), /* Channel 3 */
54         CHAN2G(2427, 3), /* Channel 4 */
55         CHAN2G(2432, 4), /* Channel 5 */
56         CHAN2G(2437, 5), /* Channel 6 */
57         CHAN2G(2442, 6), /* Channel 7 */
58         CHAN2G(2447, 7), /* Channel 8 */
59         CHAN2G(2452, 8), /* Channel 9 */
60         CHAN2G(2457, 9), /* Channel 10 */
61         CHAN2G(2462, 10), /* Channel 11 */
62         CHAN2G(2467, 11), /* Channel 12 */
63         CHAN2G(2472, 12), /* Channel 13 */
64         CHAN2G(2484, 13), /* Channel 14 */
65 };
66
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68  * on 5 MHz steps, we support the channels which we know
69  * we have calibration data for all cards though to make
70  * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72         /* _We_ call this UNII 1 */
73         CHAN5G(5180, 14), /* Channel 36 */
74         CHAN5G(5200, 15), /* Channel 40 */
75         CHAN5G(5220, 16), /* Channel 44 */
76         CHAN5G(5240, 17), /* Channel 48 */
77         /* _We_ call this UNII 2 */
78         CHAN5G(5260, 18), /* Channel 52 */
79         CHAN5G(5280, 19), /* Channel 56 */
80         CHAN5G(5300, 20), /* Channel 60 */
81         CHAN5G(5320, 21), /* Channel 64 */
82         /* _We_ call this "Middle band" */
83         CHAN5G(5500, 22), /* Channel 100 */
84         CHAN5G(5520, 23), /* Channel 104 */
85         CHAN5G(5540, 24), /* Channel 108 */
86         CHAN5G(5560, 25), /* Channel 112 */
87         CHAN5G(5580, 26), /* Channel 116 */
88         CHAN5G(5600, 27), /* Channel 120 */
89         CHAN5G(5620, 28), /* Channel 124 */
90         CHAN5G(5640, 29), /* Channel 128 */
91         CHAN5G(5660, 30), /* Channel 132 */
92         CHAN5G(5680, 31), /* Channel 136 */
93         CHAN5G(5700, 32), /* Channel 140 */
94         /* _We_ call this UNII 3 */
95         CHAN5G(5745, 33), /* Channel 149 */
96         CHAN5G(5765, 34), /* Channel 153 */
97         CHAN5G(5785, 35), /* Channel 157 */
98         CHAN5G(5805, 36), /* Channel 161 */
99         CHAN5G(5825, 37), /* Channel 165 */
100 };
101
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103                                 struct ieee80211_conf *conf)
104 {
105         switch (conf->channel->band) {
106         case IEEE80211_BAND_2GHZ:
107                 if (conf_is_ht20(conf))
108                         sc->cur_rate_table =
109                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110                 else if (conf_is_ht40_minus(conf))
111                         sc->cur_rate_table =
112                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113                 else if (conf_is_ht40_plus(conf))
114                         sc->cur_rate_table =
115                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116                 else
117                         sc->cur_rate_table =
118                           sc->hw_rate_table[ATH9K_MODE_11G];
119                 break;
120         case IEEE80211_BAND_5GHZ:
121                 if (conf_is_ht20(conf))
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124                 else if (conf_is_ht40_minus(conf))
125                         sc->cur_rate_table =
126                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127                 else if (conf_is_ht40_plus(conf))
128                         sc->cur_rate_table =
129                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130                 else
131                         sc->cur_rate_table =
132                           sc->hw_rate_table[ATH9K_MODE_11A];
133                 break;
134         default:
135                 BUG_ON(1);
136                 break;
137         }
138 }
139
140 static void ath_update_txpow(struct ath_softc *sc)
141 {
142         struct ath_hw *ah = sc->sc_ah;
143         u32 txpow;
144
145         if (sc->curtxpow != sc->config.txpowlimit) {
146                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147                 /* read back in case value is clamped */
148                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149                 sc->curtxpow = txpow;
150         }
151 }
152
153 static u8 parse_mpdudensity(u8 mpdudensity)
154 {
155         /*
156          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157          *   0 for no restriction
158          *   1 for 1/4 us
159          *   2 for 1/2 us
160          *   3 for 1 us
161          *   4 for 2 us
162          *   5 for 4 us
163          *   6 for 8 us
164          *   7 for 16 us
165          */
166         switch (mpdudensity) {
167         case 0:
168                 return 0;
169         case 1:
170         case 2:
171         case 3:
172                 /* Our lower layer calculations limit our precision to
173                    1 microsecond */
174                 return 1;
175         case 4:
176                 return 2;
177         case 5:
178                 return 4;
179         case 6:
180                 return 8;
181         case 7:
182                 return 16;
183         default:
184                 return 0;
185         }
186 }
187
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
189 {
190         const struct ath_rate_table *rate_table = NULL;
191         struct ieee80211_supported_band *sband;
192         struct ieee80211_rate *rate;
193         int i, maxrates;
194
195         switch (band) {
196         case IEEE80211_BAND_2GHZ:
197                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198                 break;
199         case IEEE80211_BAND_5GHZ:
200                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201                 break;
202         default:
203                 break;
204         }
205
206         if (rate_table == NULL)
207                 return;
208
209         sband = &sc->sbands[band];
210         rate = sc->rates[band];
211
212         if (rate_table->rate_cnt > ATH_RATE_MAX)
213                 maxrates = ATH_RATE_MAX;
214         else
215                 maxrates = rate_table->rate_cnt;
216
217         for (i = 0; i < maxrates; i++) {
218                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219                 rate[i].hw_value = rate_table->info[i].ratecode;
220                 if (rate_table->info[i].short_preamble) {
221                         rate[i].hw_value_short = rate_table->info[i].ratecode |
222                                 rate_table->info[i].short_preamble;
223                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
224                 }
225                 sband->n_bitrates++;
226
227                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228                         rate[i].bitrate / 10, rate[i].hw_value);
229         }
230 }
231
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233                                                 struct ieee80211_hw *hw)
234 {
235         struct ieee80211_channel *curchan = hw->conf.channel;
236         struct ath9k_channel *channel;
237         u8 chan_idx;
238
239         chan_idx = curchan->hw_value;
240         channel = &sc->sc_ah->channels[chan_idx];
241         ath9k_update_ichannel(sc, hw, channel);
242         return channel;
243 }
244
245 /*
246  * Set/change channels.  If the channel is really being changed, it's done
247  * by reseting the chip.  To accomplish this we must first cleanup any pending
248  * DMA, then restart stuff.
249 */
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251                     struct ath9k_channel *hchan)
252 {
253         struct ath_hw *ah = sc->sc_ah;
254         bool fastcc = true, stopped;
255         struct ieee80211_channel *channel = hw->conf.channel;
256         int r;
257
258         if (sc->sc_flags & SC_OP_INVALID)
259                 return -EIO;
260
261         ath9k_ps_wakeup(sc);
262
263         /*
264          * This is only performed if the channel settings have
265          * actually changed.
266          *
267          * To switch channels clear any pending DMA operations;
268          * wait long enough for the RX fifo to drain, reset the
269          * hardware at the new frequency, and then re-enable
270          * the relevant bits of the h/w.
271          */
272         ath9k_hw_set_interrupts(ah, 0);
273         ath_drain_all_txq(sc, false);
274         stopped = ath_stoprecv(sc);
275
276         /* XXX: do not flush receive queue here. We don't want
277          * to flush data frames already in queue because of
278          * changing channel. */
279
280         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281                 fastcc = false;
282
283         DPRINTF(sc, ATH_DBG_CONFIG,
284                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285                 sc->sc_ah->curchan->channel,
286                 channel->center_freq, sc->tx_chan_width);
287
288         spin_lock_bh(&sc->sc_resetlock);
289
290         r = ath9k_hw_reset(ah, hchan, fastcc);
291         if (r) {
292                 DPRINTF(sc, ATH_DBG_FATAL,
293                         "Unable to reset channel (%u Mhz) "
294                         "reset status %d\n",
295                         channel->center_freq, r);
296                 spin_unlock_bh(&sc->sc_resetlock);
297                 goto ps_restore;
298         }
299         spin_unlock_bh(&sc->sc_resetlock);
300
301         sc->sc_flags &= ~SC_OP_FULL_RESET;
302
303         if (ath_startrecv(sc) != 0) {
304                 DPRINTF(sc, ATH_DBG_FATAL,
305                         "Unable to restart recv logic\n");
306                 r = -EIO;
307                 goto ps_restore;
308         }
309
310         ath_cache_conf_rate(sc, &hw->conf);
311         ath_update_txpow(sc);
312         ath9k_hw_set_interrupts(ah, sc->imask);
313
314  ps_restore:
315         ath9k_ps_restore(sc);
316         return r;
317 }
318
319 /*
320  *  This routine performs the periodic noise floor calibration function
321  *  that is used to adjust and optimize the chip performance.  This
322  *  takes environmental changes (location, temperature) into account.
323  *  When the task is complete, it reschedules itself depending on the
324  *  appropriate interval that was calculated.
325  */
326 static void ath_ani_calibrate(unsigned long data)
327 {
328         struct ath_softc *sc = (struct ath_softc *)data;
329         struct ath_hw *ah = sc->sc_ah;
330         bool longcal = false;
331         bool shortcal = false;
332         bool aniflag = false;
333         unsigned int timestamp = jiffies_to_msecs(jiffies);
334         u32 cal_interval, short_cal_interval;
335
336         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
338
339         /*
340         * don't calibrate when we're scanning.
341         * we are most likely not on our home channel.
342         */
343         spin_lock(&sc->ani_lock);
344         if (sc->sc_flags & SC_OP_SCANNING)
345                 goto set_timer;
346
347         /* Only calibrate if awake */
348         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349                 goto set_timer;
350
351         ath9k_ps_wakeup(sc);
352
353         /* Long calibration runs independently of short calibration. */
354         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355                 longcal = true;
356                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357                 sc->ani.longcal_timer = timestamp;
358         }
359
360         /* Short calibration applies only while caldone is false */
361         if (!sc->ani.caldone) {
362                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363                         shortcal = true;
364                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365                         sc->ani.shortcal_timer = timestamp;
366                         sc->ani.resetcal_timer = timestamp;
367                 }
368         } else {
369                 if ((timestamp - sc->ani.resetcal_timer) >=
370                     ATH_RESTART_CALINTERVAL) {
371                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372                         if (sc->ani.caldone)
373                                 sc->ani.resetcal_timer = timestamp;
374                 }
375         }
376
377         /* Verify whether we must check ANI */
378         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379                 aniflag = true;
380                 sc->ani.checkani_timer = timestamp;
381         }
382
383         /* Skip all processing if there's nothing to do. */
384         if (longcal || shortcal || aniflag) {
385                 /* Call ANI routine if necessary */
386                 if (aniflag)
387                         ath9k_hw_ani_monitor(ah, ah->curchan);
388
389                 /* Perform calibration if necessary */
390                 if (longcal || shortcal) {
391                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392                                                      sc->rx_chainmask, longcal);
393
394                         if (longcal)
395                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396                                                                      ah->curchan);
397
398                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399                                 ah->curchan->channel, ah->curchan->channelFlags,
400                                 sc->ani.noise_floor);
401                 }
402         }
403
404         ath9k_ps_restore(sc);
405
406 set_timer:
407         spin_unlock(&sc->ani_lock);
408         /*
409         * Set timer interval based on previous results.
410         * The interval must be the shortest necessary to satisfy ANI,
411         * short calibration and long calibration.
412         */
413         cal_interval = ATH_LONG_CALINTERVAL;
414         if (sc->sc_ah->config.enable_ani)
415                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416         if (!sc->ani.caldone)
417                 cal_interval = min(cal_interval, (u32)short_cal_interval);
418
419         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
420 }
421
422 static void ath_start_ani(struct ath_softc *sc)
423 {
424         unsigned long timestamp = jiffies_to_msecs(jiffies);
425
426         sc->ani.longcal_timer = timestamp;
427         sc->ani.shortcal_timer = timestamp;
428         sc->ani.checkani_timer = timestamp;
429
430         mod_timer(&sc->ani.timer,
431                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 }
433
434 /*
435  * Update tx/rx chainmask. For legacy association,
436  * hard code chainmask to 1x1, for 11n association, use
437  * the chainmask configuration, for bt coexistence, use
438  * the chainmask configuration even in legacy mode.
439  */
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 {
442         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
443             (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE)) {
444                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446         } else {
447                 sc->tx_chainmask = 1;
448                 sc->rx_chainmask = 1;
449         }
450
451         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452                 sc->tx_chainmask, sc->rx_chainmask);
453 }
454
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
456 {
457         struct ath_node *an;
458
459         an = (struct ath_node *)sta->drv_priv;
460
461         if (sc->sc_flags & SC_OP_TXAGGR) {
462                 ath_tx_node_init(sc, an);
463                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464                                      sta->ht_cap.ampdu_factor);
465                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
467         }
468 }
469
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 {
472         struct ath_node *an = (struct ath_node *)sta->drv_priv;
473
474         if (sc->sc_flags & SC_OP_TXAGGR)
475                 ath_tx_node_cleanup(sc, an);
476 }
477
478 static void ath9k_tasklet(unsigned long data)
479 {
480         struct ath_softc *sc = (struct ath_softc *)data;
481         u32 status = sc->intrstatus;
482
483         ath9k_ps_wakeup(sc);
484
485         if (status & ATH9K_INT_FATAL) {
486                 ath_reset(sc, false);
487                 ath9k_ps_restore(sc);
488                 return;
489         }
490
491         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492                 spin_lock_bh(&sc->rx.rxflushlock);
493                 ath_rx_tasklet(sc, 0);
494                 spin_unlock_bh(&sc->rx.rxflushlock);
495         }
496
497         if (status & ATH9K_INT_TX)
498                 ath_tx_tasklet(sc);
499
500         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
501                 /*
502                  * TSF sync does not look correct; remain awake to sync with
503                  * the next Beacon.
504                  */
505                 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
507         }
508
509         if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
510                 if (status & ATH9K_INT_GENTIMER)
511                         ath_gen_timer_isr(sc->sc_ah);
512
513         /* re-enable hardware interrupt */
514         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
515         ath9k_ps_restore(sc);
516 }
517
518 irqreturn_t ath_isr(int irq, void *dev)
519 {
520 #define SCHED_INTR (                            \
521                 ATH9K_INT_FATAL |               \
522                 ATH9K_INT_RXORN |               \
523                 ATH9K_INT_RXEOL |               \
524                 ATH9K_INT_RX |                  \
525                 ATH9K_INT_TX |                  \
526                 ATH9K_INT_BMISS |               \
527                 ATH9K_INT_CST |                 \
528                 ATH9K_INT_TSFOOR |              \
529                 ATH9K_INT_GENTIMER)
530
531         struct ath_softc *sc = dev;
532         struct ath_hw *ah = sc->sc_ah;
533         enum ath9k_int status;
534         bool sched = false;
535
536         /*
537          * The hardware is not ready/present, don't
538          * touch anything. Note this can happen early
539          * on if the IRQ is shared.
540          */
541         if (sc->sc_flags & SC_OP_INVALID)
542                 return IRQ_NONE;
543
544
545         /* shared irq, not for us */
546
547         if (!ath9k_hw_intrpend(ah))
548                 return IRQ_NONE;
549
550         /*
551          * Figure out the reason(s) for the interrupt.  Note
552          * that the hal returns a pseudo-ISR that may include
553          * bits we haven't explicitly enabled so we mask the
554          * value to insure we only process bits we requested.
555          */
556         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
557         status &= sc->imask;    /* discard unasked-for bits */
558
559         /*
560          * If there are no status bits set, then this interrupt was not
561          * for me (should have been caught above).
562          */
563         if (!status)
564                 return IRQ_NONE;
565
566         /* Cache the status */
567         sc->intrstatus = status;
568
569         if (status & SCHED_INTR)
570                 sched = true;
571
572         /*
573          * If a FATAL or RXORN interrupt is received, we have to reset the
574          * chip immediately.
575          */
576         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
577                 goto chip_reset;
578
579         if (status & ATH9K_INT_SWBA)
580                 tasklet_schedule(&sc->bcon_tasklet);
581
582         if (status & ATH9K_INT_TXURN)
583                 ath9k_hw_updatetxtriglevel(ah, true);
584
585         if (status & ATH9K_INT_MIB) {
586                 /*
587                  * Disable interrupts until we service the MIB
588                  * interrupt; otherwise it will continue to
589                  * fire.
590                  */
591                 ath9k_hw_set_interrupts(ah, 0);
592                 /*
593                  * Let the hal handle the event. We assume
594                  * it will clear whatever condition caused
595                  * the interrupt.
596                  */
597                 ath9k_hw_procmibevent(ah);
598                 ath9k_hw_set_interrupts(ah, sc->imask);
599         }
600
601         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
602                 if (status & ATH9K_INT_TIM_TIMER) {
603                         /* Clear RxAbort bit so that we can
604                          * receive frames */
605                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
606                         ath9k_hw_setrxabort(sc->sc_ah, 0);
607                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
608                 }
609
610 chip_reset:
611
612         ath_debug_stat_interrupt(sc, status);
613
614         if (sched) {
615                 /* turn off every interrupt except SWBA */
616                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
617                 tasklet_schedule(&sc->intr_tq);
618         }
619
620         return IRQ_HANDLED;
621
622 #undef SCHED_INTR
623 }
624
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626                                struct ieee80211_channel *chan,
627                                enum nl80211_channel_type channel_type)
628 {
629         u32 chanmode = 0;
630
631         switch (chan->band) {
632         case IEEE80211_BAND_2GHZ:
633                 switch(channel_type) {
634                 case NL80211_CHAN_NO_HT:
635                 case NL80211_CHAN_HT20:
636                         chanmode = CHANNEL_G_HT20;
637                         break;
638                 case NL80211_CHAN_HT40PLUS:
639                         chanmode = CHANNEL_G_HT40PLUS;
640                         break;
641                 case NL80211_CHAN_HT40MINUS:
642                         chanmode = CHANNEL_G_HT40MINUS;
643                         break;
644                 }
645                 break;
646         case IEEE80211_BAND_5GHZ:
647                 switch(channel_type) {
648                 case NL80211_CHAN_NO_HT:
649                 case NL80211_CHAN_HT20:
650                         chanmode = CHANNEL_A_HT20;
651                         break;
652                 case NL80211_CHAN_HT40PLUS:
653                         chanmode = CHANNEL_A_HT40PLUS;
654                         break;
655                 case NL80211_CHAN_HT40MINUS:
656                         chanmode = CHANNEL_A_HT40MINUS;
657                         break;
658                 }
659                 break;
660         default:
661                 break;
662         }
663
664         return chanmode;
665 }
666
667 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
668                            struct ath9k_keyval *hk, const u8 *addr,
669                            bool authenticator)
670 {
671         const u8 *key_rxmic;
672         const u8 *key_txmic;
673
674         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
675         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
676
677         if (addr == NULL) {
678                 /*
679                  * Group key installation - only two key cache entries are used
680                  * regardless of splitmic capability since group key is only
681                  * used either for TX or RX.
682                  */
683                 if (authenticator) {
684                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
685                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
686                 } else {
687                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
689                 }
690                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
691         }
692         if (!sc->splitmic) {
693                 /* TX and RX keys share the same key cache entry. */
694                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
695                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
696                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
697         }
698
699         /* Separate key cache entries for TX and RX */
700
701         /* TX key goes at first index, RX key at +32. */
702         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
703         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
704                 /* TX MIC entry failed. No need to proceed further */
705                 DPRINTF(sc, ATH_DBG_FATAL,
706                         "Setting TX MIC Key Failed\n");
707                 return 0;
708         }
709
710         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
711         /* XXX delete tx key on failure? */
712         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
713 }
714
715 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
716 {
717         int i;
718
719         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
720                 if (test_bit(i, sc->keymap) ||
721                     test_bit(i + 64, sc->keymap))
722                         continue; /* At least one part of TKIP key allocated */
723                 if (sc->splitmic &&
724                     (test_bit(i + 32, sc->keymap) ||
725                      test_bit(i + 64 + 32, sc->keymap)))
726                         continue; /* At least one part of TKIP key allocated */
727
728                 /* Found a free slot for a TKIP key */
729                 return i;
730         }
731         return -1;
732 }
733
734 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
735 {
736         int i;
737
738         /* First, try to find slots that would not be available for TKIP. */
739         if (sc->splitmic) {
740                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
741                         if (!test_bit(i, sc->keymap) &&
742                             (test_bit(i + 32, sc->keymap) ||
743                              test_bit(i + 64, sc->keymap) ||
744                              test_bit(i + 64 + 32, sc->keymap)))
745                                 return i;
746                         if (!test_bit(i + 32, sc->keymap) &&
747                             (test_bit(i, sc->keymap) ||
748                              test_bit(i + 64, sc->keymap) ||
749                              test_bit(i + 64 + 32, sc->keymap)))
750                                 return i + 32;
751                         if (!test_bit(i + 64, sc->keymap) &&
752                             (test_bit(i , sc->keymap) ||
753                              test_bit(i + 32, sc->keymap) ||
754                              test_bit(i + 64 + 32, sc->keymap)))
755                                 return i + 64;
756                         if (!test_bit(i + 64 + 32, sc->keymap) &&
757                             (test_bit(i, sc->keymap) ||
758                              test_bit(i + 32, sc->keymap) ||
759                              test_bit(i + 64, sc->keymap)))
760                                 return i + 64 + 32;
761                 }
762         } else {
763                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
764                         if (!test_bit(i, sc->keymap) &&
765                             test_bit(i + 64, sc->keymap))
766                                 return i;
767                         if (test_bit(i, sc->keymap) &&
768                             !test_bit(i + 64, sc->keymap))
769                                 return i + 64;
770                 }
771         }
772
773         /* No partially used TKIP slots, pick any available slot */
774         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
775                 /* Do not allow slots that could be needed for TKIP group keys
776                  * to be used. This limitation could be removed if we know that
777                  * TKIP will not be used. */
778                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
779                         continue;
780                 if (sc->splitmic) {
781                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
782                                 continue;
783                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
784                                 continue;
785                 }
786
787                 if (!test_bit(i, sc->keymap))
788                         return i; /* Found a free slot for a key */
789         }
790
791         /* No free slot found */
792         return -1;
793 }
794
795 static int ath_key_config(struct ath_softc *sc,
796                           struct ieee80211_vif *vif,
797                           struct ieee80211_sta *sta,
798                           struct ieee80211_key_conf *key)
799 {
800         struct ath9k_keyval hk;
801         const u8 *mac = NULL;
802         int ret = 0;
803         int idx;
804
805         memset(&hk, 0, sizeof(hk));
806
807         switch (key->alg) {
808         case ALG_WEP:
809                 hk.kv_type = ATH9K_CIPHER_WEP;
810                 break;
811         case ALG_TKIP:
812                 hk.kv_type = ATH9K_CIPHER_TKIP;
813                 break;
814         case ALG_CCMP:
815                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816                 break;
817         default:
818                 return -EOPNOTSUPP;
819         }
820
821         hk.kv_len = key->keylen;
822         memcpy(hk.kv_val, key->key, key->keylen);
823
824         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825                 /* For now, use the default keys for broadcast keys. This may
826                  * need to change with virtual interfaces. */
827                 idx = key->keyidx;
828         } else if (key->keyidx) {
829                 if (WARN_ON(!sta))
830                         return -EOPNOTSUPP;
831                 mac = sta->addr;
832
833                 if (vif->type != NL80211_IFTYPE_AP) {
834                         /* Only keyidx 0 should be used with unicast key, but
835                          * allow this for client mode for now. */
836                         idx = key->keyidx;
837                 } else
838                         return -EIO;
839         } else {
840                 if (WARN_ON(!sta))
841                         return -EOPNOTSUPP;
842                 mac = sta->addr;
843
844                 if (key->alg == ALG_TKIP)
845                         idx = ath_reserve_key_cache_slot_tkip(sc);
846                 else
847                         idx = ath_reserve_key_cache_slot(sc);
848                 if (idx < 0)
849                         return -ENOSPC; /* no free key cache entries */
850         }
851
852         if (key->alg == ALG_TKIP)
853                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
854                                       vif->type == NL80211_IFTYPE_AP);
855         else
856                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
857
858         if (!ret)
859                 return -EIO;
860
861         set_bit(idx, sc->keymap);
862         if (key->alg == ALG_TKIP) {
863                 set_bit(idx + 64, sc->keymap);
864                 if (sc->splitmic) {
865                         set_bit(idx + 32, sc->keymap);
866                         set_bit(idx + 64 + 32, sc->keymap);
867                 }
868         }
869
870         return idx;
871 }
872
873 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
874 {
875         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
876         if (key->hw_key_idx < IEEE80211_WEP_NKID)
877                 return;
878
879         clear_bit(key->hw_key_idx, sc->keymap);
880         if (key->alg != ALG_TKIP)
881                 return;
882
883         clear_bit(key->hw_key_idx + 64, sc->keymap);
884         if (sc->splitmic) {
885                 clear_bit(key->hw_key_idx + 32, sc->keymap);
886                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
887         }
888 }
889
890 static void setup_ht_cap(struct ath_softc *sc,
891                          struct ieee80211_sta_ht_cap *ht_info)
892 {
893         u8 tx_streams, rx_streams;
894
895         ht_info->ht_supported = true;
896         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
897                        IEEE80211_HT_CAP_SM_PS |
898                        IEEE80211_HT_CAP_SGI_40 |
899                        IEEE80211_HT_CAP_DSSSCCK40;
900
901         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
902         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
903
904         /* set up supported mcs set */
905         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
906         tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
907         rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
908
909         if (tx_streams != rx_streams) {
910                 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
911                         tx_streams, rx_streams);
912                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
913                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
914                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
915         }
916
917         ht_info->mcs.rx_mask[0] = 0xff;
918         if (rx_streams >= 2)
919                 ht_info->mcs.rx_mask[1] = 0xff;
920
921         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
922 }
923
924 static void ath9k_bss_assoc_info(struct ath_softc *sc,
925                                  struct ieee80211_vif *vif,
926                                  struct ieee80211_bss_conf *bss_conf)
927 {
928
929         if (bss_conf->assoc) {
930                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
931                         bss_conf->aid, sc->curbssid);
932
933                 /* New association, store aid */
934                 sc->curaid = bss_conf->aid;
935                 ath9k_hw_write_associd(sc);
936
937                 /*
938                  * Request a re-configuration of Beacon related timers
939                  * on the receipt of the first Beacon frame (i.e.,
940                  * after time sync with the AP).
941                  */
942                 sc->sc_flags |= SC_OP_BEACON_SYNC;
943
944                 /* Configure the beacon */
945                 ath_beacon_config(sc, vif);
946
947                 /* Reset rssi stats */
948                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
949
950                 ath_start_ani(sc);
951         } else {
952                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
953                 sc->curaid = 0;
954                 /* Stop ANI */
955                 del_timer_sync(&sc->ani.timer);
956         }
957 }
958
959 /********************************/
960 /*       LED functions          */
961 /********************************/
962
963 static void ath_led_blink_work(struct work_struct *work)
964 {
965         struct ath_softc *sc = container_of(work, struct ath_softc,
966                                             ath_led_blink_work.work);
967
968         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
969                 return;
970
971         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
972             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
973                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
974         else
975                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
976                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
977
978         ieee80211_queue_delayed_work(sc->hw,
979                                      &sc->ath_led_blink_work,
980                                      (sc->sc_flags & SC_OP_LED_ON) ?
981                                         msecs_to_jiffies(sc->led_off_duration) :
982                                         msecs_to_jiffies(sc->led_on_duration));
983
984         sc->led_on_duration = sc->led_on_cnt ?
985                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
986                         ATH_LED_ON_DURATION_IDLE;
987         sc->led_off_duration = sc->led_off_cnt ?
988                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
989                         ATH_LED_OFF_DURATION_IDLE;
990         sc->led_on_cnt = sc->led_off_cnt = 0;
991         if (sc->sc_flags & SC_OP_LED_ON)
992                 sc->sc_flags &= ~SC_OP_LED_ON;
993         else
994                 sc->sc_flags |= SC_OP_LED_ON;
995 }
996
997 static void ath_led_brightness(struct led_classdev *led_cdev,
998                                enum led_brightness brightness)
999 {
1000         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1001         struct ath_softc *sc = led->sc;
1002
1003         switch (brightness) {
1004         case LED_OFF:
1005                 if (led->led_type == ATH_LED_ASSOC ||
1006                     led->led_type == ATH_LED_RADIO) {
1007                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1008                                 (led->led_type == ATH_LED_RADIO));
1009                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1010                         if (led->led_type == ATH_LED_RADIO)
1011                                 sc->sc_flags &= ~SC_OP_LED_ON;
1012                 } else {
1013                         sc->led_off_cnt++;
1014                 }
1015                 break;
1016         case LED_FULL:
1017                 if (led->led_type == ATH_LED_ASSOC) {
1018                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1019                         ieee80211_queue_delayed_work(sc->hw,
1020                                                      &sc->ath_led_blink_work, 0);
1021                 } else if (led->led_type == ATH_LED_RADIO) {
1022                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1023                         sc->sc_flags |= SC_OP_LED_ON;
1024                 } else {
1025                         sc->led_on_cnt++;
1026                 }
1027                 break;
1028         default:
1029                 break;
1030         }
1031 }
1032
1033 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1034                             char *trigger)
1035 {
1036         int ret;
1037
1038         led->sc = sc;
1039         led->led_cdev.name = led->name;
1040         led->led_cdev.default_trigger = trigger;
1041         led->led_cdev.brightness_set = ath_led_brightness;
1042
1043         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1044         if (ret)
1045                 DPRINTF(sc, ATH_DBG_FATAL,
1046                         "Failed to register led:%s", led->name);
1047         else
1048                 led->registered = 1;
1049         return ret;
1050 }
1051
1052 static void ath_unregister_led(struct ath_led *led)
1053 {
1054         if (led->registered) {
1055                 led_classdev_unregister(&led->led_cdev);
1056                 led->registered = 0;
1057         }
1058 }
1059
1060 static void ath_deinit_leds(struct ath_softc *sc)
1061 {
1062         ath_unregister_led(&sc->assoc_led);
1063         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1064         ath_unregister_led(&sc->tx_led);
1065         ath_unregister_led(&sc->rx_led);
1066         ath_unregister_led(&sc->radio_led);
1067         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1068 }
1069
1070 static void ath_init_leds(struct ath_softc *sc)
1071 {
1072         char *trigger;
1073         int ret;
1074
1075         if (AR_SREV_9287(sc->sc_ah))
1076                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1077         else
1078                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1079
1080         /* Configure gpio 1 for output */
1081         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1082                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1083         /* LED off, active low */
1084         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1085
1086         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1087
1088         trigger = ieee80211_get_radio_led_name(sc->hw);
1089         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1090                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1091         ret = ath_register_led(sc, &sc->radio_led, trigger);
1092         sc->radio_led.led_type = ATH_LED_RADIO;
1093         if (ret)
1094                 goto fail;
1095
1096         trigger = ieee80211_get_assoc_led_name(sc->hw);
1097         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1098                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1099         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1100         sc->assoc_led.led_type = ATH_LED_ASSOC;
1101         if (ret)
1102                 goto fail;
1103
1104         trigger = ieee80211_get_tx_led_name(sc->hw);
1105         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1106                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1107         ret = ath_register_led(sc, &sc->tx_led, trigger);
1108         sc->tx_led.led_type = ATH_LED_TX;
1109         if (ret)
1110                 goto fail;
1111
1112         trigger = ieee80211_get_rx_led_name(sc->hw);
1113         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1114                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1115         ret = ath_register_led(sc, &sc->rx_led, trigger);
1116         sc->rx_led.led_type = ATH_LED_RX;
1117         if (ret)
1118                 goto fail;
1119
1120         return;
1121
1122 fail:
1123         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1124         ath_deinit_leds(sc);
1125 }
1126
1127 void ath_radio_enable(struct ath_softc *sc)
1128 {
1129         struct ath_hw *ah = sc->sc_ah;
1130         struct ieee80211_channel *channel = sc->hw->conf.channel;
1131         int r;
1132
1133         ath9k_ps_wakeup(sc);
1134         ath9k_hw_configpcipowersave(ah, 0, 0);
1135
1136         if (!ah->curchan)
1137                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1138
1139         spin_lock_bh(&sc->sc_resetlock);
1140         r = ath9k_hw_reset(ah, ah->curchan, false);
1141         if (r) {
1142                 DPRINTF(sc, ATH_DBG_FATAL,
1143                         "Unable to reset channel %u (%uMhz) ",
1144                         "reset status %d\n",
1145                         channel->center_freq, r);
1146         }
1147         spin_unlock_bh(&sc->sc_resetlock);
1148
1149         ath_update_txpow(sc);
1150         if (ath_startrecv(sc) != 0) {
1151                 DPRINTF(sc, ATH_DBG_FATAL,
1152                         "Unable to restart recv logic\n");
1153                 return;
1154         }
1155
1156         if (sc->sc_flags & SC_OP_BEACONS)
1157                 ath_beacon_config(sc, NULL);    /* restart beacons */
1158
1159         /* Re-Enable  interrupts */
1160         ath9k_hw_set_interrupts(ah, sc->imask);
1161
1162         /* Enable LED */
1163         ath9k_hw_cfg_output(ah, ah->led_pin,
1164                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1165         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1166
1167         ieee80211_wake_queues(sc->hw);
1168         ath9k_ps_restore(sc);
1169 }
1170
1171 void ath_radio_disable(struct ath_softc *sc)
1172 {
1173         struct ath_hw *ah = sc->sc_ah;
1174         struct ieee80211_channel *channel = sc->hw->conf.channel;
1175         int r;
1176
1177         ath9k_ps_wakeup(sc);
1178         ieee80211_stop_queues(sc->hw);
1179
1180         /* Disable LED */
1181         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1182         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1183
1184         /* Disable interrupts */
1185         ath9k_hw_set_interrupts(ah, 0);
1186
1187         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1188         ath_stoprecv(sc);               /* turn off frame recv */
1189         ath_flushrecv(sc);              /* flush recv queue */
1190
1191         if (!ah->curchan)
1192                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1193
1194         spin_lock_bh(&sc->sc_resetlock);
1195         r = ath9k_hw_reset(ah, ah->curchan, false);
1196         if (r) {
1197                 DPRINTF(sc, ATH_DBG_FATAL,
1198                         "Unable to reset channel %u (%uMhz) "
1199                         "reset status %d\n",
1200                         channel->center_freq, r);
1201         }
1202         spin_unlock_bh(&sc->sc_resetlock);
1203
1204         ath9k_hw_phy_disable(ah);
1205         ath9k_hw_configpcipowersave(ah, 1, 1);
1206         ath9k_ps_restore(sc);
1207         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1208 }
1209
1210 /*******************/
1211 /*      Rfkill     */
1212 /*******************/
1213
1214 static bool ath_is_rfkill_set(struct ath_softc *sc)
1215 {
1216         struct ath_hw *ah = sc->sc_ah;
1217
1218         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1219                                   ah->rfkill_polarity;
1220 }
1221
1222 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1223 {
1224         struct ath_wiphy *aphy = hw->priv;
1225         struct ath_softc *sc = aphy->sc;
1226         bool blocked = !!ath_is_rfkill_set(sc);
1227
1228         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1229 }
1230
1231 static void ath_start_rfkill_poll(struct ath_softc *sc)
1232 {
1233         struct ath_hw *ah = sc->sc_ah;
1234
1235         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1236                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1237 }
1238
1239 void ath_cleanup(struct ath_softc *sc)
1240 {
1241         ath_detach(sc);
1242         free_irq(sc->irq, sc);
1243         ath_bus_cleanup(sc);
1244         kfree(sc->sec_wiphy);
1245         ieee80211_free_hw(sc->hw);
1246 }
1247
1248 void ath_detach(struct ath_softc *sc)
1249 {
1250         struct ieee80211_hw *hw = sc->hw;
1251         int i = 0;
1252
1253         ath9k_ps_wakeup(sc);
1254
1255         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1256
1257         ath_deinit_leds(sc);
1258         wiphy_rfkill_stop_polling(sc->hw->wiphy);
1259
1260         for (i = 0; i < sc->num_sec_wiphy; i++) {
1261                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1262                 if (aphy == NULL)
1263                         continue;
1264                 sc->sec_wiphy[i] = NULL;
1265                 ieee80211_unregister_hw(aphy->hw);
1266                 ieee80211_free_hw(aphy->hw);
1267         }
1268         ieee80211_unregister_hw(hw);
1269         ath_rx_cleanup(sc);
1270         ath_tx_cleanup(sc);
1271
1272         tasklet_kill(&sc->intr_tq);
1273         tasklet_kill(&sc->bcon_tasklet);
1274
1275         if (!(sc->sc_flags & SC_OP_INVALID))
1276                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1277
1278         /* cleanup tx queues */
1279         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1280                 if (ATH_TXQ_SETUP(sc, i))
1281                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1282
1283         if ((sc->btcoex_info.no_stomp_timer) &&
1284             sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
1285                 ath_gen_timer_free(sc->sc_ah, sc->btcoex_info.no_stomp_timer);
1286
1287         ath9k_hw_detach(sc->sc_ah);
1288         sc->sc_ah = NULL;
1289         ath9k_exit_debug(sc);
1290 }
1291
1292 static int ath9k_reg_notifier(struct wiphy *wiphy,
1293                               struct regulatory_request *request)
1294 {
1295         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1296         struct ath_wiphy *aphy = hw->priv;
1297         struct ath_softc *sc = aphy->sc;
1298         struct ath_regulatory *reg = &sc->common.regulatory;
1299
1300         return ath_reg_notifier_apply(wiphy, request, reg);
1301 }
1302
1303 /*
1304  * Initialize and fill ath_softc, ath_sofct is the
1305  * "Software Carrier" struct. Historically it has existed
1306  * to allow the separation between hardware specific
1307  * variables (now in ath_hw) and driver specific variables.
1308  */
1309 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid)
1310 {
1311         struct ath_hw *ah = NULL;
1312         int r = 0, i;
1313         int csz = 0;
1314
1315         /* XXX: hardware will not be ready until ath_open() being called */
1316         sc->sc_flags |= SC_OP_INVALID;
1317
1318         if (ath9k_init_debug(sc) < 0)
1319                 printk(KERN_ERR "Unable to create debugfs files\n");
1320
1321         spin_lock_init(&sc->wiphy_lock);
1322         spin_lock_init(&sc->sc_resetlock);
1323         spin_lock_init(&sc->sc_serial_rw);
1324         spin_lock_init(&sc->ani_lock);
1325         spin_lock_init(&sc->sc_pm_lock);
1326         mutex_init(&sc->mutex);
1327         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1328         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1329                      (unsigned long)sc);
1330
1331         /*
1332          * Cache line size is used to size and align various
1333          * structures used to communicate with the hardware.
1334          */
1335         ath_read_cachesize(sc, &csz);
1336         /* XXX assert csz is non-zero */
1337         sc->common.cachelsz = csz << 2; /* convert to bytes */
1338
1339         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1340         if (!ah) {
1341                 r = -ENOMEM;
1342                 goto bad_no_ah;
1343         }
1344
1345         ah->ah_sc = sc;
1346         ah->hw_version.devid = devid;
1347         ah->hw_version.subsysid = subsysid;
1348         sc->sc_ah = ah;
1349
1350         r = ath9k_hw_init(ah);
1351         if (r) {
1352                 DPRINTF(sc, ATH_DBG_FATAL,
1353                         "Unable to initialize hardware; "
1354                         "initialization status: %d\n", r);
1355                 goto bad;
1356         }
1357
1358         /* Get the hardware key cache size. */
1359         sc->keymax = ah->caps.keycache_size;
1360         if (sc->keymax > ATH_KEYMAX) {
1361                 DPRINTF(sc, ATH_DBG_ANY,
1362                         "Warning, using only %u entries in %u key cache\n",
1363                         ATH_KEYMAX, sc->keymax);
1364                 sc->keymax = ATH_KEYMAX;
1365         }
1366
1367         /*
1368          * Reset the key cache since some parts do not
1369          * reset the contents on initial power up.
1370          */
1371         for (i = 0; i < sc->keymax; i++)
1372                 ath9k_hw_keyreset(ah, (u16) i);
1373
1374         /* default to MONITOR mode */
1375         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1376
1377         /* Setup rate tables */
1378
1379         ath_rate_attach(sc);
1380         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1381         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1382
1383         /*
1384          * Allocate hardware transmit queues: one queue for
1385          * beacon frames and one data queue for each QoS
1386          * priority.  Note that the hal handles reseting
1387          * these queues at the needed time.
1388          */
1389         sc->beacon.beaconq = ath_beaconq_setup(ah);
1390         if (sc->beacon.beaconq == -1) {
1391                 DPRINTF(sc, ATH_DBG_FATAL,
1392                         "Unable to setup a beacon xmit queue\n");
1393                 r = -EIO;
1394                 goto bad2;
1395         }
1396         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1397         if (sc->beacon.cabq == NULL) {
1398                 DPRINTF(sc, ATH_DBG_FATAL,
1399                         "Unable to setup CAB xmit queue\n");
1400                 r = -EIO;
1401                 goto bad2;
1402         }
1403
1404         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1405         ath_cabq_update(sc);
1406
1407         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1408                 sc->tx.hwq_map[i] = -1;
1409
1410         /* Setup data queues */
1411         /* NB: ensure BK queue is the lowest priority h/w queue */
1412         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1413                 DPRINTF(sc, ATH_DBG_FATAL,
1414                         "Unable to setup xmit queue for BK traffic\n");
1415                 r = -EIO;
1416                 goto bad2;
1417         }
1418
1419         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1420                 DPRINTF(sc, ATH_DBG_FATAL,
1421                         "Unable to setup xmit queue for BE traffic\n");
1422                 r = -EIO;
1423                 goto bad2;
1424         }
1425         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1426                 DPRINTF(sc, ATH_DBG_FATAL,
1427                         "Unable to setup xmit queue for VI traffic\n");
1428                 r = -EIO;
1429                 goto bad2;
1430         }
1431         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1432                 DPRINTF(sc, ATH_DBG_FATAL,
1433                         "Unable to setup xmit queue for VO traffic\n");
1434                 r = -EIO;
1435                 goto bad2;
1436         }
1437
1438         /* Initializes the noise floor to a reasonable default value.
1439          * Later on this will be updated during ANI processing. */
1440
1441         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1442         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1443
1444         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1445                                    ATH9K_CIPHER_TKIP, NULL)) {
1446                 /*
1447                  * Whether we should enable h/w TKIP MIC.
1448                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1449                  * report WMM capable, so it's always safe to turn on
1450                  * TKIP MIC in this case.
1451                  */
1452                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1453                                        0, 1, NULL);
1454         }
1455
1456         /*
1457          * Check whether the separate key cache entries
1458          * are required to handle both tx+rx MIC keys.
1459          * With split mic keys the number of stations is limited
1460          * to 27 otherwise 59.
1461          */
1462         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1463                                    ATH9K_CIPHER_TKIP, NULL)
1464             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1465                                       ATH9K_CIPHER_MIC, NULL)
1466             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1467                                       0, NULL))
1468                 sc->splitmic = 1;
1469
1470         /* turn on mcast key search if possible */
1471         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1472                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1473                                              1, NULL);
1474
1475         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1476
1477         /* 11n Capabilities */
1478         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1479                 sc->sc_flags |= SC_OP_TXAGGR;
1480                 sc->sc_flags |= SC_OP_RXAGGR;
1481         }
1482
1483         sc->tx_chainmask = ah->caps.tx_chainmask;
1484         sc->rx_chainmask = ah->caps.rx_chainmask;
1485
1486         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1487         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1488
1489         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1490                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1491
1492         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1493
1494         /* initialize beacon slots */
1495         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1496                 sc->beacon.bslot[i] = NULL;
1497                 sc->beacon.bslot_aphy[i] = NULL;
1498         }
1499
1500         /* setup channels and rates */
1501
1502         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1503         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1504                 sc->rates[IEEE80211_BAND_2GHZ];
1505         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1506         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1507                 ARRAY_SIZE(ath9k_2ghz_chantable);
1508
1509         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1510                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1511                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1512                         sc->rates[IEEE80211_BAND_5GHZ];
1513                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1514                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1515                         ARRAY_SIZE(ath9k_5ghz_chantable);
1516         }
1517
1518         if (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) {
1519                 r = ath9k_hw_btcoex_init(ah);
1520                 if (r)
1521                         goto bad2;
1522         }
1523
1524         return 0;
1525 bad2:
1526         /* cleanup tx queues */
1527         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1528                 if (ATH_TXQ_SETUP(sc, i))
1529                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1530 bad:
1531         ath9k_hw_detach(ah);
1532         sc->sc_ah = NULL;
1533 bad_no_ah:
1534         ath9k_exit_debug(sc);
1535
1536         return r;
1537 }
1538
1539 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1540 {
1541         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1542                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1543                 IEEE80211_HW_SIGNAL_DBM |
1544                 IEEE80211_HW_AMPDU_AGGREGATION |
1545                 IEEE80211_HW_SUPPORTS_PS |
1546                 IEEE80211_HW_PS_NULLFUNC_STACK |
1547                 IEEE80211_HW_SPECTRUM_MGMT;
1548
1549         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1550                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1551
1552         hw->wiphy->interface_modes =
1553                 BIT(NL80211_IFTYPE_AP) |
1554                 BIT(NL80211_IFTYPE_STATION) |
1555                 BIT(NL80211_IFTYPE_ADHOC) |
1556                 BIT(NL80211_IFTYPE_MESH_POINT);
1557
1558         hw->wiphy->ps_default = false;
1559
1560         hw->queues = 4;
1561         hw->max_rates = 4;
1562         hw->channel_change_time = 5000;
1563         hw->max_listen_interval = 10;
1564         /* Hardware supports 10 but we use 4 */
1565         hw->max_rate_tries = 4;
1566         hw->sta_data_size = sizeof(struct ath_node);
1567         hw->vif_data_size = sizeof(struct ath_vif);
1568
1569         hw->rate_control_algorithm = "ath9k_rate_control";
1570
1571         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1572                 &sc->sbands[IEEE80211_BAND_2GHZ];
1573         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1574                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1575                         &sc->sbands[IEEE80211_BAND_5GHZ];
1576 }
1577
1578 /* Device driver core initialization */
1579 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid)
1580 {
1581         struct ieee80211_hw *hw = sc->hw;
1582         int error = 0, i;
1583         struct ath_regulatory *reg;
1584
1585         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1586
1587         error = ath_init_softc(devid, sc, subsysid);
1588         if (error != 0)
1589                 return error;
1590
1591         /* get mac address from hardware and set in mac80211 */
1592
1593         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1594
1595         ath_set_hw_capab(sc, hw);
1596
1597         error = ath_regd_init(&sc->common.regulatory, sc->hw->wiphy,
1598                               ath9k_reg_notifier);
1599         if (error)
1600                 return error;
1601
1602         reg = &sc->common.regulatory;
1603
1604         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1605                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1606                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1607                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1608         }
1609
1610         /* initialize tx/rx engine */
1611         error = ath_tx_init(sc, ATH_TXBUF);
1612         if (error != 0)
1613                 goto error_attach;
1614
1615         error = ath_rx_init(sc, ATH_RXBUF);
1616         if (error != 0)
1617                 goto error_attach;
1618
1619         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1620         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1621         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1622
1623         error = ieee80211_register_hw(hw);
1624
1625         if (!ath_is_world_regd(reg)) {
1626                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1627                 if (error)
1628                         goto error_attach;
1629         }
1630
1631         /* Initialize LED control */
1632         ath_init_leds(sc);
1633
1634         ath_start_rfkill_poll(sc);
1635
1636         return 0;
1637
1638 error_attach:
1639         /* cleanup tx queues */
1640         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1641                 if (ATH_TXQ_SETUP(sc, i))
1642                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1643
1644         ath9k_hw_detach(sc->sc_ah);
1645         sc->sc_ah = NULL;
1646         ath9k_exit_debug(sc);
1647
1648         return error;
1649 }
1650
1651 int ath_reset(struct ath_softc *sc, bool retry_tx)
1652 {
1653         struct ath_hw *ah = sc->sc_ah;
1654         struct ieee80211_hw *hw = sc->hw;
1655         int r;
1656
1657         ath9k_hw_set_interrupts(ah, 0);
1658         ath_drain_all_txq(sc, retry_tx);
1659         ath_stoprecv(sc);
1660         ath_flushrecv(sc);
1661
1662         spin_lock_bh(&sc->sc_resetlock);
1663         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1664         if (r)
1665                 DPRINTF(sc, ATH_DBG_FATAL,
1666                         "Unable to reset hardware; reset status %d\n", r);
1667         spin_unlock_bh(&sc->sc_resetlock);
1668
1669         if (ath_startrecv(sc) != 0)
1670                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1671
1672         /*
1673          * We may be doing a reset in response to a request
1674          * that changes the channel so update any state that
1675          * might change as a result.
1676          */
1677         ath_cache_conf_rate(sc, &hw->conf);
1678
1679         ath_update_txpow(sc);
1680
1681         if (sc->sc_flags & SC_OP_BEACONS)
1682                 ath_beacon_config(sc, NULL);    /* restart beacons */
1683
1684         ath9k_hw_set_interrupts(ah, sc->imask);
1685
1686         if (retry_tx) {
1687                 int i;
1688                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1689                         if (ATH_TXQ_SETUP(sc, i)) {
1690                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1691                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1692                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1693                         }
1694                 }
1695         }
1696
1697         return r;
1698 }
1699
1700 /*
1701  *  This function will allocate both the DMA descriptor structure, and the
1702  *  buffers it contains.  These are used to contain the descriptors used
1703  *  by the system.
1704 */
1705 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1706                       struct list_head *head, const char *name,
1707                       int nbuf, int ndesc)
1708 {
1709 #define DS2PHYS(_dd, _ds)                                               \
1710         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1711 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1712 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1713
1714         struct ath_desc *ds;
1715         struct ath_buf *bf;
1716         int i, bsize, error;
1717
1718         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1719                 name, nbuf, ndesc);
1720
1721         INIT_LIST_HEAD(head);
1722         /* ath_desc must be a multiple of DWORDs */
1723         if ((sizeof(struct ath_desc) % 4) != 0) {
1724                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1725                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1726                 error = -ENOMEM;
1727                 goto fail;
1728         }
1729
1730         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1731
1732         /*
1733          * Need additional DMA memory because we can't use
1734          * descriptors that cross the 4K page boundary. Assume
1735          * one skipped descriptor per 4K page.
1736          */
1737         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1738                 u32 ndesc_skipped =
1739                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1740                 u32 dma_len;
1741
1742                 while (ndesc_skipped) {
1743                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1744                         dd->dd_desc_len += dma_len;
1745
1746                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1747                 };
1748         }
1749
1750         /* allocate descriptors */
1751         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1752                                          &dd->dd_desc_paddr, GFP_KERNEL);
1753         if (dd->dd_desc == NULL) {
1754                 error = -ENOMEM;
1755                 goto fail;
1756         }
1757         ds = dd->dd_desc;
1758         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1759                 name, ds, (u32) dd->dd_desc_len,
1760                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1761
1762         /* allocate buffers */
1763         bsize = sizeof(struct ath_buf) * nbuf;
1764         bf = kzalloc(bsize, GFP_KERNEL);
1765         if (bf == NULL) {
1766                 error = -ENOMEM;
1767                 goto fail2;
1768         }
1769         dd->dd_bufptr = bf;
1770
1771         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1772                 bf->bf_desc = ds;
1773                 bf->bf_daddr = DS2PHYS(dd, ds);
1774
1775                 if (!(sc->sc_ah->caps.hw_caps &
1776                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1777                         /*
1778                          * Skip descriptor addresses which can cause 4KB
1779                          * boundary crossing (addr + length) with a 32 dword
1780                          * descriptor fetch.
1781                          */
1782                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1783                                 ASSERT((caddr_t) bf->bf_desc <
1784                                        ((caddr_t) dd->dd_desc +
1785                                         dd->dd_desc_len));
1786
1787                                 ds += ndesc;
1788                                 bf->bf_desc = ds;
1789                                 bf->bf_daddr = DS2PHYS(dd, ds);
1790                         }
1791                 }
1792                 list_add_tail(&bf->list, head);
1793         }
1794         return 0;
1795 fail2:
1796         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1797                           dd->dd_desc_paddr);
1798 fail:
1799         memset(dd, 0, sizeof(*dd));
1800         return error;
1801 #undef ATH_DESC_4KB_BOUND_CHECK
1802 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1803 #undef DS2PHYS
1804 }
1805
1806 void ath_descdma_cleanup(struct ath_softc *sc,
1807                          struct ath_descdma *dd,
1808                          struct list_head *head)
1809 {
1810         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1811                           dd->dd_desc_paddr);
1812
1813         INIT_LIST_HEAD(head);
1814         kfree(dd->dd_bufptr);
1815         memset(dd, 0, sizeof(*dd));
1816 }
1817
1818 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1819 {
1820         int qnum;
1821
1822         switch (queue) {
1823         case 0:
1824                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1825                 break;
1826         case 1:
1827                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1828                 break;
1829         case 2:
1830                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1831                 break;
1832         case 3:
1833                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1834                 break;
1835         default:
1836                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1837                 break;
1838         }
1839
1840         return qnum;
1841 }
1842
1843 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1844 {
1845         int qnum;
1846
1847         switch (queue) {
1848         case ATH9K_WME_AC_VO:
1849                 qnum = 0;
1850                 break;
1851         case ATH9K_WME_AC_VI:
1852                 qnum = 1;
1853                 break;
1854         case ATH9K_WME_AC_BE:
1855                 qnum = 2;
1856                 break;
1857         case ATH9K_WME_AC_BK:
1858                 qnum = 3;
1859                 break;
1860         default:
1861                 qnum = -1;
1862                 break;
1863         }
1864
1865         return qnum;
1866 }
1867
1868 /* XXX: Remove me once we don't depend on ath9k_channel for all
1869  * this redundant data */
1870 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1871                            struct ath9k_channel *ichan)
1872 {
1873         struct ieee80211_channel *chan = hw->conf.channel;
1874         struct ieee80211_conf *conf = &hw->conf;
1875
1876         ichan->channel = chan->center_freq;
1877         ichan->chan = chan;
1878
1879         if (chan->band == IEEE80211_BAND_2GHZ) {
1880                 ichan->chanmode = CHANNEL_G;
1881                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1882         } else {
1883                 ichan->chanmode = CHANNEL_A;
1884                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1885         }
1886
1887         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1888
1889         if (conf_is_ht(conf)) {
1890                 if (conf_is_ht40(conf))
1891                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1892
1893                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1894                                             conf->channel_type);
1895         }
1896 }
1897
1898 /**********************/
1899 /* mac80211 callbacks */
1900 /**********************/
1901
1902 static int ath9k_start(struct ieee80211_hw *hw)
1903 {
1904         struct ath_wiphy *aphy = hw->priv;
1905         struct ath_softc *sc = aphy->sc;
1906         struct ieee80211_channel *curchan = hw->conf.channel;
1907         struct ath9k_channel *init_channel;
1908         int r;
1909
1910         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1911                 "initial channel: %d MHz\n", curchan->center_freq);
1912
1913         mutex_lock(&sc->mutex);
1914
1915         if (ath9k_wiphy_started(sc)) {
1916                 if (sc->chan_idx == curchan->hw_value) {
1917                         /*
1918                          * Already on the operational channel, the new wiphy
1919                          * can be marked active.
1920                          */
1921                         aphy->state = ATH_WIPHY_ACTIVE;
1922                         ieee80211_wake_queues(hw);
1923                 } else {
1924                         /*
1925                          * Another wiphy is on another channel, start the new
1926                          * wiphy in paused state.
1927                          */
1928                         aphy->state = ATH_WIPHY_PAUSED;
1929                         ieee80211_stop_queues(hw);
1930                 }
1931                 mutex_unlock(&sc->mutex);
1932                 return 0;
1933         }
1934         aphy->state = ATH_WIPHY_ACTIVE;
1935
1936         /* setup initial channel */
1937
1938         sc->chan_idx = curchan->hw_value;
1939
1940         init_channel = ath_get_curchannel(sc, hw);
1941
1942         /* Reset SERDES registers */
1943         ath9k_hw_configpcipowersave(sc->sc_ah, 0, 0);
1944
1945         /*
1946          * The basic interface to setting the hardware in a good
1947          * state is ``reset''.  On return the hardware is known to
1948          * be powered up and with interrupts disabled.  This must
1949          * be followed by initialization of the appropriate bits
1950          * and then setup of the interrupt mask.
1951          */
1952         spin_lock_bh(&sc->sc_resetlock);
1953         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1954         if (r) {
1955                 DPRINTF(sc, ATH_DBG_FATAL,
1956                         "Unable to reset hardware; reset status %d "
1957                         "(freq %u MHz)\n", r,
1958                         curchan->center_freq);
1959                 spin_unlock_bh(&sc->sc_resetlock);
1960                 goto mutex_unlock;
1961         }
1962         spin_unlock_bh(&sc->sc_resetlock);
1963
1964         /*
1965          * This is needed only to setup initial state
1966          * but it's best done after a reset.
1967          */
1968         ath_update_txpow(sc);
1969
1970         /*
1971          * Setup the hardware after reset:
1972          * The receive engine is set going.
1973          * Frame transmit is handled entirely
1974          * in the frame output path; there's nothing to do
1975          * here except setup the interrupt mask.
1976          */
1977         if (ath_startrecv(sc) != 0) {
1978                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1979                 r = -EIO;
1980                 goto mutex_unlock;
1981         }
1982
1983         /* Setup our intr mask. */
1984         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1985                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1986                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1987
1988         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1989                 sc->imask |= ATH9K_INT_GTT;
1990
1991         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1992                 sc->imask |= ATH9K_INT_CST;
1993
1994         ath_cache_conf_rate(sc, &hw->conf);
1995
1996         sc->sc_flags &= ~SC_OP_INVALID;
1997
1998         /* Disable BMISS interrupt when we're not associated */
1999         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2000         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2001
2002         ieee80211_wake_queues(hw);
2003
2004         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2005
2006         if ((sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) &&
2007             !(sc->sc_flags & SC_OP_BTCOEX_ENABLED)) {
2008                 ath_btcoex_set_weight(&sc->btcoex_info, AR_BT_COEX_WGHT,
2009                                       AR_STOMP_LOW_WLAN_WGHT);
2010                 ath9k_hw_btcoex_enable(sc->sc_ah);
2011
2012                 ath_pcie_aspm_disable(sc);
2013                 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2014                         ath_btcoex_timer_resume(sc, &sc->btcoex_info);
2015         }
2016
2017 mutex_unlock:
2018         mutex_unlock(&sc->mutex);
2019
2020         return r;
2021 }
2022
2023 static int ath9k_tx(struct ieee80211_hw *hw,
2024                     struct sk_buff *skb)
2025 {
2026         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2027         struct ath_wiphy *aphy = hw->priv;
2028         struct ath_softc *sc = aphy->sc;
2029         struct ath_tx_control txctl;
2030         int hdrlen, padsize;
2031
2032         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2033                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2034                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2035                 goto exit;
2036         }
2037
2038         if (sc->ps_enabled) {
2039                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2040                 /*
2041                  * mac80211 does not set PM field for normal data frames, so we
2042                  * need to update that based on the current PS mode.
2043                  */
2044                 if (ieee80211_is_data(hdr->frame_control) &&
2045                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2046                     !ieee80211_has_pm(hdr->frame_control)) {
2047                         DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2048                                 "while in PS mode\n");
2049                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2050                 }
2051         }
2052
2053         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2054                 /*
2055                  * We are using PS-Poll and mac80211 can request TX while in
2056                  * power save mode. Need to wake up hardware for the TX to be
2057                  * completed and if needed, also for RX of buffered frames.
2058                  */
2059                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2060                 ath9k_ps_wakeup(sc);
2061                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2062                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2063                         DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2064                                 "buffered frame\n");
2065                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2066                 } else {
2067                         DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2068                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2069                 }
2070                 /*
2071                  * The actual restore operation will happen only after
2072                  * the sc_flags bit is cleared. We are just dropping
2073                  * the ps_usecount here.
2074                  */
2075                 ath9k_ps_restore(sc);
2076         }
2077
2078         memset(&txctl, 0, sizeof(struct ath_tx_control));
2079
2080         /*
2081          * As a temporary workaround, assign seq# here; this will likely need
2082          * to be cleaned up to work better with Beacon transmission and virtual
2083          * BSSes.
2084          */
2085         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2086                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2087                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2088                         sc->tx.seq_no += 0x10;
2089                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2090                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2091         }
2092
2093         /* Add the padding after the header if this is not already done */
2094         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2095         if (hdrlen & 3) {
2096                 padsize = hdrlen % 4;
2097                 if (skb_headroom(skb) < padsize)
2098                         return -1;
2099                 skb_push(skb, padsize);
2100                 memmove(skb->data, skb->data + padsize, hdrlen);
2101         }
2102
2103         /* Check if a tx queue is available */
2104
2105         txctl.txq = ath_test_get_txq(sc, skb);
2106         if (!txctl.txq)
2107                 goto exit;
2108
2109         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2110
2111         if (ath_tx_start(hw, skb, &txctl) != 0) {
2112                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2113                 goto exit;
2114         }
2115
2116         return 0;
2117 exit:
2118         dev_kfree_skb_any(skb);
2119         return 0;
2120 }
2121
2122 static void ath9k_stop(struct ieee80211_hw *hw)
2123 {
2124         struct ath_wiphy *aphy = hw->priv;
2125         struct ath_softc *sc = aphy->sc;
2126
2127         mutex_lock(&sc->mutex);
2128
2129         aphy->state = ATH_WIPHY_INACTIVE;
2130
2131         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2132         cancel_delayed_work_sync(&sc->tx_complete_work);
2133
2134         if (!sc->num_sec_wiphy) {
2135                 cancel_delayed_work_sync(&sc->wiphy_work);
2136                 cancel_work_sync(&sc->chan_work);
2137         }
2138
2139         if (sc->sc_flags & SC_OP_INVALID) {
2140                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2141                 mutex_unlock(&sc->mutex);
2142                 return;
2143         }
2144
2145         if (ath9k_wiphy_started(sc)) {
2146                 mutex_unlock(&sc->mutex);
2147                 return; /* another wiphy still in use */
2148         }
2149
2150         if (sc->sc_flags & SC_OP_BTCOEX_ENABLED) {
2151                 ath9k_hw_btcoex_disable(sc->sc_ah);
2152                 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2153                         ath_btcoex_timer_pause(sc, &sc->btcoex_info);
2154         }
2155
2156         /* make sure h/w will not generate any interrupt
2157          * before setting the invalid flag. */
2158         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2159
2160         if (!(sc->sc_flags & SC_OP_INVALID)) {
2161                 ath_drain_all_txq(sc, false);
2162                 ath_stoprecv(sc);
2163                 ath9k_hw_phy_disable(sc->sc_ah);
2164         } else
2165                 sc->rx.rxlink = NULL;
2166
2167         /* disable HAL and put h/w to sleep */
2168         ath9k_hw_disable(sc->sc_ah);
2169         ath9k_hw_configpcipowersave(sc->sc_ah, 1, 1);
2170         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
2171
2172         sc->sc_flags |= SC_OP_INVALID;
2173
2174         mutex_unlock(&sc->mutex);
2175
2176         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2177 }
2178
2179 static int ath9k_add_interface(struct ieee80211_hw *hw,
2180                                struct ieee80211_if_init_conf *conf)
2181 {
2182         struct ath_wiphy *aphy = hw->priv;
2183         struct ath_softc *sc = aphy->sc;
2184         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2185         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2186         int ret = 0;
2187
2188         mutex_lock(&sc->mutex);
2189
2190         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2191             sc->nvifs > 0) {
2192                 ret = -ENOBUFS;
2193                 goto out;
2194         }
2195
2196         switch (conf->type) {
2197         case NL80211_IFTYPE_STATION:
2198                 ic_opmode = NL80211_IFTYPE_STATION;
2199                 break;
2200         case NL80211_IFTYPE_ADHOC:
2201         case NL80211_IFTYPE_AP:
2202         case NL80211_IFTYPE_MESH_POINT:
2203                 if (sc->nbcnvifs >= ATH_BCBUF) {
2204                         ret = -ENOBUFS;
2205                         goto out;
2206                 }
2207                 ic_opmode = conf->type;
2208                 break;
2209         default:
2210                 DPRINTF(sc, ATH_DBG_FATAL,
2211                         "Interface type %d not yet supported\n", conf->type);
2212                 ret = -EOPNOTSUPP;
2213                 goto out;
2214         }
2215
2216         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2217
2218         /* Set the VIF opmode */
2219         avp->av_opmode = ic_opmode;
2220         avp->av_bslot = -1;
2221
2222         sc->nvifs++;
2223
2224         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2225                 ath9k_set_bssid_mask(hw);
2226
2227         if (sc->nvifs > 1)
2228                 goto out; /* skip global settings for secondary vif */
2229
2230         if (ic_opmode == NL80211_IFTYPE_AP) {
2231                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2232                 sc->sc_flags |= SC_OP_TSF_RESET;
2233         }
2234
2235         /* Set the device opmode */
2236         sc->sc_ah->opmode = ic_opmode;
2237
2238         /*
2239          * Enable MIB interrupts when there are hardware phy counters.
2240          * Note we only do this (at the moment) for station mode.
2241          */
2242         if ((conf->type == NL80211_IFTYPE_STATION) ||
2243             (conf->type == NL80211_IFTYPE_ADHOC) ||
2244             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2245                 sc->imask |= ATH9K_INT_MIB;
2246                 sc->imask |= ATH9K_INT_TSFOOR;
2247         }
2248
2249         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2250
2251         if (conf->type == NL80211_IFTYPE_AP    ||
2252             conf->type == NL80211_IFTYPE_ADHOC ||
2253             conf->type == NL80211_IFTYPE_MONITOR)
2254                 ath_start_ani(sc);
2255
2256 out:
2257         mutex_unlock(&sc->mutex);
2258         return ret;
2259 }
2260
2261 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2262                                    struct ieee80211_if_init_conf *conf)
2263 {
2264         struct ath_wiphy *aphy = hw->priv;
2265         struct ath_softc *sc = aphy->sc;
2266         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2267         int i;
2268
2269         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2270
2271         mutex_lock(&sc->mutex);
2272
2273         /* Stop ANI */
2274         del_timer_sync(&sc->ani.timer);
2275
2276         /* Reclaim beacon resources */
2277         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2278             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2279             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2280                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2281                 ath_beacon_return(sc, avp);
2282         }
2283
2284         sc->sc_flags &= ~SC_OP_BEACONS;
2285
2286         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2287                 if (sc->beacon.bslot[i] == conf->vif) {
2288                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2289                                "slot\n", __func__);
2290                         sc->beacon.bslot[i] = NULL;
2291                         sc->beacon.bslot_aphy[i] = NULL;
2292                 }
2293         }
2294
2295         sc->nvifs--;
2296
2297         mutex_unlock(&sc->mutex);
2298 }
2299
2300 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2301 {
2302         struct ath_wiphy *aphy = hw->priv;
2303         struct ath_softc *sc = aphy->sc;
2304         struct ieee80211_conf *conf = &hw->conf;
2305         struct ath_hw *ah = sc->sc_ah;
2306         bool all_wiphys_idle = false, disable_radio = false;
2307
2308         mutex_lock(&sc->mutex);
2309
2310         /* Leave this as the first check */
2311         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2312
2313                 spin_lock_bh(&sc->wiphy_lock);
2314                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2315                 spin_unlock_bh(&sc->wiphy_lock);
2316
2317                 if (conf->flags & IEEE80211_CONF_IDLE){
2318                         if (all_wiphys_idle)
2319                                 disable_radio = true;
2320                 }
2321                 else if (all_wiphys_idle) {
2322                         ath_radio_enable(sc);
2323                         DPRINTF(sc, ATH_DBG_CONFIG,
2324                                 "not-idle: enabling radio\n");
2325                 }
2326         }
2327
2328         if (changed & IEEE80211_CONF_CHANGE_PS) {
2329                 if (conf->flags & IEEE80211_CONF_PS) {
2330                         if (!(ah->caps.hw_caps &
2331                               ATH9K_HW_CAP_AUTOSLEEP)) {
2332                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2333                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2334                                         ath9k_hw_set_interrupts(sc->sc_ah,
2335                                                         sc->imask);
2336                                 }
2337                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2338                         }
2339                         sc->ps_enabled = true;
2340                 } else {
2341                         sc->ps_enabled = false;
2342                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2343                         if (!(ah->caps.hw_caps &
2344                               ATH9K_HW_CAP_AUTOSLEEP)) {
2345                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2346                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2347                                                   SC_OP_WAIT_FOR_CAB |
2348                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2349                                                   SC_OP_WAIT_FOR_TX_ACK);
2350                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2351                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2352                                         ath9k_hw_set_interrupts(sc->sc_ah,
2353                                                         sc->imask);
2354                                 }
2355                         }
2356                 }
2357         }
2358
2359         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2360                 struct ieee80211_channel *curchan = hw->conf.channel;
2361                 int pos = curchan->hw_value;
2362
2363                 aphy->chan_idx = pos;
2364                 aphy->chan_is_ht = conf_is_ht(conf);
2365
2366                 if (aphy->state == ATH_WIPHY_SCAN ||
2367                     aphy->state == ATH_WIPHY_ACTIVE)
2368                         ath9k_wiphy_pause_all_forced(sc, aphy);
2369                 else {
2370                         /*
2371                          * Do not change operational channel based on a paused
2372                          * wiphy changes.
2373                          */
2374                         goto skip_chan_change;
2375                 }
2376
2377                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2378                         curchan->center_freq);
2379
2380                 /* XXX: remove me eventualy */
2381                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2382
2383                 ath_update_chainmask(sc, conf_is_ht(conf));
2384
2385                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2386                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2387                         mutex_unlock(&sc->mutex);
2388                         return -EINVAL;
2389                 }
2390         }
2391
2392 skip_chan_change:
2393         if (changed & IEEE80211_CONF_CHANGE_POWER)
2394                 sc->config.txpowlimit = 2 * conf->power_level;
2395
2396         if (disable_radio) {
2397                 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2398                 ath_radio_disable(sc);
2399         }
2400
2401         mutex_unlock(&sc->mutex);
2402
2403         return 0;
2404 }
2405
2406 #define SUPPORTED_FILTERS                       \
2407         (FIF_PROMISC_IN_BSS |                   \
2408         FIF_ALLMULTI |                          \
2409         FIF_CONTROL |                           \
2410         FIF_PSPOLL |                            \
2411         FIF_OTHER_BSS |                         \
2412         FIF_BCN_PRBRESP_PROMISC |               \
2413         FIF_FCSFAIL)
2414
2415 /* FIXME: sc->sc_full_reset ? */
2416 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2417                                    unsigned int changed_flags,
2418                                    unsigned int *total_flags,
2419                                    u64 multicast)
2420 {
2421         struct ath_wiphy *aphy = hw->priv;
2422         struct ath_softc *sc = aphy->sc;
2423         u32 rfilt;
2424
2425         changed_flags &= SUPPORTED_FILTERS;
2426         *total_flags &= SUPPORTED_FILTERS;
2427
2428         sc->rx.rxfilter = *total_flags;
2429         ath9k_ps_wakeup(sc);
2430         rfilt = ath_calcrxfilter(sc);
2431         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2432         ath9k_ps_restore(sc);
2433
2434         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt);
2435 }
2436
2437 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2438                              struct ieee80211_vif *vif,
2439                              enum sta_notify_cmd cmd,
2440                              struct ieee80211_sta *sta)
2441 {
2442         struct ath_wiphy *aphy = hw->priv;
2443         struct ath_softc *sc = aphy->sc;
2444
2445         switch (cmd) {
2446         case STA_NOTIFY_ADD:
2447                 ath_node_attach(sc, sta);
2448                 break;
2449         case STA_NOTIFY_REMOVE:
2450                 ath_node_detach(sc, sta);
2451                 break;
2452         default:
2453                 break;
2454         }
2455 }
2456
2457 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2458                          const struct ieee80211_tx_queue_params *params)
2459 {
2460         struct ath_wiphy *aphy = hw->priv;
2461         struct ath_softc *sc = aphy->sc;
2462         struct ath9k_tx_queue_info qi;
2463         int ret = 0, qnum;
2464
2465         if (queue >= WME_NUM_AC)
2466                 return 0;
2467
2468         mutex_lock(&sc->mutex);
2469
2470         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2471
2472         qi.tqi_aifs = params->aifs;
2473         qi.tqi_cwmin = params->cw_min;
2474         qi.tqi_cwmax = params->cw_max;
2475         qi.tqi_burstTime = params->txop;
2476         qnum = ath_get_hal_qnum(queue, sc);
2477
2478         DPRINTF(sc, ATH_DBG_CONFIG,
2479                 "Configure tx [queue/halq] [%d/%d],  "
2480                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2481                 queue, qnum, params->aifs, params->cw_min,
2482                 params->cw_max, params->txop);
2483
2484         ret = ath_txq_update(sc, qnum, &qi);
2485         if (ret)
2486                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2487
2488         mutex_unlock(&sc->mutex);
2489
2490         return ret;
2491 }
2492
2493 static int ath9k_set_key(struct ieee80211_hw *hw,
2494                          enum set_key_cmd cmd,
2495                          struct ieee80211_vif *vif,
2496                          struct ieee80211_sta *sta,
2497                          struct ieee80211_key_conf *key)
2498 {
2499         struct ath_wiphy *aphy = hw->priv;
2500         struct ath_softc *sc = aphy->sc;
2501         int ret = 0;
2502
2503         if (modparam_nohwcrypt)
2504                 return -ENOSPC;
2505
2506         mutex_lock(&sc->mutex);
2507         ath9k_ps_wakeup(sc);
2508         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2509
2510         switch (cmd) {
2511         case SET_KEY:
2512                 ret = ath_key_config(sc, vif, sta, key);
2513                 if (ret >= 0) {
2514                         key->hw_key_idx = ret;
2515                         /* push IV and Michael MIC generation to stack */
2516                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2517                         if (key->alg == ALG_TKIP)
2518                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2519                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2520                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2521                         ret = 0;
2522                 }
2523                 break;
2524         case DISABLE_KEY:
2525                 ath_key_delete(sc, key);
2526                 break;
2527         default:
2528                 ret = -EINVAL;
2529         }
2530
2531         ath9k_ps_restore(sc);
2532         mutex_unlock(&sc->mutex);
2533
2534         return ret;
2535 }
2536
2537 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2538                                    struct ieee80211_vif *vif,
2539                                    struct ieee80211_bss_conf *bss_conf,
2540                                    u32 changed)
2541 {
2542         struct ath_wiphy *aphy = hw->priv;
2543         struct ath_softc *sc = aphy->sc;
2544         struct ath_hw *ah = sc->sc_ah;
2545         struct ath_vif *avp = (void *)vif->drv_priv;
2546         u32 rfilt = 0;
2547         int error, i;
2548
2549         mutex_lock(&sc->mutex);
2550
2551         /*
2552          * TODO: Need to decide which hw opmode to use for
2553          *       multi-interface cases
2554          * XXX: This belongs into add_interface!
2555          */
2556         if (vif->type == NL80211_IFTYPE_AP &&
2557             ah->opmode != NL80211_IFTYPE_AP) {
2558                 ah->opmode = NL80211_IFTYPE_STATION;
2559                 ath9k_hw_setopmode(ah);
2560                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2561                 sc->curaid = 0;
2562                 ath9k_hw_write_associd(sc);
2563                 /* Request full reset to get hw opmode changed properly */
2564                 sc->sc_flags |= SC_OP_FULL_RESET;
2565         }
2566
2567         if ((changed & BSS_CHANGED_BSSID) &&
2568             !is_zero_ether_addr(bss_conf->bssid)) {
2569                 switch (vif->type) {
2570                 case NL80211_IFTYPE_STATION:
2571                 case NL80211_IFTYPE_ADHOC:
2572                 case NL80211_IFTYPE_MESH_POINT:
2573                         /* Set BSSID */
2574                         memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2575                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2576                         sc->curaid = 0;
2577                         ath9k_hw_write_associd(sc);
2578
2579                         /* Set aggregation protection mode parameters */
2580                         sc->config.ath_aggr_prot = 0;
2581
2582                         DPRINTF(sc, ATH_DBG_CONFIG,
2583                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2584                                 rfilt, sc->curbssid, sc->curaid);
2585
2586                         /* need to reconfigure the beacon */
2587                         sc->sc_flags &= ~SC_OP_BEACONS ;
2588
2589                         break;
2590                 default:
2591                         break;
2592                 }
2593         }
2594
2595         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2596             (vif->type == NL80211_IFTYPE_AP) ||
2597             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2598                 if ((changed & BSS_CHANGED_BEACON) ||
2599                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2600                      bss_conf->enable_beacon)) {
2601                         /*
2602                          * Allocate and setup the beacon frame.
2603                          *
2604                          * Stop any previous beacon DMA.  This may be
2605                          * necessary, for example, when an ibss merge
2606                          * causes reconfiguration; we may be called
2607                          * with beacon transmission active.
2608                          */
2609                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2610
2611                         error = ath_beacon_alloc(aphy, vif);
2612                         if (!error)
2613                                 ath_beacon_config(sc, vif);
2614                 }
2615         }
2616
2617         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2618         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2619                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2620                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2621                                 ath9k_hw_keysetmac(sc->sc_ah,
2622                                                    (u16)i,
2623                                                    sc->curbssid);
2624         }
2625
2626         /* Only legacy IBSS for now */
2627         if (vif->type == NL80211_IFTYPE_ADHOC)
2628                 ath_update_chainmask(sc, 0);
2629
2630         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2631                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2632                         bss_conf->use_short_preamble);
2633                 if (bss_conf->use_short_preamble)
2634                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2635                 else
2636                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2637         }
2638
2639         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2640                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2641                         bss_conf->use_cts_prot);
2642                 if (bss_conf->use_cts_prot &&
2643                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2644                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2645                 else
2646                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2647         }
2648
2649         if (changed & BSS_CHANGED_ASSOC) {
2650                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2651                         bss_conf->assoc);
2652                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2653         }
2654
2655         /*
2656          * The HW TSF has to be reset when the beacon interval changes.
2657          * We set the flag here, and ath_beacon_config_ap() would take this
2658          * into account when it gets called through the subsequent
2659          * config_interface() call - with IFCC_BEACON in the changed field.
2660          */
2661
2662         if (changed & BSS_CHANGED_BEACON_INT) {
2663                 sc->sc_flags |= SC_OP_TSF_RESET;
2664                 sc->beacon_interval = bss_conf->beacon_int;
2665         }
2666
2667         mutex_unlock(&sc->mutex);
2668 }
2669
2670 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2671 {
2672         u64 tsf;
2673         struct ath_wiphy *aphy = hw->priv;
2674         struct ath_softc *sc = aphy->sc;
2675
2676         mutex_lock(&sc->mutex);
2677         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2678         mutex_unlock(&sc->mutex);
2679
2680         return tsf;
2681 }
2682
2683 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2684 {
2685         struct ath_wiphy *aphy = hw->priv;
2686         struct ath_softc *sc = aphy->sc;
2687
2688         mutex_lock(&sc->mutex);
2689         ath9k_hw_settsf64(sc->sc_ah, tsf);
2690         mutex_unlock(&sc->mutex);
2691 }
2692
2693 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2694 {
2695         struct ath_wiphy *aphy = hw->priv;
2696         struct ath_softc *sc = aphy->sc;
2697
2698         mutex_lock(&sc->mutex);
2699         ath9k_hw_reset_tsf(sc->sc_ah);
2700         mutex_unlock(&sc->mutex);
2701 }
2702
2703 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2704                               enum ieee80211_ampdu_mlme_action action,
2705                               struct ieee80211_sta *sta,
2706                               u16 tid, u16 *ssn)
2707 {
2708         struct ath_wiphy *aphy = hw->priv;
2709         struct ath_softc *sc = aphy->sc;
2710         int ret = 0;
2711
2712         switch (action) {
2713         case IEEE80211_AMPDU_RX_START:
2714                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2715                         ret = -ENOTSUPP;
2716                 break;
2717         case IEEE80211_AMPDU_RX_STOP:
2718                 break;
2719         case IEEE80211_AMPDU_TX_START:
2720                 ath_tx_aggr_start(sc, sta, tid, ssn);
2721                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2722                 break;
2723         case IEEE80211_AMPDU_TX_STOP:
2724                 ath_tx_aggr_stop(sc, sta, tid);
2725                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2726                 break;
2727         case IEEE80211_AMPDU_TX_OPERATIONAL:
2728                 ath_tx_aggr_resume(sc, sta, tid);
2729                 break;
2730         default:
2731                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2732         }
2733
2734         return ret;
2735 }
2736
2737 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2738 {
2739         struct ath_wiphy *aphy = hw->priv;
2740         struct ath_softc *sc = aphy->sc;
2741
2742         mutex_lock(&sc->mutex);
2743         if (ath9k_wiphy_scanning(sc)) {
2744                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2745                        "same time\n");
2746                 /*
2747                  * Do not allow the concurrent scanning state for now. This
2748                  * could be improved with scanning control moved into ath9k.
2749                  */
2750                 mutex_unlock(&sc->mutex);
2751                 return;
2752         }
2753
2754         aphy->state = ATH_WIPHY_SCAN;
2755         ath9k_wiphy_pause_all_forced(sc, aphy);
2756
2757         spin_lock_bh(&sc->ani_lock);
2758         sc->sc_flags |= SC_OP_SCANNING;
2759         spin_unlock_bh(&sc->ani_lock);
2760         mutex_unlock(&sc->mutex);
2761 }
2762
2763 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2764 {
2765         struct ath_wiphy *aphy = hw->priv;
2766         struct ath_softc *sc = aphy->sc;
2767
2768         mutex_lock(&sc->mutex);
2769         spin_lock_bh(&sc->ani_lock);
2770         aphy->state = ATH_WIPHY_ACTIVE;
2771         sc->sc_flags &= ~SC_OP_SCANNING;
2772         sc->sc_flags |= SC_OP_FULL_RESET;
2773         spin_unlock_bh(&sc->ani_lock);
2774         ath_beacon_config(sc, NULL);
2775         mutex_unlock(&sc->mutex);
2776 }
2777
2778 struct ieee80211_ops ath9k_ops = {
2779         .tx                 = ath9k_tx,
2780         .start              = ath9k_start,
2781         .stop               = ath9k_stop,
2782         .add_interface      = ath9k_add_interface,
2783         .remove_interface   = ath9k_remove_interface,
2784         .config             = ath9k_config,
2785         .configure_filter   = ath9k_configure_filter,
2786         .sta_notify         = ath9k_sta_notify,
2787         .conf_tx            = ath9k_conf_tx,
2788         .bss_info_changed   = ath9k_bss_info_changed,
2789         .set_key            = ath9k_set_key,
2790         .get_tsf            = ath9k_get_tsf,
2791         .set_tsf            = ath9k_set_tsf,
2792         .reset_tsf          = ath9k_reset_tsf,
2793         .ampdu_action       = ath9k_ampdu_action,
2794         .sw_scan_start      = ath9k_sw_scan_start,
2795         .sw_scan_complete   = ath9k_sw_scan_complete,
2796         .rfkill_poll        = ath9k_rfkill_poll_state,
2797 };
2798
2799 static struct {
2800         u32 version;
2801         const char * name;
2802 } ath_mac_bb_names[] = {
2803         { AR_SREV_VERSION_5416_PCI,     "5416" },
2804         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2805         { AR_SREV_VERSION_9100,         "9100" },
2806         { AR_SREV_VERSION_9160,         "9160" },
2807         { AR_SREV_VERSION_9280,         "9280" },
2808         { AR_SREV_VERSION_9285,         "9285" },
2809         { AR_SREV_VERSION_9287,         "9287" }
2810 };
2811
2812 static struct {
2813         u16 version;
2814         const char * name;
2815 } ath_rf_names[] = {
2816         { 0,                            "5133" },
2817         { AR_RAD5133_SREV_MAJOR,        "5133" },
2818         { AR_RAD5122_SREV_MAJOR,        "5122" },
2819         { AR_RAD2133_SREV_MAJOR,        "2133" },
2820         { AR_RAD2122_SREV_MAJOR,        "2122" }
2821 };
2822
2823 /*
2824  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2825  */
2826 const char *
2827 ath_mac_bb_name(u32 mac_bb_version)
2828 {
2829         int i;
2830
2831         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2832                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2833                         return ath_mac_bb_names[i].name;
2834                 }
2835         }
2836
2837         return "????";
2838 }
2839
2840 /*
2841  * Return the RF name. "????" is returned if the RF is unknown.
2842  */
2843 const char *
2844 ath_rf_name(u16 rf_version)
2845 {
2846         int i;
2847
2848         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2849                 if (ath_rf_names[i].version == rf_version) {
2850                         return ath_rf_names[i].name;
2851                 }
2852         }
2853
2854         return "????";
2855 }
2856
2857 static int __init ath9k_init(void)
2858 {
2859         int error;
2860
2861         /* Register rate control algorithm */
2862         error = ath_rate_control_register();
2863         if (error != 0) {
2864                 printk(KERN_ERR
2865                         "ath9k: Unable to register rate control "
2866                         "algorithm: %d\n",
2867                         error);
2868                 goto err_out;
2869         }
2870
2871         error = ath9k_debug_create_root();
2872         if (error) {
2873                 printk(KERN_ERR
2874                         "ath9k: Unable to create debugfs root: %d\n",
2875                         error);
2876                 goto err_rate_unregister;
2877         }
2878
2879         error = ath_pci_init();
2880         if (error < 0) {
2881                 printk(KERN_ERR
2882                         "ath9k: No PCI devices found, driver not installed.\n");
2883                 error = -ENODEV;
2884                 goto err_remove_root;
2885         }
2886
2887         error = ath_ahb_init();
2888         if (error < 0) {
2889                 error = -ENODEV;
2890                 goto err_pci_exit;
2891         }
2892
2893         return 0;
2894
2895  err_pci_exit:
2896         ath_pci_exit();
2897
2898  err_remove_root:
2899         ath9k_debug_remove_root();
2900  err_rate_unregister:
2901         ath_rate_control_unregister();
2902  err_out:
2903         return error;
2904 }
2905 module_init(ath9k_init);
2906
2907 static void __exit ath9k_exit(void)
2908 {
2909         ath_ahb_exit();
2910         ath_pci_exit();
2911         ath9k_debug_remove_root();
2912         ath_rate_control_unregister();
2913         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2914 }
2915 module_exit(ath9k_exit);