Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[sfrench/cifs-2.6.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34         u32 status, timeout;
35
36         ATH5K_TRACE(ah->ah_sc);
37         /*
38          * Initialize EEPROM access
39          */
40         if (ah->ah_version == AR5K_AR5210) {
41                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43         } else {
44                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46                                 AR5K_EEPROM_CMD_READ);
47         }
48
49         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51                 if (status & AR5K_EEPROM_STAT_RDDONE) {
52                         if (status & AR5K_EEPROM_STAT_RDERR)
53                                 return -EIO;
54                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55                                         0xffff);
56                         return 0;
57                 }
58                 udelay(15);
59         }
60
61         return -ETIMEDOUT;
62 }
63
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70         u16 val;
71
72         if (bin == AR5K_EEPROM_CHANNEL_DIS)
73                 return bin;
74
75         if (mode == AR5K_EEPROM_MODE_11A) {
76                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77                         val = (5 * bin) + 4800;
78                 else
79                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80                                 (bin * 10) + 5100;
81         } else {
82                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83                         val = bin + 2300;
84                 else
85                         val = bin + 2400;
86         }
87
88         return val;
89 }
90
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98         int ret;
99         u16 val;
100         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
101
102         /*
103          * Read values from EEPROM and store them in the capability structure
104          */
105         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
106         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
110
111         /* Return if we have an old EEPROM */
112         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
113                 return 0;
114
115         /*
116          * Validate the checksum of the EEPROM date. There are some
117          * devices with invalid EEPROMs.
118          */
119         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
120         if (val) {
121                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
122                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
123                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
124                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
125
126                 /*
127                  * Fail safe check to prevent stupid loops due
128                  * to busted EEPROMs. XXX: This value is likely too
129                  * big still, waiting on a better value.
130                  */
131                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
132                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
133                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
134                                   eep_max, eep_max,
135                                   3 * AR5K_EEPROM_INFO_MAX,
136                                   3 * AR5K_EEPROM_INFO_MAX);
137                         return -EIO;
138                 }
139         }
140
141         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
142                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
143                 cksum ^= val;
144         }
145         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
146                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
147                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
148                           cksum, eep_max,
149                           eep_max == AR5K_EEPROM_INFO_MAX ?
150                                 "default size" : "custom size");
151                 return -EIO;
152         }
153
154         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
155             ee_ant_gain);
156
157         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
158                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
159                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
160
161                 /* XXX: Don't know which versions include these two */
162                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
163
164                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
165                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
166
167                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
168                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
169                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
170                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
171                 }
172         }
173
174         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
175                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
176                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
177                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
178
179                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
180                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
181                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
182         }
183
184         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
185
186         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
187                 ee->ee_is_hb63 = true;
188         else
189                 ee->ee_is_hb63 = false;
190
191         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
192         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
193         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
194
195         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
196          * and enable serdes programming if needed.
197          *
198          * XXX: Serdes values seem to be fixed so
199          * no need to read them here, we write them
200          * during ath5k_hw_attach */
201         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
202         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
203                                                         true : false;
204
205         return 0;
206 }
207
208
209 /*
210  * Read antenna infos from eeprom
211  */
212 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
213                 unsigned int mode)
214 {
215         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
216         u32 o = *offset;
217         u16 val;
218         int ret, i = 0;
219
220         AR5K_EEPROM_READ(o++, val);
221         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
222         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
223         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
224
225         AR5K_EEPROM_READ(o++, val);
226         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
227         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
228         ee->ee_ant_control[mode][i++]   = val & 0x3f;
229
230         AR5K_EEPROM_READ(o++, val);
231         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
232         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
233         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
234
235         AR5K_EEPROM_READ(o++, val);
236         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
237         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
238         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
239         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
240
241         AR5K_EEPROM_READ(o++, val);
242         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
243         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
244         ee->ee_ant_control[mode][i++]   = val & 0x3f;
245
246         /* Get antenna switch tables */
247         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
248             (ee->ee_ant_control[mode][0] << 4);
249         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
250              ee->ee_ant_control[mode][1]        |
251             (ee->ee_ant_control[mode][2] << 6)  |
252             (ee->ee_ant_control[mode][3] << 12) |
253             (ee->ee_ant_control[mode][4] << 18) |
254             (ee->ee_ant_control[mode][5] << 24);
255         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
256              ee->ee_ant_control[mode][6]        |
257             (ee->ee_ant_control[mode][7] << 6)  |
258             (ee->ee_ant_control[mode][8] << 12) |
259             (ee->ee_ant_control[mode][9] << 18) |
260             (ee->ee_ant_control[mode][10] << 24);
261
262         /* return new offset */
263         *offset = o;
264
265         return 0;
266 }
267
268 /*
269  * Read supported modes and some mode-specific calibration data
270  * from eeprom
271  */
272 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
273                 unsigned int mode)
274 {
275         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
276         u32 o = *offset;
277         u16 val;
278         int ret;
279
280         ee->ee_n_piers[mode] = 0;
281         AR5K_EEPROM_READ(o++, val);
282         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
283         switch(mode) {
284         case AR5K_EEPROM_MODE_11A:
285                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
286                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
287                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
288
289                 AR5K_EEPROM_READ(o++, val);
290                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
291                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
292                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
293                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
294                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
295                 ee->ee_db[mode][0]      = val & 0x7;
296                 break;
297         case AR5K_EEPROM_MODE_11G:
298         case AR5K_EEPROM_MODE_11B:
299                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
300                 ee->ee_db[mode][1]      = val & 0x7;
301                 break;
302         }
303
304         AR5K_EEPROM_READ(o++, val);
305         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
306         ee->ee_thr_62[mode]             = val & 0xff;
307
308         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
309                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
310
311         AR5K_EEPROM_READ(o++, val);
312         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
313         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
314
315         AR5K_EEPROM_READ(o++, val);
316         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
317
318         if ((val & 0xff) & 0x80)
319                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
320         else
321                 ee->ee_noise_floor_thr[mode] = val & 0xff;
322
323         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
324                 ee->ee_noise_floor_thr[mode] =
325                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
326
327         AR5K_EEPROM_READ(o++, val);
328         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
329         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
330         ee->ee_xpd[mode]                = val & 0x1;
331
332         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
333                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
334
335         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
336                 AR5K_EEPROM_READ(o++, val);
337                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
338
339                 if (mode == AR5K_EEPROM_MODE_11A)
340                         ee->ee_xr_power[mode] = val & 0x3f;
341                 else {
342                         ee->ee_ob[mode][0] = val & 0x7;
343                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
344                 }
345         }
346
347         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
348                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
349                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
350         } else {
351                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
352
353                 AR5K_EEPROM_READ(o++, val);
354                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
355
356                 if (mode == AR5K_EEPROM_MODE_11G) {
357                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
358                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
359                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
360                 }
361         }
362
363         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
364                         mode == AR5K_EEPROM_MODE_11A) {
365                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
366                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
367         }
368
369         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
370                 goto done;
371
372         /* Note: >= v5 have bg freq piers on another location
373          * so these freq piers are ignored for >= v5 (should be 0xff
374          * anyway) */
375         switch(mode) {
376         case AR5K_EEPROM_MODE_11A:
377                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
378                         break;
379
380                 AR5K_EEPROM_READ(o++, val);
381                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
382                 break;
383         case AR5K_EEPROM_MODE_11B:
384                 AR5K_EEPROM_READ(o++, val);
385
386                 ee->ee_pwr_cal_b[0].freq =
387                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389                         ee->ee_n_piers[mode]++;
390
391                 ee->ee_pwr_cal_b[1].freq =
392                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394                         ee->ee_n_piers[mode]++;
395
396                 AR5K_EEPROM_READ(o++, val);
397                 ee->ee_pwr_cal_b[2].freq =
398                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
399                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
400                         ee->ee_n_piers[mode]++;
401
402                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
403                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
404                 break;
405         case AR5K_EEPROM_MODE_11G:
406                 AR5K_EEPROM_READ(o++, val);
407
408                 ee->ee_pwr_cal_g[0].freq =
409                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
410                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
411                         ee->ee_n_piers[mode]++;
412
413                 ee->ee_pwr_cal_g[1].freq =
414                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
415                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
416                         ee->ee_n_piers[mode]++;
417
418                 AR5K_EEPROM_READ(o++, val);
419                 ee->ee_turbo_max_power[mode] = val & 0x7f;
420                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
421
422                 AR5K_EEPROM_READ(o++, val);
423                 ee->ee_pwr_cal_g[2].freq =
424                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
425                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
426                         ee->ee_n_piers[mode]++;
427
428                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
429                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
430
431                 AR5K_EEPROM_READ(o++, val);
432                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
433                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
434
435                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
436                         AR5K_EEPROM_READ(o++, val);
437                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
438                 }
439                 break;
440         }
441
442         /*
443          * Read turbo mode information on newer EEPROM versions
444          */
445         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
446                 goto done;
447
448         switch (mode){
449         case AR5K_EEPROM_MODE_11A:
450                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
451
452                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
453                 AR5K_EEPROM_READ(o++, val);
454                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
455                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
456
457                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
458                 AR5K_EEPROM_READ(o++, val);
459                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
460                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
461
462                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
463                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
464                 break;
465         case AR5K_EEPROM_MODE_11G:
466                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
467
468                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
469                 AR5K_EEPROM_READ(o++, val);
470                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
471                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
472
473                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
474                 AR5K_EEPROM_READ(o++, val);
475                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
476                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
477                 break;
478         }
479
480 done:
481         /* return new offset */
482         *offset = o;
483
484         return 0;
485 }
486
487 /* Read mode-specific data (except power calibration data) */
488 static int
489 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
490 {
491         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
492         u32 mode_offset[3];
493         unsigned int mode;
494         u32 offset;
495         int ret;
496
497         /*
498          * Get values for all modes
499          */
500         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
501         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
502         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
503
504         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
505                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
506
507         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
508                 offset = mode_offset[mode];
509
510                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
511                 if (ret)
512                         return ret;
513
514                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
515                 if (ret)
516                         return ret;
517         }
518
519         /* override for older eeprom versions for better performance */
520         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
521                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
522                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
523                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
524         }
525
526         return 0;
527 }
528
529 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
530  * frequency mask) */
531 static inline int
532 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
533                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
534 {
535         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
536         int o = *offset;
537         int i = 0;
538         u8 freq1, freq2;
539         int ret;
540         u16 val;
541
542         ee->ee_n_piers[mode] = 0;
543         while(i < max) {
544                 AR5K_EEPROM_READ(o++, val);
545
546                 freq1 = val & 0xff;
547                 if (!freq1)
548                         break;
549
550                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
551                                 freq1, mode);
552                 ee->ee_n_piers[mode]++;
553
554                 freq2 = (val >> 8) & 0xff;
555                 if (!freq2)
556                         break;
557
558                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
559                                 freq2, mode);
560                 ee->ee_n_piers[mode]++;
561         }
562
563         /* return new offset */
564         *offset = o;
565
566         return 0;
567 }
568
569 /* Read frequency piers for 802.11a */
570 static int
571 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
572 {
573         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
574         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
575         int i, ret;
576         u16 val;
577         u8 mask;
578
579         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
580                 ath5k_eeprom_read_freq_list(ah, &offset,
581                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
582                         AR5K_EEPROM_MODE_11A);
583         } else {
584                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
585
586                 AR5K_EEPROM_READ(offset++, val);
587                 pcal[0].freq  = (val >> 9) & mask;
588                 pcal[1].freq  = (val >> 2) & mask;
589                 pcal[2].freq  = (val << 5) & mask;
590
591                 AR5K_EEPROM_READ(offset++, val);
592                 pcal[2].freq |= (val >> 11) & 0x1f;
593                 pcal[3].freq  = (val >> 4) & mask;
594                 pcal[4].freq  = (val << 3) & mask;
595
596                 AR5K_EEPROM_READ(offset++, val);
597                 pcal[4].freq |= (val >> 13) & 0x7;
598                 pcal[5].freq  = (val >> 6) & mask;
599                 pcal[6].freq  = (val << 1) & mask;
600
601                 AR5K_EEPROM_READ(offset++, val);
602                 pcal[6].freq |= (val >> 15) & 0x1;
603                 pcal[7].freq  = (val >> 8) & mask;
604                 pcal[8].freq  = (val >> 1) & mask;
605                 pcal[9].freq  = (val << 6) & mask;
606
607                 AR5K_EEPROM_READ(offset++, val);
608                 pcal[9].freq |= (val >> 10) & 0x3f;
609
610                 /* Fixed number of piers */
611                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
612
613                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
614                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
615                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
616                 }
617         }
618
619         return 0;
620 }
621
622 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
623 static inline int
624 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
625 {
626         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
627         struct ath5k_chan_pcal_info *pcal;
628
629         switch(mode) {
630         case AR5K_EEPROM_MODE_11B:
631                 pcal = ee->ee_pwr_cal_b;
632                 break;
633         case AR5K_EEPROM_MODE_11G:
634                 pcal = ee->ee_pwr_cal_g;
635                 break;
636         default:
637                 return -EINVAL;
638         }
639
640         ath5k_eeprom_read_freq_list(ah, &offset,
641                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
642                 mode);
643
644         return 0;
645 }
646
647 /*
648  * Read power calibration for RF5111 chips
649  *
650  * For RF5111 we have an XPD -eXternal Power Detector- curve
651  * for each calibrated channel. Each curve has 0,5dB Power steps
652  * on x axis and PCDAC steps (offsets) on y axis and looks like an
653  * exponential function. To recreate the curve we read 11 points
654  * here and interpolate later.
655  */
656
657 /* Used to match PCDAC steps with power values on RF5111 chips
658  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
659  * steps that match with the power values we read from eeprom. On
660  * older eeprom versions (< 3.2) these steps are equaly spaced at
661  * 10% of the pcdac curve -until the curve reaches it's maximum-
662  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
663  * these 11 steps are spaced in a different way. This function returns
664  * the pcdac steps based on eeprom version and curve min/max so that we
665  * can have pcdac/pwr points.
666  */
667 static inline void
668 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
669 {
670         static const u16 intercepts3[] =
671                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
672         static const u16 intercepts3_2[] =
673                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
674         const u16 *ip;
675         int i;
676
677         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
678                 ip = intercepts3_2;
679         else
680                 ip = intercepts3;
681
682         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
683                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
684 }
685
686 /* Convert RF5111 specific data to generic raw data
687  * used by interpolation code */
688 static int
689 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
690                                 struct ath5k_chan_pcal_info *chinfo)
691 {
692         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
693         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
694         struct ath5k_pdgain_info *pd;
695         u8 pier, point, idx;
696         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
697
698         /* Fill raw data for each calibration pier */
699         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
700
701                 pcinfo = &chinfo[pier].rf5111_info;
702
703                 /* Allocate pd_curves for this cal pier */
704                 chinfo[pier].pd_curves =
705                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
706                                 sizeof(struct ath5k_pdgain_info),
707                                 GFP_KERNEL);
708
709                 if (!chinfo[pier].pd_curves)
710                         return -ENOMEM;
711
712                 /* Only one curve for RF5111
713                  * find out which one and place
714                  * in in pd_curves.
715                  * Note: ee_x_gain is reversed here */
716                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
717
718                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
719                                 pdgain_idx[0] = idx;
720                                 break;
721                         }
722                 }
723
724                 ee->ee_pd_gains[mode] = 1;
725
726                 pd = &chinfo[pier].pd_curves[idx];
727
728                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
729
730                 /* Allocate pd points for this curve */
731                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
732                                         sizeof(u8), GFP_KERNEL);
733                 if (!pd->pd_step)
734                         return -ENOMEM;
735
736                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
737                                         sizeof(s16), GFP_KERNEL);
738                 if (!pd->pd_pwr)
739                         return -ENOMEM;
740
741                 /* Fill raw dataset
742                  * (convert power to 0.25dB units
743                  * for RF5112 combatibility) */
744                 for (point = 0; point < pd->pd_points; point++) {
745
746                         /* Absolute values */
747                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
748
749                         /* Already sorted */
750                         pd->pd_step[point] = pcinfo->pcdac[point];
751                 }
752
753                 /* Set min/max pwr */
754                 chinfo[pier].min_pwr = pd->pd_pwr[0];
755                 chinfo[pier].max_pwr = pd->pd_pwr[10];
756
757         }
758
759         return 0;
760 }
761
762 /* Parse EEPROM data */
763 static int
764 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
765 {
766         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
767         struct ath5k_chan_pcal_info *pcal;
768         int offset, ret;
769         int i;
770         u16 val;
771
772         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
773         switch(mode) {
774         case AR5K_EEPROM_MODE_11A:
775                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
776                         return 0;
777
778                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
779                         offset + AR5K_EEPROM_GROUP1_OFFSET);
780                 if (ret < 0)
781                         return ret;
782
783                 offset += AR5K_EEPROM_GROUP2_OFFSET;
784                 pcal = ee->ee_pwr_cal_a;
785                 break;
786         case AR5K_EEPROM_MODE_11B:
787                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
788                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
789                         return 0;
790
791                 pcal = ee->ee_pwr_cal_b;
792                 offset += AR5K_EEPROM_GROUP3_OFFSET;
793
794                 /* fixed piers */
795                 pcal[0].freq = 2412;
796                 pcal[1].freq = 2447;
797                 pcal[2].freq = 2484;
798                 ee->ee_n_piers[mode] = 3;
799                 break;
800         case AR5K_EEPROM_MODE_11G:
801                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
802                         return 0;
803
804                 pcal = ee->ee_pwr_cal_g;
805                 offset += AR5K_EEPROM_GROUP4_OFFSET;
806
807                 /* fixed piers */
808                 pcal[0].freq = 2312;
809                 pcal[1].freq = 2412;
810                 pcal[2].freq = 2484;
811                 ee->ee_n_piers[mode] = 3;
812                 break;
813         default:
814                 return -EINVAL;
815         }
816
817         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
818                 struct ath5k_chan_pcal_info_rf5111 *cdata =
819                         &pcal[i].rf5111_info;
820
821                 AR5K_EEPROM_READ(offset++, val);
822                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
823                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
824                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
825
826                 AR5K_EEPROM_READ(offset++, val);
827                 cdata->pwr[0] |= ((val >> 14) & 0x3);
828                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
829                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
830                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
831
832                 AR5K_EEPROM_READ(offset++, val);
833                 cdata->pwr[3] |= ((val >> 12) & 0xf);
834                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
835                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
836
837                 AR5K_EEPROM_READ(offset++, val);
838                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
839                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
840                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
841
842                 AR5K_EEPROM_READ(offset++, val);
843                 cdata->pwr[8] |= ((val >> 14) & 0x3);
844                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
845                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
846
847                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
848                         cdata->pcdac_max, cdata->pcdac);
849         }
850
851         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
852 }
853
854
855 /*
856  * Read power calibration for RF5112 chips
857  *
858  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
859  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
860  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
861  * power steps on x axis and PCDAC steps on y axis and looks like a
862  * linear function. To recreate the curve and pass the power values
863  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
864  * and 3 points for xpd 3 (higher gain -> lower power) here and
865  * interpolate later.
866  *
867  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
868  */
869
870 /* Convert RF5112 specific data to generic raw data
871  * used by interpolation code */
872 static int
873 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
874                                 struct ath5k_chan_pcal_info *chinfo)
875 {
876         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
877         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
878         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
879         unsigned int pier, pdg, point;
880
881         /* Fill raw data for each calibration pier */
882         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
883
884                 pcinfo = &chinfo[pier].rf5112_info;
885
886                 /* Allocate pd_curves for this cal pier */
887                 chinfo[pier].pd_curves =
888                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
889                                         sizeof(struct ath5k_pdgain_info),
890                                         GFP_KERNEL);
891
892                 if (!chinfo[pier].pd_curves)
893                         return -ENOMEM;
894
895                 /* Fill pd_curves */
896                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
897
898                         u8 idx = pdgain_idx[pdg];
899                         struct ath5k_pdgain_info *pd =
900                                         &chinfo[pier].pd_curves[idx];
901
902                         /* Lowest gain curve (max power) */
903                         if (pdg == 0) {
904                                 /* One more point for better accuracy */
905                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
906
907                                 /* Allocate pd points for this curve */
908                                 pd->pd_step = kcalloc(pd->pd_points,
909                                                 sizeof(u8), GFP_KERNEL);
910
911                                 if (!pd->pd_step)
912                                         return -ENOMEM;
913
914                                 pd->pd_pwr = kcalloc(pd->pd_points,
915                                                 sizeof(s16), GFP_KERNEL);
916
917                                 if (!pd->pd_pwr)
918                                         return -ENOMEM;
919
920
921                                 /* Fill raw dataset
922                                  * (all power levels are in 0.25dB units) */
923                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
924                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
925
926                                 for (point = 1; point < pd->pd_points;
927                                 point++) {
928                                         /* Absolute values */
929                                         pd->pd_pwr[point] =
930                                                 pcinfo->pwr_x0[point];
931
932                                         /* Deltas */
933                                         pd->pd_step[point] =
934                                                 pd->pd_step[point - 1] +
935                                                 pcinfo->pcdac_x0[point];
936                                 }
937
938                                 /* Set min power for this frequency */
939                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
940
941                         /* Highest gain curve (min power) */
942                         } else if (pdg == 1) {
943
944                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
945
946                                 /* Allocate pd points for this curve */
947                                 pd->pd_step = kcalloc(pd->pd_points,
948                                                 sizeof(u8), GFP_KERNEL);
949
950                                 if (!pd->pd_step)
951                                         return -ENOMEM;
952
953                                 pd->pd_pwr = kcalloc(pd->pd_points,
954                                                 sizeof(s16), GFP_KERNEL);
955
956                                 if (!pd->pd_pwr)
957                                         return -ENOMEM;
958
959                                 /* Fill raw dataset
960                                  * (all power levels are in 0.25dB units) */
961                                 for (point = 0; point < pd->pd_points;
962                                 point++) {
963                                         /* Absolute values */
964                                         pd->pd_pwr[point] =
965                                                 pcinfo->pwr_x3[point];
966
967                                         /* Fixed points */
968                                         pd->pd_step[point] =
969                                                 pcinfo->pcdac_x3[point];
970                                 }
971
972                                 /* Since we have a higher gain curve
973                                  * override min power */
974                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
975                         }
976                 }
977         }
978
979         return 0;
980 }
981
982 /* Parse EEPROM data */
983 static int
984 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
985 {
986         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
987         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
988         struct ath5k_chan_pcal_info *gen_chan_info;
989         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
990         u32 offset;
991         u8 i, c;
992         u16 val;
993         int ret;
994         u8 pd_gains = 0;
995
996         /* Count how many curves we have and
997          * identify them (which one of the 4
998          * available curves we have on each count).
999          * Curves are stored from lower (x0) to
1000          * higher (x3) gain */
1001         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1002                 /* ee_x_gain[mode] is x gain mask */
1003                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1004                         pdgain_idx[pd_gains++] = i;
1005         }
1006         ee->ee_pd_gains[mode] = pd_gains;
1007
1008         if (pd_gains == 0 || pd_gains > 2)
1009                 return -EINVAL;
1010
1011         switch (mode) {
1012         case AR5K_EEPROM_MODE_11A:
1013                 /*
1014                  * Read 5GHz EEPROM channels
1015                  */
1016                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1017                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1018
1019                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1020                 gen_chan_info = ee->ee_pwr_cal_a;
1021                 break;
1022         case AR5K_EEPROM_MODE_11B:
1023                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1024                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1025                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1026
1027                 /* NB: frequency piers parsed during mode init */
1028                 gen_chan_info = ee->ee_pwr_cal_b;
1029                 break;
1030         case AR5K_EEPROM_MODE_11G:
1031                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1032                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1033                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1034                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1035                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1036
1037                 /* NB: frequency piers parsed during mode init */
1038                 gen_chan_info = ee->ee_pwr_cal_g;
1039                 break;
1040         default:
1041                 return -EINVAL;
1042         }
1043
1044         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1045                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1046
1047                 /* Power values in quarter dB
1048                  * for the lower xpd gain curve
1049                  * (0 dBm -> higher output power) */
1050                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1051                         AR5K_EEPROM_READ(offset++, val);
1052                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1053                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1054                 }
1055
1056                 /* PCDAC steps
1057                  * corresponding to the above power
1058                  * measurements */
1059                 AR5K_EEPROM_READ(offset++, val);
1060                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1061                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1062                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1063
1064                 /* Power values in quarter dB
1065                  * for the higher xpd gain curve
1066                  * (18 dBm -> lower output power) */
1067                 AR5K_EEPROM_READ(offset++, val);
1068                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1069                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1070
1071                 AR5K_EEPROM_READ(offset++, val);
1072                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1073
1074                 /* PCDAC steps
1075                  * corresponding to the above power
1076                  * measurements (fixed) */
1077                 chan_pcal_info->pcdac_x3[0] = 20;
1078                 chan_pcal_info->pcdac_x3[1] = 35;
1079                 chan_pcal_info->pcdac_x3[2] = 63;
1080
1081                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1082                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1083
1084                         /* Last xpd0 power level is also channel maximum */
1085                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1086                 } else {
1087                         chan_pcal_info->pcdac_x0[0] = 1;
1088                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1089                 }
1090
1091         }
1092
1093         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1094 }
1095
1096
1097 /*
1098  * Read power calibration for RF2413 chips
1099  *
1100  * For RF2413 we have a Power to PDDAC table (Power Detector)
1101  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1102  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1103  * axis and looks like an exponential function like the RF5111 curve.
1104  *
1105  * To recreate the curves we read here the points and interpolate
1106  * later. Note that in most cases only 2 (higher and lower) curves are
1107  * used (like RF5112) but vendors have the oportunity to include all
1108  * 4 curves on eeprom. The final curve (higher power) has an extra
1109  * point for better accuracy like RF5112.
1110  */
1111
1112 /* For RF2413 power calibration data doesn't start on a fixed location and
1113  * if a mode is not supported, it's section is missing -not zeroed-.
1114  * So we need to calculate the starting offset for each section by using
1115  * these two functions */
1116
1117 /* Return the size of each section based on the mode and the number of pd
1118  * gains available (maximum 4). */
1119 static inline unsigned int
1120 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1121 {
1122         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1123         unsigned int sz;
1124
1125         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1126         sz *= ee->ee_n_piers[mode];
1127
1128         return sz;
1129 }
1130
1131 /* Return the starting offset for a section based on the modes supported
1132  * and each section's size. */
1133 static unsigned int
1134 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1135 {
1136         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1137
1138         switch(mode) {
1139         case AR5K_EEPROM_MODE_11G:
1140                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1141                         offset += ath5k_pdgains_size_2413(ee,
1142                                         AR5K_EEPROM_MODE_11B) +
1143                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1144                 /* fall through */
1145         case AR5K_EEPROM_MODE_11B:
1146                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1147                         offset += ath5k_pdgains_size_2413(ee,
1148                                         AR5K_EEPROM_MODE_11A) +
1149                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1150                 /* fall through */
1151         case AR5K_EEPROM_MODE_11A:
1152                 break;
1153         default:
1154                 break;
1155         }
1156
1157         return offset;
1158 }
1159
1160 /* Convert RF2413 specific data to generic raw data
1161  * used by interpolation code */
1162 static int
1163 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1164                                 struct ath5k_chan_pcal_info *chinfo)
1165 {
1166         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1167         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1168         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1169         unsigned int pier, pdg, point;
1170
1171         /* Fill raw data for each calibration pier */
1172         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1173
1174                 pcinfo = &chinfo[pier].rf2413_info;
1175
1176                 /* Allocate pd_curves for this cal pier */
1177                 chinfo[pier].pd_curves =
1178                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1179                                         sizeof(struct ath5k_pdgain_info),
1180                                         GFP_KERNEL);
1181
1182                 if (!chinfo[pier].pd_curves)
1183                         return -ENOMEM;
1184
1185                 /* Fill pd_curves */
1186                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1187
1188                         u8 idx = pdgain_idx[pdg];
1189                         struct ath5k_pdgain_info *pd =
1190                                         &chinfo[pier].pd_curves[idx];
1191
1192                         /* One more point for the highest power
1193                          * curve (lowest gain) */
1194                         if (pdg == ee->ee_pd_gains[mode] - 1)
1195                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1196                         else
1197                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1198
1199                         /* Allocate pd points for this curve */
1200                         pd->pd_step = kcalloc(pd->pd_points,
1201                                         sizeof(u8), GFP_KERNEL);
1202
1203                         if (!pd->pd_step)
1204                                 return -ENOMEM;
1205
1206                         pd->pd_pwr = kcalloc(pd->pd_points,
1207                                         sizeof(s16), GFP_KERNEL);
1208
1209                         if (!pd->pd_pwr)
1210                                 return -ENOMEM;
1211
1212                         /* Fill raw dataset
1213                          * convert all pwr levels to
1214                          * quarter dB for RF5112 combatibility */
1215                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1216                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1217
1218                         for (point = 1; point < pd->pd_points; point++) {
1219
1220                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1221                                         2 * pcinfo->pwr[pdg][point - 1];
1222
1223                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1224                                                 pcinfo->pddac[pdg][point - 1];
1225
1226                         }
1227
1228                         /* Highest gain curve -> min power */
1229                         if (pdg == 0)
1230                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1231
1232                         /* Lowest gain curve -> max power */
1233                         if (pdg == ee->ee_pd_gains[mode] - 1)
1234                                 chinfo[pier].max_pwr =
1235                                         pd->pd_pwr[pd->pd_points - 1];
1236                 }
1237         }
1238
1239         return 0;
1240 }
1241
1242 /* Parse EEPROM data */
1243 static int
1244 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1245 {
1246         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1247         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1248         struct ath5k_chan_pcal_info *chinfo;
1249         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1250         u32 offset;
1251         int idx, i, ret;
1252         u16 val;
1253         u8 pd_gains = 0;
1254
1255         /* Count how many curves we have and
1256          * identify them (which one of the 4
1257          * available curves we have on each count).
1258          * Curves are stored from higher to
1259          * lower gain so we go backwards */
1260         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1261                 /* ee_x_gain[mode] is x gain mask */
1262                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1263                         pdgain_idx[pd_gains++] = idx;
1264
1265         }
1266         ee->ee_pd_gains[mode] = pd_gains;
1267
1268         if (pd_gains == 0)
1269                 return -EINVAL;
1270
1271         offset = ath5k_cal_data_offset_2413(ee, mode);
1272         switch (mode) {
1273         case AR5K_EEPROM_MODE_11A:
1274                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1275                         return 0;
1276
1277                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1278                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1279                 chinfo = ee->ee_pwr_cal_a;
1280                 break;
1281         case AR5K_EEPROM_MODE_11B:
1282                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1283                         return 0;
1284
1285                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1286                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1287                 chinfo = ee->ee_pwr_cal_b;
1288                 break;
1289         case AR5K_EEPROM_MODE_11G:
1290                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1291                         return 0;
1292
1293                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1294                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1295                 chinfo = ee->ee_pwr_cal_g;
1296                 break;
1297         default:
1298                 return -EINVAL;
1299         }
1300
1301         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1302                 pcinfo = &chinfo[i].rf2413_info;
1303
1304                 /*
1305                  * Read pwr_i, pddac_i and the first
1306                  * 2 pd points (pwr, pddac)
1307                  */
1308                 AR5K_EEPROM_READ(offset++, val);
1309                 pcinfo->pwr_i[0] = val & 0x1f;
1310                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1311                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1312
1313                 AR5K_EEPROM_READ(offset++, val);
1314                 pcinfo->pddac[0][0] = val & 0x3f;
1315                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1316                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1317
1318                 AR5K_EEPROM_READ(offset++, val);
1319                 pcinfo->pwr[0][2] = val & 0xf;
1320                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1321
1322                 pcinfo->pwr[0][3] = 0;
1323                 pcinfo->pddac[0][3] = 0;
1324
1325                 if (pd_gains > 1) {
1326                         /*
1327                          * Pd gain 0 is not the last pd gain
1328                          * so it only has 2 pd points.
1329                          * Continue wih pd gain 1.
1330                          */
1331                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1332
1333                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1334                         AR5K_EEPROM_READ(offset++, val);
1335                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1336
1337                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1338                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1339
1340                         AR5K_EEPROM_READ(offset++, val);
1341                         pcinfo->pwr[1][1] = val & 0xf;
1342                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1343                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1344
1345                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1346                         AR5K_EEPROM_READ(offset++, val);
1347                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1348
1349                         pcinfo->pwr[1][3] = 0;
1350                         pcinfo->pddac[1][3] = 0;
1351                 } else if (pd_gains == 1) {
1352                         /*
1353                          * Pd gain 0 is the last one so
1354                          * read the extra point.
1355                          */
1356                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1357
1358                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1359                         AR5K_EEPROM_READ(offset++, val);
1360                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1361                 }
1362
1363                 /*
1364                  * Proceed with the other pd_gains
1365                  * as above.
1366                  */
1367                 if (pd_gains > 2) {
1368                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1369                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1370
1371                         AR5K_EEPROM_READ(offset++, val);
1372                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1373                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1374                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1375
1376                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1377                         AR5K_EEPROM_READ(offset++, val);
1378                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1379
1380                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1381                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1382
1383                         pcinfo->pwr[2][3] = 0;
1384                         pcinfo->pddac[2][3] = 0;
1385                 } else if (pd_gains == 2) {
1386                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1387                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1388                 }
1389
1390                 if (pd_gains > 3) {
1391                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1392                         AR5K_EEPROM_READ(offset++, val);
1393                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1394
1395                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1396                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1397                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1398
1399                         AR5K_EEPROM_READ(offset++, val);
1400                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1401                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1402                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1403
1404                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1405                         AR5K_EEPROM_READ(offset++, val);
1406                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1407
1408                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1409                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1410
1411                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1412                         AR5K_EEPROM_READ(offset++, val);
1413                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1414                 } else if (pd_gains == 3) {
1415                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1416                         AR5K_EEPROM_READ(offset++, val);
1417                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1418
1419                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1420                 }
1421         }
1422
1423         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1424 }
1425
1426
1427 /*
1428  * Read per rate target power (this is the maximum tx power
1429  * supported by the card). This info is used when setting
1430  * tx power, no matter the channel.
1431  *
1432  * This also works for v5 EEPROMs.
1433  */
1434 static int
1435 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1436 {
1437         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1438         struct ath5k_rate_pcal_info *rate_pcal_info;
1439         u8 *rate_target_pwr_num;
1440         u32 offset;
1441         u16 val;
1442         int ret, i;
1443
1444         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1445         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1446         switch (mode) {
1447         case AR5K_EEPROM_MODE_11A:
1448                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1449                 rate_pcal_info = ee->ee_rate_tpwr_a;
1450                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1451                 break;
1452         case AR5K_EEPROM_MODE_11B:
1453                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1454                 rate_pcal_info = ee->ee_rate_tpwr_b;
1455                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1456                 break;
1457         case AR5K_EEPROM_MODE_11G:
1458                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1459                 rate_pcal_info = ee->ee_rate_tpwr_g;
1460                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1461                 break;
1462         default:
1463                 return -EINVAL;
1464         }
1465
1466         /* Different freq mask for older eeproms (<= v3.2) */
1467         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1468                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1469                         AR5K_EEPROM_READ(offset++, val);
1470                         rate_pcal_info[i].freq =
1471                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1472
1473                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1474                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1475
1476                         AR5K_EEPROM_READ(offset++, val);
1477
1478                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1479                             val == 0) {
1480                                 (*rate_target_pwr_num) = i;
1481                                 break;
1482                         }
1483
1484                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1485                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1486                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1487                 }
1488         } else {
1489                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1490                         AR5K_EEPROM_READ(offset++, val);
1491                         rate_pcal_info[i].freq =
1492                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1493
1494                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1495                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1496
1497                         AR5K_EEPROM_READ(offset++, val);
1498
1499                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1500                             val == 0) {
1501                                 (*rate_target_pwr_num) = i;
1502                                 break;
1503                         }
1504
1505                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1506                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1507                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1508                 }
1509         }
1510
1511         return 0;
1512 }
1513
1514 /*
1515  * Read per channel calibration info from EEPROM
1516  *
1517  * This info is used to calibrate the baseband power table. Imagine
1518  * that for each channel there is a power curve that's hw specific
1519  * (depends on amplifier etc) and we try to "correct" this curve using
1520  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1521  * it can use accurate power values when setting tx power (takes amplifier's
1522  * performance on each channel into account).
1523  *
1524  * EEPROM provides us with the offsets for some pre-calibrated channels
1525  * and we have to interpolate to create the full table for these channels and
1526  * also the table for any channel.
1527  */
1528 static int
1529 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1530 {
1531         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1532         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1533         int mode;
1534         int err;
1535
1536         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1537                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1538                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1539         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1540                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1541                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1542         else
1543                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1544
1545
1546         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1547         mode++) {
1548                 err = read_pcal(ah, mode);
1549                 if (err)
1550                         return err;
1551
1552                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1553                 if (err < 0)
1554                         return err;
1555         }
1556
1557         return 0;
1558 }
1559
1560 static int
1561 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1562 {
1563         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1564         struct ath5k_chan_pcal_info *chinfo;
1565         u8 pier, pdg;
1566
1567         switch (mode) {
1568         case AR5K_EEPROM_MODE_11A:
1569                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1570                         return 0;
1571                 chinfo = ee->ee_pwr_cal_a;
1572                 break;
1573         case AR5K_EEPROM_MODE_11B:
1574                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1575                         return 0;
1576                 chinfo = ee->ee_pwr_cal_b;
1577                 break;
1578         case AR5K_EEPROM_MODE_11G:
1579                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1580                         return 0;
1581                 chinfo = ee->ee_pwr_cal_g;
1582                 break;
1583         default:
1584                 return -EINVAL;
1585         }
1586
1587         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1588                 if (!chinfo[pier].pd_curves)
1589                         continue;
1590
1591                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1592                         struct ath5k_pdgain_info *pd =
1593                                         &chinfo[pier].pd_curves[pdg];
1594
1595                         if (pd != NULL) {
1596                                 kfree(pd->pd_step);
1597                                 kfree(pd->pd_pwr);
1598                         }
1599                 }
1600
1601                 kfree(chinfo[pier].pd_curves);
1602         }
1603
1604         return 0;
1605 }
1606
1607 void
1608 ath5k_eeprom_detach(struct ath5k_hw *ah)
1609 {
1610         u8 mode;
1611
1612         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1613                 ath5k_eeprom_free_pcal_info(ah, mode);
1614 }
1615
1616 /* Read conformance test limits used for regulatory control */
1617 static int
1618 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1619 {
1620         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1621         struct ath5k_edge_power *rep;
1622         unsigned int fmask, pmask;
1623         unsigned int ctl_mode;
1624         int ret, i, j;
1625         u32 offset;
1626         u16 val;
1627
1628         pmask = AR5K_EEPROM_POWER_M;
1629         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1630         offset = AR5K_EEPROM_CTL(ee->ee_version);
1631         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1632         for (i = 0; i < ee->ee_ctls; i += 2) {
1633                 AR5K_EEPROM_READ(offset++, val);
1634                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1635                 ee->ee_ctl[i + 1] = val & 0xff;
1636         }
1637
1638         offset = AR5K_EEPROM_GROUP8_OFFSET;
1639         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1640                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1641                         AR5K_EEPROM_GROUP5_OFFSET;
1642         else
1643                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1644
1645         rep = ee->ee_ctl_pwr;
1646         for(i = 0; i < ee->ee_ctls; i++) {
1647                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1648                 case AR5K_CTL_11A:
1649                 case AR5K_CTL_TURBO:
1650                         ctl_mode = AR5K_EEPROM_MODE_11A;
1651                         break;
1652                 default:
1653                         ctl_mode = AR5K_EEPROM_MODE_11G;
1654                         break;
1655                 }
1656                 if (ee->ee_ctl[i] == 0) {
1657                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1658                                 offset += 8;
1659                         else
1660                                 offset += 7;
1661                         rep += AR5K_EEPROM_N_EDGES;
1662                         continue;
1663                 }
1664                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1665                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1666                                 AR5K_EEPROM_READ(offset++, val);
1667                                 rep[j].freq = (val >> 8) & fmask;
1668                                 rep[j + 1].freq = val & fmask;
1669                         }
1670                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1671                                 AR5K_EEPROM_READ(offset++, val);
1672                                 rep[j].edge = (val >> 8) & pmask;
1673                                 rep[j].flag = (val >> 14) & 1;
1674                                 rep[j + 1].edge = val & pmask;
1675                                 rep[j + 1].flag = (val >> 6) & 1;
1676                         }
1677                 } else {
1678                         AR5K_EEPROM_READ(offset++, val);
1679                         rep[0].freq = (val >> 9) & fmask;
1680                         rep[1].freq = (val >> 2) & fmask;
1681                         rep[2].freq = (val << 5) & fmask;
1682
1683                         AR5K_EEPROM_READ(offset++, val);
1684                         rep[2].freq |= (val >> 11) & 0x1f;
1685                         rep[3].freq = (val >> 4) & fmask;
1686                         rep[4].freq = (val << 3) & fmask;
1687
1688                         AR5K_EEPROM_READ(offset++, val);
1689                         rep[4].freq |= (val >> 13) & 0x7;
1690                         rep[5].freq = (val >> 6) & fmask;
1691                         rep[6].freq = (val << 1) & fmask;
1692
1693                         AR5K_EEPROM_READ(offset++, val);
1694                         rep[6].freq |= (val >> 15) & 0x1;
1695                         rep[7].freq = (val >> 8) & fmask;
1696
1697                         rep[0].edge = (val >> 2) & pmask;
1698                         rep[1].edge = (val << 4) & pmask;
1699
1700                         AR5K_EEPROM_READ(offset++, val);
1701                         rep[1].edge |= (val >> 12) & 0xf;
1702                         rep[2].edge = (val >> 6) & pmask;
1703                         rep[3].edge = val & pmask;
1704
1705                         AR5K_EEPROM_READ(offset++, val);
1706                         rep[4].edge = (val >> 10) & pmask;
1707                         rep[5].edge = (val >> 4) & pmask;
1708                         rep[6].edge = (val << 2) & pmask;
1709
1710                         AR5K_EEPROM_READ(offset++, val);
1711                         rep[6].edge |= (val >> 14) & 0x3;
1712                         rep[7].edge = (val >> 8) & pmask;
1713                 }
1714                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1715                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1716                                 rep[j].freq, ctl_mode);
1717                 }
1718                 rep += AR5K_EEPROM_N_EDGES;
1719         }
1720
1721         return 0;
1722 }
1723
1724 static int
1725 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1726 {
1727         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1728         u32 offset;
1729         u16 val;
1730         int ret = 0, i;
1731
1732         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1733                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1734
1735         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1736                 /* No spur info for 5GHz */
1737                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1738                 /* 2 channels for 2GHz (2464/2420) */
1739                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1740                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1741                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1742         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1743                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1744                         AR5K_EEPROM_READ(offset, val);
1745                         ee->ee_spur_chans[i][0] = val;
1746                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1747                                                                         val);
1748                         ee->ee_spur_chans[i][1] = val;
1749                         offset++;
1750                 }
1751         }
1752
1753         return ret;
1754 }
1755
1756 /*
1757  * Initialize eeprom data structure
1758  */
1759 int
1760 ath5k_eeprom_init(struct ath5k_hw *ah)
1761 {
1762         int err;
1763
1764         err = ath5k_eeprom_init_header(ah);
1765         if (err < 0)
1766                 return err;
1767
1768         err = ath5k_eeprom_init_modes(ah);
1769         if (err < 0)
1770                 return err;
1771
1772         err = ath5k_eeprom_read_pcal_info(ah);
1773         if (err < 0)
1774                 return err;
1775
1776         err = ath5k_eeprom_read_ctl_info(ah);
1777         if (err < 0)
1778                 return err;
1779
1780         err = ath5k_eeprom_read_spur_chans(ah);
1781         if (err < 0)
1782                 return err;
1783
1784         return 0;
1785 }
1786
1787 /*
1788  * Read the MAC address from eeprom
1789  */
1790 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1791 {
1792         u8 mac_d[ETH_ALEN] = {};
1793         u32 total, offset;
1794         u16 data;
1795         int octet, ret;
1796
1797         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1798         if (ret)
1799                 return ret;
1800
1801         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1802                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1803                 if (ret)
1804                         return ret;
1805
1806                 total += data;
1807                 mac_d[octet + 1] = data & 0xff;
1808                 mac_d[octet] = data >> 8;
1809                 octet += 2;
1810         }
1811
1812         if (!total || total == 3 * 0xffff)
1813                 return -EINVAL;
1814
1815         memcpy(mac, mac_d, ETH_ALEN);
1816
1817         return 0;
1818 }