a3f5dc78353fb2fdddbdb6806457b2bc2ece2ac8
[sfrench/cifs-2.6.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 #define HTT_RX_RING_REFILL_RESCHED_MS 5
35
36 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
37
38 static struct sk_buff *
39 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
40 {
41         struct ath10k_skb_rxcb *rxcb;
42
43         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
44                 if (rxcb->paddr == paddr)
45                         return ATH10K_RXCB_SKB(rxcb);
46
47         WARN_ON_ONCE(1);
48         return NULL;
49 }
50
51 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
52 {
53         struct sk_buff *skb;
54         struct ath10k_skb_rxcb *rxcb;
55         struct hlist_node *n;
56         int i;
57
58         if (htt->rx_ring.in_ord_rx) {
59                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
60                         skb = ATH10K_RXCB_SKB(rxcb);
61                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
62                                          skb->len + skb_tailroom(skb),
63                                          DMA_FROM_DEVICE);
64                         hash_del(&rxcb->hlist);
65                         dev_kfree_skb_any(skb);
66                 }
67         } else {
68                 for (i = 0; i < htt->rx_ring.size; i++) {
69                         skb = htt->rx_ring.netbufs_ring[i];
70                         if (!skb)
71                                 continue;
72
73                         rxcb = ATH10K_SKB_RXCB(skb);
74                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
75                                          skb->len + skb_tailroom(skb),
76                                          DMA_FROM_DEVICE);
77                         dev_kfree_skb_any(skb);
78                 }
79         }
80
81         htt->rx_ring.fill_cnt = 0;
82         hash_init(htt->rx_ring.skb_table);
83         memset(htt->rx_ring.netbufs_ring, 0,
84                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
85 }
86
87 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
88 {
89         struct htt_rx_desc *rx_desc;
90         struct ath10k_skb_rxcb *rxcb;
91         struct sk_buff *skb;
92         dma_addr_t paddr;
93         int ret = 0, idx;
94
95         /* The Full Rx Reorder firmware has no way of telling the host
96          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
97          * To keep things simple make sure ring is always half empty. This
98          * guarantees there'll be no replenishment overruns possible.
99          */
100         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
101
102         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
103         while (num > 0) {
104                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
105                 if (!skb) {
106                         ret = -ENOMEM;
107                         goto fail;
108                 }
109
110                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
111                         skb_pull(skb,
112                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
113                                  skb->data);
114
115                 /* Clear rx_desc attention word before posting to Rx ring */
116                 rx_desc = (struct htt_rx_desc *)skb->data;
117                 rx_desc->attention.flags = __cpu_to_le32(0);
118
119                 paddr = dma_map_single(htt->ar->dev, skb->data,
120                                        skb->len + skb_tailroom(skb),
121                                        DMA_FROM_DEVICE);
122
123                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
124                         dev_kfree_skb_any(skb);
125                         ret = -ENOMEM;
126                         goto fail;
127                 }
128
129                 rxcb = ATH10K_SKB_RXCB(skb);
130                 rxcb->paddr = paddr;
131                 htt->rx_ring.netbufs_ring[idx] = skb;
132                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
133                 htt->rx_ring.fill_cnt++;
134
135                 if (htt->rx_ring.in_ord_rx) {
136                         hash_add(htt->rx_ring.skb_table,
137                                  &ATH10K_SKB_RXCB(skb)->hlist,
138                                  (u32)paddr);
139                 }
140
141                 num--;
142                 idx++;
143                 idx &= htt->rx_ring.size_mask;
144         }
145
146 fail:
147         /*
148          * Make sure the rx buffer is updated before available buffer
149          * index to avoid any potential rx ring corruption.
150          */
151         mb();
152         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
153         return ret;
154 }
155
156 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
157 {
158         lockdep_assert_held(&htt->rx_ring.lock);
159         return __ath10k_htt_rx_ring_fill_n(htt, num);
160 }
161
162 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
163 {
164         int ret, num_deficit, num_to_fill;
165
166         /* Refilling the whole RX ring buffer proves to be a bad idea. The
167          * reason is RX may take up significant amount of CPU cycles and starve
168          * other tasks, e.g. TX on an ethernet device while acting as a bridge
169          * with ath10k wlan interface. This ended up with very poor performance
170          * once CPU the host system was overwhelmed with RX on ath10k.
171          *
172          * By limiting the number of refills the replenishing occurs
173          * progressively. This in turns makes use of the fact tasklets are
174          * processed in FIFO order. This means actual RX processing can starve
175          * out refilling. If there's not enough buffers on RX ring FW will not
176          * report RX until it is refilled with enough buffers. This
177          * automatically balances load wrt to CPU power.
178          *
179          * This probably comes at a cost of lower maximum throughput but
180          * improves the average and stability.
181          */
182         spin_lock_bh(&htt->rx_ring.lock);
183         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
184         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
185         num_deficit -= num_to_fill;
186         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
187         if (ret == -ENOMEM) {
188                 /*
189                  * Failed to fill it to the desired level -
190                  * we'll start a timer and try again next time.
191                  * As long as enough buffers are left in the ring for
192                  * another A-MPDU rx, no special recovery is needed.
193                  */
194                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
195                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
196         } else if (num_deficit > 0) {
197                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
198                           msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
199         }
200         spin_unlock_bh(&htt->rx_ring.lock);
201 }
202
203 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
204 {
205         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
206
207         ath10k_htt_rx_msdu_buff_replenish(htt);
208 }
209
210 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
211 {
212         struct ath10k_htt *htt = &ar->htt;
213         int ret;
214
215         spin_lock_bh(&htt->rx_ring.lock);
216         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
217                                               htt->rx_ring.fill_cnt));
218         spin_unlock_bh(&htt->rx_ring.lock);
219
220         if (ret)
221                 ath10k_htt_rx_ring_free(htt);
222
223         return ret;
224 }
225
226 void ath10k_htt_rx_free(struct ath10k_htt *htt)
227 {
228         del_timer_sync(&htt->rx_ring.refill_retry_timer);
229
230         skb_queue_purge(&htt->rx_compl_q);
231         skb_queue_purge(&htt->rx_in_ord_compl_q);
232         skb_queue_purge(&htt->tx_fetch_ind_q);
233
234         ath10k_htt_rx_ring_free(htt);
235
236         dma_free_coherent(htt->ar->dev,
237                           (htt->rx_ring.size *
238                            sizeof(htt->rx_ring.paddrs_ring)),
239                           htt->rx_ring.paddrs_ring,
240                           htt->rx_ring.base_paddr);
241
242         dma_free_coherent(htt->ar->dev,
243                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
244                           htt->rx_ring.alloc_idx.vaddr,
245                           htt->rx_ring.alloc_idx.paddr);
246
247         kfree(htt->rx_ring.netbufs_ring);
248 }
249
250 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
251 {
252         struct ath10k *ar = htt->ar;
253         int idx;
254         struct sk_buff *msdu;
255
256         lockdep_assert_held(&htt->rx_ring.lock);
257
258         if (htt->rx_ring.fill_cnt == 0) {
259                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
260                 return NULL;
261         }
262
263         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
264         msdu = htt->rx_ring.netbufs_ring[idx];
265         htt->rx_ring.netbufs_ring[idx] = NULL;
266         htt->rx_ring.paddrs_ring[idx] = 0;
267
268         idx++;
269         idx &= htt->rx_ring.size_mask;
270         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
271         htt->rx_ring.fill_cnt--;
272
273         dma_unmap_single(htt->ar->dev,
274                          ATH10K_SKB_RXCB(msdu)->paddr,
275                          msdu->len + skb_tailroom(msdu),
276                          DMA_FROM_DEVICE);
277         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
278                         msdu->data, msdu->len + skb_tailroom(msdu));
279
280         return msdu;
281 }
282
283 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
284 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
285                                    struct sk_buff_head *amsdu)
286 {
287         struct ath10k *ar = htt->ar;
288         int msdu_len, msdu_chaining = 0;
289         struct sk_buff *msdu;
290         struct htt_rx_desc *rx_desc;
291
292         lockdep_assert_held(&htt->rx_ring.lock);
293
294         for (;;) {
295                 int last_msdu, msdu_len_invalid, msdu_chained;
296
297                 msdu = ath10k_htt_rx_netbuf_pop(htt);
298                 if (!msdu) {
299                         __skb_queue_purge(amsdu);
300                         return -ENOENT;
301                 }
302
303                 __skb_queue_tail(amsdu, msdu);
304
305                 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307                 /* FIXME: we must report msdu payload since this is what caller
308                  * expects now
309                  */
310                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
312
313                 /*
314                  * Sanity check - confirm the HW is finished filling in the
315                  * rx data.
316                  * If the HW and SW are working correctly, then it's guaranteed
317                  * that the HW's MAC DMA is done before this point in the SW.
318                  * To prevent the case that we handle a stale Rx descriptor,
319                  * just assert for now until we have a way to recover.
320                  */
321                 if (!(__le32_to_cpu(rx_desc->attention.flags)
322                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
323                         __skb_queue_purge(amsdu);
324                         return -EIO;
325                 }
326
327                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
328                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
329                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
330                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
331                               RX_MSDU_START_INFO0_MSDU_LENGTH);
332                 msdu_chained = rx_desc->frag_info.ring2_more_count;
333
334                 if (msdu_len_invalid)
335                         msdu_len = 0;
336
337                 skb_trim(msdu, 0);
338                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
339                 msdu_len -= msdu->len;
340
341                 /* Note: Chained buffers do not contain rx descriptor */
342                 while (msdu_chained--) {
343                         msdu = ath10k_htt_rx_netbuf_pop(htt);
344                         if (!msdu) {
345                                 __skb_queue_purge(amsdu);
346                                 return -ENOENT;
347                         }
348
349                         __skb_queue_tail(amsdu, msdu);
350                         skb_trim(msdu, 0);
351                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
352                         msdu_len -= msdu->len;
353                         msdu_chaining = 1;
354                 }
355
356                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
357                                 RX_MSDU_END_INFO0_LAST_MSDU;
358
359                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
360                                          sizeof(*rx_desc) - sizeof(u32));
361
362                 if (last_msdu)
363                         break;
364         }
365
366         if (skb_queue_empty(amsdu))
367                 msdu_chaining = -1;
368
369         /*
370          * Don't refill the ring yet.
371          *
372          * First, the elements popped here are still in use - it is not
373          * safe to overwrite them until the matching call to
374          * mpdu_desc_list_next. Second, for efficiency it is preferable to
375          * refill the rx ring with 1 PPDU's worth of rx buffers (something
376          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
377          * (something like 3 buffers). Consequently, we'll rely on the txrx
378          * SW to tell us when it is done pulling all the PPDU's rx buffers
379          * out of the rx ring, and then refill it just once.
380          */
381
382         return msdu_chaining;
383 }
384
385 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
386                                                u32 paddr)
387 {
388         struct ath10k *ar = htt->ar;
389         struct ath10k_skb_rxcb *rxcb;
390         struct sk_buff *msdu;
391
392         lockdep_assert_held(&htt->rx_ring.lock);
393
394         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
395         if (!msdu)
396                 return NULL;
397
398         rxcb = ATH10K_SKB_RXCB(msdu);
399         hash_del(&rxcb->hlist);
400         htt->rx_ring.fill_cnt--;
401
402         dma_unmap_single(htt->ar->dev, rxcb->paddr,
403                          msdu->len + skb_tailroom(msdu),
404                          DMA_FROM_DEVICE);
405         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
406                         msdu->data, msdu->len + skb_tailroom(msdu));
407
408         return msdu;
409 }
410
411 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
412                                         struct htt_rx_in_ord_ind *ev,
413                                         struct sk_buff_head *list)
414 {
415         struct ath10k *ar = htt->ar;
416         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
417         struct htt_rx_desc *rxd;
418         struct sk_buff *msdu;
419         int msdu_count;
420         bool is_offload;
421         u32 paddr;
422
423         lockdep_assert_held(&htt->rx_ring.lock);
424
425         msdu_count = __le16_to_cpu(ev->msdu_count);
426         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
427
428         while (msdu_count--) {
429                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
430
431                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
432                 if (!msdu) {
433                         __skb_queue_purge(list);
434                         return -ENOENT;
435                 }
436
437                 __skb_queue_tail(list, msdu);
438
439                 if (!is_offload) {
440                         rxd = (void *)msdu->data;
441
442                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
443
444                         skb_put(msdu, sizeof(*rxd));
445                         skb_pull(msdu, sizeof(*rxd));
446                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
447
448                         if (!(__le32_to_cpu(rxd->attention.flags) &
449                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
450                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
451                                 return -EIO;
452                         }
453                 }
454
455                 msdu_desc++;
456         }
457
458         return 0;
459 }
460
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
462 {
463         struct ath10k *ar = htt->ar;
464         dma_addr_t paddr;
465         void *vaddr;
466         size_t size;
467         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
468
469         htt->rx_confused = false;
470
471         /* XXX: The fill level could be changed during runtime in response to
472          * the host processing latency. Is this really worth it?
473          */
474         htt->rx_ring.size = HTT_RX_RING_SIZE;
475         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
476         htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
477
478         if (!is_power_of_2(htt->rx_ring.size)) {
479                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
480                 return -EINVAL;
481         }
482
483         htt->rx_ring.netbufs_ring =
484                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
485                         GFP_KERNEL);
486         if (!htt->rx_ring.netbufs_ring)
487                 goto err_netbuf;
488
489         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
490
491         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
492         if (!vaddr)
493                 goto err_dma_ring;
494
495         htt->rx_ring.paddrs_ring = vaddr;
496         htt->rx_ring.base_paddr = paddr;
497
498         vaddr = dma_alloc_coherent(htt->ar->dev,
499                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
500                                    &paddr, GFP_KERNEL);
501         if (!vaddr)
502                 goto err_dma_idx;
503
504         htt->rx_ring.alloc_idx.vaddr = vaddr;
505         htt->rx_ring.alloc_idx.paddr = paddr;
506         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
507         *htt->rx_ring.alloc_idx.vaddr = 0;
508
509         /* Initialize the Rx refill retry timer */
510         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
511
512         spin_lock_init(&htt->rx_ring.lock);
513
514         htt->rx_ring.fill_cnt = 0;
515         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
516         hash_init(htt->rx_ring.skb_table);
517
518         skb_queue_head_init(&htt->rx_compl_q);
519         skb_queue_head_init(&htt->rx_in_ord_compl_q);
520         skb_queue_head_init(&htt->tx_fetch_ind_q);
521         atomic_set(&htt->num_mpdus_ready, 0);
522
523         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
524                    htt->rx_ring.size, htt->rx_ring.fill_level);
525         return 0;
526
527 err_dma_idx:
528         dma_free_coherent(htt->ar->dev,
529                           (htt->rx_ring.size *
530                            sizeof(htt->rx_ring.paddrs_ring)),
531                           htt->rx_ring.paddrs_ring,
532                           htt->rx_ring.base_paddr);
533 err_dma_ring:
534         kfree(htt->rx_ring.netbufs_ring);
535 err_netbuf:
536         return -ENOMEM;
537 }
538
539 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
540                                           enum htt_rx_mpdu_encrypt_type type)
541 {
542         switch (type) {
543         case HTT_RX_MPDU_ENCRYPT_NONE:
544                 return 0;
545         case HTT_RX_MPDU_ENCRYPT_WEP40:
546         case HTT_RX_MPDU_ENCRYPT_WEP104:
547                 return IEEE80211_WEP_IV_LEN;
548         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
549         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
550                 return IEEE80211_TKIP_IV_LEN;
551         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
552                 return IEEE80211_CCMP_HDR_LEN;
553         case HTT_RX_MPDU_ENCRYPT_WEP128:
554         case HTT_RX_MPDU_ENCRYPT_WAPI:
555                 break;
556         }
557
558         ath10k_warn(ar, "unsupported encryption type %d\n", type);
559         return 0;
560 }
561
562 #define MICHAEL_MIC_LEN 8
563
564 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
565                                          enum htt_rx_mpdu_encrypt_type type)
566 {
567         switch (type) {
568         case HTT_RX_MPDU_ENCRYPT_NONE:
569                 return 0;
570         case HTT_RX_MPDU_ENCRYPT_WEP40:
571         case HTT_RX_MPDU_ENCRYPT_WEP104:
572                 return IEEE80211_WEP_ICV_LEN;
573         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
574         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
575                 return IEEE80211_TKIP_ICV_LEN;
576         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
577                 return IEEE80211_CCMP_MIC_LEN;
578         case HTT_RX_MPDU_ENCRYPT_WEP128:
579         case HTT_RX_MPDU_ENCRYPT_WAPI:
580                 break;
581         }
582
583         ath10k_warn(ar, "unsupported encryption type %d\n", type);
584         return 0;
585 }
586
587 struct amsdu_subframe_hdr {
588         u8 dst[ETH_ALEN];
589         u8 src[ETH_ALEN];
590         __be16 len;
591 } __packed;
592
593 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
594
595 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
596                                   struct ieee80211_rx_status *status,
597                                   struct htt_rx_desc *rxd)
598 {
599         struct ieee80211_supported_band *sband;
600         u8 cck, rate, bw, sgi, mcs, nss;
601         u8 preamble = 0;
602         u8 group_id;
603         u32 info1, info2, info3;
604
605         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
606         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
607         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
608
609         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
610
611         switch (preamble) {
612         case HTT_RX_LEGACY:
613                 /* To get legacy rate index band is required. Since band can't
614                  * be undefined check if freq is non-zero.
615                  */
616                 if (!status->freq)
617                         return;
618
619                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
620                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
621                 rate &= ~RX_PPDU_START_RATE_FLAG;
622
623                 sband = &ar->mac.sbands[status->band];
624                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
625                 break;
626         case HTT_RX_HT:
627         case HTT_RX_HT_WITH_TXBF:
628                 /* HT-SIG - Table 20-11 in info2 and info3 */
629                 mcs = info2 & 0x1F;
630                 nss = mcs >> 3;
631                 bw = (info2 >> 7) & 1;
632                 sgi = (info3 >> 7) & 1;
633
634                 status->rate_idx = mcs;
635                 status->encoding = RX_ENC_HT;
636                 if (sgi)
637                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
638                 if (bw)
639                         status->bw = RATE_INFO_BW_40;
640                 break;
641         case HTT_RX_VHT:
642         case HTT_RX_VHT_WITH_TXBF:
643                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
644                  * TODO check this
645                  */
646                 bw = info2 & 3;
647                 sgi = info3 & 1;
648                 group_id = (info2 >> 4) & 0x3F;
649
650                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
651                         mcs = (info3 >> 4) & 0x0F;
652                         nss = ((info2 >> 10) & 0x07) + 1;
653                 } else {
654                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
655                          * so it's impossible to decode MCS. Also since
656                          * firmware consumes Group Id Management frames host
657                          * has no knowledge regarding group/user position
658                          * mapping so it's impossible to pick the correct Nsts
659                          * from VHT-SIG-A1.
660                          *
661                          * Bandwidth and SGI are valid so report the rateinfo
662                          * on best-effort basis.
663                          */
664                         mcs = 0;
665                         nss = 1;
666                 }
667
668                 if (mcs > 0x09) {
669                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
670                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
671                                     __le32_to_cpu(rxd->attention.flags),
672                                     __le32_to_cpu(rxd->mpdu_start.info0),
673                                     __le32_to_cpu(rxd->mpdu_start.info1),
674                                     __le32_to_cpu(rxd->msdu_start.common.info0),
675                                     __le32_to_cpu(rxd->msdu_start.common.info1),
676                                     rxd->ppdu_start.info0,
677                                     __le32_to_cpu(rxd->ppdu_start.info1),
678                                     __le32_to_cpu(rxd->ppdu_start.info2),
679                                     __le32_to_cpu(rxd->ppdu_start.info3),
680                                     __le32_to_cpu(rxd->ppdu_start.info4));
681
682                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
683                                     __le32_to_cpu(rxd->msdu_end.common.info0),
684                                     __le32_to_cpu(rxd->mpdu_end.info0));
685
686                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
687                                         "rx desc msdu payload: ",
688                                         rxd->msdu_payload, 50);
689                 }
690
691                 status->rate_idx = mcs;
692                 status->nss = nss;
693
694                 if (sgi)
695                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
696
697                 switch (bw) {
698                 /* 20MHZ */
699                 case 0:
700                         break;
701                 /* 40MHZ */
702                 case 1:
703                         status->bw = RATE_INFO_BW_40;
704                         break;
705                 /* 80MHZ */
706                 case 2:
707                         status->bw = RATE_INFO_BW_80;
708                         break;
709                 case 3:
710                         status->bw = RATE_INFO_BW_160;
711                         break;
712                 }
713
714                 status->encoding = RX_ENC_VHT;
715                 break;
716         default:
717                 break;
718         }
719 }
720
721 static struct ieee80211_channel *
722 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
723 {
724         struct ath10k_peer *peer;
725         struct ath10k_vif *arvif;
726         struct cfg80211_chan_def def;
727         u16 peer_id;
728
729         lockdep_assert_held(&ar->data_lock);
730
731         if (!rxd)
732                 return NULL;
733
734         if (rxd->attention.flags &
735             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
736                 return NULL;
737
738         if (!(rxd->msdu_end.common.info0 &
739               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
740                 return NULL;
741
742         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
743                      RX_MPDU_START_INFO0_PEER_IDX);
744
745         peer = ath10k_peer_find_by_id(ar, peer_id);
746         if (!peer)
747                 return NULL;
748
749         arvif = ath10k_get_arvif(ar, peer->vdev_id);
750         if (WARN_ON_ONCE(!arvif))
751                 return NULL;
752
753         if (ath10k_mac_vif_chan(arvif->vif, &def))
754                 return NULL;
755
756         return def.chan;
757 }
758
759 static struct ieee80211_channel *
760 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
761 {
762         struct ath10k_vif *arvif;
763         struct cfg80211_chan_def def;
764
765         lockdep_assert_held(&ar->data_lock);
766
767         list_for_each_entry(arvif, &ar->arvifs, list) {
768                 if (arvif->vdev_id == vdev_id &&
769                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
770                         return def.chan;
771         }
772
773         return NULL;
774 }
775
776 static void
777 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
778                               struct ieee80211_chanctx_conf *conf,
779                               void *data)
780 {
781         struct cfg80211_chan_def *def = data;
782
783         *def = conf->def;
784 }
785
786 static struct ieee80211_channel *
787 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
788 {
789         struct cfg80211_chan_def def = {};
790
791         ieee80211_iter_chan_contexts_atomic(ar->hw,
792                                             ath10k_htt_rx_h_any_chan_iter,
793                                             &def);
794
795         return def.chan;
796 }
797
798 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
799                                     struct ieee80211_rx_status *status,
800                                     struct htt_rx_desc *rxd,
801                                     u32 vdev_id)
802 {
803         struct ieee80211_channel *ch;
804
805         spin_lock_bh(&ar->data_lock);
806         ch = ar->scan_channel;
807         if (!ch)
808                 ch = ar->rx_channel;
809         if (!ch)
810                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
811         if (!ch)
812                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
813         if (!ch)
814                 ch = ath10k_htt_rx_h_any_channel(ar);
815         if (!ch)
816                 ch = ar->tgt_oper_chan;
817         spin_unlock_bh(&ar->data_lock);
818
819         if (!ch)
820                 return false;
821
822         status->band = ch->band;
823         status->freq = ch->center_freq;
824
825         return true;
826 }
827
828 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
829                                    struct ieee80211_rx_status *status,
830                                    struct htt_rx_desc *rxd)
831 {
832         int i;
833
834         for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
835                 status->chains &= ~BIT(i);
836
837                 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
838                         status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
839                                 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
840
841                         status->chains |= BIT(i);
842                 }
843         }
844
845         /* FIXME: Get real NF */
846         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
847                          rxd->ppdu_start.rssi_comb;
848         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
849 }
850
851 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
852                                     struct ieee80211_rx_status *status,
853                                     struct htt_rx_desc *rxd)
854 {
855         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
856          * means all prior MSDUs in a PPDU are reported to mac80211 without the
857          * TSF. Is it worth holding frames until end of PPDU is known?
858          *
859          * FIXME: Can we get/compute 64bit TSF?
860          */
861         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
862         status->flag |= RX_FLAG_MACTIME_END;
863 }
864
865 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
866                                  struct sk_buff_head *amsdu,
867                                  struct ieee80211_rx_status *status,
868                                  u32 vdev_id)
869 {
870         struct sk_buff *first;
871         struct htt_rx_desc *rxd;
872         bool is_first_ppdu;
873         bool is_last_ppdu;
874
875         if (skb_queue_empty(amsdu))
876                 return;
877
878         first = skb_peek(amsdu);
879         rxd = (void *)first->data - sizeof(*rxd);
880
881         is_first_ppdu = !!(rxd->attention.flags &
882                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
883         is_last_ppdu = !!(rxd->attention.flags &
884                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
885
886         if (is_first_ppdu) {
887                 /* New PPDU starts so clear out the old per-PPDU status. */
888                 status->freq = 0;
889                 status->rate_idx = 0;
890                 status->nss = 0;
891                 status->encoding = RX_ENC_LEGACY;
892                 status->bw = RATE_INFO_BW_20;
893
894                 status->flag &= ~RX_FLAG_MACTIME_END;
895                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
896
897                 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
898                 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
899                 status->ampdu_reference = ar->ampdu_reference;
900
901                 ath10k_htt_rx_h_signal(ar, status, rxd);
902                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
903                 ath10k_htt_rx_h_rates(ar, status, rxd);
904         }
905
906         if (is_last_ppdu) {
907                 ath10k_htt_rx_h_mactime(ar, status, rxd);
908
909                 /* set ampdu last segment flag */
910                 status->flag |= RX_FLAG_AMPDU_IS_LAST;
911                 ar->ampdu_reference++;
912         }
913 }
914
915 static const char * const tid_to_ac[] = {
916         "BE",
917         "BK",
918         "BK",
919         "BE",
920         "VI",
921         "VI",
922         "VO",
923         "VO",
924 };
925
926 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
927 {
928         u8 *qc;
929         int tid;
930
931         if (!ieee80211_is_data_qos(hdr->frame_control))
932                 return "";
933
934         qc = ieee80211_get_qos_ctl(hdr);
935         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
936         if (tid < 8)
937                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
938         else
939                 snprintf(out, size, "tid %d", tid);
940
941         return out;
942 }
943
944 static void ath10k_process_rx(struct ath10k *ar,
945                               struct ieee80211_rx_status *rx_status,
946                               struct sk_buff *skb)
947 {
948         struct ieee80211_rx_status *status;
949         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
950         char tid[32];
951
952         status = IEEE80211_SKB_RXCB(skb);
953         *status = *rx_status;
954
955         ath10k_dbg(ar, ATH10K_DBG_DATA,
956                    "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
957                    skb,
958                    skb->len,
959                    ieee80211_get_SA(hdr),
960                    ath10k_get_tid(hdr, tid, sizeof(tid)),
961                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
962                                                         "mcast" : "ucast",
963                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
964                    (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
965                    (status->encoding == RX_ENC_HT) ? "ht" : "",
966                    (status->encoding == RX_ENC_VHT) ? "vht" : "",
967                    (status->bw == RATE_INFO_BW_40) ? "40" : "",
968                    (status->bw == RATE_INFO_BW_80) ? "80" : "",
969                    (status->bw == RATE_INFO_BW_160) ? "160" : "",
970                    status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
971                    status->rate_idx,
972                    status->nss,
973                    status->freq,
974                    status->band, status->flag,
975                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
976                    !!(status->flag & RX_FLAG_MMIC_ERROR),
977                    !!(status->flag & RX_FLAG_AMSDU_MORE));
978         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
979                         skb->data, skb->len);
980         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
981         trace_ath10k_rx_payload(ar, skb->data, skb->len);
982
983         ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
984 }
985
986 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
987                                       struct ieee80211_hdr *hdr)
988 {
989         int len = ieee80211_hdrlen(hdr->frame_control);
990
991         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
992                       ar->running_fw->fw_file.fw_features))
993                 len = round_up(len, 4);
994
995         return len;
996 }
997
998 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
999                                         struct sk_buff *msdu,
1000                                         struct ieee80211_rx_status *status,
1001                                         enum htt_rx_mpdu_encrypt_type enctype,
1002                                         bool is_decrypted)
1003 {
1004         struct ieee80211_hdr *hdr;
1005         struct htt_rx_desc *rxd;
1006         size_t hdr_len;
1007         size_t crypto_len;
1008         bool is_first;
1009         bool is_last;
1010
1011         rxd = (void *)msdu->data - sizeof(*rxd);
1012         is_first = !!(rxd->msdu_end.common.info0 &
1013                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1014         is_last = !!(rxd->msdu_end.common.info0 &
1015                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1016
1017         /* Delivered decapped frame:
1018          * [802.11 header]
1019          * [crypto param] <-- can be trimmed if !fcs_err &&
1020          *                    !decrypt_err && !peer_idx_invalid
1021          * [amsdu header] <-- only if A-MSDU
1022          * [rfc1042/llc]
1023          * [payload]
1024          * [FCS] <-- at end, needs to be trimmed
1025          */
1026
1027         /* This probably shouldn't happen but warn just in case */
1028         if (unlikely(WARN_ON_ONCE(!is_first)))
1029                 return;
1030
1031         /* This probably shouldn't happen but warn just in case */
1032         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1033                 return;
1034
1035         skb_trim(msdu, msdu->len - FCS_LEN);
1036
1037         /* In most cases this will be true for sniffed frames. It makes sense
1038          * to deliver them as-is without stripping the crypto param. This is
1039          * necessary for software based decryption.
1040          *
1041          * If there's no error then the frame is decrypted. At least that is
1042          * the case for frames that come in via fragmented rx indication.
1043          */
1044         if (!is_decrypted)
1045                 return;
1046
1047         /* The payload is decrypted so strip crypto params. Start from tail
1048          * since hdr is used to compute some stuff.
1049          */
1050
1051         hdr = (void *)msdu->data;
1052
1053         /* Tail */
1054         if (status->flag & RX_FLAG_IV_STRIPPED)
1055                 skb_trim(msdu, msdu->len -
1056                          ath10k_htt_rx_crypto_tail_len(ar, enctype));
1057
1058         /* MMIC */
1059         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1060             !ieee80211_has_morefrags(hdr->frame_control) &&
1061             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1062                 skb_trim(msdu, msdu->len - 8);
1063
1064         /* Head */
1065         if (status->flag & RX_FLAG_IV_STRIPPED) {
1066                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1067                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1068
1069                 memmove((void *)msdu->data + crypto_len,
1070                         (void *)msdu->data, hdr_len);
1071                 skb_pull(msdu, crypto_len);
1072         }
1073 }
1074
1075 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1076                                           struct sk_buff *msdu,
1077                                           struct ieee80211_rx_status *status,
1078                                           const u8 first_hdr[64])
1079 {
1080         struct ieee80211_hdr *hdr;
1081         struct htt_rx_desc *rxd;
1082         size_t hdr_len;
1083         u8 da[ETH_ALEN];
1084         u8 sa[ETH_ALEN];
1085         int l3_pad_bytes;
1086
1087         /* Delivered decapped frame:
1088          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1089          * [rfc1042/llc]
1090          *
1091          * Note: The nwifi header doesn't have QoS Control and is
1092          * (always?) a 3addr frame.
1093          *
1094          * Note2: There's no A-MSDU subframe header. Even if it's part
1095          * of an A-MSDU.
1096          */
1097
1098         /* pull decapped header and copy SA & DA */
1099         rxd = (void *)msdu->data - sizeof(*rxd);
1100
1101         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1102         skb_put(msdu, l3_pad_bytes);
1103
1104         hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1105
1106         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1107         ether_addr_copy(da, ieee80211_get_DA(hdr));
1108         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1109         skb_pull(msdu, hdr_len);
1110
1111         /* push original 802.11 header */
1112         hdr = (struct ieee80211_hdr *)first_hdr;
1113         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1114         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1115
1116         /* original 802.11 header has a different DA and in
1117          * case of 4addr it may also have different SA
1118          */
1119         hdr = (struct ieee80211_hdr *)msdu->data;
1120         ether_addr_copy(ieee80211_get_DA(hdr), da);
1121         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1122 }
1123
1124 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1125                                           struct sk_buff *msdu,
1126                                           enum htt_rx_mpdu_encrypt_type enctype)
1127 {
1128         struct ieee80211_hdr *hdr;
1129         struct htt_rx_desc *rxd;
1130         size_t hdr_len, crypto_len;
1131         void *rfc1042;
1132         bool is_first, is_last, is_amsdu;
1133         int bytes_aligned = ar->hw_params.decap_align_bytes;
1134
1135         rxd = (void *)msdu->data - sizeof(*rxd);
1136         hdr = (void *)rxd->rx_hdr_status;
1137
1138         is_first = !!(rxd->msdu_end.common.info0 &
1139                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1140         is_last = !!(rxd->msdu_end.common.info0 &
1141                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1142         is_amsdu = !(is_first && is_last);
1143
1144         rfc1042 = hdr;
1145
1146         if (is_first) {
1147                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1148                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1149
1150                 rfc1042 += round_up(hdr_len, bytes_aligned) +
1151                            round_up(crypto_len, bytes_aligned);
1152         }
1153
1154         if (is_amsdu)
1155                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1156
1157         return rfc1042;
1158 }
1159
1160 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1161                                         struct sk_buff *msdu,
1162                                         struct ieee80211_rx_status *status,
1163                                         const u8 first_hdr[64],
1164                                         enum htt_rx_mpdu_encrypt_type enctype)
1165 {
1166         struct ieee80211_hdr *hdr;
1167         struct ethhdr *eth;
1168         size_t hdr_len;
1169         void *rfc1042;
1170         u8 da[ETH_ALEN];
1171         u8 sa[ETH_ALEN];
1172         int l3_pad_bytes;
1173         struct htt_rx_desc *rxd;
1174
1175         /* Delivered decapped frame:
1176          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1177          * [payload]
1178          */
1179
1180         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1181         if (WARN_ON_ONCE(!rfc1042))
1182                 return;
1183
1184         rxd = (void *)msdu->data - sizeof(*rxd);
1185         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1186         skb_put(msdu, l3_pad_bytes);
1187         skb_pull(msdu, l3_pad_bytes);
1188
1189         /* pull decapped header and copy SA & DA */
1190         eth = (struct ethhdr *)msdu->data;
1191         ether_addr_copy(da, eth->h_dest);
1192         ether_addr_copy(sa, eth->h_source);
1193         skb_pull(msdu, sizeof(struct ethhdr));
1194
1195         /* push rfc1042/llc/snap */
1196         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1197                sizeof(struct rfc1042_hdr));
1198
1199         /* push original 802.11 header */
1200         hdr = (struct ieee80211_hdr *)first_hdr;
1201         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1202         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1203
1204         /* original 802.11 header has a different DA and in
1205          * case of 4addr it may also have different SA
1206          */
1207         hdr = (struct ieee80211_hdr *)msdu->data;
1208         ether_addr_copy(ieee80211_get_DA(hdr), da);
1209         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1210 }
1211
1212 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1213                                          struct sk_buff *msdu,
1214                                          struct ieee80211_rx_status *status,
1215                                          const u8 first_hdr[64])
1216 {
1217         struct ieee80211_hdr *hdr;
1218         size_t hdr_len;
1219         int l3_pad_bytes;
1220         struct htt_rx_desc *rxd;
1221
1222         /* Delivered decapped frame:
1223          * [amsdu header] <-- replaced with 802.11 hdr
1224          * [rfc1042/llc]
1225          * [payload]
1226          */
1227
1228         rxd = (void *)msdu->data - sizeof(*rxd);
1229         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1230
1231         skb_put(msdu, l3_pad_bytes);
1232         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1233
1234         hdr = (struct ieee80211_hdr *)first_hdr;
1235         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1236         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1237 }
1238
1239 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1240                                     struct sk_buff *msdu,
1241                                     struct ieee80211_rx_status *status,
1242                                     u8 first_hdr[64],
1243                                     enum htt_rx_mpdu_encrypt_type enctype,
1244                                     bool is_decrypted)
1245 {
1246         struct htt_rx_desc *rxd;
1247         enum rx_msdu_decap_format decap;
1248
1249         /* First msdu's decapped header:
1250          * [802.11 header] <-- padded to 4 bytes long
1251          * [crypto param] <-- padded to 4 bytes long
1252          * [amsdu header] <-- only if A-MSDU
1253          * [rfc1042/llc]
1254          *
1255          * Other (2nd, 3rd, ..) msdu's decapped header:
1256          * [amsdu header] <-- only if A-MSDU
1257          * [rfc1042/llc]
1258          */
1259
1260         rxd = (void *)msdu->data - sizeof(*rxd);
1261         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1262                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1263
1264         switch (decap) {
1265         case RX_MSDU_DECAP_RAW:
1266                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1267                                             is_decrypted);
1268                 break;
1269         case RX_MSDU_DECAP_NATIVE_WIFI:
1270                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1271                 break;
1272         case RX_MSDU_DECAP_ETHERNET2_DIX:
1273                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1274                 break;
1275         case RX_MSDU_DECAP_8023_SNAP_LLC:
1276                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1277                 break;
1278         }
1279 }
1280
1281 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1282 {
1283         struct htt_rx_desc *rxd;
1284         u32 flags, info;
1285         bool is_ip4, is_ip6;
1286         bool is_tcp, is_udp;
1287         bool ip_csum_ok, tcpudp_csum_ok;
1288
1289         rxd = (void *)skb->data - sizeof(*rxd);
1290         flags = __le32_to_cpu(rxd->attention.flags);
1291         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1292
1293         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1294         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1295         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1296         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1297         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1298         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1299
1300         if (!is_ip4 && !is_ip6)
1301                 return CHECKSUM_NONE;
1302         if (!is_tcp && !is_udp)
1303                 return CHECKSUM_NONE;
1304         if (!ip_csum_ok)
1305                 return CHECKSUM_NONE;
1306         if (!tcpudp_csum_ok)
1307                 return CHECKSUM_NONE;
1308
1309         return CHECKSUM_UNNECESSARY;
1310 }
1311
1312 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1313 {
1314         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1315 }
1316
1317 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1318                                  struct sk_buff_head *amsdu,
1319                                  struct ieee80211_rx_status *status)
1320 {
1321         struct sk_buff *first;
1322         struct sk_buff *last;
1323         struct sk_buff *msdu;
1324         struct htt_rx_desc *rxd;
1325         struct ieee80211_hdr *hdr;
1326         enum htt_rx_mpdu_encrypt_type enctype;
1327         u8 first_hdr[64];
1328         u8 *qos;
1329         size_t hdr_len;
1330         bool has_fcs_err;
1331         bool has_crypto_err;
1332         bool has_tkip_err;
1333         bool has_peer_idx_invalid;
1334         bool is_decrypted;
1335         bool is_mgmt;
1336         u32 attention;
1337
1338         if (skb_queue_empty(amsdu))
1339                 return;
1340
1341         first = skb_peek(amsdu);
1342         rxd = (void *)first->data - sizeof(*rxd);
1343
1344         is_mgmt = !!(rxd->attention.flags &
1345                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1346
1347         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1348                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1349
1350         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1351          * decapped header. It'll be used for undecapping of each MSDU.
1352          */
1353         hdr = (void *)rxd->rx_hdr_status;
1354         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1355         memcpy(first_hdr, hdr, hdr_len);
1356
1357         /* Each A-MSDU subframe will use the original header as the base and be
1358          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1359          */
1360         hdr = (void *)first_hdr;
1361         qos = ieee80211_get_qos_ctl(hdr);
1362         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1363
1364         /* Some attention flags are valid only in the last MSDU. */
1365         last = skb_peek_tail(amsdu);
1366         rxd = (void *)last->data - sizeof(*rxd);
1367         attention = __le32_to_cpu(rxd->attention.flags);
1368
1369         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1370         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1371         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1372         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1373
1374         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1375          * e.g. due to fcs error, missing peer or invalid key data it will
1376          * report the frame as raw.
1377          */
1378         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1379                         !has_fcs_err &&
1380                         !has_crypto_err &&
1381                         !has_peer_idx_invalid);
1382
1383         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1384         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1385                           RX_FLAG_MMIC_ERROR |
1386                           RX_FLAG_DECRYPTED |
1387                           RX_FLAG_IV_STRIPPED |
1388                           RX_FLAG_ONLY_MONITOR |
1389                           RX_FLAG_MMIC_STRIPPED);
1390
1391         if (has_fcs_err)
1392                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1393
1394         if (has_tkip_err)
1395                 status->flag |= RX_FLAG_MMIC_ERROR;
1396
1397         /* Firmware reports all necessary management frames via WMI already.
1398          * They are not reported to monitor interfaces at all so pass the ones
1399          * coming via HTT to monitor interfaces instead. This simplifies
1400          * matters a lot.
1401          */
1402         if (is_mgmt)
1403                 status->flag |= RX_FLAG_ONLY_MONITOR;
1404
1405         if (is_decrypted) {
1406                 status->flag |= RX_FLAG_DECRYPTED;
1407
1408                 if (likely(!is_mgmt))
1409                         status->flag |= RX_FLAG_IV_STRIPPED |
1410                                         RX_FLAG_MMIC_STRIPPED;
1411 }
1412
1413         skb_queue_walk(amsdu, msdu) {
1414                 ath10k_htt_rx_h_csum_offload(msdu);
1415                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1416                                         is_decrypted);
1417
1418                 /* Undecapping involves copying the original 802.11 header back
1419                  * to sk_buff. If frame is protected and hardware has decrypted
1420                  * it then remove the protected bit.
1421                  */
1422                 if (!is_decrypted)
1423                         continue;
1424                 if (is_mgmt)
1425                         continue;
1426
1427                 hdr = (void *)msdu->data;
1428                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1429         }
1430 }
1431
1432 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1433                                     struct sk_buff_head *amsdu,
1434                                     struct ieee80211_rx_status *status)
1435 {
1436         struct sk_buff *msdu;
1437
1438         while ((msdu = __skb_dequeue(amsdu))) {
1439                 /* Setup per-MSDU flags */
1440                 if (skb_queue_empty(amsdu))
1441                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1442                 else
1443                         status->flag |= RX_FLAG_AMSDU_MORE;
1444
1445                 ath10k_process_rx(ar, status, msdu);
1446         }
1447 }
1448
1449 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1450 {
1451         struct sk_buff *skb, *first;
1452         int space;
1453         int total_len = 0;
1454
1455         /* TODO:  Might could optimize this by using
1456          * skb_try_coalesce or similar method to
1457          * decrease copying, or maybe get mac80211 to
1458          * provide a way to just receive a list of
1459          * skb?
1460          */
1461
1462         first = __skb_dequeue(amsdu);
1463
1464         /* Allocate total length all at once. */
1465         skb_queue_walk(amsdu, skb)
1466                 total_len += skb->len;
1467
1468         space = total_len - skb_tailroom(first);
1469         if ((space > 0) &&
1470             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1471                 /* TODO:  bump some rx-oom error stat */
1472                 /* put it back together so we can free the
1473                  * whole list at once.
1474                  */
1475                 __skb_queue_head(amsdu, first);
1476                 return -1;
1477         }
1478
1479         /* Walk list again, copying contents into
1480          * msdu_head
1481          */
1482         while ((skb = __skb_dequeue(amsdu))) {
1483                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1484                                           skb->len);
1485                 dev_kfree_skb_any(skb);
1486         }
1487
1488         __skb_queue_head(amsdu, first);
1489         return 0;
1490 }
1491
1492 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1493                                     struct sk_buff_head *amsdu)
1494 {
1495         struct sk_buff *first;
1496         struct htt_rx_desc *rxd;
1497         enum rx_msdu_decap_format decap;
1498
1499         first = skb_peek(amsdu);
1500         rxd = (void *)first->data - sizeof(*rxd);
1501         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1502                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1503
1504         /* FIXME: Current unchaining logic can only handle simple case of raw
1505          * msdu chaining. If decapping is other than raw the chaining may be
1506          * more complex and this isn't handled by the current code. Don't even
1507          * try re-constructing such frames - it'll be pretty much garbage.
1508          */
1509         if (decap != RX_MSDU_DECAP_RAW ||
1510             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1511                 __skb_queue_purge(amsdu);
1512                 return;
1513         }
1514
1515         ath10k_unchain_msdu(amsdu);
1516 }
1517
1518 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1519                                         struct sk_buff_head *amsdu,
1520                                         struct ieee80211_rx_status *rx_status)
1521 {
1522         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1523          * invalid/dangerous frames.
1524          */
1525
1526         if (!rx_status->freq) {
1527                 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1528                 return false;
1529         }
1530
1531         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1532                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1533                 return false;
1534         }
1535
1536         return true;
1537 }
1538
1539 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1540                                    struct sk_buff_head *amsdu,
1541                                    struct ieee80211_rx_status *rx_status)
1542 {
1543         if (skb_queue_empty(amsdu))
1544                 return;
1545
1546         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1547                 return;
1548
1549         __skb_queue_purge(amsdu);
1550 }
1551
1552 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1553 {
1554         struct ath10k *ar = htt->ar;
1555         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1556         struct sk_buff_head amsdu;
1557         int ret, num_msdus;
1558
1559         __skb_queue_head_init(&amsdu);
1560
1561         spin_lock_bh(&htt->rx_ring.lock);
1562         if (htt->rx_confused) {
1563                 spin_unlock_bh(&htt->rx_ring.lock);
1564                 return -EIO;
1565         }
1566         ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1567         spin_unlock_bh(&htt->rx_ring.lock);
1568
1569         if (ret < 0) {
1570                 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1571                 __skb_queue_purge(&amsdu);
1572                 /* FIXME: It's probably a good idea to reboot the
1573                  * device instead of leaving it inoperable.
1574                  */
1575                 htt->rx_confused = true;
1576                 return ret;
1577         }
1578
1579         num_msdus = skb_queue_len(&amsdu);
1580         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1581
1582         /* only for ret = 1 indicates chained msdus */
1583         if (ret > 0)
1584                 ath10k_htt_rx_h_unchain(ar, &amsdu);
1585
1586         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1587         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1588         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1589
1590         return num_msdus;
1591 }
1592
1593 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1594                                       struct htt_rx_indication *rx)
1595 {
1596         struct ath10k *ar = htt->ar;
1597         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1598         int num_mpdu_ranges;
1599         int i, mpdu_count = 0;
1600
1601         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1602                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1603         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1604
1605         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1606                         rx, sizeof(*rx) +
1607                         (sizeof(struct htt_rx_indication_mpdu_range) *
1608                                 num_mpdu_ranges));
1609
1610         for (i = 0; i < num_mpdu_ranges; i++)
1611                 mpdu_count += mpdu_ranges[i].mpdu_count;
1612
1613         atomic_add(mpdu_count, &htt->num_mpdus_ready);
1614 }
1615
1616 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1617                                        struct sk_buff *skb)
1618 {
1619         struct ath10k_htt *htt = &ar->htt;
1620         struct htt_resp *resp = (struct htt_resp *)skb->data;
1621         struct htt_tx_done tx_done = {};
1622         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1623         __le16 msdu_id;
1624         int i;
1625
1626         switch (status) {
1627         case HTT_DATA_TX_STATUS_NO_ACK:
1628                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1629                 break;
1630         case HTT_DATA_TX_STATUS_OK:
1631                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1632                 break;
1633         case HTT_DATA_TX_STATUS_DISCARD:
1634         case HTT_DATA_TX_STATUS_POSTPONE:
1635         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1636                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1637                 break;
1638         default:
1639                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1640                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1641                 break;
1642         }
1643
1644         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1645                    resp->data_tx_completion.num_msdus);
1646
1647         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1648                 msdu_id = resp->data_tx_completion.msdus[i];
1649                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1650
1651                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1652                  * interrupt and main interrupt (MSI/-X range case) for the same
1653                  * HTC service so it should be safe to use kfifo_put w/o lock.
1654                  *
1655                  * From kfifo_put() documentation:
1656                  *  Note that with only one concurrent reader and one concurrent
1657                  *  writer, you don't need extra locking to use these macro.
1658                  */
1659                 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1660                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1661                                     tx_done.msdu_id, tx_done.status);
1662                         ath10k_txrx_tx_unref(htt, &tx_done);
1663                 }
1664         }
1665 }
1666
1667 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1668 {
1669         struct htt_rx_addba *ev = &resp->rx_addba;
1670         struct ath10k_peer *peer;
1671         struct ath10k_vif *arvif;
1672         u16 info0, tid, peer_id;
1673
1674         info0 = __le16_to_cpu(ev->info0);
1675         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1676         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1677
1678         ath10k_dbg(ar, ATH10K_DBG_HTT,
1679                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1680                    tid, peer_id, ev->window_size);
1681
1682         spin_lock_bh(&ar->data_lock);
1683         peer = ath10k_peer_find_by_id(ar, peer_id);
1684         if (!peer) {
1685                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1686                             peer_id);
1687                 spin_unlock_bh(&ar->data_lock);
1688                 return;
1689         }
1690
1691         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1692         if (!arvif) {
1693                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1694                             peer->vdev_id);
1695                 spin_unlock_bh(&ar->data_lock);
1696                 return;
1697         }
1698
1699         ath10k_dbg(ar, ATH10K_DBG_HTT,
1700                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1701                    peer->addr, tid, ev->window_size);
1702
1703         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1704         spin_unlock_bh(&ar->data_lock);
1705 }
1706
1707 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1708 {
1709         struct htt_rx_delba *ev = &resp->rx_delba;
1710         struct ath10k_peer *peer;
1711         struct ath10k_vif *arvif;
1712         u16 info0, tid, peer_id;
1713
1714         info0 = __le16_to_cpu(ev->info0);
1715         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1716         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1717
1718         ath10k_dbg(ar, ATH10K_DBG_HTT,
1719                    "htt rx delba tid %hu peer_id %hu\n",
1720                    tid, peer_id);
1721
1722         spin_lock_bh(&ar->data_lock);
1723         peer = ath10k_peer_find_by_id(ar, peer_id);
1724         if (!peer) {
1725                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1726                             peer_id);
1727                 spin_unlock_bh(&ar->data_lock);
1728                 return;
1729         }
1730
1731         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1732         if (!arvif) {
1733                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1734                             peer->vdev_id);
1735                 spin_unlock_bh(&ar->data_lock);
1736                 return;
1737         }
1738
1739         ath10k_dbg(ar, ATH10K_DBG_HTT,
1740                    "htt rx stop rx ba session sta %pM tid %hu\n",
1741                    peer->addr, tid);
1742
1743         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1744         spin_unlock_bh(&ar->data_lock);
1745 }
1746
1747 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1748                                        struct sk_buff_head *amsdu,
1749                                        int budget_left)
1750 {
1751         struct sk_buff *msdu;
1752         struct htt_rx_desc *rxd;
1753
1754         if (skb_queue_empty(list))
1755                 return -ENOBUFS;
1756
1757         if (WARN_ON(!skb_queue_empty(amsdu)))
1758                 return -EINVAL;
1759
1760         while ((msdu = __skb_dequeue(list)) && budget_left) {
1761                 __skb_queue_tail(amsdu, msdu);
1762                 budget_left--;
1763
1764                 rxd = (void *)msdu->data - sizeof(*rxd);
1765                 if (rxd->msdu_end.common.info0 &
1766                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1767                         break;
1768         }
1769
1770         msdu = skb_peek_tail(amsdu);
1771         rxd = (void *)msdu->data - sizeof(*rxd);
1772         if (!(rxd->msdu_end.common.info0 &
1773               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1774                 skb_queue_splice_init(amsdu, list);
1775                 return -EAGAIN;
1776         }
1777
1778         return 0;
1779 }
1780
1781 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1782                                             struct sk_buff *skb)
1783 {
1784         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1785
1786         if (!ieee80211_has_protected(hdr->frame_control))
1787                 return;
1788
1789         /* Offloaded frames are already decrypted but firmware insists they are
1790          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1791          * will drop the frame.
1792          */
1793
1794         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1795         status->flag |= RX_FLAG_DECRYPTED |
1796                         RX_FLAG_IV_STRIPPED |
1797                         RX_FLAG_MMIC_STRIPPED;
1798 }
1799
1800 static int ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1801                                       struct sk_buff_head *list)
1802 {
1803         struct ath10k_htt *htt = &ar->htt;
1804         struct ieee80211_rx_status *status = &htt->rx_status;
1805         struct htt_rx_offload_msdu *rx;
1806         struct sk_buff *msdu;
1807         size_t offset;
1808         int num_msdu = 0;
1809
1810         while ((msdu = __skb_dequeue(list))) {
1811                 /* Offloaded frames don't have Rx descriptor. Instead they have
1812                  * a short meta information header.
1813                  */
1814
1815                 rx = (void *)msdu->data;
1816
1817                 skb_put(msdu, sizeof(*rx));
1818                 skb_pull(msdu, sizeof(*rx));
1819
1820                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1821                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1822                         dev_kfree_skb_any(msdu);
1823                         continue;
1824                 }
1825
1826                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1827
1828                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1829                  * actual payload is unaligned. Align the frame.  Otherwise
1830                  * mac80211 complains.  This shouldn't reduce performance much
1831                  * because these offloaded frames are rare.
1832                  */
1833                 offset = 4 - ((unsigned long)msdu->data & 3);
1834                 skb_put(msdu, offset);
1835                 memmove(msdu->data + offset, msdu->data, msdu->len);
1836                 skb_pull(msdu, offset);
1837
1838                 /* FIXME: The frame is NWifi. Re-construct QoS Control
1839                  * if possible later.
1840                  */
1841
1842                 memset(status, 0, sizeof(*status));
1843                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1844
1845                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1846                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1847                 ath10k_process_rx(ar, status, msdu);
1848                 num_msdu++;
1849         }
1850         return num_msdu;
1851 }
1852
1853 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb,
1854                                     int budget_left)
1855 {
1856         struct ath10k_htt *htt = &ar->htt;
1857         struct htt_resp *resp = (void *)skb->data;
1858         struct ieee80211_rx_status *status = &htt->rx_status;
1859         struct sk_buff_head list;
1860         struct sk_buff_head amsdu;
1861         u16 peer_id;
1862         u16 msdu_count;
1863         u8 vdev_id;
1864         u8 tid;
1865         bool offload;
1866         bool frag;
1867         int ret, num_msdus = 0;
1868
1869         lockdep_assert_held(&htt->rx_ring.lock);
1870
1871         if (htt->rx_confused)
1872                 return -EIO;
1873
1874         skb_pull(skb, sizeof(resp->hdr));
1875         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1876
1877         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1878         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1879         vdev_id = resp->rx_in_ord_ind.vdev_id;
1880         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1881         offload = !!(resp->rx_in_ord_ind.info &
1882                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1883         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1884
1885         ath10k_dbg(ar, ATH10K_DBG_HTT,
1886                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1887                    vdev_id, peer_id, tid, offload, frag, msdu_count);
1888
1889         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1890                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1891                 return -EINVAL;
1892         }
1893
1894         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1895          * extracted and processed.
1896          */
1897         __skb_queue_head_init(&list);
1898         ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1899         if (ret < 0) {
1900                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1901                 htt->rx_confused = true;
1902                 return -EIO;
1903         }
1904
1905         /* Offloaded frames are very different and need to be handled
1906          * separately.
1907          */
1908         if (offload)
1909                 num_msdus = ath10k_htt_rx_h_rx_offload(ar, &list);
1910
1911         while (!skb_queue_empty(&list) && budget_left) {
1912                 __skb_queue_head_init(&amsdu);
1913                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu, budget_left);
1914                 switch (ret) {
1915                 case 0:
1916                         /* Note: The in-order indication may report interleaved
1917                          * frames from different PPDUs meaning reported rx rate
1918                          * to mac80211 isn't accurate/reliable. It's still
1919                          * better to report something than nothing though. This
1920                          * should still give an idea about rx rate to the user.
1921                          */
1922                         num_msdus += skb_queue_len(&amsdu);
1923                         budget_left -= skb_queue_len(&amsdu);
1924                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1925                         ath10k_htt_rx_h_filter(ar, &amsdu, status);
1926                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1927                         ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1928                         break;
1929                 case -EAGAIN:
1930                         /* fall through */
1931                 default:
1932                         /* Should not happen. */
1933                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1934                         htt->rx_confused = true;
1935                         __skb_queue_purge(&list);
1936                         return -EIO;
1937                 }
1938         }
1939         return num_msdus;
1940 }
1941
1942 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1943                                                    const __le32 *resp_ids,
1944                                                    int num_resp_ids)
1945 {
1946         int i;
1947         u32 resp_id;
1948
1949         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
1950                    num_resp_ids);
1951
1952         for (i = 0; i < num_resp_ids; i++) {
1953                 resp_id = le32_to_cpu(resp_ids[i]);
1954
1955                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
1956                            resp_id);
1957
1958                 /* TODO: free resp_id */
1959         }
1960 }
1961
1962 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
1963 {
1964         struct ieee80211_hw *hw = ar->hw;
1965         struct ieee80211_txq *txq;
1966         struct htt_resp *resp = (struct htt_resp *)skb->data;
1967         struct htt_tx_fetch_record *record;
1968         size_t len;
1969         size_t max_num_bytes;
1970         size_t max_num_msdus;
1971         size_t num_bytes;
1972         size_t num_msdus;
1973         const __le32 *resp_ids;
1974         u16 num_records;
1975         u16 num_resp_ids;
1976         u16 peer_id;
1977         u8 tid;
1978         int ret;
1979         int i;
1980
1981         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
1982
1983         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
1984         if (unlikely(skb->len < len)) {
1985                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
1986                 return;
1987         }
1988
1989         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
1990         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
1991
1992         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
1993         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
1994
1995         if (unlikely(skb->len < len)) {
1996                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
1997                 return;
1998         }
1999
2000         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2001                    num_records, num_resp_ids,
2002                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2003
2004         if (!ar->htt.tx_q_state.enabled) {
2005                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2006                 return;
2007         }
2008
2009         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2010                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2011                 return;
2012         }
2013
2014         rcu_read_lock();
2015
2016         for (i = 0; i < num_records; i++) {
2017                 record = &resp->tx_fetch_ind.records[i];
2018                 peer_id = MS(le16_to_cpu(record->info),
2019                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2020                 tid = MS(le16_to_cpu(record->info),
2021                          HTT_TX_FETCH_RECORD_INFO_TID);
2022                 max_num_msdus = le16_to_cpu(record->num_msdus);
2023                 max_num_bytes = le32_to_cpu(record->num_bytes);
2024
2025                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2026                            i, peer_id, tid, max_num_msdus, max_num_bytes);
2027
2028                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2029                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2030                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2031                                     peer_id, tid);
2032                         continue;
2033                 }
2034
2035                 spin_lock_bh(&ar->data_lock);
2036                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2037                 spin_unlock_bh(&ar->data_lock);
2038
2039                 /* It is okay to release the lock and use txq because RCU read
2040                  * lock is held.
2041                  */
2042
2043                 if (unlikely(!txq)) {
2044                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2045                                     peer_id, tid);
2046                         continue;
2047                 }
2048
2049                 num_msdus = 0;
2050                 num_bytes = 0;
2051
2052                 while (num_msdus < max_num_msdus &&
2053                        num_bytes < max_num_bytes) {
2054                         ret = ath10k_mac_tx_push_txq(hw, txq);
2055                         if (ret < 0)
2056                                 break;
2057
2058                         num_msdus++;
2059                         num_bytes += ret;
2060                 }
2061
2062                 record->num_msdus = cpu_to_le16(num_msdus);
2063                 record->num_bytes = cpu_to_le32(num_bytes);
2064
2065                 ath10k_htt_tx_txq_recalc(hw, txq);
2066         }
2067
2068         rcu_read_unlock();
2069
2070         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2071         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2072
2073         ret = ath10k_htt_tx_fetch_resp(ar,
2074                                        resp->tx_fetch_ind.token,
2075                                        resp->tx_fetch_ind.fetch_seq_num,
2076                                        resp->tx_fetch_ind.records,
2077                                        num_records);
2078         if (unlikely(ret)) {
2079                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2080                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
2081                 /* FIXME: request fw restart */
2082         }
2083
2084         ath10k_htt_tx_txq_sync(ar);
2085 }
2086
2087 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2088                                            struct sk_buff *skb)
2089 {
2090         const struct htt_resp *resp = (void *)skb->data;
2091         size_t len;
2092         int num_resp_ids;
2093
2094         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2095
2096         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2097         if (unlikely(skb->len < len)) {
2098                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2099                 return;
2100         }
2101
2102         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2103         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2104
2105         if (unlikely(skb->len < len)) {
2106                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2107                 return;
2108         }
2109
2110         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2111                                                resp->tx_fetch_confirm.resp_ids,
2112                                                num_resp_ids);
2113 }
2114
2115 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2116                                              struct sk_buff *skb)
2117 {
2118         const struct htt_resp *resp = (void *)skb->data;
2119         const struct htt_tx_mode_switch_record *record;
2120         struct ieee80211_txq *txq;
2121         struct ath10k_txq *artxq;
2122         size_t len;
2123         size_t num_records;
2124         enum htt_tx_mode_switch_mode mode;
2125         bool enable;
2126         u16 info0;
2127         u16 info1;
2128         u16 threshold;
2129         u16 peer_id;
2130         u8 tid;
2131         int i;
2132
2133         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2134
2135         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2136         if (unlikely(skb->len < len)) {
2137                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2138                 return;
2139         }
2140
2141         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2142         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2143
2144         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2145         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2146         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2147         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2148
2149         ath10k_dbg(ar, ATH10K_DBG_HTT,
2150                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2151                    info0, info1, enable, num_records, mode, threshold);
2152
2153         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2154
2155         if (unlikely(skb->len < len)) {
2156                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2157                 return;
2158         }
2159
2160         switch (mode) {
2161         case HTT_TX_MODE_SWITCH_PUSH:
2162         case HTT_TX_MODE_SWITCH_PUSH_PULL:
2163                 break;
2164         default:
2165                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2166                             mode);
2167                 return;
2168         }
2169
2170         if (!enable)
2171                 return;
2172
2173         ar->htt.tx_q_state.enabled = enable;
2174         ar->htt.tx_q_state.mode = mode;
2175         ar->htt.tx_q_state.num_push_allowed = threshold;
2176
2177         rcu_read_lock();
2178
2179         for (i = 0; i < num_records; i++) {
2180                 record = &resp->tx_mode_switch_ind.records[i];
2181                 info0 = le16_to_cpu(record->info0);
2182                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2183                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2184
2185                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2186                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2187                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2188                                     peer_id, tid);
2189                         continue;
2190                 }
2191
2192                 spin_lock_bh(&ar->data_lock);
2193                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2194                 spin_unlock_bh(&ar->data_lock);
2195
2196                 /* It is okay to release the lock and use txq because RCU read
2197                  * lock is held.
2198                  */
2199
2200                 if (unlikely(!txq)) {
2201                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2202                                     peer_id, tid);
2203                         continue;
2204                 }
2205
2206                 spin_lock_bh(&ar->htt.tx_lock);
2207                 artxq = (void *)txq->drv_priv;
2208                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2209                 spin_unlock_bh(&ar->htt.tx_lock);
2210         }
2211
2212         rcu_read_unlock();
2213
2214         ath10k_mac_tx_push_pending(ar);
2215 }
2216
2217 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2218 {
2219         bool release;
2220
2221         release = ath10k_htt_t2h_msg_handler(ar, skb);
2222
2223         /* Free the indication buffer */
2224         if (release)
2225                 dev_kfree_skb_any(skb);
2226 }
2227
2228 static inline bool is_valid_legacy_rate(u8 rate)
2229 {
2230         static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2231                                           18, 24, 36, 48, 54};
2232         int i;
2233
2234         for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2235                 if (rate == legacy_rates[i])
2236                         return true;
2237         }
2238
2239         return false;
2240 }
2241
2242 static void
2243 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2244                                 struct ieee80211_sta *sta,
2245                                 struct ath10k_per_peer_tx_stats *peer_stats)
2246 {
2247         struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2248         u8 rate = 0, sgi;
2249         struct rate_info txrate;
2250
2251         lockdep_assert_held(&ar->data_lock);
2252
2253         txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2254         txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2255         txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2256         txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2257         sgi = ATH10K_HW_GI(peer_stats->flags);
2258
2259         if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2260                 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2261                 return;
2262         }
2263
2264         if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2265             (txrate.mcs > 7 || txrate.nss < 1)) {
2266                 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2267                             txrate.mcs, txrate.nss);
2268                 return;
2269         }
2270
2271         memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2272
2273         if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2274             txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2275                 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2276
2277                 if (!is_valid_legacy_rate(rate)) {
2278                         ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2279                                     rate);
2280                         return;
2281                 }
2282
2283                 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2284                 rate *= 10;
2285                 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2286                         rate = rate - 5;
2287                 arsta->txrate.legacy = rate;
2288         } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2289                 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2290                 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2291         } else {
2292                 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2293                 arsta->txrate.mcs = txrate.mcs;
2294         }
2295
2296         if (sgi)
2297                 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2298
2299         arsta->txrate.nss = txrate.nss;
2300         arsta->txrate.bw = txrate.bw + RATE_INFO_BW_20;
2301 }
2302
2303 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2304                                         struct sk_buff *skb)
2305 {
2306         struct htt_resp *resp = (struct htt_resp *)skb->data;
2307         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2308         struct htt_per_peer_tx_stats_ind *tx_stats;
2309         struct ieee80211_sta *sta;
2310         struct ath10k_peer *peer;
2311         int peer_id, i;
2312         u8 ppdu_len, num_ppdu;
2313
2314         num_ppdu = resp->peer_tx_stats.num_ppdu;
2315         ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2316
2317         if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2318                 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2319                 return;
2320         }
2321
2322         tx_stats = (struct htt_per_peer_tx_stats_ind *)
2323                         (resp->peer_tx_stats.payload);
2324         peer_id = __le16_to_cpu(tx_stats->peer_id);
2325
2326         rcu_read_lock();
2327         spin_lock_bh(&ar->data_lock);
2328         peer = ath10k_peer_find_by_id(ar, peer_id);
2329         if (!peer) {
2330                 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2331                             peer_id);
2332                 goto out;
2333         }
2334
2335         sta = peer->sta;
2336         for (i = 0; i < num_ppdu; i++) {
2337                 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2338                            (resp->peer_tx_stats.payload + i * ppdu_len);
2339
2340                 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2341                 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2342                 p_tx_stats->failed_bytes =
2343                                 __le32_to_cpu(tx_stats->failed_bytes);
2344                 p_tx_stats->ratecode = tx_stats->ratecode;
2345                 p_tx_stats->flags = tx_stats->flags;
2346                 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2347                 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2348                 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2349
2350                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2351         }
2352
2353 out:
2354         spin_unlock_bh(&ar->data_lock);
2355         rcu_read_unlock();
2356 }
2357
2358 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2359 {
2360         struct ath10k_htt *htt = &ar->htt;
2361         struct htt_resp *resp = (struct htt_resp *)skb->data;
2362         enum htt_t2h_msg_type type;
2363
2364         /* confirm alignment */
2365         if (!IS_ALIGNED((unsigned long)skb->data, 4))
2366                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2367
2368         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2369                    resp->hdr.msg_type);
2370
2371         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2372                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2373                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2374                 return true;
2375         }
2376         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2377
2378         switch (type) {
2379         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2380                 htt->target_version_major = resp->ver_resp.major;
2381                 htt->target_version_minor = resp->ver_resp.minor;
2382                 complete(&htt->target_version_received);
2383                 break;
2384         }
2385         case HTT_T2H_MSG_TYPE_RX_IND:
2386                 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2387                 break;
2388         case HTT_T2H_MSG_TYPE_PEER_MAP: {
2389                 struct htt_peer_map_event ev = {
2390                         .vdev_id = resp->peer_map.vdev_id,
2391                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2392                 };
2393                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2394                 ath10k_peer_map_event(htt, &ev);
2395                 break;
2396         }
2397         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2398                 struct htt_peer_unmap_event ev = {
2399                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2400                 };
2401                 ath10k_peer_unmap_event(htt, &ev);
2402                 break;
2403         }
2404         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2405                 struct htt_tx_done tx_done = {};
2406                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2407
2408                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2409
2410                 switch (status) {
2411                 case HTT_MGMT_TX_STATUS_OK:
2412                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
2413                         break;
2414                 case HTT_MGMT_TX_STATUS_RETRY:
2415                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2416                         break;
2417                 case HTT_MGMT_TX_STATUS_DROP:
2418                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2419                         break;
2420                 }
2421
2422                 status = ath10k_txrx_tx_unref(htt, &tx_done);
2423                 if (!status) {
2424                         spin_lock_bh(&htt->tx_lock);
2425                         ath10k_htt_tx_mgmt_dec_pending(htt);
2426                         spin_unlock_bh(&htt->tx_lock);
2427                 }
2428                 break;
2429         }
2430         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2431                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2432                 break;
2433         case HTT_T2H_MSG_TYPE_SEC_IND: {
2434                 struct ath10k *ar = htt->ar;
2435                 struct htt_security_indication *ev = &resp->security_indication;
2436
2437                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2438                            "sec ind peer_id %d unicast %d type %d\n",
2439                           __le16_to_cpu(ev->peer_id),
2440                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2441                           MS(ev->flags, HTT_SECURITY_TYPE));
2442                 complete(&ar->install_key_done);
2443                 break;
2444         }
2445         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2446                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2447                                 skb->data, skb->len);
2448                 atomic_inc(&htt->num_mpdus_ready);
2449                 break;
2450         }
2451         case HTT_T2H_MSG_TYPE_TEST:
2452                 break;
2453         case HTT_T2H_MSG_TYPE_STATS_CONF:
2454                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2455                 break;
2456         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2457                 /* Firmware can return tx frames if it's unable to fully
2458                  * process them and suspects host may be able to fix it. ath10k
2459                  * sends all tx frames as already inspected so this shouldn't
2460                  * happen unless fw has a bug.
2461                  */
2462                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2463                 break;
2464         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2465                 ath10k_htt_rx_addba(ar, resp);
2466                 break;
2467         case HTT_T2H_MSG_TYPE_RX_DELBA:
2468                 ath10k_htt_rx_delba(ar, resp);
2469                 break;
2470         case HTT_T2H_MSG_TYPE_PKTLOG: {
2471                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2472                                         skb->len -
2473                                         offsetof(struct htt_resp,
2474                                                  pktlog_msg.payload));
2475                 break;
2476         }
2477         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2478                 /* Ignore this event because mac80211 takes care of Rx
2479                  * aggregation reordering.
2480                  */
2481                 break;
2482         }
2483         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2484                 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2485                 return false;
2486         }
2487         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2488                 break;
2489         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2490                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2491                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2492
2493                 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2494                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2495                            "htt chan change freq %u phymode %s\n",
2496                            freq, ath10k_wmi_phymode_str(phymode));
2497                 break;
2498         }
2499         case HTT_T2H_MSG_TYPE_AGGR_CONF:
2500                 break;
2501         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2502                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2503
2504                 if (!tx_fetch_ind) {
2505                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2506                         break;
2507                 }
2508                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2509                 break;
2510         }
2511         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2512                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2513                 break;
2514         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2515                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2516                 break;
2517         case HTT_T2H_MSG_TYPE_PEER_STATS:
2518                 ath10k_htt_fetch_peer_stats(ar, skb);
2519                 break;
2520         case HTT_T2H_MSG_TYPE_EN_STATS:
2521         default:
2522                 ath10k_warn(ar, "htt event (%d) not handled\n",
2523                             resp->hdr.msg_type);
2524                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2525                                 skb->data, skb->len);
2526                 break;
2527         }
2528         return true;
2529 }
2530 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2531
2532 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2533                                              struct sk_buff *skb)
2534 {
2535         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2536         dev_kfree_skb_any(skb);
2537 }
2538 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2539
2540 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2541 {
2542         struct ath10k_htt *htt = &ar->htt;
2543         struct htt_tx_done tx_done = {};
2544         struct sk_buff_head tx_ind_q;
2545         struct sk_buff *skb;
2546         unsigned long flags;
2547         int quota = 0, done, num_rx_msdus;
2548         bool resched_napi = false;
2549
2550         __skb_queue_head_init(&tx_ind_q);
2551
2552         /* Since in-ord-ind can deliver more than 1 A-MSDU in single event,
2553          * process it first to utilize full available quota.
2554          */
2555         while (quota < budget) {
2556                 if (skb_queue_empty(&htt->rx_in_ord_compl_q))
2557                         break;
2558
2559                 skb = __skb_dequeue(&htt->rx_in_ord_compl_q);
2560                 if (!skb) {
2561                         resched_napi = true;
2562                         goto exit;
2563                 }
2564
2565                 spin_lock_bh(&htt->rx_ring.lock);
2566                 num_rx_msdus = ath10k_htt_rx_in_ord_ind(ar, skb,
2567                                                         (budget - quota));
2568                 spin_unlock_bh(&htt->rx_ring.lock);
2569                 if (num_rx_msdus < 0) {
2570                         resched_napi = true;
2571                         goto exit;
2572                 }
2573
2574                 dev_kfree_skb_any(skb);
2575                 if (num_rx_msdus > 0)
2576                         quota += num_rx_msdus;
2577
2578                 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2579                     !skb_queue_empty(&htt->rx_in_ord_compl_q)) {
2580                         resched_napi = true;
2581                         goto exit;
2582                 }
2583         }
2584
2585         while (quota < budget) {
2586                 /* no more data to receive */
2587                 if (!atomic_read(&htt->num_mpdus_ready))
2588                         break;
2589
2590                 num_rx_msdus = ath10k_htt_rx_handle_amsdu(htt);
2591                 if (num_rx_msdus < 0) {
2592                         resched_napi = true;
2593                         goto exit;
2594                 }
2595
2596                 quota += num_rx_msdus;
2597                 atomic_dec(&htt->num_mpdus_ready);
2598                 if ((quota > ATH10K_NAPI_QUOTA_LIMIT) &&
2599                     atomic_read(&htt->num_mpdus_ready)) {
2600                         resched_napi = true;
2601                         goto exit;
2602                 }
2603         }
2604
2605         /* From NAPI documentation:
2606          *  The napi poll() function may also process TX completions, in which
2607          *  case if it processes the entire TX ring then it should count that
2608          *  work as the rest of the budget.
2609          */
2610         if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2611                 quota = budget;
2612
2613         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2614          * From kfifo_get() documentation:
2615          *  Note that with only one concurrent reader and one concurrent writer,
2616          *  you don't need extra locking to use these macro.
2617          */
2618         while (kfifo_get(&htt->txdone_fifo, &tx_done))
2619                 ath10k_txrx_tx_unref(htt, &tx_done);
2620
2621         ath10k_mac_tx_push_pending(ar);
2622
2623         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2624         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2625         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2626
2627         while ((skb = __skb_dequeue(&tx_ind_q))) {
2628                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2629                 dev_kfree_skb_any(skb);
2630         }
2631
2632 exit:
2633         ath10k_htt_rx_msdu_buff_replenish(htt);
2634         /* In case of rx failure or more data to read, report budget
2635          * to reschedule NAPI poll
2636          */
2637         done = resched_napi ? budget : quota;
2638
2639         return done;
2640 }
2641 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);