1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.5"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
369 static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
372 struct s2io_nic *nic = dev->priv;
375 spin_lock_irqsave(&nic->tx_lock, flags);
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
384 * Constants to be programmed into the Xena's registers, to configure
389 static const u64 herc_act_dtx_cfg[] = {
391 0x8000051536750000ULL, 0x80000515367500E0ULL,
393 0x8000051536750004ULL, 0x80000515367500E4ULL,
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
410 static const u64 xena_dtx_cfg[] = {
412 0x8000051500000000ULL, 0x80000515000000E0ULL,
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
420 0x8002051500000000ULL, 0x80020515000000E0ULL,
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
427 * Constants for Fixing the MacAddress problem seen mostly on
430 static const u64 fix_mac[] = {
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
497 * This table lists all the devices that this driver supports.
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
513 static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
519 static struct pci_driver s2io_driver = {
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
524 .err_handler = &s2io_err_handler,
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
538 static int init_shared_mem(struct s2io_nic *nic)
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
543 struct RxD_block *pre_rxd_blk = NULL;
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
550 struct mac_info *mac_control;
551 struct config_param *config;
552 unsigned long long mem_allocated = 0;
554 mac_control = &nic->mac_control;
555 config = &nic->config;
558 /* Allocation and initialization of TXDLs in FIOFs */
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
563 if (size > MAX_AVAILABLE_TXDS) {
564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
569 lst_size = (sizeof(struct TxD) * config->max_txds);
570 lst_per_page = PAGE_SIZE / lst_size;
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
577 if (!mac_control->fifos[i].list_info) {
579 "Malloc failed for list_info\n");
582 mem_allocated += list_holder_size;
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589 config->tx_cfg[i].fifo_len - 1;
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592 config->tx_cfg[i].fifo_len - 1;
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
597 for (j = 0; j < page_num; j++) {
601 tmp_v = pci_alloc_consistent(nic->pdev,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
615 mac_control->zerodma_virt_addr = tmp_v;
617 "%s: Zero DMA address for TxDL. ", dev->name);
619 "Virtual address %p\n", tmp_v);
620 tmp_v = pci_alloc_consistent(nic->pdev,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
628 mem_allocated += PAGE_SIZE;
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
634 mac_control->fifos[i].list_info[l].list_virt_addr =
635 tmp_v + (k * lst_size);
636 mac_control->fifos[i].list_info[l].list_phy_addr =
637 tmp_p + (k * lst_size);
643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644 if (!nic->ufo_in_band_v)
646 mem_allocated += (size * sizeof(u64));
648 /* Allocation and initialization of RXDs in Rings */
650 for (i = 0; i < config->rx_ring_num; i++) {
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
659 size += config->rx_cfg[i].num_rxd;
660 mac_control->rings[i].block_count =
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
666 if (nic->rxd_mode == RXD_MODE_1)
667 size = (size * (sizeof(struct RxD1)));
669 size = (size * (sizeof(struct RxD3)));
671 for (i = 0; i < config->rx_ring_num; i++) {
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
675 config->rx_cfg[i].num_rxd - 1;
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
679 config->rx_cfg[i].num_rxd - 1;
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 struct rx_block_info *rx_blocks;
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
694 if (tmp_v_addr == NULL) {
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
701 rx_blocks->block_virt_addr = tmp_v_addr;
704 mem_allocated += size;
705 memset(tmp_v_addr, 0, size);
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709 rxd_count[nic->rxd_mode],
711 if (!rx_blocks->rxds)
714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
729 mac_control->rings[i].rx_blocks[(j + 1) %
730 blk_cnt].block_virt_addr;
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
734 mac_control->rings[i].rx_blocks[(j + 1) %
735 blk_cnt].block_dma_addr;
737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
744 if (nic->rxd_mode == RXD_MODE_3B) {
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
755 if (!mac_control->rings[i].ba)
757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758 for (j = 0; j < blk_cnt; j++) {
760 mac_control->rings[i].ba[j] =
761 kmalloc((sizeof(struct buffAdd) *
762 (rxd_count[nic->rxd_mode] + 1)),
764 if (!mac_control->rings[i].ba[j])
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
776 (BUF0_LEN + ALIGN_SIZE);
777 tmp = (unsigned long)ba->ba_0_org;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
787 += (BUF1_LEN + ALIGN_SIZE);
788 tmp = (unsigned long) ba->ba_1_org;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
798 /* Allocation and initialization of Statistics block */
799 size = sizeof(struct stat_block);
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
803 if (!mac_control->stats_mem) {
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
811 mem_allocated += size;
812 mac_control->stats_mem_sz = size;
814 tmp_v_addr = mac_control->stats_mem;
815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816 memset(tmp_v_addr, 0, size);
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
830 static void free_shared_mem(struct s2io_nic *nic)
832 int i, j, blk_cnt, size;
835 dma_addr_t tmp_p_addr;
836 struct mac_info *mac_control;
837 struct config_param *config;
838 int lst_size, lst_per_page;
839 struct net_device *dev;
847 mac_control = &nic->mac_control;
848 config = &nic->config;
850 lst_size = (sizeof(struct TxD) * config->max_txds);
851 lst_per_page = PAGE_SIZE / lst_size;
853 for (i = 0; i < config->tx_fifo_num; i++) {
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
859 if (!mac_control->fifos[i].list_info)
861 if (!mac_control->fifos[i].list_info[mem_blks].
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
865 mac_control->fifos[i].
868 mac_control->fifos[i].
871 nic->mac_control.stats_info->sw_stat.mem_freed
874 /* If we got a zero DMA address during allocation,
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
882 "%s: Freeing TxDL with zero DMA addr. ",
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
886 nic->mac_control.stats_info->sw_stat.mem_freed
889 kfree(mac_control->fifos[i].list_info);
890 nic->mac_control.stats_info->sw_stat.mem_freed +=
891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
894 size = SIZE_OF_BLOCK;
895 for (i = 0; i < config->rx_ring_num; i++) {
896 blk_cnt = mac_control->rings[i].block_count;
897 for (j = 0; j < blk_cnt; j++) {
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
902 if (tmp_v_addr == NULL)
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
908 nic->mac_control.stats_info->sw_stat.mem_freed +=
909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
913 if (nic->rxd_mode == RXD_MODE_3B) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
920 if (!mac_control->rings[i].ba[j])
922 while (k != rxd_count[nic->rxd_mode]) {
924 &mac_control->rings[i].ba[j][k];
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
933 kfree(mac_control->rings[i].ba[j]);
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
938 kfree(mac_control->rings[i].ba);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 (sizeof(struct buffAdd *) * blk_cnt);
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
949 nic->mac_control.stats_info->sw_stat.mem_freed +=
950 mac_control->stats_mem_sz;
952 if (nic->ufo_in_band_v) {
953 kfree(nic->ufo_in_band_v);
954 nic->mac_control.stats_info->sw_stat.mem_freed
955 += (ufo_size * sizeof(u64));
960 * s2io_verify_pci_mode -
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 register u64 val64 = 0;
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
981 struct pci_dev *tdev = NULL;
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984 if (tdev->bus == s2io_pdev->bus->parent)
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
994 * s2io_print_pci_mode -
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
999 register u64 val64 = 0;
1001 struct config_param *config = &nic->config;
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1009 config->bus_speed = bus_speed[mode];
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1049 return -1; /* Unsupported bus speed */
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1064 static int init_nic(struct s2io_nic *nic)
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1072 struct mac_info *mac_control;
1073 struct config_param *config;
1075 unsigned long long mem_share;
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic)) {
1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1094 val64 = readq(&bar0->sw_reset);
1097 /* Remove XGXS from reset state */
1099 writeq(val64, &bar0->sw_reset);
1101 val64 = readq(&bar0->sw_reset);
1103 /* Enable Receiving broadcasts */
1104 add = &bar0->mac_cfg;
1105 val64 = readq(&bar0->mac_cfg);
1106 val64 |= MAC_RMAC_BCAST_ENABLE;
1107 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108 writel((u32) val64, add);
1109 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1110 writel((u32) (val64 >> 32), (add + 4));
1112 /* Read registers in all blocks */
1113 val64 = readq(&bar0->mac_int_mask);
1114 val64 = readq(&bar0->mc_int_mask);
1115 val64 = readq(&bar0->xgxs_int_mask);
1119 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1121 if (nic->device_type & XFRAME_II_DEVICE) {
1122 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1123 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1124 &bar0->dtx_control, UF);
1126 msleep(1); /* Necessary!! */
1130 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1131 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1132 &bar0->dtx_control, UF);
1133 val64 = readq(&bar0->dtx_control);
1138 /* Tx DMA Initialization */
1140 writeq(val64, &bar0->tx_fifo_partition_0);
1141 writeq(val64, &bar0->tx_fifo_partition_1);
1142 writeq(val64, &bar0->tx_fifo_partition_2);
1143 writeq(val64, &bar0->tx_fifo_partition_3);
1146 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1148 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1149 13) | vBIT(config->tx_cfg[i].fifo_priority,
1152 if (i == (config->tx_fifo_num - 1)) {
1159 writeq(val64, &bar0->tx_fifo_partition_0);
1163 writeq(val64, &bar0->tx_fifo_partition_1);
1167 writeq(val64, &bar0->tx_fifo_partition_2);
1171 writeq(val64, &bar0->tx_fifo_partition_3);
1177 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1178 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1180 if ((nic->device_type == XFRAME_I_DEVICE) &&
1181 (nic->pdev->revision < 4))
1182 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1184 val64 = readq(&bar0->tx_fifo_partition_0);
1185 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1186 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1189 * Initialization of Tx_PA_CONFIG register to ignore packet
1190 * integrity checking.
1192 val64 = readq(&bar0->tx_pa_cfg);
1193 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1194 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1195 writeq(val64, &bar0->tx_pa_cfg);
1197 /* Rx DMA intialization. */
1199 for (i = 0; i < config->rx_ring_num; i++) {
1201 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1204 writeq(val64, &bar0->rx_queue_priority);
1207 * Allocating equal share of memory to all the
1211 if (nic->device_type & XFRAME_II_DEVICE)
1216 for (i = 0; i < config->rx_ring_num; i++) {
1219 mem_share = (mem_size / config->rx_ring_num +
1220 mem_size % config->rx_ring_num);
1221 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1224 mem_share = (mem_size / config->rx_ring_num);
1225 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1228 mem_share = (mem_size / config->rx_ring_num);
1229 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1232 mem_share = (mem_size / config->rx_ring_num);
1233 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1236 mem_share = (mem_size / config->rx_ring_num);
1237 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1240 mem_share = (mem_size / config->rx_ring_num);
1241 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1244 mem_share = (mem_size / config->rx_ring_num);
1245 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1248 mem_share = (mem_size / config->rx_ring_num);
1249 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1253 writeq(val64, &bar0->rx_queue_cfg);
1256 * Filling Tx round robin registers
1257 * as per the number of FIFOs
1259 switch (config->tx_fifo_num) {
1261 val64 = 0x0000000000000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_0);
1263 writeq(val64, &bar0->tx_w_round_robin_1);
1264 writeq(val64, &bar0->tx_w_round_robin_2);
1265 writeq(val64, &bar0->tx_w_round_robin_3);
1266 writeq(val64, &bar0->tx_w_round_robin_4);
1269 val64 = 0x0000010000010000ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_0);
1271 val64 = 0x0100000100000100ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_1);
1273 val64 = 0x0001000001000001ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_2);
1275 val64 = 0x0000010000010000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_3);
1277 val64 = 0x0100000000000000ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_4);
1281 val64 = 0x0001000102000001ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_0);
1283 val64 = 0x0001020000010001ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_1);
1285 val64 = 0x0200000100010200ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_2);
1287 val64 = 0x0001000102000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_3);
1289 val64 = 0x0001020000000000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_4);
1293 val64 = 0x0001020300010200ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_0);
1295 val64 = 0x0100000102030001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_1);
1297 val64 = 0x0200010000010203ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_2);
1299 val64 = 0x0001020001000001ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_3);
1301 val64 = 0x0203000100000000ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_4);
1305 val64 = 0x0001000203000102ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_0);
1307 val64 = 0x0001020001030004ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_1);
1309 val64 = 0x0001000203000102ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_2);
1311 val64 = 0x0001020001030004ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_3);
1313 val64 = 0x0001000000000000ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_4);
1317 val64 = 0x0001020304000102ULL;
1318 writeq(val64, &bar0->tx_w_round_robin_0);
1319 val64 = 0x0304050001020001ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_1);
1321 val64 = 0x0203000100000102ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_2);
1323 val64 = 0x0304000102030405ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_3);
1325 val64 = 0x0001000200000000ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_4);
1329 val64 = 0x0001020001020300ULL;
1330 writeq(val64, &bar0->tx_w_round_robin_0);
1331 val64 = 0x0102030400010203ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_1);
1333 val64 = 0x0405060001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_2);
1335 val64 = 0x0304050000010200ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_3);
1337 val64 = 0x0102030000000000ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_4);
1341 val64 = 0x0001020300040105ULL;
1342 writeq(val64, &bar0->tx_w_round_robin_0);
1343 val64 = 0x0200030106000204ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_1);
1345 val64 = 0x0103000502010007ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_2);
1347 val64 = 0x0304010002060500ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_3);
1349 val64 = 0x0103020400000000ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_4);
1354 /* Enable all configured Tx FIFO partitions */
1355 val64 = readq(&bar0->tx_fifo_partition_0);
1356 val64 |= (TX_FIFO_PARTITION_EN);
1357 writeq(val64, &bar0->tx_fifo_partition_0);
1359 /* Filling the Rx round robin registers as per the
1360 * number of Rings and steering based on QoS.
1362 switch (config->rx_ring_num) {
1364 val64 = 0x8080808080808080ULL;
1365 writeq(val64, &bar0->rts_qos_steering);
1368 val64 = 0x0000010000010000ULL;
1369 writeq(val64, &bar0->rx_w_round_robin_0);
1370 val64 = 0x0100000100000100ULL;
1371 writeq(val64, &bar0->rx_w_round_robin_1);
1372 val64 = 0x0001000001000001ULL;
1373 writeq(val64, &bar0->rx_w_round_robin_2);
1374 val64 = 0x0000010000010000ULL;
1375 writeq(val64, &bar0->rx_w_round_robin_3);
1376 val64 = 0x0100000000000000ULL;
1377 writeq(val64, &bar0->rx_w_round_robin_4);
1379 val64 = 0x8080808040404040ULL;
1380 writeq(val64, &bar0->rts_qos_steering);
1383 val64 = 0x0001000102000001ULL;
1384 writeq(val64, &bar0->rx_w_round_robin_0);
1385 val64 = 0x0001020000010001ULL;
1386 writeq(val64, &bar0->rx_w_round_robin_1);
1387 val64 = 0x0200000100010200ULL;
1388 writeq(val64, &bar0->rx_w_round_robin_2);
1389 val64 = 0x0001000102000001ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_3);
1391 val64 = 0x0001020000000000ULL;
1392 writeq(val64, &bar0->rx_w_round_robin_4);
1394 val64 = 0x8080804040402020ULL;
1395 writeq(val64, &bar0->rts_qos_steering);
1398 val64 = 0x0001020300010200ULL;
1399 writeq(val64, &bar0->rx_w_round_robin_0);
1400 val64 = 0x0100000102030001ULL;
1401 writeq(val64, &bar0->rx_w_round_robin_1);
1402 val64 = 0x0200010000010203ULL;
1403 writeq(val64, &bar0->rx_w_round_robin_2);
1404 val64 = 0x0001020001000001ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_3);
1406 val64 = 0x0203000100000000ULL;
1407 writeq(val64, &bar0->rx_w_round_robin_4);
1409 val64 = 0x8080404020201010ULL;
1410 writeq(val64, &bar0->rts_qos_steering);
1413 val64 = 0x0001000203000102ULL;
1414 writeq(val64, &bar0->rx_w_round_robin_0);
1415 val64 = 0x0001020001030004ULL;
1416 writeq(val64, &bar0->rx_w_round_robin_1);
1417 val64 = 0x0001000203000102ULL;
1418 writeq(val64, &bar0->rx_w_round_robin_2);
1419 val64 = 0x0001020001030004ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_3);
1421 val64 = 0x0001000000000000ULL;
1422 writeq(val64, &bar0->rx_w_round_robin_4);
1424 val64 = 0x8080404020201008ULL;
1425 writeq(val64, &bar0->rts_qos_steering);
1428 val64 = 0x0001020304000102ULL;
1429 writeq(val64, &bar0->rx_w_round_robin_0);
1430 val64 = 0x0304050001020001ULL;
1431 writeq(val64, &bar0->rx_w_round_robin_1);
1432 val64 = 0x0203000100000102ULL;
1433 writeq(val64, &bar0->rx_w_round_robin_2);
1434 val64 = 0x0304000102030405ULL;
1435 writeq(val64, &bar0->rx_w_round_robin_3);
1436 val64 = 0x0001000200000000ULL;
1437 writeq(val64, &bar0->rx_w_round_robin_4);
1439 val64 = 0x8080404020100804ULL;
1440 writeq(val64, &bar0->rts_qos_steering);
1443 val64 = 0x0001020001020300ULL;
1444 writeq(val64, &bar0->rx_w_round_robin_0);
1445 val64 = 0x0102030400010203ULL;
1446 writeq(val64, &bar0->rx_w_round_robin_1);
1447 val64 = 0x0405060001020001ULL;
1448 writeq(val64, &bar0->rx_w_round_robin_2);
1449 val64 = 0x0304050000010200ULL;
1450 writeq(val64, &bar0->rx_w_round_robin_3);
1451 val64 = 0x0102030000000000ULL;
1452 writeq(val64, &bar0->rx_w_round_robin_4);
1454 val64 = 0x8080402010080402ULL;
1455 writeq(val64, &bar0->rts_qos_steering);
1458 val64 = 0x0001020300040105ULL;
1459 writeq(val64, &bar0->rx_w_round_robin_0);
1460 val64 = 0x0200030106000204ULL;
1461 writeq(val64, &bar0->rx_w_round_robin_1);
1462 val64 = 0x0103000502010007ULL;
1463 writeq(val64, &bar0->rx_w_round_robin_2);
1464 val64 = 0x0304010002060500ULL;
1465 writeq(val64, &bar0->rx_w_round_robin_3);
1466 val64 = 0x0103020400000000ULL;
1467 writeq(val64, &bar0->rx_w_round_robin_4);
1469 val64 = 0x8040201008040201ULL;
1470 writeq(val64, &bar0->rts_qos_steering);
1476 for (i = 0; i < 8; i++)
1477 writeq(val64, &bar0->rts_frm_len_n[i]);
1479 /* Set the default rts frame length for the rings configured */
1480 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1481 for (i = 0 ; i < config->rx_ring_num ; i++)
1482 writeq(val64, &bar0->rts_frm_len_n[i]);
1484 /* Set the frame length for the configured rings
1485 * desired by the user
1487 for (i = 0; i < config->rx_ring_num; i++) {
1488 /* If rts_frm_len[i] == 0 then it is assumed that user not
1489 * specified frame length steering.
1490 * If the user provides the frame length then program
1491 * the rts_frm_len register for those values or else
1492 * leave it as it is.
1494 if (rts_frm_len[i] != 0) {
1495 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1496 &bar0->rts_frm_len_n[i]);
1500 /* Disable differentiated services steering logic */
1501 for (i = 0; i < 64; i++) {
1502 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1503 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1505 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1510 /* Program statistics memory */
1511 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1513 if (nic->device_type == XFRAME_II_DEVICE) {
1514 val64 = STAT_BC(0x320);
1515 writeq(val64, &bar0->stat_byte_cnt);
1519 * Initializing the sampling rate for the device to calculate the
1520 * bandwidth utilization.
1522 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1523 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1524 writeq(val64, &bar0->mac_link_util);
1528 * Initializing the Transmit and Receive Traffic Interrupt
1532 * TTI Initialization. Default Tx timer gets us about
1533 * 250 interrupts per sec. Continuous interrupts are enabled
1536 if (nic->device_type == XFRAME_II_DEVICE) {
1537 int count = (nic->config.bus_speed * 125)/2;
1538 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1541 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1543 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1544 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1545 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1546 if (use_continuous_tx_intrs)
1547 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1548 writeq(val64, &bar0->tti_data1_mem);
1550 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1551 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1552 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1553 writeq(val64, &bar0->tti_data2_mem);
1555 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1556 writeq(val64, &bar0->tti_command_mem);
1559 * Once the operation completes, the Strobe bit of the command
1560 * register will be reset. We poll for this particular condition
1561 * We wait for a maximum of 500ms for the operation to complete,
1562 * if it's not complete by then we return error.
1566 val64 = readq(&bar0->tti_command_mem);
1567 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1571 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1579 /* RTI Initialization */
1580 if (nic->device_type == XFRAME_II_DEVICE) {
1582 * Programmed to generate Apprx 500 Intrs per
1585 int count = (nic->config.bus_speed * 125)/4;
1586 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1588 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1589 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1590 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1591 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1593 writeq(val64, &bar0->rti_data1_mem);
1595 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1596 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1597 if (nic->config.intr_type == MSI_X)
1598 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1599 RTI_DATA2_MEM_RX_UFC_D(0x40));
1601 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1602 RTI_DATA2_MEM_RX_UFC_D(0x80));
1603 writeq(val64, &bar0->rti_data2_mem);
1605 for (i = 0; i < config->rx_ring_num; i++) {
1606 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1607 | RTI_CMD_MEM_OFFSET(i);
1608 writeq(val64, &bar0->rti_command_mem);
1611 * Once the operation completes, the Strobe bit of the
1612 * command register will be reset. We poll for this
1613 * particular condition. We wait for a maximum of 500ms
1614 * for the operation to complete, if it's not complete
1615 * by then we return error.
1619 val64 = readq(&bar0->rti_command_mem);
1620 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1624 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1634 * Initializing proper values as Pause threshold into all
1635 * the 8 Queues on Rx side.
1637 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1638 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1640 /* Disable RMAC PAD STRIPPING */
1641 add = &bar0->mac_cfg;
1642 val64 = readq(&bar0->mac_cfg);
1643 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1644 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645 writel((u32) (val64), add);
1646 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1647 writel((u32) (val64 >> 32), (add + 4));
1648 val64 = readq(&bar0->mac_cfg);
1650 /* Enable FCS stripping by adapter */
1651 add = &bar0->mac_cfg;
1652 val64 = readq(&bar0->mac_cfg);
1653 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1654 if (nic->device_type == XFRAME_II_DEVICE)
1655 writeq(val64, &bar0->mac_cfg);
1657 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658 writel((u32) (val64), add);
1659 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660 writel((u32) (val64 >> 32), (add + 4));
1664 * Set the time value to be inserted in the pause frame
1665 * generated by xena.
1667 val64 = readq(&bar0->rmac_pause_cfg);
1668 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1669 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1670 writeq(val64, &bar0->rmac_pause_cfg);
1673 * Set the Threshold Limit for Generating the pause frame
1674 * If the amount of data in any Queue exceeds ratio of
1675 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1676 * pause frame is generated
1679 for (i = 0; i < 4; i++) {
1681 (((u64) 0xFF00 | nic->mac_control.
1682 mc_pause_threshold_q0q3)
1685 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1688 for (i = 0; i < 4; i++) {
1690 (((u64) 0xFF00 | nic->mac_control.
1691 mc_pause_threshold_q4q7)
1694 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1697 * TxDMA will stop Read request if the number of read split has
1698 * exceeded the limit pointed by shared_splits
1700 val64 = readq(&bar0->pic_control);
1701 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1702 writeq(val64, &bar0->pic_control);
1704 if (nic->config.bus_speed == 266) {
1705 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1706 writeq(0x0, &bar0->read_retry_delay);
1707 writeq(0x0, &bar0->write_retry_delay);
1711 * Programming the Herc to split every write transaction
1712 * that does not start on an ADB to reduce disconnects.
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1716 MISC_LINK_STABILITY_PRD(3);
1717 writeq(val64, &bar0->misc_control);
1718 val64 = readq(&bar0->pic_control2);
1719 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1720 writeq(val64, &bar0->pic_control2);
1722 if (strstr(nic->product_name, "CX4")) {
1723 val64 = TMAC_AVG_IPG(0x17);
1724 writeq(val64, &bar0->tmac_avg_ipg);
1729 #define LINK_UP_DOWN_INTERRUPT 1
1730 #define MAC_RMAC_ERR_TIMER 2
1732 static int s2io_link_fault_indication(struct s2io_nic *nic)
1734 if (nic->config.intr_type != INTA)
1735 return MAC_RMAC_ERR_TIMER;
1736 if (nic->device_type == XFRAME_II_DEVICE)
1737 return LINK_UP_DOWN_INTERRUPT;
1739 return MAC_RMAC_ERR_TIMER;
1743 * do_s2io_write_bits - update alarm bits in alarm register
1744 * @value: alarm bits
1745 * @flag: interrupt status
1746 * @addr: address value
1747 * Description: update alarm bits in alarm register
1751 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1755 temp64 = readq(addr);
1757 if(flag == ENABLE_INTRS)
1758 temp64 &= ~((u64) value);
1760 temp64 |= ((u64) value);
1761 writeq(temp64, addr);
1764 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1766 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1767 register u64 gen_int_mask = 0;
1769 if (mask & TX_DMA_INTR) {
1771 gen_int_mask |= TXDMA_INT_M;
1773 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1774 TXDMA_PCC_INT | TXDMA_TTI_INT |
1775 TXDMA_LSO_INT | TXDMA_TPA_INT |
1776 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1778 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1779 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1780 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1781 &bar0->pfc_err_mask);
1783 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1784 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1785 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1787 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1788 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1789 PCC_N_SERR | PCC_6_COF_OV_ERR |
1790 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1791 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1792 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1794 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1795 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1797 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1798 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1799 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1800 flag, &bar0->lso_err_mask);
1802 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1803 flag, &bar0->tpa_err_mask);
1805 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1809 if (mask & TX_MAC_INTR) {
1810 gen_int_mask |= TXMAC_INT_M;
1811 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1812 &bar0->mac_int_mask);
1813 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1814 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1815 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1816 flag, &bar0->mac_tmac_err_mask);
1819 if (mask & TX_XGXS_INTR) {
1820 gen_int_mask |= TXXGXS_INT_M;
1821 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1822 &bar0->xgxs_int_mask);
1823 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1824 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1825 flag, &bar0->xgxs_txgxs_err_mask);
1828 if (mask & RX_DMA_INTR) {
1829 gen_int_mask |= RXDMA_INT_M;
1830 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1831 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1832 flag, &bar0->rxdma_int_mask);
1833 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1834 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1835 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1836 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1837 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1838 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1839 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1840 &bar0->prc_pcix_err_mask);
1841 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1842 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1843 &bar0->rpa_err_mask);
1844 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1845 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1846 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1847 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1848 flag, &bar0->rda_err_mask);
1849 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1850 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1851 flag, &bar0->rti_err_mask);
1854 if (mask & RX_MAC_INTR) {
1855 gen_int_mask |= RXMAC_INT_M;
1856 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1857 &bar0->mac_int_mask);
1858 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1859 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1860 RMAC_DOUBLE_ECC_ERR |
1861 RMAC_LINK_STATE_CHANGE_INT,
1862 flag, &bar0->mac_rmac_err_mask);
1865 if (mask & RX_XGXS_INTR)
1867 gen_int_mask |= RXXGXS_INT_M;
1868 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1869 &bar0->xgxs_int_mask);
1870 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1871 &bar0->xgxs_rxgxs_err_mask);
1874 if (mask & MC_INTR) {
1875 gen_int_mask |= MC_INT_M;
1876 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1877 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1878 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1879 &bar0->mc_err_mask);
1881 nic->general_int_mask = gen_int_mask;
1883 /* Remove this line when alarm interrupts are enabled */
1884 nic->general_int_mask = 0;
1887 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1888 * @nic: device private variable,
1889 * @mask: A mask indicating which Intr block must be modified and,
1890 * @flag: A flag indicating whether to enable or disable the Intrs.
1891 * Description: This function will either disable or enable the interrupts
1892 * depending on the flag argument. The mask argument can be used to
1893 * enable/disable any Intr block.
1894 * Return Value: NONE.
1897 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1899 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1900 register u64 temp64 = 0, intr_mask = 0;
1902 intr_mask = nic->general_int_mask;
1904 /* Top level interrupt classification */
1905 /* PIC Interrupts */
1906 if (mask & TX_PIC_INTR) {
1907 /* Enable PIC Intrs in the general intr mask register */
1908 intr_mask |= TXPIC_INT_M;
1909 if (flag == ENABLE_INTRS) {
1911 * If Hercules adapter enable GPIO otherwise
1912 * disable all PCIX, Flash, MDIO, IIC and GPIO
1913 * interrupts for now.
1916 if (s2io_link_fault_indication(nic) ==
1917 LINK_UP_DOWN_INTERRUPT ) {
1918 do_s2io_write_bits(PIC_INT_GPIO, flag,
1919 &bar0->pic_int_mask);
1920 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1921 &bar0->gpio_int_mask);
1923 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1924 } else if (flag == DISABLE_INTRS) {
1926 * Disable PIC Intrs in the general
1927 * intr mask register
1929 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1933 /* Tx traffic interrupts */
1934 if (mask & TX_TRAFFIC_INTR) {
1935 intr_mask |= TXTRAFFIC_INT_M;
1936 if (flag == ENABLE_INTRS) {
1938 * Enable all the Tx side interrupts
1939 * writing 0 Enables all 64 TX interrupt levels
1941 writeq(0x0, &bar0->tx_traffic_mask);
1942 } else if (flag == DISABLE_INTRS) {
1944 * Disable Tx Traffic Intrs in the general intr mask
1947 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1951 /* Rx traffic interrupts */
1952 if (mask & RX_TRAFFIC_INTR) {
1953 intr_mask |= RXTRAFFIC_INT_M;
1954 if (flag == ENABLE_INTRS) {
1955 /* writing 0 Enables all 8 RX interrupt levels */
1956 writeq(0x0, &bar0->rx_traffic_mask);
1957 } else if (flag == DISABLE_INTRS) {
1959 * Disable Rx Traffic Intrs in the general intr mask
1962 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1966 temp64 = readq(&bar0->general_int_mask);
1967 if (flag == ENABLE_INTRS)
1968 temp64 &= ~((u64) intr_mask);
1970 temp64 = DISABLE_ALL_INTRS;
1971 writeq(temp64, &bar0->general_int_mask);
1973 nic->general_int_mask = readq(&bar0->general_int_mask);
1977 * verify_pcc_quiescent- Checks for PCC quiescent state
1978 * Return: 1 If PCC is quiescence
1979 * 0 If PCC is not quiescence
1981 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1984 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1985 u64 val64 = readq(&bar0->adapter_status);
1987 herc = (sp->device_type == XFRAME_II_DEVICE);
1989 if (flag == FALSE) {
1990 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1991 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1994 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1998 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1999 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2000 ADAPTER_STATUS_RMAC_PCC_IDLE))
2003 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2004 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2012 * verify_xena_quiescence - Checks whether the H/W is ready
2013 * Description: Returns whether the H/W is ready to go or not. Depending
2014 * on whether adapter enable bit was written or not the comparison
2015 * differs and the calling function passes the input argument flag to
2017 * Return: 1 If xena is quiescence
2018 * 0 If Xena is not quiescence
2021 static int verify_xena_quiescence(struct s2io_nic *sp)
2024 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2025 u64 val64 = readq(&bar0->adapter_status);
2026 mode = s2io_verify_pci_mode(sp);
2028 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2029 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2032 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2033 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2036 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2037 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2040 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2041 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2044 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2045 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2048 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2049 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2052 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2053 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2056 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2057 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2062 * In PCI 33 mode, the P_PLL is not used, and therefore,
2063 * the the P_PLL_LOCK bit in the adapter_status register will
2066 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2067 sp->device_type == XFRAME_II_DEVICE && mode !=
2069 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2072 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2073 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2074 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2081 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2082 * @sp: Pointer to device specifc structure
2084 * New procedure to clear mac address reading problems on Alpha platforms
2088 static void fix_mac_address(struct s2io_nic * sp)
2090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2094 while (fix_mac[i] != END_SIGN) {
2095 writeq(fix_mac[i++], &bar0->gpio_control);
2097 val64 = readq(&bar0->gpio_control);
2102 * start_nic - Turns the device on
2103 * @nic : device private variable.
2105 * This function actually turns the device on. Before this function is
2106 * called,all Registers are configured from their reset states
2107 * and shared memory is allocated but the NIC is still quiescent. On
2108 * calling this function, the device interrupts are cleared and the NIC is
2109 * literally switched on by writing into the adapter control register.
2111 * SUCCESS on success and -1 on failure.
2114 static int start_nic(struct s2io_nic *nic)
2116 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2117 struct net_device *dev = nic->dev;
2118 register u64 val64 = 0;
2120 struct mac_info *mac_control;
2121 struct config_param *config;
2123 mac_control = &nic->mac_control;
2124 config = &nic->config;
2126 /* PRC Initialization and configuration */
2127 for (i = 0; i < config->rx_ring_num; i++) {
2128 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2129 &bar0->prc_rxd0_n[i]);
2131 val64 = readq(&bar0->prc_ctrl_n[i]);
2132 if (nic->rxd_mode == RXD_MODE_1)
2133 val64 |= PRC_CTRL_RC_ENABLED;
2135 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2136 if (nic->device_type == XFRAME_II_DEVICE)
2137 val64 |= PRC_CTRL_GROUP_READS;
2138 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2139 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2140 writeq(val64, &bar0->prc_ctrl_n[i]);
2143 if (nic->rxd_mode == RXD_MODE_3B) {
2144 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2145 val64 = readq(&bar0->rx_pa_cfg);
2146 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2147 writeq(val64, &bar0->rx_pa_cfg);
2150 if (vlan_tag_strip == 0) {
2151 val64 = readq(&bar0->rx_pa_cfg);
2152 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2153 writeq(val64, &bar0->rx_pa_cfg);
2154 vlan_strip_flag = 0;
2158 * Enabling MC-RLDRAM. After enabling the device, we timeout
2159 * for around 100ms, which is approximately the time required
2160 * for the device to be ready for operation.
2162 val64 = readq(&bar0->mc_rldram_mrs);
2163 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2164 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2165 val64 = readq(&bar0->mc_rldram_mrs);
2167 msleep(100); /* Delay by around 100 ms. */
2169 /* Enabling ECC Protection. */
2170 val64 = readq(&bar0->adapter_control);
2171 val64 &= ~ADAPTER_ECC_EN;
2172 writeq(val64, &bar0->adapter_control);
2175 * Verify if the device is ready to be enabled, if so enable
2178 val64 = readq(&bar0->adapter_status);
2179 if (!verify_xena_quiescence(nic)) {
2180 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2181 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2182 (unsigned long long) val64);
2187 * With some switches, link might be already up at this point.
2188 * Because of this weird behavior, when we enable laser,
2189 * we may not get link. We need to handle this. We cannot
2190 * figure out which switch is misbehaving. So we are forced to
2191 * make a global change.
2194 /* Enabling Laser. */
2195 val64 = readq(&bar0->adapter_control);
2196 val64 |= ADAPTER_EOI_TX_ON;
2197 writeq(val64, &bar0->adapter_control);
2199 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2201 * Dont see link state interrupts initally on some switches,
2202 * so directly scheduling the link state task here.
2204 schedule_work(&nic->set_link_task);
2206 /* SXE-002: Initialize link and activity LED */
2207 subid = nic->pdev->subsystem_device;
2208 if (((subid & 0xFF) >= 0x07) &&
2209 (nic->device_type == XFRAME_I_DEVICE)) {
2210 val64 = readq(&bar0->gpio_control);
2211 val64 |= 0x0000800000000000ULL;
2212 writeq(val64, &bar0->gpio_control);
2213 val64 = 0x0411040400000000ULL;
2214 writeq(val64, (void __iomem *)bar0 + 0x2700);
2220 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2222 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2223 TxD *txdlp, int get_off)
2225 struct s2io_nic *nic = fifo_data->nic;
2226 struct sk_buff *skb;
2231 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2232 pci_unmap_single(nic->pdev, (dma_addr_t)
2233 txds->Buffer_Pointer, sizeof(u64),
2238 skb = (struct sk_buff *) ((unsigned long)
2239 txds->Host_Control);
2241 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2244 pci_unmap_single(nic->pdev, (dma_addr_t)
2245 txds->Buffer_Pointer,
2246 skb->len - skb->data_len,
2248 frg_cnt = skb_shinfo(skb)->nr_frags;
2251 for (j = 0; j < frg_cnt; j++, txds++) {
2252 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2253 if (!txds->Buffer_Pointer)
2255 pci_unmap_page(nic->pdev, (dma_addr_t)
2256 txds->Buffer_Pointer,
2257 frag->size, PCI_DMA_TODEVICE);
2260 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2265 * free_tx_buffers - Free all queued Tx buffers
2266 * @nic : device private variable.
2268 * Free all queued Tx buffers.
2269 * Return Value: void
2272 static void free_tx_buffers(struct s2io_nic *nic)
2274 struct net_device *dev = nic->dev;
2275 struct sk_buff *skb;
2278 struct mac_info *mac_control;
2279 struct config_param *config;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2285 for (i = 0; i < config->tx_fifo_num; i++) {
2286 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2287 txdp = (struct TxD *) \
2288 mac_control->fifos[i].list_info[j].list_virt_addr;
2289 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2291 nic->mac_control.stats_info->sw_stat.mem_freed
2298 "%s:forcibly freeing %d skbs on FIFO%d\n",
2300 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2301 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2306 * stop_nic - To stop the nic
2307 * @nic ; device private variable.
2309 * This function does exactly the opposite of what the start_nic()
2310 * function does. This function is called to stop the device.
2315 static void stop_nic(struct s2io_nic *nic)
2317 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2318 register u64 val64 = 0;
2320 struct mac_info *mac_control;
2321 struct config_param *config;
2323 mac_control = &nic->mac_control;
2324 config = &nic->config;
2326 /* Disable all interrupts */
2327 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2328 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2329 interruptible |= TX_PIC_INTR;
2330 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2332 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2333 val64 = readq(&bar0->adapter_control);
2334 val64 &= ~(ADAPTER_CNTL_EN);
2335 writeq(val64, &bar0->adapter_control);
2339 * fill_rx_buffers - Allocates the Rx side skbs
2340 * @nic: device private variable
2341 * @ring_no: ring number
2343 * The function allocates Rx side skbs and puts the physical
2344 * address of these buffers into the RxD buffer pointers, so that the NIC
2345 * can DMA the received frame into these locations.
2346 * The NIC supports 3 receive modes, viz
2348 * 2. three buffer and
2349 * 3. Five buffer modes.
2350 * Each mode defines how many fragments the received frame will be split
2351 * up into by the NIC. The frame is split into L3 header, L4 Header,
2352 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2353 * is split into 3 fragments. As of now only single buffer mode is
2356 * SUCCESS on success or an appropriate -ve value on failure.
2359 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2361 struct net_device *dev = nic->dev;
2362 struct sk_buff *skb;
2364 int off, off1, size, block_no, block_no1;
2367 struct mac_info *mac_control;
2368 struct config_param *config;
2371 unsigned long flags;
2372 struct RxD_t *first_rxdp = NULL;
2373 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2376 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2378 mac_control = &nic->mac_control;
2379 config = &nic->config;
2380 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2381 atomic_read(&nic->rx_bufs_left[ring_no]);
2383 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2384 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2385 while (alloc_tab < alloc_cnt) {
2386 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2388 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2390 rxdp = mac_control->rings[ring_no].
2391 rx_blocks[block_no].rxds[off].virt_addr;
2393 if ((block_no == block_no1) && (off == off1) &&
2394 (rxdp->Host_Control)) {
2395 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2397 DBG_PRINT(INTR_DBG, " info equated\n");
2400 if (off && (off == rxd_count[nic->rxd_mode])) {
2401 mac_control->rings[ring_no].rx_curr_put_info.
2403 if (mac_control->rings[ring_no].rx_curr_put_info.
2404 block_index == mac_control->rings[ring_no].
2406 mac_control->rings[ring_no].rx_curr_put_info.
2408 block_no = mac_control->rings[ring_no].
2409 rx_curr_put_info.block_index;
2410 if (off == rxd_count[nic->rxd_mode])
2412 mac_control->rings[ring_no].rx_curr_put_info.
2414 rxdp = mac_control->rings[ring_no].
2415 rx_blocks[block_no].block_virt_addr;
2416 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2420 spin_lock_irqsave(&nic->put_lock, flags);
2421 mac_control->rings[ring_no].put_pos =
2422 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2423 spin_unlock_irqrestore(&nic->put_lock, flags);
2425 mac_control->rings[ring_no].put_pos =
2426 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2428 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2429 ((nic->rxd_mode == RXD_MODE_3B) &&
2430 (rxdp->Control_2 & s2BIT(0)))) {
2431 mac_control->rings[ring_no].rx_curr_put_info.
2435 /* calculate size of skb based on ring mode */
2436 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2437 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2438 if (nic->rxd_mode == RXD_MODE_1)
2439 size += NET_IP_ALIGN;
2441 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2444 skb = dev_alloc_skb(size);
2446 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2447 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2450 first_rxdp->Control_1 |= RXD_OWN_XENA;
2452 nic->mac_control.stats_info->sw_stat. \
2453 mem_alloc_fail_cnt++;
2456 nic->mac_control.stats_info->sw_stat.mem_allocated
2458 if (nic->rxd_mode == RXD_MODE_1) {
2459 /* 1 buffer mode - normal operation mode */
2460 rxdp1 = (struct RxD1*)rxdp;
2461 memset(rxdp, 0, sizeof(struct RxD1));
2462 skb_reserve(skb, NET_IP_ALIGN);
2463 rxdp1->Buffer0_ptr = pci_map_single
2464 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2465 PCI_DMA_FROMDEVICE);
2466 if( (rxdp1->Buffer0_ptr == 0) ||
2467 (rxdp1->Buffer0_ptr ==
2469 goto pci_map_failed;
2472 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2474 } else if (nic->rxd_mode == RXD_MODE_3B) {
2477 * 2 buffer mode provides 128
2478 * byte aligned receive buffers.
2481 rxdp3 = (struct RxD3*)rxdp;
2482 /* save buffer pointers to avoid frequent dma mapping */
2483 Buffer0_ptr = rxdp3->Buffer0_ptr;
2484 Buffer1_ptr = rxdp3->Buffer1_ptr;
2485 memset(rxdp, 0, sizeof(struct RxD3));
2486 /* restore the buffer pointers for dma sync*/
2487 rxdp3->Buffer0_ptr = Buffer0_ptr;
2488 rxdp3->Buffer1_ptr = Buffer1_ptr;
2490 ba = &mac_control->rings[ring_no].ba[block_no][off];
2491 skb_reserve(skb, BUF0_LEN);
2492 tmp = (u64)(unsigned long) skb->data;
2495 skb->data = (void *) (unsigned long)tmp;
2496 skb_reset_tail_pointer(skb);
2498 if (!(rxdp3->Buffer0_ptr))
2499 rxdp3->Buffer0_ptr =
2500 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2501 PCI_DMA_FROMDEVICE);
2503 pci_dma_sync_single_for_device(nic->pdev,
2504 (dma_addr_t) rxdp3->Buffer0_ptr,
2505 BUF0_LEN, PCI_DMA_FROMDEVICE);
2506 if( (rxdp3->Buffer0_ptr == 0) ||
2507 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2508 goto pci_map_failed;
2510 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2511 if (nic->rxd_mode == RXD_MODE_3B) {
2512 /* Two buffer mode */
2515 * Buffer2 will have L3/L4 header plus
2518 rxdp3->Buffer2_ptr = pci_map_single
2519 (nic->pdev, skb->data, dev->mtu + 4,
2520 PCI_DMA_FROMDEVICE);
2522 if( (rxdp3->Buffer2_ptr == 0) ||
2523 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2524 goto pci_map_failed;
2526 rxdp3->Buffer1_ptr =
2527 pci_map_single(nic->pdev,
2529 PCI_DMA_FROMDEVICE);
2530 if( (rxdp3->Buffer1_ptr == 0) ||
2531 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2534 (dma_addr_t)rxdp3->Buffer2_ptr,
2536 PCI_DMA_FROMDEVICE);
2537 goto pci_map_failed;
2539 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2540 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2543 rxdp->Control_2 |= s2BIT(0);
2545 rxdp->Host_Control = (unsigned long) (skb);
2546 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2547 rxdp->Control_1 |= RXD_OWN_XENA;
2549 if (off == (rxd_count[nic->rxd_mode] + 1))
2551 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2553 rxdp->Control_2 |= SET_RXD_MARKER;
2554 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2557 first_rxdp->Control_1 |= RXD_OWN_XENA;
2561 atomic_inc(&nic->rx_bufs_left[ring_no]);
2566 /* Transfer ownership of first descriptor to adapter just before
2567 * exiting. Before that, use memory barrier so that ownership
2568 * and other fields are seen by adapter correctly.
2572 first_rxdp->Control_1 |= RXD_OWN_XENA;
2577 stats->pci_map_fail_cnt++;
2578 stats->mem_freed += skb->truesize;
2579 dev_kfree_skb_irq(skb);
2583 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2585 struct net_device *dev = sp->dev;
2587 struct sk_buff *skb;
2589 struct mac_info *mac_control;
2594 mac_control = &sp->mac_control;
2595 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2596 rxdp = mac_control->rings[ring_no].
2597 rx_blocks[blk].rxds[j].virt_addr;
2598 skb = (struct sk_buff *)
2599 ((unsigned long) rxdp->Host_Control);
2603 if (sp->rxd_mode == RXD_MODE_1) {
2604 rxdp1 = (struct RxD1*)rxdp;
2605 pci_unmap_single(sp->pdev, (dma_addr_t)
2608 HEADER_ETHERNET_II_802_3_SIZE
2609 + HEADER_802_2_SIZE +
2611 PCI_DMA_FROMDEVICE);
2612 memset(rxdp, 0, sizeof(struct RxD1));
2613 } else if(sp->rxd_mode == RXD_MODE_3B) {
2614 rxdp3 = (struct RxD3*)rxdp;
2615 ba = &mac_control->rings[ring_no].
2617 pci_unmap_single(sp->pdev, (dma_addr_t)
2620 PCI_DMA_FROMDEVICE);
2621 pci_unmap_single(sp->pdev, (dma_addr_t)
2624 PCI_DMA_FROMDEVICE);
2625 pci_unmap_single(sp->pdev, (dma_addr_t)
2628 PCI_DMA_FROMDEVICE);
2629 memset(rxdp, 0, sizeof(struct RxD3));
2631 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2633 atomic_dec(&sp->rx_bufs_left[ring_no]);
2638 * free_rx_buffers - Frees all Rx buffers
2639 * @sp: device private variable.
2641 * This function will free all Rx buffers allocated by host.
2646 static void free_rx_buffers(struct s2io_nic *sp)
2648 struct net_device *dev = sp->dev;
2649 int i, blk = 0, buf_cnt = 0;
2650 struct mac_info *mac_control;
2651 struct config_param *config;
2653 mac_control = &sp->mac_control;
2654 config = &sp->config;
2656 for (i = 0; i < config->rx_ring_num; i++) {
2657 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2658 free_rxd_blk(sp,i,blk);
2660 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2661 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2662 mac_control->rings[i].rx_curr_put_info.offset = 0;
2663 mac_control->rings[i].rx_curr_get_info.offset = 0;
2664 atomic_set(&sp->rx_bufs_left[i], 0);
2665 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2666 dev->name, buf_cnt, i);
2671 * s2io_poll - Rx interrupt handler for NAPI support
2672 * @napi : pointer to the napi structure.
2673 * @budget : The number of packets that were budgeted to be processed
2674 * during one pass through the 'Poll" function.
2676 * Comes into picture only if NAPI support has been incorporated. It does
2677 * the same thing that rx_intr_handler does, but not in a interrupt context
2678 * also It will process only a given number of packets.
2680 * 0 on success and 1 if there are No Rx packets to be processed.
2683 static int s2io_poll(struct napi_struct *napi, int budget)
2685 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2686 struct net_device *dev = nic->dev;
2687 int pkt_cnt = 0, org_pkts_to_process;
2688 struct mac_info *mac_control;
2689 struct config_param *config;
2690 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2693 if (!is_s2io_card_up(nic))
2696 mac_control = &nic->mac_control;
2697 config = &nic->config;
2699 nic->pkts_to_process = budget;
2700 org_pkts_to_process = nic->pkts_to_process;
2702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2703 readl(&bar0->rx_traffic_int);
2705 for (i = 0; i < config->rx_ring_num; i++) {
2706 rx_intr_handler(&mac_control->rings[i]);
2707 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2708 if (!nic->pkts_to_process) {
2709 /* Quota for the current iteration has been met */
2714 netif_rx_complete(dev, napi);
2716 for (i = 0; i < config->rx_ring_num; i++) {
2717 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2718 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2719 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2723 /* Re enable the Rx interrupts. */
2724 writeq(0x0, &bar0->rx_traffic_mask);
2725 readl(&bar0->rx_traffic_mask);
2729 for (i = 0; i < config->rx_ring_num; i++) {
2730 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2731 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2732 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2741 * s2io_netpoll - netpoll event handler entry point
2742 * @dev : pointer to the device structure.
2744 * This function will be called by upper layer to check for events on the
2745 * interface in situations where interrupts are disabled. It is used for
2746 * specific in-kernel networking tasks, such as remote consoles and kernel
2747 * debugging over the network (example netdump in RedHat).
2749 static void s2io_netpoll(struct net_device *dev)
2751 struct s2io_nic *nic = dev->priv;
2752 struct mac_info *mac_control;
2753 struct config_param *config;
2754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2755 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2758 if (pci_channel_offline(nic->pdev))
2761 disable_irq(dev->irq);
2763 mac_control = &nic->mac_control;
2764 config = &nic->config;
2766 writeq(val64, &bar0->rx_traffic_int);
2767 writeq(val64, &bar0->tx_traffic_int);
2769 /* we need to free up the transmitted skbufs or else netpoll will
2770 * run out of skbs and will fail and eventually netpoll application such
2771 * as netdump will fail.
2773 for (i = 0; i < config->tx_fifo_num; i++)
2774 tx_intr_handler(&mac_control->fifos[i]);
2776 /* check for received packet and indicate up to network */
2777 for (i = 0; i < config->rx_ring_num; i++)
2778 rx_intr_handler(&mac_control->rings[i]);
2780 for (i = 0; i < config->rx_ring_num; i++) {
2781 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2782 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2783 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2787 enable_irq(dev->irq);
2793 * rx_intr_handler - Rx interrupt handler
2794 * @nic: device private variable.
2796 * If the interrupt is because of a received frame or if the
2797 * receive ring contains fresh as yet un-processed frames,this function is
2798 * called. It picks out the RxD at which place the last Rx processing had
2799 * stopped and sends the skb to the OSM's Rx handler and then increments
2804 static void rx_intr_handler(struct ring_info *ring_data)
2806 struct s2io_nic *nic = ring_data->nic;
2807 struct net_device *dev = (struct net_device *) nic->dev;
2808 int get_block, put_block, put_offset;
2809 struct rx_curr_get_info get_info, put_info;
2811 struct sk_buff *skb;
2817 spin_lock(&nic->rx_lock);
2819 get_info = ring_data->rx_curr_get_info;
2820 get_block = get_info.block_index;
2821 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2822 put_block = put_info.block_index;
2823 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2825 spin_lock(&nic->put_lock);
2826 put_offset = ring_data->put_pos;
2827 spin_unlock(&nic->put_lock);
2829 put_offset = ring_data->put_pos;
2831 while (RXD_IS_UP2DT(rxdp)) {
2833 * If your are next to put index then it's
2834 * FIFO full condition
2836 if ((get_block == put_block) &&
2837 (get_info.offset + 1) == put_info.offset) {
2838 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2841 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2843 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2845 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2846 spin_unlock(&nic->rx_lock);
2849 if (nic->rxd_mode == RXD_MODE_1) {
2850 rxdp1 = (struct RxD1*)rxdp;
2851 pci_unmap_single(nic->pdev, (dma_addr_t)
2854 HEADER_ETHERNET_II_802_3_SIZE +
2857 PCI_DMA_FROMDEVICE);
2858 } else if (nic->rxd_mode == RXD_MODE_3B) {
2859 rxdp3 = (struct RxD3*)rxdp;
2860 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2862 BUF0_LEN, PCI_DMA_FROMDEVICE);
2863 pci_unmap_single(nic->pdev, (dma_addr_t)
2866 PCI_DMA_FROMDEVICE);
2868 prefetch(skb->data);
2869 rx_osm_handler(ring_data, rxdp);
2871 ring_data->rx_curr_get_info.offset = get_info.offset;
2872 rxdp = ring_data->rx_blocks[get_block].
2873 rxds[get_info.offset].virt_addr;
2874 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2875 get_info.offset = 0;
2876 ring_data->rx_curr_get_info.offset = get_info.offset;
2878 if (get_block == ring_data->block_count)
2880 ring_data->rx_curr_get_info.block_index = get_block;
2881 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2884 nic->pkts_to_process -= 1;
2885 if ((napi) && (!nic->pkts_to_process))
2888 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2892 /* Clear all LRO sessions before exiting */
2893 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2894 struct lro *lro = &nic->lro0_n[i];
2896 update_L3L4_header(nic, lro);
2897 queue_rx_frame(lro->parent);
2898 clear_lro_session(lro);
2903 spin_unlock(&nic->rx_lock);
2907 * tx_intr_handler - Transmit interrupt handler
2908 * @nic : device private variable
2910 * If an interrupt was raised to indicate DMA complete of the
2911 * Tx packet, this function is called. It identifies the last TxD
2912 * whose buffer was freed and frees all skbs whose data have already
2913 * DMA'ed into the NICs internal memory.
2918 static void tx_intr_handler(struct fifo_info *fifo_data)
2920 struct s2io_nic *nic = fifo_data->nic;
2921 struct net_device *dev = (struct net_device *) nic->dev;
2922 struct tx_curr_get_info get_info, put_info;
2923 struct sk_buff *skb;
2927 get_info = fifo_data->tx_curr_get_info;
2928 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2929 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2931 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2932 (get_info.offset != put_info.offset) &&
2933 (txdlp->Host_Control)) {
2934 /* Check for TxD errors */
2935 if (txdlp->Control_1 & TXD_T_CODE) {
2936 unsigned long long err;
2937 err = txdlp->Control_1 & TXD_T_CODE;
2939 nic->mac_control.stats_info->sw_stat.
2943 /* update t_code statistics */
2944 err_mask = err >> 48;
2947 nic->mac_control.stats_info->sw_stat.
2952 nic->mac_control.stats_info->sw_stat.
2953 tx_desc_abort_cnt++;
2957 nic->mac_control.stats_info->sw_stat.
2958 tx_parity_err_cnt++;
2962 nic->mac_control.stats_info->sw_stat.
2967 nic->mac_control.stats_info->sw_stat.
2968 tx_list_proc_err_cnt++;
2973 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2975 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2977 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2981 /* Updating the statistics block */
2982 nic->stats.tx_bytes += skb->len;
2983 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2984 dev_kfree_skb_irq(skb);
2987 if (get_info.offset == get_info.fifo_len + 1)
2988 get_info.offset = 0;
2989 txdlp = (struct TxD *) fifo_data->list_info
2990 [get_info.offset].list_virt_addr;
2991 fifo_data->tx_curr_get_info.offset =
2995 spin_lock(&nic->tx_lock);
2996 if (netif_queue_stopped(dev))
2997 netif_wake_queue(dev);
2998 spin_unlock(&nic->tx_lock);
3002 * s2io_mdio_write - Function to write in to MDIO registers
3003 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3004 * @addr : address value
3005 * @value : data value
3006 * @dev : pointer to net_device structure
3008 * This function is used to write values to the MDIO registers
3011 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3014 struct s2io_nic *sp = dev->priv;
3015 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3017 //address transaction
3018 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3019 | MDIO_MMD_DEV_ADDR(mmd_type)
3020 | MDIO_MMS_PRT_ADDR(0x0);
3021 writeq(val64, &bar0->mdio_control);
3022 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3023 writeq(val64, &bar0->mdio_control);
3028 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029 | MDIO_MMD_DEV_ADDR(mmd_type)
3030 | MDIO_MMS_PRT_ADDR(0x0)
3031 | MDIO_MDIO_DATA(value)
3032 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3033 writeq(val64, &bar0->mdio_control);
3034 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3035 writeq(val64, &bar0->mdio_control);
3039 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040 | MDIO_MMD_DEV_ADDR(mmd_type)
3041 | MDIO_MMS_PRT_ADDR(0x0)
3042 | MDIO_OP(MDIO_OP_READ_TRANS);
3043 writeq(val64, &bar0->mdio_control);
3044 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045 writeq(val64, &bar0->mdio_control);
3051 * s2io_mdio_read - Function to write in to MDIO registers
3052 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3053 * @addr : address value