Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[sfrench/cifs-2.6.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.25"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104         int ret;
105
106         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109         return ret;
110 }
111
112 /*
113  * Cards with following subsystem_id have a link state indication
114  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115  * macro below identifies these cards given the subsystem_id.
116  */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
118         (dev_type == XFRAME_I_DEVICE) ?                                 \
119         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
120           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132         "Register test\t(offline)",
133         "Eeprom test\t(offline)",
134         "Link test\t(online)",
135         "RLDRAM test\t(offline)",
136         "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140         {"tmac_frms"},
141         {"tmac_data_octets"},
142         {"tmac_drop_frms"},
143         {"tmac_mcst_frms"},
144         {"tmac_bcst_frms"},
145         {"tmac_pause_ctrl_frms"},
146         {"tmac_ttl_octets"},
147         {"tmac_ucst_frms"},
148         {"tmac_nucst_frms"},
149         {"tmac_any_err_frms"},
150         {"tmac_ttl_less_fb_octets"},
151         {"tmac_vld_ip_octets"},
152         {"tmac_vld_ip"},
153         {"tmac_drop_ip"},
154         {"tmac_icmp"},
155         {"tmac_rst_tcp"},
156         {"tmac_tcp"},
157         {"tmac_udp"},
158         {"rmac_vld_frms"},
159         {"rmac_data_octets"},
160         {"rmac_fcs_err_frms"},
161         {"rmac_drop_frms"},
162         {"rmac_vld_mcst_frms"},
163         {"rmac_vld_bcst_frms"},
164         {"rmac_in_rng_len_err_frms"},
165         {"rmac_out_rng_len_err_frms"},
166         {"rmac_long_frms"},
167         {"rmac_pause_ctrl_frms"},
168         {"rmac_unsup_ctrl_frms"},
169         {"rmac_ttl_octets"},
170         {"rmac_accepted_ucst_frms"},
171         {"rmac_accepted_nucst_frms"},
172         {"rmac_discarded_frms"},
173         {"rmac_drop_events"},
174         {"rmac_ttl_less_fb_octets"},
175         {"rmac_ttl_frms"},
176         {"rmac_usized_frms"},
177         {"rmac_osized_frms"},
178         {"rmac_frag_frms"},
179         {"rmac_jabber_frms"},
180         {"rmac_ttl_64_frms"},
181         {"rmac_ttl_65_127_frms"},
182         {"rmac_ttl_128_255_frms"},
183         {"rmac_ttl_256_511_frms"},
184         {"rmac_ttl_512_1023_frms"},
185         {"rmac_ttl_1024_1518_frms"},
186         {"rmac_ip"},
187         {"rmac_ip_octets"},
188         {"rmac_hdr_err_ip"},
189         {"rmac_drop_ip"},
190         {"rmac_icmp"},
191         {"rmac_tcp"},
192         {"rmac_udp"},
193         {"rmac_err_drp_udp"},
194         {"rmac_xgmii_err_sym"},
195         {"rmac_frms_q0"},
196         {"rmac_frms_q1"},
197         {"rmac_frms_q2"},
198         {"rmac_frms_q3"},
199         {"rmac_frms_q4"},
200         {"rmac_frms_q5"},
201         {"rmac_frms_q6"},
202         {"rmac_frms_q7"},
203         {"rmac_full_q0"},
204         {"rmac_full_q1"},
205         {"rmac_full_q2"},
206         {"rmac_full_q3"},
207         {"rmac_full_q4"},
208         {"rmac_full_q5"},
209         {"rmac_full_q6"},
210         {"rmac_full_q7"},
211         {"rmac_pause_cnt"},
212         {"rmac_xgmii_data_err_cnt"},
213         {"rmac_xgmii_ctrl_err_cnt"},
214         {"rmac_accepted_ip"},
215         {"rmac_err_tcp"},
216         {"rd_req_cnt"},
217         {"new_rd_req_cnt"},
218         {"new_rd_req_rtry_cnt"},
219         {"rd_rtry_cnt"},
220         {"wr_rtry_rd_ack_cnt"},
221         {"wr_req_cnt"},
222         {"new_wr_req_cnt"},
223         {"new_wr_req_rtry_cnt"},
224         {"wr_rtry_cnt"},
225         {"wr_disc_cnt"},
226         {"rd_rtry_wr_ack_cnt"},
227         {"txp_wr_cnt"},
228         {"txd_rd_cnt"},
229         {"txd_wr_cnt"},
230         {"rxd_rd_cnt"},
231         {"rxd_wr_cnt"},
232         {"txf_rd_cnt"},
233         {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237         {"rmac_ttl_1519_4095_frms"},
238         {"rmac_ttl_4096_8191_frms"},
239         {"rmac_ttl_8192_max_frms"},
240         {"rmac_ttl_gt_max_frms"},
241         {"rmac_osized_alt_frms"},
242         {"rmac_jabber_alt_frms"},
243         {"rmac_gt_max_alt_frms"},
244         {"rmac_vlan_frms"},
245         {"rmac_len_discard"},
246         {"rmac_fcs_discard"},
247         {"rmac_pf_discard"},
248         {"rmac_da_discard"},
249         {"rmac_red_discard"},
250         {"rmac_rts_discard"},
251         {"rmac_ingm_full_discard"},
252         {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256         {"\n DRIVER STATISTICS"},
257         {"single_bit_ecc_errs"},
258         {"double_bit_ecc_errs"},
259         {"parity_err_cnt"},
260         {"serious_err_cnt"},
261         {"soft_reset_cnt"},
262         {"fifo_full_cnt"},
263         {"ring_0_full_cnt"},
264         {"ring_1_full_cnt"},
265         {"ring_2_full_cnt"},
266         {"ring_3_full_cnt"},
267         {"ring_4_full_cnt"},
268         {"ring_5_full_cnt"},
269         {"ring_6_full_cnt"},
270         {"ring_7_full_cnt"},
271         {"alarm_transceiver_temp_high"},
272         {"alarm_transceiver_temp_low"},
273         {"alarm_laser_bias_current_high"},
274         {"alarm_laser_bias_current_low"},
275         {"alarm_laser_output_power_high"},
276         {"alarm_laser_output_power_low"},
277         {"warn_transceiver_temp_high"},
278         {"warn_transceiver_temp_low"},
279         {"warn_laser_bias_current_high"},
280         {"warn_laser_bias_current_low"},
281         {"warn_laser_output_power_high"},
282         {"warn_laser_output_power_low"},
283         {"lro_aggregated_pkts"},
284         {"lro_flush_both_count"},
285         {"lro_out_of_sequence_pkts"},
286         {"lro_flush_due_to_max_pkts"},
287         {"lro_avg_aggr_pkts"},
288         {"mem_alloc_fail_cnt"},
289         {"pci_map_fail_cnt"},
290         {"watchdog_timer_cnt"},
291         {"mem_allocated"},
292         {"mem_freed"},
293         {"link_up_cnt"},
294         {"link_down_cnt"},
295         {"link_up_time"},
296         {"link_down_time"},
297         {"tx_tcode_buf_abort_cnt"},
298         {"tx_tcode_desc_abort_cnt"},
299         {"tx_tcode_parity_err_cnt"},
300         {"tx_tcode_link_loss_cnt"},
301         {"tx_tcode_list_proc_err_cnt"},
302         {"rx_tcode_parity_err_cnt"},
303         {"rx_tcode_abort_cnt"},
304         {"rx_tcode_parity_abort_cnt"},
305         {"rx_tcode_rda_fail_cnt"},
306         {"rx_tcode_unkn_prot_cnt"},
307         {"rx_tcode_fcs_err_cnt"},
308         {"rx_tcode_buf_size_err_cnt"},
309         {"rx_tcode_rxd_corrupt_cnt"},
310         {"rx_tcode_unkn_err_cnt"},
311         {"tda_err_cnt"},
312         {"pfc_err_cnt"},
313         {"pcc_err_cnt"},
314         {"tti_err_cnt"},
315         {"tpa_err_cnt"},
316         {"sm_err_cnt"},
317         {"lso_err_cnt"},
318         {"mac_tmac_err_cnt"},
319         {"mac_rmac_err_cnt"},
320         {"xgxs_txgxs_err_cnt"},
321         {"xgxs_rxgxs_err_cnt"},
322         {"rc_err_cnt"},
323         {"prc_pcix_err_cnt"},
324         {"rpa_err_cnt"},
325         {"rda_err_cnt"},
326         {"rti_err_cnt"},
327         {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
344         init_timer(&timer);                             \
345         timer.function = handle;                        \
346         timer.data = (unsigned long)arg;                \
347         mod_timer(&timer, (jiffies + exp))              \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362                                   struct vlan_group *grp)
363 {
364         int i;
365         struct s2io_nic *nic = netdev_priv(dev);
366         unsigned long flags[MAX_TX_FIFOS];
367         struct config_param *config = &nic->config;
368         struct mac_info *mac_control = &nic->mac_control;
369
370         for (i = 0; i < config->tx_fifo_num; i++) {
371                 struct fifo_info *fifo = &mac_control->fifos[i];
372
373                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374         }
375
376         nic->vlgrp = grp;
377
378         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379                 struct fifo_info *fifo = &mac_control->fifos[i];
380
381                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382         }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388         int i;
389         struct s2io_nic *nic = netdev_priv(dev);
390         unsigned long flags[MAX_TX_FIFOS];
391         struct config_param *config = &nic->config;
392         struct mac_info *mac_control = &nic->mac_control;
393
394         for (i = 0; i < config->tx_fifo_num; i++) {
395                 struct fifo_info *fifo = &mac_control->fifos[i];
396
397                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398         }
399
400         if (nic->vlgrp)
401                 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404                 struct fifo_info *fifo = &mac_control->fifos[i];
405
406                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407         }
408 }
409
410 /*
411  * Constants to be programmed into the Xena's registers, to configure
412  * the XAUI.
413  */
414
415 #define END_SIGN        0x0
416 static const u64 herc_act_dtx_cfg[] = {
417         /* Set address */
418         0x8000051536750000ULL, 0x80000515367500E0ULL,
419         /* Write data */
420         0x8000051536750004ULL, 0x80000515367500E4ULL,
421         /* Set address */
422         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423         /* Write data */
424         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425         /* Set address */
426         0x801205150D440000ULL, 0x801205150D4400E0ULL,
427         /* Write data */
428         0x801205150D440004ULL, 0x801205150D4400E4ULL,
429         /* Set address */
430         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431         /* Write data */
432         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433         /* Done */
434         END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438         /* Set address */
439         0x8000051500000000ULL, 0x80000515000000E0ULL,
440         /* Write data */
441         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442         /* Set address */
443         0x8001051500000000ULL, 0x80010515000000E0ULL,
444         /* Write data */
445         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446         /* Set address */
447         0x8002051500000000ULL, 0x80020515000000E0ULL,
448         /* Write data */
449         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450         END_SIGN
451 };
452
453 /*
454  * Constants for Fixing the MacAddress problem seen mostly on
455  * Alpha machines.
456  */
457 static const u64 fix_mac[] = {
458         0x0060000000000000ULL, 0x0060600000000000ULL,
459         0x0040600000000000ULL, 0x0000600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0060600000000000ULL,
469         0x0020600000000000ULL, 0x0060600000000000ULL,
470         0x0020600000000000ULL, 0x0000600000000000ULL,
471         0x0040600000000000ULL, 0x0060600000000000ULL,
472         END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503  * aggregation happens until we hit max IP pkt size(64K)
504  */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524  * S2IO device table.
525  * This table lists all the devices that this driver supports.
526  */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533          PCI_ANY_ID, PCI_ANY_ID},
534         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535          PCI_ANY_ID, PCI_ANY_ID},
536         {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542         .error_detected = s2io_io_error_detected,
543         .slot_reset = s2io_io_slot_reset,
544         .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548         .name = "S2IO",
549         .id_table = s2io_tbl,
550         .probe = s2io_init_nic,
551         .remove = __devexit_p(s2io_rem_nic),
552         .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561         if (!sp->config.multiq) {
562                 int i;
563
564                 for (i = 0; i < sp->config.tx_fifo_num; i++)
565                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566         }
567         netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572         if (!sp->config.multiq)
573                 sp->mac_control.fifos[fifo_no].queue_state =
574                         FIFO_QUEUE_STOP;
575
576         netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581         if (!sp->config.multiq) {
582                 int i;
583
584                 for (i = 0; i < sp->config.tx_fifo_num; i++)
585                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586         }
587         netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592         if (!sp->config.multiq)
593                 sp->mac_control.fifos[fifo_no].queue_state =
594                         FIFO_QUEUE_START;
595
596         netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601         if (!sp->config.multiq) {
602                 int i;
603
604                 for (i = 0; i < sp->config.tx_fifo_num; i++)
605                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606         }
607         netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611         struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614         if (multiq) {
615                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618                 if (netif_queue_stopped(fifo->dev)) {
619                         fifo->queue_state = FIFO_QUEUE_START;
620                         netif_wake_queue(fifo->dev);
621                 }
622         }
623 }
624
625 /**
626  * init_shared_mem - Allocation and Initialization of Memory
627  * @nic: Device private variable.
628  * Description: The function allocates all the memory areas shared
629  * between the NIC and the driver. This includes Tx descriptors,
630  * Rx descriptors and the statistics block.
631  */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635         u32 size;
636         void *tmp_v_addr, *tmp_v_addr_next;
637         dma_addr_t tmp_p_addr, tmp_p_addr_next;
638         struct RxD_block *pre_rxd_blk = NULL;
639         int i, j, blk_cnt;
640         int lst_size, lst_per_page;
641         struct net_device *dev = nic->dev;
642         unsigned long tmp;
643         struct buffAdd *ba;
644         struct config_param *config = &nic->config;
645         struct mac_info *mac_control = &nic->mac_control;
646         unsigned long long mem_allocated = 0;
647
648         /* Allocation and initialization of TXDLs in FIFOs */
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653                 size += tx_cfg->fifo_len;
654         }
655         if (size > MAX_AVAILABLE_TXDS) {
656                 DBG_PRINT(ERR_DBG,
657                           "Too many TxDs requested: %d, max supported: %d\n",
658                           size, MAX_AVAILABLE_TXDS);
659                 return -EINVAL;
660         }
661
662         size = 0;
663         for (i = 0; i < config->tx_fifo_num; i++) {
664                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666                 size = tx_cfg->fifo_len;
667                 /*
668                  * Legal values are from 2 to 8192
669                  */
670                 if (size < 2) {
671                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672                                   "Valid lengths are 2 through 8192\n",
673                                   i, size);
674                         return -EINVAL;
675                 }
676         }
677
678         lst_size = (sizeof(struct TxD) * config->max_txds);
679         lst_per_page = PAGE_SIZE / lst_size;
680
681         for (i = 0; i < config->tx_fifo_num; i++) {
682                 struct fifo_info *fifo = &mac_control->fifos[i];
683                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684                 int fifo_len = tx_cfg->fifo_len;
685                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688                 if (!fifo->list_info) {
689                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690                         return -ENOMEM;
691                 }
692                 mem_allocated += list_holder_size;
693         }
694         for (i = 0; i < config->tx_fifo_num; i++) {
695                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696                                                 lst_per_page);
697                 struct fifo_info *fifo = &mac_control->fifos[i];
698                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700                 fifo->tx_curr_put_info.offset = 0;
701                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702                 fifo->tx_curr_get_info.offset = 0;
703                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704                 fifo->fifo_no = i;
705                 fifo->nic = nic;
706                 fifo->max_txds = MAX_SKB_FRAGS + 2;
707                 fifo->dev = dev;
708
709                 for (j = 0; j < page_num; j++) {
710                         int k = 0;
711                         dma_addr_t tmp_p;
712                         void *tmp_v;
713                         tmp_v = pci_alloc_consistent(nic->pdev,
714                                                      PAGE_SIZE, &tmp_p);
715                         if (!tmp_v) {
716                                 DBG_PRINT(INFO_DBG,
717                                           "pci_alloc_consistent failed for TxDL\n");
718                                 return -ENOMEM;
719                         }
720                         /* If we got a zero DMA address(can happen on
721                          * certain platforms like PPC), reallocate.
722                          * Store virtual address of page we don't want,
723                          * to be freed later.
724                          */
725                         if (!tmp_p) {
726                                 mac_control->zerodma_virt_addr = tmp_v;
727                                 DBG_PRINT(INIT_DBG,
728                                           "%s: Zero DMA address for TxDL. "
729                                           "Virtual address %p\n",
730                                           dev->name, tmp_v);
731                                 tmp_v = pci_alloc_consistent(nic->pdev,
732                                                              PAGE_SIZE, &tmp_p);
733                                 if (!tmp_v) {
734                                         DBG_PRINT(INFO_DBG,
735                                                   "pci_alloc_consistent failed for TxDL\n");
736                                         return -ENOMEM;
737                                 }
738                                 mem_allocated += PAGE_SIZE;
739                         }
740                         while (k < lst_per_page) {
741                                 int l = (j * lst_per_page) + k;
742                                 if (l == tx_cfg->fifo_len)
743                                         break;
744                                 fifo->list_info[l].list_virt_addr =
745                                         tmp_v + (k * lst_size);
746                                 fifo->list_info[l].list_phy_addr =
747                                         tmp_p + (k * lst_size);
748                                 k++;
749                         }
750                 }
751         }
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 struct fifo_info *fifo = &mac_control->fifos[i];
755                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757                 size = tx_cfg->fifo_len;
758                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759                 if (!fifo->ufo_in_band_v)
760                         return -ENOMEM;
761                 mem_allocated += (size * sizeof(u64));
762         }
763
764         /* Allocation and initialization of RXDs in Rings */
765         size = 0;
766         for (i = 0; i < config->rx_ring_num; i++) {
767                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768                 struct ring_info *ring = &mac_control->rings[i];
769
770                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772                                   "multiple of RxDs per Block\n",
773                                   dev->name, i);
774                         return FAILURE;
775                 }
776                 size += rx_cfg->num_rxd;
777                 ring->block_count = rx_cfg->num_rxd /
778                         (rxd_count[nic->rxd_mode] + 1);
779                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780         }
781         if (nic->rxd_mode == RXD_MODE_1)
782                 size = (size * (sizeof(struct RxD1)));
783         else
784                 size = (size * (sizeof(struct RxD3)));
785
786         for (i = 0; i < config->rx_ring_num; i++) {
787                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788                 struct ring_info *ring = &mac_control->rings[i];
789
790                 ring->rx_curr_get_info.block_index = 0;
791                 ring->rx_curr_get_info.offset = 0;
792                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793                 ring->rx_curr_put_info.block_index = 0;
794                 ring->rx_curr_put_info.offset = 0;
795                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796                 ring->nic = nic;
797                 ring->ring_no = i;
798                 ring->lro = lro_enable;
799
800                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
801                 /*  Allocating all the Rx blocks */
802                 for (j = 0; j < blk_cnt; j++) {
803                         struct rx_block_info *rx_blocks;
804                         int l;
805
806                         rx_blocks = &ring->rx_blocks[j];
807                         size = SIZE_OF_BLOCK;   /* size is always page size */
808                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
809                                                           &tmp_p_addr);
810                         if (tmp_v_addr == NULL) {
811                                 /*
812                                  * In case of failure, free_shared_mem()
813                                  * is called, which should free any
814                                  * memory that was alloced till the
815                                  * failure happened.
816                                  */
817                                 rx_blocks->block_virt_addr = tmp_v_addr;
818                                 return -ENOMEM;
819                         }
820                         mem_allocated += size;
821                         memset(tmp_v_addr, 0, size);
822
823                         size = sizeof(struct rxd_info) *
824                                 rxd_count[nic->rxd_mode];
825                         rx_blocks->block_virt_addr = tmp_v_addr;
826                         rx_blocks->block_dma_addr = tmp_p_addr;
827                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
828                         if (!rx_blocks->rxds)
829                                 return -ENOMEM;
830                         mem_allocated += size;
831                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
832                                 rx_blocks->rxds[l].virt_addr =
833                                         rx_blocks->block_virt_addr +
834                                         (rxd_size[nic->rxd_mode] * l);
835                                 rx_blocks->rxds[l].dma_addr =
836                                         rx_blocks->block_dma_addr +
837                                         (rxd_size[nic->rxd_mode] * l);
838                         }
839                 }
840                 /* Interlinking all Rx Blocks */
841                 for (j = 0; j < blk_cnt; j++) {
842                         int next = (j + 1) % blk_cnt;
843                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
844                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
845                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
846                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
847
848                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
849                         pre_rxd_blk->reserved_2_pNext_RxD_block =
850                                 (unsigned long)tmp_v_addr_next;
851                         pre_rxd_blk->pNext_RxD_Blk_physical =
852                                 (u64)tmp_p_addr_next;
853                 }
854         }
855         if (nic->rxd_mode == RXD_MODE_3B) {
856                 /*
857                  * Allocation of Storages for buffer addresses in 2BUFF mode
858                  * and the buffers as well.
859                  */
860                 for (i = 0; i < config->rx_ring_num; i++) {
861                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
862                         struct ring_info *ring = &mac_control->rings[i];
863
864                         blk_cnt = rx_cfg->num_rxd /
865                                 (rxd_count[nic->rxd_mode] + 1);
866                         size = sizeof(struct buffAdd *) * blk_cnt;
867                         ring->ba = kmalloc(size, GFP_KERNEL);
868                         if (!ring->ba)
869                                 return -ENOMEM;
870                         mem_allocated += size;
871                         for (j = 0; j < blk_cnt; j++) {
872                                 int k = 0;
873
874                                 size = sizeof(struct buffAdd) *
875                                         (rxd_count[nic->rxd_mode] + 1);
876                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
877                                 if (!ring->ba[j])
878                                         return -ENOMEM;
879                                 mem_allocated += size;
880                                 while (k != rxd_count[nic->rxd_mode]) {
881                                         ba = &ring->ba[j][k];
882                                         size = BUF0_LEN + ALIGN_SIZE;
883                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
884                                         if (!ba->ba_0_org)
885                                                 return -ENOMEM;
886                                         mem_allocated += size;
887                                         tmp = (unsigned long)ba->ba_0_org;
888                                         tmp += ALIGN_SIZE;
889                                         tmp &= ~((unsigned long)ALIGN_SIZE);
890                                         ba->ba_0 = (void *)tmp;
891
892                                         size = BUF1_LEN + ALIGN_SIZE;
893                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
894                                         if (!ba->ba_1_org)
895                                                 return -ENOMEM;
896                                         mem_allocated += size;
897                                         tmp = (unsigned long)ba->ba_1_org;
898                                         tmp += ALIGN_SIZE;
899                                         tmp &= ~((unsigned long)ALIGN_SIZE);
900                                         ba->ba_1 = (void *)tmp;
901                                         k++;
902                                 }
903                         }
904                 }
905         }
906
907         /* Allocation and initialization of Statistics block */
908         size = sizeof(struct stat_block);
909         mac_control->stats_mem =
910                 pci_alloc_consistent(nic->pdev, size,
911                                      &mac_control->stats_mem_phy);
912
913         if (!mac_control->stats_mem) {
914                 /*
915                  * In case of failure, free_shared_mem() is called, which
916                  * should free any memory that was alloced till the
917                  * failure happened.
918                  */
919                 return -ENOMEM;
920         }
921         mem_allocated += size;
922         mac_control->stats_mem_sz = size;
923
924         tmp_v_addr = mac_control->stats_mem;
925         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
926         memset(tmp_v_addr, 0, size);
927         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
928                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
929         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
930         return SUCCESS;
931 }
932
933 /**
934  * free_shared_mem - Free the allocated Memory
935  * @nic:  Device private variable.
936  * Description: This function is to free all memory locations allocated by
937  * the init_shared_mem() function and return it to the kernel.
938  */
939
940 static void free_shared_mem(struct s2io_nic *nic)
941 {
942         int i, j, blk_cnt, size;
943         void *tmp_v_addr;
944         dma_addr_t tmp_p_addr;
945         int lst_size, lst_per_page;
946         struct net_device *dev;
947         int page_num = 0;
948         struct config_param *config;
949         struct mac_info *mac_control;
950         struct stat_block *stats;
951         struct swStat *swstats;
952
953         if (!nic)
954                 return;
955
956         dev = nic->dev;
957
958         config = &nic->config;
959         mac_control = &nic->mac_control;
960         stats = mac_control->stats_info;
961         swstats = &stats->sw_stat;
962
963         lst_size = sizeof(struct TxD) * config->max_txds;
964         lst_per_page = PAGE_SIZE / lst_size;
965
966         for (i = 0; i < config->tx_fifo_num; i++) {
967                 struct fifo_info *fifo = &mac_control->fifos[i];
968                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
969
970                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
971                 for (j = 0; j < page_num; j++) {
972                         int mem_blks = (j * lst_per_page);
973                         struct list_info_hold *fli;
974
975                         if (!fifo->list_info)
976                                 return;
977
978                         fli = &fifo->list_info[mem_blks];
979                         if (!fli->list_virt_addr)
980                                 break;
981                         pci_free_consistent(nic->pdev, PAGE_SIZE,
982                                             fli->list_virt_addr,
983                                             fli->list_phy_addr);
984                         swstats->mem_freed += PAGE_SIZE;
985                 }
986                 /* If we got a zero DMA address during allocation,
987                  * free the page now
988                  */
989                 if (mac_control->zerodma_virt_addr) {
990                         pci_free_consistent(nic->pdev, PAGE_SIZE,
991                                             mac_control->zerodma_virt_addr,
992                                             (dma_addr_t)0);
993                         DBG_PRINT(INIT_DBG,
994                                   "%s: Freeing TxDL with zero DMA address. "
995                                   "Virtual address %p\n",
996                                   dev->name, mac_control->zerodma_virt_addr);
997                         swstats->mem_freed += PAGE_SIZE;
998                 }
999                 kfree(fifo->list_info);
1000                 swstats->mem_freed += tx_cfg->fifo_len *
1001                         sizeof(struct list_info_hold);
1002         }
1003
1004         size = SIZE_OF_BLOCK;
1005         for (i = 0; i < config->rx_ring_num; i++) {
1006                 struct ring_info *ring = &mac_control->rings[i];
1007
1008                 blk_cnt = ring->block_count;
1009                 for (j = 0; j < blk_cnt; j++) {
1010                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1011                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1012                         if (tmp_v_addr == NULL)
1013                                 break;
1014                         pci_free_consistent(nic->pdev, size,
1015                                             tmp_v_addr, tmp_p_addr);
1016                         swstats->mem_freed += size;
1017                         kfree(ring->rx_blocks[j].rxds);
1018                         swstats->mem_freed += sizeof(struct rxd_info) *
1019                                 rxd_count[nic->rxd_mode];
1020                 }
1021         }
1022
1023         if (nic->rxd_mode == RXD_MODE_3B) {
1024                 /* Freeing buffer storage addresses in 2BUFF mode. */
1025                 for (i = 0; i < config->rx_ring_num; i++) {
1026                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1027                         struct ring_info *ring = &mac_control->rings[i];
1028
1029                         blk_cnt = rx_cfg->num_rxd /
1030                                 (rxd_count[nic->rxd_mode] + 1);
1031                         for (j = 0; j < blk_cnt; j++) {
1032                                 int k = 0;
1033                                 if (!ring->ba[j])
1034                                         continue;
1035                                 while (k != rxd_count[nic->rxd_mode]) {
1036                                         struct buffAdd *ba = &ring->ba[j][k];
1037                                         kfree(ba->ba_0_org);
1038                                         swstats->mem_freed +=
1039                                                 BUF0_LEN + ALIGN_SIZE;
1040                                         kfree(ba->ba_1_org);
1041                                         swstats->mem_freed +=
1042                                                 BUF1_LEN + ALIGN_SIZE;
1043                                         k++;
1044                                 }
1045                                 kfree(ring->ba[j]);
1046                                 swstats->mem_freed += sizeof(struct buffAdd) *
1047                                         (rxd_count[nic->rxd_mode] + 1);
1048                         }
1049                         kfree(ring->ba);
1050                         swstats->mem_freed += sizeof(struct buffAdd *) *
1051                                 blk_cnt;
1052                 }
1053         }
1054
1055         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1056                 struct fifo_info *fifo = &mac_control->fifos[i];
1057                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1058
1059                 if (fifo->ufo_in_band_v) {
1060                         swstats->mem_freed += tx_cfg->fifo_len *
1061                                 sizeof(u64);
1062                         kfree(fifo->ufo_in_band_v);
1063                 }
1064         }
1065
1066         if (mac_control->stats_mem) {
1067                 swstats->mem_freed += mac_control->stats_mem_sz;
1068                 pci_free_consistent(nic->pdev,
1069                                     mac_control->stats_mem_sz,
1070                                     mac_control->stats_mem,
1071                                     mac_control->stats_mem_phy);
1072         }
1073 }
1074
1075 /**
1076  * s2io_verify_pci_mode -
1077  */
1078
1079 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1080 {
1081         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1082         register u64 val64 = 0;
1083         int     mode;
1084
1085         val64 = readq(&bar0->pci_mode);
1086         mode = (u8)GET_PCI_MODE(val64);
1087
1088         if (val64 & PCI_MODE_UNKNOWN_MODE)
1089                 return -1;      /* Unknown PCI mode */
1090         return mode;
1091 }
1092
1093 #define NEC_VENID   0x1033
1094 #define NEC_DEVID   0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1096 {
1097         struct pci_dev *tdev = NULL;
1098         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1099                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1100                         if (tdev->bus == s2io_pdev->bus->parent) {
1101                                 pci_dev_put(tdev);
1102                                 return 1;
1103                         }
1104                 }
1105         }
1106         return 0;
1107 }
1108
1109 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 /**
1111  * s2io_print_pci_mode -
1112  */
1113 static int s2io_print_pci_mode(struct s2io_nic *nic)
1114 {
1115         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1116         register u64 val64 = 0;
1117         int     mode;
1118         struct config_param *config = &nic->config;
1119         const char *pcimode;
1120
1121         val64 = readq(&bar0->pci_mode);
1122         mode = (u8)GET_PCI_MODE(val64);
1123
1124         if (val64 & PCI_MODE_UNKNOWN_MODE)
1125                 return -1;      /* Unknown PCI mode */
1126
1127         config->bus_speed = bus_speed[mode];
1128
1129         if (s2io_on_nec_bridge(nic->pdev)) {
1130                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1131                           nic->dev->name);
1132                 return mode;
1133         }
1134
1135         switch (mode) {
1136         case PCI_MODE_PCI_33:
1137                 pcimode = "33MHz PCI bus";
1138                 break;
1139         case PCI_MODE_PCI_66:
1140                 pcimode = "66MHz PCI bus";
1141                 break;
1142         case PCI_MODE_PCIX_M1_66:
1143                 pcimode = "66MHz PCIX(M1) bus";
1144                 break;
1145         case PCI_MODE_PCIX_M1_100:
1146                 pcimode = "100MHz PCIX(M1) bus";
1147                 break;
1148         case PCI_MODE_PCIX_M1_133:
1149                 pcimode = "133MHz PCIX(M1) bus";
1150                 break;
1151         case PCI_MODE_PCIX_M2_66:
1152                 pcimode = "133MHz PCIX(M2) bus";
1153                 break;
1154         case PCI_MODE_PCIX_M2_100:
1155                 pcimode = "200MHz PCIX(M2) bus";
1156                 break;
1157         case PCI_MODE_PCIX_M2_133:
1158                 pcimode = "266MHz PCIX(M2) bus";
1159                 break;
1160         default:
1161                 pcimode = "unsupported bus!";
1162                 mode = -1;
1163         }
1164
1165         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1166                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1167
1168         return mode;
1169 }
1170
1171 /**
1172  *  init_tti - Initialization transmit traffic interrupt scheme
1173  *  @nic: device private variable
1174  *  @link: link status (UP/DOWN) used to enable/disable continuous
1175  *  transmit interrupts
1176  *  Description: The function configures transmit traffic interrupts
1177  *  Return Value:  SUCCESS on success and
1178  *  '-1' on failure
1179  */
1180
1181 static int init_tti(struct s2io_nic *nic, int link)
1182 {
1183         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1184         register u64 val64 = 0;
1185         int i;
1186         struct config_param *config = &nic->config;
1187
1188         for (i = 0; i < config->tx_fifo_num; i++) {
1189                 /*
1190                  * TTI Initialization. Default Tx timer gets us about
1191                  * 250 interrupts per sec. Continuous interrupts are enabled
1192                  * by default.
1193                  */
1194                 if (nic->device_type == XFRAME_II_DEVICE) {
1195                         int count = (nic->config.bus_speed * 125)/2;
1196                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1197                 } else
1198                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199
1200                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1204                 if (i == 0)
1205                         if (use_continuous_tx_intrs && (link == LINK_UP))
1206                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1207                 writeq(val64, &bar0->tti_data1_mem);
1208
1209                 if (nic->config.intr_type == MSI_X) {
1210                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214                 } else {
1215                         if ((nic->config.tx_steering_type ==
1216                              TX_DEFAULT_STEERING) &&
1217                             (config->tx_fifo_num > 1) &&
1218                             (i >= nic->udp_fifo_idx) &&
1219                             (i < (nic->udp_fifo_idx +
1220                                   nic->total_udp_fifos)))
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1225                         else
1226                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1230                 }
1231
1232                 writeq(val64, &bar0->tti_data2_mem);
1233
1234                 val64 = TTI_CMD_MEM_WE |
1235                         TTI_CMD_MEM_STROBE_NEW_CMD |
1236                         TTI_CMD_MEM_OFFSET(i);
1237                 writeq(val64, &bar0->tti_command_mem);
1238
1239                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1240                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1241                                           S2IO_BIT_RESET) != SUCCESS)
1242                         return FAILURE;
1243         }
1244
1245         return SUCCESS;
1246 }
1247
1248 /**
1249  *  init_nic - Initialization of hardware
1250  *  @nic: device private variable
1251  *  Description: The function sequentially configures every block
1252  *  of the H/W from their reset values.
1253  *  Return Value:  SUCCESS on success and
1254  *  '-1' on failure (endian settings incorrect).
1255  */
1256
1257 static int init_nic(struct s2io_nic *nic)
1258 {
1259         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1260         struct net_device *dev = nic->dev;
1261         register u64 val64 = 0;
1262         void __iomem *add;
1263         u32 time;
1264         int i, j;
1265         int dtx_cnt = 0;
1266         unsigned long long mem_share;
1267         int mem_size;
1268         struct config_param *config = &nic->config;
1269         struct mac_info *mac_control = &nic->mac_control;
1270
1271         /* to set the swapper controle on the card */
1272         if (s2io_set_swapper(nic)) {
1273                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1274                 return -EIO;
1275         }
1276
1277         /*
1278          * Herc requires EOI to be removed from reset before XGXS, so..
1279          */
1280         if (nic->device_type & XFRAME_II_DEVICE) {
1281                 val64 = 0xA500000000ULL;
1282                 writeq(val64, &bar0->sw_reset);
1283                 msleep(500);
1284                 val64 = readq(&bar0->sw_reset);
1285         }
1286
1287         /* Remove XGXS from reset state */
1288         val64 = 0;
1289         writeq(val64, &bar0->sw_reset);
1290         msleep(500);
1291         val64 = readq(&bar0->sw_reset);
1292
1293         /* Ensure that it's safe to access registers by checking
1294          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295          */
1296         if (nic->device_type == XFRAME_II_DEVICE) {
1297                 for (i = 0; i < 50; i++) {
1298                         val64 = readq(&bar0->adapter_status);
1299                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300                                 break;
1301                         msleep(10);
1302                 }
1303                 if (i == 50)
1304                         return -ENODEV;
1305         }
1306
1307         /*  Enable Receiving broadcasts */
1308         add = &bar0->mac_cfg;
1309         val64 = readq(&bar0->mac_cfg);
1310         val64 |= MAC_RMAC_BCAST_ENABLE;
1311         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312         writel((u32)val64, add);
1313         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314         writel((u32) (val64 >> 32), (add + 4));
1315
1316         /* Read registers in all blocks */
1317         val64 = readq(&bar0->mac_int_mask);
1318         val64 = readq(&bar0->mc_int_mask);
1319         val64 = readq(&bar0->xgxs_int_mask);
1320
1321         /*  Set MTU */
1322         val64 = dev->mtu;
1323         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
1325         if (nic->device_type & XFRAME_II_DEVICE) {
1326                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328                                           &bar0->dtx_control, UF);
1329                         if (dtx_cnt & 0x1)
1330                                 msleep(1); /* Necessary!! */
1331                         dtx_cnt++;
1332                 }
1333         } else {
1334                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336                                           &bar0->dtx_control, UF);
1337                         val64 = readq(&bar0->dtx_control);
1338                         dtx_cnt++;
1339                 }
1340         }
1341
1342         /*  Tx DMA Initialization */
1343         val64 = 0;
1344         writeq(val64, &bar0->tx_fifo_partition_0);
1345         writeq(val64, &bar0->tx_fifo_partition_1);
1346         writeq(val64, &bar0->tx_fifo_partition_2);
1347         writeq(val64, &bar0->tx_fifo_partition_3);
1348
1349         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1350                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1351
1352                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1353                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1354
1355                 if (i == (config->tx_fifo_num - 1)) {
1356                         if (i % 2 == 0)
1357                                 i++;
1358                 }
1359
1360                 switch (i) {
1361                 case 1:
1362                         writeq(val64, &bar0->tx_fifo_partition_0);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 3:
1367                         writeq(val64, &bar0->tx_fifo_partition_1);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 5:
1372                         writeq(val64, &bar0->tx_fifo_partition_2);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 case 7:
1377                         writeq(val64, &bar0->tx_fifo_partition_3);
1378                         val64 = 0;
1379                         j = 0;
1380                         break;
1381                 default:
1382                         j++;
1383                         break;
1384                 }
1385         }
1386
1387         /*
1388          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390          */
1391         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1392                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1393
1394         val64 = readq(&bar0->tx_fifo_partition_0);
1395         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1396                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1397
1398         /*
1399          * Initialization of Tx_PA_CONFIG register to ignore packet
1400          * integrity checking.
1401          */
1402         val64 = readq(&bar0->tx_pa_cfg);
1403         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1404                 TX_PA_CFG_IGNORE_SNAP_OUI |
1405                 TX_PA_CFG_IGNORE_LLC_CTRL |
1406                 TX_PA_CFG_IGNORE_L2_ERR;
1407         writeq(val64, &bar0->tx_pa_cfg);
1408
1409         /* Rx DMA intialization. */
1410         val64 = 0;
1411         for (i = 0; i < config->rx_ring_num; i++) {
1412                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1413
1414                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1415         }
1416         writeq(val64, &bar0->rx_queue_priority);
1417
1418         /*
1419          * Allocating equal share of memory to all the
1420          * configured Rings.
1421          */
1422         val64 = 0;
1423         if (nic->device_type & XFRAME_II_DEVICE)
1424                 mem_size = 32;
1425         else
1426                 mem_size = 64;
1427
1428         for (i = 0; i < config->rx_ring_num; i++) {
1429                 switch (i) {
1430                 case 0:
1431                         mem_share = (mem_size / config->rx_ring_num +
1432                                      mem_size % config->rx_ring_num);
1433                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434                         continue;
1435                 case 1:
1436                         mem_share = (mem_size / config->rx_ring_num);
1437                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438                         continue;
1439                 case 2:
1440                         mem_share = (mem_size / config->rx_ring_num);
1441                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442                         continue;
1443                 case 3:
1444                         mem_share = (mem_size / config->rx_ring_num);
1445                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446                         continue;
1447                 case 4:
1448                         mem_share = (mem_size / config->rx_ring_num);
1449                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450                         continue;
1451                 case 5:
1452                         mem_share = (mem_size / config->rx_ring_num);
1453                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454                         continue;
1455                 case 6:
1456                         mem_share = (mem_size / config->rx_ring_num);
1457                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458                         continue;
1459                 case 7:
1460                         mem_share = (mem_size / config->rx_ring_num);
1461                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462                         continue;
1463                 }
1464         }
1465         writeq(val64, &bar0->rx_queue_cfg);
1466
1467         /*
1468          * Filling Tx round robin registers
1469          * as per the number of FIFOs for equal scheduling priority
1470          */
1471         switch (config->tx_fifo_num) {
1472         case 1:
1473                 val64 = 0x0;
1474                 writeq(val64, &bar0->tx_w_round_robin_0);
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 writeq(val64, &bar0->tx_w_round_robin_2);
1477                 writeq(val64, &bar0->tx_w_round_robin_3);
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 2:
1481                 val64 = 0x0001000100010001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 writeq(val64, &bar0->tx_w_round_robin_2);
1485                 writeq(val64, &bar0->tx_w_round_robin_3);
1486                 val64 = 0x0001000100000000ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_4);
1488                 break;
1489         case 3:
1490                 val64 = 0x0001020001020001ULL;
1491                 writeq(val64, &bar0->tx_w_round_robin_0);
1492                 val64 = 0x0200010200010200ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_1);
1494                 val64 = 0x0102000102000102ULL;
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 val64 = 0x0001020001020001ULL;
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0200010200000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 4:
1502                 val64 = 0x0001020300010203ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 writeq(val64, &bar0->tx_w_round_robin_2);
1506                 writeq(val64, &bar0->tx_w_round_robin_3);
1507                 val64 = 0x0001020300000000ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_4);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001020304000102ULL;
1512                 writeq(val64, &bar0->tx_w_round_robin_0);
1513                 val64 = 0x0304000102030400ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_1);
1515                 val64 = 0x0102030400010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_2);
1517                 val64 = 0x0400010203040001ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_3);
1519                 val64 = 0x0203040000000000ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_4);
1521                 break;
1522         case 6:
1523                 val64 = 0x0001020304050001ULL;
1524                 writeq(val64, &bar0->tx_w_round_robin_0);
1525                 val64 = 0x0203040500010203ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_1);
1527                 val64 = 0x0405000102030405ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_2);
1529                 val64 = 0x0001020304050001ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_3);
1531                 val64 = 0x0203040500000000ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_4);
1533                 break;
1534         case 7:
1535                 val64 = 0x0001020304050600ULL;
1536                 writeq(val64, &bar0->tx_w_round_robin_0);
1537                 val64 = 0x0102030405060001ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_1);
1539                 val64 = 0x0203040506000102ULL;
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 val64 = 0x0304050600010203ULL;
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0405060000000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         case 8:
1547                 val64 = 0x0001020304050607ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_0);
1549                 writeq(val64, &bar0->tx_w_round_robin_1);
1550                 writeq(val64, &bar0->tx_w_round_robin_2);
1551                 writeq(val64, &bar0->tx_w_round_robin_3);
1552                 val64 = 0x0001020300000000ULL;
1553                 writeq(val64, &bar0->tx_w_round_robin_4);
1554                 break;
1555         }
1556
1557         /* Enable all configured Tx FIFO partitions */
1558         val64 = readq(&bar0->tx_fifo_partition_0);
1559         val64 |= (TX_FIFO_PARTITION_EN);
1560         writeq(val64, &bar0->tx_fifo_partition_0);
1561
1562         /* Filling the Rx round robin registers as per the
1563          * number of Rings and steering based on QoS with
1564          * equal priority.
1565          */
1566         switch (config->rx_ring_num) {
1567         case 1:
1568                 val64 = 0x0;
1569                 writeq(val64, &bar0->rx_w_round_robin_0);
1570                 writeq(val64, &bar0->rx_w_round_robin_1);
1571                 writeq(val64, &bar0->rx_w_round_robin_2);
1572                 writeq(val64, &bar0->rx_w_round_robin_3);
1573                 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575                 val64 = 0x8080808080808080ULL;
1576                 writeq(val64, &bar0->rts_qos_steering);
1577                 break;
1578         case 2:
1579                 val64 = 0x0001000100010001ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_0);
1581                 writeq(val64, &bar0->rx_w_round_robin_1);
1582                 writeq(val64, &bar0->rx_w_round_robin_2);
1583                 writeq(val64, &bar0->rx_w_round_robin_3);
1584                 val64 = 0x0001000100000000ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587                 val64 = 0x8080808040404040ULL;
1588                 writeq(val64, &bar0->rts_qos_steering);
1589                 break;
1590         case 3:
1591                 val64 = 0x0001020001020001ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_0);
1593                 val64 = 0x0200010200010200ULL;
1594                 writeq(val64, &bar0->rx_w_round_robin_1);
1595                 val64 = 0x0102000102000102ULL;
1596                 writeq(val64, &bar0->rx_w_round_robin_2);
1597                 val64 = 0x0001020001020001ULL;
1598                 writeq(val64, &bar0->rx_w_round_robin_3);
1599                 val64 = 0x0200010200000000ULL;
1600                 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602                 val64 = 0x8080804040402020ULL;
1603                 writeq(val64, &bar0->rts_qos_steering);
1604                 break;
1605         case 4:
1606                 val64 = 0x0001020300010203ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_0);
1608                 writeq(val64, &bar0->rx_w_round_robin_1);
1609                 writeq(val64, &bar0->rx_w_round_robin_2);
1610                 writeq(val64, &bar0->rx_w_round_robin_3);
1611                 val64 = 0x0001020300000000ULL;
1612                 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614                 val64 = 0x8080404020201010ULL;
1615                 writeq(val64, &bar0->rts_qos_steering);
1616                 break;
1617         case 5:
1618                 val64 = 0x0001020304000102ULL;
1619                 writeq(val64, &bar0->rx_w_round_robin_0);
1620                 val64 = 0x0304000102030400ULL;
1621                 writeq(val64, &bar0->rx_w_round_robin_1);
1622                 val64 = 0x0102030400010203ULL;
1623                 writeq(val64, &bar0->rx_w_round_robin_2);
1624                 val64 = 0x0400010203040001ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_3);
1626                 val64 = 0x0203040000000000ULL;
1627                 writeq(val64, &bar0->rx_w_round_robin_4);
1628
1629                 val64 = 0x8080404020201008ULL;
1630                 writeq(val64, &bar0->rts_qos_steering);
1631                 break;
1632         case 6:
1633                 val64 = 0x0001020304050001ULL;
1634                 writeq(val64, &bar0->rx_w_round_robin_0);
1635                 val64 = 0x0203040500010203ULL;
1636                 writeq(val64, &bar0->rx_w_round_robin_1);
1637                 val64 = 0x0405000102030405ULL;
1638                 writeq(val64, &bar0->rx_w_round_robin_2);
1639                 val64 = 0x0001020304050001ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_3);
1641                 val64 = 0x0203040500000000ULL;
1642                 writeq(val64, &bar0->rx_w_round_robin_4);
1643
1644                 val64 = 0x8080404020100804ULL;
1645                 writeq(val64, &bar0->rts_qos_steering);
1646                 break;
1647         case 7:
1648                 val64 = 0x0001020304050600ULL;
1649                 writeq(val64, &bar0->rx_w_round_robin_0);
1650                 val64 = 0x0102030405060001ULL;
1651                 writeq(val64, &bar0->rx_w_round_robin_1);
1652                 val64 = 0x0203040506000102ULL;
1653                 writeq(val64, &bar0->rx_w_round_robin_2);
1654                 val64 = 0x0304050600010203ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_3);
1656                 val64 = 0x0405060000000000ULL;
1657                 writeq(val64, &bar0->rx_w_round_robin_4);
1658
1659                 val64 = 0x8080402010080402ULL;
1660                 writeq(val64, &bar0->rts_qos_steering);
1661                 break;
1662         case 8:
1663                 val64 = 0x0001020304050607ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_0);
1665                 writeq(val64, &bar0->rx_w_round_robin_1);
1666                 writeq(val64, &bar0->rx_w_round_robin_2);
1667                 writeq(val64, &bar0->rx_w_round_robin_3);
1668                 val64 = 0x0001020300000000ULL;
1669                 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671                 val64 = 0x8040201008040201ULL;
1672                 writeq(val64, &bar0->rts_qos_steering);
1673                 break;
1674         }
1675
1676         /* UDP Fix */
1677         val64 = 0;
1678         for (i = 0; i < 8; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the default rts frame length for the rings configured */
1682         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1683         for (i = 0 ; i < config->rx_ring_num ; i++)
1684                 writeq(val64, &bar0->rts_frm_len_n[i]);
1685
1686         /* Set the frame length for the configured rings
1687          * desired by the user
1688          */
1689         for (i = 0; i < config->rx_ring_num; i++) {
1690                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691                  * specified frame length steering.
1692                  * If the user provides the frame length then program
1693                  * the rts_frm_len register for those values or else
1694                  * leave it as it is.
1695                  */
1696                 if (rts_frm_len[i] != 0) {
1697                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1698                                &bar0->rts_frm_len_n[i]);
1699                 }
1700         }
1701
1702         /* Disable differentiated services steering logic */
1703         for (i = 0; i < 64; i++) {
1704                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1705                         DBG_PRINT(ERR_DBG,
1706                                   "%s: rts_ds_steer failed on codepoint %d\n",
1707                                   dev->name, i);
1708                         return -ENODEV;
1709                 }
1710         }
1711
1712         /* Program statistics memory */
1713         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1714
1715         if (nic->device_type == XFRAME_II_DEVICE) {
1716                 val64 = STAT_BC(0x320);
1717                 writeq(val64, &bar0->stat_byte_cnt);
1718         }
1719
1720         /*
1721          * Initializing the sampling rate for the device to calculate the
1722          * bandwidth utilization.
1723          */
1724         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1725                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1726         writeq(val64, &bar0->mac_link_util);
1727
1728         /*
1729          * Initializing the Transmit and Receive Traffic Interrupt
1730          * Scheme.
1731          */
1732
1733         /* Initialize TTI */
1734         if (SUCCESS != init_tti(nic, nic->last_link_state))
1735                 return -ENODEV;
1736
1737         /* RTI Initialization */
1738         if (nic->device_type == XFRAME_II_DEVICE) {
1739                 /*
1740                  * Programmed to generate Apprx 500 Intrs per
1741                  * second
1742                  */
1743                 int count = (nic->config.bus_speed * 125)/4;
1744                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1745         } else
1746                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1751
1752         writeq(val64, &bar0->rti_data1_mem);
1753
1754         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756         if (nic->config.intr_type == MSI_X)
1757                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1759         else
1760                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1762         writeq(val64, &bar0->rti_data2_mem);
1763
1764         for (i = 0; i < config->rx_ring_num; i++) {
1765                 val64 = RTI_CMD_MEM_WE |
1766                         RTI_CMD_MEM_STROBE_NEW_CMD |
1767                         RTI_CMD_MEM_OFFSET(i);
1768                 writeq(val64, &bar0->rti_command_mem);
1769
1770                 /*
1771                  * Once the operation completes, the Strobe bit of the
1772                  * command register will be reset. We poll for this
1773                  * particular condition. We wait for a maximum of 500ms
1774                  * for the operation to complete, if it's not complete
1775                  * by then we return error.
1776                  */
1777                 time = 0;
1778                 while (true) {
1779                         val64 = readq(&bar0->rti_command_mem);
1780                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781                                 break;
1782
1783                         if (time > 10) {
1784                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1785                                           dev->name);
1786                                 return -ENODEV;
1787                         }
1788                         time++;
1789                         msleep(50);
1790                 }
1791         }
1792
1793         /*
1794          * Initializing proper values as Pause threshold into all
1795          * the 8 Queues on Rx side.
1796          */
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800         /* Disable RMAC PAD STRIPPING */
1801         add = &bar0->mac_cfg;
1802         val64 = readq(&bar0->mac_cfg);
1803         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805         writel((u32) (val64), add);
1806         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807         writel((u32) (val64 >> 32), (add + 4));
1808         val64 = readq(&bar0->mac_cfg);
1809
1810         /* Enable FCS stripping by adapter */
1811         add = &bar0->mac_cfg;
1812         val64 = readq(&bar0->mac_cfg);
1813         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814         if (nic->device_type == XFRAME_II_DEVICE)
1815                 writeq(val64, &bar0->mac_cfg);
1816         else {
1817                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818                 writel((u32) (val64), add);
1819                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820                 writel((u32) (val64 >> 32), (add + 4));
1821         }
1822
1823         /*
1824          * Set the time value to be inserted in the pause frame
1825          * generated by xena.
1826          */
1827         val64 = readq(&bar0->rmac_pause_cfg);
1828         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830         writeq(val64, &bar0->rmac_pause_cfg);
1831
1832         /*
1833          * Set the Threshold Limit for Generating the pause frame
1834          * If the amount of data in any Queue exceeds ratio of
1835          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836          * pause frame is generated
1837          */
1838         val64 = 0;
1839         for (i = 0; i < 4; i++) {
1840                 val64 |= (((u64)0xFF00 |
1841                            nic->mac_control.mc_pause_threshold_q0q3)
1842                           << (i * 2 * 8));
1843         }
1844         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846         val64 = 0;
1847         for (i = 0; i < 4; i++) {
1848                 val64 |= (((u64)0xFF00 |
1849                            nic->mac_control.mc_pause_threshold_q4q7)
1850                           << (i * 2 * 8));
1851         }
1852         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1853
1854         /*
1855          * TxDMA will stop Read request if the number of read split has
1856          * exceeded the limit pointed by shared_splits
1857          */
1858         val64 = readq(&bar0->pic_control);
1859         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1860         writeq(val64, &bar0->pic_control);
1861
1862         if (nic->config.bus_speed == 266) {
1863                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1864                 writeq(0x0, &bar0->read_retry_delay);
1865                 writeq(0x0, &bar0->write_retry_delay);
1866         }
1867
1868         /*
1869          * Programming the Herc to split every write transaction
1870          * that does not start on an ADB to reduce disconnects.
1871          */
1872         if (nic->device_type == XFRAME_II_DEVICE) {
1873                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1874                         MISC_LINK_STABILITY_PRD(3);
1875                 writeq(val64, &bar0->misc_control);
1876                 val64 = readq(&bar0->pic_control2);
1877                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878                 writeq(val64, &bar0->pic_control2);
1879         }
1880         if (strstr(nic->product_name, "CX4")) {
1881                 val64 = TMAC_AVG_IPG(0x17);
1882                 writeq(val64, &bar0->tmac_avg_ipg);
1883         }
1884
1885         return SUCCESS;
1886 }
1887 #define LINK_UP_DOWN_INTERRUPT          1
1888 #define MAC_RMAC_ERR_TIMER              2
1889
1890 static int s2io_link_fault_indication(struct s2io_nic *nic)
1891 {
1892         if (nic->device_type == XFRAME_II_DEVICE)
1893                 return LINK_UP_DOWN_INTERRUPT;
1894         else
1895                 return MAC_RMAC_ERR_TIMER;
1896 }
1897
1898 /**
1899  *  do_s2io_write_bits -  update alarm bits in alarm register
1900  *  @value: alarm bits
1901  *  @flag: interrupt status
1902  *  @addr: address value
1903  *  Description: update alarm bits in alarm register
1904  *  Return Value:
1905  *  NONE.
1906  */
1907 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1908 {
1909         u64 temp64;
1910
1911         temp64 = readq(addr);
1912
1913         if (flag == ENABLE_INTRS)
1914                 temp64 &= ~((u64)value);
1915         else
1916                 temp64 |= ((u64)value);
1917         writeq(temp64, addr);
1918 }
1919
1920 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1921 {
1922         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923         register u64 gen_int_mask = 0;
1924         u64 interruptible;
1925
1926         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1927         if (mask & TX_DMA_INTR) {
1928                 gen_int_mask |= TXDMA_INT_M;
1929
1930                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1931                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1932                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1933                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1934
1935                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1936                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1937                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1938                                    &bar0->pfc_err_mask);
1939
1940                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1941                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1942                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1943
1944                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1945                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1946                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1947                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1948                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1949                                    PCC_TXB_ECC_SG_ERR,
1950                                    flag, &bar0->pcc_err_mask);
1951
1952                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1953                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1954
1955                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1956                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1957                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1958                                    flag, &bar0->lso_err_mask);
1959
1960                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1961                                    flag, &bar0->tpa_err_mask);
1962
1963                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1964         }
1965
1966         if (mask & TX_MAC_INTR) {
1967                 gen_int_mask |= TXMAC_INT_M;
1968                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1969                                    &bar0->mac_int_mask);
1970                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1971                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1972                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1973                                    flag, &bar0->mac_tmac_err_mask);
1974         }
1975
1976         if (mask & TX_XGXS_INTR) {
1977                 gen_int_mask |= TXXGXS_INT_M;
1978                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1979                                    &bar0->xgxs_int_mask);
1980                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1981                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1982                                    flag, &bar0->xgxs_txgxs_err_mask);
1983         }
1984
1985         if (mask & RX_DMA_INTR) {
1986                 gen_int_mask |= RXDMA_INT_M;
1987                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1988                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1989                                    flag, &bar0->rxdma_int_mask);
1990                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1991                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1992                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1993                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1994                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1995                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1996                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1997                                    &bar0->prc_pcix_err_mask);
1998                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1999                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2000                                    &bar0->rpa_err_mask);
2001                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2002                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2003                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2004                                    RDA_FRM_ECC_SG_ERR |
2005                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2006                                    flag, &bar0->rda_err_mask);
2007                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2008                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2009                                    flag, &bar0->rti_err_mask);
2010         }
2011
2012         if (mask & RX_MAC_INTR) {
2013                 gen_int_mask |= RXMAC_INT_M;
2014                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2015                                    &bar0->mac_int_mask);
2016                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2017                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2018                                  RMAC_DOUBLE_ECC_ERR);
2019                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2020                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2021                 do_s2io_write_bits(interruptible,
2022                                    flag, &bar0->mac_rmac_err_mask);
2023         }
2024
2025         if (mask & RX_XGXS_INTR) {
2026                 gen_int_mask |= RXXGXS_INT_M;
2027                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028                                    &bar0->xgxs_int_mask);
2029                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030                                    &bar0->xgxs_rxgxs_err_mask);
2031         }
2032
2033         if (mask & MC_INTR) {
2034                 gen_int_mask |= MC_INT_M;
2035                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2036                                    flag, &bar0->mc_int_mask);
2037                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2038                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039                                    &bar0->mc_err_mask);
2040         }
2041         nic->general_int_mask = gen_int_mask;
2042
2043         /* Remove this line when alarm interrupts are enabled */
2044         nic->general_int_mask = 0;
2045 }
2046
2047 /**
2048  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2049  *  @nic: device private variable,
2050  *  @mask: A mask indicating which Intr block must be modified and,
2051  *  @flag: A flag indicating whether to enable or disable the Intrs.
2052  *  Description: This function will either disable or enable the interrupts
2053  *  depending on the flag argument. The mask argument can be used to
2054  *  enable/disable any Intr block.
2055  *  Return Value: NONE.
2056  */
2057
2058 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2059 {
2060         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2061         register u64 temp64 = 0, intr_mask = 0;
2062
2063         intr_mask = nic->general_int_mask;
2064
2065         /*  Top level interrupt classification */
2066         /*  PIC Interrupts */
2067         if (mask & TX_PIC_INTR) {
2068                 /*  Enable PIC Intrs in the general intr mask register */
2069                 intr_mask |= TXPIC_INT_M;
2070                 if (flag == ENABLE_INTRS) {
2071                         /*
2072                          * If Hercules adapter enable GPIO otherwise
2073                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2074                          * interrupts for now.
2075                          * TODO
2076                          */
2077                         if (s2io_link_fault_indication(nic) ==
2078                             LINK_UP_DOWN_INTERRUPT) {
2079                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2080                                                    &bar0->pic_int_mask);
2081                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2082                                                    &bar0->gpio_int_mask);
2083                         } else
2084                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2085                 } else if (flag == DISABLE_INTRS) {
2086                         /*
2087                          * Disable PIC Intrs in the general
2088                          * intr mask register
2089                          */
2090                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2091                 }
2092         }
2093
2094         /*  Tx traffic interrupts */
2095         if (mask & TX_TRAFFIC_INTR) {
2096                 intr_mask |= TXTRAFFIC_INT_M;
2097                 if (flag == ENABLE_INTRS) {
2098                         /*
2099                          * Enable all the Tx side interrupts
2100                          * writing 0 Enables all 64 TX interrupt levels
2101                          */
2102                         writeq(0x0, &bar0->tx_traffic_mask);
2103                 } else if (flag == DISABLE_INTRS) {
2104                         /*
2105                          * Disable Tx Traffic Intrs in the general intr mask
2106                          * register.
2107                          */
2108                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2109                 }
2110         }
2111
2112         /*  Rx traffic interrupts */
2113         if (mask & RX_TRAFFIC_INTR) {
2114                 intr_mask |= RXTRAFFIC_INT_M;
2115                 if (flag == ENABLE_INTRS) {
2116                         /* writing 0 Enables all 8 RX interrupt levels */
2117                         writeq(0x0, &bar0->rx_traffic_mask);
2118                 } else if (flag == DISABLE_INTRS) {
2119                         /*
2120                          * Disable Rx Traffic Intrs in the general intr mask
2121                          * register.
2122                          */
2123                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2124                 }
2125         }
2126
2127         temp64 = readq(&bar0->general_int_mask);
2128         if (flag == ENABLE_INTRS)
2129                 temp64 &= ~((u64)intr_mask);
2130         else
2131                 temp64 = DISABLE_ALL_INTRS;
2132         writeq(temp64, &bar0->general_int_mask);
2133
2134         nic->general_int_mask = readq(&bar0->general_int_mask);
2135 }
2136
2137 /**
2138  *  verify_pcc_quiescent- Checks for PCC quiescent state
2139  *  Return: 1 If PCC is quiescence
2140  *          0 If PCC is not quiescence
2141  */
2142 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 {
2144         int ret = 0, herc;
2145         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2146         u64 val64 = readq(&bar0->adapter_status);
2147
2148         herc = (sp->device_type == XFRAME_II_DEVICE);
2149
2150         if (flag == false) {
2151                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2152                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153                                 ret = 1;
2154                 } else {
2155                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156                                 ret = 1;
2157                 }
2158         } else {
2159                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2160                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2161                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2162                                 ret = 1;
2163                 } else {
2164                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2165                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2166                                 ret = 1;
2167                 }
2168         }
2169
2170         return ret;
2171 }
2172 /**
2173  *  verify_xena_quiescence - Checks whether the H/W is ready
2174  *  Description: Returns whether the H/W is ready to go or not. Depending
2175  *  on whether adapter enable bit was written or not the comparison
2176  *  differs and the calling function passes the input argument flag to
2177  *  indicate this.
2178  *  Return: 1 If xena is quiescence
2179  *          0 If Xena is not quiescence
2180  */
2181
2182 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 {
2184         int  mode;
2185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2186         u64 val64 = readq(&bar0->adapter_status);
2187         mode = s2io_verify_pci_mode(sp);
2188
2189         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2190                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2191                 return 0;
2192         }
2193         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2194                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2195                 return 0;
2196         }
2197         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2198                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2199                 return 0;
2200         }
2201         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2202                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2203                 return 0;
2204         }
2205         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2206                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2207                 return 0;
2208         }
2209         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2210                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2211                 return 0;
2212         }
2213         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2214                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2215                 return 0;
2216         }
2217         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2218                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2219                 return 0;
2220         }
2221
2222         /*
2223          * In PCI 33 mode, the P_PLL is not used, and therefore,
2224          * the the P_PLL_LOCK bit in the adapter_status register will
2225          * not be asserted.
2226          */
2227         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2228             sp->device_type == XFRAME_II_DEVICE &&
2229             mode != PCI_MODE_PCI_33) {
2230                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2231                 return 0;
2232         }
2233         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2234               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2235                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2236                 return 0;
2237         }
2238         return 1;
2239 }
2240
2241 /**
2242  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2243  * @sp: Pointer to device specifc structure
2244  * Description :
2245  * New procedure to clear mac address reading  problems on Alpha platforms
2246  *
2247  */
2248
2249 static void fix_mac_address(struct s2io_nic *sp)
2250 {
2251         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2252         u64 val64;
2253         int i = 0;
2254
2255         while (fix_mac[i] != END_SIGN) {
2256                 writeq(fix_mac[i++], &bar0->gpio_control);
2257                 udelay(10);
2258                 val64 = readq(&bar0->gpio_control);
2259         }
2260 }
2261
2262 /**
2263  *  start_nic - Turns the device on
2264  *  @nic : device private variable.
2265  *  Description:
2266  *  This function actually turns the device on. Before this  function is
2267  *  called,all Registers are configured from their reset states
2268  *  and shared memory is allocated but the NIC is still quiescent. On
2269  *  calling this function, the device interrupts are cleared and the NIC is
2270  *  literally switched on by writing into the adapter control register.
2271  *  Return Value:
2272  *  SUCCESS on success and -1 on failure.
2273  */
2274
2275 static int start_nic(struct s2io_nic *nic)
2276 {
2277         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2278         struct net_device *dev = nic->dev;
2279         register u64 val64 = 0;
2280         u16 subid, i;
2281         struct config_param *config = &nic->config;
2282         struct mac_info *mac_control = &nic->mac_control;
2283
2284         /*  PRC Initialization and configuration */
2285         for (i = 0; i < config->rx_ring_num; i++) {
2286                 struct ring_info *ring = &mac_control->rings[i];
2287
2288                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2289                        &bar0->prc_rxd0_n[i]);
2290
2291                 val64 = readq(&bar0->prc_ctrl_n[i]);
2292                 if (nic->rxd_mode == RXD_MODE_1)
2293                         val64 |= PRC_CTRL_RC_ENABLED;
2294                 else
2295                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2296                 if (nic->device_type == XFRAME_II_DEVICE)
2297                         val64 |= PRC_CTRL_GROUP_READS;
2298                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300                 writeq(val64, &bar0->prc_ctrl_n[i]);
2301         }
2302
2303         if (nic->rxd_mode == RXD_MODE_3B) {
2304                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305                 val64 = readq(&bar0->rx_pa_cfg);
2306                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307                 writeq(val64, &bar0->rx_pa_cfg);
2308         }
2309
2310         if (vlan_tag_strip == 0) {
2311                 val64 = readq(&bar0->rx_pa_cfg);
2312                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313                 writeq(val64, &bar0->rx_pa_cfg);
2314                 nic->vlan_strip_flag = 0;
2315         }
2316
2317         /*
2318          * Enabling MC-RLDRAM. After enabling the device, we timeout
2319          * for around 100ms, which is approximately the time required
2320          * for the device to be ready for operation.
2321          */
2322         val64 = readq(&bar0->mc_rldram_mrs);
2323         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325         val64 = readq(&bar0->mc_rldram_mrs);
2326
2327         msleep(100);    /* Delay by around 100 ms. */
2328
2329         /* Enabling ECC Protection. */
2330         val64 = readq(&bar0->adapter_control);
2331         val64 &= ~ADAPTER_ECC_EN;
2332         writeq(val64, &bar0->adapter_control);
2333
2334         /*
2335          * Verify if the device is ready to be enabled, if so enable
2336          * it.
2337          */
2338         val64 = readq(&bar0->adapter_status);
2339         if (!verify_xena_quiescence(nic)) {
2340                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2341                           "Adapter status reads: 0x%llx\n",
2342                           dev->name, (unsigned long long)val64);
2343                 return FAILURE;
2344         }
2345
2346         /*
2347          * With some switches, link might be already up at this point.
2348          * Because of this weird behavior, when we enable laser,
2349          * we may not get link. We need to handle this. We cannot
2350          * figure out which switch is misbehaving. So we are forced to
2351          * make a global change.
2352          */
2353
2354         /* Enabling Laser. */
2355         val64 = readq(&bar0->adapter_control);
2356         val64 |= ADAPTER_EOI_TX_ON;
2357         writeq(val64, &bar0->adapter_control);
2358
2359         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360                 /*
2361                  * Dont see link state interrupts initally on some switches,
2362                  * so directly scheduling the link state task here.
2363                  */
2364                 schedule_work(&nic->set_link_task);
2365         }
2366         /* SXE-002: Initialize link and activity LED */
2367         subid = nic->pdev->subsystem_device;
2368         if (((subid & 0xFF) >= 0x07) &&
2369             (nic->device_type == XFRAME_I_DEVICE)) {
2370                 val64 = readq(&bar0->gpio_control);
2371                 val64 |= 0x0000800000000000ULL;
2372                 writeq(val64, &bar0->gpio_control);
2373                 val64 = 0x0411040400000000ULL;
2374                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2375         }
2376
2377         return SUCCESS;
2378 }
2379 /**
2380  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381  */
2382 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2383                                         struct TxD *txdlp, int get_off)
2384 {
2385         struct s2io_nic *nic = fifo_data->nic;
2386         struct sk_buff *skb;
2387         struct TxD *txds;
2388         u16 j, frg_cnt;
2389
2390         txds = txdlp;
2391         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2392                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2393                                  sizeof(u64), PCI_DMA_TODEVICE);
2394                 txds++;
2395         }
2396
2397         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2398         if (!skb) {
2399                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2400                 return NULL;
2401         }
2402         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2403                          skb_headlen(skb), PCI_DMA_TODEVICE);
2404         frg_cnt = skb_shinfo(skb)->nr_frags;
2405         if (frg_cnt) {
2406                 txds++;
2407                 for (j = 0; j < frg_cnt; j++, txds++) {
2408                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2409                         if (!txds->Buffer_Pointer)
2410                                 break;
2411                         pci_unmap_page(nic->pdev,
2412                                        (dma_addr_t)txds->Buffer_Pointer,
2413                                        frag->size, PCI_DMA_TODEVICE);
2414                 }
2415         }
2416         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2417         return skb;
2418 }
2419
2420 /**
2421  *  free_tx_buffers - Free all queued Tx buffers
2422  *  @nic : device private variable.
2423  *  Description:
2424  *  Free all queued Tx buffers.
2425  *  Return Value: void
2426  */
2427
2428 static void free_tx_buffers(struct s2io_nic *nic)
2429 {
2430         struct net_device *dev = nic->dev;
2431         struct sk_buff *skb;
2432         struct TxD *txdp;
2433         int i, j;
2434         int cnt = 0;
2435         struct config_param *config = &nic->config;
2436         struct mac_info *mac_control = &nic->mac_control;
2437         struct stat_block *stats = mac_control->stats_info;
2438         struct swStat *swstats = &stats->sw_stat;
2439
2440         for (i = 0; i < config->tx_fifo_num; i++) {
2441                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2442                 struct fifo_info *fifo = &mac_control->fifos[i];
2443                 unsigned long flags;
2444
2445                 spin_lock_irqsave(&fifo->tx_lock, flags);
2446                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2447                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2448                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2449                         if (skb) {
2450                                 swstats->mem_freed += skb->truesize;
2451                                 dev_kfree_skb(skb);
2452                                 cnt++;
2453                         }
2454                 }
2455                 DBG_PRINT(INTR_DBG,
2456                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2457                           dev->name, cnt, i);
2458                 fifo->tx_curr_get_info.offset = 0;
2459                 fifo->tx_curr_put_info.offset = 0;
2460                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2461         }
2462 }
2463
2464 /**
2465  *   stop_nic -  To stop the nic
2466  *   @nic ; device private variable.
2467  *   Description:
2468  *   This function does exactly the opposite of what the start_nic()
2469  *   function does. This function is called to stop the device.
2470  *   Return Value:
2471  *   void.
2472  */
2473
2474 static void stop_nic(struct s2io_nic *nic)
2475 {
2476         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2477         register u64 val64 = 0;
2478         u16 interruptible;
2479
2480         /*  Disable all interrupts */
2481         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483         interruptible |= TX_PIC_INTR;
2484         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487         val64 = readq(&bar0->adapter_control);
2488         val64 &= ~(ADAPTER_CNTL_EN);
2489         writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493  *  fill_rx_buffers - Allocates the Rx side skbs
2494  *  @ring_info: per ring structure
2495  *  @from_card_up: If this is true, we will map the buffer to get
2496  *     the dma address for buf0 and buf1 to give it to the card.
2497  *     Else we will sync the already mapped buffer to give it to the card.
2498  *  Description:
2499  *  The function allocates Rx side skbs and puts the physical
2500  *  address of these buffers into the RxD buffer pointers, so that the NIC
2501  *  can DMA the received frame into these locations.
2502  *  The NIC supports 3 receive modes, viz
2503  *  1. single buffer,
2504  *  2. three buffer and
2505  *  3. Five buffer modes.
2506  *  Each mode defines how many fragments the received frame will be split
2507  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2508  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509  *  is split into 3 fragments. As of now only single buffer mode is
2510  *  supported.
2511  *   Return Value:
2512  *  SUCCESS on success or an appropriate -ve value on failure.
2513  */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515                            int from_card_up)
2516 {
2517         struct sk_buff *skb;
2518         struct RxD_t *rxdp;
2519         int off, size, block_no, block_no1;
2520         u32 alloc_tab = 0;
2521         u32 alloc_cnt;
2522         u64 tmp;
2523         struct buffAdd *ba;
2524         struct RxD_t *first_rxdp = NULL;
2525         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526         int rxd_index = 0;
2527         struct RxD1 *rxdp1;
2528         struct RxD3 *rxdp3;
2529         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533         block_no1 = ring->rx_curr_get_info.block_index;
2534         while (alloc_tab < alloc_cnt) {
2535                 block_no = ring->rx_curr_put_info.block_index;
2536
2537                 off = ring->rx_curr_put_info.offset;
2538
2539                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541                 rxd_index = off + 1;
2542                 if (block_no)
2543                         rxd_index += (block_no * ring->rxd_count);
2544
2545                 if ((block_no == block_no1) &&
2546                     (off == ring->rx_curr_get_info.offset) &&
2547                     (rxdp->Host_Control)) {
2548                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2549                                   ring->dev->name);
2550                         goto end;
2551                 }
2552                 if (off && (off == ring->rxd_count)) {
2553                         ring->rx_curr_put_info.block_index++;
2554                         if (ring->rx_curr_put_info.block_index ==
2555                             ring->block_count)
2556                                 ring->rx_curr_put_info.block_index = 0;
2557                         block_no = ring->rx_curr_put_info.block_index;
2558                         off = 0;
2559                         ring->rx_curr_put_info.offset = off;
2560                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562                                   ring->dev->name, rxdp);
2563
2564                 }
2565
2566                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567                     ((ring->rxd_mode == RXD_MODE_3B) &&
2568                      (rxdp->Control_2 & s2BIT(0)))) {
2569                         ring->rx_curr_put_info.offset = off;
2570                         goto end;
2571                 }
2572                 /* calculate size of skb based on ring mode */
2573                 size = ring->mtu +
2574                         HEADER_ETHERNET_II_802_3_SIZE +
2575                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576                 if (ring->rxd_mode == RXD_MODE_1)
2577                         size += NET_IP_ALIGN;
2578                 else
2579                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581                 /* allocate skb */
2582                 skb = dev_alloc_skb(size);
2583                 if (!skb) {
2584                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2585                                   ring->dev->name);
2586                         if (first_rxdp) {
2587                                 wmb();
2588                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589                         }
2590                         swstats->mem_alloc_fail_cnt++;
2591
2592                         return -ENOMEM ;
2593                 }
2594                 swstats->mem_allocated += skb->truesize;
2595
2596                 if (ring->rxd_mode == RXD_MODE_1) {
2597                         /* 1 buffer mode - normal operation mode */
2598                         rxdp1 = (struct RxD1 *)rxdp;
2599                         memset(rxdp, 0, sizeof(struct RxD1));
2600                         skb_reserve(skb, NET_IP_ALIGN);
2601                         rxdp1->Buffer0_ptr =
2602                                 pci_map_single(ring->pdev, skb->data,
2603                                                size - NET_IP_ALIGN,
2604                                                PCI_DMA_FROMDEVICE);
2605                         if (pci_dma_mapping_error(nic->pdev,
2606                                                   rxdp1->Buffer0_ptr))
2607                                 goto pci_map_failed;
2608
2609                         rxdp->Control_2 =
2610                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611                         rxdp->Host_Control = (unsigned long)skb;
2612                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613                         /*
2614                          * 2 buffer mode -
2615                          * 2 buffer mode provides 128
2616                          * byte aligned receive buffers.
2617                          */
2618
2619                         rxdp3 = (struct RxD3 *)rxdp;
2620                         /* save buffer pointers to avoid frequent dma mapping */
2621                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2622                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2623                         memset(rxdp, 0, sizeof(struct RxD3));
2624                         /* restore the buffer pointers for dma sync*/
2625                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2626                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2627
2628                         ba = &ring->ba[block_no][off];
2629                         skb_reserve(skb, BUF0_LEN);
2630                         tmp = (u64)(unsigned long)skb->data;
2631                         tmp += ALIGN_SIZE;
2632                         tmp &= ~ALIGN_SIZE;
2633                         skb->data = (void *) (unsigned long)tmp;
2634                         skb_reset_tail_pointer(skb);
2635
2636                         if (from_card_up) {
2637                                 rxdp3->Buffer0_ptr =
2638                                         pci_map_single(ring->pdev, ba->ba_0,
2639                                                        BUF0_LEN,
2640                                                        PCI_DMA_FROMDEVICE);
2641                                 if (pci_dma_mapping_error(nic->pdev,
2642                                                           rxdp3->Buffer0_ptr))
2643                                         goto pci_map_failed;
2644                         } else
2645                                 pci_dma_sync_single_for_device(ring->pdev,
2646                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2647                                                                BUF0_LEN,
2648                                                                PCI_DMA_FROMDEVICE);
2649
2650                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2651                         if (ring->rxd_mode == RXD_MODE_3B) {
2652                                 /* Two buffer mode */
2653
2654                                 /*
2655                                  * Buffer2 will have L3/L4 header plus
2656                                  * L4 payload
2657                                  */
2658                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2659                                                                     skb->data,
2660                                                                     ring->mtu + 4,
2661                                                                     PCI_DMA_FROMDEVICE);
2662
2663                                 if (pci_dma_mapping_error(nic->pdev,
2664                                                           rxdp3->Buffer2_ptr))
2665                                         goto pci_map_failed;
2666
2667                                 if (from_card_up) {
2668                                         rxdp3->Buffer1_ptr =
2669                                                 pci_map_single(ring->pdev,
2670                                                                ba->ba_1,
2671                                                                BUF1_LEN,
2672                                                                PCI_DMA_FROMDEVICE);
2673
2674                                         if (pci_dma_mapping_error(nic->pdev,
2675                                                                   rxdp3->Buffer1_ptr)) {
2676                                                 pci_unmap_single(ring->pdev,
2677                                                                  (dma_addr_t)(unsigned long)
2678                                                                  skb->data,
2679                                                                  ring->mtu + 4,
2680                                                                  PCI_DMA_FROMDEVICE);
2681                                                 goto pci_map_failed;
2682                                         }
2683                                 }
2684                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2685                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2686                                         (ring->mtu + 4);
2687                         }
2688                         rxdp->Control_2 |= s2BIT(0);
2689                         rxdp->Host_Control = (unsigned long) (skb);
2690                 }
2691                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2692                         rxdp->Control_1 |= RXD_OWN_XENA;
2693                 off++;
2694                 if (off == (ring->rxd_count + 1))
2695                         off = 0;
2696                 ring->rx_curr_put_info.offset = off;
2697
2698                 rxdp->Control_2 |= SET_RXD_MARKER;
2699                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2700                         if (first_rxdp) {
2701                                 wmb();
2702                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703                         }
2704                         first_rxdp = rxdp;
2705                 }
2706                 ring->rx_bufs_left += 1;
2707                 alloc_tab++;
2708         }
2709
2710 end:
2711         /* Transfer ownership of first descriptor to adapter just before
2712          * exiting. Before that, use memory barrier so that ownership
2713          * and other fields are seen by adapter correctly.
2714          */
2715         if (first_rxdp) {
2716                 wmb();
2717                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718         }
2719
2720         return SUCCESS;
2721
2722 pci_map_failed:
2723         swstats->pci_map_fail_cnt++;
2724         swstats->mem_freed += skb->truesize;
2725         dev_kfree_skb_irq(skb);
2726         return -ENOMEM;
2727 }
2728
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2730 {
2731         struct net_device *dev = sp->dev;
2732         int j;
2733         struct sk_buff *skb;
2734         struct RxD_t *rxdp;
2735         struct buffAdd *ba;
2736         struct RxD1 *rxdp1;
2737         struct RxD3 *rxdp3;
2738         struct mac_info *mac_control = &sp->mac_control;
2739         struct stat_block *stats = mac_control->stats_info;
2740         struct swStat *swstats = &stats->sw_stat;
2741
2742         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743                 rxdp = mac_control->rings[ring_no].
2744                         rx_blocks[blk].rxds[j].virt_addr;
2745                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2746                 if (!skb)
2747                         continue;
2748                 if (sp->rxd_mode == RXD_MODE_1) {
2749                         rxdp1 = (struct RxD1 *)rxdp;
2750                         pci_unmap_single(sp->pdev,
2751                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2752                                          dev->mtu +
2753                                          HEADER_ETHERNET_II_802_3_SIZE +
2754                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2755                                          PCI_DMA_FROMDEVICE);
2756                         memset(rxdp, 0, sizeof(struct RxD1));
2757                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2758                         rxdp3 = (struct RxD3 *)rxdp;
2759                         ba = &mac_control->rings[ring_no].ba[blk][j];
2760                         pci_unmap_single(sp->pdev,
2761                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2762                                          BUF0_LEN,
2763                                          PCI_DMA_FROMDEVICE);
2764                         pci_unmap_single(sp->pdev,
2765                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2766                                          BUF1_LEN,
2767                                          PCI_DMA_FROMDEVICE);
2768                         pci_unmap_single(sp->pdev,
2769                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2770                                          dev->mtu + 4,
2771                                          PCI_DMA_FROMDEVICE);
2772                         memset(rxdp, 0, sizeof(struct RxD3));
2773                 }
2774                 swstats->mem_freed += skb->truesize;
2775                 dev_kfree_skb(skb);
2776                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2777         }
2778 }
2779
2780 /**
2781  *  free_rx_buffers - Frees all Rx buffers
2782  *  @sp: device private variable.
2783  *  Description:
2784  *  This function will free all Rx buffers allocated by host.
2785  *  Return Value:
2786  *  NONE.
2787  */
2788
2789 static void free_rx_buffers(struct s2io_nic *sp)
2790 {
2791         struct net_device *dev = sp->dev;
2792         int i, blk = 0, buf_cnt = 0;
2793         struct config_param *config = &sp->config;
2794         struct mac_info *mac_control = &sp->mac_control;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 struct ring_info *ring = &mac_control->rings[i];
2798
2799                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800                         free_rxd_blk(sp, i, blk);
2801
2802                 ring->rx_curr_put_info.block_index = 0;
2803                 ring->rx_curr_get_info.block_index = 0;
2804                 ring->rx_curr_put_info.offset = 0;
2805                 ring->rx_curr_get_info.offset = 0;
2806                 ring->rx_bufs_left = 0;
2807                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808                           dev->name, buf_cnt, i);
2809         }
2810 }
2811
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 {
2814         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2816                           ring->dev->name);
2817         }
2818         return 0;
2819 }
2820
2821 /**
2822  * s2io_poll - Rx interrupt handler for NAPI support
2823  * @napi : pointer to the napi structure.
2824  * @budget : The number of packets that were budgeted to be processed
2825  * during  one pass through the 'Poll" function.
2826  * Description:
2827  * Comes into picture only if NAPI support has been incorporated. It does
2828  * the same thing that rx_intr_handler does, but not in a interrupt context
2829  * also It will process only a given number of packets.
2830  * Return value:
2831  * 0 on success and 1 if there are No Rx packets to be processed.
2832  */
2833
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 {
2836         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837         struct net_device *dev = ring->dev;
2838         int pkts_processed = 0;
2839         u8 __iomem *addr = NULL;
2840         u8 val8 = 0;
2841         struct s2io_nic *nic = netdev_priv(dev);
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         int budget_org = budget;
2844
2845         if (unlikely(!is_s2io_card_up(nic)))
2846                 return 0;
2847
2848         pkts_processed = rx_intr_handler(ring, budget);
2849         s2io_chk_rx_buffers(nic, ring);
2850
2851         if (pkts_processed < budget_org) {
2852                 napi_complete(napi);
2853                 /*Re Enable MSI-Rx Vector*/
2854                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2855                 addr += 7 - ring->ring_no;
2856                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2857                 writeb(val8, addr);
2858                 val8 = readb(addr);
2859         }
2860         return pkts_processed;
2861 }
2862
2863 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2864 {
2865         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2866         int pkts_processed = 0;
2867         int ring_pkts_processed, i;
2868         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869         int budget_org = budget;
2870         struct config_param *config = &nic->config;
2871         struct mac_info *mac_control = &nic->mac_control;
2872
2873         if (unlikely(!is_s2io_card_up(nic)))
2874                 return 0;
2875
2876         for (i = 0; i < config->rx_ring_num; i++) {
2877                 struct ring_info *ring = &mac_control->rings[i];
2878                 ring_pkts_processed = rx_intr_handler(ring, budget);
2879                 s2io_chk_rx_buffers(nic, ring);
2880                 pkts_processed += ring_pkts_processed;
2881                 budget -= ring_pkts_processed;
2882                 if (budget <= 0)
2883                         break;
2884         }
2885         if (pkts_processed < budget_org) {
2886                 napi_complete(napi);
2887                 /* Re enable the Rx interrupts for the ring */
2888                 writeq(0, &bar0->rx_traffic_mask);
2889                 readl(&bar0->rx_traffic_mask);
2890         }
2891         return pkts_processed;
2892 }
2893
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 /**
2896  * s2io_netpoll - netpoll event handler entry point
2897  * @dev : pointer to the device structure.
2898  * Description:
2899  *      This function will be called by upper layer to check for events on the
2900  * interface in situations where interrupts are disabled. It is used for
2901  * specific in-kernel networking tasks, such as remote consoles and kernel
2902  * debugging over the network (example netdump in RedHat).
2903  */
2904 static void s2io_netpoll(struct net_device *dev)
2905 {
2906         struct s2io_nic *nic = netdev_priv(dev);
2907         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2908         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2909         int i;
2910         struct config_param *config = &nic->config;
2911         struct mac_info *mac_control = &nic->mac_control;
2912
2913         if (pci_channel_offline(nic->pdev))
2914                 return;
2915
2916         disable_irq(dev->irq);
2917
2918         writeq(val64, &bar0->rx_traffic_int);
2919         writeq(val64, &bar0->tx_traffic_int);
2920
2921         /* we need to free up the transmitted skbufs or else netpoll will
2922          * run out of skbs and will fail and eventually netpoll application such
2923          * as netdump will fail.
2924          */
2925         for (i = 0; i < config->tx_fifo_num; i++)
2926                 tx_intr_handler(&mac_control->fifos[i]);
2927
2928         /* check for received packet and indicate up to network */
2929         for (i = 0; i < config->rx_ring_num; i++) {
2930                 struct ring_info *ring = &mac_control->rings[i];
2931
2932                 rx_intr_handler(ring, 0);
2933         }
2934
2935         for (i = 0; i < config->rx_ring_num; i++) {
2936                 struct ring_info *ring = &mac_control->rings[i];
2937
2938                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2939                         DBG_PRINT(INFO_DBG,
2940                                   "%s: Out of memory in Rx Netpoll!!\n",
2941                                   dev->name);
2942                         break;
2943                 }
2944         }
2945         enable_irq(dev->irq);
2946 }
2947 #endif
2948
2949 /**
2950  *  rx_intr_handler - Rx interrupt handler
2951  *  @ring_info: per ring structure.
2952  *  @budget: budget for napi processing.
2953  *  Description:
2954  *  If the interrupt is because of a received frame or if the
2955  *  receive ring contains fresh as yet un-processed frames,this function is
2956  *  called. It picks out the RxD at which place the last Rx processing had
2957  *  stopped and sends the skb to the OSM's Rx handler and then increments
2958  *  the offset.
2959  *  Return Value:
2960  *  No. of napi packets processed.
2961  */
2962 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2963 {
2964         int get_block, put_block;
2965         struct rx_curr_get_info get_info, put_info;
2966         struct RxD_t *rxdp;
2967         struct sk_buff *skb;
2968         int pkt_cnt = 0, napi_pkts = 0;
2969         int i;
2970         struct RxD1 *rxdp1;
2971         struct RxD3 *rxdp3;
2972
2973         get_info = ring_data->rx_curr_get_info;
2974         get_block = get_info.block_index;
2975         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2976         put_block = put_info.block_index;
2977         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2978
2979         while (RXD_IS_UP2DT(rxdp)) {
2980                 /*
2981                  * If your are next to put index then it's
2982                  * FIFO full condition
2983                  */
2984                 if ((get_block == put_block) &&
2985                     (get_info.offset + 1) == put_info.offset) {
2986                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2987                                   ring_data->dev->name);
2988                         break;
2989                 }
2990                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2991                 if (skb == NULL) {
2992                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2993                                   ring_data->dev->name);
2994                         return 0;
2995                 }
2996                 if (ring_data->rxd_mode == RXD_MODE_1) {
2997                         rxdp1 = (struct RxD1 *)rxdp;
2998                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999                                          rxdp1->Buffer0_ptr,
3000                                          ring_data->mtu +
3001                                          HEADER_ETHERNET_II_802_3_SIZE +
3002                                          HEADER_802_2_SIZE +
3003                                          HEADER_SNAP_SIZE,
3004                                          PCI_DMA_FROMDEVICE);
3005                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3006                         rxdp3 = (struct RxD3 *)rxdp;
3007                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3008                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3009                                                     BUF0_LEN,
3010                                                     PCI_DMA_FROMDEVICE);
3011                         pci_unmap_single(ring_data->pdev,
3012                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3013                                          ring_data->mtu + 4,
3014                                          PCI_DMA_FROMDEVICE);
3015                 }
3016                 prefetch(skb->data);
3017                 rx_osm_handler(ring_data, rxdp);
3018                 get_info.offset++;
3019                 ring_data->rx_curr_get_info.offset = get_info.offset;
3020                 rxdp = ring_data->rx_blocks[get_block].
3021                         rxds[get_info.offset].virt_addr;
3022                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3023                         get_info.offset = 0;
3024                         ring_data->rx_curr_get_info.offset = get_info.offset;
3025                         get_block++;
3026                         if (get_block == ring_data->block_count)
3027                                 get_block = 0;
3028                         ring_data->rx_curr_get_info.block_index = get_block;
3029                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030                 }
3031
3032                 if (ring_data->nic->config.napi) {
3033                         budget--;
3034                         napi_pkts++;
3035                         if (!budget)
3036                                 break;
3037                 }
3038                 pkt_cnt++;
3039                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040                         break;
3041         }
3042         if (ring_data->lro) {
3043                 /* Clear all LRO sessions before exiting */
3044                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3045                         struct lro *lro = &ring_data->lro0_n[i];
3046                         if (lro->in_use) {
3047                                 update_L3L4_header(ring_data->nic, lro);
3048                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3049                                 clear_lro_session(lro);
3050                         }
3051                 }
3052         }
3053         return napi_pkts;
3054 }
3055
3056 /**
3057  *  tx_intr_handler - Transmit interrupt handler
3058  *  @nic : device private variable
3059  *  Description:
3060  *  If an interrupt was raised to indicate DMA complete of the
3061  *  Tx packet, this function is called. It identifies the last TxD
3062  *  whose buffer was freed and frees all skbs whose data have already
3063  *  DMA'ed into the NICs internal memory.
3064  *  Return Value:
3065  *  NONE
3066  */
3067
3068 static void tx_intr_handler(struct fifo_info *fifo_data)
3069 {
3070         struct s2io_nic *nic = fifo_data->nic;
3071         struct tx_curr_get_info get_info, put_info;
3072         struct sk_buff *skb = NULL;
3073         struct TxD *txdlp;
3074         int pkt_cnt = 0;
3075         unsigned long flags = 0;
3076         u8 err_mask;
3077         struct stat_block *stats = nic->mac_control.stats_info;
3078         struct swStat *swstats = &stats->sw_stat;
3079
3080         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3081                 return;
3082
3083         get_info = fifo_data->tx_curr_get_info;
3084         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085         txdlp = (struct TxD *)
3086                 fifo_data->list_info[get_info.offset].list_virt_addr;
3087         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088                (get_info.offset != put_info.offset) &&
3089                (txdlp->Host_Control)) {
3090                 /* Check for TxD errors */
3091                 if (txdlp->Control_1 & TXD_T_CODE) {
3092                         unsigned long long err;
3093                         err = txdlp->Control_1 & TXD_T_CODE;
3094                         if (err & 0x1) {
3095                                 swstats->parity_err_cnt++;
3096                         }
3097
3098                         /* update t_code statistics */
3099                         err_mask = err >> 48;
3100                         switch (err_mask) {
3101                         case 2:
3102                                 swstats->tx_buf_abort_cnt++;
3103                                 break;
3104
3105                         case 3:
3106                                 swstats->tx_desc_abort_cnt++;
3107                                 break;
3108
3109                         case 7:
3110                                 swstats->tx_parity_err_cnt++;
3111                                 break;
3112
3113                         case 10:
3114                                 swstats->tx_link_loss_cnt++;
3115                                 break;
3116
3117                         case 15:
3118                                 swstats->tx_list_proc_err_cnt++;
3119                                 break;
3120                         }
3121                 }
3122
3123                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3124                 if (skb == NULL) {
3125                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3126                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127                                   __func__);
3128                         return;
3129                 }
3130                 pkt_cnt++;
3131
3132                 /* Updating the statistics block */
3133                 swstats->mem_freed += skb->truesize;
3134                 dev_kfree_skb_irq(skb);
3135
3136                 get_info.offset++;
3137                 if (get_info.offset == get_info.fifo_len + 1)
3138                         get_info.offset = 0;
3139                 txdlp = (struct TxD *)
3140                         fifo_data->list_info[get_info.offset].list_virt_addr;
3141                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3142         }
3143
3144         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3145
3146         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3147 }
3148
3149 /**
3150  *  s2io_mdio_write - Function to write in to MDIO registers
3151  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3152  *  @addr     : address value
3153  *  @value    : data value
3154  *  @dev      : pointer to net_device structure
3155  *  Description:
3156  *  This function is used to write values to the MDIO registers
3157  *  NONE
3158  */
3159 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3160                             struct net_device *dev)
3161 {
3162         u64 val64;
3163         struct s2io_nic *sp = netdev_priv(dev);
3164         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3165
3166         /* address transaction */
3167         val64 = MDIO_MMD_INDX_ADDR(addr) |
3168                 MDIO_MMD_DEV_ADDR(mmd_type) |
3169                 MDIO_MMS_PRT_ADDR(0x0);
3170         writeq(val64, &bar0->mdio_control);
3171         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3172         writeq(val64, &bar0->mdio_control);
3173         udelay(100);
3174
3175         /* Data transaction */
3176         val64 = MDIO_MMD_INDX_ADDR(addr) |
3177                 MDIO_MMD_DEV_ADDR(mmd_type) |
3178                 MDIO_MMS_PRT_ADDR(0x0) |
3179                 MDIO_MDIO_DATA(value) |
3180                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3181         writeq(val64, &bar0->mdio_control);
3182         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183         writeq(val64, &bar0->mdio_control);
3184         udelay(100);
3185
3186         val64 = MDIO_MMD_INDX_ADDR(addr) |
3187                 MDIO_MMD_DEV_ADDR(mmd_type) |
3188                 MDIO_MMS_PRT_ADDR(0x0) |
3189                 MDIO_OP(MDIO_OP_READ_TRANS);
3190         writeq(val64, &bar0->mdio_control);
3191         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3192         writeq(val64, &bar0->mdio_control);
3193         udelay(100);
3194 }
3195
3196 /**
3197  *  s2io_mdio_read - Function to write in to MDIO registers
3198  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3199  *  @addr     : address value
3200  *  @dev      : pointer to net_device structure
3201  *  Description:
3202  *  This function is used to read values to the MDIO registers
3203  *  NONE
3204  */
3205 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3206 {
3207         u64 val64 = 0x0;
3208         u64 rval64 = 0x0;
3209         struct s2io_nic *sp = netdev_priv(dev);
3210         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3211
3212         /* address transaction */
3213         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3214                          | MDIO_MMD_DEV_ADDR(mmd_type)
3215                          | MDIO_MMS_PRT_ADDR(0x0));
3216         writeq(val64, &bar0->mdio_control);
3217         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3218         writeq(val64, &bar0->mdio_control);
3219         udelay(100);
3220
3221         /* Data transaction */
3222         val64 = MDIO_MMD_INDX_ADDR(addr) |
3223                 MDIO_MMD_DEV_ADDR(mmd_type) |
3224                 MDIO_MMS_PRT_ADDR(0x0) |
3225                 MDIO_OP(MDIO_OP_READ_TRANS);
3226         writeq(val64, &bar0->mdio_control);
3227         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3228         writeq(val64, &bar0->mdio_control);
3229         udelay(100);
3230
3231         /* Read the value from regs */
3232         rval64 = readq(&bar0->mdio_control);
3233         rval64 = rval64 & 0xFFFF0000;
3234         rval64 = rval64 >> 16;
3235         return rval64;
3236 }
3237
3238 /**
3239  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3240  *  @counter      : counter value to be updated
3241  *  @flag         : flag to indicate the status
3242  *  @type         : counter type
3243  *  Description:
3244  *  This function is to check the status of the xpak counters value
3245  *  NONE
3246  */
3247
3248 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3249                                   u16 flag, u16 type)
3250 {
3251         u64 mask = 0x3;
3252         u64 val64;
3253         int i;
3254         for (i = 0; i < index; i++)
3255                 mask = mask << 0x2;
3256
3257         if (flag > 0) {
3258                 *counter = *counter + 1;
3259                 val64 = *regs_stat & mask;
3260                 val64 = val64 >> (index * 0x2);
3261                 val64 = val64 + 1;
3262                 if (val64 == 3) {
3263                         switch (type) {
3264                         case 1:
3265                                 DBG_PRINT(ERR_DBG,
3266                                           "Take Xframe NIC out of service.\n");
3267                                 DBG_PRINT(ERR_DBG,
3268 "Excessive temperatures may result in premature transceiver failure.\n");
3269                                 break;
3270                         case 2:
3271                                 DBG_PRINT(ERR_DBG,
3272                                           "Take Xframe NIC out of service.\n");
3273                                 DBG_PRINT(ERR_DBG,
3274 "Excessive bias currents may indicate imminent laser diode failure.\n");
3275                                 break;
3276                         case 3:
3277                                 DBG_PRINT(ERR_DBG,
3278                                           "Take Xframe NIC out of service.\n");
3279                                 DBG_PRINT(ERR_DBG,
3280 "Excessive laser output power may saturate far-end receiver.\n");
3281                                 break;
3282                         default:
3283                                 DBG_PRINT(ERR_DBG,
3284                                           "Incorrect XPAK Alarm type\n");
3285                         }
3286                         val64 = 0x0;
3287                 }
3288                 val64 = val64 << (index * 0x2);
3289                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3290
3291         } else {
3292                 *regs_stat = *regs_stat & (~mask);
3293         }
3294 }
3295
3296 /**
3297  *  s2io_updt_xpak_counter - Function to update the xpak counters
3298  *  @dev         : pointer to net_device struct
3299  *  Description:
3300  *  This function is to upate the status of the xpak counters value
3301  *  NONE
3302  */
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3304 {
3305         u16 flag  = 0x0;
3306         u16 type  = 0x0;
3307         u16 val16 = 0x0;
3308         u64 val64 = 0x0;
3309         u64 addr  = 0x0;
3310
3311         struct s2io_nic *sp = netdev_priv(dev);
3312         struct stat_block *stats = sp->mac_control.stats_info;
3313         struct xpakStat *xstats = &stats->xpak_stat;
3314
3315         /* Check the communication with the MDIO slave */
3316         addr = MDIO_CTRL1;
3317         val64 = 0x0;
3318         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3319         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3320                 DBG_PRINT(ERR_DBG,
3321                           "ERR: MDIO slave access failed - Returned %llx\n",
3322                           (unsigned long long)val64);
3323                 return;
3324         }
3325
3326         /* Check for the expected value of control reg 1 */
3327         if (val64 != MDIO_CTRL1_SPEED10G) {
3328                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3329                           "Returned: %llx- Expected: 0x%x\n",
3330                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3331                 return;
3332         }
3333
3334         /* Loading the DOM register to MDIO register */
3335         addr = 0xA100;
3336         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3337         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339         /* Reading the Alarm flags */
3340         addr = 0xA070;
3341         val64 = 0x0;
3342         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3343
3344         flag = CHECKBIT(val64, 0x7);
3345         type = 1;
3346         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3347                               &xstats->xpak_regs_stat,
3348                               0x0, flag, type);
3349
3350         if (CHECKBIT(val64, 0x6))
3351                 xstats->alarm_transceiver_temp_low++;
3352
3353         flag = CHECKBIT(val64, 0x3);
3354         type = 2;
3355         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3356                               &xstats->xpak_regs_stat,
3357                               0x2, flag, type);
3358
3359         if (CHECKBIT(val64, 0x2))
3360                 xstats->alarm_laser_bias_current_low++;
3361
3362         flag = CHECKBIT(val64, 0x1);
3363         type = 3;
3364         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3365                               &xstats->xpak_regs_stat,
3366                               0x4, flag, type);
3367
3368         if (CHECKBIT(val64, 0x0))
3369                 xstats->alarm_laser_output_power_low++;
3370
3371         /* Reading the Warning flags */
3372         addr = 0xA074;
3373         val64 = 0x0;
3374         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3375
3376         if (CHECKBIT(val64, 0x7))
3377                 xstats->warn_transceiver_temp_high++;
3378
3379         if (CHECKBIT(val64, 0x6))
3380                 xstats->warn_transceiver_temp_low++;
3381
3382         if (CHECKBIT(val64, 0x3))
3383                 xstats->warn_laser_bias_current_high++;
3384
3385         if (CHECKBIT(val64, 0x2))
3386                 xstats->warn_laser_bias_current_low++;
3387
3388         if (CHECKBIT(val64, 0x1))
3389                 xstats->warn_laser_output_power_high++;
3390
3391         if (CHECKBIT(val64, 0x0))
3392                 xstats->warn_laser_output_power_low++;
3393 }
3394
3395 /**
3396  *  wait_for_cmd_complete - waits for a command to complete.
3397  *  @sp : private member of the device structure, which is a pointer to the
3398  *  s2io_nic structure.
3399  *  Description: Function that waits for a command to Write into RMAC
3400  *  ADDR DATA registers to be completed and returns either success or
3401  *  error depending on whether the command was complete or not.
3402  *  Return value:
3403  *   SUCCESS on success and FAILURE on failure.
3404  */
3405
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3407                                  int bit_state)
3408 {
3409         int ret = FAILURE, cnt = 0, delay = 1;
3410         u64 val64;
3411
3412         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3413                 return FAILURE;
3414
3415         do {
3416                 val64 = readq(addr);
3417                 if (bit_state == S2IO_BIT_RESET) {
3418                         if (!(val64 & busy_bit)) {
3419                                 ret = SUCCESS;
3420                                 break;
3421                         }
3422                 } else {
3423                         if (val64 & busy_bit) {
3424                                 ret = SUCCESS;
3425                                 break;
3426                         }
3427                 }
3428
3429                 if (in_interrupt())
3430                         mdelay(delay);
3431                 else
3432                         msleep(delay);
3433
3434                 if (++cnt >= 10)
3435                         delay = 50;
3436         } while (cnt < 20);
3437         return ret;
3438 }
3439 /*
3440  * check_pci_device_id - Checks if the device id is supported
3441  * @id : device id
3442  * Description: Function to check if the pci device id is supported by driver.
3443  * Return value: Actual device id if supported else PCI_ANY_ID
3444  */
3445 static u16 check_pci_device_id(u16 id)
3446 {
3447         switch (id) {
3448         case PCI_DEVICE_ID_HERC_WIN:
3449         case PCI_DEVICE_ID_HERC_UNI:
3450                 return XFRAME_II_DEVICE;
3451         case PCI_DEVICE_ID_S2IO_UNI:
3452         case PCI_DEVICE_ID_S2IO_WIN:
3453                 return XFRAME_I_DEVICE;
3454         default:
3455                 return PCI_ANY_ID;
3456         }
3457 }
3458
3459 /**
3460  *  s2io_reset - Resets the card.
3461  *  @sp : private member of the device structure.
3462  *  Description: Function to Reset the card. This function then also
3463  *  restores the previously saved PCI configuration space registers as
3464  *  the card reset also resets the configuration space.
3465  *  Return value:
3466  *  void.
3467  */
3468
3469 static void s2io_reset(struct s2io_nic *sp)
3470 {
3471         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3472         u64 val64;
3473         u16 subid, pci_cmd;
3474         int i;
3475         u16 val16;
3476         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3478         struct stat_block *stats;
3479         struct swStat *swstats;
3480
3481         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3482                   __func__, pci_name(sp->pdev));
3483
3484         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3485         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3486
3487         val64 = SW_RESET_ALL;
3488         writeq(val64, &bar0->sw_reset);
3489         if (strstr(sp->product_name, "CX4"))
3490                 msleep(750);
3491         msleep(250);
3492         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3493
3494                 /* Restore the PCI state saved during initialization. */
3495                 pci_restore_state(sp->pdev);
3496                 pci_save_state(sp->pdev);
3497                 pci_read_config_word(sp->pdev, 0x2, &val16);
3498                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3499                         break;
3500                 msleep(200);
3501         }
3502
3503         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3504                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3505
3506         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3507
3508         s2io_init_pci(sp);
3509
3510         /* Set swapper to enable I/O register access */
3511         s2io_set_swapper(sp);
3512
3513         /* restore mac_addr entries */
3514         do_s2io_restore_unicast_mc(sp);
3515
3516         /* Restore the MSIX table entries from local variables */
3517         restore_xmsi_data(sp);
3518
3519         /* Clear certain PCI/PCI-X fields after reset */
3520         if (sp->device_type == XFRAME_II_DEVICE) {
3521                 /* Clear "detected parity error" bit */
3522                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3523
3524                 /* Clearing PCIX Ecc status register */
3525                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3526
3527                 /* Clearing PCI_STATUS error reflected here */
3528                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3529         }
3530
3531         /* Reset device statistics maintained by OS */
3532         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3533
3534         stats = sp->mac_control.stats_info;
3535         swstats = &stats->sw_stat;
3536
3537         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3538         up_cnt = swstats->link_up_cnt;
3539         down_cnt = swstats->link_down_cnt;
3540         up_time = swstats->link_up_time;
3541         down_time = swstats->link_down_time;
3542         reset_cnt = swstats->soft_reset_cnt;
3543         mem_alloc_cnt = swstats->mem_allocated;
3544         mem_free_cnt = swstats->mem_freed;
3545         watchdog_cnt = swstats->watchdog_timer_cnt;
3546
3547         memset(stats, 0, sizeof(struct stat_block));
3548
3549         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3550         swstats->link_up_cnt = up_cnt;
3551         swstats->link_down_cnt = down_cnt;
3552         swstats->link_up_time = up_time;
3553         swstats->link_down_time = down_time;
3554         swstats->soft_reset_cnt = reset_cnt;
3555         swstats->mem_allocated = mem_alloc_cnt;
3556         swstats->mem_freed = mem_free_cnt;
3557         swstats->watchdog_timer_cnt = watchdog_cnt;
3558
3559         /* SXE-002: Configure link and activity LED to turn it off */
3560         subid = sp->pdev->subsystem_device;
3561         if (((subid & 0xFF) >= 0x07) &&
3562             (sp->device_type == XFRAME_I_DEVICE)) {
3563                 val64 = readq(&bar0->gpio_control);
3564                 val64 |= 0x0000800000000000ULL;
3565                 writeq(val64, &bar0->gpio_control);
3566                 val64 = 0x0411040400000000ULL;
3567                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3568         }
3569
3570         /*
3571          * Clear spurious ECC interrupts that would have occured on
3572          * XFRAME II cards after reset.
3573          */
3574         if (sp->device_type == XFRAME_II_DEVICE) {
3575                 val64 = readq(&bar0->pcc_err_reg);
3576                 writeq(val64, &bar0->pcc_err_reg);
3577         }
3578
3579         sp->device_enabled_once = false;
3580 }
3581
3582 /**
3583  *  s2io_set_swapper - to set the swapper controle on the card
3584  *  @sp : private member of the device structure,
3585  *  pointer to the s2io_nic structure.
3586  *  Description: Function to set the swapper control on the card
3587  *  correctly depending on the 'endianness' of the system.
3588  *  Return value:
3589  *  SUCCESS on success and FAILURE on failure.
3590  */
3591
3592 static int s2io_set_swapper(struct s2io_nic *sp)
3593 {
3594         struct net_device *dev = sp->dev;
3595         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3596         u64 val64, valt, valr;
3597
3598         /*
3599          * Set proper endian settings and verify the same by reading
3600          * the PIF Feed-back register.
3601          */
3602
3603         val64 = readq(&bar0->pif_rd_swapper_fb);
3604         if (val64 != 0x0123456789ABCDEFULL) {
3605                 int i = 0;
3606                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3607                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3608                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3609                                 0};                     /* FE=0, SE=0 */
3610
3611                 while (i < 4) {
3612                         writeq(value[i], &bar0->swapper_ctrl);
3613                         val64 = readq(&bar0->pif_rd_swapper_fb);
3614                         if (val64 == 0x0123456789ABCDEFULL)
3615                                 break;
3616                         i++;
3617                 }
3618                 if (i == 4) {
3619                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3620                                   "feedback read %llx\n",
3621                                   dev->name, (unsigned long long)val64);
3622                         return FAILURE;
3623                 }
3624                 valr = value[i];
3625         } else {
3626                 valr = readq(&bar0->swapper_ctrl);
3627         }
3628
3629         valt = 0x0123456789ABCDEFULL;
3630         writeq(valt, &bar0->xmsi_address);
3631         val64 = readq(&bar0->xmsi_address);
3632
3633         if (val64 != valt) {
3634                 int i = 0;
3635                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3636                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3637                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3638                                 0};                     /* FE=0, SE=0 */
3639
3640                 while (i < 4) {
3641                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3642                         writeq(valt, &bar0->xmsi_address);
3643                         val64 = readq(&bar0->xmsi_address);
3644                         if (val64 == valt)
3645                                 break;
3646                         i++;
3647                 }
3648                 if (i == 4) {
3649                         unsigned long long x = val64;
3650                         DBG_PRINT(ERR_DBG,
3651                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3652                         return FAILURE;
3653                 }
3654         }
3655         val64 = readq(&bar0->swapper_ctrl);
3656         val64 &= 0xFFFF000000000000ULL;
3657
3658 #ifdef __BIG_ENDIAN
3659         /*
3660          * The device by default set to a big endian format, so a
3661          * big endian driver need not set anything.
3662          */
3663         val64 |= (SWAPPER_CTRL_TXP_FE |
3664                   SWAPPER_CTRL_TXP_SE |
3665                   SWAPPER_CTRL_TXD_R_FE |
3666                   SWAPPER_CTRL_TXD_W_FE |
3667                   SWAPPER_CTRL_TXF_R_FE |
3668                   SWAPPER_CTRL_RXD_R_FE |
3669                   SWAPPER_CTRL_RXD_W_FE |
3670                   SWAPPER_CTRL_RXF_W_FE |
3671                   SWAPPER_CTRL_XMSI_FE |
3672                   SWAPPER_CTRL_STATS_FE |
3673                   SWAPPER_CTRL_STATS_SE);
3674         if (sp->config.intr_type == INTA)
3675                 val64 |= SWAPPER_CTRL_XMSI_SE;
3676         writeq(val64, &bar0->swapper_ctrl);
3677 #else
3678         /*
3679          * Initially we enable all bits to make it accessible by the
3680          * driver, then we selectively enable only those bits that
3681          * we want to set.
3682          */
3683         val64 |= (SWAPPER_CTRL_TXP_FE |
3684                   SWAPPER_CTRL_TXP_SE |
3685                   SWAPPER_CTRL_TXD_R_FE |
3686                   SWAPPER_CTRL_TXD_R_SE |
3687                   SWAPPER_CTRL_TXD_W_FE |
3688                   SWAPPER_CTRL_TXD_W_SE |
3689                   SWAPPER_CTRL_TXF_R_FE |
3690                   SWAPPER_CTRL_RXD_R_FE |
3691                   SWAPPER_CTRL_RXD_R_SE |
3692                   SWAPPER_CTRL_RXD_W_FE |
3693                   SWAPPER_CTRL_RXD_W_SE |
3694                   SWAPPER_CTRL_RXF_W_FE |
3695                   SWAPPER_CTRL_XMSI_FE |
3696                   SWAPPER_CTRL_STATS_FE |
3697                   SWAPPER_CTRL_STATS_SE);
3698         if (sp->config.intr_type == INTA)
3699                 val64 |= SWAPPER_CTRL_XMSI_SE;
3700         writeq(val64, &bar0->swapper_ctrl);
3701 #endif
3702         val64 = readq(&bar0->swapper_ctrl);
3703
3704         /*
3705          * Verifying if endian settings are accurate by reading a
3706          * feedback register.
3707          */
3708         val64 = readq(&bar0->pif_rd_swapper_fb);
3709         if (val64 != 0x0123456789ABCDEFULL) {
3710                 /* Endian settings are incorrect, calls for another dekko. */
3711                 DBG_PRINT(ERR_DBG,
3712                           "%s: Endian settings are wrong, feedback read %llx\n",
3713                           dev->name, (unsigned long long)val64);
3714                 return FAILURE;
3715         }
3716
3717         return SUCCESS;
3718 }
3719
3720 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3721 {
3722         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3723         u64 val64;
3724         int ret = 0, cnt = 0;
3725
3726         do {
3727                 val64 = readq(&bar0->xmsi_access);
3728                 if (!(val64 & s2BIT(15)))
3729                         break;
3730                 mdelay(1);
3731                 cnt++;
3732         } while (cnt < 5);
3733         if (cnt == 5) {
3734                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735                 ret = 1;
3736         }
3737
3738         return ret;
3739 }
3740
3741 static void restore_xmsi_data(struct s2io_nic *nic)
3742 {
3743         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744         u64 val64;
3745         int i, msix_index;
3746
3747         if (nic->device_type == XFRAME_I_DEVICE)
3748                 return;
3749
3750         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3751                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3752                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3753                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3754                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3755                 writeq(val64, &bar0->xmsi_access);
3756                 if (wait_for_msix_trans(nic, msix_index)) {
3757                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3758                                   __func__, msix_index);
3759                         continue;
3760                 }
3761         }
3762 }
3763
3764 static void store_xmsi_data(struct s2io_nic *nic)
3765 {
3766         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3767         u64 val64, addr, data;
3768         int i, msix_index;
3769
3770         if (nic->device_type == XFRAME_I_DEVICE)
3771                 return;
3772
3773         /* Store and display */
3774         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3775                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3776                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3777                 writeq(val64, &bar0->xmsi_access);
3778                 if (wait_for_msix_trans(nic, msix_index)) {
3779                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3780                                   __func__, msix_index);
3781                         continue;
3782                 }
3783                 addr = readq(&bar0->xmsi_address);
3784                 data = readq(&bar0->xmsi_data);
3785                 if (addr && data) {
3786                         nic->msix_info[i].addr = addr;
3787                         nic->msix_info[i].data = data;
3788                 }
3789         }
3790 }
3791
3792 static int s2io_enable_msi_x(struct s2io_nic *nic)
3793 {
3794         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3795         u64 rx_mat;
3796         u16 msi_control; /* Temp variable */
3797         int ret, i, j, msix_indx = 1;
3798         int size;
3799         struct stat_block *stats = nic->mac_control.stats_info;
3800         struct swStat *swstats = &stats->sw_stat;
3801
3802         size = nic->num_entries * sizeof(struct msix_entry);
3803         nic->entries = kzalloc(size, GFP_KERNEL);
3804         if (!nic->entries) {
3805                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806                           __func__);
3807                 swstats->mem_alloc_fail_cnt++;
3808                 return -ENOMEM;
3809         }
3810         swstats->mem_allocated += size;
3811
3812         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3813         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3814         if (!nic->s2io_entries) {
3815                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3816                           __func__);
3817                 swstats->mem_alloc_fail_cnt++;
3818                 kfree(nic->entries);
3819                 swstats->mem_freed
3820                         += (nic->num_entries * sizeof(struct msix_entry));
3821                 return -ENOMEM;
3822         }
3823         swstats->mem_allocated += size;
3824
3825         nic->entries[0].entry = 0;
3826         nic->s2io_entries[0].entry = 0;
3827         nic->s2io_entries[0].in_use = MSIX_FLG;
3828         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3829         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3830
3831         for (i = 1; i < nic->num_entries; i++) {
3832                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3833                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3834                 nic->s2io_entries[i].arg = NULL;
3835                 nic->s2io_entries[i].in_use = 0;
3836         }
3837
3838         rx_mat = readq(&bar0->rx_mat);
3839         for (j = 0; j < nic->config.rx_ring_num; j++) {
3840                 rx_mat |= RX_MAT_SET(j, msix_indx);
3841                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3842                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3843                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3844                 msix_indx += 8;
3845         }
3846         writeq(rx_mat, &bar0->rx_mat);
3847         readq(&bar0->rx_mat);
3848
3849         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3850         /* We fail init if error or we get less vectors than min required */
3851         if (ret) {
3852                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3853                 kfree(nic->entries);
3854                 swstats->mem_freed += nic->num_entries *
3855                         sizeof(struct msix_entry);
3856                 kfree(nic->s2io_entries);
3857                 swstats->mem_freed += nic->num_entries *
3858                         sizeof(struct s2io_msix_entry);
3859                 nic->entries = NULL;
3860                 nic->s2io_entries = NULL;
3861                 return -ENOMEM;
3862         }
3863
3864         /*
3865          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3866          * in the herc NIC. (Temp change, needs to be removed later)
3867          */
3868         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3869         msi_control |= 0x1; /* Enable MSI */
3870         pci_write_config_word(nic->pdev, 0x42, msi_control);
3871
3872         return 0;
3873 }
3874
3875 /* Handle software interrupt used during MSI(X) test */
3876 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3877 {
3878         struct s2io_nic *sp = dev_id;
3879
3880         sp->msi_detected = 1;
3881         wake_up(&sp->msi_wait);
3882
3883         return IRQ_HANDLED;
3884 }
3885
3886 /* Test interrupt path by forcing a a software IRQ */
3887 static int s2io_test_msi(struct s2io_nic *sp)
3888 {
3889         struct pci_dev *pdev = sp->pdev;
3890         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3891         int err;
3892         u64 val64, saved64;
3893
3894         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3895                           sp->name, sp);
3896         if (err) {
3897                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3898                           sp->dev->name, pci_name(pdev), pdev->irq);
3899                 return err;
3900         }
3901
3902         init_waitqueue_head(&sp->msi_wait);
3903         sp->msi_detected = 0;
3904
3905         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3906         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3907         val64 |= SCHED_INT_CTRL_TIMER_EN;
3908         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3909         writeq(val64, &bar0->scheduled_int_ctrl);
3910
3911         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3912
3913         if (!sp->msi_detected) {
3914                 /* MSI(X) test failed, go back to INTx mode */
3915                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3916                           "using MSI(X) during test\n",
3917                           sp->dev->name, pci_name(pdev));
3918
3919                 err = -EOPNOTSUPP;
3920         }
3921
3922         free_irq(sp->entries[1].vector, sp);
3923
3924         writeq(saved64, &bar0->scheduled_int_ctrl);
3925
3926         return err;
3927 }
3928
3929 static void remove_msix_isr(struct s2io_nic *sp)
3930 {
3931         int i;
3932         u16 msi_control;
3933
3934         for (i = 0; i < sp->num_entries; i++) {
3935                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3936                         int vector = sp->entries[i].vector;
3937                         void *arg = sp->s2io_entries[i].arg;
3938                         free_irq(vector, arg);
3939                 }
3940         }
3941
3942         kfree(sp->entries);
3943         kfree(sp->s2io_entries);
3944         sp->entries = NULL;
3945         sp->s2io_entries = NULL;
3946
3947         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3948         msi_control &= 0xFFFE; /* Disable MSI */
3949         pci_write_config_word(sp->pdev, 0x42, msi_control);
3950
3951         pci_disable_msix(sp->pdev);
3952 }
3953
3954 static void remove_inta_isr(struct s2io_nic *sp)
3955 {
3956         struct net_device *dev = sp->dev;
3957
3958         free_irq(sp->pdev->irq, dev);
3959 }
3960
3961 /* ********************************************************* *
3962  * Functions defined below concern the OS part of the driver *
3963  * ********************************************************* */
3964
3965 /**
3966  *  s2io_open - open entry point of the driver
3967  *  @dev : pointer to the device structure.
3968  *  Description:
3969  *  This function is the open entry point of the driver. It mainly calls a
3970  *  function to allocate Rx buffers and inserts them into the buffer
3971  *  descriptors and then enables the Rx part of the NIC.
3972  *  Return value:
3973  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3974  *   file on failure.
3975  */
3976
3977 static int s2io_open(struct net_device *dev)
3978 {
3979         struct s2io_nic *sp = netdev_priv(dev);
3980         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3981         int err = 0;
3982
3983         /*
3984          * Make sure you have link off by default every time
3985          * Nic is initialized
3986          */
3987         netif_carrier_off(dev);
3988         sp->last_link_state = 0;
3989
3990         /* Initialize H/W and enable interrupts */
3991         err = s2io_card_up(sp);
3992         if (err) {
3993                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3994                           dev->name);
3995                 goto hw_init_failed;
3996         }
3997
3998         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3999                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4000                 s2io_card_down(sp);
4001                 err = -ENODEV;
4002                 goto hw_init_failed;
4003         }
4004         s2io_start_all_tx_queue(sp);
4005         return 0;
4006
4007 hw_init_failed:
4008         if (sp->config.intr_type == MSI_X) {
4009                 if (sp->entries) {
4010                         kfree(sp->entries);
4011                         swstats->mem_freed += sp->num_entries *
4012                                 sizeof(struct msix_entry);
4013                 }
4014                 if (sp->s2io_entries) {
4015                         kfree(sp->s2io_entries);
4016                         swstats->mem_freed += sp->num_entries *
4017                                 sizeof(struct s2io_msix_entry);
4018                 }
4019         }
4020         return err;
4021 }
4022
4023 /**
4024  *  s2io_close -close entry point of the driver
4025  *  @dev : device pointer.
4026  *  Description:
4027  *  This is the stop entry point of the driver. It needs to undo exactly
4028  *  whatever was done by the open entry point,thus it's usually referred to
4029  *  as the close function.Among other things this function mainly stops the
4030  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031  *  Return value:
4032  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4033  *  file on failure.
4034  */
4035
4036 static int s2io_close(struct net_device *dev)
4037 {
4038         struct s2io_nic *sp = netdev_priv(dev);
4039         struct config_param *config = &sp->config;
4040         u64 tmp64;
4041         int offset;
4042
4043         /* Return if the device is already closed               *
4044          *  Can happen when s2io_card_up failed in change_mtu    *
4045          */
4046         if (!is_s2io_card_up(sp))
4047                 return 0;
4048
4049         s2io_stop_all_tx_queue(sp);
4050         /* delete all populated mac entries */
4051         for (offset = 1; offset < config->max_mc_addr; offset++) {
4052                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4053                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4054                         do_s2io_delete_unicast_mc(sp, tmp64);
4055         }
4056
4057         s2io_card_down(sp);
4058
4059         return 0;
4060 }
4061
4062 /**
4063  *  s2io_xmit - Tx entry point of te driver
4064  *  @skb : the socket buffer containing the Tx data.
4065  *  @dev : device pointer.
4066  *  Description :
4067  *  This function is the Tx entry point of the driver. S2IO NIC supports
4068  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4069  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4070  *  not be upadted.
4071  *  Return value:
4072  *  0 on success & 1 on failure.
4073  */
4074
4075 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4076 {
4077         struct s2io_nic *sp = netdev_priv(dev);
4078         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4079         register u64 val64;
4080         struct TxD *txdp;
4081         struct TxFIFO_element __iomem *tx_fifo;
4082         unsigned long flags = 0;
4083         u16 vlan_tag = 0;
4084         struct fifo_info *fifo = NULL;
4085         int do_spin_lock = 1;
4086         int offload_type;
4087         int enable_per_list_interrupt = 0;
4088         struct config_param *config = &sp->config;
4089         struct mac_info *mac_control = &sp->mac_control;
4090         struct stat_block *stats = mac_control->stats_info;
4091         struct swStat *swstats = &stats->sw_stat;
4092
4093         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4094
4095         if (unlikely(skb->len <= 0)) {
4096                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4097                 dev_kfree_skb_any(skb);
4098                 return NETDEV_TX_OK;
4099         }
4100
4101         if (!is_s2io_card_up(sp)) {
4102                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4103                           dev->name);
4104                 dev_kfree_skb(skb);
4105                 return NETDEV_TX_OK;
4106         }
4107
4108         queue = 0;
4109         if (sp->vlgrp && vlan_tx_tag_present(skb))
4110                 vlan_tag = vlan_tx_tag_get(skb);
4111         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4112                 if (skb->protocol == htons(ETH_P_IP)) {
4113                         struct iphdr *ip;
4114                         struct tcphdr *th;
4115                         ip = ip_hdr(skb);
4116
4117                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4118                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4119                                                        ip->ihl*4);
4120
4121                                 if (ip->protocol == IPPROTO_TCP) {
4122                                         queue_len = sp->total_tcp_fifos;
4123                                         queue = (ntohs(th->source) +
4124                                                  ntohs(th->dest)) &
4125                                                 sp->fifo_selector[queue_len - 1];
4126                                         if (queue >= queue_len)
4127                                                 queue = queue_len - 1;
4128                                 } else if (ip->protocol == IPPROTO_UDP) {
4129                                         queue_len = sp->total_udp_fifos;
4130                                         queue = (ntohs(th->source) +
4131                                                  ntohs(th->dest)) &
4132                                                 sp->fifo_selector[queue_len - 1];
4133                                         if (queue >= queue_len)
4134                                                 queue = queue_len - 1;
4135                                         queue += sp->udp_fifo_idx;
4136                                         if (skb->len > 1024)
4137                                                 enable_per_list_interrupt = 1;
4138                                         do_spin_lock = 0;
4139                                 }
4140                         }
4141                 }
4142         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4143                 /* get fifo number based on skb->priority value */
4144                 queue = config->fifo_mapping
4145                         [skb->priority & (MAX_TX_FIFOS - 1)];
4146         fifo = &mac_control->fifos[queue];
4147
4148         if (do_spin_lock)
4149                 spin_lock_irqsave(&fifo->tx_lock, flags);
4150         else {
4151                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4152                         return NETDEV_TX_LOCKED;
4153         }
4154
4155         if (sp->config.multiq) {
4156                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4157                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158                         return NETDEV_TX_BUSY;
4159                 }
4160         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4161                 if (netif_queue_stopped(dev)) {
4162                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4163                         return NETDEV_TX_BUSY;
4164                 }
4165         }
4166
4167         put_off = (u16)fifo->tx_curr_put_info.offset;
4168         get_off = (u16)fifo->tx_curr_get_info.offset;
4169         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4170
4171         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4172         /* Avoid "put" pointer going beyond "get" pointer */
4173         if (txdp->Host_Control ||
4174             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4175                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4176                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177                 dev_kfree_skb(skb);
4178                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179                 return NETDEV_TX_OK;
4180         }
4181
4182         offload_type = s2io_offload_type(skb);
4183         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4184                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4185                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4186         }
4187         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4188                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4189                                     TXD_TX_CKO_TCP_EN |
4190                                     TXD_TX_CKO_UDP_EN);
4191         }
4192         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4193         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4194         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4195         if (enable_per_list_interrupt)
4196                 if (put_off & (queue_len >> 5))
4197                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4198         if (vlan_tag) {
4199                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4200                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4201         }
4202
4203         frg_len = skb_headlen(skb);
4204         if (offload_type == SKB_GSO_UDP) {
4205                 int ufo_size;
4206
4207                 ufo_size = s2io_udp_mss(skb);
4208                 ufo_size &= ~7;
4209                 txdp->Control_1 |= TXD_UFO_EN;
4210                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4211                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4212 #ifdef __BIG_ENDIAN
4213                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4214                 fifo->ufo_in_band_v[put_off] =
4215                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4216 #else
4217                 fifo->ufo_in_band_v[put_off] =
4218                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4219 #endif
4220                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4221                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4222                                                       fifo->ufo_in_band_v,
4223                                                       sizeof(u64),
4224                                                       PCI_DMA_TODEVICE);
4225                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4226                         goto pci_map_failed;
4227                 txdp++;
4228         }
4229
4230         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4231                                               frg_len, PCI_DMA_TODEVICE);
4232         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4233                 goto pci_map_failed;
4234
4235         txdp->Host_Control = (unsigned long)skb;
4236         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4237         if (offload_type == SKB_GSO_UDP)
4238                 txdp->Control_1 |= TXD_UFO_EN;
4239
4240         frg_cnt = skb_shinfo(skb)->nr_frags;
4241         /* For fragmented SKB. */
4242         for (i = 0; i < frg_cnt; i++) {
4243                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244                 /* A '0' length fragment will be ignored */
4245                 if (!frag->size)
4246                         continue;
4247                 txdp++;
4248                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4249                                                          frag->page_offset,
4250                                                          frag->size,
4251                                                          PCI_DMA_TODEVICE);
4252                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4253                 if (offload_type == SKB_GSO_UDP)
4254                         txdp->Control_1 |= TXD_UFO_EN;
4255         }
4256         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4257
4258         if (offload_type == SKB_GSO_UDP)
4259                 frg_cnt++; /* as Txd0 was used for inband header */
4260
4261         tx_fifo = mac_control->tx_FIFO_start[queue];
4262         val64 = fifo->list_info[put_off].list_phy_addr;
4263         writeq(val64, &tx_fifo->TxDL_Pointer);
4264
4265         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4266                  TX_FIFO_LAST_LIST);
4267         if (offload_type)
4268                 val64 |= TX_FIFO_SPECIAL_FUNC;
4269
4270         writeq(val64, &tx_fifo->List_Control);
4271
4272         mmiowb();
4273
4274         put_off++;
4275         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4276                 put_off = 0;
4277         fifo->tx_curr_put_info.offset = put_off;
4278
4279         /* Avoid "put" pointer going beyond "get" pointer */
4280         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4281                 swstats->fifo_full_cnt++;
4282                 DBG_PRINT(TX_DBG,
4283                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284                           put_off, get_off);
4285                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4286         }
4287         swstats->mem_allocated += skb->truesize;
4288         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4289
4290         if (sp->config.intr_type == MSI_X)
4291                 tx_intr_handler(fifo);
4292
4293         return NETDEV_TX_OK;
4294
4295 pci_map_failed:
4296         swstats->pci_map_fail_cnt++;
4297         s2io_stop_tx_queue(sp, fifo->fifo_no);
4298         swstats->mem_freed += skb->truesize;
4299         dev_kfree_skb(skb);
4300         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4301         return NETDEV_TX_OK;
4302 }
4303
4304 static void
4305 s2io_alarm_handle(unsigned long data)
4306 {
4307         struct s2io_nic *sp = (struct s2io_nic *)data;
4308         struct net_device *dev = sp->dev;
4309
4310         s2io_handle_errors(dev);
4311         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4312 }
4313
4314 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4315 {
4316         struct ring_info *ring = (struct ring_info *)dev_id;
4317         struct s2io_nic *sp = ring->nic;
4318         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4319
4320         if (unlikely(!is_s2io_card_up(sp)))
4321                 return IRQ_HANDLED;
4322
4323         if (sp->config.napi) {
4324                 u8 __iomem *addr = NULL;
4325                 u8 val8 = 0;
4326
4327                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4328                 addr += (7 - ring->ring_no);
4329                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4330                 writeb(val8, addr);
4331                 val8 = readb(addr);
4332                 napi_schedule(&ring->napi);
4333         } else {
4334                 rx_intr_handler(ring, 0);
4335                 s2io_chk_rx_buffers(sp, ring);
4336         }
4337
4338         return IRQ_HANDLED;
4339 }
4340
4341 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4342 {
4343         int i;
4344         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4345         struct s2io_nic *sp = fifos->nic;
4346         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347         struct config_param *config  = &sp->config;
4348         u64 reason;
4349
4350         if (unlikely(!is_s2io_card_up(sp)))
4351                 return IRQ_NONE;
4352
4353         reason = readq(&bar0->general_int_status);
4354         if (unlikely(reason == S2IO_MINUS_ONE))
4355                 /* Nothing much can be done. Get out */
4356                 return IRQ_HANDLED;
4357
4358         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4359                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4360
4361                 if (reason & GEN_INTR_TXPIC)
4362                         s2io_txpic_intr_handle(sp);
4363
4364                 if (reason & GEN_INTR_TXTRAFFIC)
4365                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4366
4367                 for (i = 0; i < config->tx_fifo_num; i++)
4368                         tx_intr_handler(&fifos[i]);
4369
4370                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4371                 readl(&bar0->general_int_status);
4372                 return IRQ_HANDLED;
4373         }
4374         /* The interrupt was not raised by us */
4375         return IRQ_NONE;
4376 }
4377
4378 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4379 {
4380         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4381         u64 val64;
4382
4383         val64 = readq(&bar0->pic_int_status);
4384         if (val64 & PIC_INT_GPIO) {
4385                 val64 = readq(&bar0->gpio_int_reg);
4386                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4387                     (val64 & GPIO_INT_REG_LINK_UP)) {
4388                         /*
4389                          * This is unstable state so clear both up/down
4390                          * interrupt and adapter to re-evaluate the link state.
4391                          */
4392                         val64 |= GPIO_INT_REG_LINK_DOWN;
4393                         val64 |= GPIO_INT_REG_LINK_UP;
4394                         writeq(val64, &bar0->gpio_int_reg);
4395                         val64 = readq(&bar0->gpio_int_mask);
4396                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4397                                    GPIO_INT_MASK_LINK_DOWN);
4398                         writeq(val64, &bar0->gpio_int_mask);
4399                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4400                         val64 = readq(&bar0->adapter_status);
4401                         /* Enable Adapter */
4402                         val64 = readq(&bar0->adapter_control);
4403                         val64 |= ADAPTER_CNTL_EN;
4404                         writeq(val64, &bar0->adapter_control);
4405                         val64 |= ADAPTER_LED_ON;
4406                         writeq(val64, &bar0->adapter_control);
4407                         if (!sp->device_enabled_once)
4408                                 sp->device_enabled_once = 1;
4409
4410                         s2io_link(sp, LINK_UP);
4411                         /*
4412                          * unmask link down interrupt and mask link-up
4413                          * intr
4414                          */
4415                         val64 = readq(&bar0->gpio_int_mask);
4416                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4417                         val64 |= GPIO_INT_MASK_LINK_UP;
4418                         writeq(val64, &bar0->gpio_int_mask);
4419
4420                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4421                         val64 = readq(&bar0->adapter_status);
4422                         s2io_link(sp, LINK_DOWN);
4423                         /* Link is down so unmaks link up interrupt */
4424                         val64 = readq(&bar0->gpio_int_mask);
4425                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4426                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4427                         writeq(val64, &bar0->gpio_int_mask);
4428
4429                         /* turn off LED */
4430                         val64 = readq(&bar0->adapter_control);
4431                         val64 = val64 & (~ADAPTER_LED_ON);
4432                         writeq(val64, &bar0->adapter_control);
4433                 }
4434         }
4435         val64 = readq(&bar0->gpio_int_mask);
4436 }
4437
4438 /**
4439  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4440  *  @value: alarm bits
4441  *  @addr: address value
4442  *  @cnt: counter variable
4443  *  Description: Check for alarm and increment the counter
4444  *  Return Value:
4445  *  1 - if alarm bit set
4446  *  0 - if alarm bit is not set
4447  */
4448 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4449                                  unsigned long long *cnt)
4450 {
4451         u64 val64;
4452         val64 = readq(addr);
4453         if (val64 & value) {
4454                 writeq(val64, addr);
4455                 (*cnt)++;
4456                 return 1;
4457         }
4458         return 0;
4459
4460 }
4461
4462 /**
4463  *  s2io_handle_errors - Xframe error indication handler
4464  *  @nic: device private variable
4465  *  Description: Handle alarms such as loss of link, single or
4466  *  double ECC errors, critical and serious errors.
4467  *  Return Value:
4468  *  NONE
4469  */
4470 static void s2io_handle_errors(void *dev_id)
4471 {
4472         struct net_device *dev = (struct net_device *)dev_id;
4473         struct s2io_nic *sp = netdev_priv(dev);
4474         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4475         u64 temp64 = 0, val64 = 0;
4476         int i = 0;
4477
4478         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4479         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4480
4481         if (!is_s2io_card_up(sp))
4482                 return;
4483
4484         if (pci_channel_offline(sp->pdev))
4485                 return;
4486
4487         memset(&sw_stat->ring_full_cnt, 0,
4488                sizeof(sw_stat->ring_full_cnt));
4489
4490         /* Handling the XPAK counters update */
4491         if (stats->xpak_timer_count < 72000) {
4492                 /* waiting for an hour */
4493                 stats->xpak_timer_count++;
4494         } else {
4495                 s2io_updt_xpak_counter(dev);
4496                 /* reset the count to zero */
4497                 stats->xpak_timer_count = 0;
4498         }
4499
4500         /* Handling link status change error Intr */
4501         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4502                 val64 = readq(&bar0->mac_rmac_err_reg);
4503                 writeq(val64, &bar0->mac_rmac_err_reg);
4504                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4505                         schedule_work(&sp->set_link_task);
4506         }
4507
4508         /* In case of a serious error, the device will be Reset. */
4509         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4510                                   &sw_stat->serious_err_cnt))
4511                 goto reset;
4512
4513         /* Check for data parity error */
4514         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4515                                   &sw_stat->parity_err_cnt))
4516                 goto reset;
4517
4518         /* Check for ring full counter */
4519         if (sp->device_type == XFRAME_II_DEVICE) {
4520                 val64 = readq(&bar0->ring_bump_counter1);
4521                 for (i = 0; i < 4; i++) {
4522                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4523                         temp64 >>= 64 - ((i+1)*16);
4524                         sw_stat->ring_full_cnt[i] += temp64;
4525                 }
4526
4527                 val64 = readq(&bar0->ring_bump_counter2);
4528                 for (i = 0; i < 4; i++) {
4529                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4530                         temp64 >>= 64 - ((i+1)*16);
4531                         sw_stat->ring_full_cnt[i+4] += temp64;
4532                 }
4533         }
4534
4535         val64 = readq(&bar0->txdma_int_status);
4536         /*check for pfc_err*/
4537         if (val64 & TXDMA_PFC_INT) {
4538                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4539                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4540                                           PFC_PCIX_ERR,
4541                                           &bar0->pfc_err_reg,
4542                                           &sw_stat->pfc_err_cnt))
4543                         goto reset;
4544                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4545                                       &bar0->pfc_err_reg,
4546                                       &sw_stat->pfc_err_cnt);
4547         }
4548
4549         /*check for tda_err*/
4550         if (val64 & TXDMA_TDA_INT) {
4551                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4552                                           TDA_SM0_ERR_ALARM |
4553                                           TDA_SM1_ERR_ALARM,
4554                                           &bar0->tda_err_reg,
4555                                           &sw_stat->tda_err_cnt))
4556                         goto reset;
4557                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4558                                       &bar0->tda_err_reg,
4559                                       &sw_stat->tda_err_cnt);
4560         }
4561         /*check for pcc_err*/
4562         if (val64 & TXDMA_PCC_INT) {
4563                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4564                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4565                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4566                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4567                                           PCC_TXB_ECC_DB_ERR,
4568                                           &bar0->pcc_err_reg,
4569                                           &sw_stat->pcc_err_cnt))
4570                         goto reset;
4571                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4572                                       &bar0->pcc_err_reg,
4573                                       &sw_stat->pcc_err_cnt);
4574         }
4575
4576         /*check for tti_err*/
4577         if (val64 & TXDMA_TTI_INT) {
4578                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4579                                           &bar0->tti_err_reg,
4580                                           &sw_stat->tti_err_cnt))
4581                         goto reset;
4582                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4583                                       &bar0->tti_err_reg,
4584                                       &sw_stat->tti_err_cnt);
4585         }
4586
4587         /*check for lso_err*/
4588         if (val64 & TXDMA_LSO_INT) {
4589                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4590                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4591                                           &bar0->lso_err_reg,
4592                                           &sw_stat->lso_err_cnt))
4593                         goto reset;
4594                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4595                                       &bar0->lso_err_reg,
4596                                       &sw_stat->lso_err_cnt);
4597         }
4598
4599         /*check for tpa_err*/
4600         if (val64 & TXDMA_TPA_INT) {
4601                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4602                                           &bar0->tpa_err_reg,
4603                                           &sw_stat->tpa_err_cnt))
4604                         goto reset;
4605                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4606                                       &bar0->tpa_err_reg,
4607                                       &sw_stat->tpa_err_cnt);
4608         }
4609
4610         /*check for sm_err*/
4611         if (val64 & TXDMA_SM_INT) {
4612                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4613                                           &bar0->sm_err_reg,
4614                                           &sw_stat->sm_err_cnt))
4615                         goto reset;
4616         }
4617
4618         val64 = readq(&bar0->mac_int_status);
4619         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621                                           &bar0->mac_tmac_err_reg,
4622                                           &sw_stat->mac_tmac_err_cnt))
4623                         goto reset;
4624                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4625                                       TMAC_DESC_ECC_SG_ERR |
4626                                       TMAC_DESC_ECC_DB_ERR,
4627                                       &bar0->mac_tmac_err_reg,
4628                                       &sw_stat->mac_tmac_err_cnt);
4629         }
4630
4631         val64 = readq(&bar0->xgxs_int_status);
4632         if (val64 & XGXS_INT_STATUS_TXGXS) {
4633                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634                                           &bar0->xgxs_txgxs_err_reg,
4635                                           &sw_stat->xgxs_txgxs_err_cnt))
4636                         goto reset;
4637                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638                                       &bar0->xgxs_txgxs_err_reg,
4639                                       &sw_stat->xgxs_txgxs_err_cnt);
4640         }
4641
4642         val64 = readq(&bar0->rxdma_int_status);
4643         if (val64 & RXDMA_INT_RC_INT_M) {
4644                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4645                                           RC_FTC_ECC_DB_ERR |
4646                                           RC_PRCn_SM_ERR_ALARM |
4647                                           RC_FTC_SM_ERR_ALARM,
4648                                           &bar0->rc_err_reg,
4649                                           &sw_stat->rc_err_cnt))
4650                         goto reset;
4651                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4652                                       RC_FTC_ECC_SG_ERR |
4653                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4654                                       &sw_stat->rc_err_cnt);
4655                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4656                                           PRC_PCI_AB_WR_Rn |
4657                                           PRC_PCI_AB_F_WR_Rn,
4658                                           &bar0->prc_pcix_err_reg,
4659                                           &sw_stat->prc_pcix_err_cnt))
4660                         goto reset;
4661                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4662                                       PRC_PCI_DP_WR_Rn |
4663                                       PRC_PCI_DP_F_WR_Rn,
4664                                       &bar0->prc_pcix_err_reg,
4665                                       &sw_stat->prc_pcix_err_cnt);
4666         }
4667
4668         if (val64 & RXDMA_INT_RPA_INT_M) {
4669                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4670                                           &bar0->rpa_err_reg,
4671                                           &sw_stat->rpa_err_cnt))
4672                         goto reset;
4673                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4674                                       &bar0->rpa_err_reg,
4675                                       &sw_stat->rpa_err_cnt);
4676         }
4677
4678         if (val64 & RXDMA_INT_RDA_INT_M) {
4679                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4680                                           RDA_FRM_ECC_DB_N_AERR |
4681                                           RDA_SM1_ERR_ALARM |
4682                                           RDA_SM0_ERR_ALARM |
4683                                           RDA_RXD_ECC_DB_SERR,
4684                                           &bar0->rda_err_reg,
4685                                           &sw_stat->rda_err_cnt))
4686                         goto reset;
4687                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4688                                       RDA_FRM_ECC_SG_ERR |
4689                                       RDA_MISC_ERR |
4690                                       RDA_PCIX_ERR,
4691                                       &bar0->rda_err_reg,
4692                                       &sw_stat->rda_err_cnt);
4693         }
4694
4695         if (val64 & RXDMA_INT_RTI_INT_M) {
4696                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4697                                           &bar0->rti_err_reg,
4698                                           &sw_stat->rti_err_cnt))
4699                         goto reset;
4700                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4701                                       &bar0->rti_err_reg,
4702                                       &sw_stat->rti_err_cnt);
4703         }
4704
4705         val64 = readq(&bar0->mac_int_status);
4706         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4707                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4708                                           &bar0->mac_rmac_err_reg,
4709                                           &sw_stat->mac_rmac_err_cnt))
4710                         goto reset;
4711                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4712                                       RMAC_SINGLE_ECC_ERR |
4713                                       RMAC_DOUBLE_ECC_ERR,
4714                                       &bar0->mac_rmac_err_reg,
4715                                       &sw_stat->mac_rmac_err_cnt);
4716         }
4717
4718         val64 = readq(&bar0->xgxs_int_status);
4719         if (val64 & XGXS_INT_STATUS_RXGXS) {
4720                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4721                                           &bar0->xgxs_rxgxs_err_reg,
4722                                           &sw_stat->xgxs_rxgxs_err_cnt))
4723                         goto reset;
4724         }
4725
4726         val64 = readq(&bar0->mc_int_status);
4727         if (val64 & MC_INT_STATUS_MC_INT) {
4728                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4729                                           &bar0->mc_err_reg,
4730                                           &sw_stat->mc_err_cnt))
4731                         goto reset;
4732
4733                 /* Handling Ecc errors */
4734                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4735                         writeq(val64, &bar0->mc_err_reg);
4736                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4737                                 sw_stat->double_ecc_errs++;
4738                                 if (sp->device_type != XFRAME_II_DEVICE) {
4739                                         /*
4740                                          * Reset XframeI only if critical error
4741                                          */
4742                                         if (val64 &
4743                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4744                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4745                                                 goto reset;
4746                                 }
4747                         } else
4748                                 sw_stat->single_ecc_errs++;
4749                 }
4750         }
4751         return;
4752
4753 reset:
4754         s2io_stop_all_tx_queue(sp);
4755         schedule_work(&sp->rst_timer_task);
4756         sw_stat->soft_reset_cnt++;
4757 }
4758
4759 /**
4760  *  s2io_isr - ISR handler of the device .
4761  *  @irq: the irq of the device.
4762  *  @dev_id: a void pointer to the dev structure of the NIC.
4763  *  Description:  This function is the ISR handler of the device. It
4764  *  identifies the reason for the interrupt and calls the relevant
4765  *  service routines. As a contongency measure, this ISR allocates the
4766  *  recv buffers, if their numbers are below the panic value which is
4767  *  presently set to 25% of the original number of rcv buffers allocated.
4768  *  Return value:
4769  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4770  *   IRQ_NONE: will be returned if interrupt is not from our device
4771  */
4772 static irqreturn_t s2io_isr(int irq, void *dev_id)
4773 {
4774         struct net_device *dev = (struct net_device *)dev_id;
4775         struct s2io_nic *sp = netdev_priv(dev);
4776         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4777         int i;
4778         u64 reason = 0;
4779         struct mac_info *mac_control;
4780         struct config_param *config;
4781
4782         /* Pretend we handled any irq's from a disconnected card */
4783         if (pci_channel_offline(sp->pdev))
4784                 return IRQ_NONE;
4785
4786         if (!is_s2io_card_up(sp))
4787                 return IRQ_NONE;
4788
4789         config = &sp->config;
4790         mac_control = &sp->mac_control;
4791
4792         /*
4793          * Identify the cause for interrupt and call the appropriate
4794          * interrupt handler. Causes for the interrupt could be;
4795          * 1. Rx of packet.
4796          * 2. Tx complete.
4797          * 3. Link down.
4798          */
4799         reason = readq(&bar0->general_int_status);
4800
4801         if (unlikely(reason == S2IO_MINUS_ONE))
4802                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4803
4804         if (reason &
4805             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4806                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4807
4808                 if (config->napi) {
4809                         if (reason & GEN_INTR_RXTRAFFIC) {
4810                                 napi_schedule(&sp->napi);
4811                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4812                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4813                                 readl(&bar0->rx_traffic_int);
4814                         }
4815                 } else {
4816                         /*
4817                          * rx_traffic_int reg is an R1 register, writing all 1's
4818                          * will ensure that the actual interrupt causing bit
4819                          * get's cleared and hence a read can be avoided.
4820                          */
4821                         if (reason & GEN_INTR_RXTRAFFIC)
4822                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4823
4824                         for (i = 0; i < config->rx_ring_num; i++) {
4825                                 struct ring_info *ring = &mac_control->rings[i];
4826
4827                                 rx_intr_handler(ring, 0);
4828                         }
4829                 }
4830
4831                 /*
4832                  * tx_traffic_int reg is an R1 register, writing all 1's
4833                  * will ensure that the actual interrupt causing bit get's
4834                  * cleared and hence a read can be avoided.
4835                  */
4836                 if (reason & GEN_INTR_TXTRAFFIC)
4837                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4838
4839                 for (i = 0; i < config->tx_fifo_num; i++)
4840                         tx_intr_handler(&mac_control->fifos[i]);
4841
4842                 if (reason & GEN_INTR_TXPIC)
4843                         s2io_txpic_intr_handle(sp);
4844
4845                 /*
4846                  * Reallocate the buffers from the interrupt handler itself.
4847                  */
4848                 if (!config->napi) {
4849                         for (i = 0; i < config->rx_ring_num; i++) {
4850                                 struct ring_info *ring = &mac_control->rings[i];
4851
4852                                 s2io_chk_rx_buffers(sp, ring);
4853                         }
4854                 }
4855                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4856                 readl(&bar0->general_int_status);
4857
4858                 return IRQ_HANDLED;
4859
4860         } else if (!reason) {
4861                 /* The interrupt was not raised by us */
4862                 return IRQ_NONE;
4863         }
4864
4865         return IRQ_HANDLED;
4866 }
4867
4868 /**
4869  * s2io_updt_stats -
4870  */
4871 static void s2io_updt_stats(struct s2io_nic *sp)
4872 {
4873         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4874         u64 val64;
4875         int cnt = 0;
4876
4877         if (is_s2io_card_up(sp)) {
4878                 /* Apprx 30us on a 133 MHz bus */
4879                 val64 = SET_UPDT_CLICKS(10) |
4880                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881                 writeq(val64, &bar0->stat_cfg);
4882                 do {
4883                         udelay(100);
4884                         val64 = readq(&bar0->stat_cfg);
4885                         if (!(val64 & s2BIT(0)))
4886                                 break;
4887                         cnt++;
4888                         if (cnt == 5)
4889                                 break; /* Updt failed */
4890                 } while (1);
4891         }
4892 }
4893
4894 /**
4895  *  s2io_get_stats - Updates the device statistics structure.
4896  *  @dev : pointer to the device structure.
4897  *  Description:
4898  *  This function updates the device statistics structure in the s2io_nic
4899  *  structure and returns a pointer to the same.
4900  *  Return value:
4901  *  pointer to the updated net_device_stats structure.
4902  */
4903 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4904 {
4905         struct s2io_nic *sp = netdev_priv(dev);
4906         struct mac_info *mac_control = &sp->mac_control;
4907         struct stat_block *stats = mac_control->stats_info;
4908         u64 delta;
4909
4910         /* Configure Stats for immediate updt */
4911         s2io_updt_stats(sp);
4912
4913         /* A device reset will cause the on-adapter statistics to be zero'ed.
4914          * This can be done while running by changing the MTU.  To prevent the
4915          * system from having the stats zero'ed, the driver keeps a copy of the
4916          * last update to the system (which is also zero'ed on reset).  This
4917          * enables the driver to accurately know the delta between the last
4918          * update and the current update.
4919          */
4920         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4921                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4922         sp->stats.rx_packets += delta;
4923         dev->stats.rx_packets += delta;
4924
4925         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4926                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4927         sp->stats.tx_packets += delta;
4928         dev->stats.tx_packets += delta;
4929
4930         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4931                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4932         sp->stats.rx_bytes += delta;
4933         dev->stats.rx_bytes += delta;
4934
4935         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4936                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4937         sp->stats.tx_bytes += delta;
4938         dev->stats.tx_bytes += delta;
4939
4940         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4941         sp->stats.rx_errors += delta;
4942         dev->stats.rx_errors += delta;
4943
4944         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4945                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4946         sp->stats.tx_errors += delta;
4947         dev->stats.tx_errors += delta;
4948
4949         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4950         sp->stats.rx_dropped += delta;
4951         dev->stats.rx_dropped += delta;
4952
4953         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4954         sp->stats.tx_dropped += delta;
4955         dev->stats.tx_dropped += delta;
4956
4957         /* The adapter MAC interprets pause frames as multicast packets, but
4958          * does not pass them up.  This erroneously increases the multicast
4959          * packet count and needs to be deducted when the multicast frame count
4960          * is queried.
4961          */
4962         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4963                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4964         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4965         delta -= sp->stats.multicast;
4966         sp->stats.multicast += delta;
4967         dev->stats.multicast += delta;
4968
4969         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4970                 le32_to_cpu(stats->rmac_usized_frms)) +
4971                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4972         sp->stats.rx_length_errors += delta;
4973         dev->stats.rx_length_errors += delta;
4974
4975         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4976         sp->stats.rx_crc_errors += delta;
4977         dev->stats.rx_crc_errors += delta;
4978
4979         return &dev->stats;
4980 }
4981
4982 /**
4983  *  s2io_set_multicast - entry point for multicast address enable/disable.
4984  *  @dev : pointer to the device structure
4985  *  Description:
4986  *  This function is a driver entry point which gets called by the kernel
4987  *  whenever multicast addresses must be enabled/disabled. This also gets
4988  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4989  *  determine, if multicast address must be enabled or if promiscuous mode
4990  *  is to be disabled etc.
4991  *  Return value:
4992  *  void.
4993  */
4994
4995 static void s2io_set_multicast(struct net_device *dev)
4996 {
4997         int i, j, prev_cnt;
4998         struct netdev_hw_addr *ha;
4999         struct s2io_nic *sp = netdev_priv(dev);
5000         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5001         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5002                 0xfeffffffffffULL;
5003         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5004         void __iomem *add;
5005         struct config_param *config = &sp->config;
5006
5007         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5008                 /*  Enable all Multicast addresses */
5009                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5010                        &bar0->rmac_addr_data0_mem);
5011                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5012                        &bar0->rmac_addr_data1_mem);
5013                 val64 = RMAC_ADDR_CMD_MEM_WE |
5014                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5015                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5016                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5017                 /* Wait till command completes */
5018                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5019                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5020                                       S2IO_BIT_RESET);
5021
5022                 sp->m_cast_flg = 1;
5023                 sp->all_multi_pos = config->max_mc_addr - 1;
5024         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5025                 /*  Disable all Multicast addresses */
5026                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5027                        &bar0->rmac_addr_data0_mem);
5028                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5029                        &bar0->rmac_addr_data1_mem);
5030                 val64 = RMAC_ADDR_CMD_MEM_WE |
5031                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5032                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5033                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5034                 /* Wait till command completes */
5035                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5036                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5037                                       S2IO_BIT_RESET);
5038
5039                 sp->m_cast_flg = 0;
5040                 sp->all_multi_pos = 0;
5041         }
5042
5043         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5044                 /*  Put the NIC into promiscuous mode */
5045                 add = &bar0->mac_cfg;
5046                 val64 = readq(&bar0->mac_cfg);
5047                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5048
5049                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5050                 writel((u32)val64, add);
5051                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5052                 writel((u32) (val64 >> 32), (add + 4));
5053
5054                 if (vlan_tag_strip != 1) {
5055                         val64 = readq(&bar0->rx_pa_cfg);
5056                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5057                         writeq(val64, &bar0->rx_pa_cfg);
5058                         sp->vlan_strip_flag = 0;
5059                 }
5060
5061                 val64 = readq(&bar0->mac_cfg);
5062                 sp->promisc_flg = 1;
5063                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5064                           dev->name);
5065         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5066                 /*  Remove the NIC from promiscuous mode */
5067                 add = &bar0->mac_cfg;
5068                 val64 = readq(&bar0->mac_cfg);
5069                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5070
5071                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5072                 writel((u32)val64, add);
5073                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5074                 writel((u32) (val64 >> 32), (add + 4));
5075
5076                 if (vlan_tag_strip != 0) {
5077                         val64 = readq(&bar0->rx_pa_cfg);
5078                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5079                         writeq(val64, &bar0->rx_pa_cfg);
5080                         sp->vlan_strip_flag = 1;
5081                 }
5082
5083                 val64 = readq(&bar0->mac_cfg);
5084                 sp->promisc_flg = 0;
5085                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5086         }
5087
5088         /*  Update individual M_CAST address list */
5089         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5090                 if (netdev_mc_count(dev) >
5091                     (config->max_mc_addr - config->max_mac_addr)) {
5092                         DBG_PRINT(ERR_DBG,
5093                                   "%s: No more Rx filters can be added - "
5094                                   "please enable ALL_MULTI instead\n",
5095                                   dev->name);
5096                         return;
5097                 }
5098
5099                 prev_cnt = sp->mc_addr_count;
5100                 sp->mc_addr_count = netdev_mc_count(dev);
5101
5102                 /* Clear out the previous list of Mc in the H/W. */
5103                 for (i = 0; i < prev_cnt; i++) {
5104                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5105                                &bar0->rmac_addr_data0_mem);
5106                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5107                                &bar0->rmac_addr_data1_mem);
5108                         val64 = RMAC_ADDR_CMD_MEM_WE |
5109                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5110                                 RMAC_ADDR_CMD_MEM_OFFSET
5111                                 (config->mc_start_offset + i);
5112                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5113
5114                         /* Wait for command completes */
5115                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5116                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5117                                                   S2IO_BIT_RESET)) {
5118                                 DBG_PRINT(ERR_DBG,
5119                                           "%s: Adding Multicasts failed\n",
5120                                           dev->name);
5121                                 return;
5122                         }
5123                 }
5124
5125                 /* Create the new Rx filter list and update the same in H/W. */
5126                 i = 0;
5127                 netdev_for_each_mc_addr(ha, dev) {
5128                         memcpy(sp->usr_addrs[i].addr, ha->addr,
5129                                ETH_ALEN);
5130                         mac_addr = 0;
5131                         for (j = 0; j < ETH_ALEN; j++) {
5132                                 mac_addr |= ha->addr[j];
5133                                 mac_addr <<= 8;
5134                         }
5135                         mac_addr >>= 8;
5136                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5137                                &bar0->rmac_addr_data0_mem);
5138                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5139                                &bar0->rmac_addr_data1_mem);
5140                         val64 = RMAC_ADDR_CMD_MEM_WE |
5141                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5142                                 RMAC_ADDR_CMD_MEM_OFFSET
5143                                 (i + config->mc_start_offset);
5144                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5145
5146                         /* Wait for command completes */
5147                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5148                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5149                                                   S2IO_BIT_RESET)) {
5150                                 DBG_PRINT(ERR_DBG,
5151                                           "%s: Adding Multicasts failed\n",
5152                                           dev->name);
5153                                 return;
5154                         }
5155                         i++;
5156                 }
5157         }
5158 }
5159
5160 /* read from CAM unicast & multicast addresses and store it in
5161  * def_mac_addr structure
5162  */
5163 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5164 {
5165         int offset;
5166         u64 mac_addr = 0x0;
5167         struct config_param *config = &sp->config;
5168
5169         /* store unicast & multicast mac addresses */
5170         for (offset = 0; offset < config->max_mc_addr; offset++) {
5171                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5172                 /* if read fails disable the entry */
5173                 if (mac_addr == FAILURE)
5174                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5175                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5176         }
5177 }
5178
5179 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5180 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5181 {
5182         int offset;
5183         struct config_param *config = &sp->config;
5184         /* restore unicast mac address */
5185         for (offset = 0; offset < config->max_mac_addr; offset++)
5186                 do_s2io_prog_unicast(sp->dev,
5187                                      sp->def_mac_addr[offset].mac_addr);
5188
5189         /* restore multicast mac address */
5190         for (offset = config->mc_start_offset;
5191              offset < config->max_mc_addr; offset++)
5192                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5193 }
5194
5195 /* add a multicast MAC address to CAM */
5196 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5197 {
5198         int i;
5199         u64 mac_addr = 0;
5200         struct config_param *config = &sp->config;
5201
5202         for (i = 0; i < ETH_ALEN; i++) {
5203                 mac_addr <<= 8;
5204                 mac_addr |= addr[i];
5205         }
5206         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5207                 return SUCCESS;
5208
5209         /* check if the multicast mac already preset in CAM */
5210         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5211                 u64 tmp64;
5212                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5213                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5214                         break;
5215
5216                 if (tmp64 == mac_addr)
5217                         return SUCCESS;
5218         }
5219         if (i == config->max_mc_addr) {
5220                 DBG_PRINT(ERR_DBG,
5221                           "CAM full no space left for multicast MAC\n");
5222                 return FAILURE;
5223         }
5224         /* Update the internal structure with this new mac address */
5225         do_s2io_copy_mac_addr(sp, i, mac_addr);
5226
5227         return do_s2io_add_mac(sp, mac_addr, i);
5228 }
5229
5230 /* add MAC address to CAM */
5231 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5232 {
5233         u64 val64;
5234         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5235
5236         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5237                &bar0->rmac_addr_data0_mem);
5238
5239         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5240                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5241         writeq(val64, &bar0->rmac_addr_cmd_mem);
5242
5243         /* Wait till command completes */
5244         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5245                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5246                                   S2IO_BIT_RESET)) {
5247                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5248                 return FAILURE;
5249         }
5250         return SUCCESS;
5251 }
5252 /* deletes a specified unicast/multicast mac entry from CAM */
5253 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5254 {
5255         int offset;
5256         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5257         struct config_param *config = &sp->config;
5258
5259         for (offset = 1;
5260              offset < config->max_mc_addr; offset++) {
5261                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5262                 if (tmp64 == addr) {
5263                         /* disable the entry by writing  0xffffffffffffULL */
5264                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5265                                 return FAILURE;
5266                         /* store the new mac list from CAM */
5267                         do_s2io_store_unicast_mc(sp);
5268                         return SUCCESS;
5269                 }
5270         }
5271         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5272                   (unsigned long long)addr);
5273         return FAILURE;
5274 }
5275
5276 /* read mac entries from CAM */
5277 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5278 {
5279         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5280         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5281
5282         /* read mac addr */
5283         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5284                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5285         writeq(val64, &bar0->rmac_addr_cmd_mem);
5286
5287         /* Wait till command completes */
5288         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5289                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5290                                   S2IO_BIT_RESET)) {
5291                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5292                 return FAILURE;
5293         }
5294         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5295
5296         return tmp64 >> 16;
5297 }
5298
5299 /**
5300  * s2io_set_mac_addr driver entry point
5301  */
5302
5303 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5304 {
5305         struct sockaddr *addr = p;
5306
5307         if (!is_valid_ether_addr(addr->sa_data))
5308                 return -EINVAL;
5309
5310         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5311
5312         /* store the MAC address in CAM */
5313         return do_s2io_prog_unicast(dev, dev->dev_addr);
5314 }
5315 /**
5316  *  do_s2io_prog_unicast - Programs the Xframe mac address
5317  *  @dev : pointer to the device structure.
5318  *  @addr: a uchar pointer to the new mac address which is to be set.
5319  *  Description : This procedure will program the Xframe to receive
5320  *  frames with new Mac Address
5321  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5322  *  as defined in errno.h file on failure.
5323  */
5324
5325 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5326 {
5327         struct s2io_nic *sp = netdev_priv(dev);
5328         register u64 mac_addr = 0, perm_addr = 0;
5329         int i;
5330         u64 tmp64;
5331         struct config_param *config = &sp->config;
5332
5333         /*
5334          * Set the new MAC address as the new unicast filter and reflect this
5335          * change on the device address registered with the OS. It will be
5336          * at offset 0.
5337          */
5338         for (i = 0; i < ETH_ALEN; i++) {
5339                 mac_addr <<= 8;
5340                 mac_addr |= addr[i];
5341                 perm_addr <<= 8;
5342                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5343         }
5344
5345         /* check if the dev_addr is different than perm_addr */
5346         if (mac_addr == perm_addr)
5347                 return SUCCESS;
5348
5349         /* check if the mac already preset in CAM */
5350         for (i = 1; i < config->max_mac_addr; i++) {
5351                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5352                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5353                         break;
5354
5355                 if (tmp64 == mac_addr) {
5356                         DBG_PRINT(INFO_DBG,
5357                                   "MAC addr:0x%llx already present in CAM\n",
5358                                   (unsigned long long)mac_addr);
5359                         return SUCCESS;
5360                 }
5361         }
5362         if (i == config->max_mac_addr) {
5363                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5364                 return FAILURE;
5365         }
5366         /* Update the internal structure with this new mac address */
5367         do_s2io_copy_mac_addr(sp, i, mac_addr);
5368
5369         return do_s2io_add_mac(sp, mac_addr, i);
5370 }
5371
5372 /**
5373  * s2io_ethtool_sset - Sets different link parameters.
5374  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5375  * @info: pointer to the structure with parameters given by ethtool to set
5376  * link information.
5377  * Description:
5378  * The function sets different link parameters provided by the user onto
5379  * the NIC.
5380  * Return value:
5381  * 0 on success.
5382  */
5383
5384 static int s2io_ethtool_sset(struct net_device *dev,
5385                              struct ethtool_cmd *info)
5386 {
5387         struct s2io_nic *sp = netdev_priv(dev);
5388         if ((info->autoneg == AUTONEG_ENABLE) ||
5389             (info->speed != SPEED_10000) ||
5390             (info->duplex != DUPLEX_FULL))
5391                 return -EINVAL;
5392         else {
5393                 s2io_close(sp->dev);
5394                 s2io_open(sp->dev);
5395         }
5396
5397         return 0;
5398 }
5399
5400 /**
5401  * s2io_ethtol_gset - Return link specific information.
5402  * @sp : private member of the device structure, pointer to the
5403  *      s2io_nic structure.
5404  * @info : pointer to the structure with parameters given by ethtool
5405  * to return link information.
5406  * Description:
5407  * Returns link specific information like speed, duplex etc.. to ethtool.
5408  * Return value :
5409  * return 0 on success.
5410  */
5411
5412 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5413 {
5414         struct s2io_nic *sp = netdev_priv(dev);
5415         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5416         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5417         info->port = PORT_FIBRE;
5418
5419         /* info->transceiver */
5420         info->transceiver = XCVR_EXTERNAL;
5421
5422         if (netif_carrier_ok(sp->dev)) {
5423                 info->speed = 10000;
5424                 info->duplex = DUPLEX_FULL;
5425         } else {
5426                 info->speed = -1;
5427                 info->duplex = -1;
5428         }
5429
5430         info->autoneg = AUTONEG_DISABLE;
5431         return 0;
5432 }
5433
5434 /**
5435  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5436  * @sp : private member of the device structure, which is a pointer to the
5437  * s2io_nic structure.
5438  * @info : pointer to the structure with parameters given by ethtool to
5439  * return driver information.
5440  * Description:
5441  * Returns driver specefic information like name, version etc.. to ethtool.
5442  * Return value:
5443  *  void
5444  */
5445
5446 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5447                                   struct ethtool_drvinfo *info)
5448 {
5449         struct s2io_nic *sp = netdev_priv(dev);
5450
5451         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5452         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5453         strncpy(info->fw_version, "", sizeof(info->fw_version));
5454         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5455         info->regdump_len = XENA_REG_SPACE;
5456         info->eedump_len = XENA_EEPROM_SPACE;
5457 }
5458
5459 /**
5460  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5461  *  @sp: private member of the device structure, which is a pointer to the
5462  *  s2io_nic structure.
5463  *  @regs : pointer to the structure with parameters given by ethtool for
5464  *  dumping the registers.
5465  *  @reg_space: The input argumnet into which all the registers are dumped.
5466  *  Description:
5467  *  Dumps the entire register space of xFrame NIC into the user given
5468  *  buffer area.
5469  * Return value :
5470  * void .
5471  */
5472
5473 static void s2io_ethtool_gregs(struct net_device *dev,
5474                                struct ethtool_regs *regs, void *space)
5475 {
5476         int i;
5477         u64 reg;
5478         u8 *reg_space = (u8 *)space;
5479         struct s2io_nic *sp = netdev_priv(dev);
5480
5481         regs->len = XENA_REG_SPACE;
5482         regs->version = sp->pdev->subsystem_device;
5483
5484         for (i = 0; i < regs->len; i += 8) {
5485                 reg = readq(sp->bar0 + i);
5486                 memcpy((reg_space + i), &reg, 8);
5487         }
5488 }
5489
5490 /**
5491  *  s2io_phy_id  - timer function that alternates adapter LED.
5492  *  @data : address of the private member of the device structure, which
5493  *  is a pointer to the s2io_nic structure, provided as an u32.
5494  * Description: This is actually the timer function that alternates the
5495  * adapter LED bit of the adapter control bit to set/reset every time on
5496  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5497  *  once every second.
5498  */
5499 static void s2io_phy_id(unsigned long data)
5500 {
5501         struct s2io_nic *sp = (struct s2io_nic *)data;
5502         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5503         u64 val64 = 0;
5504         u16 subid;
5505
5506         subid = sp->pdev->subsystem_device;
5507         if ((sp->device_type == XFRAME_II_DEVICE) ||
5508             ((subid & 0xFF) >= 0x07)) {
5509                 val64 = readq(&bar0->gpio_control);
5510                 val64 ^= GPIO_CTRL_GPIO_0;
5511                 writeq(val64, &bar0->gpio_control);
5512         } else {
5513                 val64 = readq(&bar0->adapter_control);
5514                 val64 ^= ADAPTER_LED_ON;
5515                 writeq(val64, &bar0->adapter_control);
5516         }
5517
5518         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5519 }
5520
5521 /**
5522  * s2io_ethtool_idnic - To physically identify the nic on the system.
5523  * @sp : private member of the device structure, which is a pointer to the
5524  * s2io_nic structure.
5525  * @id : pointer to the structure with identification parameters given by
5526  * ethtool.
5527  * Description: Used to physically identify the NIC on the system.
5528  * The Link LED will blink for a time specified by the user for
5529  * identification.
5530  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5531  * identification is possible only if it's link is up.
5532  * Return value:
5533  * int , returns 0 on success
5534  */
5535
5536 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5537 {
5538         u64 val64 = 0, last_gpio_ctrl_val;
5539         struct s2io_nic *sp = netdev_priv(dev);
5540         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5541         u16 subid;
5542
5543         subid = sp->pdev->subsystem_device;
5544         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5545         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5546                 val64 = readq(&bar0->adapter_control);
5547                 if (!(val64 & ADAPTER_CNTL_EN)) {
5548                         pr_err("Adapter Link down, cannot blink LED\n");
5549                         return -EFAULT;
5550                 }
5551         }
5552         if (sp->id_timer.function == NULL) {
5553                 init_timer(&sp->id_timer);
5554                 sp->id_timer.function = s2io_phy_id;
5555                 sp->id_timer.data = (unsigned long)sp;
5556         }
5557         mod_timer(&sp->id_timer, jiffies);
5558         if (data)
5559                 msleep_interruptible(data * HZ);
5560         else
5561                 msleep_interruptible(MAX_FLICKER_TIME);
5562         del_timer_sync(&sp->id_timer);
5563
5564         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5565                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5566                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5567         }
5568
5569         return 0;
5570 }
5571
5572 static void s2io_ethtool_gringparam(struct net_device *dev,
5573                                     struct ethtool_ringparam *ering)
5574 {
5575         struct s2io_nic *sp = netdev_priv(dev);
5576         int i, tx_desc_count = 0, rx_desc_count = 0;
5577
5578         if (sp->rxd_mode == RXD_MODE_1)
5579                 ering->rx_max_pending = MAX_RX_DESC_1;
5580         else if (sp->rxd_mode == RXD_MODE_3B)
5581                 ering->rx_max_pending = MAX_RX_DESC_2;
5582
5583         ering->tx_max_pending = MAX_TX_DESC;
5584         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5585                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5586
5587         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5588         ering->tx_pending = tx_desc_count;
5589         rx_desc_count = 0;
5590         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5591                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5592
5593         ering->rx_pending = rx_desc_count;
5594
5595         ering->rx_mini_max_pending = 0;
5596         ering->rx_mini_pending = 0;
5597         if (sp->rxd_mode == RXD_MODE_1)
5598                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5599         else if (sp->rxd_mode == RXD_MODE_3B)
5600                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5601         ering->rx_jumbo_pending = rx_desc_count;
5602 }
5603
5604 /**
5605  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5606  * @sp : private member of the device structure, which is a pointer to the
5607  *      s2io_nic structure.
5608  * @ep : pointer to the structure with pause parameters given by ethtool.
5609  * Description:
5610  * Returns the Pause frame generation and reception capability of the NIC.
5611  * Return value:
5612  *  void
5613  */
5614 static void s2io_ethtool_getpause_data(struct net_device *dev,
5615                                        struct ethtool_pauseparam *ep)
5616 {
5617         u64 val64;
5618         struct s2io_nic *sp = netdev_priv(dev);
5619         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5620
5621         val64 = readq(&bar0->rmac_pause_cfg);
5622         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5623                 ep->tx_pause = true;
5624         if (val64 & RMAC_PAUSE_RX_ENABLE)
5625                 ep->rx_pause = true;
5626         ep->autoneg = false;
5627 }
5628
5629 /**
5630  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5631  * @sp : private member of the device structure, which is a pointer to the
5632  *      s2io_nic structure.
5633  * @ep : pointer to the structure with pause parameters given by ethtool.
5634  * Description:
5635  * It can be used to set or reset Pause frame generation or reception
5636  * support of the NIC.
5637  * Return value:
5638  * int, returns 0 on Success
5639  */
5640
5641 static int s2io_ethtool_setpause_data(struct net_device *dev,
5642                                       struct ethtool_pauseparam *ep)
5643 {
5644         u64 val64;
5645         struct s2io_nic *sp = netdev_priv(dev);
5646         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5647
5648         val64 = readq(&bar0->rmac_pause_cfg);
5649         if (ep->tx_pause)
5650                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5651         else
5652                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5653         if (ep->rx_pause)
5654                 val64 |= RMAC_PAUSE_RX_ENABLE;
5655         else
5656                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5657         writeq(val64, &bar0->rmac_pause_cfg);
5658         return 0;
5659 }
5660
5661 /**
5662  * read_eeprom - reads 4 bytes of data from user given offset.
5663  * @sp : private member of the device structure, which is a pointer to the
5664  *      s2io_nic structure.
5665  * @off : offset at which the data must be written
5666  * @data : Its an output parameter where the data read at the given
5667  *      offset is stored.
5668  * Description:
5669  * Will read 4 bytes of data from the user given offset and return the
5670  * read data.
5671  * NOTE: Will allow to read only part of the EEPROM visible through the
5672  *   I2C bus.
5673  * Return value:
5674  *  -1 on failure and 0 on success.
5675  */
5676
5677 #define S2IO_DEV_ID             5
5678 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5679 {
5680         int ret = -1;
5681         u32 exit_cnt = 0;
5682         u64 val64;
5683         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5684
5685         if (sp->device_type == XFRAME_I_DEVICE) {
5686                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5687                         I2C_CONTROL_ADDR(off) |
5688                         I2C_CONTROL_BYTE_CNT(0x3) |
5689                         I2C_CONTROL_READ |
5690                         I2C_CONTROL_CNTL_START;
5691                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5692
5693                 while (exit_cnt < 5) {
5694                         val64 = readq(&bar0->i2c_control);
5695                         if (I2C_CONTROL_CNTL_END(val64)) {
5696                                 *data = I2C_CONTROL_GET_DATA(val64);
5697                                 ret = 0;
5698                                 break;
5699                         }
5700                         msleep(50);
5701                         exit_cnt++;
5702                 }
5703         }
5704
5705         if (sp->device_type == XFRAME_II_DEVICE) {
5706                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5707                         SPI_CONTROL_BYTECNT(0x3) |
5708                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5709                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710                 val64 |= SPI_CONTROL_REQ;
5711                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712                 while (exit_cnt < 5) {
5713                         val64 = readq(&bar0->spi_control);
5714                         if (val64 & SPI_CONTROL_NACK) {
5715                                 ret = 1;
5716                                 break;
5717                         } else if (val64 & SPI_CONTROL_DONE) {
5718                                 *data = readq(&bar0->spi_data);
5719                                 *data &= 0xffffff;
5720                                 ret = 0;
5721                                 break;
5722                         }
5723                         msleep(50);
5724                         exit_cnt++;
5725                 }
5726         }
5727         return ret;
5728 }
5729
5730 /**
5731  *  write_eeprom - actually writes the relevant part of the data value.
5732  *  @sp : private member of the device structure, which is a pointer to the
5733  *       s2io_nic structure.
5734  *  @off : offset at which the data must be written
5735  *  @data : The data that is to be written
5736  *  @cnt : Number of bytes of the data that are actually to be written into
5737  *  the Eeprom. (max of 3)
5738  * Description:
5739  *  Actually writes the relevant part of the data value into the Eeprom
5740  *  through the I2C bus.
5741  * Return value:
5742  *  0 on success, -1 on failure.
5743  */
5744
5745 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5746 {
5747         int exit_cnt = 0, ret = -1;
5748         u64 val64;
5749         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5750
5751         if (sp->device_type == XFRAME_I_DEVICE) {
5752                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5753                         I2C_CONTROL_ADDR(off) |
5754                         I2C_CONTROL_BYTE_CNT(cnt) |
5755                         I2C_CONTROL_SET_DATA((u32)data) |
5756                         I2C_CONTROL_CNTL_START;
5757                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5758
5759                 while (exit_cnt < 5) {
5760                         val64 = readq(&bar0->i2c_control);
5761                         if (I2C_CONTROL_CNTL_END(val64)) {
5762                                 if (!(val64 & I2C_CONTROL_NACK))
5763                                         ret = 0;
5764                                 break;
5765                         }
5766                         msleep(50);
5767                         exit_cnt++;
5768                 }
5769         }
5770
5771         if (sp->device_type == XFRAME_II_DEVICE) {
5772                 int write_cnt = (cnt == 8) ? 0 : cnt;
5773                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5774
5775                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5776                         SPI_CONTROL_BYTECNT(write_cnt) |
5777                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5778                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5779                 val64 |= SPI_CONTROL_REQ;
5780                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5781                 while (exit_cnt < 5) {
5782                         val64 = readq(&bar0->spi_control);
5783                         if (val64 & SPI_CONTROL_NACK) {
5784                                 ret = 1;
5785                                 break;
5786                         } else if (val64 & SPI_CONTROL_DONE) {
5787                                 ret = 0;
5788                                 break;
5789                         }
5790                         msleep(50);
5791                         exit_cnt++;
5792                 }
5793         }
5794         return ret;
5795 }
5796 static void s2io_vpd_read(struct s2io_nic *nic)
5797 {
5798         u8 *vpd_data;
5799         u8 data;
5800         int i = 0, cnt, fail = 0;
5801         int vpd_addr = 0x80;
5802         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5803
5804         if (nic->device_type == XFRAME_II_DEVICE) {
5805                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5806                 vpd_addr = 0x80;
5807         } else {
5808                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5809                 vpd_addr = 0x50;
5810         }
5811         strcpy(nic->serial_num, "NOT AVAILABLE");
5812
5813         vpd_data = kmalloc(256, GFP_KERNEL);
5814         if (!vpd_data) {
5815                 swstats->mem_alloc_fail_cnt++;
5816                 return;
5817         }
5818         swstats->mem_allocated += 256;
5819
5820         for (i = 0; i < 256; i += 4) {
5821                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5822                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5823                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5824                 for (cnt = 0; cnt < 5; cnt++) {
5825                         msleep(2);
5826                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5827                         if (data == 0x80)
5828                                 break;
5829                 }
5830                 if (cnt >= 5) {
5831                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5832                         fail = 1;
5833                         break;
5834                 }
5835                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5836                                       (u32 *)&vpd_data[i]);
5837         }
5838
5839         if (!fail) {
5840                 /* read serial number of adapter */
5841                 for (cnt = 0; cnt < 256; cnt++) {
5842                         if ((vpd_data[cnt] == 'S') &&
5843                             (vpd_data[cnt+1] == 'N') &&
5844                             (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5845                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5846                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5847                                        vpd_data[cnt+2]);
5848                                 break;
5849                         }
5850                 }
5851         }
5852
5853         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5854                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5855         kfree(vpd_data);
5856         swstats->mem_freed += 256;
5857 }
5858
5859 /**
5860  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5861  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5862  *  @eeprom : pointer to the user level structure provided by ethtool,
5863  *  containing all relevant information.
5864  *  @data_buf : user defined value to be written into Eeprom.
5865  *  Description: Reads the values stored in the Eeprom at given offset
5866  *  for a given length. Stores these values int the input argument data
5867  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5868  *  Return value:
5869  *  int  0 on success
5870  */
5871
5872 static int s2io_ethtool_geeprom(struct net_device *dev,
5873                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5874 {
5875         u32 i, valid;
5876         u64 data;
5877         struct s2io_nic *sp = netdev_priv(dev);
5878
5879         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5880
5881         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5882                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5883
5884         for (i = 0; i < eeprom->len; i += 4) {
5885                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5886                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5887                         return -EFAULT;
5888                 }
5889                 valid = INV(data);
5890                 memcpy((data_buf + i), &valid, 4);
5891         }
5892         return 0;
5893 }
5894
5895 /**
5896  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5897  *  @sp : private member of the device structure, which is a pointer to the
5898  *  s2io_nic structure.
5899  *  @eeprom : pointer to the user level structure provided by ethtool,
5900  *  containing all relevant information.
5901  *  @data_buf ; user defined value to be written into Eeprom.
5902  *  Description:
5903  *  Tries to write the user provided value in the Eeprom, at the offset
5904  *  given by the user.
5905  *  Return value:
5906  *  0 on success, -EFAULT on failure.
5907  */
5908
5909 static int s2io_ethtool_seeprom(struct net_device *dev,
5910                                 struct ethtool_eeprom *eeprom,
5911                                 u8 *data_buf)
5912 {
5913         int len = eeprom->len, cnt = 0;
5914         u64 valid = 0, data;
5915         struct s2io_nic *sp = netdev_priv(dev);
5916
5917         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5918                 DBG_PRINT(ERR_DBG,
5919                           "ETHTOOL_WRITE_EEPROM Err: "
5920                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5921                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5922                           eeprom->magic);
5923                 return -EFAULT;
5924         }
5925
5926         while (len) {
5927                 data = (u32)data_buf[cnt] & 0x000000FF;
5928                 if (data)
5929                         valid = (u32)(data << 24);
5930                 else
5931                         valid = data;
5932
5933                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5934                         DBG_PRINT(ERR_DBG,
5935                                   "ETHTOOL_WRITE_EEPROM Err: "
5936                                   "Cannot write into the specified offset\n");
5937                         return -EFAULT;
5938                 }
5939                 cnt++;
5940                 len--;
5941         }
5942
5943         return 0;
5944 }
5945
5946 /**
5947  * s2io_register_test - reads and writes into all clock domains.
5948  * @sp : private member of the device structure, which is a pointer to the
5949  * s2io_nic structure.
5950  * @data : variable that returns the result of each of the test conducted b
5951  * by the driver.
5952  * Description:
5953  * Read and write into all clock domains. The NIC has 3 clock domains,
5954  * see that registers in all the three regions are accessible.
5955  * Return value:
5956  * 0 on success.
5957  */
5958
5959 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5960 {
5961         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5962         u64 val64 = 0, exp_val;
5963         int fail = 0;
5964
5965         val64 = readq(&bar0->pif_rd_swapper_fb);
5966         if (val64 != 0x123456789abcdefULL) {
5967                 fail = 1;
5968                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5969         }
5970
5971         val64 = readq(&bar0->rmac_pause_cfg);
5972         if (val64 != 0xc000ffff00000000ULL) {
5973                 fail = 1;
5974                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5975         }
5976
5977         val64 = readq(&bar0->rx_queue_cfg);
5978         if (sp->device_type == XFRAME_II_DEVICE)
5979                 exp_val = 0x0404040404040404ULL;
5980         else
5981                 exp_val = 0x0808080808080808ULL;
5982         if (val64 != exp_val) {
5983                 fail = 1;
5984                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5985         }
5986
5987         val64 = readq(&bar0->xgxs_efifo_cfg);
5988         if (val64 != 0x000000001923141EULL) {
5989                 fail = 1;
5990                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5991         }
5992
5993         val64 = 0x5A5A5A5A5A5A5A5AULL;
5994         writeq(val64, &bar0->xmsi_data);
5995         val64 = readq(&bar0->xmsi_data);
5996         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5997                 fail = 1;
5998                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5999         }
6000
6001         val64 = 0xA5A5A5A5A5A5A5A5ULL;
6002         writeq(val64, &bar0->xmsi_data);
6003         val64 = readq(&bar0->xmsi_data);
6004         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6005                 fail = 1;
6006                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6007         }
6008
6009         *data = fail;
6010         return fail;
6011 }
6012
6013 /**
6014  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6015  * @sp : private member of the device structure, which is a pointer to the
6016  * s2io_nic structure.
6017  * @data:variable that returns the result of each of the test conducted by
6018  * the driver.
6019  * Description:
6020  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6021  * register.
6022  * Return value:
6023  * 0 on success.
6024  */
6025
6026 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6027 {
6028         int fail = 0;
6029         u64 ret_data, org_4F0, org_7F0;
6030         u8 saved_4F0 = 0, saved_7F0 = 0;
6031         struct net_device *dev = sp->dev;
6032
6033         /* Test Write Error at offset 0 */
6034         /* Note that SPI interface allows write access to all areas
6035          * of EEPROM. Hence doing all negative testing only for Xframe I.
6036          */
6037         if (sp->device_type == XFRAME_I_DEVICE)
6038                 if (!write_eeprom(sp, 0, 0, 3))
6039                         fail = 1;
6040
6041         /* Save current values at offsets 0x4F0 and 0x7F0 */
6042         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6043                 saved_4F0 = 1;
6044         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6045                 saved_7F0 = 1;
6046
6047         /* Test Write at offset 4f0 */
6048         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6049                 fail = 1;
6050         if (read_eeprom(sp, 0x4F0, &ret_data))
6051                 fail = 1;
6052
6053         if (ret_data != 0x012345) {
6054                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6055                           "Data written %llx Data read %llx\n",
6056                           dev->name, (unsigned long long)0x12345,
6057                           (unsigned long long)ret_data);
6058                 fail = 1;
6059         }
6060
6061         /* Reset the EEPROM data go FFFF */
6062         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6063
6064         /* Test Write Request Error at offset 0x7c */
6065         if (sp->device_type == XFRAME_I_DEVICE)
6066                 if (!write_eeprom(sp, 0x07C, 0, 3))
6067                         fail = 1;
6068
6069         /* Test Write Request at offset 0x7f0 */
6070         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6071                 fail = 1;
6072         if (read_eeprom(sp, 0x7F0, &ret_data))
6073                 fail = 1;
6074
6075         if (ret_data != 0x012345) {
6076                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6077                           "Data written %llx Data read %llx\n",
6078                           dev->name, (unsigned long long)0x12345,
6079                           (unsigned long long)ret_data);
6080                 fail = 1;
6081         }
6082
6083         /* Reset the EEPROM data go FFFF */
6084         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6085
6086         if (sp->device_type == XFRAME_I_DEVICE) {
6087                 /* Test Write Error at offset 0x80 */
6088                 if (!write_eeprom(sp, 0x080, 0, 3))
6089                         fail = 1;
6090
6091                 /* Test Write Error at offset 0xfc */
6092                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6093                         fail = 1;
6094
6095                 /* Test Write Error at offset 0x100 */
6096                 if (!write_eeprom(sp, 0x100, 0, 3))
6097                         fail = 1;
6098
6099                 /* Test Write Error at offset 4ec */
6100                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6101                         fail = 1;
6102         }
6103
6104         /* Restore values at offsets 0x4F0 and 0x7F0 */
6105         if (saved_4F0)
6106                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6107         if (saved_7F0)
6108                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6109
6110         *data = fail;
6111         return fail;
6112 }
6113
6114 /**
6115  * s2io_bist_test - invokes the MemBist test of the card .
6116  * @sp : private member of the device structure, which is a pointer to the
6117  * s2io_nic structure.
6118  * @data:variable that returns the result of each of the test conducted by
6119  * the driver.
6120  * Description:
6121  * This invokes the MemBist test of the card. We give around
6122  * 2 secs time for the Test to complete. If it's still not complete
6123  * within this peiod, we consider that the test failed.
6124  * Return value:
6125  * 0 on success and -1 on failure.
6126  */
6127
6128 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6129 {
6130         u8 bist = 0;
6131         int cnt = 0, ret = -1;
6132
6133         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6134         bist |= PCI_BIST_START;
6135         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6136
6137         while (cnt < 20) {
6138                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6139                 if (!(bist & PCI_BIST_START)) {
6140                         *data = (bist & PCI_BIST_CODE_MASK);
6141                         ret = 0;
6142                         break;
6143                 }
6144                 msleep(100);
6145                 cnt++;
6146         }
6147
6148         return ret;
6149 }
6150
6151 /**
6152  * s2io-link_test - verifies the link state of the nic
6153  * @sp ; private member of the device structure, which is a pointer to the
6154  * s2io_nic structure.
6155  * @data: variable that returns the result of each of the test conducted by
6156  * the driver.
6157  * Description:
6158  * The function verifies the link state of the NIC and updates the input
6159  * argument 'data' appropriately.
6160  * Return value:
6161  * 0 on success.
6162  */
6163
6164 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6165 {
6166         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6167         u64 val64;
6168
6169         val64 = readq(&bar0->adapter_status);
6170         if (!(LINK_IS_UP(val64)))
6171                 *data = 1;
6172         else
6173                 *data = 0;
6174
6175         return *data;
6176 }
6177
6178 /**
6179  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6180  * @sp - private member of the device structure, which is a pointer to the
6181  * s2io_nic structure.
6182  * @data - variable that returns the result of each of the test
6183  * conducted by the driver.
6184  * Description:
6185  *  This is one of the offline test that tests the read and write
6186  *  access to the RldRam chip on the NIC.
6187  * Return value:
6188  *  0 on success.
6189  */
6190
6191 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6192 {
6193         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6194         u64 val64;
6195         int cnt, iteration = 0, test_fail = 0;
6196
6197         val64 = readq(&bar0->adapter_control);
6198         val64 &= ~ADAPTER_ECC_EN;
6199         writeq(val64, &bar0->adapter_control);
6200
6201         val64 = readq(&bar0->mc_rldram_test_ctrl);
6202         val64 |= MC_RLDRAM_TEST_MODE;
6203         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6204
6205         val64 = readq(&bar0->mc_rldram_mrs);
6206         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6207         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6208
6209         val64 |= MC_RLDRAM_MRS_ENABLE;
6210         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6211
6212         while (iteration < 2) {
6213                 val64 = 0x55555555aaaa0000ULL;
6214                 if (iteration == 1)
6215                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6216                 writeq(val64, &bar0->mc_rldram_test_d0);
6217
6218                 val64 = 0xaaaa5a5555550000ULL;
6219                 if (iteration == 1)
6220                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6221                 writeq(val64, &bar0->mc_rldram_test_d1);
6222
6223                 val64 = 0x55aaaaaaaa5a0000ULL;
6224                 if (iteration == 1)
6225                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6226                 writeq(val64, &bar0->mc_rldram_test_d2);
6227
6228                 val64 = (u64) (0x0000003ffffe0100ULL);
6229                 writeq(val64, &bar0->mc_rldram_test_add);
6230
6231                 val64 = MC_RLDRAM_TEST_MODE |
6232                         MC_RLDRAM_TEST_WRITE |
6233                         MC_RLDRAM_TEST_GO;
6234                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6235
6236                 for (cnt = 0; cnt < 5; cnt++) {
6237                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6238                         if (val64 & MC_RLDRAM_TEST_DONE)
6239                                 break;
6240                         msleep(200);
6241                 }
6242
6243                 if (cnt == 5)
6244                         break;
6245
6246                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6247                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6248
6249                 for (cnt = 0; cnt < 5; cnt++) {
6250                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6251                         if (val64 & MC_RLDRAM_TEST_DONE)
6252                                 break;
6253                         msleep(500);
6254                 }
6255
6256                 if (cnt == 5)
6257                         break;
6258
6259                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6260                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6261                         test_fail = 1;
6262
6263                 iteration++;
6264         }
6265
6266         *data = test_fail;
6267
6268         /* Bring the adapter out of test mode */
6269         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6270
6271         return test_fail;
6272 }
6273
6274 /**
6275  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6276  *  @sp : private member of the device structure, which is a pointer to the
6277  *  s2io_nic structure.
6278  *  @ethtest : pointer to a ethtool command specific structure that will be
6279  *  returned to the user.
6280  *  @data : variable that returns the result of each of the test
6281  * conducted by the driver.
6282  * Description:
6283  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6284  *  the health of the card.
6285  * Return value:
6286  *  void
6287  */
6288
6289 static void s2io_ethtool_test(struct net_device *dev,
6290                               struct ethtool_test *ethtest,
6291                               uint64_t *data)
6292 {
6293         struct s2io_nic *sp = netdev_priv(dev);
6294         int orig_state = netif_running(sp->dev);
6295
6296         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6297                 /* Offline Tests. */
6298                 if (orig_state)
6299                         s2io_close(sp->dev);
6300
6301                 if (s2io_register_test(sp, &data[0]))
6302                         ethtest->flags |= ETH_TEST_FL_FAILED;
6303
6304                 s2io_reset(sp);
6305
6306                 if (s2io_rldram_test(sp, &data[3]))
6307                         ethtest->flags |= ETH_TEST_FL_FAILED;
6308
6309                 s2io_reset(sp);
6310
6311                 if (s2io_eeprom_test(sp, &data[1]))
6312                         ethtest->flags |= ETH_TEST_FL_FAILED;
6313
6314                 if (s2io_bist_test(sp, &data[4]))
6315                         ethtest->flags |= ETH_TEST_FL_FAILED;
6316
6317                 if (orig_state)
6318                         s2io_open(sp->dev);
6319
6320                 data[2] = 0;
6321         } else {
6322                 /* Online Tests. */
6323                 if (!orig_state) {
6324                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6325                                   dev->name);
6326                         data[0] = -1;
6327                         data[1] = -1;
6328                         data[2] = -1;
6329                         data[3] = -1;
6330                         data[4] = -1;
6331                 }
6332
6333                 if (s2io_link_test(sp, &data[2]))
6334                         ethtest->flags |= ETH_TEST_FL_FAILED;
6335
6336                 data[0] = 0;
6337                 data[1] = 0;
6338                 data[3] = 0;
6339                 data[4] = 0;
6340         }
6341 }
6342
6343 static void s2io_get_ethtool_stats(struct net_device *dev,
6344                                    struct ethtool_stats *estats,
6345                                    u64 *tmp_stats)
6346 {
6347         int i = 0, k;
6348         struct s2io_nic *sp = netdev_priv(dev);
6349         struct stat_block *stats = sp->mac_control.stats_info;
6350         struct swStat *swstats = &stats->sw_stat;
6351         struct xpakStat *xstats = &stats->xpak_stat;
6352
6353         s2io_updt_stats(sp);
6354         tmp_stats[i++] =
6355                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6356                 le32_to_cpu(stats->tmac_frms);
6357         tmp_stats[i++] =
6358                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6359                 le32_to_cpu(stats->tmac_data_octets);
6360         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6361         tmp_stats[i++] =
6362                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6363                 le32_to_cpu(stats->tmac_mcst_frms);
6364         tmp_stats[i++] =
6365                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6366                 le32_to_cpu(stats->tmac_bcst_frms);
6367         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6370                 le32_to_cpu(stats->tmac_ttl_octets);
6371         tmp_stats[i++] =
6372                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6373                 le32_to_cpu(stats->tmac_ucst_frms);
6374         tmp_stats[i++] =
6375                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6376                 le32_to_cpu(stats->tmac_nucst_frms);
6377         tmp_stats[i++] =
6378                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6379                 le32_to_cpu(stats->tmac_any_err_frms);
6380         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6381         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6382         tmp_stats[i++] =
6383                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6384                 le32_to_cpu(stats->tmac_vld_ip);
6385         tmp_stats[i++] =
6386                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6387                 le32_to_cpu(stats->tmac_drop_ip);
6388         tmp_stats[i++] =
6389                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6390                 le32_to_cpu(stats->tmac_icmp);
6391         tmp_stats[i++] =
6392                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6393                 le32_to_cpu(stats->tmac_rst_tcp);
6394         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6395         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6396                 le32_to_cpu(stats->tmac_udp);
6397         tmp_stats[i++] =
6398                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6399                 le32_to_cpu(stats->rmac_vld_frms);
6400         tmp_stats[i++] =
6401                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6402                 le32_to_cpu(stats->rmac_data_octets);
6403         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6404         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6405         tmp_stats[i++] =
6406                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6407                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6408         tmp_stats[i++] =
6409                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6410                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6411         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6412         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6413         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6414         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6416         tmp_stats[i++] =
6417                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6418                 le32_to_cpu(stats->rmac_ttl_octets);
6419         tmp_stats[i++] =
6420                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6421                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6422         tmp_stats[i++] =
6423                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6424                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6425         tmp_stats[i++] =
6426                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6427                 le32_to_cpu(stats->rmac_discarded_frms);
6428         tmp_stats[i++] =
6429                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6430                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6431         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6432         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6433         tmp_stats[i++] =
6434                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6435                 le32_to_cpu(stats->rmac_usized_frms);
6436         tmp_stats[i++] =
6437                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6438                 le32_to_cpu(stats->rmac_osized_frms);
6439         tmp_stats[i++] =
6440                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6441                 le32_to_cpu(stats->rmac_frag_frms);
6442         tmp_stats[i++] =
6443                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6444                 le32_to_cpu(stats->rmac_jabber_frms);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6446         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6447         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6448         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6449         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6450         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6451         tmp_stats[i++] =
6452                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6453                 le32_to_cpu(stats->rmac_ip);
6454         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6455         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6456         tmp_stats[i++] =
6457                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6458                 le32_to_cpu(stats->rmac_drop_ip);
6459         tmp_stats[i++] =
6460                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6461                 le32_to_cpu(stats->rmac_icmp);
6462         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6463         tmp_stats[i++] =
6464                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6465                 le32_to_cpu(stats->rmac_udp);
6466         tmp_stats[i++] =
6467                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6468                 le32_to_cpu(stats->rmac_err_drp_udp);
6469         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6470         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6471         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6472         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6473         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6474         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6475         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6476         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6477         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6478         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6479         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6480         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6481         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6482         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6483         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6484         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6485         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6486         tmp_stats[i++] =
6487                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6488                 le32_to_cpu(stats->rmac_pause_cnt);
6489         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6490         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6491         tmp_stats[i++] =
6492                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6493                 le32_to_cpu(stats->rmac_accepted_ip);
6494         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6495         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6496         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6497         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6498         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6499         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6500         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6501         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6502         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6503         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6504         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6505         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6506         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6507         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6508         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6509         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6510         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6511         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6512         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6513
6514         /* Enhanced statistics exist only for Hercules */
6515         if (sp->device_type == XFRAME_II_DEVICE) {
6516                 tmp_stats[i++] =
6517                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6518                 tmp_stats[i++] =
6519                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6520                 tmp_stats[i++] =
6521                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6522                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6523                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6524                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6525                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6526                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6527                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6528                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6529                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6530                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6531                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6532                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6533                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6534                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6535         }
6536
6537         tmp_stats[i++] = 0;
6538         tmp_stats[i++] = swstats->single_ecc_errs;
6539         tmp_stats[i++] = swstats->double_ecc_errs;
6540         tmp_stats[i++] = swstats->parity_err_cnt;
6541         tmp_stats[i++] = swstats->serious_err_cnt;
6542         tmp_stats[i++] = swstats->soft_reset_cnt;
6543         tmp_stats[i++] = swstats->fifo_full_cnt;
6544         for (k = 0; k < MAX_RX_RINGS; k++)
6545                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6546         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6547         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6548         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6549         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6550         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6551         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6552         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6553         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6554         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6555         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6556         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6557         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6558         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6559         tmp_stats[i++] = swstats->sending_both;
6560         tmp_stats[i++] = swstats->outof_sequence_pkts;
6561         tmp_stats[i++] = swstats->flush_max_pkts;
6562         if (swstats->num_aggregations) {
6563                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6564                 int count = 0;
6565                 /*
6566                  * Since 64-bit divide does not work on all platforms,
6567                  * do repeated subtraction.
6568                  */
6569                 while (tmp >= swstats->num_aggregations) {
6570                         tmp -= swstats->num_aggregations;
6571                         count++;
6572                 }
6573                 tmp_stats[i++] = count;
6574         } else
6575                 tmp_stats[i++] = 0;
6576         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6577         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6578         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6579         tmp_stats[i++] = swstats->mem_allocated;
6580         tmp_stats[i++] = swstats->mem_freed;
6581         tmp_stats[i++] = swstats->link_up_cnt;
6582         tmp_stats[i++] = swstats->link_down_cnt;
6583         tmp_stats[i++] = swstats->link_up_time;
6584         tmp_stats[i++] = swstats->link_down_time;
6585
6586         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6587         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6588         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6589         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6590         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6591
6592         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6593         tmp_stats[i++] = swstats->rx_abort_cnt;
6594         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6595         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6596         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6597         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6598         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6599         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6600         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6601         tmp_stats[i++] = swstats->tda_err_cnt;
6602         tmp_stats[i++] = swstats->pfc_err_cnt;
6603         tmp_stats[i++] = swstats->pcc_err_cnt;
6604         tmp_stats[i++] = swstats->tti_err_cnt;
6605         tmp_stats[i++] = swstats->tpa_err_cnt;
6606         tmp_stats[i++] = swstats->sm_err_cnt;
6607         tmp_stats[i++] = swstats->lso_err_cnt;
6608         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6609         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6610         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6611         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6612         tmp_stats[i++] = swstats->rc_err_cnt;
6613         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6614         tmp_stats[i++] = swstats->rpa_err_cnt;
6615         tmp_stats[i++] = swstats->rda_err_cnt;
6616         tmp_stats[i++] = swstats->rti_err_cnt;
6617         tmp_stats[i++] = swstats->mc_err_cnt;
6618 }
6619
6620 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6621 {
6622         return XENA_REG_SPACE;
6623 }
6624
6625
6626 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6627 {
6628         struct s2io_nic *sp = netdev_priv(dev);
6629
6630         return sp->rx_csum;
6631 }
6632
6633 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6634 {
6635         struct s2io_nic *sp = netdev_priv(dev);
6636
6637         if (data)
6638                 sp->rx_csum = 1;
6639         else
6640                 sp->rx_csum = 0;
6641
6642         return 0;
6643 }
6644
6645 static int s2io_get_eeprom_len(struct net_device *dev)
6646 {
6647         return XENA_EEPROM_SPACE;
6648 }
6649
6650 static int s2io_get_sset_count(struct net_device *dev, int sset)
6651 {
6652         struct s2io_nic *sp = netdev_priv(dev);
6653
6654         switch (sset) {
6655         case ETH_SS_TEST:
6656                 return S2IO_TEST_LEN;
6657         case ETH_SS_STATS:
6658                 switch (sp->device_type) {
6659                 case XFRAME_I_DEVICE:
6660                         return XFRAME_I_STAT_LEN;
6661                 case XFRAME_II_DEVICE:
6662                         return XFRAME_II_STAT_LEN;
6663                 default:
6664                         return 0;
6665                 }
6666         default:
6667                 return -EOPNOTSUPP;
6668         }
6669 }
6670
6671 static void s2io_ethtool_get_strings(struct net_device *dev,
6672                                      u32 stringset, u8 *data)
6673 {
6674         int stat_size = 0;
6675         struct s2io_nic *sp = netdev_priv(dev);
6676
6677         switch (stringset) {
6678         case ETH_SS_TEST:
6679                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6680                 break;
6681         case ETH_SS_STATS:
6682                 stat_size = sizeof(ethtool_xena_stats_keys);
6683                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6684                 if (sp->device_type == XFRAME_II_DEVICE) {
6685                         memcpy(data + stat_size,
6686                                &ethtool_enhanced_stats_keys,
6687                                sizeof(ethtool_enhanced_stats_keys));
6688                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6689                 }
6690
6691                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6692                        sizeof(ethtool_driver_stats_keys));
6693         }
6694 }
6695
6696 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6697 {
6698         if (data)
6699                 dev->features |= NETIF_F_IP_CSUM;
6700         else
6701                 dev->features &= ~NETIF_F_IP_CSUM;
6702
6703         return 0;
6704 }
6705
6706 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6707 {
6708         return (dev->features & NETIF_F_TSO) != 0;
6709 }
6710 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6711 {
6712         if (data)
6713                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6714         else
6715                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6716
6717         return 0;
6718 }
6719
6720 static const struct ethtool_ops netdev_ethtool_ops = {
6721         .get_settings = s2io_ethtool_gset,
6722         .set_settings = s2io_ethtool_sset,
6723         .get_drvinfo = s2io_ethtool_gdrvinfo,
6724         .get_regs_len = s2io_ethtool_get_regs_len,
6725         .get_regs = s2io_ethtool_gregs,
6726         .get_link = ethtool_op_get_link,
6727         .get_eeprom_len = s2io_get_eeprom_len,
6728         .get_eeprom = s2io_ethtool_geeprom,
6729         .set_eeprom = s2io_ethtool_seeprom,
6730         .get_ringparam = s2io_ethtool_gringparam,
6731         .get_pauseparam = s2io_ethtool_getpause_data,
6732         .set_pauseparam = s2io_ethtool_setpause_data,
6733         .get_rx_csum = s2io_ethtool_get_rx_csum,
6734         .set_rx_csum = s2io_ethtool_set_rx_csum,
6735         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6736         .set_sg = ethtool_op_set_sg,
6737         .get_tso = s2io_ethtool_op_get_tso,
6738         .set_tso = s2io_ethtool_op_set_tso,
6739         .set_ufo = ethtool_op_set_ufo,
6740         .self_test = s2io_ethtool_test,
6741         .get_strings = s2io_ethtool_get_strings,
6742         .phys_id = s2io_ethtool_idnic,
6743         .get_ethtool_stats = s2io_get_ethtool_stats,
6744         .get_sset_count = s2io_get_sset_count,
6745 };
6746
6747 /**
6748  *  s2io_ioctl - Entry point for the Ioctl
6749  *  @dev :  Device pointer.
6750  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6751  *  a proprietary structure used to pass information to the driver.
6752  *  @cmd :  This is used to distinguish between the different commands that
6753  *  can be passed to the IOCTL functions.
6754  *  Description:
6755  *  Currently there are no special functionality supported in IOCTL, hence
6756  *  function always return EOPNOTSUPPORTED
6757  */
6758
6759 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6760 {
6761         return -EOPNOTSUPP;
6762 }
6763
6764 /**
6765  *  s2io_change_mtu - entry point to change MTU size for the device.
6766  *   @dev : device pointer.
6767  *   @new_mtu : the new MTU size for the device.
6768  *   Description: A driver entry point to change MTU size for the device.
6769  *   Before changing the MTU the device must be stopped.
6770  *  Return value:
6771  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6772  *   file on failure.
6773  */
6774
6775 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6776 {
6777         struct s2io_nic *sp = netdev_priv(dev);
6778         int ret = 0;
6779
6780         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6781                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6782                 return -EPERM;
6783         }
6784
6785         dev->mtu = new_mtu;
6786         if (netif_running(dev)) {
6787                 s2io_stop_all_tx_queue(sp);
6788                 s2io_card_down(sp);
6789                 ret = s2io_card_up(sp);
6790                 if (ret) {
6791                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6792                                   __func__);
6793                         return ret;
6794                 }
6795                 s2io_wake_all_tx_queue(sp);
6796         } else { /* Device is down */
6797                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6798                 u64 val64 = new_mtu;
6799
6800                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6801         }
6802
6803         return ret;
6804 }
6805
6806 /**
6807  * s2io_set_link - Set the LInk status
6808  * @data: long pointer to device private structue
6809  * Description: Sets the link status for the adapter
6810  */
6811
6812 static void s2io_set_link(struct work_struct *work)
6813 {
6814         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6815                                             set_link_task);
6816         struct net_device *dev = nic->dev;
6817         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6818         register u64 val64;
6819         u16 subid;
6820
6821         rtnl_lock();
6822
6823         if (!netif_running(dev))
6824                 goto out_unlock;
6825
6826         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6827                 /* The card is being reset, no point doing anything */
6828                 goto out_unlock;
6829         }
6830
6831         subid = nic->pdev->subsystem_device;
6832         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6833                 /*
6834                  * Allow a small delay for the NICs self initiated
6835                  * cleanup to complete.
6836                  */
6837                 msleep(100);
6838         }
6839
6840         val64 = readq(&bar0->adapter_status);
6841         if (LINK_IS_UP(val64)) {
6842                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6843                         if (verify_xena_quiescence(nic)) {
6844                                 val64 = readq(&bar0->adapter_control);
6845                                 val64 |= ADAPTER_CNTL_EN;
6846                                 writeq(val64, &bar0->adapter_control);
6847                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6848                                             nic->device_type, subid)) {
6849                                         val64 = readq(&bar0->gpio_control);
6850                                         val64 |= GPIO_CTRL_GPIO_0;
6851                                         writeq(val64, &bar0->gpio_control);
6852                                         val64 = readq(&bar0->gpio_control);
6853                                 } else {
6854                                         val64 |= ADAPTER_LED_ON;
6855                                         writeq(val64, &bar0->adapter_control);
6856                                 }
6857                                 nic->device_enabled_once = true;
6858                         } else {
6859                                 DBG_PRINT(ERR_DBG,
6860                                           "%s: Error: device is not Quiescent\n",
6861                                           dev->name);
6862                                 s2io_stop_all_tx_queue(nic);
6863                         }
6864                 }
6865                 val64 = readq(&bar0->adapter_control);
6866                 val64 |= ADAPTER_LED_ON;
6867                 writeq(val64, &bar0->adapter_control);
6868                 s2io_link(nic, LINK_UP);
6869         } else {
6870                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6871                                                       subid)) {
6872                         val64 = readq(&bar0->gpio_control);
6873                         val64 &= ~GPIO_CTRL_GPIO_0;
6874                         writeq(val64, &bar0->gpio_control);
6875                         val64 = readq(&bar0->gpio_control);
6876                 }
6877                 /* turn off LED */
6878                 val64 = readq(&bar0->adapter_control);
6879                 val64 = val64 & (~ADAPTER_LED_ON);
6880                 writeq(val64, &bar0->adapter_control);
6881                 s2io_link(nic, LINK_DOWN);
6882         }
6883         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6884
6885 out_unlock:
6886         rtnl_unlock();
6887 }
6888
6889 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6890                                   struct buffAdd *ba,
6891                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6892                                   u64 *temp2, int size)
6893 {
6894         struct net_device *dev = sp->dev;
6895         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6896
6897         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6898                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6899                 /* allocate skb */
6900                 if (*skb) {
6901                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6902                         /*
6903                          * As Rx frame are not going to be processed,
6904                          * using same mapped address for the Rxd
6905                          * buffer pointer
6906                          */
6907                         rxdp1->Buffer0_ptr = *temp0;
6908                 } else {
6909                         *skb = dev_alloc_skb(size);
6910                         if (!(*skb)) {
6911                                 DBG_PRINT(INFO_DBG,
6912                                           "%s: Out of memory to allocate %s\n",
6913                                           dev->name, "1 buf mode SKBs");
6914                                 stats->mem_alloc_fail_cnt++;
6915                                 return -ENOMEM ;
6916                         }
6917                         stats->mem_allocated += (*skb)->truesize;
6918                         /* storing the mapped addr in a temp variable
6919                          * such it will be used for next rxd whose
6920                          * Host Control is NULL
6921                          */
6922                         rxdp1->Buffer0_ptr = *temp0 =
6923                                 pci_map_single(sp->pdev, (*skb)->data,
6924                                                size - NET_IP_ALIGN,
6925                                                PCI_DMA_FROMDEVICE);
6926                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6927                                 goto memalloc_failed;
6928                         rxdp->Host_Control = (unsigned long) (*skb);
6929                 }
6930         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6931                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6932                 /* Two buffer Mode */
6933                 if (*skb) {
6934                         rxdp3->Buffer2_ptr = *temp2;
6935                         rxdp3->Buffer0_ptr = *temp0;
6936                         rxdp3->Buffer1_ptr = *temp1;
6937                 } else {
6938                         *skb = dev_alloc_skb(size);
6939                         if (!(*skb)) {
6940                                 DBG_PRINT(INFO_DBG,
6941                                           "%s: Out of memory to allocate %s\n",
6942                                           dev->name,
6943                                           "2 buf mode SKBs");
6944                                 stats->mem_alloc_fail_cnt++;
6945                                 return -ENOMEM;
6946                         }
6947                         stats->mem_allocated += (*skb)->truesize;
6948                         rxdp3->Buffer2_ptr = *temp2 =
6949                                 pci_map_single(sp->pdev, (*skb)->data,
6950                                                dev->mtu + 4,
6951                                                PCI_DMA_FROMDEVICE);
6952                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6953                                 goto memalloc_failed;
6954                         rxdp3->Buffer0_ptr = *temp0 =
6955                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6956                                                PCI_DMA_FROMDEVICE);
6957                         if (pci_dma_mapping_error(sp->pdev,
6958                                                   rxdp3->Buffer0_ptr)) {
6959                                 pci_unmap_single(sp->pdev,
6960                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6961                                                  dev->mtu + 4,
6962                                                  PCI_DMA_FROMDEVICE);
6963                                 goto memalloc_failed;
6964                         }
6965                         rxdp->Host_Control = (unsigned long) (*skb);
6966
6967                         /* Buffer-1 will be dummy buffer not used */
6968                         rxdp3->Buffer1_ptr = *temp1 =
6969                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6970                                                PCI_DMA_FROMDEVICE);
6971                         if (pci_dma_mapping_error(sp->pdev,
6972                                                   rxdp3->Buffer1_ptr)) {
6973                                 pci_unmap_single(sp->pdev,
6974                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6975                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6976                                 pci_unmap_single(sp->pdev,
6977                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6978                                                  dev->mtu + 4,
6979                                                  PCI_DMA_FROMDEVICE);
6980                                 goto memalloc_failed;
6981                         }
6982                 }
6983         }
6984         return 0;
6985
6986 memalloc_failed:
6987         stats->pci_map_fail_cnt++;
6988         stats->mem_freed += (*skb)->truesize;
6989         dev_kfree_skb(*skb);
6990         return -ENOMEM;
6991 }
6992
6993 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6994                                 int size)
6995 {
6996         struct net_device *dev = sp->dev;
6997         if (sp->rxd_mode == RXD_MODE_1) {
6998                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6999         } else if (sp->rxd_mode == RXD_MODE_3B) {
7000                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7001                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7002                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7003         }
7004 }
7005
7006 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7007 {
7008         int i, j, k, blk_cnt = 0, size;
7009         struct config_param *config = &sp->config;
7010         struct mac_info *mac_control = &sp->mac_control;
7011         struct net_device *dev = sp->dev;
7012         struct RxD_t *rxdp = NULL;
7013         struct sk_buff *skb = NULL;
7014         struct buffAdd *ba = NULL;
7015         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7016
7017         /* Calculate the size based on ring mode */
7018         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7019                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7020         if (sp->rxd_mode == RXD_MODE_1)
7021                 size += NET_IP_ALIGN;
7022         else if (sp->rxd_mode == RXD_MODE_3B)
7023                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7024
7025         for (i = 0; i < config->rx_ring_num; i++) {
7026                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7027                 struct ring_info *ring = &mac_control->rings[i];
7028
7029                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7030
7031                 for (j = 0; j < blk_cnt; j++) {
7032                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7033                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7034                                 if (sp->rxd_mode == RXD_MODE_3B)
7035                                         ba = &ring->ba[j][k];
7036                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7037                                                            (u64 *)&temp0_64,
7038                                                            (u64 *)&temp1_64,
7039                                                            (u64 *)&temp2_64,
7040                                                            size) == -ENOMEM) {
7041                                         return 0;
7042                                 }
7043
7044                                 set_rxd_buffer_size(sp, rxdp, size);
7045                                 wmb();
7046                                 /* flip the Ownership bit to Hardware */
7047                                 rxdp->Control_1 |= RXD_OWN_XENA;
7048                         }
7049                 }
7050         }
7051         return 0;
7052
7053 }
7054
7055 static int s2io_add_isr(struct s2io_nic *sp)
7056 {
7057         int ret = 0;
7058         struct net_device *dev = sp->dev;
7059         int err = 0;
7060
7061         if (sp->config.intr_type == MSI_X)
7062                 ret = s2io_enable_msi_x(sp);
7063         if (ret) {
7064                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7065                 sp->config.intr_type = INTA;
7066         }
7067
7068         /*
7069          * Store the values of the MSIX table in
7070          * the struct s2io_nic structure
7071          */
7072         store_xmsi_data(sp);
7073
7074         /* After proper initialization of H/W, register ISR */
7075         if (sp->config.intr_type == MSI_X) {
7076                 int i, msix_rx_cnt = 0;
7077
7078                 for (i = 0; i < sp->num_entries; i++) {
7079                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7080                                 if (sp->s2io_entries[i].type ==
7081                                     MSIX_RING_TYPE) {
7082                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7083                                                 dev->name, i);
7084                                         err = request_irq(sp->entries[i].vector,
7085                                                           s2io_msix_ring_handle,
7086                                                           0,
7087                                                           sp->desc[i],
7088                                                           sp->s2io_entries[i].arg);
7089                                 } else if (sp->s2io_entries[i].type ==
7090                                            MSIX_ALARM_TYPE) {
7091                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7092                                                 dev->name, i);
7093                                         err = request_irq(sp->entries[i].vector,
7094                                                           s2io_msix_fifo_handle,
7095                                                           0,
7096                                                           sp->desc[i],
7097                                                           sp->s2io_entries[i].arg);
7098
7099                                 }
7100                                 /* if either data or addr is zero print it. */
7101                                 if (!(sp->msix_info[i].addr &&
7102                                       sp->msix_info[i].data)) {
7103                                         DBG_PRINT(ERR_DBG,
7104                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7105                                                   sp->desc[i],
7106                                                   (unsigned long long)
7107                                                   sp->msix_info[i].addr,
7108                                                   (unsigned long long)
7109                                                   ntohl(sp->msix_info[i].data));
7110                                 } else
7111                                         msix_rx_cnt++;
7112                                 if (err) {
7113                                         remove_msix_isr(sp);
7114
7115                                         DBG_PRINT(ERR_DBG,
7116                                                   "%s:MSI-X-%d registration "
7117                                                   "failed\n", dev->name, i);
7118
7119                                         DBG_PRINT(ERR_DBG,
7120                                                   "%s: Defaulting to INTA\n",
7121                                                   dev->name);
7122                                         sp->config.intr_type = INTA;
7123                                         break;
7124                                 }
7125                                 sp->s2io_entries[i].in_use =
7126                                         MSIX_REGISTERED_SUCCESS;
7127                         }
7128                 }
7129                 if (!err) {
7130                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7131                         DBG_PRINT(INFO_DBG,
7132                                   "MSI-X-TX entries enabled through alarm vector\n");
7133                 }
7134         }
7135         if (sp->config.intr_type == INTA) {
7136                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7137                                   sp->name, dev);
7138                 if (err) {
7139                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7140                                   dev->name);
7141                         return -1;
7142                 }
7143         }
7144         return 0;
7145 }
7146
7147 static void s2io_rem_isr(struct s2io_nic *sp)
7148 {
7149         if (sp->config.intr_type == MSI_X)
7150                 remove_msix_isr(sp);
7151         else
7152                 remove_inta_isr(sp);
7153 }
7154
7155 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7156 {
7157         int cnt = 0;
7158         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7159         register u64 val64 = 0;
7160         struct config_param *config;
7161         config = &sp->config;
7162
7163         if (!is_s2io_card_up(sp))
7164                 return;
7165
7166         del_timer_sync(&sp->alarm_timer);
7167         /* If s2io_set_link task is executing, wait till it completes. */
7168         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7169                 msleep(50);
7170         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7171
7172         /* Disable napi */
7173         if (sp->config.napi) {
7174                 int off = 0;
7175                 if (config->intr_type ==  MSI_X) {
7176                         for (; off < sp->config.rx_ring_num; off++)
7177                                 napi_disable(&sp->mac_control.rings[off].napi);
7178                 }
7179                 else
7180                         napi_disable(&sp->napi);
7181         }
7182
7183         /* disable Tx and Rx traffic on the NIC */
7184         if (do_io)
7185                 stop_nic(sp);
7186
7187         s2io_rem_isr(sp);
7188
7189         /* stop the tx queue, indicate link down */
7190         s2io_link(sp, LINK_DOWN);
7191
7192         /* Check if the device is Quiescent and then Reset the NIC */
7193         while (do_io) {
7194                 /* As per the HW requirement we need to replenish the
7195                  * receive buffer to avoid the ring bump. Since there is
7196                  * no intention of processing the Rx frame at this pointwe are
7197                  * just settting the ownership bit of rxd in Each Rx
7198                  * ring to HW and set the appropriate buffer size
7199                  * based on the ring mode
7200                  */
7201                 rxd_owner_bit_reset(sp);
7202
7203                 val64 = readq(&bar0->adapter_status);
7204                 if (verify_xena_quiescence(sp)) {
7205                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7206                                 break;
7207                 }
7208
7209                 msleep(50);
7210                 cnt++;
7211                 if (cnt == 10) {
7212                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7213                                   "adapter status reads 0x%llx\n",
7214                                   (unsigned long long)val64);
7215                         break;
7216                 }
7217         }
7218         if (do_io)
7219                 s2io_reset(sp);
7220
7221         /* Free all Tx buffers */
7222         free_tx_buffers(sp);
7223
7224         /* Free all Rx buffers */
7225         free_rx_buffers(sp);
7226
7227         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7228 }
7229
7230 static void s2io_card_down(struct s2io_nic *sp)
7231 {
7232         do_s2io_card_down(sp, 1);
7233 }
7234
7235 static int s2io_card_up(struct s2io_nic *sp)
7236 {
7237         int i, ret = 0;
7238         struct config_param *config;
7239         struct mac_info *mac_control;
7240         struct net_device *dev = (struct net_device *)sp->dev;
7241         u16 interruptible;
7242
7243         /* Initialize the H/W I/O registers */
7244         ret = init_nic(sp);
7245         if (ret != 0) {
7246                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7247                           dev->name);
7248                 if (ret != -EIO)
7249                         s2io_reset(sp);
7250                 return ret;
7251         }
7252
7253         /*
7254          * Initializing the Rx buffers. For now we are considering only 1
7255          * Rx ring and initializing buffers into 30 Rx blocks
7256          */
7257         config = &sp->config;
7258         mac_control = &sp->mac_control;
7259
7260         for (i = 0; i < config->rx_ring_num; i++) {
7261                 struct ring_info *ring = &mac_control->rings[i];
7262
7263                 ring->mtu = dev->mtu;
7264                 ret = fill_rx_buffers(sp, ring, 1);
7265                 if (ret) {
7266                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7267                                   dev->name);
7268                         s2io_reset(sp);
7269                         free_rx_buffers(sp);
7270                         return -ENOMEM;
7271                 }
7272                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7273                           ring->rx_bufs_left);
7274         }
7275
7276         /* Initialise napi */
7277         if (config->napi) {
7278                 if (config->intr_type ==  MSI_X) {
7279                         for (i = 0; i < sp->config.rx_ring_num; i++)
7280                                 napi_enable(&sp->mac_control.rings[i].napi);
7281                 } else {
7282                         napi_enable(&sp->napi);
7283                 }
7284         }
7285
7286         /* Maintain the state prior to the open */
7287         if (sp->promisc_flg)
7288                 sp->promisc_flg = 0;
7289         if (sp->m_cast_flg) {
7290                 sp->m_cast_flg = 0;
7291                 sp->all_multi_pos = 0;
7292         }
7293
7294         /* Setting its receive mode */
7295         s2io_set_multicast(dev);
7296
7297         if (sp->lro) {
7298                 /* Initialize max aggregatable pkts per session based on MTU */
7299                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7300                 /* Check if we can use (if specified) user provided value */
7301                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7302                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7303         }
7304
7305         /* Enable Rx Traffic and interrupts on the NIC */
7306         if (start_nic(sp)) {
7307                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7308                 s2io_reset(sp);
7309                 free_rx_buffers(sp);
7310                 return -ENODEV;
7311         }
7312
7313         /* Add interrupt service routine */
7314         if (s2io_add_isr(sp) != 0) {
7315                 if (sp->config.intr_type == MSI_X)
7316                         s2io_rem_isr(sp);
7317                 s2io_reset(sp);
7318                 free_rx_buffers(sp);
7319                 return -ENODEV;
7320         }
7321
7322         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7323
7324         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7325
7326         /*  Enable select interrupts */
7327         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7328         if (sp->config.intr_type != INTA) {
7329                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7330                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7331         } else {
7332                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7333                 interruptible |= TX_PIC_INTR;
7334                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7335         }
7336
7337         return 0;
7338 }
7339
7340 /**
7341  * s2io_restart_nic - Resets the NIC.
7342  * @data : long pointer to the device private structure
7343  * Description:
7344  * This function is scheduled to be run by the s2io_tx_watchdog
7345  * function after 0.5 secs to reset the NIC. The idea is to reduce
7346  * the run time of the watch dog routine which is run holding a
7347  * spin lock.
7348  */
7349
7350 static void s2io_restart_nic(struct work_struct *work)
7351 {
7352         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7353         struct net_device *dev = sp->dev;
7354
7355         rtnl_lock();
7356
7357         if (!netif_running(dev))
7358                 goto out_unlock;
7359
7360         s2io_card_down(sp);
7361         if (s2io_card_up(sp)) {
7362                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7363         }
7364         s2io_wake_all_tx_queue(sp);
7365         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7366 out_unlock:
7367         rtnl_unlock();
7368 }
7369
7370 /**
7371  *  s2io_tx_watchdog - Watchdog for transmit side.
7372  *  @dev : Pointer to net device structure
7373  *  Description:
7374  *  This function is triggered if the Tx Queue is stopped
7375  *  for a pre-defined amount of time when the Interface is still up.
7376  *  If the Interface is jammed in such a situation, the hardware is
7377  *  reset (by s2io_close) and restarted again (by s2io_open) to
7378  *  overcome any problem that might have been caused in the hardware.
7379  *  Return value:
7380  *  void
7381  */
7382
7383 static void s2io_tx_watchdog(struct net_device *dev)
7384 {
7385         struct s2io_nic *sp = netdev_priv(dev);
7386         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7387
7388         if (netif_carrier_ok(dev)) {
7389                 swstats->watchdog_timer_cnt++;
7390                 schedule_work(&sp->rst_timer_task);
7391                 swstats->soft_reset_cnt++;
7392         }
7393 }
7394
7395 /**
7396  *   rx_osm_handler - To perform some OS related operations on SKB.
7397  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7398  *   @skb : the socket buffer pointer.
7399  *   @len : length of the packet
7400  *   @cksum : FCS checksum of the frame.
7401  *   @ring_no : the ring from which this RxD was extracted.
7402  *   Description:
7403  *   This function is called by the Rx interrupt serivce routine to perform
7404  *   some OS related operations on the SKB before passing it to the upper
7405  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7406  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7407  *   to the upper layer. If the checksum is wrong, it increments the Rx
7408  *   packet error count, frees the SKB and returns error.
7409  *   Return value:
7410  *   SUCCESS on success and -1 on failure.
7411  */
7412 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7413 {
7414         struct s2io_nic *sp = ring_data->nic;
7415         struct net_device *dev = (struct net_device *)ring_data->dev;
7416         struct sk_buff *skb = (struct sk_buff *)
7417                 ((unsigned long)rxdp->Host_Control);
7418         int ring_no = ring_data->ring_no;
7419         u16 l3_csum, l4_csum;
7420         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7421         struct lro *uninitialized_var(lro);
7422         u8 err_mask;
7423         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7424
7425         skb->dev = dev;
7426
7427         if (err) {
7428                 /* Check for parity error */
7429                 if (err & 0x1)
7430                         swstats->parity_err_cnt++;
7431
7432                 err_mask = err >> 48;
7433                 switch (err_mask) {
7434                 case 1:
7435                         swstats->rx_parity_err_cnt++;
7436                         break;
7437
7438                 case 2:
7439                         swstats->rx_abort_cnt++;
7440                         break;
7441
7442                 case 3:
7443                         swstats->rx_parity_abort_cnt++;
7444                         break;
7445
7446                 case 4:
7447                         swstats->rx_rda_fail_cnt++;
7448                         break;
7449
7450                 case 5:
7451                         swstats->rx_unkn_prot_cnt++;
7452                         break;
7453
7454                 case 6:
7455                         swstats->rx_fcs_err_cnt++;
7456                         break;
7457
7458                 case 7:
7459                         swstats->rx_buf_size_err_cnt++;
7460                         break;
7461
7462                 case 8:
7463                         swstats->rx_rxd_corrupt_cnt++;
7464                         break;
7465
7466                 case 15:
7467                         swstats->rx_unkn_err_cnt++;
7468                         break;
7469                 }
7470                 /*
7471                  * Drop the packet if bad transfer code. Exception being
7472                  * 0x5, which could be due to unsupported IPv6 extension header.
7473                  * In this case, we let stack handle the packet.
7474                  * Note that in this case, since checksum will be incorrect,
7475                  * stack will validate the same.
7476                  */
7477                 if (err_mask != 0x5) {
7478                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7479                                   dev->name, err_mask);
7480                         dev->stats.rx_crc_errors++;
7481                         swstats->mem_freed
7482                                 += skb->truesize;
7483                         dev_kfree_skb(skb);
7484                         ring_data->rx_bufs_left -= 1;
7485                         rxdp->Host_Control = 0;
7486                         return 0;
7487                 }
7488         }
7489
7490         rxdp->Host_Control = 0;
7491         if (sp->rxd_mode == RXD_MODE_1) {
7492                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7493
7494                 skb_put(skb, len);
7495         } else if (sp->rxd_mode == RXD_MODE_3B) {
7496                 int get_block = ring_data->rx_curr_get_info.block_index;
7497                 int get_off = ring_data->rx_curr_get_info.offset;
7498                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7499                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7500                 unsigned char *buff = skb_push(skb, buf0_len);
7501
7502                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7503                 memcpy(buff, ba->ba_0, buf0_len);
7504                 skb_put(skb, buf2_len);
7505         }
7506
7507         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7508             ((!ring_data->lro) ||
7509              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7510             (sp->rx_csum)) {
7511                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7512                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7513                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7514                         /*
7515                          * NIC verifies if the Checksum of the received
7516                          * frame is Ok or not and accordingly returns
7517                          * a flag in the RxD.
7518                          */
7519                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7520                         if (ring_data->lro) {
7521                                 u32 tcp_len;
7522                                 u8 *tcp;
7523                                 int ret = 0;
7524
7525                                 ret = s2io_club_tcp_session(ring_data,
7526                                                             skb->data, &tcp,
7527                                                             &tcp_len, &lro,
7528                                                             rxdp, sp);
7529                                 switch (ret) {
7530                                 case 3: /* Begin anew */
7531                                         lro->parent = skb;
7532                                         goto aggregate;
7533                                 case 1: /* Aggregate */
7534                                         lro_append_pkt(sp, lro, skb, tcp_len);
7535                                         goto aggregate;
7536                                 case 4: /* Flush session */
7537                                         lro_append_pkt(sp, lro, skb, tcp_len);
7538                                         queue_rx_frame(lro->parent,
7539                                                        lro->vlan_tag);
7540                                         clear_lro_session(lro);
7541                                         swstats->flush_max_pkts++;
7542                                         goto aggregate;
7543                                 case 2: /* Flush both */
7544                                         lro->parent->data_len = lro->frags_len;
7545                                         swstats->sending_both++;
7546                                         queue_rx_frame(lro->parent,
7547                                                        lro->vlan_tag);
7548                                         clear_lro_session(lro);
7549                                         goto send_up;
7550                                 case 0: /* sessions exceeded */
7551                                 case -1: /* non-TCP or not L2 aggregatable */
7552                                 case 5: /*
7553                                          * First pkt in session not
7554                                          * L3/L4 aggregatable
7555                                          */
7556                                         break;
7557                                 default:
7558                                         DBG_PRINT(ERR_DBG,
7559                                                   "%s: Samadhana!!\n",
7560                                                   __func__);
7561                                         BUG();
7562                                 }
7563                         }
7564                 } else {
7565                         /*
7566                          * Packet with erroneous checksum, let the
7567                          * upper layers deal with it.
7568                          */
7569                         skb->ip_summed = CHECKSUM_NONE;
7570                 }
7571         } else
7572                 skb->ip_summed = CHECKSUM_NONE;
7573
7574         swstats->mem_freed += skb->truesize;
7575 send_up:
7576         skb_record_rx_queue(skb, ring_no);
7577         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7578 aggregate:
7579         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7580         return SUCCESS;
7581 }
7582
7583 /**
7584  *  s2io_link - stops/starts the Tx queue.
7585  *  @sp : private member of the device structure, which is a pointer to the
7586  *  s2io_nic structure.
7587  *  @link : inidicates whether link is UP/DOWN.
7588  *  Description:
7589  *  This function stops/starts the Tx queue depending on whether the link
7590  *  status of the NIC is is down or up. This is called by the Alarm
7591  *  interrupt handler whenever a link change interrupt comes up.
7592  *  Return value:
7593  *  void.
7594  */
7595
7596 static void s2io_link(struct s2io_nic *sp, int link)
7597 {
7598         struct net_device *dev = (struct net_device *)sp->dev;
7599         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7600
7601         if (link != sp->last_link_state) {
7602                 init_tti(sp, link);
7603                 if (link == LINK_DOWN) {
7604                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7605                         s2io_stop_all_tx_queue(sp);
7606                         netif_carrier_off(dev);
7607                         if (swstats->link_up_cnt)
7608                                 swstats->link_up_time =
7609                                         jiffies - sp->start_time;
7610                         swstats->link_down_cnt++;
7611                 } else {
7612                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7613                         if (swstats->link_down_cnt)
7614                                 swstats->link_down_time =
7615                                         jiffies - sp->start_time;
7616                         swstats->link_up_cnt++;
7617                         netif_carrier_on(dev);
7618                         s2io_wake_all_tx_queue(sp);
7619                 }
7620         }
7621         sp->last_link_state = link;
7622         sp->start_time = jiffies;
7623 }
7624
7625 /**
7626  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7627  *  @sp : private member of the device structure, which is a pointer to the
7628  *  s2io_nic structure.
7629  *  Description:
7630  *  This function initializes a few of the PCI and PCI-X configuration registers
7631  *  with recommended values.
7632  *  Return value:
7633  *  void
7634  */
7635
7636 static void s2io_init_pci(struct s2io_nic *sp)
7637 {
7638         u16 pci_cmd = 0, pcix_cmd = 0;
7639
7640         /* Enable Data Parity Error Recovery in PCI-X command register. */
7641         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7642                              &(pcix_cmd));
7643         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7644                               (pcix_cmd | 1));
7645         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7646                              &(pcix_cmd));
7647
7648         /* Set the PErr Response bit in PCI command register. */
7649         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7650         pci_write_config_word(sp->pdev, PCI_COMMAND,
7651                               (pci_cmd | PCI_COMMAND_PARITY));
7652         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7653 }
7654
7655 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7656                             u8 *dev_multiq)
7657 {
7658         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7659                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7660                           "(%d) not supported\n", tx_fifo_num);
7661
7662                 if (tx_fifo_num < 1)
7663                         tx_fifo_num = 1;
7664                 else
7665                         tx_fifo_num = MAX_TX_FIFOS;
7666
7667                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7668         }
7669
7670         if (multiq)
7671                 *dev_multiq = multiq;
7672
7673         if (tx_steering_type && (1 == tx_fifo_num)) {
7674                 if (tx_steering_type != TX_DEFAULT_STEERING)
7675                         DBG_PRINT(ERR_DBG,
7676                                   "Tx steering is not supported with "
7677                                   "one fifo. Disabling Tx steering.\n");
7678                 tx_steering_type = NO_STEERING;
7679         }
7680
7681         if ((tx_steering_type < NO_STEERING) ||
7682             (tx_steering_type > TX_DEFAULT_STEERING)) {
7683                 DBG_PRINT(ERR_DBG,
7684                           "Requested transmit steering not supported\n");
7685                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7686                 tx_steering_type = NO_STEERING;
7687         }
7688
7689         if (rx_ring_num > MAX_RX_RINGS) {
7690                 DBG_PRINT(ERR_DBG,
7691                           "Requested number of rx rings not supported\n");
7692                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7693                           MAX_RX_RINGS);
7694                 rx_ring_num = MAX_RX_RINGS;
7695         }
7696
7697         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7698                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7699                           "Defaulting to INTA\n");
7700                 *dev_intr_type = INTA;
7701         }
7702
7703         if ((*dev_intr_type == MSI_X) &&
7704             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7705              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7706                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7707                           "Defaulting to INTA\n");
7708                 *dev_intr_type = INTA;
7709         }
7710
7711         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7712                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7713                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7714                 rx_ring_mode = 1;
7715         }
7716         return SUCCESS;
7717 }
7718
7719 /**
7720  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7721  * or Traffic class respectively.
7722  * @nic: device private variable
7723  * Description: The function configures the receive steering to
7724  * desired receive ring.
7725  * Return Value:  SUCCESS on success and
7726  * '-1' on failure (endian settings incorrect).
7727  */
7728 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7729 {
7730         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7731         register u64 val64 = 0;
7732
7733         if (ds_codepoint > 63)
7734                 return FAILURE;
7735
7736         val64 = RTS_DS_MEM_DATA(ring);
7737         writeq(val64, &bar0->rts_ds_mem_data);
7738
7739         val64 = RTS_DS_MEM_CTRL_WE |
7740                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7741                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7742
7743         writeq(val64, &bar0->rts_ds_mem_ctrl);
7744
7745         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7746                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7747                                      S2IO_BIT_RESET);
7748 }
7749
7750 static const struct net_device_ops s2io_netdev_ops = {
7751         .ndo_open               = s2io_open,
7752         .ndo_stop               = s2io_close,
7753         .ndo_get_stats          = s2io_get_stats,
7754         .ndo_start_xmit         = s2io_xmit,
7755         .ndo_validate_addr      = eth_validate_addr,
7756         .ndo_set_multicast_list = s2io_set_multicast,
7757         .ndo_do_ioctl           = s2io_ioctl,
7758         .ndo_set_mac_address    = s2io_set_mac_addr,
7759         .ndo_change_mtu         = s2io_change_mtu,
7760         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7761         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7762         .ndo_tx_timeout         = s2io_tx_watchdog,
7763 #ifdef CONFIG_NET_POLL_CONTROLLER
7764         .ndo_poll_controller    = s2io_netpoll,
7765 #endif
7766 };
7767
7768 /**
7769  *  s2io_init_nic - Initialization of the adapter .
7770  *  @pdev : structure containing the PCI related information of the device.
7771  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7772  *  Description:
7773  *  The function initializes an adapter identified by the pci_dec structure.
7774  *  All OS related initialization including memory and device structure and
7775  *  initlaization of the device private variable is done. Also the swapper
7776  *  control register is initialized to enable read and write into the I/O
7777  *  registers of the device.
7778  *  Return value:
7779  *  returns 0 on success and negative on failure.
7780  */
7781
7782 static int __devinit
7783 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7784 {
7785         struct s2io_nic *sp;
7786         struct net_device *dev;
7787         int i, j, ret;
7788         int dma_flag = false;
7789         u32 mac_up, mac_down;
7790         u64 val64 = 0, tmp64 = 0;
7791         struct XENA_dev_config __iomem *bar0 = NULL;
7792         u16 subid;
7793         struct config_param *config;
7794         struct mac_info *mac_control;
7795         int mode;
7796         u8 dev_intr_type = intr_type;
7797         u8 dev_multiq = 0;
7798
7799         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7800         if (ret)
7801                 return ret;
7802
7803         ret = pci_enable_device(pdev);
7804         if (ret) {
7805                 DBG_PRINT(ERR_DBG,
7806                           "%s: pci_enable_device failed\n", __func__);
7807                 return ret;
7808         }
7809
7810         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7811                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7812                 dma_flag = true;
7813                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7814                         DBG_PRINT(ERR_DBG,
7815                                   "Unable to obtain 64bit DMA "
7816                                   "for consistent allocations\n");
7817                         pci_disable_device(pdev);
7818                         return -ENOMEM;
7819                 }
7820         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7821                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7822         } else {
7823                 pci_disable_device(pdev);
7824                 return -ENOMEM;
7825         }
7826         ret = pci_request_regions(pdev, s2io_driver_name);
7827         if (ret) {
7828                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7829                           __func__, ret);
7830                 pci_disable_device(pdev);
7831                 return -ENODEV;
7832         }
7833         if (dev_multiq)
7834                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7835         else
7836                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7837         if (dev == NULL) {
7838                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7839                 pci_disable_device(pdev);
7840                 pci_release_regions(pdev);
7841                 return -ENODEV;
7842         }
7843
7844         pci_set_master(pdev);
7845         pci_set_drvdata(pdev, dev);
7846         SET_NETDEV_DEV(dev, &pdev->dev);
7847
7848         /*  Private member variable initialized to s2io NIC structure */
7849         sp = netdev_priv(dev);
7850         memset(sp, 0, sizeof(struct s2io_nic));
7851         sp->dev = dev;
7852         sp->pdev = pdev;
7853         sp->high_dma_flag = dma_flag;
7854         sp->device_enabled_once = false;
7855         if (rx_ring_mode == 1)
7856                 sp->rxd_mode = RXD_MODE_1;
7857         if (rx_ring_mode == 2)
7858                 sp->rxd_mode = RXD_MODE_3B;
7859
7860         sp->config.intr_type = dev_intr_type;
7861
7862         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7863             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7864                 sp->device_type = XFRAME_II_DEVICE;
7865         else
7866                 sp->device_type = XFRAME_I_DEVICE;
7867
7868         sp->lro = lro_enable;
7869
7870         /* Initialize some PCI/PCI-X fields of the NIC. */
7871         s2io_init_pci(sp);
7872
7873         /*
7874          * Setting the device configuration parameters.
7875          * Most of these parameters can be specified by the user during
7876          * module insertion as they are module loadable parameters. If
7877          * these parameters are not not specified during load time, they
7878          * are initialized with default values.
7879          */
7880         config = &sp->config;
7881         mac_control = &sp->mac_control;
7882
7883         config->napi = napi;
7884         config->tx_steering_type = tx_steering_type;
7885
7886         /* Tx side parameters. */
7887         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7888                 config->tx_fifo_num = MAX_TX_FIFOS;
7889         else
7890                 config->tx_fifo_num = tx_fifo_num;
7891
7892         /* Initialize the fifos used for tx steering */
7893         if (config->tx_fifo_num < 5) {
7894                 if (config->tx_fifo_num  == 1)
7895                         sp->total_tcp_fifos = 1;
7896                 else
7897                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7898                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7899                 sp->total_udp_fifos = 1;
7900                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7901         } else {
7902                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7903                                        FIFO_OTHER_MAX_NUM);
7904                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7905                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7906                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7907         }
7908
7909         config->multiq = dev_multiq;
7910         for (i = 0; i < config->tx_fifo_num; i++) {
7911                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7912
7913                 tx_cfg->fifo_len = tx_fifo_len[i];
7914                 tx_cfg->fifo_priority = i;
7915         }
7916
7917         /* mapping the QoS priority to the configured fifos */
7918         for (i = 0; i < MAX_TX_FIFOS; i++)
7919                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7920
7921         /* map the hashing selector table to the configured fifos */
7922         for (i = 0; i < config->tx_fifo_num; i++)
7923                 sp->fifo_selector[i] = fifo_selector[i];
7924
7925
7926         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7927         for (i = 0; i < config->tx_fifo_num; i++) {
7928                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7929
7930                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7931                 if (tx_cfg->fifo_len < 65) {
7932                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7933                         break;
7934                 }
7935         }
7936         /* + 2 because one Txd for skb->data and one Txd for UFO */
7937         config->max_txds = MAX_SKB_FRAGS + 2;
7938
7939         /* Rx side parameters. */
7940         config->rx_ring_num = rx_ring_num;
7941         for (i = 0; i < config->rx_ring_num; i++) {
7942                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7943                 struct ring_info *ring = &mac_control->rings[i];
7944
7945                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7946                 rx_cfg->ring_priority = i;
7947                 ring->rx_bufs_left = 0;
7948                 ring->rxd_mode = sp->rxd_mode;
7949                 ring->rxd_count = rxd_count[sp->rxd_mode];
7950                 ring->pdev = sp->pdev;
7951                 ring->dev = sp->dev;
7952         }
7953
7954         for (i = 0; i < rx_ring_num; i++) {
7955                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7956
7957                 rx_cfg->ring_org = RING_ORG_BUFF1;
7958                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7959         }
7960
7961         /*  Setting Mac Control parameters */
7962         mac_control->rmac_pause_time = rmac_pause_time;
7963         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7964         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7965
7966
7967         /*  initialize the shared memory used by the NIC and the host */
7968         if (init_shared_mem(sp)) {
7969                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7970                 ret = -ENOMEM;
7971                 goto mem_alloc_failed;
7972         }
7973
7974         sp->bar0 = pci_ioremap_bar(pdev, 0);
7975         if (!sp->bar0) {
7976                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7977                           dev->name);
7978                 ret = -ENOMEM;
7979                 goto bar0_remap_failed;
7980         }
7981
7982         sp->bar1 = pci_ioremap_bar(pdev, 2);
7983         if (!sp->bar1) {
7984                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7985                           dev->name);
7986                 ret = -ENOMEM;
7987                 goto bar1_remap_failed;
7988         }
7989
7990         dev->irq = pdev->irq;
7991         dev->base_addr = (unsigned long)sp->bar0;
7992
7993         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7994         for (j = 0; j < MAX_TX_FIFOS; j++) {
7995                 mac_control->tx_FIFO_start[j] =
7996                         (struct TxFIFO_element __iomem *)
7997                         (sp->bar1 + (j * 0x00020000));
7998         }
7999
8000         /*  Driver entry points */
8001         dev->netdev_ops = &s2io_netdev_ops;
8002         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8003         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8004
8005         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8006         if (sp->high_dma_flag == true)
8007                 dev->features |= NETIF_F_HIGHDMA;
8008         dev->features |= NETIF_F_TSO;
8009         dev->features |= NETIF_F_TSO6;
8010         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8011                 dev->features |= NETIF_F_UFO;
8012                 dev->features |= NETIF_F_HW_CSUM;
8013         }
8014         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8015         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8016         INIT_WORK(&sp->set_link_task, s2io_set_link);
8017
8018         pci_save_state(sp->pdev);
8019
8020         /* Setting swapper control on the NIC, for proper reset operation */
8021         if (s2io_set_swapper(sp)) {
8022                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8023                           dev->name);
8024                 ret = -EAGAIN;
8025                 goto set_swap_failed;
8026         }
8027
8028         /* Verify if the Herc works on the slot its placed into */
8029         if (sp->device_type & XFRAME_II_DEVICE) {
8030                 mode = s2io_verify_pci_mode(sp);
8031                 if (mode < 0) {
8032                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8033                                   __func__);
8034                         ret = -EBADSLT;
8035                         goto set_swap_failed;
8036                 }
8037         }
8038
8039         if (sp->config.intr_type == MSI_X) {
8040                 sp->num_entries = config->rx_ring_num + 1;
8041                 ret = s2io_enable_msi_x(sp);
8042
8043                 if (!ret) {
8044                         ret = s2io_test_msi(sp);
8045                         /* rollback MSI-X, will re-enable during add_isr() */
8046                         remove_msix_isr(sp);
8047                 }
8048                 if (ret) {
8049
8050                         DBG_PRINT(ERR_DBG,
8051                                   "MSI-X requested but failed to enable\n");
8052                         sp->config.intr_type = INTA;
8053                 }
8054         }
8055
8056         if (config->intr_type ==  MSI_X) {
8057                 for (i = 0; i < config->rx_ring_num ; i++) {
8058                         struct ring_info *ring = &mac_control->rings[i];
8059
8060                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8061                 }
8062         } else {
8063                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8064         }
8065
8066         /* Not needed for Herc */
8067         if (sp->device_type & XFRAME_I_DEVICE) {
8068                 /*
8069                  * Fix for all "FFs" MAC address problems observed on
8070                  * Alpha platforms
8071                  */
8072                 fix_mac_address(sp);
8073                 s2io_reset(sp);
8074         }
8075
8076         /*
8077          * MAC address initialization.
8078          * For now only one mac address will be read and used.
8079          */
8080         bar0 = sp->bar0;
8081         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8082                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8083         writeq(val64, &bar0->rmac_addr_cmd_mem);
8084         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8085                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8086                               S2IO_BIT_RESET);
8087         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8088         mac_down = (u32)tmp64;
8089         mac_up = (u32) (tmp64 >> 32);
8090
8091         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8092         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8093         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8094         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8095         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8096         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8097
8098         /*  Set the factory defined MAC address initially   */
8099         dev->addr_len = ETH_ALEN;
8100         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8101         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8102
8103         /* initialize number of multicast & unicast MAC entries variables */
8104         if (sp->device_type == XFRAME_I_DEVICE) {
8105                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8106                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8107                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8108         } else if (sp->device_type == XFRAME_II_DEVICE) {
8109                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8110                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8111                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8112         }
8113
8114         /* store mac addresses from CAM to s2io_nic structure */
8115         do_s2io_store_unicast_mc(sp);
8116
8117         /* Configure MSIX vector for number of rings configured plus one */
8118         if ((sp->device_type == XFRAME_II_DEVICE) &&
8119             (config->intr_type == MSI_X))
8120                 sp->num_entries = config->rx_ring_num + 1;
8121
8122         /* Store the values of the MSIX table in the s2io_nic structure */
8123         store_xmsi_data(sp);
8124         /* reset Nic and bring it to known state */
8125         s2io_reset(sp);
8126
8127         /*
8128          * Initialize link state flags
8129          * and the card state parameter
8130          */
8131         sp->state = 0;
8132
8133         /* Initialize spinlocks */
8134         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8135                 struct fifo_info *fifo = &mac_control->fifos[i];
8136
8137                 spin_lock_init(&fifo->tx_lock);
8138         }
8139
8140         /*
8141          * SXE-002: Configure link and activity LED to init state
8142          * on driver load.
8143          */
8144         subid = sp->pdev->subsystem_device;
8145         if ((subid & 0xFF) >= 0x07) {
8146                 val64 = readq(&bar0->gpio_control);
8147                 val64 |= 0x0000800000000000ULL;
8148                 writeq(val64, &bar0->gpio_control);
8149                 val64 = 0x0411040400000000ULL;
8150                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8151                 val64 = readq(&bar0->gpio_control);
8152         }
8153
8154         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8155
8156         if (register_netdev(dev)) {
8157                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8158                 ret = -ENODEV;
8159                 goto register_failed;
8160         }
8161         s2io_vpd_read(sp);
8162         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8163         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8164                   sp->product_name, pdev->revision);
8165         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8166                   s2io_driver_version);
8167         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8168         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8169         if (sp->device_type & XFRAME_II_DEVICE) {
8170                 mode = s2io_print_pci_mode(sp);
8171                 if (mode < 0) {
8172                         ret = -EBADSLT;
8173                         unregister_netdev(dev);
8174                         goto set_swap_failed;
8175                 }
8176         }
8177         switch (sp->rxd_mode) {
8178         case RXD_MODE_1:
8179                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8180                           dev->name);
8181                 break;
8182         case RXD_MODE_3B:
8183                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8184                           dev->name);
8185                 break;
8186         }
8187
8188         switch (sp->config.napi) {
8189         case 0:
8190                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8191                 break;
8192         case 1:
8193                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8194                 break;
8195         }
8196
8197         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8198                   sp->config.tx_fifo_num);
8199
8200         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8201                   sp->config.rx_ring_num);
8202
8203         switch (sp->config.intr_type) {
8204         case INTA:
8205                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8206                 break;
8207         case MSI_X:
8208                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8209                 break;
8210         }
8211         if (sp->config.multiq) {
8212                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8213                         struct fifo_info *fifo = &mac_control->fifos[i];
8214
8215                         fifo->multiq = config->multiq;
8216                 }
8217                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8218                           dev->name);
8219         } else
8220                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8221                           dev->name);
8222
8223         switch (sp->config.tx_steering_type) {
8224         case NO_STEERING:
8225                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8226                           dev->name);
8227                 break;
8228         case TX_PRIORITY_STEERING:
8229                 DBG_PRINT(ERR_DBG,
8230                           "%s: Priority steering enabled for transmit\n",
8231                           dev->name);
8232                 break;
8233         case TX_DEFAULT_STEERING:
8234                 DBG_PRINT(ERR_DBG,
8235                           "%s: Default steering enabled for transmit\n",
8236                           dev->name);
8237         }
8238
8239         if (sp->lro)
8240                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8241                           dev->name);
8242         if (ufo)
8243                 DBG_PRINT(ERR_DBG,
8244                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8245                           dev->name);
8246         /* Initialize device name */
8247         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8248
8249         if (vlan_tag_strip)
8250                 sp->vlan_strip_flag = 1;
8251         else
8252                 sp->vlan_strip_flag = 0;
8253
8254         /*
8255          * Make Link state as off at this point, when the Link change
8256          * interrupt comes the state will be automatically changed to
8257          * the right state.
8258          */
8259         netif_carrier_off(dev);
8260
8261         return 0;
8262
8263 register_failed:
8264 set_swap_failed:
8265         iounmap(sp->bar1);
8266 bar1_remap_failed:
8267         iounmap(sp->bar0);
8268 bar0_remap_failed:
8269 mem_alloc_failed:
8270         free_shared_mem(sp);
8271         pci_disable_device(pdev);
8272         pci_release_regions(pdev);
8273         pci_set_drvdata(pdev, NULL);
8274         free_netdev(dev);
8275
8276         return ret;
8277 }
8278
8279 /**
8280  * s2io_rem_nic - Free the PCI device
8281  * @pdev: structure containing the PCI related information of the device.
8282  * Description: This function is called by the Pci subsystem to release a
8283  * PCI device and free up all resource held up by the device. This could
8284  * be in response to a Hot plug event or when the driver is to be removed
8285  * from memory.
8286  */
8287
8288 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8289 {
8290         struct net_device *dev =
8291                 (struct net_device *)pci_get_drvdata(pdev);
8292         struct s2io_nic *sp;
8293
8294         if (dev == NULL) {
8295                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8296                 return;
8297         }
8298
8299         flush_scheduled_work();
8300
8301         sp = netdev_priv(dev);
8302         unregister_netdev(dev);
8303
8304         free_shared_mem(sp);
8305         iounmap(sp->bar0);
8306         iounmap(sp->bar1);
8307         pci_release_regions(pdev);
8308         pci_set_drvdata(pdev, NULL);
8309         free_netdev(dev);
8310         pci_disable_device(pdev);
8311 }
8312
8313 /**
8314  * s2io_starter - Entry point for the driver
8315  * Description: This function is the entry point for the driver. It verifies
8316  * the module loadable parameters and initializes PCI configuration space.
8317  */
8318
8319 static int __init s2io_starter(void)
8320 {
8321         return pci_register_driver(&s2io_driver);
8322 }
8323
8324 /**
8325  * s2io_closer - Cleanup routine for the driver
8326  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8327  */
8328
8329 static __exit void s2io_closer(void)
8330 {
8331         pci_unregister_driver(&s2io_driver);
8332         DBG_PRINT(INIT_DBG, "cleanup done\n");
8333 }
8334
8335 module_init(s2io_starter);
8336 module_exit(s2io_closer);
8337
8338 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8339                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8340                                 struct s2io_nic *sp)
8341 {
8342         int ip_off;
8343         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8344
8345         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8346                 DBG_PRINT(INIT_DBG,
8347                           "%s: Non-TCP frames not supported for LRO\n",
8348                           __func__);
8349                 return -1;
8350         }
8351
8352         /* Checking for DIX type or DIX type with VLAN */
8353         if ((l2_type == 0) || (l2_type == 4)) {
8354                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8355                 /*
8356                  * If vlan stripping is disabled and the frame is VLAN tagged,
8357                  * shift the offset by the VLAN header size bytes.
8358                  */
8359                 if ((!sp->vlan_strip_flag) &&
8360                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8361                         ip_off += HEADER_VLAN_SIZE;
8362         } else {
8363                 /* LLC, SNAP etc are considered non-mergeable */
8364                 return -1;
8365         }
8366
8367         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8368         ip_len = (u8)((*ip)->ihl);
8369         ip_len <<= 2;
8370         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8371
8372         return 0;
8373 }
8374
8375 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8376                                   struct tcphdr *tcp)
8377 {
8378         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8379         if ((lro->iph->saddr != ip->saddr) ||
8380             (lro->iph->daddr != ip->daddr) ||
8381             (lro->tcph->source != tcp->source) ||
8382             (lro->tcph->dest != tcp->dest))
8383                 return -1;
8384         return 0;
8385 }
8386
8387 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8388 {
8389         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8390 }
8391
8392 static void initiate_new_session(struct lro *lro, u8 *l2h,
8393                                  struct iphdr *ip, struct tcphdr *tcp,
8394                                  u32 tcp_pyld_len, u16 vlan_tag)
8395 {
8396         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8397         lro->l2h = l2h;
8398         lro->iph = ip;
8399         lro->tcph = tcp;
8400         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8401         lro->tcp_ack = tcp->ack_seq;
8402         lro->sg_num = 1;
8403         lro->total_len = ntohs(ip->tot_len);
8404         lro->frags_len = 0;
8405         lro->vlan_tag = vlan_tag;
8406         /*
8407          * Check if we saw TCP timestamp.
8408          * Other consistency checks have already been done.
8409          */
8410         if (tcp->doff == 8) {
8411                 __be32 *ptr;
8412                 ptr = (__be32 *)(tcp+1);
8413                 lro->saw_ts = 1;
8414                 lro->cur_tsval = ntohl(*(ptr+1));
8415                 lro->cur_tsecr = *(ptr+2);
8416         }
8417         lro->in_use = 1;
8418 }
8419
8420 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8421 {
8422         struct iphdr *ip = lro->iph;
8423         struct tcphdr *tcp = lro->tcph;
8424         __sum16 nchk;
8425         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8426
8427         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8428
8429         /* Update L3 header */
8430         ip->tot_len = htons(lro->total_len);
8431         ip->check = 0;
8432         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8433         ip->check = nchk;
8434
8435         /* Update L4 header */
8436         tcp->ack_seq = lro->tcp_ack;
8437         tcp->window = lro->window;
8438
8439         /* Update tsecr field if this session has timestamps enabled */
8440         if (lro->saw_ts) {
8441                 __be32 *ptr = (__be32 *)(tcp + 1);
8442                 *(ptr+2) = lro->cur_tsecr;
8443         }
8444
8445         /* Update counters required for calculation of
8446          * average no. of packets aggregated.
8447          */
8448         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8449         swstats->num_aggregations++;
8450 }
8451
8452 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8453                              struct tcphdr *tcp, u32 l4_pyld)
8454 {
8455         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8456         lro->total_len += l4_pyld;
8457         lro->frags_len += l4_pyld;
8458         lro->tcp_next_seq += l4_pyld;
8459         lro->sg_num++;
8460
8461         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8462         lro->tcp_ack = tcp->ack_seq;
8463         lro->window = tcp->window;
8464
8465         if (lro->saw_ts) {
8466                 __be32 *ptr;
8467                 /* Update tsecr and tsval from this packet */
8468                 ptr = (__be32 *)(tcp+1);
8469                 lro->cur_tsval = ntohl(*(ptr+1));
8470                 lro->cur_tsecr = *(ptr + 2);
8471         }
8472 }
8473
8474 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8475                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8476 {
8477         u8 *ptr;
8478
8479         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8480
8481         if (!tcp_pyld_len) {
8482                 /* Runt frame or a pure ack */
8483                 return -1;
8484         }
8485
8486         if (ip->ihl != 5) /* IP has options */
8487                 return -1;
8488
8489         /* If we see CE codepoint in IP header, packet is not mergeable */
8490         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8491                 return -1;
8492
8493         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8494         if (tcp->urg || tcp->psh || tcp->rst ||
8495             tcp->syn || tcp->fin ||
8496             tcp->ece || tcp->cwr || !tcp->ack) {
8497                 /*
8498                  * Currently recognize only the ack control word and
8499                  * any other control field being set would result in
8500                  * flushing the LRO session
8501                  */
8502                 return -1;
8503         }
8504
8505         /*
8506          * Allow only one TCP timestamp option. Don't aggregate if
8507          * any other options are detected.
8508          */
8509         if (tcp->doff != 5 && tcp->doff != 8)
8510                 return -1;
8511
8512         if (tcp->doff == 8) {
8513                 ptr = (u8 *)(tcp + 1);
8514                 while (*ptr == TCPOPT_NOP)
8515                         ptr++;
8516                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8517                         return -1;
8518
8519                 /* Ensure timestamp value increases monotonically */
8520                 if (l_lro)
8521                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8522                                 return -1;
8523
8524                 /* timestamp echo reply should be non-zero */
8525                 if (*((__be32 *)(ptr+6)) == 0)
8526                         return -1;
8527         }
8528
8529         return 0;
8530 }
8531
8532 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8533                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8534                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8535 {
8536         struct iphdr *ip;
8537         struct tcphdr *tcph;
8538         int ret = 0, i;
8539         u16 vlan_tag = 0;
8540         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8541
8542         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8543                                    rxdp, sp);
8544         if (ret)
8545                 return ret;
8546
8547         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8548
8549         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8550         tcph = (struct tcphdr *)*tcp;
8551         *tcp_len = get_l4_pyld_length(ip, tcph);
8552         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8553                 struct lro *l_lro = &ring_data->lro0_n[i];
8554                 if (l_lro->in_use) {
8555                         if (check_for_socket_match(l_lro, ip, tcph))
8556                                 continue;
8557                         /* Sock pair matched */
8558                         *lro = l_lro;
8559
8560                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8561                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8562                                           "expected 0x%x, actual 0x%x\n",
8563                                           __func__,
8564                                           (*lro)->tcp_next_seq,
8565                                           ntohl(tcph->seq));
8566
8567                                 swstats->outof_sequence_pkts++;
8568                                 ret = 2;
8569                                 break;
8570                         }
8571
8572                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8573                                                       *tcp_len))
8574                                 ret = 1; /* Aggregate */
8575                         else
8576                                 ret = 2; /* Flush both */
8577                         break;
8578                 }
8579         }
8580
8581         if (ret == 0) {
8582                 /* Before searching for available LRO objects,
8583                  * check if the pkt is L3/L4 aggregatable. If not
8584                  * don't create new LRO session. Just send this
8585                  * packet up.
8586                  */
8587                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8588                         return 5;
8589
8590                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8591                         struct lro *l_lro = &ring_data->lro0_n[i];
8592                         if (!(l_lro->in_use)) {
8593                                 *lro = l_lro;
8594                                 ret = 3; /* Begin anew */
8595                                 break;
8596                         }
8597                 }
8598         }
8599
8600         if (ret == 0) { /* sessions exceeded */
8601                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8602                           __func__);
8603                 *lro = NULL;
8604                 return ret;
8605         }
8606
8607         switch (ret) {
8608         case 3:
8609                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8610                                      vlan_tag);
8611                 break;
8612         case 2:
8613                 update_L3L4_header(sp, *lro);
8614                 break;
8615         case 1:
8616                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8617                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8618                         update_L3L4_header(sp, *lro);
8619                         ret = 4; /* Flush the LRO */
8620                 }
8621                 break;
8622         default:
8623                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8624                 break;
8625         }
8626
8627         return ret;
8628 }
8629
8630 static void clear_lro_session(struct lro *lro)
8631 {
8632         static u16 lro_struct_size = sizeof(struct lro);
8633
8634         memset(lro, 0, lro_struct_size);
8635 }
8636
8637 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8638 {
8639         struct net_device *dev = skb->dev;
8640         struct s2io_nic *sp = netdev_priv(dev);
8641
8642         skb->protocol = eth_type_trans(skb, dev);
8643         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8644                 /* Queueing the vlan frame to the upper layer */
8645                 if (sp->config.napi)
8646                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8647                 else
8648                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8649         } else {
8650                 if (sp->config.napi)
8651                         netif_receive_skb(skb);
8652                 else
8653                         netif_rx(skb);
8654         }
8655 }
8656
8657 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8658                            struct sk_buff *skb, u32 tcp_len)
8659 {
8660         struct sk_buff *first = lro->parent;
8661         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8662
8663         first->len += tcp_len;
8664         first->data_len = lro->frags_len;
8665         skb_pull(skb, (skb->len - tcp_len));
8666         if (skb_shinfo(first)->frag_list)
8667                 lro->last_frag->next = skb;
8668         else
8669                 skb_shinfo(first)->frag_list = skb;
8670         first->truesize += skb->truesize;
8671         lro->last_frag = skb;
8672         swstats->clubbed_frms_cnt++;
8673 }
8674
8675 /**
8676  * s2io_io_error_detected - called when PCI error is detected
8677  * @pdev: Pointer to PCI device
8678  * @state: The current pci connection state
8679  *
8680  * This function is called after a PCI bus error affecting
8681  * this device has been detected.
8682  */
8683 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8684                                                pci_channel_state_t state)
8685 {
8686         struct net_device *netdev = pci_get_drvdata(pdev);
8687         struct s2io_nic *sp = netdev_priv(netdev);
8688
8689         netif_device_detach(netdev);
8690
8691         if (state == pci_channel_io_perm_failure)
8692                 return PCI_ERS_RESULT_DISCONNECT;
8693
8694         if (netif_running(netdev)) {
8695                 /* Bring down the card, while avoiding PCI I/O */
8696                 do_s2io_card_down(sp, 0);
8697         }
8698         pci_disable_device(pdev);
8699
8700         return PCI_ERS_RESULT_NEED_RESET;
8701 }
8702
8703 /**
8704  * s2io_io_slot_reset - called after the pci bus has been reset.
8705  * @pdev: Pointer to PCI device
8706  *
8707  * Restart the card from scratch, as if from a cold-boot.
8708  * At this point, the card has exprienced a hard reset,
8709  * followed by fixups by BIOS, and has its config space
8710  * set up identically to what it was at cold boot.
8711  */
8712 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8713 {
8714         struct net_device *netdev = pci_get_drvdata(pdev);
8715         struct s2io_nic *sp = netdev_priv(netdev);
8716
8717         if (pci_enable_device(pdev)) {
8718                 pr_err("Cannot re-enable PCI device after reset.\n");
8719                 return PCI_ERS_RESULT_DISCONNECT;
8720         }
8721
8722         pci_set_master(pdev);
8723         s2io_reset(sp);
8724
8725         return PCI_ERS_RESULT_RECOVERED;
8726 }
8727
8728 /**
8729  * s2io_io_resume - called when traffic can start flowing again.
8730  * @pdev: Pointer to PCI device
8731  *
8732  * This callback is called when the error recovery driver tells
8733  * us that its OK to resume normal operation.
8734  */
8735 static void s2io_io_resume(struct pci_dev *pdev)
8736 {
8737         struct net_device *netdev = pci_get_drvdata(pdev);
8738         struct s2io_nic *sp = netdev_priv(netdev);
8739
8740         if (netif_running(netdev)) {
8741                 if (s2io_card_up(sp)) {
8742                         pr_err("Can't bring device back up after reset.\n");
8743                         return;
8744                 }
8745
8746                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8747                         s2io_card_down(sp);
8748                         pr_err("Can't restore mac addr after reset.\n");
8749                         return;
8750                 }
8751         }
8752
8753         netif_device_attach(netdev);
8754         netif_tx_wake_all_queues(netdev);
8755 }