Merge /pub/scm/linux/kernel/git/torvalds/linux-2.6
[sfrench/cifs-2.6.git] / drivers / net / ppp_generic.c
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/netdevice.h>
31 #include <linux/poll.h>
32 #include <linux/ppp_defs.h>
33 #include <linux/filter.h>
34 #include <linux/if_ppp.h>
35 #include <linux/ppp_channel.h>
36 #include <linux/ppp-comp.h>
37 #include <linux/skbuff.h>
38 #include <linux/rtnetlink.h>
39 #include <linux/if_arp.h>
40 #include <linux/ip.h>
41 #include <linux/tcp.h>
42 #include <linux/spinlock.h>
43 #include <linux/rwsem.h>
44 #include <linux/stddef.h>
45 #include <linux/device.h>
46 #include <linux/mutex.h>
47 #include <net/slhc_vj.h>
48 #include <asm/atomic.h>
49
50 #define PPP_VERSION     "2.4.2"
51
52 /*
53  * Network protocols we support.
54  */
55 #define NP_IP   0               /* Internet Protocol V4 */
56 #define NP_IPV6 1               /* Internet Protocol V6 */
57 #define NP_IPX  2               /* IPX protocol */
58 #define NP_AT   3               /* Appletalk protocol */
59 #define NP_MPLS_UC 4            /* MPLS unicast */
60 #define NP_MPLS_MC 5            /* MPLS multicast */
61 #define NUM_NP  6               /* Number of NPs. */
62
63 #define MPHDRLEN        6       /* multilink protocol header length */
64 #define MPHDRLEN_SSN    4       /* ditto with short sequence numbers */
65 #define MIN_FRAG_SIZE   64
66
67 /*
68  * An instance of /dev/ppp can be associated with either a ppp
69  * interface unit or a ppp channel.  In both cases, file->private_data
70  * points to one of these.
71  */
72 struct ppp_file {
73         enum {
74                 INTERFACE=1, CHANNEL
75         }               kind;
76         struct sk_buff_head xq;         /* pppd transmit queue */
77         struct sk_buff_head rq;         /* receive queue for pppd */
78         wait_queue_head_t rwait;        /* for poll on reading /dev/ppp */
79         atomic_t        refcnt;         /* # refs (incl /dev/ppp attached) */
80         int             hdrlen;         /* space to leave for headers */
81         int             index;          /* interface unit / channel number */
82         int             dead;           /* unit/channel has been shut down */
83 };
84
85 #define PF_TO_X(pf, X)          container_of(pf, X, file)
86
87 #define PF_TO_PPP(pf)           PF_TO_X(pf, struct ppp)
88 #define PF_TO_CHANNEL(pf)       PF_TO_X(pf, struct channel)
89
90 /*
91  * Data structure describing one ppp unit.
92  * A ppp unit corresponds to a ppp network interface device
93  * and represents a multilink bundle.
94  * It can have 0 or more ppp channels connected to it.
95  */
96 struct ppp {
97         struct ppp_file file;           /* stuff for read/write/poll 0 */
98         struct file     *owner;         /* file that owns this unit 48 */
99         struct list_head channels;      /* list of attached channels 4c */
100         int             n_channels;     /* how many channels are attached 54 */
101         spinlock_t      rlock;          /* lock for receive side 58 */
102         spinlock_t      wlock;          /* lock for transmit side 5c */
103         int             mru;            /* max receive unit 60 */
104         unsigned int    flags;          /* control bits 64 */
105         unsigned int    xstate;         /* transmit state bits 68 */
106         unsigned int    rstate;         /* receive state bits 6c */
107         int             debug;          /* debug flags 70 */
108         struct slcompress *vj;          /* state for VJ header compression */
109         enum NPmode     npmode[NUM_NP]; /* what to do with each net proto 78 */
110         struct sk_buff  *xmit_pending;  /* a packet ready to go out 88 */
111         struct compressor *xcomp;       /* transmit packet compressor 8c */
112         void            *xc_state;      /* its internal state 90 */
113         struct compressor *rcomp;       /* receive decompressor 94 */
114         void            *rc_state;      /* its internal state 98 */
115         unsigned long   last_xmit;      /* jiffies when last pkt sent 9c */
116         unsigned long   last_recv;      /* jiffies when last pkt rcvd a0 */
117         struct net_device *dev;         /* network interface device a4 */
118 #ifdef CONFIG_PPP_MULTILINK
119         int             nxchan;         /* next channel to send something on */
120         u32             nxseq;          /* next sequence number to send */
121         int             mrru;           /* MP: max reconst. receive unit */
122         u32             nextseq;        /* MP: seq no of next packet */
123         u32             minseq;         /* MP: min of most recent seqnos */
124         struct sk_buff_head mrq;        /* MP: receive reconstruction queue */
125 #endif /* CONFIG_PPP_MULTILINK */
126         struct net_device_stats stats;  /* statistics */
127 #ifdef CONFIG_PPP_FILTER
128         struct sock_filter *pass_filter;        /* filter for packets to pass */
129         struct sock_filter *active_filter;/* filter for pkts to reset idle */
130         unsigned pass_len, active_len;
131 #endif /* CONFIG_PPP_FILTER */
132 };
133
134 /*
135  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
136  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
137  * SC_MUST_COMP
138  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
139  * Bits in xstate: SC_COMP_RUN
140  */
141 #define SC_FLAG_BITS    (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
142                          |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
143                          |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
144
145 /*
146  * Private data structure for each channel.
147  * This includes the data structure used for multilink.
148  */
149 struct channel {
150         struct ppp_file file;           /* stuff for read/write/poll */
151         struct list_head list;          /* link in all/new_channels list */
152         struct ppp_channel *chan;       /* public channel data structure */
153         struct rw_semaphore chan_sem;   /* protects `chan' during chan ioctl */
154         spinlock_t      downl;          /* protects `chan', file.xq dequeue */
155         struct ppp      *ppp;           /* ppp unit we're connected to */
156         struct list_head clist;         /* link in list of channels per unit */
157         rwlock_t        upl;            /* protects `ppp' */
158 #ifdef CONFIG_PPP_MULTILINK
159         u8              avail;          /* flag used in multilink stuff */
160         u8              had_frag;       /* >= 1 fragments have been sent */
161         u32             lastseq;        /* MP: last sequence # received */
162 #endif /* CONFIG_PPP_MULTILINK */
163 };
164
165 /*
166  * SMP locking issues:
167  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
168  * list and the ppp.n_channels field, you need to take both locks
169  * before you modify them.
170  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
171  * channel.downl.
172  */
173
174 /*
175  * A cardmap represents a mapping from unsigned integers to pointers,
176  * and provides a fast "find lowest unused number" operation.
177  * It uses a broad (32-way) tree with a bitmap at each level.
178  * It is designed to be space-efficient for small numbers of entries
179  * and time-efficient for large numbers of entries.
180  */
181 #define CARDMAP_ORDER   5
182 #define CARDMAP_WIDTH   (1U << CARDMAP_ORDER)
183 #define CARDMAP_MASK    (CARDMAP_WIDTH - 1)
184
185 struct cardmap {
186         int shift;
187         unsigned long inuse;
188         struct cardmap *parent;
189         void *ptr[CARDMAP_WIDTH];
190 };
191 static void *cardmap_get(struct cardmap *map, unsigned int nr);
192 static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr);
193 static unsigned int cardmap_find_first_free(struct cardmap *map);
194 static void cardmap_destroy(struct cardmap **map);
195
196 /*
197  * all_ppp_mutex protects the all_ppp_units mapping.
198  * It also ensures that finding a ppp unit in the all_ppp_units map
199  * and updating its file.refcnt field is atomic.
200  */
201 static DEFINE_MUTEX(all_ppp_mutex);
202 static struct cardmap *all_ppp_units;
203 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
204
205 /*
206  * all_channels_lock protects all_channels and last_channel_index,
207  * and the atomicity of find a channel and updating its file.refcnt
208  * field.
209  */
210 static DEFINE_SPINLOCK(all_channels_lock);
211 static LIST_HEAD(all_channels);
212 static LIST_HEAD(new_channels);
213 static int last_channel_index;
214 static atomic_t channel_count = ATOMIC_INIT(0);
215
216 /* Get the PPP protocol number from a skb */
217 #define PPP_PROTO(skb)  (((skb)->data[0] << 8) + (skb)->data[1])
218
219 /* We limit the length of ppp->file.rq to this (arbitrary) value */
220 #define PPP_MAX_RQLEN   32
221
222 /*
223  * Maximum number of multilink fragments queued up.
224  * This has to be large enough to cope with the maximum latency of
225  * the slowest channel relative to the others.  Strictly it should
226  * depend on the number of channels and their characteristics.
227  */
228 #define PPP_MP_MAX_QLEN 128
229
230 /* Multilink header bits. */
231 #define B       0x80            /* this fragment begins a packet */
232 #define E       0x40            /* this fragment ends a packet */
233
234 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
235 #define seq_before(a, b)        ((s32)((a) - (b)) < 0)
236 #define seq_after(a, b)         ((s32)((a) - (b)) > 0)
237
238 /* Prototypes. */
239 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
240                                 unsigned int cmd, unsigned long arg);
241 static void ppp_xmit_process(struct ppp *ppp);
242 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
243 static void ppp_push(struct ppp *ppp);
244 static void ppp_channel_push(struct channel *pch);
245 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
246                               struct channel *pch);
247 static void ppp_receive_error(struct ppp *ppp);
248 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
249 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
250                                             struct sk_buff *skb);
251 #ifdef CONFIG_PPP_MULTILINK
252 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
253                                 struct channel *pch);
254 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
255 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
256 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
257 #endif /* CONFIG_PPP_MULTILINK */
258 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
259 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
260 static void ppp_ccp_closed(struct ppp *ppp);
261 static struct compressor *find_compressor(int type);
262 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
263 static struct ppp *ppp_create_interface(int unit, int *retp);
264 static void init_ppp_file(struct ppp_file *pf, int kind);
265 static void ppp_shutdown_interface(struct ppp *ppp);
266 static void ppp_destroy_interface(struct ppp *ppp);
267 static struct ppp *ppp_find_unit(int unit);
268 static struct channel *ppp_find_channel(int unit);
269 static int ppp_connect_channel(struct channel *pch, int unit);
270 static int ppp_disconnect_channel(struct channel *pch);
271 static void ppp_destroy_channel(struct channel *pch);
272
273 static struct class *ppp_class;
274
275 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
276 static inline int proto_to_npindex(int proto)
277 {
278         switch (proto) {
279         case PPP_IP:
280                 return NP_IP;
281         case PPP_IPV6:
282                 return NP_IPV6;
283         case PPP_IPX:
284                 return NP_IPX;
285         case PPP_AT:
286                 return NP_AT;
287         case PPP_MPLS_UC:
288                 return NP_MPLS_UC;
289         case PPP_MPLS_MC:
290                 return NP_MPLS_MC;
291         }
292         return -EINVAL;
293 }
294
295 /* Translates an NP index into a PPP protocol number */
296 static const int npindex_to_proto[NUM_NP] = {
297         PPP_IP,
298         PPP_IPV6,
299         PPP_IPX,
300         PPP_AT,
301         PPP_MPLS_UC,
302         PPP_MPLS_MC,
303 };
304
305 /* Translates an ethertype into an NP index */
306 static inline int ethertype_to_npindex(int ethertype)
307 {
308         switch (ethertype) {
309         case ETH_P_IP:
310                 return NP_IP;
311         case ETH_P_IPV6:
312                 return NP_IPV6;
313         case ETH_P_IPX:
314                 return NP_IPX;
315         case ETH_P_PPPTALK:
316         case ETH_P_ATALK:
317                 return NP_AT;
318         case ETH_P_MPLS_UC:
319                 return NP_MPLS_UC;
320         case ETH_P_MPLS_MC:
321                 return NP_MPLS_MC;
322         }
323         return -1;
324 }
325
326 /* Translates an NP index into an ethertype */
327 static const int npindex_to_ethertype[NUM_NP] = {
328         ETH_P_IP,
329         ETH_P_IPV6,
330         ETH_P_IPX,
331         ETH_P_PPPTALK,
332         ETH_P_MPLS_UC,
333         ETH_P_MPLS_MC,
334 };
335
336 /*
337  * Locking shorthand.
338  */
339 #define ppp_xmit_lock(ppp)      spin_lock_bh(&(ppp)->wlock)
340 #define ppp_xmit_unlock(ppp)    spin_unlock_bh(&(ppp)->wlock)
341 #define ppp_recv_lock(ppp)      spin_lock_bh(&(ppp)->rlock)
342 #define ppp_recv_unlock(ppp)    spin_unlock_bh(&(ppp)->rlock)
343 #define ppp_lock(ppp)           do { ppp_xmit_lock(ppp); \
344                                      ppp_recv_lock(ppp); } while (0)
345 #define ppp_unlock(ppp)         do { ppp_recv_unlock(ppp); \
346                                      ppp_xmit_unlock(ppp); } while (0)
347
348 /*
349  * /dev/ppp device routines.
350  * The /dev/ppp device is used by pppd to control the ppp unit.
351  * It supports the read, write, ioctl and poll functions.
352  * Open instances of /dev/ppp can be in one of three states:
353  * unattached, attached to a ppp unit, or attached to a ppp channel.
354  */
355 static int ppp_open(struct inode *inode, struct file *file)
356 {
357         /*
358          * This could (should?) be enforced by the permissions on /dev/ppp.
359          */
360         if (!capable(CAP_NET_ADMIN))
361                 return -EPERM;
362         return 0;
363 }
364
365 static int ppp_release(struct inode *inode, struct file *file)
366 {
367         struct ppp_file *pf = file->private_data;
368         struct ppp *ppp;
369
370         if (pf != 0) {
371                 file->private_data = NULL;
372                 if (pf->kind == INTERFACE) {
373                         ppp = PF_TO_PPP(pf);
374                         if (file == ppp->owner)
375                                 ppp_shutdown_interface(ppp);
376                 }
377                 if (atomic_dec_and_test(&pf->refcnt)) {
378                         switch (pf->kind) {
379                         case INTERFACE:
380                                 ppp_destroy_interface(PF_TO_PPP(pf));
381                                 break;
382                         case CHANNEL:
383                                 ppp_destroy_channel(PF_TO_CHANNEL(pf));
384                                 break;
385                         }
386                 }
387         }
388         return 0;
389 }
390
391 static ssize_t ppp_read(struct file *file, char __user *buf,
392                         size_t count, loff_t *ppos)
393 {
394         struct ppp_file *pf = file->private_data;
395         DECLARE_WAITQUEUE(wait, current);
396         ssize_t ret;
397         struct sk_buff *skb = NULL;
398
399         ret = count;
400
401         if (pf == 0)
402                 return -ENXIO;
403         add_wait_queue(&pf->rwait, &wait);
404         for (;;) {
405                 set_current_state(TASK_INTERRUPTIBLE);
406                 skb = skb_dequeue(&pf->rq);
407                 if (skb)
408                         break;
409                 ret = 0;
410                 if (pf->dead)
411                         break;
412                 if (pf->kind == INTERFACE) {
413                         /*
414                          * Return 0 (EOF) on an interface that has no
415                          * channels connected, unless it is looping
416                          * network traffic (demand mode).
417                          */
418                         struct ppp *ppp = PF_TO_PPP(pf);
419                         if (ppp->n_channels == 0
420                             && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
421                                 break;
422                 }
423                 ret = -EAGAIN;
424                 if (file->f_flags & O_NONBLOCK)
425                         break;
426                 ret = -ERESTARTSYS;
427                 if (signal_pending(current))
428                         break;
429                 schedule();
430         }
431         set_current_state(TASK_RUNNING);
432         remove_wait_queue(&pf->rwait, &wait);
433
434         if (skb == 0)
435                 goto out;
436
437         ret = -EOVERFLOW;
438         if (skb->len > count)
439                 goto outf;
440         ret = -EFAULT;
441         if (copy_to_user(buf, skb->data, skb->len))
442                 goto outf;
443         ret = skb->len;
444
445  outf:
446         kfree_skb(skb);
447  out:
448         return ret;
449 }
450
451 static ssize_t ppp_write(struct file *file, const char __user *buf,
452                          size_t count, loff_t *ppos)
453 {
454         struct ppp_file *pf = file->private_data;
455         struct sk_buff *skb;
456         ssize_t ret;
457
458         if (pf == 0)
459                 return -ENXIO;
460         ret = -ENOMEM;
461         skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
462         if (skb == 0)
463                 goto out;
464         skb_reserve(skb, pf->hdrlen);
465         ret = -EFAULT;
466         if (copy_from_user(skb_put(skb, count), buf, count)) {
467                 kfree_skb(skb);
468                 goto out;
469         }
470
471         skb_queue_tail(&pf->xq, skb);
472
473         switch (pf->kind) {
474         case INTERFACE:
475                 ppp_xmit_process(PF_TO_PPP(pf));
476                 break;
477         case CHANNEL:
478                 ppp_channel_push(PF_TO_CHANNEL(pf));
479                 break;
480         }
481
482         ret = count;
483
484  out:
485         return ret;
486 }
487
488 /* No kernel lock - fine */
489 static unsigned int ppp_poll(struct file *file, poll_table *wait)
490 {
491         struct ppp_file *pf = file->private_data;
492         unsigned int mask;
493
494         if (pf == 0)
495                 return 0;
496         poll_wait(file, &pf->rwait, wait);
497         mask = POLLOUT | POLLWRNORM;
498         if (skb_peek(&pf->rq) != 0)
499                 mask |= POLLIN | POLLRDNORM;
500         if (pf->dead)
501                 mask |= POLLHUP;
502         else if (pf->kind == INTERFACE) {
503                 /* see comment in ppp_read */
504                 struct ppp *ppp = PF_TO_PPP(pf);
505                 if (ppp->n_channels == 0
506                     && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
507                         mask |= POLLIN | POLLRDNORM;
508         }
509
510         return mask;
511 }
512
513 #ifdef CONFIG_PPP_FILTER
514 static int get_filter(void __user *arg, struct sock_filter **p)
515 {
516         struct sock_fprog uprog;
517         struct sock_filter *code = NULL;
518         int len, err;
519
520         if (copy_from_user(&uprog, arg, sizeof(uprog)))
521                 return -EFAULT;
522
523         if (!uprog.len) {
524                 *p = NULL;
525                 return 0;
526         }
527
528         len = uprog.len * sizeof(struct sock_filter);
529         code = kmalloc(len, GFP_KERNEL);
530         if (code == NULL)
531                 return -ENOMEM;
532
533         if (copy_from_user(code, uprog.filter, len)) {
534                 kfree(code);
535                 return -EFAULT;
536         }
537
538         err = sk_chk_filter(code, uprog.len);
539         if (err) {
540                 kfree(code);
541                 return err;
542         }
543
544         *p = code;
545         return uprog.len;
546 }
547 #endif /* CONFIG_PPP_FILTER */
548
549 static int ppp_ioctl(struct inode *inode, struct file *file,
550                      unsigned int cmd, unsigned long arg)
551 {
552         struct ppp_file *pf = file->private_data;
553         struct ppp *ppp;
554         int err = -EFAULT, val, val2, i;
555         struct ppp_idle idle;
556         struct npioctl npi;
557         int unit, cflags;
558         struct slcompress *vj;
559         void __user *argp = (void __user *)arg;
560         int __user *p = argp;
561
562         if (pf == 0)
563                 return ppp_unattached_ioctl(pf, file, cmd, arg);
564
565         if (cmd == PPPIOCDETACH) {
566                 /*
567                  * We have to be careful here... if the file descriptor
568                  * has been dup'd, we could have another process in the
569                  * middle of a poll using the same file *, so we had
570                  * better not free the interface data structures -
571                  * instead we fail the ioctl.  Even in this case, we
572                  * shut down the interface if we are the owner of it.
573                  * Actually, we should get rid of PPPIOCDETACH, userland
574                  * (i.e. pppd) could achieve the same effect by closing
575                  * this fd and reopening /dev/ppp.
576                  */
577                 err = -EINVAL;
578                 if (pf->kind == INTERFACE) {
579                         ppp = PF_TO_PPP(pf);
580                         if (file == ppp->owner)
581                                 ppp_shutdown_interface(ppp);
582                 }
583                 if (atomic_read(&file->f_count) <= 2) {
584                         ppp_release(inode, file);
585                         err = 0;
586                 } else
587                         printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n",
588                                atomic_read(&file->f_count));
589                 return err;
590         }
591
592         if (pf->kind == CHANNEL) {
593                 struct channel *pch = PF_TO_CHANNEL(pf);
594                 struct ppp_channel *chan;
595
596                 switch (cmd) {
597                 case PPPIOCCONNECT:
598                         if (get_user(unit, p))
599                                 break;
600                         err = ppp_connect_channel(pch, unit);
601                         break;
602
603                 case PPPIOCDISCONN:
604                         err = ppp_disconnect_channel(pch);
605                         break;
606
607                 default:
608                         down_read(&pch->chan_sem);
609                         chan = pch->chan;
610                         err = -ENOTTY;
611                         if (chan && chan->ops->ioctl)
612                                 err = chan->ops->ioctl(chan, cmd, arg);
613                         up_read(&pch->chan_sem);
614                 }
615                 return err;
616         }
617
618         if (pf->kind != INTERFACE) {
619                 /* can't happen */
620                 printk(KERN_ERR "PPP: not interface or channel??\n");
621                 return -EINVAL;
622         }
623
624         ppp = PF_TO_PPP(pf);
625         switch (cmd) {
626         case PPPIOCSMRU:
627                 if (get_user(val, p))
628                         break;
629                 ppp->mru = val;
630                 err = 0;
631                 break;
632
633         case PPPIOCSFLAGS:
634                 if (get_user(val, p))
635                         break;
636                 ppp_lock(ppp);
637                 cflags = ppp->flags & ~val;
638                 ppp->flags = val & SC_FLAG_BITS;
639                 ppp_unlock(ppp);
640                 if (cflags & SC_CCP_OPEN)
641                         ppp_ccp_closed(ppp);
642                 err = 0;
643                 break;
644
645         case PPPIOCGFLAGS:
646                 val = ppp->flags | ppp->xstate | ppp->rstate;
647                 if (put_user(val, p))
648                         break;
649                 err = 0;
650                 break;
651
652         case PPPIOCSCOMPRESS:
653                 err = ppp_set_compress(ppp, arg);
654                 break;
655
656         case PPPIOCGUNIT:
657                 if (put_user(ppp->file.index, p))
658                         break;
659                 err = 0;
660                 break;
661
662         case PPPIOCSDEBUG:
663                 if (get_user(val, p))
664                         break;
665                 ppp->debug = val;
666                 err = 0;
667                 break;
668
669         case PPPIOCGDEBUG:
670                 if (put_user(ppp->debug, p))
671                         break;
672                 err = 0;
673                 break;
674
675         case PPPIOCGIDLE:
676                 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
677                 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
678                 if (copy_to_user(argp, &idle, sizeof(idle)))
679                         break;
680                 err = 0;
681                 break;
682
683         case PPPIOCSMAXCID:
684                 if (get_user(val, p))
685                         break;
686                 val2 = 15;
687                 if ((val >> 16) != 0) {
688                         val2 = val >> 16;
689                         val &= 0xffff;
690                 }
691                 vj = slhc_init(val2+1, val+1);
692                 if (vj == 0) {
693                         printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
694                         err = -ENOMEM;
695                         break;
696                 }
697                 ppp_lock(ppp);
698                 if (ppp->vj != 0)
699                         slhc_free(ppp->vj);
700                 ppp->vj = vj;
701                 ppp_unlock(ppp);
702                 err = 0;
703                 break;
704
705         case PPPIOCGNPMODE:
706         case PPPIOCSNPMODE:
707                 if (copy_from_user(&npi, argp, sizeof(npi)))
708                         break;
709                 err = proto_to_npindex(npi.protocol);
710                 if (err < 0)
711                         break;
712                 i = err;
713                 if (cmd == PPPIOCGNPMODE) {
714                         err = -EFAULT;
715                         npi.mode = ppp->npmode[i];
716                         if (copy_to_user(argp, &npi, sizeof(npi)))
717                                 break;
718                 } else {
719                         ppp->npmode[i] = npi.mode;
720                         /* we may be able to transmit more packets now (??) */
721                         netif_wake_queue(ppp->dev);
722                 }
723                 err = 0;
724                 break;
725
726 #ifdef CONFIG_PPP_FILTER
727         case PPPIOCSPASS:
728         {
729                 struct sock_filter *code;
730                 err = get_filter(argp, &code);
731                 if (err >= 0) {
732                         ppp_lock(ppp);
733                         kfree(ppp->pass_filter);
734                         ppp->pass_filter = code;
735                         ppp->pass_len = err;
736                         ppp_unlock(ppp);
737                         err = 0;
738                 }
739                 break;
740         }
741         case PPPIOCSACTIVE:
742         {
743                 struct sock_filter *code;
744                 err = get_filter(argp, &code);
745                 if (err >= 0) {
746                         ppp_lock(ppp);
747                         kfree(ppp->active_filter);
748                         ppp->active_filter = code;
749                         ppp->active_len = err;
750                         ppp_unlock(ppp);
751                         err = 0;
752                 }
753                 break;
754         }
755 #endif /* CONFIG_PPP_FILTER */
756
757 #ifdef CONFIG_PPP_MULTILINK
758         case PPPIOCSMRRU:
759                 if (get_user(val, p))
760                         break;
761                 ppp_recv_lock(ppp);
762                 ppp->mrru = val;
763                 ppp_recv_unlock(ppp);
764                 err = 0;
765                 break;
766 #endif /* CONFIG_PPP_MULTILINK */
767
768         default:
769                 err = -ENOTTY;
770         }
771
772         return err;
773 }
774
775 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
776                                 unsigned int cmd, unsigned long arg)
777 {
778         int unit, err = -EFAULT;
779         struct ppp *ppp;
780         struct channel *chan;
781         int __user *p = (int __user *)arg;
782
783         switch (cmd) {
784         case PPPIOCNEWUNIT:
785                 /* Create a new ppp unit */
786                 if (get_user(unit, p))
787                         break;
788                 ppp = ppp_create_interface(unit, &err);
789                 if (ppp == 0)
790                         break;
791                 file->private_data = &ppp->file;
792                 ppp->owner = file;
793                 err = -EFAULT;
794                 if (put_user(ppp->file.index, p))
795                         break;
796                 err = 0;
797                 break;
798
799         case PPPIOCATTACH:
800                 /* Attach to an existing ppp unit */
801                 if (get_user(unit, p))
802                         break;
803                 mutex_lock(&all_ppp_mutex);
804                 err = -ENXIO;
805                 ppp = ppp_find_unit(unit);
806                 if (ppp != 0) {
807                         atomic_inc(&ppp->file.refcnt);
808                         file->private_data = &ppp->file;
809                         err = 0;
810                 }
811                 mutex_unlock(&all_ppp_mutex);
812                 break;
813
814         case PPPIOCATTCHAN:
815                 if (get_user(unit, p))
816                         break;
817                 spin_lock_bh(&all_channels_lock);
818                 err = -ENXIO;
819                 chan = ppp_find_channel(unit);
820                 if (chan != 0) {
821                         atomic_inc(&chan->file.refcnt);
822                         file->private_data = &chan->file;
823                         err = 0;
824                 }
825                 spin_unlock_bh(&all_channels_lock);
826                 break;
827
828         default:
829                 err = -ENOTTY;
830         }
831         return err;
832 }
833
834 static const struct file_operations ppp_device_fops = {
835         .owner          = THIS_MODULE,
836         .read           = ppp_read,
837         .write          = ppp_write,
838         .poll           = ppp_poll,
839         .ioctl          = ppp_ioctl,
840         .open           = ppp_open,
841         .release        = ppp_release
842 };
843
844 #define PPP_MAJOR       108
845
846 /* Called at boot time if ppp is compiled into the kernel,
847    or at module load time (from init_module) if compiled as a module. */
848 static int __init ppp_init(void)
849 {
850         int err;
851
852         printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
853         err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
854         if (!err) {
855                 ppp_class = class_create(THIS_MODULE, "ppp");
856                 if (IS_ERR(ppp_class)) {
857                         err = PTR_ERR(ppp_class);
858                         goto out_chrdev;
859                 }
860                 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), "ppp");
861         }
862
863 out:
864         if (err)
865                 printk(KERN_ERR "failed to register PPP device (%d)\n", err);
866         return err;
867
868 out_chrdev:
869         unregister_chrdev(PPP_MAJOR, "ppp");
870         goto out;
871 }
872
873 /*
874  * Network interface unit routines.
875  */
876 static int
877 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
878 {
879         struct ppp *ppp = (struct ppp *) dev->priv;
880         int npi, proto;
881         unsigned char *pp;
882
883         npi = ethertype_to_npindex(ntohs(skb->protocol));
884         if (npi < 0)
885                 goto outf;
886
887         /* Drop, accept or reject the packet */
888         switch (ppp->npmode[npi]) {
889         case NPMODE_PASS:
890                 break;
891         case NPMODE_QUEUE:
892                 /* it would be nice to have a way to tell the network
893                    system to queue this one up for later. */
894                 goto outf;
895         case NPMODE_DROP:
896         case NPMODE_ERROR:
897                 goto outf;
898         }
899
900         /* Put the 2-byte PPP protocol number on the front,
901            making sure there is room for the address and control fields. */
902         if (skb_headroom(skb) < PPP_HDRLEN) {
903                 struct sk_buff *ns;
904
905                 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC);
906                 if (ns == 0)
907                         goto outf;
908                 skb_reserve(ns, dev->hard_header_len);
909                 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
910                 kfree_skb(skb);
911                 skb = ns;
912         }
913         pp = skb_push(skb, 2);
914         proto = npindex_to_proto[npi];
915         pp[0] = proto >> 8;
916         pp[1] = proto;
917
918         netif_stop_queue(dev);
919         skb_queue_tail(&ppp->file.xq, skb);
920         ppp_xmit_process(ppp);
921         return 0;
922
923  outf:
924         kfree_skb(skb);
925         ++ppp->stats.tx_dropped;
926         return 0;
927 }
928
929 static struct net_device_stats *
930 ppp_net_stats(struct net_device *dev)
931 {
932         struct ppp *ppp = (struct ppp *) dev->priv;
933
934         return &ppp->stats;
935 }
936
937 static int
938 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
939 {
940         struct ppp *ppp = dev->priv;
941         int err = -EFAULT;
942         void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
943         struct ppp_stats stats;
944         struct ppp_comp_stats cstats;
945         char *vers;
946
947         switch (cmd) {
948         case SIOCGPPPSTATS:
949                 ppp_get_stats(ppp, &stats);
950                 if (copy_to_user(addr, &stats, sizeof(stats)))
951                         break;
952                 err = 0;
953                 break;
954
955         case SIOCGPPPCSTATS:
956                 memset(&cstats, 0, sizeof(cstats));
957                 if (ppp->xc_state != 0)
958                         ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
959                 if (ppp->rc_state != 0)
960                         ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
961                 if (copy_to_user(addr, &cstats, sizeof(cstats)))
962                         break;
963                 err = 0;
964                 break;
965
966         case SIOCGPPPVER:
967                 vers = PPP_VERSION;
968                 if (copy_to_user(addr, vers, strlen(vers) + 1))
969                         break;
970                 err = 0;
971                 break;
972
973         default:
974                 err = -EINVAL;
975         }
976
977         return err;
978 }
979
980 static void ppp_setup(struct net_device *dev)
981 {
982         dev->hard_header_len = PPP_HDRLEN;
983         dev->mtu = PPP_MTU;
984         dev->addr_len = 0;
985         dev->tx_queue_len = 3;
986         dev->type = ARPHRD_PPP;
987         dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
988 }
989
990 /*
991  * Transmit-side routines.
992  */
993
994 /*
995  * Called to do any work queued up on the transmit side
996  * that can now be done.
997  */
998 static void
999 ppp_xmit_process(struct ppp *ppp)
1000 {
1001         struct sk_buff *skb;
1002
1003         ppp_xmit_lock(ppp);
1004         if (ppp->dev != 0) {
1005                 ppp_push(ppp);
1006                 while (ppp->xmit_pending == 0
1007                        && (skb = skb_dequeue(&ppp->file.xq)) != 0)
1008                         ppp_send_frame(ppp, skb);
1009                 /* If there's no work left to do, tell the core net
1010                    code that we can accept some more. */
1011                 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0)
1012                         netif_wake_queue(ppp->dev);
1013         }
1014         ppp_xmit_unlock(ppp);
1015 }
1016
1017 static inline struct sk_buff *
1018 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1019 {
1020         struct sk_buff *new_skb;
1021         int len;
1022         int new_skb_size = ppp->dev->mtu +
1023                 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1024         int compressor_skb_size = ppp->dev->mtu +
1025                 ppp->xcomp->comp_extra + PPP_HDRLEN;
1026         new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1027         if (!new_skb) {
1028                 if (net_ratelimit())
1029                         printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1030                 return NULL;
1031         }
1032         if (ppp->dev->hard_header_len > PPP_HDRLEN)
1033                 skb_reserve(new_skb,
1034                             ppp->dev->hard_header_len - PPP_HDRLEN);
1035
1036         /* compressor still expects A/C bytes in hdr */
1037         len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1038                                    new_skb->data, skb->len + 2,
1039                                    compressor_skb_size);
1040         if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1041                 kfree_skb(skb);
1042                 skb = new_skb;
1043                 skb_put(skb, len);
1044                 skb_pull(skb, 2);       /* pull off A/C bytes */
1045         } else if (len == 0) {
1046                 /* didn't compress, or CCP not up yet */
1047                 kfree_skb(new_skb);
1048                 new_skb = skb;
1049         } else {
1050                 /*
1051                  * (len < 0)
1052                  * MPPE requires that we do not send unencrypted
1053                  * frames.  The compressor will return -1 if we
1054                  * should drop the frame.  We cannot simply test
1055                  * the compress_proto because MPPE and MPPC share
1056                  * the same number.
1057                  */
1058                 if (net_ratelimit())
1059                         printk(KERN_ERR "ppp: compressor dropped pkt\n");
1060                 kfree_skb(skb);
1061                 kfree_skb(new_skb);
1062                 new_skb = NULL;
1063         }
1064         return new_skb;
1065 }
1066
1067 /*
1068  * Compress and send a frame.
1069  * The caller should have locked the xmit path,
1070  * and xmit_pending should be 0.
1071  */
1072 static void
1073 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1074 {
1075         int proto = PPP_PROTO(skb);
1076         struct sk_buff *new_skb;
1077         int len;
1078         unsigned char *cp;
1079
1080         if (proto < 0x8000) {
1081 #ifdef CONFIG_PPP_FILTER
1082                 /* check if we should pass this packet */
1083                 /* the filter instructions are constructed assuming
1084                    a four-byte PPP header on each packet */
1085                 *skb_push(skb, 2) = 1;
1086                 if (ppp->pass_filter
1087                     && sk_run_filter(skb, ppp->pass_filter,
1088                                      ppp->pass_len) == 0) {
1089                         if (ppp->debug & 1)
1090                                 printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1091                         kfree_skb(skb);
1092                         return;
1093                 }
1094                 /* if this packet passes the active filter, record the time */
1095                 if (!(ppp->active_filter
1096                       && sk_run_filter(skb, ppp->active_filter,
1097                                        ppp->active_len) == 0))
1098                         ppp->last_xmit = jiffies;
1099                 skb_pull(skb, 2);
1100 #else
1101                 /* for data packets, record the time */
1102                 ppp->last_xmit = jiffies;
1103 #endif /* CONFIG_PPP_FILTER */
1104         }
1105
1106         ++ppp->stats.tx_packets;
1107         ppp->stats.tx_bytes += skb->len - 2;
1108
1109         switch (proto) {
1110         case PPP_IP:
1111                 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0)
1112                         break;
1113                 /* try to do VJ TCP header compression */
1114                 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1115                                     GFP_ATOMIC);
1116                 if (new_skb == 0) {
1117                         printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1118                         goto drop;
1119                 }
1120                 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1121                 cp = skb->data + 2;
1122                 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1123                                     new_skb->data + 2, &cp,
1124                                     !(ppp->flags & SC_NO_TCP_CCID));
1125                 if (cp == skb->data + 2) {
1126                         /* didn't compress */
1127                         kfree_skb(new_skb);
1128                 } else {
1129                         if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1130                                 proto = PPP_VJC_COMP;
1131                                 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1132                         } else {
1133                                 proto = PPP_VJC_UNCOMP;
1134                                 cp[0] = skb->data[2];
1135                         }
1136                         kfree_skb(skb);
1137                         skb = new_skb;
1138                         cp = skb_put(skb, len + 2);
1139                         cp[0] = 0;
1140                         cp[1] = proto;
1141                 }
1142                 break;
1143
1144         case PPP_CCP:
1145                 /* peek at outbound CCP frames */
1146                 ppp_ccp_peek(ppp, skb, 0);
1147                 break;
1148         }
1149
1150         /* try to do packet compression */
1151         if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0
1152             && proto != PPP_LCP && proto != PPP_CCP) {
1153                 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1154                         if (net_ratelimit())
1155                                 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n");
1156                         goto drop;
1157                 }
1158                 skb = pad_compress_skb(ppp, skb);
1159                 if (!skb)
1160                         goto drop;
1161         }
1162
1163         /*
1164          * If we are waiting for traffic (demand dialling),
1165          * queue it up for pppd to receive.
1166          */
1167         if (ppp->flags & SC_LOOP_TRAFFIC) {
1168                 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1169                         goto drop;
1170                 skb_queue_tail(&ppp->file.rq, skb);
1171                 wake_up_interruptible(&ppp->file.rwait);
1172                 return;
1173         }
1174
1175         ppp->xmit_pending = skb;
1176         ppp_push(ppp);
1177         return;
1178
1179  drop:
1180         if (skb)
1181                 kfree_skb(skb);
1182         ++ppp->stats.tx_errors;
1183 }
1184
1185 /*
1186  * Try to send the frame in xmit_pending.
1187  * The caller should have the xmit path locked.
1188  */
1189 static void
1190 ppp_push(struct ppp *ppp)
1191 {
1192         struct list_head *list;
1193         struct channel *pch;
1194         struct sk_buff *skb = ppp->xmit_pending;
1195
1196         if (skb == 0)
1197                 return;
1198
1199         list = &ppp->channels;
1200         if (list_empty(list)) {
1201                 /* nowhere to send the packet, just drop it */
1202                 ppp->xmit_pending = NULL;
1203                 kfree_skb(skb);
1204                 return;
1205         }
1206
1207         if ((ppp->flags & SC_MULTILINK) == 0) {
1208                 /* not doing multilink: send it down the first channel */
1209                 list = list->next;
1210                 pch = list_entry(list, struct channel, clist);
1211
1212                 spin_lock_bh(&pch->downl);
1213                 if (pch->chan) {
1214                         if (pch->chan->ops->start_xmit(pch->chan, skb))
1215                                 ppp->xmit_pending = NULL;
1216                 } else {
1217                         /* channel got unregistered */
1218                         kfree_skb(skb);
1219                         ppp->xmit_pending = NULL;
1220                 }
1221                 spin_unlock_bh(&pch->downl);
1222                 return;
1223         }
1224
1225 #ifdef CONFIG_PPP_MULTILINK
1226         /* Multilink: fragment the packet over as many links
1227            as can take the packet at the moment. */
1228         if (!ppp_mp_explode(ppp, skb))
1229                 return;
1230 #endif /* CONFIG_PPP_MULTILINK */
1231
1232         ppp->xmit_pending = NULL;
1233         kfree_skb(skb);
1234 }
1235
1236 #ifdef CONFIG_PPP_MULTILINK
1237 /*
1238  * Divide a packet to be transmitted into fragments and
1239  * send them out the individual links.
1240  */
1241 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1242 {
1243         int len, fragsize;
1244         int i, bits, hdrlen, mtu;
1245         int flen;
1246         int navail, nfree;
1247         int nbigger;
1248         unsigned char *p, *q;
1249         struct list_head *list;
1250         struct channel *pch;
1251         struct sk_buff *frag;
1252         struct ppp_channel *chan;
1253
1254         nfree = 0;      /* # channels which have no packet already queued */
1255         navail = 0;     /* total # of usable channels (not deregistered) */
1256         hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1257         i = 0;
1258         list_for_each_entry(pch, &ppp->channels, clist) {
1259                 navail += pch->avail = (pch->chan != NULL);
1260                 if (pch->avail) {
1261                         if (skb_queue_empty(&pch->file.xq) ||
1262                             !pch->had_frag) {
1263                                 pch->avail = 2;
1264                                 ++nfree;
1265                         }
1266                         if (!pch->had_frag && i < ppp->nxchan)
1267                                 ppp->nxchan = i;
1268                 }
1269                 ++i;
1270         }
1271
1272         /*
1273          * Don't start sending this packet unless at least half of
1274          * the channels are free.  This gives much better TCP
1275          * performance if we have a lot of channels.
1276          */
1277         if (nfree == 0 || nfree < navail / 2)
1278                 return 0;       /* can't take now, leave it in xmit_pending */
1279
1280         /* Do protocol field compression (XXX this should be optional) */
1281         p = skb->data;
1282         len = skb->len;
1283         if (*p == 0) {
1284                 ++p;
1285                 --len;
1286         }
1287
1288         /*
1289          * Decide on fragment size.
1290          * We create a fragment for each free channel regardless of
1291          * how small they are (i.e. even 0 length) in order to minimize
1292          * the time that it will take to detect when a channel drops
1293          * a fragment.
1294          */
1295         fragsize = len;
1296         if (nfree > 1)
1297                 fragsize = DIV_ROUND_UP(fragsize, nfree);
1298         /* nbigger channels get fragsize bytes, the rest get fragsize-1,
1299            except if nbigger==0, then they all get fragsize. */
1300         nbigger = len % nfree;
1301
1302         /* skip to the channel after the one we last used
1303            and start at that one */
1304         list = &ppp->channels;
1305         for (i = 0; i < ppp->nxchan; ++i) {
1306                 list = list->next;
1307                 if (list == &ppp->channels) {
1308                         i = 0;
1309                         break;
1310                 }
1311         }
1312
1313         /* create a fragment for each channel */
1314         bits = B;
1315         while (nfree > 0 || len > 0) {
1316                 list = list->next;
1317                 if (list == &ppp->channels) {
1318                         i = 0;
1319                         continue;
1320                 }
1321                 pch = list_entry(list, struct channel, clist);
1322                 ++i;
1323                 if (!pch->avail)
1324                         continue;
1325
1326                 /*
1327                  * Skip this channel if it has a fragment pending already and
1328                  * we haven't given a fragment to all of the free channels.
1329                  */
1330                 if (pch->avail == 1) {
1331                         if (nfree > 0)
1332                                 continue;
1333                 } else {
1334                         --nfree;
1335                         pch->avail = 1;
1336                 }
1337
1338                 /* check the channel's mtu and whether it is still attached. */
1339                 spin_lock_bh(&pch->downl);
1340                 if (pch->chan == NULL) {
1341                         /* can't use this channel, it's being deregistered */
1342                         spin_unlock_bh(&pch->downl);
1343                         pch->avail = 0;
1344                         if (--navail == 0)
1345                                 break;
1346                         continue;
1347                 }
1348
1349                 /*
1350                  * Create a fragment for this channel of
1351                  * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes.
1352                  * If mtu+2-hdrlen < 4, that is a ridiculously small
1353                  * MTU, so we use mtu = 2 + hdrlen.
1354                  */
1355                 if (fragsize > len)
1356                         fragsize = len;
1357                 flen = fragsize;
1358                 mtu = pch->chan->mtu + 2 - hdrlen;
1359                 if (mtu < 4)
1360                         mtu = 4;
1361                 if (flen > mtu)
1362                         flen = mtu;
1363                 if (flen == len && nfree == 0)
1364                         bits |= E;
1365                 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1366                 if (frag == 0)
1367                         goto noskb;
1368                 q = skb_put(frag, flen + hdrlen);
1369
1370                 /* make the MP header */
1371                 q[0] = PPP_MP >> 8;
1372                 q[1] = PPP_MP;
1373                 if (ppp->flags & SC_MP_XSHORTSEQ) {
1374                         q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1375                         q[3] = ppp->nxseq;
1376                 } else {
1377                         q[2] = bits;
1378                         q[3] = ppp->nxseq >> 16;
1379                         q[4] = ppp->nxseq >> 8;
1380                         q[5] = ppp->nxseq;
1381                 }
1382
1383                 /*
1384                  * Copy the data in.
1385                  * Unfortunately there is a bug in older versions of
1386                  * the Linux PPP multilink reconstruction code where it
1387                  * drops 0-length fragments.  Therefore we make sure the
1388                  * fragment has at least one byte of data.  Any bytes
1389                  * we add in this situation will end up as padding on the
1390                  * end of the reconstructed packet.
1391                  */
1392                 if (flen == 0)
1393                         *skb_put(frag, 1) = 0;
1394                 else
1395                         memcpy(q + hdrlen, p, flen);
1396
1397                 /* try to send it down the channel */
1398                 chan = pch->chan;
1399                 if (!skb_queue_empty(&pch->file.xq) ||
1400                     !chan->ops->start_xmit(chan, frag))
1401                         skb_queue_tail(&pch->file.xq, frag);
1402                 pch->had_frag = 1;
1403                 p += flen;
1404                 len -= flen;
1405                 ++ppp->nxseq;
1406                 bits = 0;
1407                 spin_unlock_bh(&pch->downl);
1408
1409                 if (--nbigger == 0 && fragsize > 0)
1410                         --fragsize;
1411         }
1412         ppp->nxchan = i;
1413
1414         return 1;
1415
1416  noskb:
1417         spin_unlock_bh(&pch->downl);
1418         if (ppp->debug & 1)
1419                 printk(KERN_ERR "PPP: no memory (fragment)\n");
1420         ++ppp->stats.tx_errors;
1421         ++ppp->nxseq;
1422         return 1;       /* abandon the frame */
1423 }
1424 #endif /* CONFIG_PPP_MULTILINK */
1425
1426 /*
1427  * Try to send data out on a channel.
1428  */
1429 static void
1430 ppp_channel_push(struct channel *pch)
1431 {
1432         struct sk_buff *skb;
1433         struct ppp *ppp;
1434
1435         spin_lock_bh(&pch->downl);
1436         if (pch->chan != 0) {
1437                 while (!skb_queue_empty(&pch->file.xq)) {
1438                         skb = skb_dequeue(&pch->file.xq);
1439                         if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1440                                 /* put the packet back and try again later */
1441                                 skb_queue_head(&pch->file.xq, skb);
1442                                 break;
1443                         }
1444                 }
1445         } else {
1446                 /* channel got deregistered */
1447                 skb_queue_purge(&pch->file.xq);
1448         }
1449         spin_unlock_bh(&pch->downl);
1450         /* see if there is anything from the attached unit to be sent */
1451         if (skb_queue_empty(&pch->file.xq)) {
1452                 read_lock_bh(&pch->upl);
1453                 ppp = pch->ppp;
1454                 if (ppp != 0)
1455                         ppp_xmit_process(ppp);
1456                 read_unlock_bh(&pch->upl);
1457         }
1458 }
1459
1460 /*
1461  * Receive-side routines.
1462  */
1463
1464 /* misuse a few fields of the skb for MP reconstruction */
1465 #define sequence        priority
1466 #define BEbits          cb[0]
1467
1468 static inline void
1469 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1470 {
1471         ppp_recv_lock(ppp);
1472         /* ppp->dev == 0 means interface is closing down */
1473         if (ppp->dev != 0)
1474                 ppp_receive_frame(ppp, skb, pch);
1475         else
1476                 kfree_skb(skb);
1477         ppp_recv_unlock(ppp);
1478 }
1479
1480 void
1481 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1482 {
1483         struct channel *pch = chan->ppp;
1484         int proto;
1485
1486         if (pch == 0 || skb->len == 0) {
1487                 kfree_skb(skb);
1488                 return;
1489         }
1490
1491         proto = PPP_PROTO(skb);
1492         read_lock_bh(&pch->upl);
1493         if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1494                 /* put it on the channel queue */
1495                 skb_queue_tail(&pch->file.rq, skb);
1496                 /* drop old frames if queue too long */
1497                 while (pch->file.rq.qlen > PPP_MAX_RQLEN
1498                        && (skb = skb_dequeue(&pch->file.rq)) != 0)
1499                         kfree_skb(skb);
1500                 wake_up_interruptible(&pch->file.rwait);
1501         } else {
1502                 ppp_do_recv(pch->ppp, skb, pch);
1503         }
1504         read_unlock_bh(&pch->upl);
1505 }
1506
1507 /* Put a 0-length skb in the receive queue as an error indication */
1508 void
1509 ppp_input_error(struct ppp_channel *chan, int code)
1510 {
1511         struct channel *pch = chan->ppp;
1512         struct sk_buff *skb;
1513
1514         if (pch == 0)
1515                 return;
1516
1517         read_lock_bh(&pch->upl);
1518         if (pch->ppp != 0) {
1519                 skb = alloc_skb(0, GFP_ATOMIC);
1520                 if (skb != 0) {
1521                         skb->len = 0;           /* probably unnecessary */
1522                         skb->cb[0] = code;
1523                         ppp_do_recv(pch->ppp, skb, pch);
1524                 }
1525         }
1526         read_unlock_bh(&pch->upl);
1527 }
1528
1529 /*
1530  * We come in here to process a received frame.
1531  * The receive side of the ppp unit is locked.
1532  */
1533 static void
1534 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1535 {
1536         if (skb->len >= 2) {
1537 #ifdef CONFIG_PPP_MULTILINK
1538                 /* XXX do channel-level decompression here */
1539                 if (PPP_PROTO(skb) == PPP_MP)
1540                         ppp_receive_mp_frame(ppp, skb, pch);
1541                 else
1542 #endif /* CONFIG_PPP_MULTILINK */
1543                         ppp_receive_nonmp_frame(ppp, skb);
1544                 return;
1545         }
1546
1547         if (skb->len > 0)
1548                 /* note: a 0-length skb is used as an error indication */
1549                 ++ppp->stats.rx_length_errors;
1550
1551         kfree_skb(skb);
1552         ppp_receive_error(ppp);
1553 }
1554
1555 static void
1556 ppp_receive_error(struct ppp *ppp)
1557 {
1558         ++ppp->stats.rx_errors;
1559         if (ppp->vj != 0)
1560                 slhc_toss(ppp->vj);
1561 }
1562
1563 static void
1564 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1565 {
1566         struct sk_buff *ns;
1567         int proto, len, npi;
1568
1569         /*
1570          * Decompress the frame, if compressed.
1571          * Note that some decompressors need to see uncompressed frames
1572          * that come in as well as compressed frames.
1573          */
1574         if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN)
1575             && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1576                 skb = ppp_decompress_frame(ppp, skb);
1577
1578         if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1579                 goto err;
1580
1581         proto = PPP_PROTO(skb);
1582         switch (proto) {
1583         case PPP_VJC_COMP:
1584                 /* decompress VJ compressed packets */
1585                 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1586                         goto err;
1587
1588                 if (skb_tailroom(skb) < 124) {
1589                         /* copy to a new sk_buff with more tailroom */
1590                         ns = dev_alloc_skb(skb->len + 128);
1591                         if (ns == 0) {
1592                                 printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1593                                 goto err;
1594                         }
1595                         skb_reserve(ns, 2);
1596                         skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1597                         kfree_skb(skb);
1598                         skb = ns;
1599                 }
1600                 else
1601                         skb->ip_summed = CHECKSUM_NONE;
1602
1603                 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1604                 if (len <= 0) {
1605                         printk(KERN_DEBUG "PPP: VJ decompression error\n");
1606                         goto err;
1607                 }
1608                 len += 2;
1609                 if (len > skb->len)
1610                         skb_put(skb, len - skb->len);
1611                 else if (len < skb->len)
1612                         skb_trim(skb, len);
1613                 proto = PPP_IP;
1614                 break;
1615
1616         case PPP_VJC_UNCOMP:
1617                 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1618                         goto err;
1619
1620                 /* Until we fix the decompressor need to make sure
1621                  * data portion is linear.
1622                  */
1623                 if (!pskb_may_pull(skb, skb->len))
1624                         goto err;
1625
1626                 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1627                         printk(KERN_ERR "PPP: VJ uncompressed error\n");
1628                         goto err;
1629                 }
1630                 proto = PPP_IP;
1631                 break;
1632
1633         case PPP_CCP:
1634                 ppp_ccp_peek(ppp, skb, 1);
1635                 break;
1636         }
1637
1638         ++ppp->stats.rx_packets;
1639         ppp->stats.rx_bytes += skb->len - 2;
1640
1641         npi = proto_to_npindex(proto);
1642         if (npi < 0) {
1643                 /* control or unknown frame - pass it to pppd */
1644                 skb_queue_tail(&ppp->file.rq, skb);
1645                 /* limit queue length by dropping old frames */
1646                 while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1647                        && (skb = skb_dequeue(&ppp->file.rq)) != 0)
1648                         kfree_skb(skb);
1649                 /* wake up any process polling or blocking on read */
1650                 wake_up_interruptible(&ppp->file.rwait);
1651
1652         } else {
1653                 /* network protocol frame - give it to the kernel */
1654
1655 #ifdef CONFIG_PPP_FILTER
1656                 /* check if the packet passes the pass and active filters */
1657                 /* the filter instructions are constructed assuming
1658                    a four-byte PPP header on each packet */
1659                 *skb_push(skb, 2) = 0;
1660                 if (ppp->pass_filter
1661                     && sk_run_filter(skb, ppp->pass_filter,
1662                                      ppp->pass_len) == 0) {
1663                         if (ppp->debug & 1)
1664                                 printk(KERN_DEBUG "PPP: inbound frame not passed\n");
1665                         kfree_skb(skb);
1666                         return;
1667                 }
1668                 if (!(ppp->active_filter
1669                       && sk_run_filter(skb, ppp->active_filter,
1670                                        ppp->active_len) == 0))
1671                         ppp->last_recv = jiffies;
1672                 skb_pull(skb, 2);
1673 #else
1674                 ppp->last_recv = jiffies;
1675 #endif /* CONFIG_PPP_FILTER */
1676
1677                 if ((ppp->dev->flags & IFF_UP) == 0
1678                     || ppp->npmode[npi] != NPMODE_PASS) {
1679                         kfree_skb(skb);
1680                 } else {
1681                         /* chop off protocol */
1682                         skb_pull_rcsum(skb, 2);
1683                         skb->dev = ppp->dev;
1684                         skb->protocol = htons(npindex_to_ethertype[npi]);
1685                         skb_reset_mac_header(skb);
1686                         netif_rx(skb);
1687                         ppp->dev->last_rx = jiffies;
1688                 }
1689         }
1690         return;
1691
1692  err:
1693         kfree_skb(skb);
1694         ppp_receive_error(ppp);
1695 }
1696
1697 static struct sk_buff *
1698 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1699 {
1700         int proto = PPP_PROTO(skb);
1701         struct sk_buff *ns;
1702         int len;
1703
1704         /* Until we fix all the decompressor's need to make sure
1705          * data portion is linear.
1706          */
1707         if (!pskb_may_pull(skb, skb->len))
1708                 goto err;
1709
1710         if (proto == PPP_COMP) {
1711                 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN);
1712                 if (ns == 0) {
1713                         printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1714                         goto err;
1715                 }
1716                 /* the decompressor still expects the A/C bytes in the hdr */
1717                 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1718                                 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN);
1719                 if (len < 0) {
1720                         /* Pass the compressed frame to pppd as an
1721                            error indication. */
1722                         if (len == DECOMP_FATALERROR)
1723                                 ppp->rstate |= SC_DC_FERROR;
1724                         kfree_skb(ns);
1725                         goto err;
1726                 }
1727
1728                 kfree_skb(skb);
1729                 skb = ns;
1730                 skb_put(skb, len);
1731                 skb_pull(skb, 2);       /* pull off the A/C bytes */
1732
1733         } else {
1734                 /* Uncompressed frame - pass to decompressor so it
1735                    can update its dictionary if necessary. */
1736                 if (ppp->rcomp->incomp)
1737                         ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1738                                            skb->len + 2);
1739         }
1740
1741         return skb;
1742
1743  err:
1744         ppp->rstate |= SC_DC_ERROR;
1745         ppp_receive_error(ppp);
1746         return skb;
1747 }
1748
1749 #ifdef CONFIG_PPP_MULTILINK
1750 /*
1751  * Receive a multilink frame.
1752  * We put it on the reconstruction queue and then pull off
1753  * as many completed frames as we can.
1754  */
1755 static void
1756 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1757 {
1758         u32 mask, seq;
1759         struct channel *ch;
1760         int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1761
1762         if (!pskb_may_pull(skb, mphdrlen) || ppp->mrru == 0)
1763                 goto err;               /* no good, throw it away */
1764
1765         /* Decode sequence number and begin/end bits */
1766         if (ppp->flags & SC_MP_SHORTSEQ) {
1767                 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1768                 mask = 0xfff;
1769         } else {
1770                 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1771                 mask = 0xffffff;
1772         }
1773         skb->BEbits = skb->data[2];
1774         skb_pull(skb, mphdrlen);        /* pull off PPP and MP headers */
1775
1776         /*
1777          * Do protocol ID decompression on the first fragment of each packet.
1778          */
1779         if ((skb->BEbits & B) && (skb->data[0] & 1))
1780                 *skb_push(skb, 1) = 0;
1781
1782         /*
1783          * Expand sequence number to 32 bits, making it as close
1784          * as possible to ppp->minseq.
1785          */
1786         seq |= ppp->minseq & ~mask;
1787         if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1788                 seq += mask + 1;
1789         else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1790                 seq -= mask + 1;        /* should never happen */
1791         skb->sequence = seq;
1792         pch->lastseq = seq;
1793
1794         /*
1795          * If this packet comes before the next one we were expecting,
1796          * drop it.
1797          */
1798         if (seq_before(seq, ppp->nextseq)) {
1799                 kfree_skb(skb);
1800                 ++ppp->stats.rx_dropped;
1801                 ppp_receive_error(ppp);
1802                 return;
1803         }
1804
1805         /*
1806          * Reevaluate minseq, the minimum over all channels of the
1807          * last sequence number received on each channel.  Because of
1808          * the increasing sequence number rule, we know that any fragment
1809          * before `minseq' which hasn't arrived is never going to arrive.
1810          * The list of channels can't change because we have the receive
1811          * side of the ppp unit locked.
1812          */
1813         list_for_each_entry(ch, &ppp->channels, clist) {
1814                 if (seq_before(ch->lastseq, seq))
1815                         seq = ch->lastseq;
1816         }
1817         if (seq_before(ppp->minseq, seq))
1818                 ppp->minseq = seq;
1819
1820         /* Put the fragment on the reconstruction queue */
1821         ppp_mp_insert(ppp, skb);
1822
1823         /* If the queue is getting long, don't wait any longer for packets
1824            before the start of the queue. */
1825         if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN
1826             && seq_before(ppp->minseq, ppp->mrq.next->sequence))
1827                 ppp->minseq = ppp->mrq.next->sequence;
1828
1829         /* Pull completed packets off the queue and receive them. */
1830         while ((skb = ppp_mp_reconstruct(ppp)) != 0)
1831                 ppp_receive_nonmp_frame(ppp, skb);
1832
1833         return;
1834
1835  err:
1836         kfree_skb(skb);
1837         ppp_receive_error(ppp);
1838 }
1839
1840 /*
1841  * Insert a fragment on the MP reconstruction queue.
1842  * The queue is ordered by increasing sequence number.
1843  */
1844 static void
1845 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1846 {
1847         struct sk_buff *p;
1848         struct sk_buff_head *list = &ppp->mrq;
1849         u32 seq = skb->sequence;
1850
1851         /* N.B. we don't need to lock the list lock because we have the
1852            ppp unit receive-side lock. */
1853         for (p = list->next; p != (struct sk_buff *)list; p = p->next)
1854                 if (seq_before(seq, p->sequence))
1855                         break;
1856         __skb_insert(skb, p->prev, p, list);
1857 }
1858
1859 /*
1860  * Reconstruct a packet from the MP fragment queue.
1861  * We go through increasing sequence numbers until we find a
1862  * complete packet, or we get to the sequence number for a fragment
1863  * which hasn't arrived but might still do so.
1864  */
1865 struct sk_buff *
1866 ppp_mp_reconstruct(struct ppp *ppp)
1867 {
1868         u32 seq = ppp->nextseq;
1869         u32 minseq = ppp->minseq;
1870         struct sk_buff_head *list = &ppp->mrq;
1871         struct sk_buff *p, *next;
1872         struct sk_buff *head, *tail;
1873         struct sk_buff *skb = NULL;
1874         int lost = 0, len = 0;
1875
1876         if (ppp->mrru == 0)     /* do nothing until mrru is set */
1877                 return NULL;
1878         head = list->next;
1879         tail = NULL;
1880         for (p = head; p != (struct sk_buff *) list; p = next) {
1881                 next = p->next;
1882                 if (seq_before(p->sequence, seq)) {
1883                         /* this can't happen, anyway ignore the skb */
1884                         printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1885                                p->sequence, seq);
1886                         head = next;
1887                         continue;
1888                 }
1889                 if (p->sequence != seq) {
1890                         /* Fragment `seq' is missing.  If it is after
1891                            minseq, it might arrive later, so stop here. */
1892                         if (seq_after(seq, minseq))
1893                                 break;
1894                         /* Fragment `seq' is lost, keep going. */
1895                         lost = 1;
1896                         seq = seq_before(minseq, p->sequence)?
1897                                 minseq + 1: p->sequence;
1898                         next = p;
1899                         continue;
1900                 }
1901
1902                 /*
1903                  * At this point we know that all the fragments from
1904                  * ppp->nextseq to seq are either present or lost.
1905                  * Also, there are no complete packets in the queue
1906                  * that have no missing fragments and end before this
1907                  * fragment.
1908                  */
1909
1910                 /* B bit set indicates this fragment starts a packet */
1911                 if (p->BEbits & B) {
1912                         head = p;
1913                         lost = 0;
1914                         len = 0;
1915                 }
1916
1917                 len += p->len;
1918
1919                 /* Got a complete packet yet? */
1920                 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1921                         if (len > ppp->mrru + 2) {
1922                                 ++ppp->stats.rx_length_errors;
1923                                 printk(KERN_DEBUG "PPP: reconstructed packet"
1924                                        " is too long (%d)\n", len);
1925                         } else if (p == head) {
1926                                 /* fragment is complete packet - reuse skb */
1927                                 tail = p;
1928                                 skb = skb_get(p);
1929                                 break;
1930                         } else if ((skb = dev_alloc_skb(len)) == NULL) {
1931                                 ++ppp->stats.rx_missed_errors;
1932                                 printk(KERN_DEBUG "PPP: no memory for "
1933                                        "reconstructed packet");
1934                         } else {
1935                                 tail = p;
1936                                 break;
1937                         }
1938                         ppp->nextseq = seq + 1;
1939                 }
1940
1941                 /*
1942                  * If this is the ending fragment of a packet,
1943                  * and we haven't found a complete valid packet yet,
1944                  * we can discard up to and including this fragment.
1945                  */
1946                 if (p->BEbits & E)
1947                         head = next;
1948
1949                 ++seq;
1950         }
1951
1952         /* If we have a complete packet, copy it all into one skb. */
1953         if (tail != NULL) {
1954                 /* If we have discarded any fragments,
1955                    signal a receive error. */
1956                 if (head->sequence != ppp->nextseq) {
1957                         if (ppp->debug & 1)
1958                                 printk(KERN_DEBUG "  missed pkts %u..%u\n",
1959                                        ppp->nextseq, head->sequence-1);
1960                         ++ppp->stats.rx_dropped;
1961                         ppp_receive_error(ppp);
1962                 }
1963
1964                 if (head != tail)
1965                         /* copy to a single skb */
1966                         for (p = head; p != tail->next; p = p->next)
1967                                 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1968                 ppp->nextseq = tail->sequence + 1;
1969                 head = tail->next;
1970         }
1971
1972         /* Discard all the skbuffs that we have copied the data out of
1973            or that we can't use. */
1974         while ((p = list->next) != head) {
1975                 __skb_unlink(p, list);
1976                 kfree_skb(p);
1977         }
1978
1979         return skb;
1980 }
1981 #endif /* CONFIG_PPP_MULTILINK */
1982
1983 /*
1984  * Channel interface.
1985  */
1986
1987 /*
1988  * Create a new, unattached ppp channel.
1989  */
1990 int
1991 ppp_register_channel(struct ppp_channel *chan)
1992 {
1993         struct channel *pch;
1994
1995         pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
1996         if (pch == 0)
1997                 return -ENOMEM;
1998         pch->ppp = NULL;
1999         pch->chan = chan;
2000         chan->ppp = pch;
2001         init_ppp_file(&pch->file, CHANNEL);
2002         pch->file.hdrlen = chan->hdrlen;
2003 #ifdef CONFIG_PPP_MULTILINK
2004         pch->lastseq = -1;
2005 #endif /* CONFIG_PPP_MULTILINK */
2006         init_rwsem(&pch->chan_sem);
2007         spin_lock_init(&pch->downl);
2008         rwlock_init(&pch->upl);
2009         spin_lock_bh(&all_channels_lock);
2010         pch->file.index = ++last_channel_index;
2011         list_add(&pch->list, &new_channels);
2012         atomic_inc(&channel_count);
2013         spin_unlock_bh(&all_channels_lock);
2014         return 0;
2015 }
2016
2017 /*
2018  * Return the index of a channel.
2019  */
2020 int ppp_channel_index(struct ppp_channel *chan)
2021 {
2022         struct channel *pch = chan->ppp;
2023
2024         if (pch != 0)
2025                 return pch->file.index;
2026         return -1;
2027 }
2028
2029 /*
2030  * Return the PPP unit number to which a channel is connected.
2031  */
2032 int ppp_unit_number(struct ppp_channel *chan)
2033 {
2034         struct channel *pch = chan->ppp;
2035         int unit = -1;
2036
2037         if (pch != 0) {
2038                 read_lock_bh(&pch->upl);
2039                 if (pch->ppp != 0)
2040                         unit = pch->ppp->file.index;
2041                 read_unlock_bh(&pch->upl);
2042         }
2043         return unit;
2044 }
2045
2046 /*
2047  * Disconnect a channel from the generic layer.
2048  * This must be called in process context.
2049  */
2050 void
2051 ppp_unregister_channel(struct ppp_channel *chan)
2052 {
2053         struct channel *pch = chan->ppp;
2054
2055         if (pch == 0)
2056                 return;         /* should never happen */
2057         chan->ppp = NULL;
2058
2059         /*
2060          * This ensures that we have returned from any calls into the
2061          * the channel's start_xmit or ioctl routine before we proceed.
2062          */
2063         down_write(&pch->chan_sem);
2064         spin_lock_bh(&pch->downl);
2065         pch->chan = NULL;
2066         spin_unlock_bh(&pch->downl);
2067         up_write(&pch->chan_sem);
2068         ppp_disconnect_channel(pch);
2069         spin_lock_bh(&all_channels_lock);
2070         list_del(&pch->list);
2071         spin_unlock_bh(&all_channels_lock);
2072         pch->file.dead = 1;
2073         wake_up_interruptible(&pch->file.rwait);
2074         if (atomic_dec_and_test(&pch->file.refcnt))
2075                 ppp_destroy_channel(pch);
2076 }
2077
2078 /*
2079  * Callback from a channel when it can accept more to transmit.
2080  * This should be called at BH/softirq level, not interrupt level.
2081  */
2082 void
2083 ppp_output_wakeup(struct ppp_channel *chan)
2084 {
2085         struct channel *pch = chan->ppp;
2086
2087         if (pch == 0)
2088                 return;
2089         ppp_channel_push(pch);
2090 }
2091
2092 /*
2093  * Compression control.
2094  */
2095
2096 /* Process the PPPIOCSCOMPRESS ioctl. */
2097 static int
2098 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2099 {
2100         int err;
2101         struct compressor *cp, *ocomp;
2102         struct ppp_option_data data;
2103         void *state, *ostate;
2104         unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2105
2106         err = -EFAULT;
2107         if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2108             || (data.length <= CCP_MAX_OPTION_LENGTH
2109                 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2110                 goto out;
2111         err = -EINVAL;
2112         if (data.length > CCP_MAX_OPTION_LENGTH
2113             || ccp_option[1] < 2 || ccp_option[1] > data.length)
2114                 goto out;
2115
2116         cp = find_compressor(ccp_option[0]);
2117 #ifdef CONFIG_KMOD
2118         if (cp == 0) {
2119                 request_module("ppp-compress-%d", ccp_option[0]);
2120                 cp = find_compressor(ccp_option[0]);
2121         }
2122 #endif /* CONFIG_KMOD */
2123         if (cp == 0)
2124                 goto out;
2125
2126         err = -ENOBUFS;
2127         if (data.transmit) {
2128                 state = cp->comp_alloc(ccp_option, data.length);
2129                 if (state != 0) {
2130                         ppp_xmit_lock(ppp);
2131                         ppp->xstate &= ~SC_COMP_RUN;
2132                         ocomp = ppp->xcomp;
2133                         ostate = ppp->xc_state;
2134                         ppp->xcomp = cp;
2135                         ppp->xc_state = state;
2136                         ppp_xmit_unlock(ppp);
2137                         if (ostate != 0) {
2138                                 ocomp->comp_free(ostate);
2139                                 module_put(ocomp->owner);
2140                         }
2141                         err = 0;
2142                 } else
2143                         module_put(cp->owner);
2144
2145         } else {
2146                 state = cp->decomp_alloc(ccp_option, data.length);
2147                 if (state != 0) {
2148                         ppp_recv_lock(ppp);
2149                         ppp->rstate &= ~SC_DECOMP_RUN;
2150                         ocomp = ppp->rcomp;
2151                         ostate = ppp->rc_state;
2152                         ppp->rcomp = cp;
2153                         ppp->rc_state = state;
2154                         ppp_recv_unlock(ppp);
2155                         if (ostate != 0) {
2156                                 ocomp->decomp_free(ostate);
2157                                 module_put(ocomp->owner);
2158                         }
2159                         err = 0;
2160                 } else
2161                         module_put(cp->owner);
2162         }
2163
2164  out:
2165         return err;
2166 }
2167
2168 /*
2169  * Look at a CCP packet and update our state accordingly.
2170  * We assume the caller has the xmit or recv path locked.
2171  */
2172 static void
2173 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2174 {
2175         unsigned char *dp;
2176         int len;
2177
2178         if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2179                 return; /* no header */
2180         dp = skb->data + 2;
2181
2182         switch (CCP_CODE(dp)) {
2183         case CCP_CONFREQ:
2184
2185                 /* A ConfReq starts negotiation of compression
2186                  * in one direction of transmission,
2187                  * and hence brings it down...but which way?
2188                  *
2189                  * Remember:
2190                  * A ConfReq indicates what the sender would like to receive
2191                  */
2192                 if(inbound)
2193                         /* He is proposing what I should send */
2194                         ppp->xstate &= ~SC_COMP_RUN;
2195                 else
2196                         /* I am proposing to what he should send */
2197                         ppp->rstate &= ~SC_DECOMP_RUN;
2198
2199                 break;
2200
2201         case CCP_TERMREQ:
2202         case CCP_TERMACK:
2203                 /*
2204                  * CCP is going down, both directions of transmission
2205                  */
2206                 ppp->rstate &= ~SC_DECOMP_RUN;
2207                 ppp->xstate &= ~SC_COMP_RUN;
2208                 break;
2209
2210         case CCP_CONFACK:
2211                 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2212                         break;
2213                 len = CCP_LENGTH(dp);
2214                 if (!pskb_may_pull(skb, len + 2))
2215                         return;         /* too short */
2216                 dp += CCP_HDRLEN;
2217                 len -= CCP_HDRLEN;
2218                 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2219                         break;
2220                 if (inbound) {
2221                         /* we will start receiving compressed packets */
2222                         if (ppp->rc_state == 0)
2223                                 break;
2224                         if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2225                                         ppp->file.index, 0, ppp->mru, ppp->debug)) {
2226                                 ppp->rstate |= SC_DECOMP_RUN;
2227                                 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2228                         }
2229                 } else {
2230                         /* we will soon start sending compressed packets */
2231                         if (ppp->xc_state == 0)
2232                                 break;
2233                         if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2234                                         ppp->file.index, 0, ppp->debug))
2235                                 ppp->xstate |= SC_COMP_RUN;
2236                 }
2237                 break;
2238
2239         case CCP_RESETACK:
2240                 /* reset the [de]compressor */
2241                 if ((ppp->flags & SC_CCP_UP) == 0)
2242                         break;
2243                 if (inbound) {
2244                         if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2245                                 ppp->rcomp->decomp_reset(ppp->rc_state);
2246                                 ppp->rstate &= ~SC_DC_ERROR;
2247                         }
2248                 } else {
2249                         if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2250                                 ppp->xcomp->comp_reset(ppp->xc_state);
2251                 }
2252                 break;
2253         }
2254 }
2255
2256 /* Free up compression resources. */
2257 static void
2258 ppp_ccp_closed(struct ppp *ppp)
2259 {
2260         void *xstate, *rstate;
2261         struct compressor *xcomp, *rcomp;
2262
2263         ppp_lock(ppp);
2264         ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2265         ppp->xstate = 0;
2266         xcomp = ppp->xcomp;
2267         xstate = ppp->xc_state;
2268         ppp->xc_state = NULL;
2269         ppp->rstate = 0;
2270         rcomp = ppp->rcomp;
2271         rstate = ppp->rc_state;
2272         ppp->rc_state = NULL;
2273         ppp_unlock(ppp);
2274
2275         if (xstate) {
2276                 xcomp->comp_free(xstate);
2277                 module_put(xcomp->owner);
2278         }
2279         if (rstate) {
2280                 rcomp->decomp_free(rstate);
2281                 module_put(rcomp->owner);
2282         }
2283 }
2284
2285 /* List of compressors. */
2286 static LIST_HEAD(compressor_list);
2287 static DEFINE_SPINLOCK(compressor_list_lock);
2288
2289 struct compressor_entry {
2290         struct list_head list;
2291         struct compressor *comp;
2292 };
2293
2294 static struct compressor_entry *
2295 find_comp_entry(int proto)
2296 {
2297         struct compressor_entry *ce;
2298
2299         list_for_each_entry(ce, &compressor_list, list) {
2300                 if (ce->comp->compress_proto == proto)
2301                         return ce;
2302         }
2303         return NULL;
2304 }
2305
2306 /* Register a compressor */
2307 int
2308 ppp_register_compressor(struct compressor *cp)
2309 {
2310         struct compressor_entry *ce;
2311         int ret;
2312         spin_lock(&compressor_list_lock);
2313         ret = -EEXIST;
2314         if (find_comp_entry(cp->compress_proto) != 0)
2315                 goto out;
2316         ret = -ENOMEM;
2317         ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2318         if (ce == 0)
2319                 goto out;
2320         ret = 0;
2321         ce->comp = cp;
2322         list_add(&ce->list, &compressor_list);
2323  out:
2324         spin_unlock(&compressor_list_lock);
2325         return ret;
2326 }
2327
2328 /* Unregister a compressor */
2329 void
2330 ppp_unregister_compressor(struct compressor *cp)
2331 {
2332         struct compressor_entry *ce;
2333
2334         spin_lock(&compressor_list_lock);
2335         ce = find_comp_entry(cp->compress_proto);
2336         if (ce != 0 && ce->comp == cp) {
2337                 list_del(&ce->list);
2338                 kfree(ce);
2339         }
2340         spin_unlock(&compressor_list_lock);
2341 }
2342
2343 /* Find a compressor. */
2344 static struct compressor *
2345 find_compressor(int type)
2346 {
2347         struct compressor_entry *ce;
2348         struct compressor *cp = NULL;
2349
2350         spin_lock(&compressor_list_lock);
2351         ce = find_comp_entry(type);
2352         if (ce != 0) {
2353                 cp = ce->comp;
2354                 if (!try_module_get(cp->owner))
2355                         cp = NULL;
2356         }
2357         spin_unlock(&compressor_list_lock);
2358         return cp;
2359 }
2360
2361 /*
2362  * Miscelleneous stuff.
2363  */
2364
2365 static void
2366 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2367 {
2368         struct slcompress *vj = ppp->vj;
2369
2370         memset(st, 0, sizeof(*st));
2371         st->p.ppp_ipackets = ppp->stats.rx_packets;
2372         st->p.ppp_ierrors = ppp->stats.rx_errors;
2373         st->p.ppp_ibytes = ppp->stats.rx_bytes;
2374         st->p.ppp_opackets = ppp->stats.tx_packets;
2375         st->p.ppp_oerrors = ppp->stats.tx_errors;
2376         st->p.ppp_obytes = ppp->stats.tx_bytes;
2377         if (vj == 0)
2378                 return;
2379         st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2380         st->vj.vjs_compressed = vj->sls_o_compressed;
2381         st->vj.vjs_searches = vj->sls_o_searches;
2382         st->vj.vjs_misses = vj->sls_o_misses;
2383         st->vj.vjs_errorin = vj->sls_i_error;
2384         st->vj.vjs_tossed = vj->sls_i_tossed;
2385         st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2386         st->vj.vjs_compressedin = vj->sls_i_compressed;
2387 }
2388
2389 /*
2390  * Stuff for handling the lists of ppp units and channels
2391  * and for initialization.
2392  */
2393
2394 /*
2395  * Create a new ppp interface unit.  Fails if it can't allocate memory
2396  * or if there is already a unit with the requested number.
2397  * unit == -1 means allocate a new number.
2398  */
2399 static struct ppp *
2400 ppp_create_interface(int unit, int *retp)
2401 {
2402         struct ppp *ppp;
2403         struct net_device *dev = NULL;
2404         int ret = -ENOMEM;
2405         int i;
2406
2407         ppp = kzalloc(sizeof(struct ppp), GFP_KERNEL);
2408         if (!ppp)
2409                 goto out;
2410         dev = alloc_netdev(0, "", ppp_setup);
2411         if (!dev)
2412                 goto out1;
2413
2414         ppp->mru = PPP_MRU;
2415         init_ppp_file(&ppp->file, INTERFACE);
2416         ppp->file.hdrlen = PPP_HDRLEN - 2;      /* don't count proto bytes */
2417         for (i = 0; i < NUM_NP; ++i)
2418                 ppp->npmode[i] = NPMODE_PASS;
2419         INIT_LIST_HEAD(&ppp->channels);
2420         spin_lock_init(&ppp->rlock);
2421         spin_lock_init(&ppp->wlock);
2422 #ifdef CONFIG_PPP_MULTILINK
2423         ppp->minseq = -1;
2424         skb_queue_head_init(&ppp->mrq);
2425 #endif /* CONFIG_PPP_MULTILINK */
2426         ppp->dev = dev;
2427         dev->priv = ppp;
2428
2429         dev->hard_start_xmit = ppp_start_xmit;
2430         dev->get_stats = ppp_net_stats;
2431         dev->do_ioctl = ppp_net_ioctl;
2432
2433         ret = -EEXIST;
2434         mutex_lock(&all_ppp_mutex);
2435         if (unit < 0)
2436                 unit = cardmap_find_first_free(all_ppp_units);
2437         else if (cardmap_get(all_ppp_units, unit) != NULL)
2438                 goto out2;      /* unit already exists */
2439
2440         /* Initialize the new ppp unit */
2441         ppp->file.index = unit;
2442         sprintf(dev->name, "ppp%d", unit);
2443
2444         ret = register_netdev(dev);
2445         if (ret != 0) {
2446                 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2447                        dev->name, ret);
2448                 goto out2;
2449         }
2450
2451         atomic_inc(&ppp_unit_count);
2452         ret = cardmap_set(&all_ppp_units, unit, ppp);
2453         if (ret != 0)
2454                 goto out3;
2455
2456         mutex_unlock(&all_ppp_mutex);
2457         *retp = 0;
2458         return ppp;
2459
2460 out3:
2461         atomic_dec(&ppp_unit_count);
2462 out2:
2463         mutex_unlock(&all_ppp_mutex);
2464         free_netdev(dev);
2465 out1:
2466         kfree(ppp);
2467 out:
2468         *retp = ret;
2469         return NULL;
2470 }
2471
2472 /*
2473  * Initialize a ppp_file structure.
2474  */
2475 static void
2476 init_ppp_file(struct ppp_file *pf, int kind)
2477 {
2478         pf->kind = kind;
2479         skb_queue_head_init(&pf->xq);
2480         skb_queue_head_init(&pf->rq);
2481         atomic_set(&pf->refcnt, 1);
2482         init_waitqueue_head(&pf->rwait);
2483 }
2484
2485 /*
2486  * Take down a ppp interface unit - called when the owning file
2487  * (the one that created the unit) is closed or detached.
2488  */
2489 static void ppp_shutdown_interface(struct ppp *ppp)
2490 {
2491         struct net_device *dev;
2492
2493         mutex_lock(&all_ppp_mutex);
2494         ppp_lock(ppp);
2495         dev = ppp->dev;
2496         ppp->dev = NULL;
2497         ppp_unlock(ppp);
2498         /* This will call dev_close() for us. */
2499         if (dev) {
2500                 unregister_netdev(dev);
2501                 free_netdev(dev);
2502         }
2503         cardmap_set(&all_ppp_units, ppp->file.index, NULL);
2504         ppp->file.dead = 1;
2505         ppp->owner = NULL;
2506         wake_up_interruptible(&ppp->file.rwait);
2507         mutex_unlock(&all_ppp_mutex);
2508 }
2509
2510 /*
2511  * Free the memory used by a ppp unit.  This is only called once
2512  * there are no channels connected to the unit and no file structs
2513  * that reference the unit.
2514  */
2515 static void ppp_destroy_interface(struct ppp *ppp)
2516 {
2517         atomic_dec(&ppp_unit_count);
2518
2519         if (!ppp->file.dead || ppp->n_channels) {
2520                 /* "can't happen" */
2521                 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2522                        "n_channels=%d !\n", ppp, ppp->file.dead,
2523                        ppp->n_channels);
2524                 return;
2525         }
2526
2527         ppp_ccp_closed(ppp);
2528         if (ppp->vj) {
2529                 slhc_free(ppp->vj);
2530                 ppp->vj = NULL;
2531         }
2532         skb_queue_purge(&ppp->file.xq);
2533         skb_queue_purge(&ppp->file.rq);
2534 #ifdef CONFIG_PPP_MULTILINK
2535         skb_queue_purge(&ppp->mrq);
2536 #endif /* CONFIG_PPP_MULTILINK */
2537 #ifdef CONFIG_PPP_FILTER
2538         kfree(ppp->pass_filter);
2539         ppp->pass_filter = NULL;
2540         kfree(ppp->active_filter);
2541         ppp->active_filter = NULL;
2542 #endif /* CONFIG_PPP_FILTER */
2543
2544         if (ppp->xmit_pending)
2545                 kfree_skb(ppp->xmit_pending);
2546
2547         kfree(ppp);
2548 }
2549
2550 /*
2551  * Locate an existing ppp unit.
2552  * The caller should have locked the all_ppp_mutex.
2553  */
2554 static struct ppp *
2555 ppp_find_unit(int unit)
2556 {
2557         return cardmap_get(all_ppp_units, unit);
2558 }
2559
2560 /*
2561  * Locate an existing ppp channel.
2562  * The caller should have locked the all_channels_lock.
2563  * First we look in the new_channels list, then in the
2564  * all_channels list.  If found in the new_channels list,
2565  * we move it to the all_channels list.  This is for speed
2566  * when we have a lot of channels in use.
2567  */
2568 static struct channel *
2569 ppp_find_channel(int unit)
2570 {
2571         struct channel *pch;
2572
2573         list_for_each_entry(pch, &new_channels, list) {
2574                 if (pch->file.index == unit) {
2575                         list_move(&pch->list, &all_channels);
2576                         return pch;
2577                 }
2578         }
2579         list_for_each_entry(pch, &all_channels, list) {
2580                 if (pch->file.index == unit)
2581                         return pch;
2582         }
2583         return NULL;
2584 }
2585
2586 /*
2587  * Connect a PPP channel to a PPP interface unit.
2588  */
2589 static int
2590 ppp_connect_channel(struct channel *pch, int unit)
2591 {
2592         struct ppp *ppp;
2593         int ret = -ENXIO;
2594         int hdrlen;
2595
2596         mutex_lock(&all_ppp_mutex);
2597         ppp = ppp_find_unit(unit);
2598         if (ppp == 0)
2599                 goto out;
2600         write_lock_bh(&pch->upl);
2601         ret = -EINVAL;
2602         if (pch->ppp != 0)
2603                 goto outl;
2604
2605         ppp_lock(ppp);
2606         if (pch->file.hdrlen > ppp->file.hdrlen)
2607                 ppp->file.hdrlen = pch->file.hdrlen;
2608         hdrlen = pch->file.hdrlen + 2;  /* for protocol bytes */
2609         if (ppp->dev && hdrlen > ppp->dev->hard_header_len)
2610                 ppp->dev->hard_header_len = hdrlen;
2611         list_add_tail(&pch->clist, &ppp->channels);
2612         ++ppp->n_channels;
2613         pch->ppp = ppp;
2614         atomic_inc(&ppp->file.refcnt);
2615         ppp_unlock(ppp);
2616         ret = 0;
2617
2618  outl:
2619         write_unlock_bh(&pch->upl);
2620  out:
2621         mutex_unlock(&all_ppp_mutex);
2622         return ret;
2623 }
2624
2625 /*
2626  * Disconnect a channel from its ppp unit.
2627  */
2628 static int
2629 ppp_disconnect_channel(struct channel *pch)
2630 {
2631         struct ppp *ppp;
2632         int err = -EINVAL;
2633
2634         write_lock_bh(&pch->upl);
2635         ppp = pch->ppp;
2636         pch->ppp = NULL;
2637         write_unlock_bh(&pch->upl);
2638         if (ppp != 0) {
2639                 /* remove it from the ppp unit's list */
2640                 ppp_lock(ppp);
2641                 list_del(&pch->clist);
2642                 if (--ppp->n_channels == 0)
2643                         wake_up_interruptible(&ppp->file.rwait);
2644                 ppp_unlock(ppp);
2645                 if (atomic_dec_and_test(&ppp->file.refcnt))
2646                         ppp_destroy_interface(ppp);
2647                 err = 0;
2648         }
2649         return err;
2650 }
2651
2652 /*
2653  * Free up the resources used by a ppp channel.
2654  */
2655 static void ppp_destroy_channel(struct channel *pch)
2656 {
2657         atomic_dec(&channel_count);
2658
2659         if (!pch->file.dead) {
2660                 /* "can't happen" */
2661                 printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2662                        pch);
2663                 return;
2664         }
2665         skb_queue_purge(&pch->file.xq);
2666         skb_queue_purge(&pch->file.rq);
2667         kfree(pch);
2668 }
2669
2670 static void __exit ppp_cleanup(void)
2671 {
2672         /* should never happen */
2673         if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2674                 printk(KERN_ERR "PPP: removing module but units remain!\n");
2675         cardmap_destroy(&all_ppp_units);
2676         if (unregister_chrdev(PPP_MAJOR, "ppp") != 0)
2677                 printk(KERN_ERR "PPP: failed to unregister PPP device\n");
2678         device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2679         class_destroy(ppp_class);
2680 }
2681
2682 /*
2683  * Cardmap implementation.
2684  */
2685 static void *cardmap_get(struct cardmap *map, unsigned int nr)
2686 {
2687         struct cardmap *p;
2688         int i;
2689
2690         for (p = map; p != NULL; ) {
2691                 if ((i = nr >> p->shift) >= CARDMAP_WIDTH)
2692                         return NULL;
2693                 if (p->shift == 0)
2694                         return p->ptr[i];
2695                 nr &= ~(CARDMAP_MASK << p->shift);
2696                 p = p->ptr[i];
2697         }
2698         return NULL;
2699 }
2700
2701 static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr)
2702 {
2703         struct cardmap *p;
2704         int i;
2705
2706         p = *pmap;
2707         if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) {
2708                 do {
2709                         /* need a new top level */
2710                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2711                         if (!np)
2712                                 goto enomem;
2713                         np->ptr[0] = p;
2714                         if (p != NULL) {
2715                                 np->shift = p->shift + CARDMAP_ORDER;
2716                                 p->parent = np;
2717                         } else
2718                                 np->shift = 0;
2719                         p = np;
2720                 } while ((nr >> p->shift) >= CARDMAP_WIDTH);
2721                 *pmap = p;
2722         }
2723         while (p->shift > 0) {
2724                 i = (nr >> p->shift) & CARDMAP_MASK;
2725                 if (p->ptr[i] == NULL) {
2726                         struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL);
2727                         if (!np)
2728                                 goto enomem;
2729                         np->shift = p->shift - CARDMAP_ORDER;
2730                         np->parent = p;
2731                         p->ptr[i] = np;
2732                 }
2733                 if (ptr == NULL)
2734                         clear_bit(i, &p->inuse);
2735                 p = p->ptr[i];
2736         }
2737         i = nr & CARDMAP_MASK;
2738         p->ptr[i] = ptr;
2739         if (ptr != NULL)
2740                 set_bit(i, &p->inuse);
2741         else
2742                 clear_bit(i, &p->inuse);
2743         return 0;
2744  enomem:
2745         return -ENOMEM;
2746 }
2747
2748 static unsigned int cardmap_find_first_free(struct cardmap *map)
2749 {
2750         struct cardmap *p;
2751         unsigned int nr = 0;
2752         int i;
2753
2754         if ((p = map) == NULL)
2755                 return 0;
2756         for (;;) {
2757                 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH);
2758                 if (i >= CARDMAP_WIDTH) {
2759                         if (p->parent == NULL)
2760                                 return CARDMAP_WIDTH << p->shift;
2761                         p = p->parent;
2762                         i = (nr >> p->shift) & CARDMAP_MASK;
2763                         set_bit(i, &p->inuse);
2764                         continue;
2765                 }
2766                 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift);
2767                 if (p->shift == 0 || p->ptr[i] == NULL)
2768                         return nr;
2769                 p = p->ptr[i];
2770         }
2771 }
2772
2773 static void cardmap_destroy(struct cardmap **pmap)
2774 {
2775         struct cardmap *p, *np;
2776         int i;
2777
2778         for (p = *pmap; p != NULL; p = np) {
2779                 if (p->shift != 0) {
2780                         for (i = 0; i < CARDMAP_WIDTH; ++i)
2781                                 if (p->ptr[i] != NULL)
2782                                         break;
2783                         if (i < CARDMAP_WIDTH) {
2784                                 np = p->ptr[i];
2785                                 p->ptr[i] = NULL;
2786                                 continue;
2787                         }
2788                 }
2789                 np = p->parent;
2790                 kfree(p);
2791         }
2792         *pmap = NULL;
2793 }
2794
2795 /* Module/initialization stuff */
2796
2797 module_init(ppp_init);
2798 module_exit(ppp_cleanup);
2799
2800 EXPORT_SYMBOL(ppp_register_channel);
2801 EXPORT_SYMBOL(ppp_unregister_channel);
2802 EXPORT_SYMBOL(ppp_channel_index);
2803 EXPORT_SYMBOL(ppp_unit_number);
2804 EXPORT_SYMBOL(ppp_input);
2805 EXPORT_SYMBOL(ppp_input_error);
2806 EXPORT_SYMBOL(ppp_output_wakeup);
2807 EXPORT_SYMBOL(ppp_register_compressor);
2808 EXPORT_SYMBOL(ppp_unregister_compressor);
2809 MODULE_LICENSE("GPL");
2810 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2811 MODULE_ALIAS("/dev/ppp");