Merge branches 'clk-of-refcount', 'clk-mmio-fixed-clock', 'clk-remove-clps', 'clk...
[sfrench/cifs-2.6.git] / drivers / net / phy / sfp.c
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20
21 enum {
22         GPIO_MODDEF0,
23         GPIO_LOS,
24         GPIO_TX_FAULT,
25         GPIO_TX_DISABLE,
26         GPIO_RATE_SELECT,
27         GPIO_MAX,
28
29         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30         SFP_F_LOS = BIT(GPIO_LOS),
31         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34
35         SFP_E_INSERT = 0,
36         SFP_E_REMOVE,
37         SFP_E_DEV_DOWN,
38         SFP_E_DEV_UP,
39         SFP_E_TX_FAULT,
40         SFP_E_TX_CLEAR,
41         SFP_E_LOS_HIGH,
42         SFP_E_LOS_LOW,
43         SFP_E_TIMEOUT,
44
45         SFP_MOD_EMPTY = 0,
46         SFP_MOD_PROBE,
47         SFP_MOD_HPOWER,
48         SFP_MOD_PRESENT,
49         SFP_MOD_ERROR,
50
51         SFP_DEV_DOWN = 0,
52         SFP_DEV_UP,
53
54         SFP_S_DOWN = 0,
55         SFP_S_INIT,
56         SFP_S_WAIT_LOS,
57         SFP_S_LINK_UP,
58         SFP_S_TX_FAULT,
59         SFP_S_REINIT,
60         SFP_S_TX_DISABLE,
61 };
62
63 static const char  * const mod_state_strings[] = {
64         [SFP_MOD_EMPTY] = "empty",
65         [SFP_MOD_PROBE] = "probe",
66         [SFP_MOD_HPOWER] = "hpower",
67         [SFP_MOD_PRESENT] = "present",
68         [SFP_MOD_ERROR] = "error",
69 };
70
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73         if (mod_state >= ARRAY_SIZE(mod_state_strings))
74                 return "Unknown module state";
75         return mod_state_strings[mod_state];
76 }
77
78 static const char * const dev_state_strings[] = {
79         [SFP_DEV_DOWN] = "down",
80         [SFP_DEV_UP] = "up",
81 };
82
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85         if (dev_state >= ARRAY_SIZE(dev_state_strings))
86                 return "Unknown device state";
87         return dev_state_strings[dev_state];
88 }
89
90 static const char * const event_strings[] = {
91         [SFP_E_INSERT] = "insert",
92         [SFP_E_REMOVE] = "remove",
93         [SFP_E_DEV_DOWN] = "dev_down",
94         [SFP_E_DEV_UP] = "dev_up",
95         [SFP_E_TX_FAULT] = "tx_fault",
96         [SFP_E_TX_CLEAR] = "tx_clear",
97         [SFP_E_LOS_HIGH] = "los_high",
98         [SFP_E_LOS_LOW] = "los_low",
99         [SFP_E_TIMEOUT] = "timeout",
100 };
101
102 static const char *event_to_str(unsigned short event)
103 {
104         if (event >= ARRAY_SIZE(event_strings))
105                 return "Unknown event";
106         return event_strings[event];
107 }
108
109 static const char * const sm_state_strings[] = {
110         [SFP_S_DOWN] = "down",
111         [SFP_S_INIT] = "init",
112         [SFP_S_WAIT_LOS] = "wait_los",
113         [SFP_S_LINK_UP] = "link_up",
114         [SFP_S_TX_FAULT] = "tx_fault",
115         [SFP_S_REINIT] = "reinit",
116         [SFP_S_TX_DISABLE] = "rx_disable",
117 };
118
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121         if (sm_state >= ARRAY_SIZE(sm_state_strings))
122                 return "Unknown state";
123         return sm_state_strings[sm_state];
124 }
125
126 static const char *gpio_of_names[] = {
127         "mod-def0",
128         "los",
129         "tx-fault",
130         "tx-disable",
131         "rate-select0",
132 };
133
134 static const enum gpiod_flags gpio_flags[] = {
135         GPIOD_IN,
136         GPIOD_IN,
137         GPIOD_IN,
138         GPIOD_ASIS,
139         GPIOD_ASIS,
140 };
141
142 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
143 #define T_RESET_US      10
144 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
145
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT    msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL  msecs_to_jiffies(300)
156 #define T_PROBE_RETRY   msecs_to_jiffies(100)
157
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR    22
162
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS  50
165
166 struct sff_data {
167         unsigned int gpios;
168         bool (*module_supported)(const struct sfp_eeprom_id *id);
169 };
170
171 struct sfp {
172         struct device *dev;
173         struct i2c_adapter *i2c;
174         struct mii_bus *i2c_mii;
175         struct sfp_bus *sfp_bus;
176         struct phy_device *mod_phy;
177         const struct sff_data *type;
178         u32 max_power_mW;
179
180         unsigned int (*get_state)(struct sfp *);
181         void (*set_state)(struct sfp *, unsigned int);
182         int (*read)(struct sfp *, bool, u8, void *, size_t);
183         int (*write)(struct sfp *, bool, u8, void *, size_t);
184
185         struct gpio_desc *gpio[GPIO_MAX];
186
187         bool attached;
188         unsigned int state;
189         struct delayed_work poll;
190         struct delayed_work timeout;
191         struct mutex sm_mutex;
192         unsigned char sm_mod_state;
193         unsigned char sm_dev_state;
194         unsigned short sm_state;
195         unsigned int sm_retries;
196
197         struct sfp_eeprom_id id;
198 #if IS_ENABLED(CONFIG_HWMON)
199         struct sfp_diag diag;
200         struct device *hwmon_dev;
201         char *hwmon_name;
202 #endif
203
204 };
205
206 static bool sff_module_supported(const struct sfp_eeprom_id *id)
207 {
208         return id->base.phys_id == SFP_PHYS_ID_SFF &&
209                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
210 }
211
212 static const struct sff_data sff_data = {
213         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
214         .module_supported = sff_module_supported,
215 };
216
217 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
218 {
219         return id->base.phys_id == SFP_PHYS_ID_SFP &&
220                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
221 }
222
223 static const struct sff_data sfp_data = {
224         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
225                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
226         .module_supported = sfp_module_supported,
227 };
228
229 static const struct of_device_id sfp_of_match[] = {
230         { .compatible = "sff,sff", .data = &sff_data, },
231         { .compatible = "sff,sfp", .data = &sfp_data, },
232         { },
233 };
234 MODULE_DEVICE_TABLE(of, sfp_of_match);
235
236 static unsigned long poll_jiffies;
237
238 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
239 {
240         unsigned int i, state, v;
241
242         for (i = state = 0; i < GPIO_MAX; i++) {
243                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
244                         continue;
245
246                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
247                 if (v)
248                         state |= BIT(i);
249         }
250
251         return state;
252 }
253
254 static unsigned int sff_gpio_get_state(struct sfp *sfp)
255 {
256         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
257 }
258
259 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
260 {
261         if (state & SFP_F_PRESENT) {
262                 /* If the module is present, drive the signals */
263                 if (sfp->gpio[GPIO_TX_DISABLE])
264                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
265                                                state & SFP_F_TX_DISABLE);
266                 if (state & SFP_F_RATE_SELECT)
267                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
268                                                state & SFP_F_RATE_SELECT);
269         } else {
270                 /* Otherwise, let them float to the pull-ups */
271                 if (sfp->gpio[GPIO_TX_DISABLE])
272                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
273                 if (state & SFP_F_RATE_SELECT)
274                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
275         }
276 }
277
278 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
279                         size_t len)
280 {
281         struct i2c_msg msgs[2];
282         u8 bus_addr = a2 ? 0x51 : 0x50;
283         int ret;
284
285         msgs[0].addr = bus_addr;
286         msgs[0].flags = 0;
287         msgs[0].len = 1;
288         msgs[0].buf = &dev_addr;
289         msgs[1].addr = bus_addr;
290         msgs[1].flags = I2C_M_RD;
291         msgs[1].len = len;
292         msgs[1].buf = buf;
293
294         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
295         if (ret < 0)
296                 return ret;
297
298         return ret == ARRAY_SIZE(msgs) ? len : 0;
299 }
300
301 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
302         size_t len)
303 {
304         struct i2c_msg msgs[1];
305         u8 bus_addr = a2 ? 0x51 : 0x50;
306         int ret;
307
308         msgs[0].addr = bus_addr;
309         msgs[0].flags = 0;
310         msgs[0].len = 1 + len;
311         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
312         if (!msgs[0].buf)
313                 return -ENOMEM;
314
315         msgs[0].buf[0] = dev_addr;
316         memcpy(&msgs[0].buf[1], buf, len);
317
318         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
319
320         kfree(msgs[0].buf);
321
322         if (ret < 0)
323                 return ret;
324
325         return ret == ARRAY_SIZE(msgs) ? len : 0;
326 }
327
328 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
329 {
330         struct mii_bus *i2c_mii;
331         int ret;
332
333         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
334                 return -EINVAL;
335
336         sfp->i2c = i2c;
337         sfp->read = sfp_i2c_read;
338         sfp->write = sfp_i2c_write;
339
340         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
341         if (IS_ERR(i2c_mii))
342                 return PTR_ERR(i2c_mii);
343
344         i2c_mii->name = "SFP I2C Bus";
345         i2c_mii->phy_mask = ~0;
346
347         ret = mdiobus_register(i2c_mii);
348         if (ret < 0) {
349                 mdiobus_free(i2c_mii);
350                 return ret;
351         }
352
353         sfp->i2c_mii = i2c_mii;
354
355         return 0;
356 }
357
358 /* Interface */
359 static unsigned int sfp_get_state(struct sfp *sfp)
360 {
361         return sfp->get_state(sfp);
362 }
363
364 static void sfp_set_state(struct sfp *sfp, unsigned int state)
365 {
366         sfp->set_state(sfp, state);
367 }
368
369 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
370 {
371         return sfp->read(sfp, a2, addr, buf, len);
372 }
373
374 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
375 {
376         return sfp->write(sfp, a2, addr, buf, len);
377 }
378
379 static unsigned int sfp_check(void *buf, size_t len)
380 {
381         u8 *p, check;
382
383         for (p = buf, check = 0; len; p++, len--)
384                 check += *p;
385
386         return check;
387 }
388
389 /* hwmon */
390 #if IS_ENABLED(CONFIG_HWMON)
391 static umode_t sfp_hwmon_is_visible(const void *data,
392                                     enum hwmon_sensor_types type,
393                                     u32 attr, int channel)
394 {
395         const struct sfp *sfp = data;
396
397         switch (type) {
398         case hwmon_temp:
399                 switch (attr) {
400                 case hwmon_temp_min_alarm:
401                 case hwmon_temp_max_alarm:
402                 case hwmon_temp_lcrit_alarm:
403                 case hwmon_temp_crit_alarm:
404                 case hwmon_temp_min:
405                 case hwmon_temp_max:
406                 case hwmon_temp_lcrit:
407                 case hwmon_temp_crit:
408                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
409                                 return 0;
410                         /* fall through */
411                 case hwmon_temp_input:
412                         return 0444;
413                 default:
414                         return 0;
415                 }
416         case hwmon_in:
417                 switch (attr) {
418                 case hwmon_in_min_alarm:
419                 case hwmon_in_max_alarm:
420                 case hwmon_in_lcrit_alarm:
421                 case hwmon_in_crit_alarm:
422                 case hwmon_in_min:
423                 case hwmon_in_max:
424                 case hwmon_in_lcrit:
425                 case hwmon_in_crit:
426                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
427                                 return 0;
428                         /* fall through */
429                 case hwmon_in_input:
430                         return 0444;
431                 default:
432                         return 0;
433                 }
434         case hwmon_curr:
435                 switch (attr) {
436                 case hwmon_curr_min_alarm:
437                 case hwmon_curr_max_alarm:
438                 case hwmon_curr_lcrit_alarm:
439                 case hwmon_curr_crit_alarm:
440                 case hwmon_curr_min:
441                 case hwmon_curr_max:
442                 case hwmon_curr_lcrit:
443                 case hwmon_curr_crit:
444                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
445                                 return 0;
446                         /* fall through */
447                 case hwmon_curr_input:
448                         return 0444;
449                 default:
450                         return 0;
451                 }
452         case hwmon_power:
453                 /* External calibration of receive power requires
454                  * floating point arithmetic. Doing that in the kernel
455                  * is not easy, so just skip it. If the module does
456                  * not require external calibration, we can however
457                  * show receiver power, since FP is then not needed.
458                  */
459                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
460                     channel == 1)
461                         return 0;
462                 switch (attr) {
463                 case hwmon_power_min_alarm:
464                 case hwmon_power_max_alarm:
465                 case hwmon_power_lcrit_alarm:
466                 case hwmon_power_crit_alarm:
467                 case hwmon_power_min:
468                 case hwmon_power_max:
469                 case hwmon_power_lcrit:
470                 case hwmon_power_crit:
471                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
472                                 return 0;
473                         /* fall through */
474                 case hwmon_power_input:
475                         return 0444;
476                 default:
477                         return 0;
478                 }
479         default:
480                 return 0;
481         }
482 }
483
484 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
485 {
486         __be16 val;
487         int err;
488
489         err = sfp_read(sfp, true, reg, &val, sizeof(val));
490         if (err < 0)
491                 return err;
492
493         *value = be16_to_cpu(val);
494
495         return 0;
496 }
497
498 static void sfp_hwmon_to_rx_power(long *value)
499 {
500         *value = DIV_ROUND_CLOSEST(*value, 100);
501 }
502
503 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
504                                 long *value)
505 {
506         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
507                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
508 }
509
510 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
511 {
512         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
513                             be16_to_cpu(sfp->diag.cal_t_offset), value);
514
515         if (*value >= 0x8000)
516                 *value -= 0x10000;
517
518         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
519 }
520
521 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
522 {
523         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
524                             be16_to_cpu(sfp->diag.cal_v_offset), value);
525
526         *value = DIV_ROUND_CLOSEST(*value, 10);
527 }
528
529 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
530 {
531         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
532                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
533
534         *value = DIV_ROUND_CLOSEST(*value, 500);
535 }
536
537 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
538 {
539         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
540                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
541
542         *value = DIV_ROUND_CLOSEST(*value, 10);
543 }
544
545 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
546 {
547         int err;
548
549         err = sfp_hwmon_read_sensor(sfp, reg, value);
550         if (err < 0)
551                 return err;
552
553         sfp_hwmon_calibrate_temp(sfp, value);
554
555         return 0;
556 }
557
558 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
559 {
560         int err;
561
562         err = sfp_hwmon_read_sensor(sfp, reg, value);
563         if (err < 0)
564                 return err;
565
566         sfp_hwmon_calibrate_vcc(sfp, value);
567
568         return 0;
569 }
570
571 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
572 {
573         int err;
574
575         err = sfp_hwmon_read_sensor(sfp, reg, value);
576         if (err < 0)
577                 return err;
578
579         sfp_hwmon_calibrate_bias(sfp, value);
580
581         return 0;
582 }
583
584 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
585 {
586         int err;
587
588         err = sfp_hwmon_read_sensor(sfp, reg, value);
589         if (err < 0)
590                 return err;
591
592         sfp_hwmon_calibrate_tx_power(sfp, value);
593
594         return 0;
595 }
596
597 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
598 {
599         int err;
600
601         err = sfp_hwmon_read_sensor(sfp, reg, value);
602         if (err < 0)
603                 return err;
604
605         sfp_hwmon_to_rx_power(value);
606
607         return 0;
608 }
609
610 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
611 {
612         u8 status;
613         int err;
614
615         switch (attr) {
616         case hwmon_temp_input:
617                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
618
619         case hwmon_temp_lcrit:
620                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
621                 sfp_hwmon_calibrate_temp(sfp, value);
622                 return 0;
623
624         case hwmon_temp_min:
625                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
626                 sfp_hwmon_calibrate_temp(sfp, value);
627                 return 0;
628         case hwmon_temp_max:
629                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
630                 sfp_hwmon_calibrate_temp(sfp, value);
631                 return 0;
632
633         case hwmon_temp_crit:
634                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
635                 sfp_hwmon_calibrate_temp(sfp, value);
636                 return 0;
637
638         case hwmon_temp_lcrit_alarm:
639                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
640                 if (err < 0)
641                         return err;
642
643                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
644                 return 0;
645
646         case hwmon_temp_min_alarm:
647                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
648                 if (err < 0)
649                         return err;
650
651                 *value = !!(status & SFP_WARN0_TEMP_LOW);
652                 return 0;
653
654         case hwmon_temp_max_alarm:
655                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
656                 if (err < 0)
657                         return err;
658
659                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
660                 return 0;
661
662         case hwmon_temp_crit_alarm:
663                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664                 if (err < 0)
665                         return err;
666
667                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
668                 return 0;
669         default:
670                 return -EOPNOTSUPP;
671         }
672
673         return -EOPNOTSUPP;
674 }
675
676 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
677 {
678         u8 status;
679         int err;
680
681         switch (attr) {
682         case hwmon_in_input:
683                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
684
685         case hwmon_in_lcrit:
686                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
687                 sfp_hwmon_calibrate_vcc(sfp, value);
688                 return 0;
689
690         case hwmon_in_min:
691                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
692                 sfp_hwmon_calibrate_vcc(sfp, value);
693                 return 0;
694
695         case hwmon_in_max:
696                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
697                 sfp_hwmon_calibrate_vcc(sfp, value);
698                 return 0;
699
700         case hwmon_in_crit:
701                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
702                 sfp_hwmon_calibrate_vcc(sfp, value);
703                 return 0;
704
705         case hwmon_in_lcrit_alarm:
706                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
707                 if (err < 0)
708                         return err;
709
710                 *value = !!(status & SFP_ALARM0_VCC_LOW);
711                 return 0;
712
713         case hwmon_in_min_alarm:
714                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
715                 if (err < 0)
716                         return err;
717
718                 *value = !!(status & SFP_WARN0_VCC_LOW);
719                 return 0;
720
721         case hwmon_in_max_alarm:
722                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
723                 if (err < 0)
724                         return err;
725
726                 *value = !!(status & SFP_WARN0_VCC_HIGH);
727                 return 0;
728
729         case hwmon_in_crit_alarm:
730                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731                 if (err < 0)
732                         return err;
733
734                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
735                 return 0;
736         default:
737                 return -EOPNOTSUPP;
738         }
739
740         return -EOPNOTSUPP;
741 }
742
743 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
744 {
745         u8 status;
746         int err;
747
748         switch (attr) {
749         case hwmon_curr_input:
750                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
751
752         case hwmon_curr_lcrit:
753                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
754                 sfp_hwmon_calibrate_bias(sfp, value);
755                 return 0;
756
757         case hwmon_curr_min:
758                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
759                 sfp_hwmon_calibrate_bias(sfp, value);
760                 return 0;
761
762         case hwmon_curr_max:
763                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
764                 sfp_hwmon_calibrate_bias(sfp, value);
765                 return 0;
766
767         case hwmon_curr_crit:
768                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
769                 sfp_hwmon_calibrate_bias(sfp, value);
770                 return 0;
771
772         case hwmon_curr_lcrit_alarm:
773                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
774                 if (err < 0)
775                         return err;
776
777                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
778                 return 0;
779
780         case hwmon_curr_min_alarm:
781                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
782                 if (err < 0)
783                         return err;
784
785                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
786                 return 0;
787
788         case hwmon_curr_max_alarm:
789                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
790                 if (err < 0)
791                         return err;
792
793                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
794                 return 0;
795
796         case hwmon_curr_crit_alarm:
797                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798                 if (err < 0)
799                         return err;
800
801                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
802                 return 0;
803         default:
804                 return -EOPNOTSUPP;
805         }
806
807         return -EOPNOTSUPP;
808 }
809
810 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
811 {
812         u8 status;
813         int err;
814
815         switch (attr) {
816         case hwmon_power_input:
817                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
818
819         case hwmon_power_lcrit:
820                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
821                 sfp_hwmon_calibrate_tx_power(sfp, value);
822                 return 0;
823
824         case hwmon_power_min:
825                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
826                 sfp_hwmon_calibrate_tx_power(sfp, value);
827                 return 0;
828
829         case hwmon_power_max:
830                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
831                 sfp_hwmon_calibrate_tx_power(sfp, value);
832                 return 0;
833
834         case hwmon_power_crit:
835                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
836                 sfp_hwmon_calibrate_tx_power(sfp, value);
837                 return 0;
838
839         case hwmon_power_lcrit_alarm:
840                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
841                 if (err < 0)
842                         return err;
843
844                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
845                 return 0;
846
847         case hwmon_power_min_alarm:
848                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
849                 if (err < 0)
850                         return err;
851
852                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
853                 return 0;
854
855         case hwmon_power_max_alarm:
856                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
857                 if (err < 0)
858                         return err;
859
860                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
861                 return 0;
862
863         case hwmon_power_crit_alarm:
864                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865                 if (err < 0)
866                         return err;
867
868                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
869                 return 0;
870         default:
871                 return -EOPNOTSUPP;
872         }
873
874         return -EOPNOTSUPP;
875 }
876
877 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
878 {
879         u8 status;
880         int err;
881
882         switch (attr) {
883         case hwmon_power_input:
884                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
885
886         case hwmon_power_lcrit:
887                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
888                 sfp_hwmon_to_rx_power(value);
889                 return 0;
890
891         case hwmon_power_min:
892                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
893                 sfp_hwmon_to_rx_power(value);
894                 return 0;
895
896         case hwmon_power_max:
897                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
898                 sfp_hwmon_to_rx_power(value);
899                 return 0;
900
901         case hwmon_power_crit:
902                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
903                 sfp_hwmon_to_rx_power(value);
904                 return 0;
905
906         case hwmon_power_lcrit_alarm:
907                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
908                 if (err < 0)
909                         return err;
910
911                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
912                 return 0;
913
914         case hwmon_power_min_alarm:
915                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
916                 if (err < 0)
917                         return err;
918
919                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
920                 return 0;
921
922         case hwmon_power_max_alarm:
923                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
924                 if (err < 0)
925                         return err;
926
927                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
928                 return 0;
929
930         case hwmon_power_crit_alarm:
931                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932                 if (err < 0)
933                         return err;
934
935                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
936                 return 0;
937         default:
938                 return -EOPNOTSUPP;
939         }
940
941         return -EOPNOTSUPP;
942 }
943
944 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
945                           u32 attr, int channel, long *value)
946 {
947         struct sfp *sfp = dev_get_drvdata(dev);
948
949         switch (type) {
950         case hwmon_temp:
951                 return sfp_hwmon_temp(sfp, attr, value);
952         case hwmon_in:
953                 return sfp_hwmon_vcc(sfp, attr, value);
954         case hwmon_curr:
955                 return sfp_hwmon_bias(sfp, attr, value);
956         case hwmon_power:
957                 switch (channel) {
958                 case 0:
959                         return sfp_hwmon_tx_power(sfp, attr, value);
960                 case 1:
961                         return sfp_hwmon_rx_power(sfp, attr, value);
962                 default:
963                         return -EOPNOTSUPP;
964                 }
965         default:
966                 return -EOPNOTSUPP;
967         }
968 }
969
970 static const struct hwmon_ops sfp_hwmon_ops = {
971         .is_visible = sfp_hwmon_is_visible,
972         .read = sfp_hwmon_read,
973 };
974
975 static u32 sfp_hwmon_chip_config[] = {
976         HWMON_C_REGISTER_TZ,
977         0,
978 };
979
980 static const struct hwmon_channel_info sfp_hwmon_chip = {
981         .type = hwmon_chip,
982         .config = sfp_hwmon_chip_config,
983 };
984
985 static u32 sfp_hwmon_temp_config[] = {
986         HWMON_T_INPUT |
987         HWMON_T_MAX | HWMON_T_MIN |
988         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
989         HWMON_T_CRIT | HWMON_T_LCRIT |
990         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
991         0,
992 };
993
994 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
995         .type = hwmon_temp,
996         .config = sfp_hwmon_temp_config,
997 };
998
999 static u32 sfp_hwmon_vcc_config[] = {
1000         HWMON_I_INPUT |
1001         HWMON_I_MAX | HWMON_I_MIN |
1002         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1003         HWMON_I_CRIT | HWMON_I_LCRIT |
1004         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1005         0,
1006 };
1007
1008 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1009         .type = hwmon_in,
1010         .config = sfp_hwmon_vcc_config,
1011 };
1012
1013 static u32 sfp_hwmon_bias_config[] = {
1014         HWMON_C_INPUT |
1015         HWMON_C_MAX | HWMON_C_MIN |
1016         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1017         HWMON_C_CRIT | HWMON_C_LCRIT |
1018         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1019         0,
1020 };
1021
1022 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1023         .type = hwmon_curr,
1024         .config = sfp_hwmon_bias_config,
1025 };
1026
1027 static u32 sfp_hwmon_power_config[] = {
1028         /* Transmit power */
1029         HWMON_P_INPUT |
1030         HWMON_P_MAX | HWMON_P_MIN |
1031         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1032         HWMON_P_CRIT | HWMON_P_LCRIT |
1033         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1034         /* Receive power */
1035         HWMON_P_INPUT |
1036         HWMON_P_MAX | HWMON_P_MIN |
1037         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1038         HWMON_P_CRIT | HWMON_P_LCRIT |
1039         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1040         0,
1041 };
1042
1043 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1044         .type = hwmon_power,
1045         .config = sfp_hwmon_power_config,
1046 };
1047
1048 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1049         &sfp_hwmon_chip,
1050         &sfp_hwmon_vcc_channel_info,
1051         &sfp_hwmon_temp_channel_info,
1052         &sfp_hwmon_bias_channel_info,
1053         &sfp_hwmon_power_channel_info,
1054         NULL,
1055 };
1056
1057 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1058         .ops = &sfp_hwmon_ops,
1059         .info = sfp_hwmon_info,
1060 };
1061
1062 static int sfp_hwmon_insert(struct sfp *sfp)
1063 {
1064         int err, i;
1065
1066         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1067                 return 0;
1068
1069         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1070                 return 0;
1071
1072         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1073                 /* This driver in general does not support address
1074                  * change.
1075                  */
1076                 return 0;
1077
1078         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1079         if (err < 0)
1080                 return err;
1081
1082         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1083         if (!sfp->hwmon_name)
1084                 return -ENODEV;
1085
1086         for (i = 0; sfp->hwmon_name[i]; i++)
1087                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1088                         sfp->hwmon_name[i] = '_';
1089
1090         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1091                                                          sfp->hwmon_name, sfp,
1092                                                          &sfp_hwmon_chip_info,
1093                                                          NULL);
1094
1095         return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1096 }
1097
1098 static void sfp_hwmon_remove(struct sfp *sfp)
1099 {
1100         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1101                 hwmon_device_unregister(sfp->hwmon_dev);
1102                 sfp->hwmon_dev = NULL;
1103                 kfree(sfp->hwmon_name);
1104         }
1105 }
1106 #else
1107 static int sfp_hwmon_insert(struct sfp *sfp)
1108 {
1109         return 0;
1110 }
1111
1112 static void sfp_hwmon_remove(struct sfp *sfp)
1113 {
1114 }
1115 #endif
1116
1117 /* Helpers */
1118 static void sfp_module_tx_disable(struct sfp *sfp)
1119 {
1120         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1121                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1122         sfp->state |= SFP_F_TX_DISABLE;
1123         sfp_set_state(sfp, sfp->state);
1124 }
1125
1126 static void sfp_module_tx_enable(struct sfp *sfp)
1127 {
1128         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1129                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1130         sfp->state &= ~SFP_F_TX_DISABLE;
1131         sfp_set_state(sfp, sfp->state);
1132 }
1133
1134 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1135 {
1136         unsigned int state = sfp->state;
1137
1138         if (state & SFP_F_TX_DISABLE)
1139                 return;
1140
1141         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1142
1143         udelay(T_RESET_US);
1144
1145         sfp_set_state(sfp, state);
1146 }
1147
1148 /* SFP state machine */
1149 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1150 {
1151         if (timeout)
1152                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1153                                  timeout);
1154         else
1155                 cancel_delayed_work(&sfp->timeout);
1156 }
1157
1158 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1159                         unsigned int timeout)
1160 {
1161         sfp->sm_state = state;
1162         sfp_sm_set_timer(sfp, timeout);
1163 }
1164
1165 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1166                             unsigned int timeout)
1167 {
1168         sfp->sm_mod_state = state;
1169         sfp_sm_set_timer(sfp, timeout);
1170 }
1171
1172 static void sfp_sm_phy_detach(struct sfp *sfp)
1173 {
1174         phy_stop(sfp->mod_phy);
1175         sfp_remove_phy(sfp->sfp_bus);
1176         phy_device_remove(sfp->mod_phy);
1177         phy_device_free(sfp->mod_phy);
1178         sfp->mod_phy = NULL;
1179 }
1180
1181 static void sfp_sm_probe_phy(struct sfp *sfp)
1182 {
1183         struct phy_device *phy;
1184         int err;
1185
1186         msleep(T_PHY_RESET_MS);
1187
1188         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1189         if (phy == ERR_PTR(-ENODEV)) {
1190                 dev_info(sfp->dev, "no PHY detected\n");
1191                 return;
1192         }
1193         if (IS_ERR(phy)) {
1194                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1195                 return;
1196         }
1197
1198         err = sfp_add_phy(sfp->sfp_bus, phy);
1199         if (err) {
1200                 phy_device_remove(phy);
1201                 phy_device_free(phy);
1202                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1203                 return;
1204         }
1205
1206         sfp->mod_phy = phy;
1207         phy_start(phy);
1208 }
1209
1210 static void sfp_sm_link_up(struct sfp *sfp)
1211 {
1212         sfp_link_up(sfp->sfp_bus);
1213         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1214 }
1215
1216 static void sfp_sm_link_down(struct sfp *sfp)
1217 {
1218         sfp_link_down(sfp->sfp_bus);
1219 }
1220
1221 static void sfp_sm_link_check_los(struct sfp *sfp)
1222 {
1223         unsigned int los = sfp->state & SFP_F_LOS;
1224
1225         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1226          * are set, we assume that no LOS signal is available.
1227          */
1228         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1229                 los ^= SFP_F_LOS;
1230         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1231                 los = 0;
1232
1233         if (los)
1234                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1235         else
1236                 sfp_sm_link_up(sfp);
1237 }
1238
1239 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1240 {
1241         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1242                 event == SFP_E_LOS_LOW) ||
1243                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1244                 event == SFP_E_LOS_HIGH);
1245 }
1246
1247 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1248 {
1249         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1250                 event == SFP_E_LOS_HIGH) ||
1251                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1252                 event == SFP_E_LOS_LOW);
1253 }
1254
1255 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1256 {
1257         if (sfp->sm_retries && !--sfp->sm_retries) {
1258                 dev_err(sfp->dev,
1259                         "module persistently indicates fault, disabling\n");
1260                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1261         } else {
1262                 if (warn)
1263                         dev_err(sfp->dev, "module transmit fault indicated\n");
1264
1265                 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1266         }
1267 }
1268
1269 static void sfp_sm_mod_init(struct sfp *sfp)
1270 {
1271         sfp_module_tx_enable(sfp);
1272
1273         /* Wait t_init before indicating that the link is up, provided the
1274          * current state indicates no TX_FAULT.  If TX_FAULT clears before
1275          * this time, that's fine too.
1276          */
1277         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1278         sfp->sm_retries = 5;
1279
1280         /* Setting the serdes link mode is guesswork: there's no
1281          * field in the EEPROM which indicates what mode should
1282          * be used.
1283          *
1284          * If it's a gigabit-only fiber module, it probably does
1285          * not have a PHY, so switch to 802.3z negotiation mode.
1286          * Otherwise, switch to SGMII mode (which is required to
1287          * support non-gigabit speeds) and probe for a PHY.
1288          */
1289         if (sfp->id.base.e1000_base_t ||
1290             sfp->id.base.e100_base_lx ||
1291             sfp->id.base.e100_base_fx)
1292                 sfp_sm_probe_phy(sfp);
1293 }
1294
1295 static int sfp_sm_mod_hpower(struct sfp *sfp)
1296 {
1297         u32 power;
1298         u8 val;
1299         int err;
1300
1301         power = 1000;
1302         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1303                 power = 1500;
1304         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1305                 power = 2000;
1306
1307         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1308             (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1309             SFP_DIAGMON_DDM) {
1310                 /* The module appears not to implement bus address 0xa2,
1311                  * or requires an address change sequence, so assume that
1312                  * the module powers up in the indicated power mode.
1313                  */
1314                 if (power > sfp->max_power_mW) {
1315                         dev_err(sfp->dev,
1316                                 "Host does not support %u.%uW modules\n",
1317                                 power / 1000, (power / 100) % 10);
1318                         return -EINVAL;
1319                 }
1320                 return 0;
1321         }
1322
1323         if (power > sfp->max_power_mW) {
1324                 dev_warn(sfp->dev,
1325                          "Host does not support %u.%uW modules, module left in power mode 1\n",
1326                          power / 1000, (power / 100) % 10);
1327                 return 0;
1328         }
1329
1330         if (power <= 1000)
1331                 return 0;
1332
1333         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1334         if (err != sizeof(val)) {
1335                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1336                 err = -EAGAIN;
1337                 goto err;
1338         }
1339
1340         val |= BIT(0);
1341
1342         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1343         if (err != sizeof(val)) {
1344                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1345                 err = -EAGAIN;
1346                 goto err;
1347         }
1348
1349         dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1350                  power / 1000, (power / 100) % 10);
1351         return T_HPOWER_LEVEL;
1352
1353 err:
1354         return err;
1355 }
1356
1357 static int sfp_sm_mod_probe(struct sfp *sfp)
1358 {
1359         /* SFP module inserted - read I2C data */
1360         struct sfp_eeprom_id id;
1361         bool cotsworks;
1362         u8 check;
1363         int ret;
1364
1365         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1366         if (ret < 0) {
1367                 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1368                 return -EAGAIN;
1369         }
1370
1371         if (ret != sizeof(id)) {
1372                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1373                 return -EAGAIN;
1374         }
1375
1376         /* Cotsworks do not seem to update the checksums when they
1377          * do the final programming with the final module part number,
1378          * serial number and date code.
1379          */
1380         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1381
1382         /* Validate the checksum over the base structure */
1383         check = sfp_check(&id.base, sizeof(id.base) - 1);
1384         if (check != id.base.cc_base) {
1385                 if (cotsworks) {
1386                         dev_warn(sfp->dev,
1387                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1388                                  check, id.base.cc_base);
1389                 } else {
1390                         dev_err(sfp->dev,
1391                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1392                                 check, id.base.cc_base);
1393                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1394                                        16, 1, &id, sizeof(id), true);
1395                         return -EINVAL;
1396                 }
1397         }
1398
1399         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1400         if (check != id.ext.cc_ext) {
1401                 if (cotsworks) {
1402                         dev_warn(sfp->dev,
1403                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1404                                  check, id.ext.cc_ext);
1405                 } else {
1406                         dev_err(sfp->dev,
1407                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1408                                 check, id.ext.cc_ext);
1409                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1410                                        16, 1, &id, sizeof(id), true);
1411                         memset(&id.ext, 0, sizeof(id.ext));
1412                 }
1413         }
1414
1415         sfp->id = id;
1416
1417         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1418                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1419                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1420                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1421                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1422                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1423
1424         /* Check whether we support this module */
1425         if (!sfp->type->module_supported(&sfp->id)) {
1426                 dev_err(sfp->dev,
1427                         "module is not supported - phys id 0x%02x 0x%02x\n",
1428                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1429                 return -EINVAL;
1430         }
1431
1432         /* If the module requires address swap mode, warn about it */
1433         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1434                 dev_warn(sfp->dev,
1435                          "module address swap to access page 0xA2 is not supported.\n");
1436
1437         ret = sfp_hwmon_insert(sfp);
1438         if (ret < 0)
1439                 return ret;
1440
1441         ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1442         if (ret < 0)
1443                 return ret;
1444
1445         return sfp_sm_mod_hpower(sfp);
1446 }
1447
1448 static void sfp_sm_mod_remove(struct sfp *sfp)
1449 {
1450         sfp_module_remove(sfp->sfp_bus);
1451
1452         sfp_hwmon_remove(sfp);
1453
1454         if (sfp->mod_phy)
1455                 sfp_sm_phy_detach(sfp);
1456
1457         sfp_module_tx_disable(sfp);
1458
1459         memset(&sfp->id, 0, sizeof(sfp->id));
1460
1461         dev_info(sfp->dev, "module removed\n");
1462 }
1463
1464 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1465 {
1466         mutex_lock(&sfp->sm_mutex);
1467
1468         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1469                 mod_state_to_str(sfp->sm_mod_state),
1470                 dev_state_to_str(sfp->sm_dev_state),
1471                 sm_state_to_str(sfp->sm_state),
1472                 event_to_str(event));
1473
1474         /* This state machine tracks the insert/remove state of
1475          * the module, and handles probing the on-board EEPROM.
1476          */
1477         switch (sfp->sm_mod_state) {
1478         default:
1479                 if (event == SFP_E_INSERT && sfp->attached) {
1480                         sfp_module_tx_disable(sfp);
1481                         sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1482                 }
1483                 break;
1484
1485         case SFP_MOD_PROBE:
1486                 if (event == SFP_E_REMOVE) {
1487                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1488                 } else if (event == SFP_E_TIMEOUT) {
1489                         int val = sfp_sm_mod_probe(sfp);
1490
1491                         if (val == 0)
1492                                 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1493                         else if (val > 0)
1494                                 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1495                         else if (val != -EAGAIN)
1496                                 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1497                         else
1498                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1499                 }
1500                 break;
1501
1502         case SFP_MOD_HPOWER:
1503                 if (event == SFP_E_TIMEOUT) {
1504                         sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1505                         break;
1506                 }
1507                 /* fallthrough */
1508         case SFP_MOD_PRESENT:
1509         case SFP_MOD_ERROR:
1510                 if (event == SFP_E_REMOVE) {
1511                         sfp_sm_mod_remove(sfp);
1512                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1513                 }
1514                 break;
1515         }
1516
1517         /* This state machine tracks the netdev up/down state */
1518         switch (sfp->sm_dev_state) {
1519         default:
1520                 if (event == SFP_E_DEV_UP)
1521                         sfp->sm_dev_state = SFP_DEV_UP;
1522                 break;
1523
1524         case SFP_DEV_UP:
1525                 if (event == SFP_E_DEV_DOWN) {
1526                         /* If the module has a PHY, avoid raising TX disable
1527                          * as this resets the PHY. Otherwise, raise it to
1528                          * turn the laser off.
1529                          */
1530                         if (!sfp->mod_phy)
1531                                 sfp_module_tx_disable(sfp);
1532                         sfp->sm_dev_state = SFP_DEV_DOWN;
1533                 }
1534                 break;
1535         }
1536
1537         /* Some events are global */
1538         if (sfp->sm_state != SFP_S_DOWN &&
1539             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1540              sfp->sm_dev_state != SFP_DEV_UP)) {
1541                 if (sfp->sm_state == SFP_S_LINK_UP &&
1542                     sfp->sm_dev_state == SFP_DEV_UP)
1543                         sfp_sm_link_down(sfp);
1544                 if (sfp->mod_phy)
1545                         sfp_sm_phy_detach(sfp);
1546                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1547                 mutex_unlock(&sfp->sm_mutex);
1548                 return;
1549         }
1550
1551         /* The main state machine */
1552         switch (sfp->sm_state) {
1553         case SFP_S_DOWN:
1554                 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1555                     sfp->sm_dev_state == SFP_DEV_UP)
1556                         sfp_sm_mod_init(sfp);
1557                 break;
1558
1559         case SFP_S_INIT:
1560                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1561                         sfp_sm_fault(sfp, true);
1562                 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1563                         sfp_sm_link_check_los(sfp);
1564                 break;
1565
1566         case SFP_S_WAIT_LOS:
1567                 if (event == SFP_E_TX_FAULT)
1568                         sfp_sm_fault(sfp, true);
1569                 else if (sfp_los_event_inactive(sfp, event))
1570                         sfp_sm_link_up(sfp);
1571                 break;
1572
1573         case SFP_S_LINK_UP:
1574                 if (event == SFP_E_TX_FAULT) {
1575                         sfp_sm_link_down(sfp);
1576                         sfp_sm_fault(sfp, true);
1577                 } else if (sfp_los_event_active(sfp, event)) {
1578                         sfp_sm_link_down(sfp);
1579                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1580                 }
1581                 break;
1582
1583         case SFP_S_TX_FAULT:
1584                 if (event == SFP_E_TIMEOUT) {
1585                         sfp_module_tx_fault_reset(sfp);
1586                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1587                 }
1588                 break;
1589
1590         case SFP_S_REINIT:
1591                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1592                         sfp_sm_fault(sfp, false);
1593                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1594                         dev_info(sfp->dev, "module transmit fault recovered\n");
1595                         sfp_sm_link_check_los(sfp);
1596                 }
1597                 break;
1598
1599         case SFP_S_TX_DISABLE:
1600                 break;
1601         }
1602
1603         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1604                 mod_state_to_str(sfp->sm_mod_state),
1605                 dev_state_to_str(sfp->sm_dev_state),
1606                 sm_state_to_str(sfp->sm_state));
1607
1608         mutex_unlock(&sfp->sm_mutex);
1609 }
1610
1611 static void sfp_attach(struct sfp *sfp)
1612 {
1613         sfp->attached = true;
1614         if (sfp->state & SFP_F_PRESENT)
1615                 sfp_sm_event(sfp, SFP_E_INSERT);
1616 }
1617
1618 static void sfp_detach(struct sfp *sfp)
1619 {
1620         sfp->attached = false;
1621         sfp_sm_event(sfp, SFP_E_REMOVE);
1622 }
1623
1624 static void sfp_start(struct sfp *sfp)
1625 {
1626         sfp_sm_event(sfp, SFP_E_DEV_UP);
1627 }
1628
1629 static void sfp_stop(struct sfp *sfp)
1630 {
1631         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1632 }
1633
1634 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1635 {
1636         /* locking... and check module is present */
1637
1638         if (sfp->id.ext.sff8472_compliance &&
1639             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1640                 modinfo->type = ETH_MODULE_SFF_8472;
1641                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1642         } else {
1643                 modinfo->type = ETH_MODULE_SFF_8079;
1644                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1645         }
1646         return 0;
1647 }
1648
1649 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1650                              u8 *data)
1651 {
1652         unsigned int first, last, len;
1653         int ret;
1654
1655         if (ee->len == 0)
1656                 return -EINVAL;
1657
1658         first = ee->offset;
1659         last = ee->offset + ee->len;
1660         if (first < ETH_MODULE_SFF_8079_LEN) {
1661                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1662                 len -= first;
1663
1664                 ret = sfp_read(sfp, false, first, data, len);
1665                 if (ret < 0)
1666                         return ret;
1667
1668                 first += len;
1669                 data += len;
1670         }
1671         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1672                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1673                 len -= first;
1674                 first -= ETH_MODULE_SFF_8079_LEN;
1675
1676                 ret = sfp_read(sfp, true, first, data, len);
1677                 if (ret < 0)
1678                         return ret;
1679         }
1680         return 0;
1681 }
1682
1683 static const struct sfp_socket_ops sfp_module_ops = {
1684         .attach = sfp_attach,
1685         .detach = sfp_detach,
1686         .start = sfp_start,
1687         .stop = sfp_stop,
1688         .module_info = sfp_module_info,
1689         .module_eeprom = sfp_module_eeprom,
1690 };
1691
1692 static void sfp_timeout(struct work_struct *work)
1693 {
1694         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1695
1696         rtnl_lock();
1697         sfp_sm_event(sfp, SFP_E_TIMEOUT);
1698         rtnl_unlock();
1699 }
1700
1701 static void sfp_check_state(struct sfp *sfp)
1702 {
1703         unsigned int state, i, changed;
1704
1705         state = sfp_get_state(sfp);
1706         changed = state ^ sfp->state;
1707         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1708
1709         for (i = 0; i < GPIO_MAX; i++)
1710                 if (changed & BIT(i))
1711                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1712                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1713
1714         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1715         sfp->state = state;
1716
1717         rtnl_lock();
1718         if (changed & SFP_F_PRESENT)
1719                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1720                                 SFP_E_INSERT : SFP_E_REMOVE);
1721
1722         if (changed & SFP_F_TX_FAULT)
1723                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1724                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1725
1726         if (changed & SFP_F_LOS)
1727                 sfp_sm_event(sfp, state & SFP_F_LOS ?
1728                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1729         rtnl_unlock();
1730 }
1731
1732 static irqreturn_t sfp_irq(int irq, void *data)
1733 {
1734         struct sfp *sfp = data;
1735
1736         sfp_check_state(sfp);
1737
1738         return IRQ_HANDLED;
1739 }
1740
1741 static void sfp_poll(struct work_struct *work)
1742 {
1743         struct sfp *sfp = container_of(work, struct sfp, poll.work);
1744
1745         sfp_check_state(sfp);
1746         mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1747 }
1748
1749 static struct sfp *sfp_alloc(struct device *dev)
1750 {
1751         struct sfp *sfp;
1752
1753         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1754         if (!sfp)
1755                 return ERR_PTR(-ENOMEM);
1756
1757         sfp->dev = dev;
1758
1759         mutex_init(&sfp->sm_mutex);
1760         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1761         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1762
1763         return sfp;
1764 }
1765
1766 static void sfp_cleanup(void *data)
1767 {
1768         struct sfp *sfp = data;
1769
1770         cancel_delayed_work_sync(&sfp->poll);
1771         cancel_delayed_work_sync(&sfp->timeout);
1772         if (sfp->i2c_mii) {
1773                 mdiobus_unregister(sfp->i2c_mii);
1774                 mdiobus_free(sfp->i2c_mii);
1775         }
1776         if (sfp->i2c)
1777                 i2c_put_adapter(sfp->i2c);
1778         kfree(sfp);
1779 }
1780
1781 static int sfp_probe(struct platform_device *pdev)
1782 {
1783         const struct sff_data *sff;
1784         struct sfp *sfp;
1785         bool poll = false;
1786         int irq, err, i;
1787
1788         sfp = sfp_alloc(&pdev->dev);
1789         if (IS_ERR(sfp))
1790                 return PTR_ERR(sfp);
1791
1792         platform_set_drvdata(pdev, sfp);
1793
1794         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1795         if (err < 0)
1796                 return err;
1797
1798         sff = sfp->type = &sfp_data;
1799
1800         if (pdev->dev.of_node) {
1801                 struct device_node *node = pdev->dev.of_node;
1802                 const struct of_device_id *id;
1803                 struct i2c_adapter *i2c;
1804                 struct device_node *np;
1805
1806                 id = of_match_node(sfp_of_match, node);
1807                 if (WARN_ON(!id))
1808                         return -EINVAL;
1809
1810                 sff = sfp->type = id->data;
1811
1812                 np = of_parse_phandle(node, "i2c-bus", 0);
1813                 if (!np) {
1814                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1815                         return -ENODEV;
1816                 }
1817
1818                 i2c = of_find_i2c_adapter_by_node(np);
1819                 of_node_put(np);
1820                 if (!i2c)
1821                         return -EPROBE_DEFER;
1822
1823                 err = sfp_i2c_configure(sfp, i2c);
1824                 if (err < 0) {
1825                         i2c_put_adapter(i2c);
1826                         return err;
1827                 }
1828         }
1829
1830         for (i = 0; i < GPIO_MAX; i++)
1831                 if (sff->gpios & BIT(i)) {
1832                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1833                                            gpio_of_names[i], gpio_flags[i]);
1834                         if (IS_ERR(sfp->gpio[i]))
1835                                 return PTR_ERR(sfp->gpio[i]);
1836                 }
1837
1838         sfp->get_state = sfp_gpio_get_state;
1839         sfp->set_state = sfp_gpio_set_state;
1840
1841         /* Modules that have no detect signal are always present */
1842         if (!(sfp->gpio[GPIO_MODDEF0]))
1843                 sfp->get_state = sff_gpio_get_state;
1844
1845         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1846                                  &sfp->max_power_mW);
1847         if (!sfp->max_power_mW)
1848                 sfp->max_power_mW = 1000;
1849
1850         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1851                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1852
1853         /* Get the initial state, and always signal TX disable,
1854          * since the network interface will not be up.
1855          */
1856         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1857
1858         if (sfp->gpio[GPIO_RATE_SELECT] &&
1859             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1860                 sfp->state |= SFP_F_RATE_SELECT;
1861         sfp_set_state(sfp, sfp->state);
1862         sfp_module_tx_disable(sfp);
1863
1864         for (i = 0; i < GPIO_MAX; i++) {
1865                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1866                         continue;
1867
1868                 irq = gpiod_to_irq(sfp->gpio[i]);
1869                 if (!irq) {
1870                         poll = true;
1871                         continue;
1872                 }
1873
1874                 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1875                                                 IRQF_ONESHOT |
1876                                                 IRQF_TRIGGER_RISING |
1877                                                 IRQF_TRIGGER_FALLING,
1878                                                 dev_name(sfp->dev), sfp);
1879                 if (err)
1880                         poll = true;
1881         }
1882
1883         if (poll)
1884                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1885
1886         /* We could have an issue in cases no Tx disable pin is available or
1887          * wired as modules using a laser as their light source will continue to
1888          * be active when the fiber is removed. This could be a safety issue and
1889          * we should at least warn the user about that.
1890          */
1891         if (!sfp->gpio[GPIO_TX_DISABLE])
1892                 dev_warn(sfp->dev,
1893                          "No tx_disable pin: SFP modules will always be emitting.\n");
1894
1895         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1896         if (!sfp->sfp_bus)
1897                 return -ENOMEM;
1898
1899         return 0;
1900 }
1901
1902 static int sfp_remove(struct platform_device *pdev)
1903 {
1904         struct sfp *sfp = platform_get_drvdata(pdev);
1905
1906         sfp_unregister_socket(sfp->sfp_bus);
1907
1908         return 0;
1909 }
1910
1911 static struct platform_driver sfp_driver = {
1912         .probe = sfp_probe,
1913         .remove = sfp_remove,
1914         .driver = {
1915                 .name = "sfp",
1916                 .of_match_table = sfp_of_match,
1917         },
1918 };
1919
1920 static int sfp_init(void)
1921 {
1922         poll_jiffies = msecs_to_jiffies(100);
1923
1924         return platform_driver_register(&sfp_driver);
1925 }
1926 module_init(sfp_init);
1927
1928 static void sfp_exit(void)
1929 {
1930         platform_driver_unregister(&sfp_driver);
1931 }
1932 module_exit(sfp_exit);
1933
1934 MODULE_ALIAS("platform:sfp");
1935 MODULE_AUTHOR("Russell King");
1936 MODULE_LICENSE("GPL v2");