Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79         /* required last entry */
80         {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145         .notifier_call  = igb_notify_dca,
146         .next           = NULL,
147         .priority       = 0
148 };
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158                  "per physical function");
159 #endif /* CONFIG_PCI_IOV */
160
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162                      pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167         .error_detected = igb_io_error_detected,
168         .slot_reset = igb_io_slot_reset,
169         .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174         .name     = igb_driver_name,
175         .id_table = igb_pci_tbl,
176         .probe    = igb_probe,
177         .remove   = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179         /* Power Managment Hooks */
180         .suspend  = igb_suspend,
181         .resume   = igb_resume,
182 #endif
183         .shutdown = igb_shutdown,
184         .err_handler = &igb_err_handler
185 };
186
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
191
192 /**
193  * igb_read_clock - read raw cycle counter (to be used by time counter)
194  */
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
196 {
197         struct igb_adapter *adapter =
198                 container_of(tc, struct igb_adapter, cycles);
199         struct e1000_hw *hw = &adapter->hw;
200         u64 stamp = 0;
201         int shift = 0;
202
203         /*
204          * The timestamp latches on lowest register read. For the 82580
205          * the lowest register is SYSTIMR instead of SYSTIML.  However we never
206          * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
207          */
208         if (hw->mac.type == e1000_82580) {
209                 stamp = rd32(E1000_SYSTIMR) >> 8;
210                 shift = IGB_82580_TSYNC_SHIFT;
211         }
212
213         stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214         stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215         return stamp;
216 }
217
218 #ifdef DEBUG
219 /**
220  * igb_get_hw_dev_name - return device name string
221  * used by hardware layer to print debugging information
222  **/
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
224 {
225         struct igb_adapter *adapter = hw->back;
226         return adapter->netdev->name;
227 }
228
229 /**
230  * igb_get_time_str - format current NIC and system time as string
231  */
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233                               char buffer[160])
234 {
235         cycle_t hw = adapter->cycles.read(&adapter->cycles);
236         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237         struct timespec sys;
238         struct timespec delta;
239         getnstimeofday(&sys);
240
241         delta = timespec_sub(nic, sys);
242
243         sprintf(buffer,
244                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
245                 hw,
246                 (long)nic.tv_sec, nic.tv_nsec,
247                 (long)sys.tv_sec, sys.tv_nsec,
248                 (long)delta.tv_sec, delta.tv_nsec);
249
250         return buffer;
251 }
252 #endif
253
254 /**
255  * igb_init_module - Driver Registration Routine
256  *
257  * igb_init_module is the first routine called when the driver is
258  * loaded. All it does is register with the PCI subsystem.
259  **/
260 static int __init igb_init_module(void)
261 {
262         int ret;
263         printk(KERN_INFO "%s - version %s\n",
264                igb_driver_string, igb_driver_version);
265
266         printk(KERN_INFO "%s\n", igb_copyright);
267
268 #ifdef CONFIG_IGB_DCA
269         dca_register_notify(&dca_notifier);
270 #endif
271         ret = pci_register_driver(&igb_driver);
272         return ret;
273 }
274
275 module_init(igb_init_module);
276
277 /**
278  * igb_exit_module - Driver Exit Cleanup Routine
279  *
280  * igb_exit_module is called just before the driver is removed
281  * from memory.
282  **/
283 static void __exit igb_exit_module(void)
284 {
285 #ifdef CONFIG_IGB_DCA
286         dca_unregister_notify(&dca_notifier);
287 #endif
288         pci_unregister_driver(&igb_driver);
289 }
290
291 module_exit(igb_exit_module);
292
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
294 /**
295  * igb_cache_ring_register - Descriptor ring to register mapping
296  * @adapter: board private structure to initialize
297  *
298  * Once we know the feature-set enabled for the device, we'll cache
299  * the register offset the descriptor ring is assigned to.
300  **/
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
302 {
303         int i = 0, j = 0;
304         u32 rbase_offset = adapter->vfs_allocated_count;
305
306         switch (adapter->hw.mac.type) {
307         case e1000_82576:
308                 /* The queues are allocated for virtualization such that VF 0
309                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310                  * In order to avoid collision we start at the first free queue
311                  * and continue consuming queues in the same sequence
312                  */
313                 if (adapter->vfs_allocated_count) {
314                         for (; i < adapter->rss_queues; i++)
315                                 adapter->rx_ring[i].reg_idx = rbase_offset +
316                                                               Q_IDX_82576(i);
317                         for (; j < adapter->rss_queues; j++)
318                                 adapter->tx_ring[j].reg_idx = rbase_offset +
319                                                               Q_IDX_82576(j);
320                 }
321         case e1000_82575:
322         case e1000_82580:
323         default:
324                 for (; i < adapter->num_rx_queues; i++)
325                         adapter->rx_ring[i].reg_idx = rbase_offset + i;
326                 for (; j < adapter->num_tx_queues; j++)
327                         adapter->tx_ring[j].reg_idx = rbase_offset + j;
328                 break;
329         }
330 }
331
332 static void igb_free_queues(struct igb_adapter *adapter)
333 {
334         kfree(adapter->tx_ring);
335         kfree(adapter->rx_ring);
336
337         adapter->tx_ring = NULL;
338         adapter->rx_ring = NULL;
339
340         adapter->num_rx_queues = 0;
341         adapter->num_tx_queues = 0;
342 }
343
344 /**
345  * igb_alloc_queues - Allocate memory for all rings
346  * @adapter: board private structure to initialize
347  *
348  * We allocate one ring per queue at run-time since we don't know the
349  * number of queues at compile-time.
350  **/
351 static int igb_alloc_queues(struct igb_adapter *adapter)
352 {
353         int i;
354
355         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356                                    sizeof(struct igb_ring), GFP_KERNEL);
357         if (!adapter->tx_ring)
358                 goto err;
359
360         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361                                    sizeof(struct igb_ring), GFP_KERNEL);
362         if (!adapter->rx_ring)
363                 goto err;
364
365         for (i = 0; i < adapter->num_tx_queues; i++) {
366                 struct igb_ring *ring = &(adapter->tx_ring[i]);
367                 ring->count = adapter->tx_ring_count;
368                 ring->queue_index = i;
369                 ring->pdev = adapter->pdev;
370                 ring->netdev = adapter->netdev;
371                 /* For 82575, context index must be unique per ring. */
372                 if (adapter->hw.mac.type == e1000_82575)
373                         ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
374         }
375
376         for (i = 0; i < adapter->num_rx_queues; i++) {
377                 struct igb_ring *ring = &(adapter->rx_ring[i]);
378                 ring->count = adapter->rx_ring_count;
379                 ring->queue_index = i;
380                 ring->pdev = adapter->pdev;
381                 ring->netdev = adapter->netdev;
382                 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383                 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384                 /* set flag indicating ring supports SCTP checksum offload */
385                 if (adapter->hw.mac.type >= e1000_82576)
386                         ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
387         }
388
389         igb_cache_ring_register(adapter);
390
391         return 0;
392
393 err:
394         igb_free_queues(adapter);
395
396         return -ENOMEM;
397 }
398
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
401 {
402         u32 msixbm = 0;
403         struct igb_adapter *adapter = q_vector->adapter;
404         struct e1000_hw *hw = &adapter->hw;
405         u32 ivar, index;
406         int rx_queue = IGB_N0_QUEUE;
407         int tx_queue = IGB_N0_QUEUE;
408
409         if (q_vector->rx_ring)
410                 rx_queue = q_vector->rx_ring->reg_idx;
411         if (q_vector->tx_ring)
412                 tx_queue = q_vector->tx_ring->reg_idx;
413
414         switch (hw->mac.type) {
415         case e1000_82575:
416                 /* The 82575 assigns vectors using a bitmask, which matches the
417                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
418                    or more queues to a vector, we write the appropriate bits
419                    into the MSIXBM register for that vector. */
420                 if (rx_queue > IGB_N0_QUEUE)
421                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422                 if (tx_queue > IGB_N0_QUEUE)
423                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
425                 q_vector->eims_value = msixbm;
426                 break;
427         case e1000_82576:
428                 /* 82576 uses a table-based method for assigning vectors.
429                    Each queue has a single entry in the table to which we write
430                    a vector number along with a "valid" bit.  Sadly, the layout
431                    of the table is somewhat counterintuitive. */
432                 if (rx_queue > IGB_N0_QUEUE) {
433                         index = (rx_queue & 0x7);
434                         ivar = array_rd32(E1000_IVAR0, index);
435                         if (rx_queue < 8) {
436                                 /* vector goes into low byte of register */
437                                 ivar = ivar & 0xFFFFFF00;
438                                 ivar |= msix_vector | E1000_IVAR_VALID;
439                         } else {
440                                 /* vector goes into third byte of register */
441                                 ivar = ivar & 0xFF00FFFF;
442                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
443                         }
444                         array_wr32(E1000_IVAR0, index, ivar);
445                 }
446                 if (tx_queue > IGB_N0_QUEUE) {
447                         index = (tx_queue & 0x7);
448                         ivar = array_rd32(E1000_IVAR0, index);
449                         if (tx_queue < 8) {
450                                 /* vector goes into second byte of register */
451                                 ivar = ivar & 0xFFFF00FF;
452                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
453                         } else {
454                                 /* vector goes into high byte of register */
455                                 ivar = ivar & 0x00FFFFFF;
456                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
457                         }
458                         array_wr32(E1000_IVAR0, index, ivar);
459                 }
460                 q_vector->eims_value = 1 << msix_vector;
461                 break;
462         case e1000_82580:
463                 /* 82580 uses the same table-based approach as 82576 but has fewer
464                    entries as a result we carry over for queues greater than 4. */
465                 if (rx_queue > IGB_N0_QUEUE) {
466                         index = (rx_queue >> 1);
467                         ivar = array_rd32(E1000_IVAR0, index);
468                         if (rx_queue & 0x1) {
469                                 /* vector goes into third byte of register */
470                                 ivar = ivar & 0xFF00FFFF;
471                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
472                         } else {
473                                 /* vector goes into low byte of register */
474                                 ivar = ivar & 0xFFFFFF00;
475                                 ivar |= msix_vector | E1000_IVAR_VALID;
476                         }
477                         array_wr32(E1000_IVAR0, index, ivar);
478                 }
479                 if (tx_queue > IGB_N0_QUEUE) {
480                         index = (tx_queue >> 1);
481                         ivar = array_rd32(E1000_IVAR0, index);
482                         if (tx_queue & 0x1) {
483                                 /* vector goes into high byte of register */
484                                 ivar = ivar & 0x00FFFFFF;
485                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
486                         } else {
487                                 /* vector goes into second byte of register */
488                                 ivar = ivar & 0xFFFF00FF;
489                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
490                         }
491                         array_wr32(E1000_IVAR0, index, ivar);
492                 }
493                 q_vector->eims_value = 1 << msix_vector;
494                 break;
495         default:
496                 BUG();
497                 break;
498         }
499 }
500
501 /**
502  * igb_configure_msix - Configure MSI-X hardware
503  *
504  * igb_configure_msix sets up the hardware to properly
505  * generate MSI-X interrupts.
506  **/
507 static void igb_configure_msix(struct igb_adapter *adapter)
508 {
509         u32 tmp;
510         int i, vector = 0;
511         struct e1000_hw *hw = &adapter->hw;
512
513         adapter->eims_enable_mask = 0;
514
515         /* set vector for other causes, i.e. link changes */
516         switch (hw->mac.type) {
517         case e1000_82575:
518                 tmp = rd32(E1000_CTRL_EXT);
519                 /* enable MSI-X PBA support*/
520                 tmp |= E1000_CTRL_EXT_PBA_CLR;
521
522                 /* Auto-Mask interrupts upon ICR read. */
523                 tmp |= E1000_CTRL_EXT_EIAME;
524                 tmp |= E1000_CTRL_EXT_IRCA;
525
526                 wr32(E1000_CTRL_EXT, tmp);
527
528                 /* enable msix_other interrupt */
529                 array_wr32(E1000_MSIXBM(0), vector++,
530                                       E1000_EIMS_OTHER);
531                 adapter->eims_other = E1000_EIMS_OTHER;
532
533                 break;
534
535         case e1000_82576:
536         case e1000_82580:
537                 /* Turn on MSI-X capability first, or our settings
538                  * won't stick.  And it will take days to debug. */
539                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
540                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
541                                 E1000_GPIE_NSICR);
542
543                 /* enable msix_other interrupt */
544                 adapter->eims_other = 1 << vector;
545                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
546
547                 wr32(E1000_IVAR_MISC, tmp);
548                 break;
549         default:
550                 /* do nothing, since nothing else supports MSI-X */
551                 break;
552         } /* switch (hw->mac.type) */
553
554         adapter->eims_enable_mask |= adapter->eims_other;
555
556         for (i = 0; i < adapter->num_q_vectors; i++) {
557                 struct igb_q_vector *q_vector = adapter->q_vector[i];
558                 igb_assign_vector(q_vector, vector++);
559                 adapter->eims_enable_mask |= q_vector->eims_value;
560         }
561
562         wrfl();
563 }
564
565 /**
566  * igb_request_msix - Initialize MSI-X interrupts
567  *
568  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
569  * kernel.
570  **/
571 static int igb_request_msix(struct igb_adapter *adapter)
572 {
573         struct net_device *netdev = adapter->netdev;
574         struct e1000_hw *hw = &adapter->hw;
575         int i, err = 0, vector = 0;
576
577         err = request_irq(adapter->msix_entries[vector].vector,
578                           igb_msix_other, 0, netdev->name, adapter);
579         if (err)
580                 goto out;
581         vector++;
582
583         for (i = 0; i < adapter->num_q_vectors; i++) {
584                 struct igb_q_vector *q_vector = adapter->q_vector[i];
585
586                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
587
588                 if (q_vector->rx_ring && q_vector->tx_ring)
589                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
590                                 q_vector->rx_ring->queue_index);
591                 else if (q_vector->tx_ring)
592                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
593                                 q_vector->tx_ring->queue_index);
594                 else if (q_vector->rx_ring)
595                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
596                                 q_vector->rx_ring->queue_index);
597                 else
598                         sprintf(q_vector->name, "%s-unused", netdev->name);
599
600                 err = request_irq(adapter->msix_entries[vector].vector,
601                                   igb_msix_ring, 0, q_vector->name,
602                                   q_vector);
603                 if (err)
604                         goto out;
605                 vector++;
606         }
607
608         igb_configure_msix(adapter);
609         return 0;
610 out:
611         return err;
612 }
613
614 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
615 {
616         if (adapter->msix_entries) {
617                 pci_disable_msix(adapter->pdev);
618                 kfree(adapter->msix_entries);
619                 adapter->msix_entries = NULL;
620         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
621                 pci_disable_msi(adapter->pdev);
622         }
623 }
624
625 /**
626  * igb_free_q_vectors - Free memory allocated for interrupt vectors
627  * @adapter: board private structure to initialize
628  *
629  * This function frees the memory allocated to the q_vectors.  In addition if
630  * NAPI is enabled it will delete any references to the NAPI struct prior
631  * to freeing the q_vector.
632  **/
633 static void igb_free_q_vectors(struct igb_adapter *adapter)
634 {
635         int v_idx;
636
637         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
638                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
639                 adapter->q_vector[v_idx] = NULL;
640                 netif_napi_del(&q_vector->napi);
641                 kfree(q_vector);
642         }
643         adapter->num_q_vectors = 0;
644 }
645
646 /**
647  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
648  *
649  * This function resets the device so that it has 0 rx queues, tx queues, and
650  * MSI-X interrupts allocated.
651  */
652 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
653 {
654         igb_free_queues(adapter);
655         igb_free_q_vectors(adapter);
656         igb_reset_interrupt_capability(adapter);
657 }
658
659 /**
660  * igb_set_interrupt_capability - set MSI or MSI-X if supported
661  *
662  * Attempt to configure interrupts using the best available
663  * capabilities of the hardware and kernel.
664  **/
665 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
666 {
667         int err;
668         int numvecs, i;
669
670         /* Number of supported queues. */
671         adapter->num_rx_queues = adapter->rss_queues;
672         adapter->num_tx_queues = adapter->rss_queues;
673
674         /* start with one vector for every rx queue */
675         numvecs = adapter->num_rx_queues;
676
677         /* if tx handler is seperate add 1 for every tx queue */
678         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
679                 numvecs += adapter->num_tx_queues;
680
681         /* store the number of vectors reserved for queues */
682         adapter->num_q_vectors = numvecs;
683
684         /* add 1 vector for link status interrupts */
685         numvecs++;
686         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
687                                         GFP_KERNEL);
688         if (!adapter->msix_entries)
689                 goto msi_only;
690
691         for (i = 0; i < numvecs; i++)
692                 adapter->msix_entries[i].entry = i;
693
694         err = pci_enable_msix(adapter->pdev,
695                               adapter->msix_entries,
696                               numvecs);
697         if (err == 0)
698                 goto out;
699
700         igb_reset_interrupt_capability(adapter);
701
702         /* If we can't do MSI-X, try MSI */
703 msi_only:
704 #ifdef CONFIG_PCI_IOV
705         /* disable SR-IOV for non MSI-X configurations */
706         if (adapter->vf_data) {
707                 struct e1000_hw *hw = &adapter->hw;
708                 /* disable iov and allow time for transactions to clear */
709                 pci_disable_sriov(adapter->pdev);
710                 msleep(500);
711
712                 kfree(adapter->vf_data);
713                 adapter->vf_data = NULL;
714                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
715                 msleep(100);
716                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
717         }
718 #endif
719         adapter->vfs_allocated_count = 0;
720         adapter->rss_queues = 1;
721         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
722         adapter->num_rx_queues = 1;
723         adapter->num_tx_queues = 1;
724         adapter->num_q_vectors = 1;
725         if (!pci_enable_msi(adapter->pdev))
726                 adapter->flags |= IGB_FLAG_HAS_MSI;
727 out:
728         /* Notify the stack of the (possibly) reduced Tx Queue count. */
729         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730         return;
731 }
732
733 /**
734  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
735  * @adapter: board private structure to initialize
736  *
737  * We allocate one q_vector per queue interrupt.  If allocation fails we
738  * return -ENOMEM.
739  **/
740 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
741 {
742         struct igb_q_vector *q_vector;
743         struct e1000_hw *hw = &adapter->hw;
744         int v_idx;
745
746         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
747                 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
748                 if (!q_vector)
749                         goto err_out;
750                 q_vector->adapter = adapter;
751                 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
752                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
753                 q_vector->itr_val = IGB_START_ITR;
754                 q_vector->set_itr = 1;
755                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
756                 adapter->q_vector[v_idx] = q_vector;
757         }
758         return 0;
759
760 err_out:
761         while (v_idx) {
762                 v_idx--;
763                 q_vector = adapter->q_vector[v_idx];
764                 netif_napi_del(&q_vector->napi);
765                 kfree(q_vector);
766                 adapter->q_vector[v_idx] = NULL;
767         }
768         return -ENOMEM;
769 }
770
771 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
772                                       int ring_idx, int v_idx)
773 {
774         struct igb_q_vector *q_vector;
775
776         q_vector = adapter->q_vector[v_idx];
777         q_vector->rx_ring = &adapter->rx_ring[ring_idx];
778         q_vector->rx_ring->q_vector = q_vector;
779         q_vector->itr_val = adapter->rx_itr_setting;
780         if (q_vector->itr_val && q_vector->itr_val <= 3)
781                 q_vector->itr_val = IGB_START_ITR;
782 }
783
784 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
785                                       int ring_idx, int v_idx)
786 {
787         struct igb_q_vector *q_vector;
788
789         q_vector = adapter->q_vector[v_idx];
790         q_vector->tx_ring = &adapter->tx_ring[ring_idx];
791         q_vector->tx_ring->q_vector = q_vector;
792         q_vector->itr_val = adapter->tx_itr_setting;
793         if (q_vector->itr_val && q_vector->itr_val <= 3)
794                 q_vector->itr_val = IGB_START_ITR;
795 }
796
797 /**
798  * igb_map_ring_to_vector - maps allocated queues to vectors
799  *
800  * This function maps the recently allocated queues to vectors.
801  **/
802 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
803 {
804         int i;
805         int v_idx = 0;
806
807         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
808             (adapter->num_q_vectors < adapter->num_tx_queues))
809                 return -ENOMEM;
810
811         if (adapter->num_q_vectors >=
812             (adapter->num_rx_queues + adapter->num_tx_queues)) {
813                 for (i = 0; i < adapter->num_rx_queues; i++)
814                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
815                 for (i = 0; i < adapter->num_tx_queues; i++)
816                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
817         } else {
818                 for (i = 0; i < adapter->num_rx_queues; i++) {
819                         if (i < adapter->num_tx_queues)
820                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
821                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
822                 }
823                 for (; i < adapter->num_tx_queues; i++)
824                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825         }
826         return 0;
827 }
828
829 /**
830  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
831  *
832  * This function initializes the interrupts and allocates all of the queues.
833  **/
834 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
835 {
836         struct pci_dev *pdev = adapter->pdev;
837         int err;
838
839         igb_set_interrupt_capability(adapter);
840
841         err = igb_alloc_q_vectors(adapter);
842         if (err) {
843                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
844                 goto err_alloc_q_vectors;
845         }
846
847         err = igb_alloc_queues(adapter);
848         if (err) {
849                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
850                 goto err_alloc_queues;
851         }
852
853         err = igb_map_ring_to_vector(adapter);
854         if (err) {
855                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
856                 goto err_map_queues;
857         }
858
859
860         return 0;
861 err_map_queues:
862         igb_free_queues(adapter);
863 err_alloc_queues:
864         igb_free_q_vectors(adapter);
865 err_alloc_q_vectors:
866         igb_reset_interrupt_capability(adapter);
867         return err;
868 }
869
870 /**
871  * igb_request_irq - initialize interrupts
872  *
873  * Attempts to configure interrupts using the best available
874  * capabilities of the hardware and kernel.
875  **/
876 static int igb_request_irq(struct igb_adapter *adapter)
877 {
878         struct net_device *netdev = adapter->netdev;
879         struct pci_dev *pdev = adapter->pdev;
880         struct e1000_hw *hw = &adapter->hw;
881         int err = 0;
882
883         if (adapter->msix_entries) {
884                 err = igb_request_msix(adapter);
885                 if (!err)
886                         goto request_done;
887                 /* fall back to MSI */
888                 igb_clear_interrupt_scheme(adapter);
889                 if (!pci_enable_msi(adapter->pdev))
890                         adapter->flags |= IGB_FLAG_HAS_MSI;
891                 igb_free_all_tx_resources(adapter);
892                 igb_free_all_rx_resources(adapter);
893                 adapter->num_tx_queues = 1;
894                 adapter->num_rx_queues = 1;
895                 adapter->num_q_vectors = 1;
896                 err = igb_alloc_q_vectors(adapter);
897                 if (err) {
898                         dev_err(&pdev->dev,
899                                 "Unable to allocate memory for vectors\n");
900                         goto request_done;
901                 }
902                 err = igb_alloc_queues(adapter);
903                 if (err) {
904                         dev_err(&pdev->dev,
905                                 "Unable to allocate memory for queues\n");
906                         igb_free_q_vectors(adapter);
907                         goto request_done;
908                 }
909                 igb_setup_all_tx_resources(adapter);
910                 igb_setup_all_rx_resources(adapter);
911         } else {
912                 switch (hw->mac.type) {
913                 case e1000_82575:
914                         wr32(E1000_MSIXBM(0),
915                              (E1000_EICR_RX_QUEUE0 |
916                               E1000_EICR_TX_QUEUE0 |
917                               E1000_EIMS_OTHER));
918                         break;
919                 case e1000_82580:
920                 case e1000_82576:
921                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
922                         break;
923                 default:
924                         break;
925                 }
926         }
927
928         if (adapter->flags & IGB_FLAG_HAS_MSI) {
929                 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
930                                   netdev->name, adapter);
931                 if (!err)
932                         goto request_done;
933
934                 /* fall back to legacy interrupts */
935                 igb_reset_interrupt_capability(adapter);
936                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
937         }
938
939         err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
940                           netdev->name, adapter);
941
942         if (err)
943                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
944                         err);
945
946 request_done:
947         return err;
948 }
949
950 static void igb_free_irq(struct igb_adapter *adapter)
951 {
952         if (adapter->msix_entries) {
953                 int vector = 0, i;
954
955                 free_irq(adapter->msix_entries[vector++].vector, adapter);
956
957                 for (i = 0; i < adapter->num_q_vectors; i++) {
958                         struct igb_q_vector *q_vector = adapter->q_vector[i];
959                         free_irq(adapter->msix_entries[vector++].vector,
960                                  q_vector);
961                 }
962         } else {
963                 free_irq(adapter->pdev->irq, adapter);
964         }
965 }
966
967 /**
968  * igb_irq_disable - Mask off interrupt generation on the NIC
969  * @adapter: board private structure
970  **/
971 static void igb_irq_disable(struct igb_adapter *adapter)
972 {
973         struct e1000_hw *hw = &adapter->hw;
974
975         /*
976          * we need to be careful when disabling interrupts.  The VFs are also
977          * mapped into these registers and so clearing the bits can cause
978          * issues on the VF drivers so we only need to clear what we set
979          */
980         if (adapter->msix_entries) {
981                 u32 regval = rd32(E1000_EIAM);
982                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
983                 wr32(E1000_EIMC, adapter->eims_enable_mask);
984                 regval = rd32(E1000_EIAC);
985                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
986         }
987
988         wr32(E1000_IAM, 0);
989         wr32(E1000_IMC, ~0);
990         wrfl();
991         synchronize_irq(adapter->pdev->irq);
992 }
993
994 /**
995  * igb_irq_enable - Enable default interrupt generation settings
996  * @adapter: board private structure
997  **/
998 static void igb_irq_enable(struct igb_adapter *adapter)
999 {
1000         struct e1000_hw *hw = &adapter->hw;
1001
1002         if (adapter->msix_entries) {
1003                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1004                 u32 regval = rd32(E1000_EIAC);
1005                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1006                 regval = rd32(E1000_EIAM);
1007                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1008                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1009                 if (adapter->vfs_allocated_count) {
1010                         wr32(E1000_MBVFIMR, 0xFF);
1011                         ims |= E1000_IMS_VMMB;
1012                 }
1013                 if (adapter->hw.mac.type == e1000_82580)
1014                         ims |= E1000_IMS_DRSTA;
1015
1016                 wr32(E1000_IMS, ims);
1017         } else {
1018                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1019                                 E1000_IMS_DRSTA);
1020                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1021                                 E1000_IMS_DRSTA);
1022         }
1023 }
1024
1025 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1026 {
1027         struct e1000_hw *hw = &adapter->hw;
1028         u16 vid = adapter->hw.mng_cookie.vlan_id;
1029         u16 old_vid = adapter->mng_vlan_id;
1030
1031         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1032                 /* add VID to filter table */
1033                 igb_vfta_set(hw, vid, true);
1034                 adapter->mng_vlan_id = vid;
1035         } else {
1036                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1037         }
1038
1039         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1040             (vid != old_vid) &&
1041             !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1042                 /* remove VID from filter table */
1043                 igb_vfta_set(hw, old_vid, false);
1044         }
1045 }
1046
1047 /**
1048  * igb_release_hw_control - release control of the h/w to f/w
1049  * @adapter: address of board private structure
1050  *
1051  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1052  * For ASF and Pass Through versions of f/w this means that the
1053  * driver is no longer loaded.
1054  *
1055  **/
1056 static void igb_release_hw_control(struct igb_adapter *adapter)
1057 {
1058         struct e1000_hw *hw = &adapter->hw;
1059         u32 ctrl_ext;
1060
1061         /* Let firmware take over control of h/w */
1062         ctrl_ext = rd32(E1000_CTRL_EXT);
1063         wr32(E1000_CTRL_EXT,
1064                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1065 }
1066
1067 /**
1068  * igb_get_hw_control - get control of the h/w from f/w
1069  * @adapter: address of board private structure
1070  *
1071  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1072  * For ASF and Pass Through versions of f/w this means that
1073  * the driver is loaded.
1074  *
1075  **/
1076 static void igb_get_hw_control(struct igb_adapter *adapter)
1077 {
1078         struct e1000_hw *hw = &adapter->hw;
1079         u32 ctrl_ext;
1080
1081         /* Let firmware know the driver has taken over */
1082         ctrl_ext = rd32(E1000_CTRL_EXT);
1083         wr32(E1000_CTRL_EXT,
1084                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1085 }
1086
1087 /**
1088  * igb_configure - configure the hardware for RX and TX
1089  * @adapter: private board structure
1090  **/
1091 static void igb_configure(struct igb_adapter *adapter)
1092 {
1093         struct net_device *netdev = adapter->netdev;
1094         int i;
1095
1096         igb_get_hw_control(adapter);
1097         igb_set_rx_mode(netdev);
1098
1099         igb_restore_vlan(adapter);
1100
1101         igb_setup_tctl(adapter);
1102         igb_setup_mrqc(adapter);
1103         igb_setup_rctl(adapter);
1104
1105         igb_configure_tx(adapter);
1106         igb_configure_rx(adapter);
1107
1108         igb_rx_fifo_flush_82575(&adapter->hw);
1109
1110         /* call igb_desc_unused which always leaves
1111          * at least 1 descriptor unused to make sure
1112          * next_to_use != next_to_clean */
1113         for (i = 0; i < adapter->num_rx_queues; i++) {
1114                 struct igb_ring *ring = &adapter->rx_ring[i];
1115                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1116         }
1117
1118
1119         adapter->tx_queue_len = netdev->tx_queue_len;
1120 }
1121
1122
1123 /**
1124  * igb_up - Open the interface and prepare it to handle traffic
1125  * @adapter: board private structure
1126  **/
1127 int igb_up(struct igb_adapter *adapter)
1128 {
1129         struct e1000_hw *hw = &adapter->hw;
1130         int i;
1131
1132         /* hardware has been reset, we need to reload some things */
1133         igb_configure(adapter);
1134
1135         clear_bit(__IGB_DOWN, &adapter->state);
1136
1137         for (i = 0; i < adapter->num_q_vectors; i++) {
1138                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1139                 napi_enable(&q_vector->napi);
1140         }
1141         if (adapter->msix_entries)
1142                 igb_configure_msix(adapter);
1143
1144         /* Clear any pending interrupts. */
1145         rd32(E1000_ICR);
1146         igb_irq_enable(adapter);
1147
1148         /* notify VFs that reset has been completed */
1149         if (adapter->vfs_allocated_count) {
1150                 u32 reg_data = rd32(E1000_CTRL_EXT);
1151                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1152                 wr32(E1000_CTRL_EXT, reg_data);
1153         }
1154
1155         netif_tx_start_all_queues(adapter->netdev);
1156
1157         /* start the watchdog. */
1158         hw->mac.get_link_status = 1;
1159         schedule_work(&adapter->watchdog_task);
1160
1161         return 0;
1162 }
1163
1164 void igb_down(struct igb_adapter *adapter)
1165 {
1166         struct net_device *netdev = adapter->netdev;
1167         struct e1000_hw *hw = &adapter->hw;
1168         u32 tctl, rctl;
1169         int i;
1170
1171         /* signal that we're down so the interrupt handler does not
1172          * reschedule our watchdog timer */
1173         set_bit(__IGB_DOWN, &adapter->state);
1174
1175         /* disable receives in the hardware */
1176         rctl = rd32(E1000_RCTL);
1177         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1178         /* flush and sleep below */
1179
1180         netif_tx_stop_all_queues(netdev);
1181
1182         /* disable transmits in the hardware */
1183         tctl = rd32(E1000_TCTL);
1184         tctl &= ~E1000_TCTL_EN;
1185         wr32(E1000_TCTL, tctl);
1186         /* flush both disables and wait for them to finish */
1187         wrfl();
1188         msleep(10);
1189
1190         for (i = 0; i < adapter->num_q_vectors; i++) {
1191                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1192                 napi_disable(&q_vector->napi);
1193         }
1194
1195         igb_irq_disable(adapter);
1196
1197         del_timer_sync(&adapter->watchdog_timer);
1198         del_timer_sync(&adapter->phy_info_timer);
1199
1200         netdev->tx_queue_len = adapter->tx_queue_len;
1201         netif_carrier_off(netdev);
1202
1203         /* record the stats before reset*/
1204         igb_update_stats(adapter);
1205
1206         adapter->link_speed = 0;
1207         adapter->link_duplex = 0;
1208
1209         if (!pci_channel_offline(adapter->pdev))
1210                 igb_reset(adapter);
1211         igb_clean_all_tx_rings(adapter);
1212         igb_clean_all_rx_rings(adapter);
1213 #ifdef CONFIG_IGB_DCA
1214
1215         /* since we reset the hardware DCA settings were cleared */
1216         igb_setup_dca(adapter);
1217 #endif
1218 }
1219
1220 void igb_reinit_locked(struct igb_adapter *adapter)
1221 {
1222         WARN_ON(in_interrupt());
1223         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1224                 msleep(1);
1225         igb_down(adapter);
1226         igb_up(adapter);
1227         clear_bit(__IGB_RESETTING, &adapter->state);
1228 }
1229
1230 void igb_reset(struct igb_adapter *adapter)
1231 {
1232         struct pci_dev *pdev = adapter->pdev;
1233         struct e1000_hw *hw = &adapter->hw;
1234         struct e1000_mac_info *mac = &hw->mac;
1235         struct e1000_fc_info *fc = &hw->fc;
1236         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237         u16 hwm;
1238
1239         /* Repartition Pba for greater than 9k mtu
1240          * To take effect CTRL.RST is required.
1241          */
1242         switch (mac->type) {
1243         case e1000_82580:
1244                 pba = rd32(E1000_RXPBS);
1245                 pba = igb_rxpbs_adjust_82580(pba);
1246                 break;
1247         case e1000_82576:
1248                 pba = rd32(E1000_RXPBS);
1249                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1250                 break;
1251         case e1000_82575:
1252         default:
1253                 pba = E1000_PBA_34K;
1254                 break;
1255         }
1256
1257         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1258             (mac->type < e1000_82576)) {
1259                 /* adjust PBA for jumbo frames */
1260                 wr32(E1000_PBA, pba);
1261
1262                 /* To maintain wire speed transmits, the Tx FIFO should be
1263                  * large enough to accommodate two full transmit packets,
1264                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1265                  * the Rx FIFO should be large enough to accommodate at least
1266                  * one full receive packet and is similarly rounded up and
1267                  * expressed in KB. */
1268                 pba = rd32(E1000_PBA);
1269                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1270                 tx_space = pba >> 16;
1271                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1272                 pba &= 0xffff;
1273                 /* the tx fifo also stores 16 bytes of information about the tx
1274                  * but don't include ethernet FCS because hardware appends it */
1275                 min_tx_space = (adapter->max_frame_size +
1276                                 sizeof(union e1000_adv_tx_desc) -
1277                                 ETH_FCS_LEN) * 2;
1278                 min_tx_space = ALIGN(min_tx_space, 1024);
1279                 min_tx_space >>= 10;
1280                 /* software strips receive CRC, so leave room for it */
1281                 min_rx_space = adapter->max_frame_size;
1282                 min_rx_space = ALIGN(min_rx_space, 1024);
1283                 min_rx_space >>= 10;
1284
1285                 /* If current Tx allocation is less than the min Tx FIFO size,
1286                  * and the min Tx FIFO size is less than the current Rx FIFO
1287                  * allocation, take space away from current Rx allocation */
1288                 if (tx_space < min_tx_space &&
1289                     ((min_tx_space - tx_space) < pba)) {
1290                         pba = pba - (min_tx_space - tx_space);
1291
1292                         /* if short on rx space, rx wins and must trump tx
1293                          * adjustment */
1294                         if (pba < min_rx_space)
1295                                 pba = min_rx_space;
1296                 }
1297                 wr32(E1000_PBA, pba);
1298         }
1299
1300         /* flow control settings */
1301         /* The high water mark must be low enough to fit one full frame
1302          * (or the size used for early receive) above it in the Rx FIFO.
1303          * Set it to the lower of:
1304          * - 90% of the Rx FIFO size, or
1305          * - the full Rx FIFO size minus one full frame */
1306         hwm = min(((pba << 10) * 9 / 10),
1307                         ((pba << 10) - 2 * adapter->max_frame_size));
1308
1309         fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1310         fc->low_water = fc->high_water - 16;
1311         fc->pause_time = 0xFFFF;
1312         fc->send_xon = 1;
1313         fc->current_mode = fc->requested_mode;
1314
1315         /* disable receive for all VFs and wait one second */
1316         if (adapter->vfs_allocated_count) {
1317                 int i;
1318                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1319                         adapter->vf_data[i].flags = 0;
1320
1321                 /* ping all the active vfs to let them know we are going down */
1322                 igb_ping_all_vfs(adapter);
1323
1324                 /* disable transmits and receives */
1325                 wr32(E1000_VFRE, 0);
1326                 wr32(E1000_VFTE, 0);
1327         }
1328
1329         /* Allow time for pending master requests to run */
1330         hw->mac.ops.reset_hw(hw);
1331         wr32(E1000_WUC, 0);
1332
1333         if (hw->mac.ops.init_hw(hw))
1334                 dev_err(&pdev->dev, "Hardware Error\n");
1335
1336         if (hw->mac.type == e1000_82580) {
1337                 u32 reg = rd32(E1000_PCIEMISC);
1338                 wr32(E1000_PCIEMISC,
1339                                 reg & ~E1000_PCIEMISC_LX_DECISION);
1340         }
1341         igb_update_mng_vlan(adapter);
1342
1343         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1344         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1345
1346         igb_reset_adaptive(hw);
1347         igb_get_phy_info(hw);
1348 }
1349
1350 static const struct net_device_ops igb_netdev_ops = {
1351         .ndo_open               = igb_open,
1352         .ndo_stop               = igb_close,
1353         .ndo_start_xmit         = igb_xmit_frame_adv,
1354         .ndo_get_stats          = igb_get_stats,
1355         .ndo_set_rx_mode        = igb_set_rx_mode,
1356         .ndo_set_multicast_list = igb_set_rx_mode,
1357         .ndo_set_mac_address    = igb_set_mac,
1358         .ndo_change_mtu         = igb_change_mtu,
1359         .ndo_do_ioctl           = igb_ioctl,
1360         .ndo_tx_timeout         = igb_tx_timeout,
1361         .ndo_validate_addr      = eth_validate_addr,
1362         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1363         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1364         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1365 #ifdef CONFIG_NET_POLL_CONTROLLER
1366         .ndo_poll_controller    = igb_netpoll,
1367 #endif
1368 };
1369
1370 /**
1371  * igb_probe - Device Initialization Routine
1372  * @pdev: PCI device information struct
1373  * @ent: entry in igb_pci_tbl
1374  *
1375  * Returns 0 on success, negative on failure
1376  *
1377  * igb_probe initializes an adapter identified by a pci_dev structure.
1378  * The OS initialization, configuring of the adapter private structure,
1379  * and a hardware reset occur.
1380  **/
1381 static int __devinit igb_probe(struct pci_dev *pdev,
1382                                const struct pci_device_id *ent)
1383 {
1384         struct net_device *netdev;
1385         struct igb_adapter *adapter;
1386         struct e1000_hw *hw;
1387         u16 eeprom_data = 0;
1388         static int global_quad_port_a; /* global quad port a indication */
1389         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1390         unsigned long mmio_start, mmio_len;
1391         int err, pci_using_dac;
1392         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1393         u32 part_num;
1394
1395         err = pci_enable_device_mem(pdev);
1396         if (err)
1397                 return err;
1398
1399         pci_using_dac = 0;
1400         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1401         if (!err) {
1402                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1403                 if (!err)
1404                         pci_using_dac = 1;
1405         } else {
1406                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1407                 if (err) {
1408                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1409                         if (err) {
1410                                 dev_err(&pdev->dev, "No usable DMA "
1411                                         "configuration, aborting\n");
1412                                 goto err_dma;
1413                         }
1414                 }
1415         }
1416
1417         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1418                                            IORESOURCE_MEM),
1419                                            igb_driver_name);
1420         if (err)
1421                 goto err_pci_reg;
1422
1423         pci_enable_pcie_error_reporting(pdev);
1424
1425         pci_set_master(pdev);
1426         pci_save_state(pdev);
1427
1428         err = -ENOMEM;
1429         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1430                                    IGB_ABS_MAX_TX_QUEUES);
1431         if (!netdev)
1432                 goto err_alloc_etherdev;
1433
1434         SET_NETDEV_DEV(netdev, &pdev->dev);
1435
1436         pci_set_drvdata(pdev, netdev);
1437         adapter = netdev_priv(netdev);
1438         adapter->netdev = netdev;
1439         adapter->pdev = pdev;
1440         hw = &adapter->hw;
1441         hw->back = adapter;
1442         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1443
1444         mmio_start = pci_resource_start(pdev, 0);
1445         mmio_len = pci_resource_len(pdev, 0);
1446
1447         err = -EIO;
1448         hw->hw_addr = ioremap(mmio_start, mmio_len);
1449         if (!hw->hw_addr)
1450                 goto err_ioremap;
1451
1452         netdev->netdev_ops = &igb_netdev_ops;
1453         igb_set_ethtool_ops(netdev);
1454         netdev->watchdog_timeo = 5 * HZ;
1455
1456         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1457
1458         netdev->mem_start = mmio_start;
1459         netdev->mem_end = mmio_start + mmio_len;
1460
1461         /* PCI config space info */
1462         hw->vendor_id = pdev->vendor;
1463         hw->device_id = pdev->device;
1464         hw->revision_id = pdev->revision;
1465         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1466         hw->subsystem_device_id = pdev->subsystem_device;
1467
1468         /* Copy the default MAC, PHY and NVM function pointers */
1469         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1470         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1471         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1472         /* Initialize skew-specific constants */
1473         err = ei->get_invariants(hw);
1474         if (err)
1475                 goto err_sw_init;
1476
1477         /* setup the private structure */
1478         err = igb_sw_init(adapter);
1479         if (err)
1480                 goto err_sw_init;
1481
1482         igb_get_bus_info_pcie(hw);
1483
1484         hw->phy.autoneg_wait_to_complete = false;
1485         hw->mac.adaptive_ifs = true;
1486
1487         /* Copper options */
1488         if (hw->phy.media_type == e1000_media_type_copper) {
1489                 hw->phy.mdix = AUTO_ALL_MODES;
1490                 hw->phy.disable_polarity_correction = false;
1491                 hw->phy.ms_type = e1000_ms_hw_default;
1492         }
1493
1494         if (igb_check_reset_block(hw))
1495                 dev_info(&pdev->dev,
1496                         "PHY reset is blocked due to SOL/IDER session.\n");
1497
1498         netdev->features = NETIF_F_SG |
1499                            NETIF_F_IP_CSUM |
1500                            NETIF_F_HW_VLAN_TX |
1501                            NETIF_F_HW_VLAN_RX |
1502                            NETIF_F_HW_VLAN_FILTER;
1503
1504         netdev->features |= NETIF_F_IPV6_CSUM;
1505         netdev->features |= NETIF_F_TSO;
1506         netdev->features |= NETIF_F_TSO6;
1507         netdev->features |= NETIF_F_GRO;
1508
1509         netdev->vlan_features |= NETIF_F_TSO;
1510         netdev->vlan_features |= NETIF_F_TSO6;
1511         netdev->vlan_features |= NETIF_F_IP_CSUM;
1512         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1513         netdev->vlan_features |= NETIF_F_SG;
1514
1515         if (pci_using_dac)
1516                 netdev->features |= NETIF_F_HIGHDMA;
1517
1518         if (hw->mac.type >= e1000_82576)
1519                 netdev->features |= NETIF_F_SCTP_CSUM;
1520
1521         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1522
1523         /* before reading the NVM, reset the controller to put the device in a
1524          * known good starting state */
1525         hw->mac.ops.reset_hw(hw);
1526
1527         /* make sure the NVM is good */
1528         if (igb_validate_nvm_checksum(hw) < 0) {
1529                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1530                 err = -EIO;
1531                 goto err_eeprom;
1532         }
1533
1534         /* copy the MAC address out of the NVM */
1535         if (hw->mac.ops.read_mac_addr(hw))
1536                 dev_err(&pdev->dev, "NVM Read Error\n");
1537
1538         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1539         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1540
1541         if (!is_valid_ether_addr(netdev->perm_addr)) {
1542                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1543                 err = -EIO;
1544                 goto err_eeprom;
1545         }
1546
1547         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1548                     (unsigned long) adapter);
1549         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1550                     (unsigned long) adapter);
1551
1552         INIT_WORK(&adapter->reset_task, igb_reset_task);
1553         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1554
1555         /* Initialize link properties that are user-changeable */
1556         adapter->fc_autoneg = true;
1557         hw->mac.autoneg = true;
1558         hw->phy.autoneg_advertised = 0x2f;
1559
1560         hw->fc.requested_mode = e1000_fc_default;
1561         hw->fc.current_mode = e1000_fc_default;
1562
1563         igb_validate_mdi_setting(hw);
1564
1565         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1566          * enable the ACPI Magic Packet filter
1567          */
1568
1569         if (hw->bus.func == 0)
1570                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1571         else if (hw->mac.type == e1000_82580)
1572                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1573                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1574                                  &eeprom_data);
1575         else if (hw->bus.func == 1)
1576                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1577
1578         if (eeprom_data & eeprom_apme_mask)
1579                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1580
1581         /* now that we have the eeprom settings, apply the special cases where
1582          * the eeprom may be wrong or the board simply won't support wake on
1583          * lan on a particular port */
1584         switch (pdev->device) {
1585         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1586                 adapter->eeprom_wol = 0;
1587                 break;
1588         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1589         case E1000_DEV_ID_82576_FIBER:
1590         case E1000_DEV_ID_82576_SERDES:
1591                 /* Wake events only supported on port A for dual fiber
1592                  * regardless of eeprom setting */
1593                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1594                         adapter->eeprom_wol = 0;
1595                 break;
1596         case E1000_DEV_ID_82576_QUAD_COPPER:
1597                 /* if quad port adapter, disable WoL on all but port A */
1598                 if (global_quad_port_a != 0)
1599                         adapter->eeprom_wol = 0;
1600                 else
1601                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1602                 /* Reset for multiple quad port adapters */
1603                 if (++global_quad_port_a == 4)
1604                         global_quad_port_a = 0;
1605                 break;
1606         }
1607
1608         /* initialize the wol settings based on the eeprom settings */
1609         adapter->wol = adapter->eeprom_wol;
1610         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1611
1612         /* reset the hardware with the new settings */
1613         igb_reset(adapter);
1614
1615         /* let the f/w know that the h/w is now under the control of the
1616          * driver. */
1617         igb_get_hw_control(adapter);
1618
1619         strcpy(netdev->name, "eth%d");
1620         err = register_netdev(netdev);
1621         if (err)
1622                 goto err_register;
1623
1624         /* carrier off reporting is important to ethtool even BEFORE open */
1625         netif_carrier_off(netdev);
1626
1627 #ifdef CONFIG_IGB_DCA
1628         if (dca_add_requester(&pdev->dev) == 0) {
1629                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1630                 dev_info(&pdev->dev, "DCA enabled\n");
1631                 igb_setup_dca(adapter);
1632         }
1633
1634 #endif
1635         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1636         /* print bus type/speed/width info */
1637         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1638                  netdev->name,
1639                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1640                                                             "unknown"),
1641                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1642                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1643                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1644                    "unknown"),
1645                  netdev->dev_addr);
1646
1647         igb_read_part_num(hw, &part_num);
1648         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1649                 (part_num >> 8), (part_num & 0xff));
1650
1651         dev_info(&pdev->dev,
1652                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1653                 adapter->msix_entries ? "MSI-X" :
1654                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1655                 adapter->num_rx_queues, adapter->num_tx_queues);
1656
1657         return 0;
1658
1659 err_register:
1660         igb_release_hw_control(adapter);
1661 err_eeprom:
1662         if (!igb_check_reset_block(hw))
1663                 igb_reset_phy(hw);
1664
1665         if (hw->flash_address)
1666                 iounmap(hw->flash_address);
1667 err_sw_init:
1668         igb_clear_interrupt_scheme(adapter);
1669         iounmap(hw->hw_addr);
1670 err_ioremap:
1671         free_netdev(netdev);
1672 err_alloc_etherdev:
1673         pci_release_selected_regions(pdev,
1674                                      pci_select_bars(pdev, IORESOURCE_MEM));
1675 err_pci_reg:
1676 err_dma:
1677         pci_disable_device(pdev);
1678         return err;
1679 }
1680
1681 /**
1682  * igb_remove - Device Removal Routine
1683  * @pdev: PCI device information struct
1684  *
1685  * igb_remove is called by the PCI subsystem to alert the driver
1686  * that it should release a PCI device.  The could be caused by a
1687  * Hot-Plug event, or because the driver is going to be removed from
1688  * memory.
1689  **/
1690 static void __devexit igb_remove(struct pci_dev *pdev)
1691 {
1692         struct net_device *netdev = pci_get_drvdata(pdev);
1693         struct igb_adapter *adapter = netdev_priv(netdev);
1694         struct e1000_hw *hw = &adapter->hw;
1695
1696         /* flush_scheduled work may reschedule our watchdog task, so
1697          * explicitly disable watchdog tasks from being rescheduled  */
1698         set_bit(__IGB_DOWN, &adapter->state);
1699         del_timer_sync(&adapter->watchdog_timer);
1700         del_timer_sync(&adapter->phy_info_timer);
1701
1702         flush_scheduled_work();
1703
1704 #ifdef CONFIG_IGB_DCA
1705         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1706                 dev_info(&pdev->dev, "DCA disabled\n");
1707                 dca_remove_requester(&pdev->dev);
1708                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1709                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1710         }
1711 #endif
1712
1713         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1714          * would have already happened in close and is redundant. */
1715         igb_release_hw_control(adapter);
1716
1717         unregister_netdev(netdev);
1718
1719         if (!igb_check_reset_block(hw))
1720                 igb_reset_phy(hw);
1721
1722         igb_clear_interrupt_scheme(adapter);
1723
1724 #ifdef CONFIG_PCI_IOV
1725         /* reclaim resources allocated to VFs */
1726         if (adapter->vf_data) {
1727                 /* disable iov and allow time for transactions to clear */
1728                 pci_disable_sriov(pdev);
1729                 msleep(500);
1730
1731                 kfree(adapter->vf_data);
1732                 adapter->vf_data = NULL;
1733                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1734                 msleep(100);
1735                 dev_info(&pdev->dev, "IOV Disabled\n");
1736         }
1737 #endif
1738
1739         iounmap(hw->hw_addr);
1740         if (hw->flash_address)
1741                 iounmap(hw->flash_address);
1742         pci_release_selected_regions(pdev,
1743                                      pci_select_bars(pdev, IORESOURCE_MEM));
1744
1745         free_netdev(netdev);
1746
1747         pci_disable_pcie_error_reporting(pdev);
1748
1749         pci_disable_device(pdev);
1750 }
1751
1752 /**
1753  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1754  * @adapter: board private structure to initialize
1755  *
1756  * This function initializes the vf specific data storage and then attempts to
1757  * allocate the VFs.  The reason for ordering it this way is because it is much
1758  * mor expensive time wise to disable SR-IOV than it is to allocate and free
1759  * the memory for the VFs.
1760  **/
1761 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1762 {
1763 #ifdef CONFIG_PCI_IOV
1764         struct pci_dev *pdev = adapter->pdev;
1765
1766         if (adapter->vfs_allocated_count > 7)
1767                 adapter->vfs_allocated_count = 7;
1768
1769         if (adapter->vfs_allocated_count) {
1770                 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1771                                            sizeof(struct vf_data_storage),
1772                                            GFP_KERNEL);
1773                 /* if allocation failed then we do not support SR-IOV */
1774                 if (!adapter->vf_data) {
1775                         adapter->vfs_allocated_count = 0;
1776                         dev_err(&pdev->dev, "Unable to allocate memory for VF "
1777                                 "Data Storage\n");
1778                 }
1779         }
1780
1781         if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1782                 kfree(adapter->vf_data);
1783                 adapter->vf_data = NULL;
1784 #endif /* CONFIG_PCI_IOV */
1785                 adapter->vfs_allocated_count = 0;
1786 #ifdef CONFIG_PCI_IOV
1787         } else {
1788                 unsigned char mac_addr[ETH_ALEN];
1789                 int i;
1790                 dev_info(&pdev->dev, "%d vfs allocated\n",
1791                          adapter->vfs_allocated_count);
1792                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1793                         random_ether_addr(mac_addr);
1794                         igb_set_vf_mac(adapter, i, mac_addr);
1795                 }
1796         }
1797 #endif /* CONFIG_PCI_IOV */
1798 }
1799
1800
1801 /**
1802  * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1803  * @adapter: board private structure to initialize
1804  *
1805  * igb_init_hw_timer initializes the function pointer and values for the hw
1806  * timer found in hardware.
1807  **/
1808 static void igb_init_hw_timer(struct igb_adapter *adapter)
1809 {
1810         struct e1000_hw *hw = &adapter->hw;
1811
1812         switch (hw->mac.type) {
1813         case e1000_82580:
1814                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1815                 adapter->cycles.read = igb_read_clock;
1816                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1817                 adapter->cycles.mult = 1;
1818                 /*
1819                  * The 82580 timesync updates the system timer every 8ns by 8ns
1820                  * and the value cannot be shifted.  Instead we need to shift
1821                  * the registers to generate a 64bit timer value.  As a result
1822                  * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1823                  * 24 in order to generate a larger value for synchronization.
1824                  */
1825                 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1826                 /* disable system timer temporarily by setting bit 31 */
1827                 wr32(E1000_TSAUXC, 0x80000000);
1828                 wrfl();
1829
1830                 /* Set registers so that rollover occurs soon to test this. */
1831                 wr32(E1000_SYSTIMR, 0x00000000);
1832                 wr32(E1000_SYSTIML, 0x80000000);
1833                 wr32(E1000_SYSTIMH, 0x000000FF);
1834                 wrfl();
1835
1836                 /* enable system timer by clearing bit 31 */
1837                 wr32(E1000_TSAUXC, 0x0);
1838                 wrfl();
1839
1840                 timecounter_init(&adapter->clock,
1841                                  &adapter->cycles,
1842                                  ktime_to_ns(ktime_get_real()));
1843                 /*
1844                  * Synchronize our NIC clock against system wall clock. NIC
1845                  * time stamp reading requires ~3us per sample, each sample
1846                  * was pretty stable even under load => only require 10
1847                  * samples for each offset comparison.
1848                  */
1849                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1850                 adapter->compare.source = &adapter->clock;
1851                 adapter->compare.target = ktime_get_real;
1852                 adapter->compare.num_samples = 10;
1853                 timecompare_update(&adapter->compare, 0);
1854                 break;
1855         case e1000_82576:
1856                 /*
1857                  * Initialize hardware timer: we keep it running just in case
1858                  * that some program needs it later on.
1859                  */
1860                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1861                 adapter->cycles.read = igb_read_clock;
1862                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1863                 adapter->cycles.mult = 1;
1864                 /**
1865                  * Scale the NIC clock cycle by a large factor so that
1866                  * relatively small clock corrections can be added or
1867                  * substracted at each clock tick. The drawbacks of a large
1868                  * factor are a) that the clock register overflows more quickly
1869                  * (not such a big deal) and b) that the increment per tick has
1870                  * to fit into 24 bits.  As a result we need to use a shift of
1871                  * 19 so we can fit a value of 16 into the TIMINCA register.
1872                  */
1873                 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1874                 wr32(E1000_TIMINCA,
1875                                 (1 << E1000_TIMINCA_16NS_SHIFT) |
1876                                 (16 << IGB_82576_TSYNC_SHIFT));
1877
1878                 /* Set registers so that rollover occurs soon to test this. */
1879                 wr32(E1000_SYSTIML, 0x00000000);
1880                 wr32(E1000_SYSTIMH, 0xFF800000);
1881                 wrfl();
1882
1883                 timecounter_init(&adapter->clock,
1884                                  &adapter->cycles,
1885                                  ktime_to_ns(ktime_get_real()));
1886                 /*
1887                  * Synchronize our NIC clock against system wall clock. NIC
1888                  * time stamp reading requires ~3us per sample, each sample
1889                  * was pretty stable even under load => only require 10
1890                  * samples for each offset comparison.
1891                  */
1892                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1893                 adapter->compare.source = &adapter->clock;
1894                 adapter->compare.target = ktime_get_real;
1895                 adapter->compare.num_samples = 10;
1896                 timecompare_update(&adapter->compare, 0);
1897                 break;
1898         case e1000_82575:
1899                 /* 82575 does not support timesync */
1900         default:
1901                 break;
1902         }
1903
1904 }
1905
1906 /**
1907  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1908  * @adapter: board private structure to initialize
1909  *
1910  * igb_sw_init initializes the Adapter private data structure.
1911  * Fields are initialized based on PCI device information and
1912  * OS network device settings (MTU size).
1913  **/
1914 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1915 {
1916         struct e1000_hw *hw = &adapter->hw;
1917         struct net_device *netdev = adapter->netdev;
1918         struct pci_dev *pdev = adapter->pdev;
1919
1920         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1921
1922         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1923         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1924         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1925         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1926
1927         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1928         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1929
1930 #ifdef CONFIG_PCI_IOV
1931         if (hw->mac.type == e1000_82576)
1932                 adapter->vfs_allocated_count = max_vfs;
1933
1934 #endif /* CONFIG_PCI_IOV */
1935         adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1936
1937         /*
1938          * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1939          * then we should combine the queues into a queue pair in order to
1940          * conserve interrupts due to limited supply
1941          */
1942         if ((adapter->rss_queues > 4) ||
1943             ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1944                 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1945
1946         /* This call may decrease the number of queues */
1947         if (igb_init_interrupt_scheme(adapter)) {
1948                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1949                 return -ENOMEM;
1950         }
1951
1952         igb_init_hw_timer(adapter);
1953         igb_probe_vfs(adapter);
1954
1955         /* Explicitly disable IRQ since the NIC can be in any state. */
1956         igb_irq_disable(adapter);
1957
1958         set_bit(__IGB_DOWN, &adapter->state);
1959         return 0;
1960 }
1961
1962 /**
1963  * igb_open - Called when a network interface is made active
1964  * @netdev: network interface device structure
1965  *
1966  * Returns 0 on success, negative value on failure
1967  *
1968  * The open entry point is called when a network interface is made
1969  * active by the system (IFF_UP).  At this point all resources needed
1970  * for transmit and receive operations are allocated, the interrupt
1971  * handler is registered with the OS, the watchdog timer is started,
1972  * and the stack is notified that the interface is ready.
1973  **/
1974 static int igb_open(struct net_device *netdev)
1975 {
1976         struct igb_adapter *adapter = netdev_priv(netdev);
1977         struct e1000_hw *hw = &adapter->hw;
1978         int err;
1979         int i;
1980
1981         /* disallow open during test */
1982         if (test_bit(__IGB_TESTING, &adapter->state))
1983                 return -EBUSY;
1984
1985         netif_carrier_off(netdev);
1986
1987         /* allocate transmit descriptors */
1988         err = igb_setup_all_tx_resources(adapter);
1989         if (err)
1990                 goto err_setup_tx;
1991
1992         /* allocate receive descriptors */
1993         err = igb_setup_all_rx_resources(adapter);
1994         if (err)
1995                 goto err_setup_rx;
1996
1997         /* e1000_power_up_phy(adapter); */
1998
1999         /* before we allocate an interrupt, we must be ready to handle it.
2000          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2001          * as soon as we call pci_request_irq, so we have to setup our
2002          * clean_rx handler before we do so.  */
2003         igb_configure(adapter);
2004
2005         err = igb_request_irq(adapter);
2006         if (err)
2007                 goto err_req_irq;
2008
2009         /* From here on the code is the same as igb_up() */
2010         clear_bit(__IGB_DOWN, &adapter->state);
2011
2012         for (i = 0; i < adapter->num_q_vectors; i++) {
2013                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2014                 napi_enable(&q_vector->napi);
2015         }
2016
2017         /* Clear any pending interrupts. */
2018         rd32(E1000_ICR);
2019
2020         igb_irq_enable(adapter);
2021
2022         /* notify VFs that reset has been completed */
2023         if (adapter->vfs_allocated_count) {
2024                 u32 reg_data = rd32(E1000_CTRL_EXT);
2025                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2026                 wr32(E1000_CTRL_EXT, reg_data);
2027         }
2028
2029         netif_tx_start_all_queues(netdev);
2030
2031         /* start the watchdog. */
2032         hw->mac.get_link_status = 1;
2033         schedule_work(&adapter->watchdog_task);
2034
2035         return 0;
2036
2037 err_req_irq:
2038         igb_release_hw_control(adapter);
2039         /* e1000_power_down_phy(adapter); */
2040         igb_free_all_rx_resources(adapter);
2041 err_setup_rx:
2042         igb_free_all_tx_resources(adapter);
2043 err_setup_tx:
2044         igb_reset(adapter);
2045
2046         return err;
2047 }
2048
2049 /**
2050  * igb_close - Disables a network interface
2051  * @netdev: network interface device structure
2052  *
2053  * Returns 0, this is not allowed to fail
2054  *
2055  * The close entry point is called when an interface is de-activated
2056  * by the OS.  The hardware is still under the driver's control, but
2057  * needs to be disabled.  A global MAC reset is issued to stop the
2058  * hardware, and all transmit and receive resources are freed.
2059  **/
2060 static int igb_close(struct net_device *netdev)
2061 {
2062         struct igb_adapter *adapter = netdev_priv(netdev);
2063
2064         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2065         igb_down(adapter);
2066
2067         igb_free_irq(adapter);
2068
2069         igb_free_all_tx_resources(adapter);
2070         igb_free_all_rx_resources(adapter);
2071
2072         return 0;
2073 }
2074
2075 /**
2076  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2077  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2078  *
2079  * Return 0 on success, negative on failure
2080  **/
2081 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2082 {
2083         struct pci_dev *pdev = tx_ring->pdev;
2084         int size;
2085
2086         size = sizeof(struct igb_buffer) * tx_ring->count;
2087         tx_ring->buffer_info = vmalloc(size);
2088         if (!tx_ring->buffer_info)
2089                 goto err;
2090         memset(tx_ring->buffer_info, 0, size);
2091
2092         /* round up to nearest 4K */
2093         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2094         tx_ring->size = ALIGN(tx_ring->size, 4096);
2095
2096         tx_ring->desc = pci_alloc_consistent(pdev,
2097                                              tx_ring->size,
2098                                              &tx_ring->dma);
2099
2100         if (!tx_ring->desc)
2101                 goto err;
2102
2103         tx_ring->next_to_use = 0;
2104         tx_ring->next_to_clean = 0;
2105         return 0;
2106
2107 err:
2108         vfree(tx_ring->buffer_info);
2109         dev_err(&pdev->dev,
2110                 "Unable to allocate memory for the transmit descriptor ring\n");
2111         return -ENOMEM;
2112 }
2113
2114 /**
2115  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2116  *                                (Descriptors) for all queues
2117  * @adapter: board private structure
2118  *
2119  * Return 0 on success, negative on failure
2120  **/
2121 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2122 {
2123         struct pci_dev *pdev = adapter->pdev;
2124         int i, err = 0;
2125
2126         for (i = 0; i < adapter->num_tx_queues; i++) {
2127                 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2128                 if (err) {
2129                         dev_err(&pdev->dev,
2130                                 "Allocation for Tx Queue %u failed\n", i);
2131                         for (i--; i >= 0; i--)
2132                                 igb_free_tx_resources(&adapter->tx_ring[i]);
2133                         break;
2134                 }
2135         }
2136
2137         for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2138                 int r_idx = i % adapter->num_tx_queues;
2139                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2140         }
2141         return err;
2142 }
2143
2144 /**
2145  * igb_setup_tctl - configure the transmit control registers
2146  * @adapter: Board private structure
2147  **/
2148 void igb_setup_tctl(struct igb_adapter *adapter)
2149 {
2150         struct e1000_hw *hw = &adapter->hw;
2151         u32 tctl;
2152
2153         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2154         wr32(E1000_TXDCTL(0), 0);
2155
2156         /* Program the Transmit Control Register */
2157         tctl = rd32(E1000_TCTL);
2158         tctl &= ~E1000_TCTL_CT;
2159         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2160                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2161
2162         igb_config_collision_dist(hw);
2163
2164         /* Enable transmits */
2165         tctl |= E1000_TCTL_EN;
2166
2167         wr32(E1000_TCTL, tctl);
2168 }
2169
2170 /**
2171  * igb_configure_tx_ring - Configure transmit ring after Reset
2172  * @adapter: board private structure
2173  * @ring: tx ring to configure
2174  *
2175  * Configure a transmit ring after a reset.
2176  **/
2177 void igb_configure_tx_ring(struct igb_adapter *adapter,
2178                            struct igb_ring *ring)
2179 {
2180         struct e1000_hw *hw = &adapter->hw;
2181         u32 txdctl;
2182         u64 tdba = ring->dma;
2183         int reg_idx = ring->reg_idx;
2184
2185         /* disable the queue */
2186         txdctl = rd32(E1000_TXDCTL(reg_idx));
2187         wr32(E1000_TXDCTL(reg_idx),
2188                         txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2189         wrfl();
2190         mdelay(10);
2191
2192         wr32(E1000_TDLEN(reg_idx),
2193                         ring->count * sizeof(union e1000_adv_tx_desc));
2194         wr32(E1000_TDBAL(reg_idx),
2195                         tdba & 0x00000000ffffffffULL);
2196         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2197
2198         ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2199         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2200         writel(0, ring->head);
2201         writel(0, ring->tail);
2202
2203         txdctl |= IGB_TX_PTHRESH;
2204         txdctl |= IGB_TX_HTHRESH << 8;
2205         txdctl |= IGB_TX_WTHRESH << 16;
2206
2207         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2208         wr32(E1000_TXDCTL(reg_idx), txdctl);
2209 }
2210
2211 /**
2212  * igb_configure_tx - Configure transmit Unit after Reset
2213  * @adapter: board private structure
2214  *
2215  * Configure the Tx unit of the MAC after a reset.
2216  **/
2217 static void igb_configure_tx(struct igb_adapter *adapter)
2218 {
2219         int i;
2220
2221         for (i = 0; i < adapter->num_tx_queues; i++)
2222                 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2223 }
2224
2225 /**
2226  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2227  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2228  *
2229  * Returns 0 on success, negative on failure
2230  **/
2231 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2232 {
2233         struct pci_dev *pdev = rx_ring->pdev;
2234         int size, desc_len;
2235
2236         size = sizeof(struct igb_buffer) * rx_ring->count;
2237         rx_ring->buffer_info = vmalloc(size);
2238         if (!rx_ring->buffer_info)
2239                 goto err;
2240         memset(rx_ring->buffer_info, 0, size);
2241
2242         desc_len = sizeof(union e1000_adv_rx_desc);
2243
2244         /* Round up to nearest 4K */
2245         rx_ring->size = rx_ring->count * desc_len;
2246         rx_ring->size = ALIGN(rx_ring->size, 4096);
2247
2248         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2249                                              &rx_ring->dma);
2250
2251         if (!rx_ring->desc)
2252                 goto err;
2253
2254         rx_ring->next_to_clean = 0;
2255         rx_ring->next_to_use = 0;
2256
2257         return 0;
2258
2259 err:
2260         vfree(rx_ring->buffer_info);
2261         rx_ring->buffer_info = NULL;
2262         dev_err(&pdev->dev, "Unable to allocate memory for "
2263                 "the receive descriptor ring\n");
2264         return -ENOMEM;
2265 }
2266
2267 /**
2268  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2269  *                                (Descriptors) for all queues
2270  * @adapter: board private structure
2271  *
2272  * Return 0 on success, negative on failure
2273  **/
2274 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2275 {
2276         struct pci_dev *pdev = adapter->pdev;
2277         int i, err = 0;
2278
2279         for (i = 0; i < adapter->num_rx_queues; i++) {
2280                 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2281                 if (err) {
2282                         dev_err(&pdev->dev,
2283                                 "Allocation for Rx Queue %u failed\n", i);
2284                         for (i--; i >= 0; i--)
2285                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2286                         break;
2287                 }
2288         }
2289
2290         return err;
2291 }
2292
2293 /**
2294  * igb_setup_mrqc - configure the multiple receive queue control registers
2295  * @adapter: Board private structure
2296  **/
2297 static void igb_setup_mrqc(struct igb_adapter *adapter)
2298 {
2299         struct e1000_hw *hw = &adapter->hw;
2300         u32 mrqc, rxcsum;
2301         u32 j, num_rx_queues, shift = 0, shift2 = 0;
2302         union e1000_reta {
2303                 u32 dword;
2304                 u8  bytes[4];
2305         } reta;
2306         static const u8 rsshash[40] = {
2307                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2308                 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2309                 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2310                 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2311
2312         /* Fill out hash function seeds */
2313         for (j = 0; j < 10; j++) {
2314                 u32 rsskey = rsshash[(j * 4)];
2315                 rsskey |= rsshash[(j * 4) + 1] << 8;
2316                 rsskey |= rsshash[(j * 4) + 2] << 16;
2317                 rsskey |= rsshash[(j * 4) + 3] << 24;
2318                 array_wr32(E1000_RSSRK(0), j, rsskey);
2319         }
2320
2321         num_rx_queues = adapter->rss_queues;
2322
2323         if (adapter->vfs_allocated_count) {
2324                 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2325                 switch (hw->mac.type) {
2326                 case e1000_82580:
2327                         num_rx_queues = 1;
2328                         shift = 0;
2329                         break;
2330                 case e1000_82576:
2331                         shift = 3;
2332                         num_rx_queues = 2;
2333                         break;
2334                 case e1000_82575:
2335                         shift = 2;
2336                         shift2 = 6;
2337                 default:
2338                         break;
2339                 }
2340         } else {
2341                 if (hw->mac.type == e1000_82575)
2342                         shift = 6;
2343         }
2344
2345         for (j = 0; j < (32 * 4); j++) {
2346                 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2347                 if (shift2)
2348                         reta.bytes[j & 3] |= num_rx_queues << shift2;
2349                 if ((j & 3) == 3)
2350                         wr32(E1000_RETA(j >> 2), reta.dword);
2351         }
2352
2353         /*
2354          * Disable raw packet checksumming so that RSS hash is placed in
2355          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2356          * offloads as they are enabled by default
2357          */
2358         rxcsum = rd32(E1000_RXCSUM);
2359         rxcsum |= E1000_RXCSUM_PCSD;
2360
2361         if (adapter->hw.mac.type >= e1000_82576)
2362                 /* Enable Receive Checksum Offload for SCTP */
2363                 rxcsum |= E1000_RXCSUM_CRCOFL;
2364
2365         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2366         wr32(E1000_RXCSUM, rxcsum);
2367
2368         /* If VMDq is enabled then we set the appropriate mode for that, else
2369          * we default to RSS so that an RSS hash is calculated per packet even
2370          * if we are only using one queue */
2371         if (adapter->vfs_allocated_count) {
2372                 if (hw->mac.type > e1000_82575) {
2373                         /* Set the default pool for the PF's first queue */
2374                         u32 vtctl = rd32(E1000_VT_CTL);
2375                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2376                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2377                         vtctl |= adapter->vfs_allocated_count <<
2378                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2379                         wr32(E1000_VT_CTL, vtctl);
2380                 }
2381                 if (adapter->rss_queues > 1)
2382                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2383                 else
2384                         mrqc = E1000_MRQC_ENABLE_VMDQ;
2385         } else {
2386                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2387         }
2388         igb_vmm_control(adapter);
2389
2390         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2391                  E1000_MRQC_RSS_FIELD_IPV4_TCP);
2392         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2393                  E1000_MRQC_RSS_FIELD_IPV6_TCP);
2394         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2395                  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2396         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2397                  E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2398
2399         wr32(E1000_MRQC, mrqc);
2400 }
2401
2402 /**
2403  * igb_setup_rctl - configure the receive control registers
2404  * @adapter: Board private structure
2405  **/
2406 void igb_setup_rctl(struct igb_adapter *adapter)
2407 {
2408         struct e1000_hw *hw = &adapter->hw;
2409         u32 rctl;
2410
2411         rctl = rd32(E1000_RCTL);
2412
2413         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2414         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2415
2416         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2417                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2418
2419         /*
2420          * enable stripping of CRC. It's unlikely this will break BMC
2421          * redirection as it did with e1000. Newer features require
2422          * that the HW strips the CRC.
2423          */
2424         rctl |= E1000_RCTL_SECRC;
2425
2426         /* disable store bad packets and clear size bits. */
2427         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2428
2429         /* enable LPE to prevent packets larger than max_frame_size */
2430         rctl |= E1000_RCTL_LPE;
2431
2432         /* disable queue 0 to prevent tail write w/o re-config */
2433         wr32(E1000_RXDCTL(0), 0);
2434
2435         /* Attention!!!  For SR-IOV PF driver operations you must enable
2436          * queue drop for all VF and PF queues to prevent head of line blocking
2437          * if an un-trusted VF does not provide descriptors to hardware.
2438          */
2439         if (adapter->vfs_allocated_count) {
2440                 /* set all queue drop enable bits */
2441                 wr32(E1000_QDE, ALL_QUEUES);
2442         }
2443
2444         wr32(E1000_RCTL, rctl);
2445 }
2446
2447 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2448                                    int vfn)
2449 {
2450         struct e1000_hw *hw = &adapter->hw;
2451         u32 vmolr;
2452
2453         /* if it isn't the PF check to see if VFs are enabled and
2454          * increase the size to support vlan tags */
2455         if (vfn < adapter->vfs_allocated_count &&
2456             adapter->vf_data[vfn].vlans_enabled)
2457                 size += VLAN_TAG_SIZE;
2458
2459         vmolr = rd32(E1000_VMOLR(vfn));
2460         vmolr &= ~E1000_VMOLR_RLPML_MASK;
2461         vmolr |= size | E1000_VMOLR_LPE;
2462         wr32(E1000_VMOLR(vfn), vmolr);
2463
2464         return 0;
2465 }
2466
2467 /**
2468  * igb_rlpml_set - set maximum receive packet size
2469  * @adapter: board private structure
2470  *
2471  * Configure maximum receivable packet size.
2472  **/
2473 static void igb_rlpml_set(struct igb_adapter *adapter)
2474 {
2475         u32 max_frame_size = adapter->max_frame_size;
2476         struct e1000_hw *hw = &adapter->hw;
2477         u16 pf_id = adapter->vfs_allocated_count;
2478
2479         if (adapter->vlgrp)
2480                 max_frame_size += VLAN_TAG_SIZE;
2481
2482         /* if vfs are enabled we set RLPML to the largest possible request
2483          * size and set the VMOLR RLPML to the size we need */
2484         if (pf_id) {
2485                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2486                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2487         }
2488
2489         wr32(E1000_RLPML, max_frame_size);
2490 }
2491
2492 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2493 {
2494         struct e1000_hw *hw = &adapter->hw;
2495         u32 vmolr;
2496
2497         /*
2498          * This register exists only on 82576 and newer so if we are older then
2499          * we should exit and do nothing
2500          */
2501         if (hw->mac.type < e1000_82576)
2502                 return;
2503
2504         vmolr = rd32(E1000_VMOLR(vfn));
2505         vmolr |= E1000_VMOLR_AUPE |        /* Accept untagged packets */
2506                  E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
2507
2508         /* clear all bits that might not be set */
2509         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2510
2511         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2512                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2513         /*
2514          * for VMDq only allow the VFs and pool 0 to accept broadcast and
2515          * multicast packets
2516          */
2517         if (vfn <= adapter->vfs_allocated_count)
2518                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
2519
2520         wr32(E1000_VMOLR(vfn), vmolr);
2521 }
2522
2523 /**
2524  * igb_configure_rx_ring - Configure a receive ring after Reset
2525  * @adapter: board private structure
2526  * @ring: receive ring to be configured
2527  *
2528  * Configure the Rx unit of the MAC after a reset.
2529  **/
2530 void igb_configure_rx_ring(struct igb_adapter *adapter,
2531                            struct igb_ring *ring)
2532 {
2533         struct e1000_hw *hw = &adapter->hw;
2534         u64 rdba = ring->dma;
2535         int reg_idx = ring->reg_idx;
2536         u32 srrctl, rxdctl;
2537
2538         /* disable the queue */
2539         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2540         wr32(E1000_RXDCTL(reg_idx),
2541                         rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2542
2543         /* Set DMA base address registers */
2544         wr32(E1000_RDBAL(reg_idx),
2545              rdba & 0x00000000ffffffffULL);
2546         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2547         wr32(E1000_RDLEN(reg_idx),
2548                        ring->count * sizeof(union e1000_adv_rx_desc));
2549
2550         /* initialize head and tail */
2551         ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2552         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2553         writel(0, ring->head);
2554         writel(0, ring->tail);
2555
2556         /* set descriptor configuration */
2557         if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2558                 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2559                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2560 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2561                 srrctl |= IGB_RXBUFFER_16384 >>
2562                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2563 #else
2564                 srrctl |= (PAGE_SIZE / 2) >>
2565                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2566 #endif
2567                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2568         } else {
2569                 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2570                          E1000_SRRCTL_BSIZEPKT_SHIFT;
2571                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2572         }
2573
2574         wr32(E1000_SRRCTL(reg_idx), srrctl);
2575
2576         /* set filtering for VMDQ pools */
2577         igb_set_vmolr(adapter, reg_idx & 0x7);
2578
2579         /* enable receive descriptor fetching */
2580         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2581         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2582         rxdctl &= 0xFFF00000;
2583         rxdctl |= IGB_RX_PTHRESH;
2584         rxdctl |= IGB_RX_HTHRESH << 8;
2585         rxdctl |= IGB_RX_WTHRESH << 16;
2586         wr32(E1000_RXDCTL(reg_idx), rxdctl);
2587 }
2588
2589 /**
2590  * igb_configure_rx - Configure receive Unit after Reset
2591  * @adapter: board private structure
2592  *
2593  * Configure the Rx unit of the MAC after a reset.
2594  **/
2595 static void igb_configure_rx(struct igb_adapter *adapter)
2596 {
2597         int i;
2598
2599         /* set UTA to appropriate mode */
2600         igb_set_uta(adapter);
2601
2602         /* set the correct pool for the PF default MAC address in entry 0 */
2603         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2604                          adapter->vfs_allocated_count);
2605
2606         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2607          * the Base and Length of the Rx Descriptor Ring */
2608         for (i = 0; i < adapter->num_rx_queues; i++)
2609                 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2610 }
2611
2612 /**
2613  * igb_free_tx_resources - Free Tx Resources per Queue
2614  * @tx_ring: Tx descriptor ring for a specific queue
2615  *
2616  * Free all transmit software resources
2617  **/
2618 void igb_free_tx_resources(struct igb_ring *tx_ring)
2619 {
2620         igb_clean_tx_ring(tx_ring);
2621
2622         vfree(tx_ring->buffer_info);
2623         tx_ring->buffer_info = NULL;
2624
2625         /* if not set, then don't free */
2626         if (!tx_ring->desc)
2627                 return;
2628
2629         pci_free_consistent(tx_ring->pdev, tx_ring->size,
2630                             tx_ring->desc, tx_ring->dma);
2631
2632         tx_ring->desc = NULL;
2633 }
2634
2635 /**
2636  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2637  * @adapter: board private structure
2638  *
2639  * Free all transmit software resources
2640  **/
2641 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2642 {
2643         int i;
2644
2645         for (i = 0; i < adapter->num_tx_queues; i++)
2646                 igb_free_tx_resources(&adapter->tx_ring[i]);
2647 }
2648
2649 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2650                                     struct igb_buffer *buffer_info)
2651 {
2652         if (buffer_info->dma) {
2653                 if (buffer_info->mapped_as_page)
2654                         pci_unmap_page(tx_ring->pdev,
2655                                         buffer_info->dma,
2656                                         buffer_info->length,
2657                                         PCI_DMA_TODEVICE);
2658                 else
2659                         pci_unmap_single(tx_ring->pdev,
2660                                         buffer_info->dma,
2661                                         buffer_info->length,
2662                                         PCI_DMA_TODEVICE);
2663                 buffer_info->dma = 0;
2664         }
2665         if (buffer_info->skb) {
2666                 dev_kfree_skb_any(buffer_info->skb);
2667                 buffer_info->skb = NULL;
2668         }
2669         buffer_info->time_stamp = 0;
2670         buffer_info->length = 0;
2671         buffer_info->next_to_watch = 0;
2672         buffer_info->mapped_as_page = false;
2673 }
2674
2675 /**
2676  * igb_clean_tx_ring - Free Tx Buffers
2677  * @tx_ring: ring to be cleaned
2678  **/
2679 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2680 {
2681         struct igb_buffer *buffer_info;
2682         unsigned long size;
2683         unsigned int i;
2684
2685         if (!tx_ring->buffer_info)
2686                 return;
2687         /* Free all the Tx ring sk_buffs */
2688
2689         for (i = 0; i < tx_ring->count; i++) {
2690                 buffer_info = &tx_ring->buffer_info[i];
2691                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2692         }
2693
2694         size = sizeof(struct igb_buffer) * tx_ring->count;
2695         memset(tx_ring->buffer_info, 0, size);
2696
2697         /* Zero out the descriptor ring */
2698         memset(tx_ring->desc, 0, tx_ring->size);
2699
2700         tx_ring->next_to_use = 0;
2701         tx_ring->next_to_clean = 0;
2702 }
2703
2704 /**
2705  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2706  * @adapter: board private structure
2707  **/
2708 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2709 {
2710         int i;
2711
2712         for (i = 0; i < adapter->num_tx_queues; i++)
2713                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2714 }
2715
2716 /**
2717  * igb_free_rx_resources - Free Rx Resources
2718  * @rx_ring: ring to clean the resources from
2719  *
2720  * Free all receive software resources
2721  **/
2722 void igb_free_rx_resources(struct igb_ring *rx_ring)
2723 {
2724         igb_clean_rx_ring(rx_ring);
2725
2726         vfree(rx_ring->buffer_info);
2727         rx_ring->buffer_info = NULL;
2728
2729         /* if not set, then don't free */
2730         if (!rx_ring->desc)
2731                 return;
2732
2733         pci_free_consistent(rx_ring->pdev, rx_ring->size,
2734                             rx_ring->desc, rx_ring->dma);
2735
2736         rx_ring->desc = NULL;
2737 }
2738
2739 /**
2740  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2741  * @adapter: board private structure
2742  *
2743  * Free all receive software resources
2744  **/
2745 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2746 {
2747         int i;
2748
2749         for (i = 0; i < adapter->num_rx_queues; i++)
2750                 igb_free_rx_resources(&adapter->rx_ring[i]);
2751 }
2752
2753 /**
2754  * igb_clean_rx_ring - Free Rx Buffers per Queue
2755  * @rx_ring: ring to free buffers from
2756  **/
2757 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2758 {
2759         struct igb_buffer *buffer_info;
2760         unsigned long size;
2761         unsigned int i;
2762
2763         if (!rx_ring->buffer_info)
2764                 return;
2765
2766         /* Free all the Rx ring sk_buffs */
2767         for (i = 0; i < rx_ring->count; i++) {
2768                 buffer_info = &rx_ring->buffer_info[i];
2769                 if (buffer_info->dma) {
2770                         pci_unmap_single(rx_ring->pdev,
2771                                          buffer_info->dma,
2772                                          rx_ring->rx_buffer_len,
2773                                          PCI_DMA_FROMDEVICE);
2774                         buffer_info->dma = 0;
2775                 }
2776
2777                 if (buffer_info->skb) {
2778                         dev_kfree_skb(buffer_info->skb);
2779                         buffer_info->skb = NULL;
2780                 }
2781                 if (buffer_info->page_dma) {
2782                         pci_unmap_page(rx_ring->pdev,
2783                                        buffer_info->page_dma,
2784                                        PAGE_SIZE / 2,
2785                                        PCI_DMA_FROMDEVICE);
2786                         buffer_info->page_dma = 0;
2787                 }
2788                 if (buffer_info->page) {
2789                         put_page(buffer_info->page);
2790                         buffer_info->page = NULL;
2791                         buffer_info->page_offset = 0;
2792                 }
2793         }
2794
2795         size = sizeof(struct igb_buffer) * rx_ring->count;
2796         memset(rx_ring->buffer_info, 0, size);
2797
2798         /* Zero out the descriptor ring */
2799         memset(rx_ring->desc, 0, rx_ring->size);
2800
2801         rx_ring->next_to_clean = 0;
2802         rx_ring->next_to_use = 0;
2803 }
2804
2805 /**
2806  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2807  * @adapter: board private structure
2808  **/
2809 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2810 {
2811         int i;
2812
2813         for (i = 0; i < adapter->num_rx_queues; i++)
2814                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2815 }
2816
2817 /**
2818  * igb_set_mac - Change the Ethernet Address of the NIC
2819  * @netdev: network interface device structure
2820  * @p: pointer to an address structure
2821  *
2822  * Returns 0 on success, negative on failure
2823  **/
2824 static int igb_set_mac(struct net_device *netdev, void *p)
2825 {
2826         struct igb_adapter *adapter = netdev_priv(netdev);
2827         struct e1000_hw *hw = &adapter->hw;
2828         struct sockaddr *addr = p;
2829
2830         if (!is_valid_ether_addr(addr->sa_data))
2831                 return -EADDRNOTAVAIL;
2832
2833         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2834         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2835
2836         /* set the correct pool for the new PF MAC address in entry 0 */
2837         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2838                          adapter->vfs_allocated_count);
2839
2840         return 0;
2841 }
2842
2843 /**
2844  * igb_write_mc_addr_list - write multicast addresses to MTA
2845  * @netdev: network interface device structure
2846  *
2847  * Writes multicast address list to the MTA hash table.
2848  * Returns: -ENOMEM on failure
2849  *                0 on no addresses written
2850  *                X on writing X addresses to MTA
2851  **/
2852 static int igb_write_mc_addr_list(struct net_device *netdev)
2853 {
2854         struct igb_adapter *adapter = netdev_priv(netdev);
2855         struct e1000_hw *hw = &adapter->hw;
2856         struct dev_mc_list *mc_ptr = netdev->mc_list;
2857         u8  *mta_list;
2858         u32 vmolr = 0;
2859         int i;
2860
2861         if (!netdev->mc_count) {
2862                 /* nothing to program, so clear mc list */
2863                 igb_update_mc_addr_list(hw, NULL, 0);
2864                 igb_restore_vf_multicasts(adapter);
2865                 return 0;
2866         }
2867
2868         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2869         if (!mta_list)
2870                 return -ENOMEM;
2871
2872         /* set vmolr receive overflow multicast bit */
2873         vmolr |= E1000_VMOLR_ROMPE;
2874
2875         /* The shared function expects a packed array of only addresses. */
2876         mc_ptr = netdev->mc_list;
2877
2878         for (i = 0; i < netdev->mc_count; i++) {
2879                 if (!mc_ptr)
2880                         break;
2881                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2882                 mc_ptr = mc_ptr->next;
2883         }
2884         igb_update_mc_addr_list(hw, mta_list, i);
2885         kfree(mta_list);
2886
2887         return netdev->mc_count;
2888 }
2889
2890 /**
2891  * igb_write_uc_addr_list - write unicast addresses to RAR table
2892  * @netdev: network interface device structure
2893  *
2894  * Writes unicast address list to the RAR table.
2895  * Returns: -ENOMEM on failure/insufficient address space
2896  *                0 on no addresses written
2897  *                X on writing X addresses to the RAR table
2898  **/
2899 static int igb_write_uc_addr_list(struct net_device *netdev)
2900 {
2901         struct igb_adapter *adapter = netdev_priv(netdev);
2902         struct e1000_hw *hw = &adapter->hw;
2903         unsigned int vfn = adapter->vfs_allocated_count;
2904         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2905         int count = 0;
2906
2907         /* return ENOMEM indicating insufficient memory for addresses */
2908         if (netdev->uc.count > rar_entries)
2909                 return -ENOMEM;
2910
2911         if (netdev->uc.count && rar_entries) {
2912                 struct netdev_hw_addr *ha;
2913                 list_for_each_entry(ha, &netdev->uc.list, list) {
2914                         if (!rar_entries)
2915                                 break;
2916                         igb_rar_set_qsel(adapter, ha->addr,
2917                                          rar_entries--,
2918                                          vfn);
2919                         count++;
2920                 }
2921         }
2922         /* write the addresses in reverse order to avoid write combining */
2923         for (; rar_entries > 0 ; rar_entries--) {
2924                 wr32(E1000_RAH(rar_entries), 0);
2925                 wr32(E1000_RAL(rar_entries), 0);
2926         }
2927         wrfl();
2928
2929         return count;
2930 }
2931
2932 /**
2933  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2934  * @netdev: network interface device structure
2935  *
2936  * The set_rx_mode entry point is called whenever the unicast or multicast
2937  * address lists or the network interface flags are updated.  This routine is
2938  * responsible for configuring the hardware for proper unicast, multicast,
2939  * promiscuous mode, and all-multi behavior.
2940  **/
2941 static void igb_set_rx_mode(struct net_device *netdev)
2942 {
2943         struct igb_adapter *adapter = netdev_priv(netdev);
2944         struct e1000_hw *hw = &adapter->hw;
2945         unsigned int vfn = adapter->vfs_allocated_count;
2946         u32 rctl, vmolr = 0;
2947         int count;
2948
2949         /* Check for Promiscuous and All Multicast modes */
2950         rctl = rd32(E1000_RCTL);
2951
2952         /* clear the effected bits */
2953         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2954
2955         if (netdev->flags & IFF_PROMISC) {
2956                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2957                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2958         } else {
2959                 if (netdev->flags & IFF_ALLMULTI) {
2960                         rctl |= E1000_RCTL_MPE;
2961                         vmolr |= E1000_VMOLR_MPME;
2962                 } else {
2963                         /*
2964                          * Write addresses to the MTA, if the attempt fails
2965                          * then we should just turn on promiscous mode so
2966                          * that we can at least receive multicast traffic
2967                          */
2968                         count = igb_write_mc_addr_list(netdev);
2969                         if (count < 0) {
2970                                 rctl |= E1000_RCTL_MPE;
2971                                 vmolr |= E1000_VMOLR_MPME;
2972                         } else if (count) {
2973                                 vmolr |= E1000_VMOLR_ROMPE;
2974                         }
2975                 }
2976                 /*
2977                  * Write addresses to available RAR registers, if there is not
2978                  * sufficient space to store all the addresses then enable
2979                  * unicast promiscous mode
2980                  */
2981                 count = igb_write_uc_addr_list(netdev);
2982                 if (count < 0) {
2983                         rctl |= E1000_RCTL_UPE;
2984                         vmolr |= E1000_VMOLR_ROPE;
2985                 }
2986                 rctl |= E1000_RCTL_VFE;
2987         }
2988         wr32(E1000_RCTL, rctl);
2989
2990         /*
2991          * In order to support SR-IOV and eventually VMDq it is necessary to set
2992          * the VMOLR to enable the appropriate modes.  Without this workaround
2993          * we will have issues with VLAN tag stripping not being done for frames
2994          * that are only arriving because we are the default pool
2995          */
2996         if (hw->mac.type < e1000_82576)
2997                 return;
2998
2999         vmolr |= rd32(E1000_VMOLR(vfn)) &
3000                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3001         wr32(E1000_VMOLR(vfn), vmolr);
3002         igb_restore_vf_multicasts(adapter);
3003 }
3004
3005 /* Need to wait a few seconds after link up to get diagnostic information from
3006  * the phy */
3007 static void igb_update_phy_info(unsigned long data)
3008 {
3009         struct igb_adapter *adapter = (struct igb_adapter *) data;
3010         igb_get_phy_info(&adapter->hw);
3011 }
3012
3013 /**
3014  * igb_has_link - check shared code for link and determine up/down
3015  * @adapter: pointer to driver private info
3016  **/
3017 static bool igb_has_link(struct igb_adapter *adapter)
3018 {
3019         struct e1000_hw *hw = &adapter->hw;
3020         bool link_active = false;
3021         s32 ret_val = 0;
3022
3023         /* get_link_status is set on LSC (link status) interrupt or
3024          * rx sequence error interrupt.  get_link_status will stay
3025          * false until the e1000_check_for_link establishes link
3026          * for copper adapters ONLY
3027          */
3028         switch (hw->phy.media_type) {
3029         case e1000_media_type_copper:
3030                 if (hw->mac.get_link_status) {
3031                         ret_val = hw->mac.ops.check_for_link(hw);
3032                         link_active = !hw->mac.get_link_status;
3033                 } else {
3034                         link_active = true;
3035                 }
3036                 break;
3037         case e1000_media_type_internal_serdes:
3038                 ret_val = hw->mac.ops.check_for_link(hw);
3039                 link_active = hw->mac.serdes_has_link;
3040                 break;
3041         default:
3042         case e1000_media_type_unknown:
3043                 break;
3044         }
3045
3046         return link_active;
3047 }
3048
3049 /**
3050  * igb_watchdog - Timer Call-back
3051  * @data: pointer to adapter cast into an unsigned long
3052  **/
3053 static void igb_watchdog(unsigned long data)
3054 {
3055         struct igb_adapter *adapter = (struct igb_adapter *)data;
3056         /* Do the rest outside of interrupt context */
3057         schedule_work(&adapter->watchdog_task);
3058 }
3059
3060 static void igb_watchdog_task(struct work_struct *work)
3061 {
3062         struct igb_adapter *adapter = container_of(work,
3063                                                    struct igb_adapter,
3064                                                    watchdog_task);
3065         struct e1000_hw *hw = &adapter->hw;
3066         struct net_device *netdev = adapter->netdev;
3067         u32 link;
3068         int i;
3069
3070         link = igb_has_link(adapter);
3071         if (link) {
3072                 if (!netif_carrier_ok(netdev)) {
3073                         u32 ctrl;
3074                         hw->mac.ops.get_speed_and_duplex(hw,
3075                                                          &adapter->link_speed,
3076                                                          &adapter->link_duplex);
3077
3078                         ctrl = rd32(E1000_CTRL);
3079                         /* Links status message must follow this format */
3080                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3081                                  "Flow Control: %s\n",
3082                                netdev->name,
3083                                adapter->link_speed,
3084                                adapter->link_duplex == FULL_DUPLEX ?
3085                                  "Full Duplex" : "Half Duplex",
3086                                ((ctrl & E1000_CTRL_TFCE) &&
3087                                 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3088                                ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
3089                                ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3090
3091                         /* tweak tx_queue_len according to speed/duplex and
3092                          * adjust the timeout factor */
3093                         netdev->tx_queue_len = adapter->tx_queue_len;
3094                         adapter->tx_timeout_factor = 1;
3095                         switch (adapter->link_speed) {
3096                         case SPEED_10:
3097                                 netdev->tx_queue_len = 10;
3098                                 adapter->tx_timeout_factor = 14;
3099                                 break;
3100                         case SPEED_100:
3101                                 netdev->tx_queue_len = 100;
3102                                 /* maybe add some timeout factor ? */
3103                                 break;
3104                         }
3105
3106                         netif_carrier_on(netdev);
3107
3108                         igb_ping_all_vfs(adapter);
3109
3110                         /* link state has changed, schedule phy info update */
3111                         if (!test_bit(__IGB_DOWN, &adapter->state))
3112                                 mod_timer(&adapter->phy_info_timer,
3113                                           round_jiffies(jiffies + 2 * HZ));
3114                 }
3115         } else {
3116                 if (netif_carrier_ok(netdev)) {
3117                         adapter->link_speed = 0;
3118                         adapter->link_duplex = 0;
3119                         /* Links status message must follow this format */
3120                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3121                                netdev->name);
3122                         netif_carrier_off(netdev);
3123
3124                         igb_ping_all_vfs(adapter);
3125
3126                         /* link state has changed, schedule phy info update */
3127                         if (!test_bit(__IGB_DOWN, &adapter->state))
3128                                 mod_timer(&adapter->phy_info_timer,
3129                                           round_jiffies(jiffies + 2 * HZ));
3130                 }
3131         }
3132
3133         igb_update_stats(adapter);
3134         igb_update_adaptive(hw);
3135
3136         for (i = 0; i < adapter->num_tx_queues; i++) {
3137                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3138                 if (!netif_carrier_ok(netdev)) {
3139                         /* We've lost link, so the controller stops DMA,
3140                          * but we've got queued Tx work that's never going
3141                          * to get done, so reset controller to flush Tx.
3142                          * (Do the reset outside of interrupt context). */
3143                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3144                                 adapter->tx_timeout_count++;
3145                                 schedule_work(&adapter->reset_task);
3146                                 /* return immediately since reset is imminent */
3147                                 return;
3148                         }
3149                 }
3150
3151                 /* Force detection of hung controller every watchdog period */
3152                 tx_ring->detect_tx_hung = true;
3153         }
3154
3155         /* Cause software interrupt to ensure rx ring is cleaned */
3156         if (adapter->msix_entries) {
3157                 u32 eics = 0;
3158                 for (i = 0; i < adapter->num_q_vectors; i++) {
3159                         struct igb_q_vector *q_vector = adapter->q_vector[i];
3160                         eics |= q_vector->eims_value;
3161                 }
3162                 wr32(E1000_EICS, eics);
3163         } else {
3164                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3165         }
3166
3167         /* Reset the timer */
3168         if (!test_bit(__IGB_DOWN, &adapter->state))
3169                 mod_timer(&adapter->watchdog_timer,
3170                           round_jiffies(jiffies + 2 * HZ));
3171 }
3172
3173 enum latency_range {
3174         lowest_latency = 0,
3175         low_latency = 1,
3176         bulk_latency = 2,
3177         latency_invalid = 255
3178 };
3179
3180 /**
3181  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3182  *
3183  *      Stores a new ITR value based on strictly on packet size.  This
3184  *      algorithm is less sophisticated than that used in igb_update_itr,
3185  *      due to the difficulty of synchronizing statistics across multiple
3186  *      receive rings.  The divisors and thresholds used by this fuction
3187  *      were determined based on theoretical maximum wire speed and testing
3188  *      data, in order to minimize response time while increasing bulk
3189  *      throughput.
3190  *      This functionality is controlled by the InterruptThrottleRate module
3191  *      parameter (see igb_param.c)
3192  *      NOTE:  This function is called only when operating in a multiqueue
3193  *             receive environment.
3194  * @q_vector: pointer to q_vector
3195  **/
3196 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3197 {
3198         int new_val = q_vector->itr_val;
3199         int avg_wire_size = 0;
3200         struct igb_adapter *adapter = q_vector->adapter;
3201
3202         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3203          * ints/sec - ITR timer value of 120 ticks.
3204          */
3205         if (adapter->link_speed != SPEED_1000) {
3206                 new_val = 976;
3207                 goto set_itr_val;
3208         }
3209
3210         if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3211                 struct igb_ring *ring = q_vector->rx_ring;
3212                 avg_wire_size = ring->total_bytes / ring->total_packets;
3213         }
3214
3215         if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3216                 struct igb_ring *ring = q_vector->tx_ring;
3217                 avg_wire_size = max_t(u32, avg_wire_size,
3218                                       (ring->total_bytes /
3219                                        ring->total_packets));
3220         }
3221
3222         /* if avg_wire_size isn't set no work was done */
3223         if (!avg_wire_size)
3224                 goto clear_counts;
3225
3226         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3227         avg_wire_size += 24;
3228
3229         /* Don't starve jumbo frames */
3230         avg_wire_size = min(avg_wire_size, 3000);
3231
3232         /* Give a little boost to mid-size frames */
3233         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3234                 new_val = avg_wire_size / 3;
3235         else
3236                 new_val = avg_wire_size / 2;
3237
3238 set_itr_val:
3239         if (new_val != q_vector->itr_val) {
3240                 q_vector->itr_val = new_val;
3241                 q_vector->set_itr = 1;
3242         }
3243 clear_counts:
3244         if (q_vector->rx_ring) {
3245                 q_vector->rx_ring->total_bytes = 0;
3246                 q_vector->rx_ring->total_packets = 0;
3247         }
3248         if (q_vector->tx_ring) {
3249                 q_vector->tx_ring->total_bytes = 0;
3250                 q_vector->tx_ring->total_packets = 0;
3251         }
3252 }
3253
3254 /**
3255  * igb_update_itr - update the dynamic ITR value based on statistics
3256  *      Stores a new ITR value based on packets and byte
3257  *      counts during the last interrupt.  The advantage of per interrupt
3258  *      computation is faster updates and more accurate ITR for the current
3259  *      traffic pattern.  Constants in this function were computed
3260  *      based on theoretical maximum wire speed and thresholds were set based
3261  *      on testing data as well as attempting to minimize response time
3262  *      while increasing bulk throughput.
3263  *      this functionality is controlled by the InterruptThrottleRate module
3264  *      parameter (see igb_param.c)
3265  *      NOTE:  These calculations are only valid when operating in a single-
3266  *             queue environment.
3267  * @adapter: pointer to adapter
3268  * @itr_setting: current q_vector->itr_val
3269  * @packets: the number of packets during this measurement interval
3270  * @bytes: the number of bytes during this measurement interval
3271  **/
3272 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3273                                    int packets, int bytes)
3274 {
3275         unsigned int retval = itr_setting;
3276
3277         if (packets == 0)
3278                 goto update_itr_done;
3279
3280         switch (itr_setting) {
3281         case lowest_latency:
3282                 /* handle TSO and jumbo frames */
3283                 if (bytes/packets > 8000)
3284                         retval = bulk_latency;
3285                 else if ((packets < 5) && (bytes > 512))
3286                         retval = low_latency;
3287                 break;
3288         case low_latency:  /* 50 usec aka 20000 ints/s */
3289                 if (bytes > 10000) {
3290                         /* this if handles the TSO accounting */
3291                         if (bytes/packets > 8000) {
3292                                 retval = bulk_latency;
3293                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3294                                 retval = bulk_latency;
3295                         } else if ((packets > 35)) {
3296                                 retval = lowest_latency;
3297                         }
3298                 } else if (bytes/packets > 2000) {
3299                         retval = bulk_latency;
3300                 } else if (packets <= 2 && bytes < 512) {
3301                         retval = lowest_latency;
3302                 }
3303                 break;
3304         case bulk_latency: /* 250 usec aka 4000 ints/s */
3305                 if (bytes > 25000) {
3306                         if (packets > 35)
3307                                 retval = low_latency;
3308                 } else if (bytes < 1500) {
3309                         retval = low_latency;
3310                 }
3311                 break;
3312         }
3313
3314 update_itr_done:
3315         return retval;
3316 }
3317
3318 static void igb_set_itr(struct igb_adapter *adapter)
3319 {
3320         struct igb_q_vector *q_vector = adapter->q_vector[0];
3321         u16 current_itr;
3322         u32 new_itr = q_vector->itr_val;
3323
3324         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3325         if (adapter->link_speed != SPEED_1000) {
3326                 current_itr = 0;
3327                 new_itr = 4000;
3328                 goto set_itr_now;
3329         }
3330
3331         adapter->rx_itr = igb_update_itr(adapter,
3332                                     adapter->rx_itr,
3333                                     adapter->rx_ring->total_packets,
3334                                     adapter->rx_ring->total_bytes);
3335
3336         adapter->tx_itr = igb_update_itr(adapter,
3337                                     adapter->tx_itr,
3338                                     adapter->tx_ring->total_packets,
3339                                     adapter->tx_ring->total_bytes);
3340         current_itr = max(adapter->rx_itr, adapter->tx_itr);
3341
3342         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3343         if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3344                 current_itr = low_latency;
3345
3346         switch (current_itr) {
3347         /* counts and packets in update_itr are dependent on these numbers */
3348         case lowest_latency:
3349                 new_itr = 56;  /* aka 70,000 ints/sec */
3350                 break;
3351         case low_latency:
3352                 new_itr = 196; /* aka 20,000 ints/sec */
3353                 break;
3354         case bulk_latency:
3355                 new_itr = 980; /* aka 4,000 ints/sec */
3356                 break;
3357         default:
3358                 break;
3359         }
3360
3361 set_itr_now:
3362         adapter->rx_ring->total_bytes = 0;
3363         adapter->rx_ring->total_packets = 0;
3364         adapter->tx_ring->total_bytes = 0;
3365         adapter->tx_ring->total_packets = 0;
3366
3367         if (new_itr != q_vector->itr_val) {
3368                 /* this attempts to bias the interrupt rate towards Bulk
3369                  * by adding intermediate steps when interrupt rate is
3370                  * increasing */
3371                 new_itr = new_itr > q_vector->itr_val ?
3372                              max((new_itr * q_vector->itr_val) /
3373                                  (new_itr + (q_vector->itr_val >> 2)),
3374                                  new_itr) :
3375                              new_itr;
3376                 /* Don't write the value here; it resets the adapter's
3377                  * internal timer, and causes us to delay far longer than
3378                  * we should between interrupts.  Instead, we write the ITR
3379                  * value at the beginning of the next interrupt so the timing
3380                  * ends up being correct.
3381                  */
3382                 q_vector->itr_val = new_itr;
3383                 q_vector->set_itr = 1;
3384         }
3385
3386         return;
3387 }
3388
3389 #define IGB_TX_FLAGS_CSUM               0x00000001
3390 #define IGB_TX_FLAGS_VLAN               0x00000002
3391 #define IGB_TX_FLAGS_TSO                0x00000004
3392 #define IGB_TX_FLAGS_IPV4               0x00000008
3393 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3394 #define IGB_TX_FLAGS_VLAN_MASK          0xffff0000
3395 #define IGB_TX_FLAGS_VLAN_SHIFT                 16
3396
3397 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3398                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3399 {
3400         struct e1000_adv_tx_context_desc *context_desc;
3401         unsigned int i;
3402         int err;
3403         struct igb_buffer *buffer_info;
3404         u32 info = 0, tu_cmd = 0;
3405         u32 mss_l4len_idx, l4len;
3406         *hdr_len = 0;
3407
3408         if (skb_header_cloned(skb)) {
3409                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3410                 if (err)
3411                         return err;
3412         }
3413
3414         l4len = tcp_hdrlen(skb);
3415         *hdr_len += l4len;
3416
3417         if (skb->protocol == htons(ETH_P_IP)) {
3418                 struct iphdr *iph = ip_hdr(skb);
3419                 iph->tot_len = 0;
3420                 iph->check = 0;
3421                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3422                                                          iph->daddr, 0,
3423                                                          IPPROTO_TCP,
3424                                                          0);
3425         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3426                 ipv6_hdr(skb)->payload_len = 0;
3427                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3428                                                        &ipv6_hdr(skb)->daddr,
3429                                                        0, IPPROTO_TCP, 0);
3430         }
3431
3432         i = tx_ring->next_to_use;
3433
3434         buffer_info = &tx_ring->buffer_info[i];
3435         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3436         /* VLAN MACLEN IPLEN */
3437         if (tx_flags & IGB_TX_FLAGS_VLAN)
3438                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3439         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3440         *hdr_len += skb_network_offset(skb);
3441         info |= skb_network_header_len(skb);
3442         *hdr_len += skb_network_header_len(skb);
3443         context_desc->vlan_macip_lens = cpu_to_le32(info);
3444
3445         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3446         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3447
3448         if (skb->protocol == htons(ETH_P_IP))
3449                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3450         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3451
3452         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3453
3454         /* MSS L4LEN IDX */
3455         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3456         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3457
3458         /* For 82575, context index must be unique per ring. */
3459         if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3460                 mss_l4len_idx |= tx_ring->reg_idx << 4;
3461
3462         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3463         context_desc->seqnum_seed = 0;
3464
3465         buffer_info->time_stamp = jiffies;
3466         buffer_info->next_to_watch = i;
3467         buffer_info->dma = 0;
3468         i++;
3469         if (i == tx_ring->count)
3470                 i = 0;
3471
3472         tx_ring->next_to_use = i;
3473
3474         return true;
3475 }
3476
3477 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3478                                    struct sk_buff *skb, u32 tx_flags)
3479 {
3480         struct e1000_adv_tx_context_desc *context_desc;
3481         struct pci_dev *pdev = tx_ring->pdev;
3482         struct igb_buffer *buffer_info;
3483         u32 info = 0, tu_cmd = 0;
3484         unsigned int i;
3485
3486         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3487             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3488                 i = tx_ring->next_to_use;
3489                 buffer_info = &tx_ring->buffer_info[i];
3490                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3491
3492                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3493                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3494
3495                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3496                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3497                         info |= skb_network_header_len(skb);
3498
3499                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3500
3501                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3502
3503                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3504                         __be16 protocol;
3505
3506                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3507                                 const struct vlan_ethhdr *vhdr =
3508                                           (const struct vlan_ethhdr*)skb->data;
3509
3510                                 protocol = vhdr->h_vlan_encapsulated_proto;
3511                         } else {
3512                                 protocol = skb->protocol;
3513                         }
3514
3515                         switch (protocol) {
3516                         case cpu_to_be16(ETH_P_IP):
3517                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3518                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3519                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3520                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3521                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3522                                 break;
3523                         case cpu_to_be16(ETH_P_IPV6):
3524                                 /* XXX what about other V6 headers?? */
3525                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3526                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3527                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3528                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3529                                 break;
3530                         default:
3531                                 if (unlikely(net_ratelimit()))
3532                                         dev_warn(&pdev->dev,
3533                                             "partial checksum but proto=%x!\n",
3534                                             skb->protocol);
3535                                 break;
3536                         }
3537                 }
3538
3539                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3540                 context_desc->seqnum_seed = 0;
3541                 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3542                         context_desc->mss_l4len_idx =
3543                                 cpu_to_le32(tx_ring->reg_idx << 4);
3544
3545                 buffer_info->time_stamp = jiffies;
3546                 buffer_info->next_to_watch = i;
3547                 buffer_info->dma = 0;
3548
3549                 i++;
3550                 if (i == tx_ring->count)
3551                         i = 0;
3552                 tx_ring->next_to_use = i;
3553
3554                 return true;
3555         }
3556         return false;
3557 }
3558
3559 #define IGB_MAX_TXD_PWR 16
3560 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3561
3562 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3563                                  unsigned int first)
3564 {
3565         struct igb_buffer *buffer_info;
3566         struct pci_dev *pdev = tx_ring->pdev;
3567         unsigned int len = skb_headlen(skb);
3568         unsigned int count = 0, i;
3569         unsigned int f;
3570
3571         i = tx_ring->next_to_use;
3572
3573         buffer_info = &tx_ring->buffer_info[i];
3574         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3575         buffer_info->length = len;
3576         /* set time_stamp *before* dma to help avoid a possible race */
3577         buffer_info->time_stamp = jiffies;
3578         buffer_info->next_to_watch = i;
3579         buffer_info->dma = pci_map_single(pdev, skb->data, len,
3580                                           PCI_DMA_TODEVICE);
3581         if (pci_dma_mapping_error(pdev, buffer_info->dma))
3582                 goto dma_error;
3583
3584         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3585                 struct skb_frag_struct *frag;
3586
3587                 i++;
3588                 if (i == tx_ring->count)
3589                         i = 0;
3590
3591                 frag = &skb_shinfo(skb)->frags[f];
3592                 len = frag->size;
3593
3594                 buffer_info = &tx_ring->buffer_info[i];
3595                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3596                 buffer_info->length = len;
3597                 buffer_info->time_stamp = jiffies;
3598                 buffer_info->next_to_watch = i;
3599                 buffer_info->mapped_as_page = true;
3600                 buffer_info->dma = pci_map_page(pdev,
3601                                                 frag->page,
3602                                                 frag->page_offset,
3603                                                 len,
3604                                                 PCI_DMA_TODEVICE);
3605                 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3606                         goto dma_error;
3607
3608                 count++;
3609         }
3610
3611         tx_ring->buffer_info[i].skb = skb;
3612         tx_ring->buffer_info[first].next_to_watch = i;
3613
3614         return ++count;
3615
3616 dma_error:
3617         dev_err(&pdev->dev, "TX DMA map failed\n");
3618
3619         /* clear timestamp and dma mappings for failed buffer_info mapping */
3620         buffer_info->dma = 0;
3621         buffer_info->time_stamp = 0;
3622         buffer_info->length = 0;
3623         buffer_info->next_to_watch = 0;
3624         buffer_info->mapped_as_page = false;
3625         count--;
3626
3627         /* clear timestamp and dma mappings for remaining portion of packet */
3628         while (count >= 0) {
3629                 count--;
3630                 i--;
3631                 if (i < 0)
3632                         i += tx_ring->count;
3633                 buffer_info = &tx_ring->buffer_info[i];
3634                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3635         }
3636
3637         return 0;
3638 }
3639
3640 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3641                                     int tx_flags, int count, u32 paylen,
3642                                     u8 hdr_len)
3643 {
3644         union e1000_adv_tx_desc *tx_desc;
3645         struct igb_buffer *buffer_info;
3646         u32 olinfo_status = 0, cmd_type_len;
3647         unsigned int i = tx_ring->next_to_use;
3648
3649         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3650                         E1000_ADVTXD_DCMD_DEXT);
3651
3652         if (tx_flags & IGB_TX_FLAGS_VLAN)
3653                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3654
3655         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3656                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3657
3658         if (tx_flags & IGB_TX_FLAGS_TSO) {
3659                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3660
3661                 /* insert tcp checksum */
3662                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3663
3664                 /* insert ip checksum */
3665                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3666                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3667
3668         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3669                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3670         }
3671
3672         if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3673             (tx_flags & (IGB_TX_FLAGS_CSUM |
3674                          IGB_TX_FLAGS_TSO |
3675                          IGB_TX_FLAGS_VLAN)))
3676                 olinfo_status |= tx_ring->reg_idx << 4;
3677
3678         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3679
3680         do {
3681                 buffer_info = &tx_ring->buffer_info[i];
3682                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3683                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3684                 tx_desc->read.cmd_type_len =
3685                         cpu_to_le32(cmd_type_len | buffer_info->length);
3686                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3687                 count--;
3688                 i++;
3689                 if (i == tx_ring->count)
3690                         i = 0;
3691         } while (count > 0);
3692
3693         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3694         /* Force memory writes to complete before letting h/w
3695          * know there are new descriptors to fetch.  (Only
3696          * applicable for weak-ordered memory model archs,
3697          * such as IA-64). */
3698         wmb();
3699
3700         tx_ring->next_to_use = i;
3701         writel(i, tx_ring->tail);
3702         /* we need this if more than one processor can write to our tail
3703          * at a time, it syncronizes IO on IA64/Altix systems */
3704         mmiowb();
3705 }
3706
3707 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3708 {
3709         struct net_device *netdev = tx_ring->netdev;
3710
3711         netif_stop_subqueue(netdev, tx_ring->queue_index);
3712
3713         /* Herbert's original patch had:
3714          *  smp_mb__after_netif_stop_queue();
3715          * but since that doesn't exist yet, just open code it. */
3716         smp_mb();
3717
3718         /* We need to check again in a case another CPU has just
3719          * made room available. */
3720         if (igb_desc_unused(tx_ring) < size)
3721                 return -EBUSY;
3722
3723         /* A reprieve! */
3724         netif_wake_subqueue(netdev, tx_ring->queue_index);
3725         tx_ring->tx_stats.restart_queue++;
3726         return 0;
3727 }
3728
3729 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3730 {
3731         if (igb_desc_unused(tx_ring) >= size)
3732                 return 0;
3733         return __igb_maybe_stop_tx(tx_ring, size);
3734 }
3735
3736 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3737                                     struct igb_ring *tx_ring)
3738 {
3739         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3740         unsigned int first;
3741         unsigned int tx_flags = 0;
3742         u8 hdr_len = 0;
3743         int tso = 0, count;
3744         union skb_shared_tx *shtx = skb_tx(skb);
3745
3746         /* need: 1 descriptor per page,
3747          *       + 2 desc gap to keep tail from touching head,
3748          *       + 1 desc for skb->data,
3749          *       + 1 desc for context descriptor,
3750          * otherwise try next time */
3751         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3752                 /* this is a hard error */
3753                 return NETDEV_TX_BUSY;
3754         }
3755
3756         if (unlikely(shtx->hardware)) {
3757                 shtx->in_progress = 1;
3758                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3759         }
3760
3761         if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3762                 tx_flags |= IGB_TX_FLAGS_VLAN;
3763                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3764         }
3765
3766         if (skb->protocol == htons(ETH_P_IP))
3767                 tx_flags |= IGB_TX_FLAGS_IPV4;
3768
3769         first = tx_ring->next_to_use;
3770         if (skb_is_gso(skb)) {
3771                 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3772
3773                 if (tso < 0) {
3774                         dev_kfree_skb_any(skb);
3775                         return NETDEV_TX_OK;
3776                 }
3777         }
3778
3779         if (tso)
3780                 tx_flags |= IGB_TX_FLAGS_TSO;
3781         else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3782                  (skb->ip_summed == CHECKSUM_PARTIAL))
3783                 tx_flags |= IGB_TX_FLAGS_CSUM;
3784
3785         /*
3786          * count reflects descriptors mapped, if 0 or less then mapping error
3787          * has occured and we need to rewind the descriptor queue
3788          */
3789         count = igb_tx_map_adv(tx_ring, skb, first);
3790         if (!count) {
3791                 dev_kfree_skb_any(skb);
3792                 tx_ring->buffer_info[first].time_stamp = 0;
3793                 tx_ring->next_to_use = first;
3794                 return NETDEV_TX_OK;
3795         }
3796
3797         igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3798
3799         /* Make sure there is space in the ring for the next send. */
3800         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3801
3802         return NETDEV_TX_OK;
3803 }
3804
3805 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3806                                       struct net_device *netdev)
3807 {
3808         struct igb_adapter *adapter = netdev_priv(netdev);
3809         struct igb_ring *tx_ring;
3810         int r_idx = 0;
3811
3812         if (test_bit(__IGB_DOWN, &adapter->state)) {
3813                 dev_kfree_skb_any(skb);
3814                 return NETDEV_TX_OK;
3815         }
3816
3817         if (skb->len <= 0) {
3818                 dev_kfree_skb_any(skb);
3819                 return NETDEV_TX_OK;
3820         }
3821
3822         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3823         tx_ring = adapter->multi_tx_table[r_idx];
3824
3825         /* This goes back to the question of how to logically map a tx queue
3826          * to a flow.  Right now, performance is impacted slightly negatively
3827          * if using multiple tx queues.  If the stack breaks away from a
3828          * single qdisc implementation, we can look at this again. */
3829         return igb_xmit_frame_ring_adv(skb, tx_ring);
3830 }
3831
3832 /**
3833  * igb_tx_timeout - Respond to a Tx Hang
3834  * @netdev: network interface device structure
3835  **/
3836 static void igb_tx_timeout(struct net_device *netdev)
3837 {
3838         struct igb_adapter *adapter = netdev_priv(netdev);
3839         struct e1000_hw *hw = &adapter->hw;
3840
3841         /* Do the reset outside of interrupt context */
3842         adapter->tx_timeout_count++;
3843
3844         if (hw->mac.type == e1000_82580)
3845                 hw->dev_spec._82575.global_device_reset = true;
3846
3847         schedule_work(&adapter->reset_task);
3848         wr32(E1000_EICS,
3849              (adapter->eims_enable_mask & ~adapter->eims_other));
3850 }
3851
3852 static void igb_reset_task(struct work_struct *work)
3853 {
3854         struct igb_adapter *adapter;
3855         adapter = container_of(work, struct igb_adapter, reset_task);
3856
3857         igb_reinit_locked(adapter);
3858 }
3859
3860 /**
3861  * igb_get_stats - Get System Network Statistics
3862  * @netdev: network interface device structure
3863  *
3864  * Returns the address of the device statistics structure.
3865  * The statistics are actually updated from the timer callback.
3866  **/
3867 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3868 {
3869         /* only return the current stats */
3870         return &netdev->stats;
3871 }
3872
3873 /**
3874  * igb_change_mtu - Change the Maximum Transfer Unit
3875  * @netdev: network interface device structure
3876  * @new_mtu: new value for maximum frame size
3877  *
3878  * Returns 0 on success, negative on failure
3879  **/
3880 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3881 {
3882         struct igb_adapter *adapter = netdev_priv(netdev);
3883         struct pci_dev *pdev = adapter->pdev;
3884         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3885         u32 rx_buffer_len, i;
3886
3887         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3888                 dev_err(&pdev->dev, "Invalid MTU setting\n");
3889                 return -EINVAL;
3890         }
3891
3892         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3893                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3894                 return -EINVAL;
3895         }
3896
3897         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3898                 msleep(1);
3899
3900         /* igb_down has a dependency on max_frame_size */
3901         adapter->max_frame_size = max_frame;
3902
3903         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3904          * means we reserve 2 more, this pushes us to allocate from the next
3905          * larger slab size.
3906          * i.e. RXBUFFER_2048 --> size-4096 slab
3907          */
3908
3909         if (max_frame <= IGB_RXBUFFER_1024)
3910                 rx_buffer_len = IGB_RXBUFFER_1024;
3911         else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3912                 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3913         else
3914                 rx_buffer_len = IGB_RXBUFFER_128;
3915
3916         if (netif_running(netdev))
3917                 igb_down(adapter);
3918
3919         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3920                  netdev->mtu, new_mtu);
3921         netdev->mtu = new_mtu;
3922
3923         for (i = 0; i < adapter->num_rx_queues; i++)
3924                 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3925
3926         if (netif_running(netdev))
3927                 igb_up(adapter);
3928         else
3929                 igb_reset(adapter);
3930
3931         clear_bit(__IGB_RESETTING, &adapter->state);
3932
3933         return 0;
3934 }
3935
3936 /**
3937  * igb_update_stats - Update the board statistics counters
3938  * @adapter: board private structure
3939  **/
3940
3941 void igb_update_stats(struct igb_adapter *adapter)
3942 {
3943         struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3944         struct e1000_hw *hw = &adapter->hw;
3945         struct pci_dev *pdev = adapter->pdev;
3946         u32 rnbc;
3947         u16 phy_tmp;
3948         int i;
3949         u64 bytes, packets;
3950
3951 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3952
3953         /*
3954          * Prevent stats update while adapter is being reset, or if the pci
3955          * connection is down.
3956          */
3957         if (adapter->link_speed == 0)
3958                 return;
3959         if (pci_channel_offline(pdev))
3960                 return;
3961
3962         bytes = 0;
3963         packets = 0;
3964         for (i = 0; i < adapter->num_rx_queues; i++) {
3965                 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3966                 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3967                 net_stats->rx_fifo_errors += rqdpc_tmp;
3968                 bytes += adapter->rx_ring[i].rx_stats.bytes;
3969                 packets += adapter->rx_ring[i].rx_stats.packets;
3970         }
3971
3972         net_stats->rx_bytes = bytes;
3973         net_stats->rx_packets = packets;
3974
3975         bytes = 0;
3976         packets = 0;
3977         for (i = 0; i < adapter->num_tx_queues; i++) {
3978                 bytes += adapter->tx_ring[i].tx_stats.bytes;
3979                 packets += adapter->tx_ring[i].tx_stats.packets;
3980         }
3981         net_stats->tx_bytes = bytes;
3982         net_stats->tx_packets = packets;
3983
3984         /* read stats registers */
3985         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3986         adapter->stats.gprc += rd32(E1000_GPRC);
3987         adapter->stats.gorc += rd32(E1000_GORCL);
3988         rd32(E1000_GORCH); /* clear GORCL */
3989         adapter->stats.bprc += rd32(E1000_BPRC);
3990         adapter->stats.mprc += rd32(E1000_MPRC);
3991         adapter->stats.roc += rd32(E1000_ROC);
3992
3993         adapter->stats.prc64 += rd32(E1000_PRC64);
3994         adapter->stats.prc127 += rd32(E1000_PRC127);
3995         adapter->stats.prc255 += rd32(E1000_PRC255);
3996         adapter->stats.prc511 += rd32(E1000_PRC511);
3997         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3998         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3999         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4000         adapter->stats.sec += rd32(E1000_SEC);
4001
4002         adapter->stats.mpc += rd32(E1000_MPC);
4003         adapter->stats.scc += rd32(E1000_SCC);
4004         adapter->stats.ecol += rd32(E1000_ECOL);
4005         adapter->stats.mcc += rd32(E1000_MCC);
4006         adapter->stats.latecol += rd32(E1000_LATECOL);
4007         adapter->stats.dc += rd32(E1000_DC);
4008         adapter->stats.rlec += rd32(E1000_RLEC);
4009         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4010         adapter->stats.xontxc += rd32(E1000_XONTXC);
4011         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4012         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4013         adapter->stats.fcruc += rd32(E1000_FCRUC);
4014         adapter->stats.gptc += rd32(E1000_GPTC);
4015         adapter->stats.gotc += rd32(E1000_GOTCL);
4016         rd32(E1000_GOTCH); /* clear GOTCL */
4017         rnbc = rd32(E1000_RNBC);
4018         adapter->stats.rnbc += rnbc;
4019         net_stats->rx_fifo_errors += rnbc;
4020         adapter->stats.ruc += rd32(E1000_RUC);
4021         adapter->stats.rfc += rd32(E1000_RFC);
4022         adapter->stats.rjc += rd32(E1000_RJC);
4023         adapter->stats.tor += rd32(E1000_TORH);
4024         adapter->stats.tot += rd32(E1000_TOTH);
4025         adapter->stats.tpr += rd32(E1000_TPR);
4026
4027         adapter->stats.ptc64 += rd32(E1000_PTC64);
4028         adapter->stats.ptc127 += rd32(E1000_PTC127);
4029         adapter->stats.ptc255 += rd32(E1000_PTC255);
4030         adapter->stats.ptc511 += rd32(E1000_PTC511);
4031         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4032         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4033
4034         adapter->stats.mptc += rd32(E1000_MPTC);
4035         adapter->stats.bptc += rd32(E1000_BPTC);
4036
4037         /* used for adaptive IFS */
4038         hw->mac.tx_packet_delta = rd32(E1000_TPT);
4039         adapter->stats.tpt += hw->mac.tx_packet_delta;
4040         hw->mac.collision_delta = rd32(E1000_COLC);
4041         adapter->stats.colc += hw->mac.collision_delta;
4042
4043         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4044         adapter->stats.rxerrc += rd32(E1000_RXERRC);
4045         adapter->stats.tncrs += rd32(E1000_TNCRS);
4046         adapter->stats.tsctc += rd32(E1000_TSCTC);
4047         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4048
4049         adapter->stats.iac += rd32(E1000_IAC);
4050         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4051         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4052         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4053         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4054         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4055         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4056         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4057         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4058
4059         /* Fill out the OS statistics structure */
4060         net_stats->multicast = adapter->stats.mprc;
4061         net_stats->collisions = adapter->stats.colc;
4062
4063         /* Rx Errors */
4064
4065         /* RLEC on some newer hardware can be incorrect so build
4066          * our own version based on RUC and ROC */
4067         net_stats->rx_errors = adapter->stats.rxerrc +
4068                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4069                 adapter->stats.ruc + adapter->stats.roc +
4070                 adapter->stats.cexterr;
4071         net_stats->rx_length_errors = adapter->stats.ruc +
4072                                       adapter->stats.roc;
4073         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4074         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4075         net_stats->rx_missed_errors = adapter->stats.mpc;
4076
4077         /* Tx Errors */
4078         net_stats->tx_errors = adapter->stats.ecol +
4079                                adapter->stats.latecol;
4080         net_stats->tx_aborted_errors = adapter->stats.ecol;
4081         net_stats->tx_window_errors = adapter->stats.latecol;
4082         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4083
4084         /* Tx Dropped needs to be maintained elsewhere */
4085
4086         /* Phy Stats */
4087         if (hw->phy.media_type == e1000_media_type_copper) {
4088                 if ((adapter->link_speed == SPEED_1000) &&
4089                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4090                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4091                         adapter->phy_stats.idle_errors += phy_tmp;
4092                 }
4093         }
4094
4095         /* Management Stats */
4096         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4097         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4098         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4099 }
4100
4101 static irqreturn_t igb_msix_other(int irq, void *data)
4102 {
4103         struct igb_adapter *adapter = data;
4104         struct e1000_hw *hw = &adapter->hw;
4105         u32 icr = rd32(E1000_ICR);
4106         /* reading ICR causes bit 31 of EICR to be cleared */
4107
4108         if (icr & E1000_ICR_DOUTSYNC) {
4109                 /* HW is reporting DMA is out of sync */
4110                 adapter->stats.doosync++;
4111         }
4112
4113         /* Check for a mailbox event */
4114         if (icr & E1000_ICR_VMMB)
4115                 igb_msg_task(adapter);
4116
4117         if (icr & E1000_ICR_LSC) {
4118                 hw->mac.get_link_status = 1;
4119                 /* guard against interrupt when we're going down */
4120                 if (!test_bit(__IGB_DOWN, &adapter->state))
4121                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4122         }
4123
4124         if (adapter->vfs_allocated_count)
4125                 wr32(E1000_IMS, E1000_IMS_LSC |
4126                                 E1000_IMS_VMMB |
4127                                 E1000_IMS_DOUTSYNC);
4128         else
4129                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4130         wr32(E1000_EIMS, adapter->eims_other);
4131
4132         return IRQ_HANDLED;
4133 }
4134
4135 static void igb_write_itr(struct igb_q_vector *q_vector)
4136 {
4137         u32 itr_val = q_vector->itr_val & 0x7FFC;
4138
4139         if (!q_vector->set_itr)
4140                 return;
4141
4142         if (!itr_val)
4143                 itr_val = 0x4;
4144
4145         if (q_vector->itr_shift)
4146                 itr_val |= itr_val << q_vector->itr_shift;
4147         else
4148                 itr_val |= 0x8000000;
4149
4150         writel(itr_val, q_vector->itr_register);
4151         q_vector->set_itr = 0;
4152 }
4153
4154 static irqreturn_t igb_msix_ring(int irq, void *data)
4155 {
4156         struct igb_q_vector *q_vector = data;
4157
4158         /* Write the ITR value calculated from the previous interrupt. */
4159         igb_write_itr(q_vector);
4160
4161         napi_schedule(&q_vector->napi);
4162
4163         return IRQ_HANDLED;
4164 }
4165
4166 #ifdef CONFIG_IGB_DCA
4167 static void igb_update_dca(struct igb_q_vector *q_vector)
4168 {
4169         struct igb_adapter *adapter = q_vector->adapter;
4170         struct e1000_hw *hw = &adapter->hw;
4171         int cpu = get_cpu();
4172
4173         if (q_vector->cpu == cpu)
4174                 goto out_no_update;
4175
4176         if (q_vector->tx_ring) {
4177                 int q = q_vector->tx_ring->reg_idx;
4178                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4179                 if (hw->mac.type == e1000_82575) {
4180                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4181                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4182                 } else {
4183                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4184                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4185                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4186                 }
4187                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4188                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4189         }
4190         if (q_vector->rx_ring) {
4191                 int q = q_vector->rx_ring->reg_idx;
4192                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4193                 if (hw->mac.type == e1000_82575) {
4194                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4195                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4196                 } else {
4197                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4198                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4199                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4200                 }
4201                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4202                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4203                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4204                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4205         }
4206         q_vector->cpu = cpu;
4207 out_no_update:
4208         put_cpu();
4209 }
4210
4211 static void igb_setup_dca(struct igb_adapter *adapter)
4212 {
4213         struct e1000_hw *hw = &adapter->hw;
4214         int i;
4215
4216         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4217                 return;
4218
4219         /* Always use CB2 mode, difference is masked in the CB driver. */
4220         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4221
4222         for (i = 0; i < adapter->num_q_vectors; i++) {
4223                 struct igb_q_vector *q_vector = adapter->q_vector[i];
4224                 q_vector->cpu = -1;
4225                 igb_update_dca(q_vector);
4226         }
4227 }
4228
4229 static int __igb_notify_dca(struct device *dev, void *data)
4230 {
4231         struct net_device *netdev = dev_get_drvdata(dev);
4232         struct igb_adapter *adapter = netdev_priv(netdev);
4233         struct pci_dev *pdev = adapter->pdev;
4234         struct e1000_hw *hw = &adapter->hw;
4235         unsigned long event = *(unsigned long *)data;
4236
4237         switch (event) {
4238         case DCA_PROVIDER_ADD:
4239                 /* if already enabled, don't do it again */
4240                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4241                         break;
4242                 if (dca_add_requester(dev) == 0) {
4243                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4244                         dev_info(&pdev->dev, "DCA enabled\n");
4245                         igb_setup_dca(adapter);
4246                         break;
4247                 }
4248                 /* Fall Through since DCA is disabled. */
4249         case DCA_PROVIDER_REMOVE:
4250                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4251                         /* without this a class_device is left
4252                          * hanging around in the sysfs model */
4253                         dca_remove_requester(dev);
4254                         dev_info(&pdev->dev, "DCA disabled\n");
4255                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4256                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4257                 }
4258                 break;
4259         }
4260
4261         return 0;
4262 }
4263
4264 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4265                           void *p)
4266 {
4267         int ret_val;
4268
4269         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4270                                          __igb_notify_dca);
4271
4272         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4273 }
4274 #endif /* CONFIG_IGB_DCA */
4275
4276 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4277 {
4278         struct e1000_hw *hw = &adapter->hw;
4279         u32 ping;
4280         int i;
4281
4282         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4283                 ping = E1000_PF_CONTROL_MSG;
4284                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4285                         ping |= E1000_VT_MSGTYPE_CTS;
4286                 igb_write_mbx(hw, &ping, 1, i);
4287         }
4288 }
4289
4290 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4291 {
4292         struct e1000_hw *hw = &adapter->hw;
4293         u32 vmolr = rd32(E1000_VMOLR(vf));
4294         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4295
4296         vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4297                             IGB_VF_FLAG_MULTI_PROMISC);
4298         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4299
4300         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4301                 vmolr |= E1000_VMOLR_MPME;
4302                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4303         } else {
4304                 /*
4305                  * if we have hashes and we are clearing a multicast promisc
4306                  * flag we need to write the hashes to the MTA as this step
4307                  * was previously skipped
4308                  */
4309                 if (vf_data->num_vf_mc_hashes > 30) {
4310                         vmolr |= E1000_VMOLR_MPME;
4311                 } else if (vf_data->num_vf_mc_hashes) {
4312                         int j;
4313                         vmolr |= E1000_VMOLR_ROMPE;
4314                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4315                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4316                 }
4317         }
4318
4319         wr32(E1000_VMOLR(vf), vmolr);
4320
4321         /* there are flags left unprocessed, likely not supported */
4322         if (*msgbuf & E1000_VT_MSGINFO_MASK)
4323                 return -EINVAL;
4324
4325         return 0;
4326
4327 }
4328
4329 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4330                                   u32 *msgbuf, u32 vf)
4331 {
4332         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4333         u16 *hash_list = (u16 *)&msgbuf[1];
4334         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4335         int i;
4336
4337         /* salt away the number of multicast addresses assigned
4338          * to this VF for later use to restore when the PF multi cast
4339          * list changes
4340          */
4341         vf_data->num_vf_mc_hashes = n;
4342
4343         /* only up to 30 hash values supported */
4344         if (n > 30)
4345                 n = 30;
4346
4347         /* store the hashes for later use */
4348         for (i = 0; i < n; i++)
4349                 vf_data->vf_mc_hashes[i] = hash_list[i];
4350
4351         /* Flush and reset the mta with the new values */
4352         igb_set_rx_mode(adapter->netdev);
4353
4354         return 0;
4355 }
4356
4357 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4358 {
4359         struct e1000_hw *hw = &adapter->hw;
4360         struct vf_data_storage *vf_data;
4361         int i, j;
4362
4363         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4364                 u32 vmolr = rd32(E1000_VMOLR(i));
4365                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4366
4367                 vf_data = &adapter->vf_data[i];
4368
4369                 if ((vf_data->num_vf_mc_hashes > 30) ||
4370                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4371                         vmolr |= E1000_VMOLR_MPME;
4372                 } else if (vf_data->num_vf_mc_hashes) {
4373                         vmolr |= E1000_VMOLR_ROMPE;
4374                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4375                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4376                 }
4377                 wr32(E1000_VMOLR(i), vmolr);
4378         }
4379 }
4380
4381 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4382 {
4383         struct e1000_hw *hw = &adapter->hw;
4384         u32 pool_mask, reg, vid;
4385         int i;
4386
4387         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4388
4389         /* Find the vlan filter for this id */
4390         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4391                 reg = rd32(E1000_VLVF(i));
4392
4393                 /* remove the vf from the pool */
4394                 reg &= ~pool_mask;
4395
4396                 /* if pool is empty then remove entry from vfta */
4397                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4398                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4399                         reg = 0;
4400                         vid = reg & E1000_VLVF_VLANID_MASK;
4401                         igb_vfta_set(hw, vid, false);
4402                 }
4403
4404                 wr32(E1000_VLVF(i), reg);
4405         }
4406
4407         adapter->vf_data[vf].vlans_enabled = 0;
4408 }
4409
4410 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4411 {
4412         struct e1000_hw *hw = &adapter->hw;
4413         u32 reg, i;
4414
4415         /* The vlvf table only exists on 82576 hardware and newer */
4416         if (hw->mac.type < e1000_82576)
4417                 return -1;
4418
4419         /* we only need to do this if VMDq is enabled */
4420         if (!adapter->vfs_allocated_count)
4421                 return -1;
4422
4423         /* Find the vlan filter for this id */
4424         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4425                 reg = rd32(E1000_VLVF(i));
4426                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4427                     vid == (reg & E1000_VLVF_VLANID_MASK))
4428                         break;
4429         }
4430
4431         if (add) {
4432                 if (i == E1000_VLVF_ARRAY_SIZE) {
4433                         /* Did not find a matching VLAN ID entry that was
4434                          * enabled.  Search for a free filter entry, i.e.
4435                          * one without the enable bit set
4436                          */
4437                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4438                                 reg = rd32(E1000_VLVF(i));
4439                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4440                                         break;
4441                         }
4442                 }
4443                 if (i < E1000_VLVF_ARRAY_SIZE) {
4444                         /* Found an enabled/available entry */
4445                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4446
4447                         /* if !enabled we need to set this up in vfta */
4448                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4449                                 /* add VID to filter table */
4450                                 igb_vfta_set(hw, vid, true);
4451                                 reg |= E1000_VLVF_VLANID_ENABLE;
4452                         }
4453                         reg &= ~E1000_VLVF_VLANID_MASK;
4454                         reg |= vid;
4455                         wr32(E1000_VLVF(i), reg);
4456
4457                         /* do not modify RLPML for PF devices */
4458                         if (vf >= adapter->vfs_allocated_count)
4459                                 return 0;
4460
4461                         if (!adapter->vf_data[vf].vlans_enabled) {
4462                                 u32 size;
4463                                 reg = rd32(E1000_VMOLR(vf));
4464                                 size = reg & E1000_VMOLR_RLPML_MASK;
4465                                 size += 4;
4466                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4467                                 reg |= size;
4468                                 wr32(E1000_VMOLR(vf), reg);
4469                         }
4470
4471                         adapter->vf_data[vf].vlans_enabled++;
4472                         return 0;
4473                 }
4474         } else {
4475                 if (i < E1000_VLVF_ARRAY_SIZE) {
4476                         /* remove vf from the pool */
4477                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4478                         /* if pool is empty then remove entry from vfta */
4479                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4480                                 reg = 0;
4481                                 igb_vfta_set(hw, vid, false);
4482                         }
4483                         wr32(E1000_VLVF(i), reg);
4484
4485                         /* do not modify RLPML for PF devices */
4486                         if (vf >= adapter->vfs_allocated_count)
4487                                 return 0;
4488
4489                         adapter->vf_data[vf].vlans_enabled--;
4490                         if (!adapter->vf_data[vf].vlans_enabled) {
4491                                 u32 size;
4492                                 reg = rd32(E1000_VMOLR(vf));
4493                                 size = reg & E1000_VMOLR_RLPML_MASK;
4494                                 size -= 4;
4495                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4496                                 reg |= size;
4497                                 wr32(E1000_VMOLR(vf), reg);
4498                         }
4499                         return 0;
4500                 }
4501         }
4502         return -1;
4503 }
4504
4505 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4506 {
4507         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4508         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4509
4510         return igb_vlvf_set(adapter, vid, add, vf);
4511 }
4512
4513 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4514 {
4515         /* clear all flags */
4516         adapter->vf_data[vf].flags = 0;
4517         adapter->vf_data[vf].last_nack = jiffies;
4518
4519         /* reset offloads to defaults */
4520         igb_set_vmolr(adapter, vf);
4521
4522         /* reset vlans for device */
4523         igb_clear_vf_vfta(adapter, vf);
4524
4525         /* reset multicast table array for vf */
4526         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4527
4528         /* Flush and reset the mta with the new values */
4529         igb_set_rx_mode(adapter->netdev);
4530 }
4531
4532 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4533 {
4534         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4535
4536         /* generate a new mac address as we were hotplug removed/added */
4537         random_ether_addr(vf_mac);
4538
4539         /* process remaining reset events */
4540         igb_vf_reset(adapter, vf);
4541 }
4542
4543 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4544 {
4545         struct e1000_hw *hw = &adapter->hw;
4546         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4547         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4548         u32 reg, msgbuf[3];
4549         u8 *addr = (u8 *)(&msgbuf[1]);
4550
4551         /* process all the same items cleared in a function level reset */
4552         igb_vf_reset(adapter, vf);
4553
4554         /* set vf mac address */
4555         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4556
4557         /* enable transmit and receive for vf */
4558         reg = rd32(E1000_VFTE);
4559         wr32(E1000_VFTE, reg | (1 << vf));
4560         reg = rd32(E1000_VFRE);
4561         wr32(E1000_VFRE, reg | (1 << vf));
4562
4563         adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4564
4565         /* reply to reset with ack and vf mac address */
4566         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4567         memcpy(addr, vf_mac, 6);
4568         igb_write_mbx(hw, msgbuf, 3, vf);
4569 }
4570
4571 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4572 {
4573         unsigned char *addr = (char *)&msg[1];
4574         int err = -1;
4575
4576         if (is_valid_ether_addr(addr))
4577                 err = igb_set_vf_mac(adapter, vf, addr);
4578
4579         return err;
4580 }
4581
4582 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4583 {
4584         struct e1000_hw *hw = &adapter->hw;
4585         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4586         u32 msg = E1000_VT_MSGTYPE_NACK;
4587
4588         /* if device isn't clear to send it shouldn't be reading either */
4589         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4590             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4591                 igb_write_mbx(hw, &msg, 1, vf);
4592                 vf_data->last_nack = jiffies;
4593         }
4594 }
4595
4596 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4597 {
4598         struct pci_dev *pdev = adapter->pdev;
4599         u32 msgbuf[E1000_VFMAILBOX_SIZE];
4600         struct e1000_hw *hw = &adapter->hw;
4601         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4602         s32 retval;
4603
4604         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4605
4606         if (retval) {
4607                 /* if receive failed revoke VF CTS stats and restart init */
4608                 dev_err(&pdev->dev, "Error receiving message from VF\n");
4609                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4610                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4611                         return;
4612                 goto out;
4613         }
4614
4615         /* this is a message we already processed, do nothing */
4616         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4617                 return;
4618
4619         /*
4620          * until the vf completes a reset it should not be
4621          * allowed to start any configuration.
4622          */
4623
4624         if (msgbuf[0] == E1000_VF_RESET) {
4625                 igb_vf_reset_msg(adapter, vf);
4626                 return;
4627         }
4628
4629         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4630                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4631                         return;
4632                 retval = -1;
4633                 goto out;
4634         }
4635
4636         switch ((msgbuf[0] & 0xFFFF)) {
4637         case E1000_VF_SET_MAC_ADDR:
4638                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4639                 break;
4640         case E1000_VF_SET_PROMISC:
4641                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4642                 break;
4643         case E1000_VF_SET_MULTICAST:
4644                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4645                 break;
4646         case E1000_VF_SET_LPE:
4647                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4648                 break;
4649         case E1000_VF_SET_VLAN:
4650                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4651                 break;
4652         default:
4653                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4654                 retval = -1;
4655                 break;
4656         }
4657
4658         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4659 out:
4660         /* notify the VF of the results of what it sent us */
4661         if (retval)
4662                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4663         else
4664                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4665
4666         igb_write_mbx(hw, msgbuf, 1, vf);
4667 }
4668
4669 static void igb_msg_task(struct igb_adapter *adapter)
4670 {
4671         struct e1000_hw *hw = &adapter->hw;
4672         u32 vf;
4673
4674         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4675                 /* process any reset requests */
4676                 if (!igb_check_for_rst(hw, vf))
4677                         igb_vf_reset_event(adapter, vf);
4678
4679                 /* process any messages pending */
4680                 if (!igb_check_for_msg(hw, vf))
4681                         igb_rcv_msg_from_vf(adapter, vf);
4682
4683                 /* process any acks */
4684                 if (!igb_check_for_ack(hw, vf))
4685                         igb_rcv_ack_from_vf(adapter, vf);
4686         }
4687 }
4688
4689 /**
4690  *  igb_set_uta - Set unicast filter table address
4691  *  @adapter: board private structure
4692  *
4693  *  The unicast table address is a register array of 32-bit registers.
4694  *  The table is meant to be used in a way similar to how the MTA is used
4695  *  however due to certain limitations in the hardware it is necessary to
4696  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4697  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4698  **/
4699 static void igb_set_uta(struct igb_adapter *adapter)
4700 {
4701         struct e1000_hw *hw = &adapter->hw;
4702         int i;
4703
4704         /* The UTA table only exists on 82576 hardware and newer */
4705         if (hw->mac.type < e1000_82576)
4706                 return;
4707
4708         /* we only need to do this if VMDq is enabled */
4709         if (!adapter->vfs_allocated_count)
4710                 return;
4711
4712         for (i = 0; i < hw->mac.uta_reg_count; i++)
4713                 array_wr32(E1000_UTA, i, ~0);
4714 }
4715
4716 /**
4717  * igb_intr_msi - Interrupt Handler
4718  * @irq: interrupt number
4719  * @data: pointer to a network interface device structure
4720  **/
4721 static irqreturn_t igb_intr_msi(int irq, void *data)
4722 {
4723         struct igb_adapter *adapter = data;
4724         struct igb_q_vector *q_vector = adapter->q_vector[0];
4725         struct e1000_hw *hw = &adapter->hw;
4726         /* read ICR disables interrupts using IAM */
4727         u32 icr = rd32(E1000_ICR);
4728
4729         igb_write_itr(q_vector);
4730
4731         if (icr & E1000_ICR_DOUTSYNC) {
4732                 /* HW is reporting DMA is out of sync */
4733                 adapter->stats.doosync++;
4734         }
4735
4736         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4737                 hw->mac.get_link_status = 1;
4738                 if (!test_bit(__IGB_DOWN, &adapter->state))
4739                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4740         }
4741
4742         napi_schedule(&q_vector->napi);
4743
4744         return IRQ_HANDLED;
4745 }
4746
4747 /**
4748  * igb_intr - Legacy Interrupt Handler
4749  * @irq: interrupt number
4750  * @data: pointer to a network interface device structure
4751  **/
4752 static irqreturn_t igb_intr(int irq, void *data)
4753 {
4754         struct igb_adapter *adapter = data;
4755         struct igb_q_vector *q_vector = adapter->q_vector[0];
4756         struct e1000_hw *hw = &adapter->hw;
4757         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4758          * need for the IMC write */
4759         u32 icr = rd32(E1000_ICR);
4760         if (!icr)
4761                 return IRQ_NONE;  /* Not our interrupt */
4762
4763         igb_write_itr(q_vector);
4764
4765         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4766          * not set, then the adapter didn't send an interrupt */
4767         if (!(icr & E1000_ICR_INT_ASSERTED))
4768                 return IRQ_NONE;
4769
4770         if (icr & E1000_ICR_DOUTSYNC) {
4771                 /* HW is reporting DMA is out of sync */
4772                 adapter->stats.doosync++;
4773         }
4774
4775         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4776                 hw->mac.get_link_status = 1;
4777                 /* guard against interrupt when we're going down */
4778                 if (!test_bit(__IGB_DOWN, &adapter->state))
4779                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4780         }
4781
4782         napi_schedule(&q_vector->napi);
4783
4784         return IRQ_HANDLED;
4785 }
4786
4787 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4788 {
4789         struct igb_adapter *adapter = q_vector->adapter;
4790         struct e1000_hw *hw = &adapter->hw;
4791
4792         if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4793             (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4794                 if (!adapter->msix_entries)
4795                         igb_set_itr(adapter);
4796                 else
4797                         igb_update_ring_itr(q_vector);
4798         }
4799
4800         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4801                 if (adapter->msix_entries)
4802                         wr32(E1000_EIMS, q_vector->eims_value);
4803                 else
4804                         igb_irq_enable(adapter);
4805         }
4806 }
4807
4808 /**
4809  * igb_poll - NAPI Rx polling callback
4810  * @napi: napi polling structure
4811  * @budget: count of how many packets we should handle
4812  **/
4813 static int igb_poll(struct napi_struct *napi, int budget)
4814 {
4815         struct igb_q_vector *q_vector = container_of(napi,
4816                                                      struct igb_q_vector,
4817                                                      napi);
4818         int tx_clean_complete = 1, work_done = 0;
4819
4820 #ifdef CONFIG_IGB_DCA
4821         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4822                 igb_update_dca(q_vector);
4823 #endif
4824         if (q_vector->tx_ring)
4825                 tx_clean_complete = igb_clean_tx_irq(q_vector);
4826
4827         if (q_vector->rx_ring)
4828                 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4829
4830         if (!tx_clean_complete)
4831                 work_done = budget;
4832
4833         /* If not enough Rx work done, exit the polling mode */
4834         if (work_done < budget) {
4835                 napi_complete(napi);
4836                 igb_ring_irq_enable(q_vector);
4837         }
4838
4839         return work_done;
4840 }
4841
4842 /**
4843  * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4844  * @adapter: board private structure
4845  * @shhwtstamps: timestamp structure to update
4846  * @regval: unsigned 64bit system time value.
4847  *
4848  * We need to convert the system time value stored in the RX/TXSTMP registers
4849  * into a hwtstamp which can be used by the upper level timestamping functions
4850  */
4851 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4852                                    struct skb_shared_hwtstamps *shhwtstamps,
4853                                    u64 regval)
4854 {
4855         u64 ns;
4856
4857         /*
4858          * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4859          * 24 to match clock shift we setup earlier.
4860          */
4861         if (adapter->hw.mac.type == e1000_82580)
4862                 regval <<= IGB_82580_TSYNC_SHIFT;
4863
4864         ns = timecounter_cyc2time(&adapter->clock, regval);
4865         timecompare_update(&adapter->compare, ns);
4866         memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4867         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4868         shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4869 }
4870
4871 /**
4872  * igb_tx_hwtstamp - utility function which checks for TX time stamp
4873  * @q_vector: pointer to q_vector containing needed info
4874  * @skb: packet that was just sent
4875  *
4876  * If we were asked to do hardware stamping and such a time stamp is
4877  * available, then it must have been for this skb here because we only
4878  * allow only one such packet into the queue.
4879  */
4880 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4881 {
4882         struct igb_adapter *adapter = q_vector->adapter;
4883         union skb_shared_tx *shtx = skb_tx(skb);
4884         struct e1000_hw *hw = &adapter->hw;
4885         struct skb_shared_hwtstamps shhwtstamps;
4886         u64 regval;
4887
4888         /* if skb does not support hw timestamp or TX stamp not valid exit */
4889         if (likely(!shtx->hardware) ||
4890             !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4891                 return;
4892
4893         regval = rd32(E1000_TXSTMPL);
4894         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4895
4896         igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4897         skb_tstamp_tx(skb, &shhwtstamps);
4898 }
4899
4900 /**
4901  * igb_clean_tx_irq - Reclaim resources after transmit completes
4902  * @q_vector: pointer to q_vector containing needed info
4903  * returns true if ring is completely cleaned
4904  **/
4905 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4906 {
4907         struct igb_adapter *adapter = q_vector->adapter;
4908         struct igb_ring *tx_ring = q_vector->tx_ring;
4909         struct net_device *netdev = tx_ring->netdev;
4910         struct e1000_hw *hw = &adapter->hw;
4911         struct igb_buffer *buffer_info;
4912         struct sk_buff *skb;
4913         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4914         unsigned int total_bytes = 0, total_packets = 0;
4915         unsigned int i, eop, count = 0;
4916         bool cleaned = false;
4917
4918         i = tx_ring->next_to_clean;
4919         eop = tx_ring->buffer_info[i].next_to_watch;
4920         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4921
4922         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4923                (count < tx_ring->count)) {
4924                 for (cleaned = false; !cleaned; count++) {
4925                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4926                         buffer_info = &tx_ring->buffer_info[i];
4927                         cleaned = (i == eop);
4928                         skb = buffer_info->skb;
4929
4930                         if (skb) {
4931                                 unsigned int segs, bytecount;
4932                                 /* gso_segs is currently only valid for tcp */
4933                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4934                                 /* multiply data chunks by size of headers */
4935                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4936                                             skb->len;
4937                                 total_packets += segs;
4938                                 total_bytes += bytecount;
4939
4940                                 igb_tx_hwtstamp(q_vector, skb);
4941                         }
4942
4943                         igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4944                         tx_desc->wb.status = 0;
4945
4946                         i++;
4947                         if (i == tx_ring->count)
4948                                 i = 0;
4949                 }
4950                 eop = tx_ring->buffer_info[i].next_to_watch;
4951                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4952         }
4953
4954         tx_ring->next_to_clean = i;
4955
4956         if (unlikely(count &&
4957                      netif_carrier_ok(netdev) &&
4958                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4959                 /* Make sure that anybody stopping the queue after this
4960                  * sees the new next_to_clean.
4961                  */
4962                 smp_mb();
4963                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4964                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4965                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4966                         tx_ring->tx_stats.restart_queue++;
4967                 }
4968         }
4969
4970         if (tx_ring->detect_tx_hung) {
4971                 /* Detect a transmit hang in hardware, this serializes the
4972                  * check with the clearing of time_stamp and movement of i */
4973                 tx_ring->detect_tx_hung = false;
4974                 if (tx_ring->buffer_info[i].time_stamp &&
4975                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4976                                (adapter->tx_timeout_factor * HZ)) &&
4977                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4978
4979                         /* detected Tx unit hang */
4980                         dev_err(&tx_ring->pdev->dev,
4981                                 "Detected Tx Unit Hang\n"
4982                                 "  Tx Queue             <%d>\n"
4983                                 "  TDH                  <%x>\n"
4984                                 "  TDT                  <%x>\n"
4985                                 "  next_to_use          <%x>\n"
4986                                 "  next_to_clean        <%x>\n"
4987                                 "buffer_info[next_to_clean]\n"
4988                                 "  time_stamp           <%lx>\n"
4989                                 "  next_to_watch        <%x>\n"
4990                                 "  jiffies              <%lx>\n"
4991                                 "  desc.status          <%x>\n",
4992                                 tx_ring->queue_index,
4993                                 readl(tx_ring->head),
4994                                 readl(tx_ring->tail),
4995                                 tx_ring->next_to_use,
4996                                 tx_ring->next_to_clean,
4997                                 tx_ring->buffer_info[eop].time_stamp,
4998                                 eop,
4999                                 jiffies,
5000                                 eop_desc->wb.status);
5001                         netif_stop_subqueue(netdev, tx_ring->queue_index);
5002                 }
5003         }
5004         tx_ring->total_bytes += total_bytes;
5005         tx_ring->total_packets += total_packets;
5006         tx_ring->tx_stats.bytes += total_bytes;
5007         tx_ring->tx_stats.packets += total_packets;
5008         return (count < tx_ring->count);
5009 }
5010
5011 /**
5012  * igb_receive_skb - helper function to handle rx indications
5013  * @q_vector: structure containing interrupt and ring information
5014  * @skb: packet to send up
5015  * @vlan_tag: vlan tag for packet
5016  **/
5017 static void igb_receive_skb(struct igb_q_vector *q_vector,
5018                             struct sk_buff *skb,
5019                             u16 vlan_tag)
5020 {
5021         struct igb_adapter *adapter = q_vector->adapter;
5022
5023         if (vlan_tag)
5024                 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5025                                  vlan_tag, skb);
5026         else
5027                 napi_gro_receive(&q_vector->napi, skb);
5028 }
5029
5030 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5031                                        u32 status_err, struct sk_buff *skb)
5032 {
5033         skb->ip_summed = CHECKSUM_NONE;
5034
5035         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5036         if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5037              (status_err & E1000_RXD_STAT_IXSM))
5038                 return;
5039
5040         /* TCP/UDP checksum error bit is set */
5041         if (status_err &
5042             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5043                 /*
5044                  * work around errata with sctp packets where the TCPE aka
5045                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5046                  * packets, (aka let the stack check the crc32c)
5047                  */
5048                 if ((skb->len == 60) &&
5049                     (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5050                         ring->rx_stats.csum_err++;
5051
5052                 /* let the stack verify checksum errors */
5053                 return;
5054         }
5055         /* It must be a TCP or UDP packet with a valid checksum */
5056         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5057                 skb->ip_summed = CHECKSUM_UNNECESSARY;
5058
5059         dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5060 }
5061
5062 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5063                                    struct sk_buff *skb)
5064 {
5065         struct igb_adapter *adapter = q_vector->adapter;
5066         struct e1000_hw *hw = &adapter->hw;
5067         u64 regval;
5068
5069         /*
5070          * If this bit is set, then the RX registers contain the time stamp. No
5071          * other packet will be time stamped until we read these registers, so
5072          * read the registers to make them available again. Because only one
5073          * packet can be time stamped at a time, we know that the register
5074          * values must belong to this one here and therefore we don't need to
5075          * compare any of the additional attributes stored for it.
5076          *
5077          * If nothing went wrong, then it should have a skb_shared_tx that we
5078          * can turn into a skb_shared_hwtstamps.
5079          */
5080         if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5081                 return;
5082         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5083                 return;
5084
5085         regval = rd32(E1000_RXSTMPL);
5086         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5087
5088         igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5089 }
5090 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5091                                union e1000_adv_rx_desc *rx_desc)
5092 {
5093         /* HW will not DMA in data larger than the given buffer, even if it
5094          * parses the (NFS, of course) header to be larger.  In that case, it
5095          * fills the header buffer and spills the rest into the page.
5096          */
5097         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5098                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5099         if (hlen > rx_ring->rx_buffer_len)
5100                 hlen = rx_ring->rx_buffer_len;
5101         return hlen;
5102 }
5103
5104 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5105                                  int *work_done, int budget)
5106 {
5107         struct igb_ring *rx_ring = q_vector->rx_ring;
5108         struct net_device *netdev = rx_ring->netdev;
5109         struct pci_dev *pdev = rx_ring->pdev;
5110         union e1000_adv_rx_desc *rx_desc , *next_rxd;
5111         struct igb_buffer *buffer_info , *next_buffer;
5112         struct sk_buff *skb;
5113         bool cleaned = false;
5114         int cleaned_count = 0;
5115         int current_node = numa_node_id();
5116         unsigned int total_bytes = 0, total_packets = 0;
5117         unsigned int i;
5118         u32 staterr;
5119         u16 length;
5120         u16 vlan_tag;
5121
5122         i = rx_ring->next_to_clean;
5123         buffer_info = &rx_ring->buffer_info[i];
5124         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5125         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5126
5127         while (staterr & E1000_RXD_STAT_DD) {
5128                 if (*work_done >= budget)
5129                         break;
5130                 (*work_done)++;
5131
5132                 skb = buffer_info->skb;
5133                 prefetch(skb->data - NET_IP_ALIGN);
5134                 buffer_info->skb = NULL;
5135
5136                 i++;
5137                 if (i == rx_ring->count)
5138                         i = 0;
5139
5140                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5141                 prefetch(next_rxd);
5142                 next_buffer = &rx_ring->buffer_info[i];
5143
5144                 length = le16_to_cpu(rx_desc->wb.upper.length);
5145                 cleaned = true;
5146                 cleaned_count++;
5147
5148                 if (buffer_info->dma) {
5149                         pci_unmap_single(pdev, buffer_info->dma,
5150                                          rx_ring->rx_buffer_len,
5151                                          PCI_DMA_FROMDEVICE);
5152                         buffer_info->dma = 0;
5153                         if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5154                                 skb_put(skb, length);
5155                                 goto send_up;
5156                         }
5157                         skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5158                 }
5159
5160                 if (length) {
5161                         pci_unmap_page(pdev, buffer_info->page_dma,
5162                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5163                         buffer_info->page_dma = 0;
5164
5165                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5166                                                 buffer_info->page,
5167                                                 buffer_info->page_offset,
5168                                                 length);
5169
5170                         if ((page_count(buffer_info->page) != 1) ||
5171                             (page_to_nid(buffer_info->page) != current_node))
5172                                 buffer_info->page = NULL;
5173                         else
5174                                 get_page(buffer_info->page);
5175
5176                         skb->len += length;
5177                         skb->data_len += length;
5178                         skb->truesize += length;
5179                 }
5180
5181                 if (!(staterr & E1000_RXD_STAT_EOP)) {
5182                         buffer_info->skb = next_buffer->skb;
5183                         buffer_info->dma = next_buffer->dma;
5184                         next_buffer->skb = skb;
5185                         next_buffer->dma = 0;
5186                         goto next_desc;
5187                 }
5188 send_up:
5189                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5190                         dev_kfree_skb_irq(skb);
5191                         goto next_desc;
5192                 }
5193
5194                 igb_rx_hwtstamp(q_vector, staterr, skb);
5195                 total_bytes += skb->len;
5196                 total_packets++;
5197
5198                 igb_rx_checksum_adv(rx_ring, staterr, skb);
5199
5200                 skb->protocol = eth_type_trans(skb, netdev);
5201                 skb_record_rx_queue(skb, rx_ring->queue_index);
5202
5203                 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5204                             le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5205
5206                 igb_receive_skb(q_vector, skb, vlan_tag);
5207
5208 next_desc:
5209                 rx_desc->wb.upper.status_error = 0;
5210
5211                 /* return some buffers to hardware, one at a time is too slow */
5212                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5213                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5214                         cleaned_count = 0;
5215                 }
5216
5217                 /* use prefetched values */
5218                 rx_desc = next_rxd;
5219                 buffer_info = next_buffer;
5220                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5221         }
5222
5223         rx_ring->next_to_clean = i;
5224         cleaned_count = igb_desc_unused(rx_ring);
5225
5226         if (cleaned_count)
5227                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5228
5229         rx_ring->total_packets += total_packets;
5230         rx_ring->total_bytes += total_bytes;
5231         rx_ring->rx_stats.packets += total_packets;
5232         rx_ring->rx_stats.bytes += total_bytes;
5233         return cleaned;
5234 }
5235
5236 /**
5237  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5238  * @adapter: address of board private structure
5239  **/
5240 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5241 {
5242         struct net_device *netdev = rx_ring->netdev;
5243         union e1000_adv_rx_desc *rx_desc;
5244         struct igb_buffer *buffer_info;
5245         struct sk_buff *skb;
5246         unsigned int i;
5247         int bufsz;
5248
5249         i = rx_ring->next_to_use;
5250         buffer_info = &rx_ring->buffer_info[i];
5251
5252         bufsz = rx_ring->rx_buffer_len;
5253
5254         while (cleaned_count--) {
5255                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5256
5257                 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5258                         if (!buffer_info->page) {
5259                                 buffer_info->page = netdev_alloc_page(netdev);
5260                                 if (!buffer_info->page) {
5261                                         rx_ring->rx_stats.alloc_failed++;
5262                                         goto no_buffers;
5263                                 }
5264                                 buffer_info->page_offset = 0;
5265                         } else {
5266                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
5267                         }
5268                         buffer_info->page_dma =
5269                                 pci_map_page(rx_ring->pdev, buffer_info->page,
5270                                              buffer_info->page_offset,
5271                                              PAGE_SIZE / 2,
5272                                              PCI_DMA_FROMDEVICE);
5273                         if (pci_dma_mapping_error(rx_ring->pdev,
5274                                                   buffer_info->page_dma)) {
5275                                 buffer_info->page_dma = 0;
5276                                 rx_ring->rx_stats.alloc_failed++;
5277                                 goto no_buffers;
5278                         }
5279                 }
5280
5281                 skb = buffer_info->skb;
5282                 if (!skb) {
5283                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5284                         if (!skb) {
5285                                 rx_ring->rx_stats.alloc_failed++;
5286                                 goto no_buffers;
5287                         }
5288
5289                         buffer_info->skb = skb;
5290                 }
5291                 if (!buffer_info->dma) {
5292                         buffer_info->dma = pci_map_single(rx_ring->pdev,
5293                                                           skb->data,
5294                                                           bufsz,
5295                                                           PCI_DMA_FROMDEVICE);
5296                         if (pci_dma_mapping_error(rx_ring->pdev,
5297                                                   buffer_info->dma)) {
5298                                 buffer_info->dma = 0;
5299                                 rx_ring->rx_stats.alloc_failed++;
5300                                 goto no_buffers;
5301                         }
5302                 }
5303                 /* Refresh the desc even if buffer_addrs didn't change because
5304                  * each write-back erases this info. */
5305                 if (bufsz < IGB_RXBUFFER_1024) {
5306                         rx_desc->read.pkt_addr =
5307                              cpu_to_le64(buffer_info->page_dma);
5308                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5309                 } else {
5310                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5311                         rx_desc->read.hdr_addr = 0;
5312                 }
5313
5314                 i++;
5315                 if (i == rx_ring->count)
5316                         i = 0;
5317                 buffer_info = &rx_ring->buffer_info[i];
5318         }
5319
5320 no_buffers:
5321         if (rx_ring->next_to_use != i) {
5322                 rx_ring->next_to_use = i;
5323                 if (i == 0)
5324                         i = (rx_ring->count - 1);
5325                 else
5326                         i--;
5327
5328                 /* Force memory writes to complete before letting h/w
5329                  * know there are new descriptors to fetch.  (Only
5330                  * applicable for weak-ordered memory model archs,
5331                  * such as IA-64). */
5332                 wmb();
5333                 writel(i, rx_ring->tail);
5334         }
5335 }
5336
5337 /**
5338  * igb_mii_ioctl -
5339  * @netdev:
5340  * @ifreq:
5341  * @cmd:
5342  **/
5343 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5344 {
5345         struct igb_adapter *adapter = netdev_priv(netdev);
5346         struct mii_ioctl_data *data = if_mii(ifr);
5347
5348         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5349                 return -EOPNOTSUPP;
5350
5351         switch (cmd) {
5352         case SIOCGMIIPHY:
5353                 data->phy_id = adapter->hw.phy.addr;
5354                 break;
5355         case SIOCGMIIREG:
5356                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5357                                      &data->val_out))
5358                         return -EIO;
5359                 break;
5360         case SIOCSMIIREG:
5361         default:
5362                 return -EOPNOTSUPP;
5363         }
5364         return 0;
5365 }
5366
5367 /**
5368  * igb_hwtstamp_ioctl - control hardware time stamping
5369  * @netdev:
5370  * @ifreq:
5371  * @cmd:
5372  *
5373  * Outgoing time stamping can be enabled and disabled. Play nice and
5374  * disable it when requested, although it shouldn't case any overhead
5375  * when no packet needs it. At most one packet in the queue may be
5376  * marked for time stamping, otherwise it would be impossible to tell
5377  * for sure to which packet the hardware time stamp belongs.
5378  *
5379  * Incoming time stamping has to be configured via the hardware
5380  * filters. Not all combinations are supported, in particular event
5381  * type has to be specified. Matching the kind of event packet is
5382  * not supported, with the exception of "all V2 events regardless of
5383  * level 2 or 4".
5384  *
5385  **/
5386 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5387                               struct ifreq *ifr, int cmd)
5388 {
5389         struct igb_adapter *adapter = netdev_priv(netdev);
5390         struct e1000_hw *hw = &adapter->hw;
5391         struct hwtstamp_config config;
5392         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5393         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5394         u32 tsync_rx_cfg = 0;
5395         bool is_l4 = false;
5396         bool is_l2 = false;
5397         u32 regval;
5398
5399         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5400                 return -EFAULT;
5401
5402         /* reserved for future extensions */
5403         if (config.flags)
5404                 return -EINVAL;
5405
5406         switch (config.tx_type) {
5407         case HWTSTAMP_TX_OFF:
5408                 tsync_tx_ctl = 0;
5409         case HWTSTAMP_TX_ON:
5410                 break;
5411         default:
5412                 return -ERANGE;
5413         }
5414
5415         switch (config.rx_filter) {
5416         case HWTSTAMP_FILTER_NONE:
5417                 tsync_rx_ctl = 0;
5418                 break;
5419         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5420         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5421         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5422         case HWTSTAMP_FILTER_ALL:
5423                 /*
5424                  * register TSYNCRXCFG must be set, therefore it is not
5425                  * possible to time stamp both Sync and Delay_Req messages
5426                  * => fall back to time stamping all packets
5427                  */
5428                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5429                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5430                 break;
5431         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5432                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5433                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5434                 is_l4 = true;
5435                 break;
5436         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5437                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5438                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5439                 is_l4 = true;
5440                 break;
5441         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5442         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5443                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5444                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5445                 is_l2 = true;
5446                 is_l4 = true;
5447                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5448                 break;
5449         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5450         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5451                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5452                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5453                 is_l2 = true;
5454                 is_l4 = true;
5455                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5456                 break;
5457         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5458         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5459         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5460                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5461                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5462                 is_l2 = true;
5463                 break;
5464         default:
5465                 return -ERANGE;
5466         }
5467
5468         if (hw->mac.type == e1000_82575) {
5469                 if (tsync_rx_ctl | tsync_tx_ctl)
5470                         return -EINVAL;
5471                 return 0;
5472         }
5473
5474         /* enable/disable TX */
5475         regval = rd32(E1000_TSYNCTXCTL);
5476         regval &= ~E1000_TSYNCTXCTL_ENABLED;
5477         regval |= tsync_tx_ctl;
5478         wr32(E1000_TSYNCTXCTL, regval);
5479
5480         /* enable/disable RX */
5481         regval = rd32(E1000_TSYNCRXCTL);
5482         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5483         regval |= tsync_rx_ctl;
5484         wr32(E1000_TSYNCRXCTL, regval);
5485
5486         /* define which PTP packets are time stamped */
5487         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5488
5489         /* define ethertype filter for timestamped packets */
5490         if (is_l2)
5491                 wr32(E1000_ETQF(3),
5492                                 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5493                                  E1000_ETQF_1588 | /* enable timestamping */
5494                                  ETH_P_1588));     /* 1588 eth protocol type */
5495         else
5496                 wr32(E1000_ETQF(3), 0);
5497
5498 #define PTP_PORT 319
5499         /* L4 Queue Filter[3]: filter by destination port and protocol */
5500         if (is_l4) {
5501                 u32 ftqf = (IPPROTO_UDP /* UDP */
5502                         | E1000_FTQF_VF_BP /* VF not compared */
5503                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5504                         | E1000_FTQF_MASK); /* mask all inputs */
5505                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5506
5507                 wr32(E1000_IMIR(3), htons(PTP_PORT));
5508                 wr32(E1000_IMIREXT(3),
5509                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5510                 if (hw->mac.type == e1000_82576) {
5511                         /* enable source port check */
5512                         wr32(E1000_SPQF(3), htons(PTP_PORT));
5513                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5514                 }
5515                 wr32(E1000_FTQF(3), ftqf);
5516         } else {
5517                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5518         }
5519         wrfl();
5520
5521         adapter->hwtstamp_config = config;
5522
5523         /* clear TX/RX time stamp registers, just to be sure */
5524         regval = rd32(E1000_TXSTMPH);
5525         regval = rd32(E1000_RXSTMPH);
5526
5527         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5528                 -EFAULT : 0;
5529 }
5530
5531 /**
5532  * igb_ioctl -
5533  * @netdev:
5534  * @ifreq:
5535  * @cmd:
5536  **/
5537 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5538 {
5539         switch (cmd) {
5540         case SIOCGMIIPHY:
5541         case SIOCGMIIREG:
5542         case SIOCSMIIREG:
5543                 return igb_mii_ioctl(netdev, ifr, cmd);
5544         case SIOCSHWTSTAMP:
5545                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5546         default:
5547                 return -EOPNOTSUPP;
5548         }
5549 }
5550
5551 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5552 {
5553         struct igb_adapter *adapter = hw->back;
5554         u16 cap_offset;
5555
5556         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5557         if (!cap_offset)
5558                 return -E1000_ERR_CONFIG;
5559
5560         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5561
5562         return 0;
5563 }
5564
5565 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5566 {
5567         struct igb_adapter *adapter = hw->back;
5568         u16 cap_offset;
5569
5570         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5571         if (!cap_offset)
5572                 return -E1000_ERR_CONFIG;
5573
5574         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5575
5576         return 0;
5577 }
5578
5579 static void igb_vlan_rx_register(struct net_device *netdev,
5580                                  struct vlan_group *grp)
5581 {
5582         struct igb_adapter *adapter = netdev_priv(netdev);
5583         struct e1000_hw *hw = &adapter->hw;
5584         u32 ctrl, rctl;
5585
5586         igb_irq_disable(adapter);
5587         adapter->vlgrp = grp;
5588
5589         if (grp) {
5590                 /* enable VLAN tag insert/strip */
5591                 ctrl = rd32(E1000_CTRL);
5592                 ctrl |= E1000_CTRL_VME;
5593                 wr32(E1000_CTRL, ctrl);
5594
5595                 /* Disable CFI check */
5596                 rctl = rd32(E1000_RCTL);
5597                 rctl &= ~E1000_RCTL_CFIEN;
5598                 wr32(E1000_RCTL, rctl);
5599         } else {
5600                 /* disable VLAN tag insert/strip */
5601                 ctrl = rd32(E1000_CTRL);
5602                 ctrl &= ~E1000_CTRL_VME;
5603                 wr32(E1000_CTRL, ctrl);
5604         }
5605
5606         igb_rlpml_set(adapter);
5607
5608         if (!test_bit(__IGB_DOWN, &adapter->state))
5609                 igb_irq_enable(adapter);
5610 }
5611
5612 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5613 {
5614         struct igb_adapter *adapter = netdev_priv(netdev);
5615         struct e1000_hw *hw = &adapter->hw;
5616         int pf_id = adapter->vfs_allocated_count;
5617
5618         /* attempt to add filter to vlvf array */
5619         igb_vlvf_set(adapter, vid, true, pf_id);
5620
5621         /* add the filter since PF can receive vlans w/o entry in vlvf */
5622         igb_vfta_set(hw, vid, true);
5623 }
5624
5625 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5626 {
5627         struct igb_adapter *adapter = netdev_priv(netdev);
5628         struct e1000_hw *hw = &adapter->hw;
5629         int pf_id = adapter->vfs_allocated_count;
5630         s32 err;
5631
5632         igb_irq_disable(adapter);
5633         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5634
5635         if (!test_bit(__IGB_DOWN, &adapter->state))
5636                 igb_irq_enable(adapter);
5637
5638         /* remove vlan from VLVF table array */
5639         err = igb_vlvf_set(adapter, vid, false, pf_id);
5640
5641         /* if vid was not present in VLVF just remove it from table */
5642         if (err)
5643                 igb_vfta_set(hw, vid, false);
5644 }
5645
5646 static void igb_restore_vlan(struct igb_adapter *adapter)
5647 {
5648         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5649
5650         if (adapter->vlgrp) {
5651                 u16 vid;
5652                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5653                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5654                                 continue;
5655                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5656                 }
5657         }
5658 }
5659
5660 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5661 {
5662         struct pci_dev *pdev = adapter->pdev;
5663         struct e1000_mac_info *mac = &adapter->hw.mac;
5664
5665         mac->autoneg = 0;
5666
5667         switch (spddplx) {
5668         case SPEED_10 + DUPLEX_HALF:
5669                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5670                 break;
5671         case SPEED_10 + DUPLEX_FULL:
5672                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5673                 break;
5674         case SPEED_100 + DUPLEX_HALF:
5675                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5676                 break;
5677         case SPEED_100 + DUPLEX_FULL:
5678                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5679                 break;
5680         case SPEED_1000 + DUPLEX_FULL:
5681                 mac->autoneg = 1;
5682                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5683                 break;
5684         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5685         default:
5686                 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5687                 return -EINVAL;
5688         }
5689         return 0;
5690 }
5691
5692 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5693 {
5694         struct net_device *netdev = pci_get_drvdata(pdev);
5695         struct igb_adapter *adapter = netdev_priv(netdev);
5696         struct e1000_hw *hw = &adapter->hw;
5697         u32 ctrl, rctl, status;
5698         u32 wufc = adapter->wol;
5699 #ifdef CONFIG_PM
5700         int retval = 0;
5701 #endif
5702
5703         netif_device_detach(netdev);
5704
5705         if (netif_running(netdev))
5706                 igb_close(netdev);
5707
5708         igb_clear_interrupt_scheme(adapter);
5709
5710 #ifdef CONFIG_PM
5711         retval = pci_save_state(pdev);
5712         if (retval)
5713                 return retval;
5714 #endif
5715
5716         status = rd32(E1000_STATUS);
5717         if (status & E1000_STATUS_LU)
5718                 wufc &= ~E1000_WUFC_LNKC;
5719
5720         if (wufc) {
5721                 igb_setup_rctl(adapter);
5722                 igb_set_rx_mode(netdev);
5723
5724                 /* turn on all-multi mode if wake on multicast is enabled */
5725                 if (wufc & E1000_WUFC_MC) {
5726                         rctl = rd32(E1000_RCTL);
5727                         rctl |= E1000_RCTL_MPE;
5728                         wr32(E1000_RCTL, rctl);
5729                 }
5730
5731                 ctrl = rd32(E1000_CTRL);
5732                 /* advertise wake from D3Cold */
5733                 #define E1000_CTRL_ADVD3WUC 0x00100000
5734                 /* phy power management enable */
5735                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5736                 ctrl |= E1000_CTRL_ADVD3WUC;
5737                 wr32(E1000_CTRL, ctrl);
5738
5739                 /* Allow time for pending master requests to run */
5740                 igb_disable_pcie_master(hw);
5741
5742                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5743                 wr32(E1000_WUFC, wufc);
5744         } else {
5745                 wr32(E1000_WUC, 0);
5746                 wr32(E1000_WUFC, 0);
5747         }
5748
5749         *enable_wake = wufc || adapter->en_mng_pt;
5750         if (!*enable_wake)
5751                 igb_shutdown_serdes_link_82575(hw);
5752
5753         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5754          * would have already happened in close and is redundant. */
5755         igb_release_hw_control(adapter);
5756
5757         pci_disable_device(pdev);
5758
5759         return 0;
5760 }
5761
5762 #ifdef CONFIG_PM
5763 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5764 {
5765         int retval;
5766         bool wake;
5767
5768         retval = __igb_shutdown(pdev, &wake);
5769         if (retval)
5770                 return retval;
5771
5772         if (wake) {
5773                 pci_prepare_to_sleep(pdev);
5774         } else {
5775                 pci_wake_from_d3(pdev, false);
5776                 pci_set_power_state(pdev, PCI_D3hot);
5777         }
5778
5779         return 0;
5780 }
5781
5782 static int igb_resume(struct pci_dev *pdev)
5783 {
5784         struct net_device *netdev = pci_get_drvdata(pdev);
5785         struct igb_adapter *adapter = netdev_priv(netdev);
5786         struct e1000_hw *hw = &adapter->hw;
5787         u32 err;
5788
5789         pci_set_power_state(pdev, PCI_D0);
5790         pci_restore_state(pdev);
5791
5792         err = pci_enable_device_mem(pdev);
5793         if (err) {
5794                 dev_err(&pdev->dev,
5795                         "igb: Cannot enable PCI device from suspend\n");
5796                 return err;
5797         }
5798         pci_set_master(pdev);
5799
5800         pci_enable_wake(pdev, PCI_D3hot, 0);
5801         pci_enable_wake(pdev, PCI_D3cold, 0);
5802
5803         if (igb_init_interrupt_scheme(adapter)) {
5804                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5805                 return -ENOMEM;
5806         }
5807
5808         /* e1000_power_up_phy(adapter); */
5809
5810         igb_reset(adapter);
5811
5812         /* let the f/w know that the h/w is now under the control of the
5813          * driver. */
5814         igb_get_hw_control(adapter);
5815
5816         wr32(E1000_WUS, ~0);
5817
5818         if (netif_running(netdev)) {
5819                 err = igb_open(netdev);
5820                 if (err)
5821                         return err;
5822         }
5823
5824         netif_device_attach(netdev);
5825
5826         return 0;
5827 }
5828 #endif
5829
5830 static void igb_shutdown(struct pci_dev *pdev)
5831 {
5832         bool wake;
5833
5834         __igb_shutdown(pdev, &wake);
5835
5836         if (system_state == SYSTEM_POWER_OFF) {
5837                 pci_wake_from_d3(pdev, wake);
5838                 pci_set_power_state(pdev, PCI_D3hot);
5839         }
5840 }
5841
5842 #ifdef CONFIG_NET_POLL_CONTROLLER
5843 /*
5844  * Polling 'interrupt' - used by things like netconsole to send skbs
5845  * without having to re-enable interrupts. It's not called while
5846  * the interrupt routine is executing.
5847  */
5848 static void igb_netpoll(struct net_device *netdev)
5849 {
5850         struct igb_adapter *adapter = netdev_priv(netdev);
5851         struct e1000_hw *hw = &adapter->hw;
5852         int i;
5853
5854         if (!adapter->msix_entries) {
5855                 struct igb_q_vector *q_vector = adapter->q_vector[0];
5856                 igb_irq_disable(adapter);
5857                 napi_schedule(&q_vector->napi);
5858                 return;
5859         }
5860
5861         for (i = 0; i < adapter->num_q_vectors; i++) {
5862                 struct igb_q_vector *q_vector = adapter->q_vector[i];
5863                 wr32(E1000_EIMC, q_vector->eims_value);
5864                 napi_schedule(&q_vector->napi);
5865         }
5866 }
5867 #endif /* CONFIG_NET_POLL_CONTROLLER */
5868
5869 /**
5870  * igb_io_error_detected - called when PCI error is detected
5871  * @pdev: Pointer to PCI device
5872  * @state: The current pci connection state
5873  *
5874  * This function is called after a PCI bus error affecting
5875  * this device has been detected.
5876  */
5877 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5878                                               pci_channel_state_t state)
5879 {
5880         struct net_device *netdev = pci_get_drvdata(pdev);
5881         struct igb_adapter *adapter = netdev_priv(netdev);
5882
5883         netif_device_detach(netdev);
5884
5885         if (state == pci_channel_io_perm_failure)
5886                 return PCI_ERS_RESULT_DISCONNECT;
5887
5888         if (netif_running(netdev))
5889                 igb_down(adapter);
5890         pci_disable_device(pdev);
5891
5892         /* Request a slot slot reset. */
5893         return PCI_ERS_RESULT_NEED_RESET;
5894 }
5895
5896 /**
5897  * igb_io_slot_reset - called after the pci bus has been reset.
5898  * @pdev: Pointer to PCI device
5899  *
5900  * Restart the card from scratch, as if from a cold-boot. Implementation
5901  * resembles the first-half of the igb_resume routine.
5902  */
5903 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5904 {
5905         struct net_device *netdev = pci_get_drvdata(pdev);
5906         struct igb_adapter *adapter = netdev_priv(netdev);
5907         struct e1000_hw *hw = &adapter->hw;
5908         pci_ers_result_t result;
5909         int err;
5910
5911         if (pci_enable_device_mem(pdev)) {
5912                 dev_err(&pdev->dev,
5913                         "Cannot re-enable PCI device after reset.\n");
5914                 result = PCI_ERS_RESULT_DISCONNECT;
5915         } else {
5916                 pci_set_master(pdev);
5917                 pci_restore_state(pdev);
5918
5919                 pci_enable_wake(pdev, PCI_D3hot, 0);
5920                 pci_enable_wake(pdev, PCI_D3cold, 0);
5921
5922                 igb_reset(adapter);
5923                 wr32(E1000_WUS, ~0);
5924                 result = PCI_ERS_RESULT_RECOVERED;
5925         }
5926
5927         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5928         if (err) {
5929                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5930                         "failed 0x%0x\n", err);
5931                 /* non-fatal, continue */
5932         }
5933
5934         return result;
5935 }
5936
5937 /**
5938  * igb_io_resume - called when traffic can start flowing again.
5939  * @pdev: Pointer to PCI device
5940  *
5941  * This callback is called when the error recovery driver tells us that
5942  * its OK to resume normal operation. Implementation resembles the
5943  * second-half of the igb_resume routine.
5944  */
5945 static void igb_io_resume(struct pci_dev *pdev)
5946 {
5947         struct net_device *netdev = pci_get_drvdata(pdev);
5948         struct igb_adapter *adapter = netdev_priv(netdev);
5949
5950         if (netif_running(netdev)) {
5951                 if (igb_up(adapter)) {
5952                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5953                         return;
5954                 }
5955         }
5956
5957         netif_device_attach(netdev);
5958
5959         /* let the f/w know that the h/w is now under the control of the
5960          * driver. */
5961         igb_get_hw_control(adapter);
5962 }
5963
5964 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5965                              u8 qsel)
5966 {
5967         u32 rar_low, rar_high;
5968         struct e1000_hw *hw = &adapter->hw;
5969
5970         /* HW expects these in little endian so we reverse the byte order
5971          * from network order (big endian) to little endian
5972          */
5973         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5974                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5975         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5976
5977         /* Indicate to hardware the Address is Valid. */
5978         rar_high |= E1000_RAH_AV;
5979
5980         if (hw->mac.type == e1000_82575)
5981                 rar_high |= E1000_RAH_POOL_1 * qsel;
5982         else
5983                 rar_high |= E1000_RAH_POOL_1 << qsel;
5984
5985         wr32(E1000_RAL(index), rar_low);
5986         wrfl();
5987         wr32(E1000_RAH(index), rar_high);
5988         wrfl();
5989 }
5990
5991 static int igb_set_vf_mac(struct igb_adapter *adapter,
5992                           int vf, unsigned char *mac_addr)
5993 {
5994         struct e1000_hw *hw = &adapter->hw;
5995         /* VF MAC addresses start at end of receive addresses and moves
5996          * torwards the first, as a result a collision should not be possible */
5997         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5998
5999         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6000
6001         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6002
6003         return 0;
6004 }
6005
6006 static void igb_vmm_control(struct igb_adapter *adapter)
6007 {
6008         struct e1000_hw *hw = &adapter->hw;
6009         u32 reg;
6010
6011         /* replication is not supported for 82575 */
6012         if (hw->mac.type == e1000_82575)
6013                 return;
6014
6015         /* enable replication vlan tag stripping */
6016         reg = rd32(E1000_RPLOLR);
6017         reg |= E1000_RPLOLR_STRVLAN;
6018         wr32(E1000_RPLOLR, reg);
6019
6020         /* notify HW that the MAC is adding vlan tags */
6021         reg = rd32(E1000_DTXCTL);
6022         reg |= E1000_DTXCTL_VLAN_ADDED;
6023         wr32(E1000_DTXCTL, reg);
6024
6025         if (adapter->vfs_allocated_count) {
6026                 igb_vmdq_set_loopback_pf(hw, true);
6027                 igb_vmdq_set_replication_pf(hw, true);
6028         } else {
6029                 igb_vmdq_set_loopback_pf(hw, false);
6030                 igb_vmdq_set_replication_pf(hw, false);
6031         }
6032 }
6033
6034 /* igb_main.c */