Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / drivers / net / hamradio / 6pack.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 6pack.c      This module implements the 6pack protocol for kernel-based
4  *              devices like TTY. It interfaces between a raw TTY and the
5  *              kernel's AX.25 protocol layers.
6  *
7  * Authors:     Andreas Könsgen <ajk@comnets.uni-bremen.de>
8  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
9  *
10  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11  *
12  *              Laurence Culhane, <loz@holmes.demon.co.uk>
13  *              Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
14  */
15
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <linux/semaphore.h>
38 #include <linux/refcount.h>
39
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41
42 /* sixpack priority commands */
43 #define SIXP_SEOF               0x40    /* start and end of a 6pack frame */
44 #define SIXP_TX_URUN            0x48    /* transmit overrun */
45 #define SIXP_RX_ORUN            0x50    /* receive overrun */
46 #define SIXP_RX_BUF_OVL         0x58    /* receive buffer overflow */
47
48 #define SIXP_CHKSUM             0xFF    /* valid checksum of a 6pack frame */
49
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51
52 #define SIXP_CMD_MASK           0xC0
53 #define SIXP_CHN_MASK           0x07
54 #define SIXP_PRIO_CMD_MASK      0x80
55 #define SIXP_STD_CMD_MASK       0x40
56 #define SIXP_PRIO_DATA_MASK     0x38
57 #define SIXP_TX_MASK            0x20
58 #define SIXP_RX_MASK            0x10
59 #define SIXP_RX_DCD_MASK        0x18
60 #define SIXP_LEDS_ON            0x78
61 #define SIXP_LEDS_OFF           0x60
62 #define SIXP_CON                0x08
63 #define SIXP_STA                0x10
64
65 #define SIXP_FOUND_TNC          0xe9
66 #define SIXP_CON_ON             0x68
67 #define SIXP_DCD_MASK           0x08
68 #define SIXP_DAMA_OFF           0
69
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY                    (HZ/4)  /* in 1 s */
72 #define SIXP_PERSIST                    50      /* in 256ths */
73 #define SIXP_SLOTTIME                   (HZ/10) /* in 1 s */
74 #define SIXP_INIT_RESYNC_TIMEOUT        (3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT             5*HZ    /* in 1 s */
76
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT                     31      /* MAX number of 6pack channels */
79 #define SIXP_MTU                        256     /* Default MTU */
80
81 enum sixpack_flags {
82         SIXPF_ERROR,    /* Parity, etc. error   */
83 };
84
85 struct sixpack {
86         /* Various fields. */
87         struct tty_struct       *tty;           /* ptr to TTY structure */
88         struct net_device       *dev;           /* easy for intr handling  */
89
90         /* These are pointers to the malloc()ed frame buffers. */
91         unsigned char           *rbuff;         /* receiver buffer      */
92         int                     rcount;         /* received chars counter  */
93         unsigned char           *xbuff;         /* transmitter buffer   */
94         unsigned char           *xhead;         /* next byte to XMIT */
95         int                     xleft;          /* bytes left in XMIT queue  */
96
97         unsigned char           raw_buf[4];
98         unsigned char           cooked_buf[400];
99
100         unsigned int            rx_count;
101         unsigned int            rx_count_cooked;
102
103         int                     mtu;            /* Our mtu (to spot changes!) */
104         int                     buffsize;       /* Max buffers sizes */
105
106         unsigned long           flags;          /* Flag values/ mode etc */
107         unsigned char           mode;           /* 6pack mode */
108
109         /* 6pack stuff */
110         unsigned char           tx_delay;
111         unsigned char           persistence;
112         unsigned char           slottime;
113         unsigned char           duplex;
114         unsigned char           led_state;
115         unsigned char           status;
116         unsigned char           status1;
117         unsigned char           status2;
118         unsigned char           tx_enable;
119         unsigned char           tnc_state;
120
121         struct timer_list       tx_t;
122         struct timer_list       resync_t;
123         refcount_t              refcnt;
124         struct completion       dead;
125         spinlock_t              lock;
126 };
127
128 #define AX25_6PACK_HEADER_LEN 0
129
130 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138
139 static void sp_xmit_on_air(struct timer_list *t)
140 {
141         struct sixpack *sp = from_timer(sp, t, tx_t);
142         int actual, when = sp->slottime;
143         static unsigned char random;
144
145         random = random * 17 + 41;
146
147         if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148                 sp->led_state = 0x70;
149                 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150                 sp->tx_enable = 1;
151                 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152                 sp->xleft -= actual;
153                 sp->xhead += actual;
154                 sp->led_state = 0x60;
155                 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156                 sp->status2 = 0;
157         } else
158                 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166         unsigned char *msg, *p = icp;
167         int actual, count;
168
169         if (len > sp->mtu) {    /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170                 msg = "oversized transmit packet!";
171                 goto out_drop;
172         }
173
174         if (len > sp->mtu) {    /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175                 msg = "oversized transmit packet!";
176                 goto out_drop;
177         }
178
179         if (p[0] > 5) {
180                 msg = "invalid KISS command";
181                 goto out_drop;
182         }
183
184         if ((p[0] != 0) && (len > 2)) {
185                 msg = "KISS control packet too long";
186                 goto out_drop;
187         }
188
189         if ((p[0] == 0) && (len < 15)) {
190                 msg = "bad AX.25 packet to transmit";
191                 goto out_drop;
192         }
193
194         count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195         set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197         switch (p[0]) {
198         case 1: sp->tx_delay = p[1];
199                 return;
200         case 2: sp->persistence = p[1];
201                 return;
202         case 3: sp->slottime = p[1];
203                 return;
204         case 4: /* ignored */
205                 return;
206         case 5: sp->duplex = p[1];
207                 return;
208         }
209
210         if (p[0] != 0)
211                 return;
212
213         /*
214          * In case of fullduplex or DAMA operation, we don't take care about the
215          * state of the DCD or of any timers, as the determination of the
216          * correct time to send is the job of the AX.25 layer. We send
217          * immediately after data has arrived.
218          */
219         if (sp->duplex == 1) {
220                 sp->led_state = 0x70;
221                 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222                 sp->tx_enable = 1;
223                 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224                 sp->xleft = count - actual;
225                 sp->xhead = sp->xbuff + actual;
226                 sp->led_state = 0x60;
227                 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228         } else {
229                 sp->xleft = count;
230                 sp->xhead = sp->xbuff;
231                 sp->status2 = count;
232                 sp_xmit_on_air(&sp->tx_t);
233         }
234
235         return;
236
237 out_drop:
238         sp->dev->stats.tx_dropped++;
239         netif_start_queue(sp->dev);
240         if (net_ratelimit())
241                 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242 }
243
244 /* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247 {
248         struct sixpack *sp = netdev_priv(dev);
249
250         if (skb->protocol == htons(ETH_P_IP))
251                 return ax25_ip_xmit(skb);
252
253         spin_lock_bh(&sp->lock);
254         /* We were not busy, so we are now... :-) */
255         netif_stop_queue(dev);
256         dev->stats.tx_bytes += skb->len;
257         sp_encaps(sp, skb->data, skb->len);
258         spin_unlock_bh(&sp->lock);
259
260         dev_kfree_skb(skb);
261
262         return NETDEV_TX_OK;
263 }
264
265 static int sp_open_dev(struct net_device *dev)
266 {
267         struct sixpack *sp = netdev_priv(dev);
268
269         if (sp->tty == NULL)
270                 return -ENODEV;
271         return 0;
272 }
273
274 /* Close the low-level part of the 6pack channel. */
275 static int sp_close(struct net_device *dev)
276 {
277         struct sixpack *sp = netdev_priv(dev);
278
279         spin_lock_bh(&sp->lock);
280         if (sp->tty) {
281                 /* TTY discipline is running. */
282                 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283         }
284         netif_stop_queue(dev);
285         spin_unlock_bh(&sp->lock);
286
287         return 0;
288 }
289
290 static int sp_set_mac_address(struct net_device *dev, void *addr)
291 {
292         struct sockaddr_ax25 *sa = addr;
293
294         netif_tx_lock_bh(dev);
295         netif_addr_lock(dev);
296         memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297         netif_addr_unlock(dev);
298         netif_tx_unlock_bh(dev);
299
300         return 0;
301 }
302
303 static const struct net_device_ops sp_netdev_ops = {
304         .ndo_open               = sp_open_dev,
305         .ndo_stop               = sp_close,
306         .ndo_start_xmit         = sp_xmit,
307         .ndo_set_mac_address    = sp_set_mac_address,
308 };
309
310 static void sp_setup(struct net_device *dev)
311 {
312         /* Finish setting up the DEVICE info. */
313         dev->netdev_ops         = &sp_netdev_ops;
314         dev->needs_free_netdev  = true;
315         dev->mtu                = SIXP_MTU;
316         dev->hard_header_len    = AX25_MAX_HEADER_LEN;
317         dev->header_ops         = &ax25_header_ops;
318
319         dev->addr_len           = AX25_ADDR_LEN;
320         dev->type               = ARPHRD_AX25;
321         dev->tx_queue_len       = 10;
322
323         /* Only activated in AX.25 mode */
324         memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325         memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326
327         dev->flags              = 0;
328 }
329
330 /* Send one completely decapsulated IP datagram to the IP layer. */
331
332 /*
333  * This is the routine that sends the received data to the kernel AX.25.
334  * 'cmd' is the KISS command. For AX.25 data, it is zero.
335  */
336
337 static void sp_bump(struct sixpack *sp, char cmd)
338 {
339         struct sk_buff *skb;
340         int count;
341         unsigned char *ptr;
342
343         count = sp->rcount + 1;
344
345         sp->dev->stats.rx_bytes += count;
346
347         if ((skb = dev_alloc_skb(count + 1)) == NULL)
348                 goto out_mem;
349
350         ptr = skb_put(skb, count + 1);
351         *ptr++ = cmd;   /* KISS command */
352
353         memcpy(ptr, sp->cooked_buf + 1, count);
354         skb->protocol = ax25_type_trans(skb, sp->dev);
355         netif_rx(skb);
356         sp->dev->stats.rx_packets++;
357
358         return;
359
360 out_mem:
361         sp->dev->stats.rx_dropped++;
362 }
363
364
365 /* ----------------------------------------------------------------------- */
366
367 /*
368  * We have a potential race on dereferencing tty->disc_data, because the tty
369  * layer provides no locking at all - thus one cpu could be running
370  * sixpack_receive_buf while another calls sixpack_close, which zeroes
371  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
372  * best way to fix this is to use a rwlock in the tty struct, but for now we
373  * use a single global rwlock for all ttys in ppp line discipline.
374  */
375 static DEFINE_RWLOCK(disc_data_lock);
376                                                                                 
377 static struct sixpack *sp_get(struct tty_struct *tty)
378 {
379         struct sixpack *sp;
380
381         read_lock(&disc_data_lock);
382         sp = tty->disc_data;
383         if (sp)
384                 refcount_inc(&sp->refcnt);
385         read_unlock(&disc_data_lock);
386
387         return sp;
388 }
389
390 static void sp_put(struct sixpack *sp)
391 {
392         if (refcount_dec_and_test(&sp->refcnt))
393                 complete(&sp->dead);
394 }
395
396 /*
397  * Called by the TTY driver when there's room for more data.  If we have
398  * more packets to send, we send them here.
399  */
400 static void sixpack_write_wakeup(struct tty_struct *tty)
401 {
402         struct sixpack *sp = sp_get(tty);
403         int actual;
404
405         if (!sp)
406                 return;
407         if (sp->xleft <= 0)  {
408                 /* Now serial buffer is almost free & we can start
409                  * transmission of another packet */
410                 sp->dev->stats.tx_packets++;
411                 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412                 sp->tx_enable = 0;
413                 netif_wake_queue(sp->dev);
414                 goto out;
415         }
416
417         if (sp->tx_enable) {
418                 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419                 sp->xleft -= actual;
420                 sp->xhead += actual;
421         }
422
423 out:
424         sp_put(sp);
425 }
426
427 /* ----------------------------------------------------------------------- */
428
429 /*
430  * Handle the 'receiver data ready' interrupt.
431  * This function is called by the tty module in the kernel when
432  * a block of 6pack data has been received, which can now be decapsulated
433  * and sent on to some IP layer for further processing.
434  */
435 static void sixpack_receive_buf(struct tty_struct *tty,
436         const unsigned char *cp, char *fp, int count)
437 {
438         struct sixpack *sp;
439         int count1;
440
441         if (!count)
442                 return;
443
444         sp = sp_get(tty);
445         if (!sp)
446                 return;
447
448         /* Read the characters out of the buffer */
449         count1 = count;
450         while (count) {
451                 count--;
452                 if (fp && *fp++) {
453                         if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454                                 sp->dev->stats.rx_errors++;
455                         continue;
456                 }
457         }
458         sixpack_decode(sp, cp, count1);
459
460         sp_put(sp);
461         tty_unthrottle(tty);
462 }
463
464 /*
465  * Try to resync the TNC. Called by the resync timer defined in
466  * decode_prio_command
467  */
468
469 #define TNC_UNINITIALIZED       0
470 #define TNC_UNSYNC_STARTUP      1
471 #define TNC_UNSYNCED            2
472 #define TNC_IN_SYNC             3
473
474 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475 {
476         char *msg;
477
478         switch (new_tnc_state) {
479         default:                        /* gcc oh piece-o-crap ... */
480         case TNC_UNSYNC_STARTUP:
481                 msg = "Synchronizing with TNC";
482                 break;
483         case TNC_UNSYNCED:
484                 msg = "Lost synchronization with TNC\n";
485                 break;
486         case TNC_IN_SYNC:
487                 msg = "Found TNC";
488                 break;
489         }
490
491         sp->tnc_state = new_tnc_state;
492         printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493 }
494
495 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496 {
497         int old_tnc_state = sp->tnc_state;
498
499         if (old_tnc_state != new_tnc_state)
500                 __tnc_set_sync_state(sp, new_tnc_state);
501 }
502
503 static void resync_tnc(struct timer_list *t)
504 {
505         struct sixpack *sp = from_timer(sp, t, resync_t);
506         static char resync_cmd = 0xe8;
507
508         /* clear any data that might have been received */
509
510         sp->rx_count = 0;
511         sp->rx_count_cooked = 0;
512
513         /* reset state machine */
514
515         sp->status = 1;
516         sp->status1 = 1;
517         sp->status2 = 0;
518
519         /* resync the TNC */
520
521         sp->led_state = 0x60;
522         sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523         sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524
525
526         /* Start resync timer again -- the TNC might be still absent */
527         mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
528 }
529
530 static inline int tnc_init(struct sixpack *sp)
531 {
532         unsigned char inbyte = 0xe8;
533
534         tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
535
536         sp->tty->ops->write(sp->tty, &inbyte, 1);
537
538         mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
539
540         return 0;
541 }
542
543 /*
544  * Open the high-level part of the 6pack channel.
545  * This function is called by the TTY module when the
546  * 6pack line discipline is called for.  Because we are
547  * sure the tty line exists, we only have to link it to
548  * a free 6pcack channel...
549  */
550 static int sixpack_open(struct tty_struct *tty)
551 {
552         char *rbuff = NULL, *xbuff = NULL;
553         struct net_device *dev;
554         struct sixpack *sp;
555         unsigned long len;
556         int err = 0;
557
558         if (!capable(CAP_NET_ADMIN))
559                 return -EPERM;
560         if (tty->ops->write == NULL)
561                 return -EOPNOTSUPP;
562
563         dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
564                            sp_setup);
565         if (!dev) {
566                 err = -ENOMEM;
567                 goto out;
568         }
569
570         sp = netdev_priv(dev);
571         sp->dev = dev;
572
573         spin_lock_init(&sp->lock);
574         refcount_set(&sp->refcnt, 1);
575         init_completion(&sp->dead);
576
577         /* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
578
579         len = dev->mtu * 2;
580
581         rbuff = kmalloc(len + 4, GFP_KERNEL);
582         xbuff = kmalloc(len + 4, GFP_KERNEL);
583
584         if (rbuff == NULL || xbuff == NULL) {
585                 err = -ENOBUFS;
586                 goto out_free;
587         }
588
589         spin_lock_bh(&sp->lock);
590
591         sp->tty = tty;
592
593         sp->rbuff       = rbuff;
594         sp->xbuff       = xbuff;
595
596         sp->mtu         = AX25_MTU + 73;
597         sp->buffsize    = len;
598         sp->rcount      = 0;
599         sp->rx_count    = 0;
600         sp->rx_count_cooked = 0;
601         sp->xleft       = 0;
602
603         sp->flags       = 0;            /* Clear ESCAPE & ERROR flags */
604
605         sp->duplex      = 0;
606         sp->tx_delay    = SIXP_TXDELAY;
607         sp->persistence = SIXP_PERSIST;
608         sp->slottime    = SIXP_SLOTTIME;
609         sp->led_state   = 0x60;
610         sp->status      = 1;
611         sp->status1     = 1;
612         sp->status2     = 0;
613         sp->tx_enable   = 0;
614
615         netif_start_queue(dev);
616
617         timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
618
619         timer_setup(&sp->resync_t, resync_tnc, 0);
620
621         spin_unlock_bh(&sp->lock);
622
623         /* Done.  We have linked the TTY line to a channel. */
624         tty->disc_data = sp;
625         tty->receive_room = 65536;
626
627         /* Now we're ready to register. */
628         err = register_netdev(dev);
629         if (err)
630                 goto out_free;
631
632         tnc_init(sp);
633
634         return 0;
635
636 out_free:
637         kfree(xbuff);
638         kfree(rbuff);
639
640         free_netdev(dev);
641
642 out:
643         return err;
644 }
645
646
647 /*
648  * Close down a 6pack channel.
649  * This means flushing out any pending queues, and then restoring the
650  * TTY line discipline to what it was before it got hooked to 6pack
651  * (which usually is TTY again).
652  */
653 static void sixpack_close(struct tty_struct *tty)
654 {
655         struct sixpack *sp;
656
657         write_lock_bh(&disc_data_lock);
658         sp = tty->disc_data;
659         tty->disc_data = NULL;
660         write_unlock_bh(&disc_data_lock);
661         if (!sp)
662                 return;
663
664         /*
665          * We have now ensured that nobody can start using ap from now on, but
666          * we have to wait for all existing users to finish.
667          */
668         if (!refcount_dec_and_test(&sp->refcnt))
669                 wait_for_completion(&sp->dead);
670
671         /* We must stop the queue to avoid potentially scribbling
672          * on the free buffers. The sp->dead completion is not sufficient
673          * to protect us from sp->xbuff access.
674          */
675         netif_stop_queue(sp->dev);
676
677         del_timer_sync(&sp->tx_t);
678         del_timer_sync(&sp->resync_t);
679
680         /* Free all 6pack frame buffers. */
681         kfree(sp->rbuff);
682         kfree(sp->xbuff);
683
684         unregister_netdev(sp->dev);
685 }
686
687 /* Perform I/O control on an active 6pack channel. */
688 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
689         unsigned int cmd, unsigned long arg)
690 {
691         struct sixpack *sp = sp_get(tty);
692         struct net_device *dev;
693         unsigned int tmp, err;
694
695         if (!sp)
696                 return -ENXIO;
697         dev = sp->dev;
698
699         switch(cmd) {
700         case SIOCGIFNAME:
701                 err = copy_to_user((void __user *) arg, dev->name,
702                                    strlen(dev->name) + 1) ? -EFAULT : 0;
703                 break;
704
705         case SIOCGIFENCAP:
706                 err = put_user(0, (int __user *) arg);
707                 break;
708
709         case SIOCSIFENCAP:
710                 if (get_user(tmp, (int __user *) arg)) {
711                         err = -EFAULT;
712                         break;
713                 }
714
715                 sp->mode = tmp;
716                 dev->addr_len        = AX25_ADDR_LEN;
717                 dev->hard_header_len = AX25_KISS_HEADER_LEN +
718                                        AX25_MAX_HEADER_LEN + 3;
719                 dev->type            = ARPHRD_AX25;
720
721                 err = 0;
722                 break;
723
724          case SIOCSIFHWADDR: {
725                 char addr[AX25_ADDR_LEN];
726
727                 if (copy_from_user(&addr,
728                                    (void __user *) arg, AX25_ADDR_LEN)) {
729                                 err = -EFAULT;
730                                 break;
731                         }
732
733                         netif_tx_lock_bh(dev);
734                         memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
735                         netif_tx_unlock_bh(dev);
736
737                         err = 0;
738                         break;
739                 }
740
741         default:
742                 err = tty_mode_ioctl(tty, file, cmd, arg);
743         }
744
745         sp_put(sp);
746
747         return err;
748 }
749
750 static struct tty_ldisc_ops sp_ldisc = {
751         .owner          = THIS_MODULE,
752         .magic          = TTY_LDISC_MAGIC,
753         .name           = "6pack",
754         .open           = sixpack_open,
755         .close          = sixpack_close,
756         .ioctl          = sixpack_ioctl,
757         .receive_buf    = sixpack_receive_buf,
758         .write_wakeup   = sixpack_write_wakeup,
759 };
760
761 /* Initialize 6pack control device -- register 6pack line discipline */
762
763 static const char msg_banner[]  __initconst = KERN_INFO \
764         "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
765 static const char msg_regfail[] __initconst = KERN_ERR  \
766         "6pack: can't register line discipline (err = %d)\n";
767
768 static int __init sixpack_init_driver(void)
769 {
770         int status;
771
772         printk(msg_banner);
773
774         /* Register the provided line protocol discipline */
775         if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
776                 printk(msg_regfail, status);
777
778         return status;
779 }
780
781 static const char msg_unregfail[] = KERN_ERR \
782         "6pack: can't unregister line discipline (err = %d)\n";
783
784 static void __exit sixpack_exit_driver(void)
785 {
786         int ret;
787
788         if ((ret = tty_unregister_ldisc(N_6PACK)))
789                 printk(msg_unregfail, ret);
790 }
791
792 /* encode an AX.25 packet into 6pack */
793
794 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
795         int length, unsigned char tx_delay)
796 {
797         int count = 0;
798         unsigned char checksum = 0, buf[400];
799         int raw_count = 0;
800
801         tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
802         tx_buf_raw[raw_count++] = SIXP_SEOF;
803
804         buf[0] = tx_delay;
805         for (count = 1; count < length; count++)
806                 buf[count] = tx_buf[count];
807
808         for (count = 0; count < length; count++)
809                 checksum += buf[count];
810         buf[length] = (unsigned char) 0xff - checksum;
811
812         for (count = 0; count <= length; count++) {
813                 if ((count % 3) == 0) {
814                         tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
815                         tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
816                 } else if ((count % 3) == 1) {
817                         tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
818                         tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
819                 } else {
820                         tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
821                         tx_buf_raw[raw_count++] = (buf[count] >> 2);
822                 }
823         }
824         if ((length % 3) != 2)
825                 raw_count++;
826         tx_buf_raw[raw_count++] = SIXP_SEOF;
827         return raw_count;
828 }
829
830 /* decode 4 sixpack-encoded bytes into 3 data bytes */
831
832 static void decode_data(struct sixpack *sp, unsigned char inbyte)
833 {
834         unsigned char *buf;
835
836         if (sp->rx_count != 3) {
837                 sp->raw_buf[sp->rx_count++] = inbyte;
838
839                 return;
840         }
841
842         buf = sp->raw_buf;
843         sp->cooked_buf[sp->rx_count_cooked++] =
844                 buf[0] | ((buf[1] << 2) & 0xc0);
845         sp->cooked_buf[sp->rx_count_cooked++] =
846                 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
847         sp->cooked_buf[sp->rx_count_cooked++] =
848                 (buf[2] & 0x03) | (inbyte << 2);
849         sp->rx_count = 0;
850 }
851
852 /* identify and execute a 6pack priority command byte */
853
854 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
855 {
856         int actual;
857
858         if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
859
860         /* RX and DCD flags can only be set in the same prio command,
861            if the DCD flag has been set without the RX flag in the previous
862            prio command. If DCD has not been set before, something in the
863            transmission has gone wrong. In this case, RX and DCD are
864            cleared in order to prevent the decode_data routine from
865            reading further data that might be corrupt. */
866
867                 if (((sp->status & SIXP_DCD_MASK) == 0) &&
868                         ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
869                                 if (sp->status != 1)
870                                         printk(KERN_DEBUG "6pack: protocol violation\n");
871                                 else
872                                         sp->status = 0;
873                                 cmd &= ~SIXP_RX_DCD_MASK;
874                 }
875                 sp->status = cmd & SIXP_PRIO_DATA_MASK;
876         } else { /* output watchdog char if idle */
877                 if ((sp->status2 != 0) && (sp->duplex == 1)) {
878                         sp->led_state = 0x70;
879                         sp->tty->ops->write(sp->tty, &sp->led_state, 1);
880                         sp->tx_enable = 1;
881                         actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
882                         sp->xleft -= actual;
883                         sp->xhead += actual;
884                         sp->led_state = 0x60;
885                         sp->status2 = 0;
886
887                 }
888         }
889
890         /* needed to trigger the TNC watchdog */
891         sp->tty->ops->write(sp->tty, &sp->led_state, 1);
892
893         /* if the state byte has been received, the TNC is present,
894            so the resync timer can be reset. */
895
896         if (sp->tnc_state == TNC_IN_SYNC)
897                 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
898
899         sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
900 }
901
902 /* identify and execute a standard 6pack command byte */
903
904 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
905 {
906         unsigned char checksum = 0, rest = 0;
907         short i;
908
909         switch (cmd & SIXP_CMD_MASK) {     /* normal command */
910         case SIXP_SEOF:
911                 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
912                         if ((sp->status & SIXP_RX_DCD_MASK) ==
913                                 SIXP_RX_DCD_MASK) {
914                                 sp->led_state = 0x68;
915                                 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
916                         }
917                 } else {
918                         sp->led_state = 0x60;
919                         /* fill trailing bytes with zeroes */
920                         sp->tty->ops->write(sp->tty, &sp->led_state, 1);
921                         rest = sp->rx_count;
922                         if (rest != 0)
923                                  for (i = rest; i <= 3; i++)
924                                         decode_data(sp, 0);
925                         if (rest == 2)
926                                 sp->rx_count_cooked -= 2;
927                         else if (rest == 3)
928                                 sp->rx_count_cooked -= 1;
929                         for (i = 0; i < sp->rx_count_cooked; i++)
930                                 checksum += sp->cooked_buf[i];
931                         if (checksum != SIXP_CHKSUM) {
932                                 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
933                         } else {
934                                 sp->rcount = sp->rx_count_cooked-2;
935                                 sp_bump(sp, 0);
936                         }
937                         sp->rx_count_cooked = 0;
938                 }
939                 break;
940         case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
941                 break;
942         case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
943                 break;
944         case SIXP_RX_BUF_OVL:
945                 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
946         }
947 }
948
949 /* decode a 6pack packet */
950
951 static void
952 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
953 {
954         unsigned char inbyte;
955         int count1;
956
957         for (count1 = 0; count1 < count; count1++) {
958                 inbyte = pre_rbuff[count1];
959                 if (inbyte == SIXP_FOUND_TNC) {
960                         tnc_set_sync_state(sp, TNC_IN_SYNC);
961                         del_timer(&sp->resync_t);
962                 }
963                 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
964                         decode_prio_command(sp, inbyte);
965                 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
966                         decode_std_command(sp, inbyte);
967                 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
968                         decode_data(sp, inbyte);
969         }
970 }
971
972 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
973 MODULE_DESCRIPTION("6pack driver for AX.25");
974 MODULE_LICENSE("GPL");
975 MODULE_ALIAS_LDISC(N_6PACK);
976
977 module_init(sixpack_init_driver);
978 module_exit(sixpack_exit_driver);