Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[sfrench/cifs-2.6.git] / drivers / net / gt96100eth.c
1 /*
2  * Copyright 2000, 2001 MontaVista Software Inc.
3  * Author: MontaVista Software, Inc.
4  *              stevel@mvista.com or source@mvista.com
5  *
6  *  This program is free software; you can distribute it and/or modify it
7  *  under the terms of the GNU General Public License (Version 2) as
8  *  published by the Free Software Foundation.
9  *
10  *  This program is distributed in the hope it will be useful, but WITHOUT
11  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  *  for more details.
14  *
15  *  You should have received a copy of the GNU General Public License along
16  *  with this program; if not, write to the Free Software Foundation, Inc.,
17  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18  *
19  * Ethernet driver for the MIPS GT96100 Advanced Communication Controller.
20  * 
21  *  Revision history
22  *    
23  *    11.11.2001  Moved to 2.4.14, ppopov@mvista.com.  Modified driver to add
24  *                proper gt96100A support.
25  *    12.05.2001  Moved eth port 0 to irq 3 (mapped to GT_SERINT0 on EV96100A)
26  *                in order for both ports to work. Also cleaned up boot
27  *                option support (mac address string parsing), fleshed out
28  *                gt96100_cleanup_module(), and other general code cleanups
29  *                <stevel@mvista.com>.
30  */
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/timer.h>
35 #include <linux/errno.h>
36 #include <linux/in.h>
37 #include <linux/ioport.h>
38 #include <linux/slab.h>
39 #include <linux/interrupt.h>
40 #include <linux/pci.h>
41 #include <linux/init.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>
46 #include <linux/ctype.h>
47 #include <linux/bitops.h>
48
49 #include <asm/irq.h>
50 #include <asm/io.h>
51
52 #define DESC_BE 1
53 #define DESC_DATA_BE 1
54
55 #define GT96100_DEBUG 2
56
57 #include "gt96100eth.h"
58
59 // prototypes
60 static void* dmaalloc(size_t size, dma_addr_t *dma_handle);
61 static void dmafree(size_t size, void *vaddr);
62 static void gt96100_delay(int msec);
63 static int gt96100_add_hash_entry(struct net_device *dev,
64                                   unsigned char* addr);
65 static void read_mib_counters(struct gt96100_private *gp);
66 static int read_MII(int phy_addr, u32 reg);
67 static int write_MII(int phy_addr, u32 reg, u16 data);
68 static int gt96100_init_module(void);
69 static void gt96100_cleanup_module(void);
70 static void dump_MII(int dbg_lvl, struct net_device *dev);
71 static void dump_tx_desc(int dbg_lvl, struct net_device *dev, int i);
72 static void dump_rx_desc(int dbg_lvl, struct net_device *dev, int i);
73 static void dump_skb(int dbg_lvl, struct net_device *dev,
74                      struct sk_buff *skb);
75 static void update_stats(struct gt96100_private *gp);
76 static void abort(struct net_device *dev, u32 abort_bits);
77 static void hard_stop(struct net_device *dev);
78 static void enable_ether_irq(struct net_device *dev);
79 static void disable_ether_irq(struct net_device *dev);
80 static int gt96100_probe1(struct pci_dev *pci, int port_num);
81 static void reset_tx(struct net_device *dev);
82 static void reset_rx(struct net_device *dev);
83 static int gt96100_check_tx_consistent(struct gt96100_private *gp);
84 static int gt96100_init(struct net_device *dev);
85 static int gt96100_open(struct net_device *dev);
86 static int gt96100_close(struct net_device *dev);
87 static int gt96100_tx(struct sk_buff *skb, struct net_device *dev);
88 static int gt96100_rx(struct net_device *dev, u32 status);
89 static irqreturn_t gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs);
90 static void gt96100_tx_timeout(struct net_device *dev);
91 static void gt96100_set_rx_mode(struct net_device *dev);
92 static struct net_device_stats* gt96100_get_stats(struct net_device *dev);
93
94 extern char * __init prom_getcmdline(void);
95
96 static int max_interrupt_work = 32;
97
98 #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 // For reading/writing 32-bit words and half-words from/to DMA memory
103 #ifdef DESC_BE
104 #define cpu_to_dma32 cpu_to_be32
105 #define dma32_to_cpu be32_to_cpu
106 #define cpu_to_dma16 cpu_to_be16
107 #define dma16_to_cpu be16_to_cpu
108 #else
109 #define cpu_to_dma32 cpu_to_le32
110 #define dma32_to_cpu le32_to_cpu
111 #define cpu_to_dma16 cpu_to_le16
112 #define dma16_to_cpu le16_to_cpu
113 #endif
114
115 static char mac0[18] = "00.02.03.04.05.06";
116 static char mac1[18] = "00.01.02.03.04.05";
117 module_param_string(mac0, mac0, 18, 0);
118 module_param_string(mac1, mac0, 18, 0);
119 MODULE_PARM_DESC(mac0, "MAC address for GT96100 ethernet port 0");
120 MODULE_PARM_DESC(mac1, "MAC address for GT96100 ethernet port 1");
121
122 /*
123  * Info for the GT96100 ethernet controller's ports.
124  */
125 static struct gt96100_if_t {
126         struct net_device *dev;
127         unsigned int  iobase;   // IO Base address of this port
128         int           irq;      // IRQ number of this port
129         char         *mac_str;
130 } gt96100_iflist[NUM_INTERFACES] = {
131         {
132                 NULL,
133                 GT96100_ETH0_BASE, GT96100_ETHER0_IRQ,
134                 mac0
135         },
136         {
137                 NULL,
138                 GT96100_ETH1_BASE, GT96100_ETHER1_IRQ,
139                 mac1
140         }
141 };
142
143 static inline const char*
144 chip_name(int chip_rev)
145 {
146         switch (chip_rev) {
147         case REV_GT96100:
148                 return "GT96100";
149         case REV_GT96100A_1:
150         case REV_GT96100A:
151                 return "GT96100A";
152         default:
153                 return "Unknown GT96100";
154         }
155 }
156
157 /*
158   DMA memory allocation, derived from pci_alloc_consistent.
159 */
160 static void * dmaalloc(size_t size, dma_addr_t *dma_handle)
161 {
162         void *ret;
163         
164         ret = (void *)__get_free_pages(GFP_ATOMIC | GFP_DMA, get_order(size));
165         
166         if (ret != NULL) {
167                 dma_cache_inv((unsigned long)ret, size);
168                 if (dma_handle != NULL)
169                         *dma_handle = virt_to_phys(ret);
170
171                 /* bump virtual address up to non-cached area */
172                 ret = (void*)KSEG1ADDR(ret);
173         }
174
175         return ret;
176 }
177
178 static void dmafree(size_t size, void *vaddr)
179 {
180         vaddr = (void*)KSEG0ADDR(vaddr);
181         free_pages((unsigned long)vaddr, get_order(size));
182 }
183
184 static void gt96100_delay(int ms)
185 {
186         if (in_interrupt())
187                 return;
188         else
189                 msleep_interruptible(ms);
190 }
191
192 static int
193 parse_mac_addr(struct net_device *dev, char* macstr)
194 {
195         int i, j;
196         unsigned char result, value;
197         
198         for (i=0; i<6; i++) {
199                 result = 0;
200                 if (i != 5 && *(macstr+2) != '.') {
201                         err(__FILE__ "invalid mac address format: %d %c\n",
202                             i, *(macstr+2));
203                         return -EINVAL;
204                 }
205                 
206                 for (j=0; j<2; j++) {
207                         if (isxdigit(*macstr) &&
208                             (value = isdigit(*macstr) ? *macstr-'0' : 
209                              toupper(*macstr)-'A'+10) < 16) {
210                                 result = result*16 + value;
211                                 macstr++;
212                         } else {
213                                 err(__FILE__ "invalid mac address "
214                                     "character: %c\n", *macstr);
215                                 return -EINVAL;
216                         }
217                 }
218
219                 macstr++; // step over '.'
220                 dev->dev_addr[i] = result;
221         }
222
223         return 0;
224 }
225
226
227 static int
228 read_MII(int phy_addr, u32 reg)
229 {
230         int timedout = 20;
231         u32 smir = smirOpCode | (phy_addr << smirPhyAdBit) |
232                 (reg << smirRegAdBit);
233
234         // wait for last operation to complete
235         while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
236                 // snooze for 1 msec and check again
237                 gt96100_delay(1);
238
239                 if (--timedout == 0) {
240                         printk(KERN_ERR "%s: busy timeout!!\n", __FUNCTION__);
241                         return -ENODEV;
242                 }
243         }
244     
245         GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
246
247         timedout = 20;
248         // wait for read to complete
249         while (!((smir = GT96100_READ(GT96100_ETH_SMI_REG)) & smirReadValid)) {
250                 // snooze for 1 msec and check again
251                 gt96100_delay(1);
252         
253                 if (--timedout == 0) {
254                         printk(KERN_ERR "%s: timeout!!\n", __FUNCTION__);
255                         return -ENODEV;
256                 }
257         }
258
259         return (int)(smir & smirDataMask);
260 }
261
262 static void
263 dump_tx_desc(int dbg_lvl, struct net_device *dev, int i)
264 {
265         struct gt96100_private *gp = netdev_priv(dev);
266         gt96100_td_t *td = &gp->tx_ring[i];
267
268         dbg(dbg_lvl, "Tx descriptor at 0x%08lx:\n", virt_to_phys(td));
269         dbg(dbg_lvl,
270             "    cmdstat=%04x, byte_cnt=%04x, buff_ptr=%04x, next=%04x\n",
271             dma32_to_cpu(td->cmdstat),
272             dma16_to_cpu(td->byte_cnt),
273             dma32_to_cpu(td->buff_ptr),
274             dma32_to_cpu(td->next));
275 }
276
277 static void
278 dump_rx_desc(int dbg_lvl, struct net_device *dev, int i)
279 {
280         struct gt96100_private *gp = netdev_priv(dev);
281         gt96100_rd_t *rd = &gp->rx_ring[i];
282
283         dbg(dbg_lvl, "Rx descriptor at 0x%08lx:\n", virt_to_phys(rd));
284         dbg(dbg_lvl, "    cmdstat=%04x, buff_sz=%04x, byte_cnt=%04x, "
285             "buff_ptr=%04x, next=%04x\n",
286             dma32_to_cpu(rd->cmdstat),
287             dma16_to_cpu(rd->buff_sz),
288             dma16_to_cpu(rd->byte_cnt),
289             dma32_to_cpu(rd->buff_ptr),
290             dma32_to_cpu(rd->next));
291 }
292
293 static int
294 write_MII(int phy_addr, u32 reg, u16 data)
295 {
296         int timedout = 20;
297         u32 smir = (phy_addr << smirPhyAdBit) |
298                 (reg << smirRegAdBit) | data;
299
300         // wait for last operation to complete
301         while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
302                 // snooze for 1 msec and check again
303                 gt96100_delay(1);
304         
305                 if (--timedout == 0) {
306                         printk(KERN_ERR "%s: busy timeout!!\n", __FUNCTION__);
307                         return -1;
308                 }
309         }
310
311         GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
312         return 0;
313 }
314
315 static void
316 dump_MII(int dbg_lvl, struct net_device *dev)
317 {
318         int i, val;
319         struct gt96100_private *gp = netdev_priv(dev);
320     
321         if (dbg_lvl <= GT96100_DEBUG) {
322                 for (i=0; i<7; i++) {
323                         if ((val = read_MII(gp->phy_addr, i)) >= 0)
324                                 printk("MII Reg %d=%x\n", i, val);
325                 }
326                 for (i=16; i<21; i++) {
327                         if ((val = read_MII(gp->phy_addr, i)) >= 0)
328                                 printk("MII Reg %d=%x\n", i, val);
329                 }
330         }
331 }
332
333 static void
334 dump_hw_addr(int dbg_lvl, struct net_device *dev, const char* pfx,
335              const char* func, unsigned char* addr_str)
336 {
337         int i;
338         char buf[100], octet[5];
339     
340         if (dbg_lvl <= GT96100_DEBUG) {
341                 sprintf(buf, pfx, func);
342                 for (i = 0; i < 6; i++) {
343                         sprintf(octet, "%2.2x%s",
344                                 addr_str[i], i<5 ? ":" : "\n");
345                         strcat(buf, octet);
346                 }
347                 info("%s", buf);
348         }
349 }
350
351
352 static void
353 dump_skb(int dbg_lvl, struct net_device *dev, struct sk_buff *skb)
354 {
355         int i;
356         unsigned char* skbdata;
357     
358         if (dbg_lvl <= GT96100_DEBUG) {
359                 dbg(dbg_lvl, "%s: skb=%p, skb->data=%p, skb->len=%d\n",
360                     __FUNCTION__, skb, skb->data, skb->len);
361
362                 skbdata = (unsigned char*)KSEG1ADDR(skb->data);
363     
364                 for (i=0; i<skb->len; i++) {
365                         if (!(i % 16))
366                                 printk(KERN_DEBUG "\n   %3.3x: %2.2x,",
367                                        i, skbdata[i]);
368                         else
369                                 printk(KERN_DEBUG "%2.2x,", skbdata[i]);
370                 }
371                 printk(KERN_DEBUG "\n");
372         }
373 }
374
375
376 static int
377 gt96100_add_hash_entry(struct net_device *dev, unsigned char* addr)
378 {
379         struct gt96100_private *gp = netdev_priv(dev);
380         //u16 hashResult, stmp;
381         //unsigned char ctmp, hash_ea[6];
382         u32 tblEntry1, tblEntry0, *tblEntryAddr;
383         int i;
384
385         tblEntry1 = hteValid | hteRD;
386         tblEntry1 |= (u32)addr[5] << 3;
387         tblEntry1 |= (u32)addr[4] << 11;
388         tblEntry1 |= (u32)addr[3] << 19;
389         tblEntry1 |= ((u32)addr[2] & 0x1f) << 27;
390         dbg(3, "%s: tblEntry1=%x\n", __FUNCTION__, tblEntry1);
391         tblEntry0 = ((u32)addr[2] >> 5) & 0x07;
392         tblEntry0 |= (u32)addr[1] << 3;
393         tblEntry0 |= (u32)addr[0] << 11;
394         dbg(3, "%s: tblEntry0=%x\n", __FUNCTION__, tblEntry0);
395
396 #if 0
397
398         for (i=0; i<6; i++) {
399                 // nibble swap
400                 ctmp = nibswap(addr[i]);
401                 // invert every nibble
402                 hash_ea[i] = ((ctmp&1)<<3) | ((ctmp&8)>>3) |
403                         ((ctmp&2)<<1) | ((ctmp&4)>>1);
404                 hash_ea[i] |= ((ctmp&0x10)<<3) | ((ctmp&0x80)>>3) |
405                         ((ctmp&0x20)<<1) | ((ctmp&0x40)>>1);
406         }
407
408         dump_hw_addr(3, dev, "%s: nib swap/invt addr=", __FUNCTION__, hash_ea);
409     
410         if (gp->hash_mode == 0) {
411                 hashResult = ((u16)hash_ea[0] & 0xfc) << 7;
412                 stmp = ((u16)hash_ea[0] & 0x03) |
413                         (((u16)hash_ea[1] & 0x7f) << 2);
414                 stmp ^= (((u16)hash_ea[1] >> 7) & 0x01) |
415                         ((u16)hash_ea[2] << 1);
416                 stmp ^= (u16)hash_ea[3] | (((u16)hash_ea[4] & 1) << 8);
417                 hashResult |= stmp;
418         } else {
419                 return -1; // don't support hash mode 1
420         }
421
422         dbg(3, "%s: hashResult=%x\n", __FUNCTION__, hashResult);
423
424         tblEntryAddr =
425                 (u32 *)(&gp->hash_table[((u32)hashResult & 0x7ff) << 3]);
426     
427         dbg(3, "%s: tblEntryAddr=%p\n", tblEntryAddr, __FUNCTION__);
428
429         for (i=0; i<HASH_HOP_NUMBER; i++) {
430                 if ((*tblEntryAddr & hteValid) &&
431                     !(*tblEntryAddr & hteSkip)) {
432                         // This entry is already occupied, go to next entry
433                         tblEntryAddr += 2;
434                         dbg(3, "%s: skipping to %p\n", __FUNCTION__, 
435                             tblEntryAddr);
436                 } else {
437                         memset(tblEntryAddr, 0, 8);
438                         tblEntryAddr[1] = cpu_to_dma32(tblEntry1);
439                         tblEntryAddr[0] = cpu_to_dma32(tblEntry0);
440                         break;
441                 }
442         }
443
444         if (i >= HASH_HOP_NUMBER) {
445                 err("%s: expired!\n", __FUNCTION__);
446                 return -1; // Couldn't find an unused entry
447         }
448
449 #else
450
451         tblEntryAddr = (u32 *)gp->hash_table;
452         for (i=0; i<RX_HASH_TABLE_SIZE/4; i+=2) {
453                 tblEntryAddr[i+1] = cpu_to_dma32(tblEntry1);
454                 tblEntryAddr[i] = cpu_to_dma32(tblEntry0);
455         }
456
457 #endif
458     
459         return 0;
460 }
461
462
463 static void
464 read_mib_counters(struct gt96100_private *gp)
465 {
466         u32* mib_regs = (u32*)&gp->mib;
467         int i;
468     
469         for (i=0; i<sizeof(mib_counters_t)/sizeof(u32); i++)
470                 mib_regs[i] = GT96100ETH_READ(gp, GT96100_ETH_MIB_COUNT_BASE +
471                                               i*sizeof(u32));
472 }
473
474
475 static void
476 update_stats(struct gt96100_private *gp)
477 {
478         mib_counters_t *mib = &gp->mib;
479         struct net_device_stats *stats = &gp->stats;
480     
481         read_mib_counters(gp);
482     
483         stats->rx_packets = mib->totalFramesReceived;
484         stats->tx_packets = mib->framesSent;
485         stats->rx_bytes = mib->totalByteReceived;
486         stats->tx_bytes = mib->byteSent;
487         stats->rx_errors = mib->totalFramesReceived - mib->framesReceived;
488         //the tx error counters are incremented by the ISR
489         //rx_dropped incremented by gt96100_rx
490         //tx_dropped incremented by gt96100_tx
491         stats->multicast = mib->multicastFramesReceived;
492         // collisions incremented by gt96100_tx_complete
493         stats->rx_length_errors = mib->oversizeFrames + mib->fragments;
494         // The RxError condition means the Rx DMA encountered a
495         // CPU owned descriptor, which, if things are working as
496         // they should, means the Rx ring has overflowed.
497         stats->rx_over_errors = mib->macRxError;
498         stats->rx_crc_errors = mib->cRCError;
499 }
500
501 static void
502 abort(struct net_device *dev, u32 abort_bits)
503 {
504         struct gt96100_private *gp = netdev_priv(dev);
505         int timedout = 100; // wait up to 100 msec for hard stop to complete
506
507         dbg(3, "%s\n", __FUNCTION__);
508
509         // Return if neither Rx or Tx abort bits are set
510         if (!(abort_bits & (sdcmrAR | sdcmrAT)))
511                 return;
512
513         // make sure only the Rx/Tx abort bits are set
514         abort_bits &= (sdcmrAR | sdcmrAT);
515     
516         spin_lock(&gp->lock);
517
518         // abort any Rx/Tx DMA immediately
519         GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, abort_bits);
520
521         dbg(3, "%s: SDMA comm = %x\n", __FUNCTION__,
522             GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
523
524         // wait for abort to complete
525         while (GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM) & abort_bits) {
526                 // snooze for 1 msec and check again
527                 gt96100_delay(1);
528         
529                 if (--timedout == 0) {
530                         err("%s: timeout!!\n", __FUNCTION__);
531                         break;
532                 }
533         }
534
535         spin_unlock(&gp->lock);
536 }
537
538
539 static void
540 hard_stop(struct net_device *dev)
541 {
542         struct gt96100_private *gp = netdev_priv(dev);
543
544         dbg(3, "%s\n", __FUNCTION__);
545
546         disable_ether_irq(dev);
547
548         abort(dev, sdcmrAR | sdcmrAT);
549
550         // disable port
551         GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, 0);
552 }
553
554
555 static void
556 enable_ether_irq(struct net_device *dev)
557 {
558         struct gt96100_private *gp = netdev_priv(dev);
559         u32 intMask;
560         /*
561          * route ethernet interrupt to GT_SERINT0 for port 0,
562          * GT_INT0 for port 1.
563          */
564         int intr_mask_reg = (gp->port_num == 0) ?
565                 GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
566         
567         if (gp->chip_rev >= REV_GT96100A_1) {
568                 intMask = icrTxBufferLow | icrTxEndLow |
569                         icrTxErrorLow  | icrRxOVR | icrTxUdr |
570                         icrRxBufferQ0 | icrRxErrorQ0 |
571                         icrMIIPhySTC | icrEtherIntSum;
572         }
573         else {
574                 intMask = icrTxBufferLow | icrTxEndLow |
575                         icrTxErrorLow  | icrRxOVR | icrTxUdr |
576                         icrRxBuffer | icrRxError |
577                         icrMIIPhySTC | icrEtherIntSum;
578         }
579         
580         // unmask interrupts
581         GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, intMask);
582     
583         intMask = GT96100_READ(intr_mask_reg);
584         intMask |= 1<<gp->port_num;
585         GT96100_WRITE(intr_mask_reg, intMask);
586 }
587
588 static void
589 disable_ether_irq(struct net_device *dev)
590 {
591         struct gt96100_private *gp = netdev_priv(dev);
592         u32 intMask;
593         int intr_mask_reg = (gp->port_num == 0) ?
594                 GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
595
596         intMask = GT96100_READ(intr_mask_reg);
597         intMask &= ~(1<<gp->port_num);
598         GT96100_WRITE(intr_mask_reg, intMask);
599     
600         GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, 0);
601 }
602
603
604 /*
605  * Init GT96100 ethernet controller driver
606  */
607 static int gt96100_init_module(void)
608 {
609         struct pci_dev *pci;
610         int i, retval=0;
611         u32 cpuConfig;
612
613         /*
614          * Stupid probe because this really isn't a PCI device
615          */
616         if (!(pci = pci_find_device(PCI_VENDOR_ID_MARVELL,
617                                     PCI_DEVICE_ID_MARVELL_GT96100, NULL)) &&
618             !(pci = pci_find_device(PCI_VENDOR_ID_MARVELL,
619                                     PCI_DEVICE_ID_MARVELL_GT96100A, NULL))) {
620                 printk(KERN_ERR __FILE__ ": GT96100 not found!\n");
621                 return -ENODEV;
622         }
623
624         cpuConfig = GT96100_READ(GT96100_CPU_INTERF_CONFIG);
625         if (cpuConfig & (1<<12)) {
626                 printk(KERN_ERR __FILE__
627                        ": must be in Big Endian mode!\n");
628                 return -ENODEV;
629         }
630
631         for (i=0; i < NUM_INTERFACES; i++)
632                 retval |= gt96100_probe1(pci, i);
633
634         return retval;
635 }
636
637 static int __init gt96100_probe1(struct pci_dev *pci, int port_num)
638 {
639         struct gt96100_private *gp = NULL;
640         struct gt96100_if_t *gtif = &gt96100_iflist[port_num];
641         int phy_addr, phy_id1, phy_id2;
642         u32 phyAD;
643         int retval;
644         unsigned char chip_rev;
645         struct net_device *dev = NULL;
646     
647         if (gtif->irq < 0) {
648                 printk(KERN_ERR "%s: irq unknown - probing not supported\n",
649                       __FUNCTION__);
650                 return -ENODEV;
651         }
652     
653         pci_read_config_byte(pci, PCI_REVISION_ID, &chip_rev);
654
655         if (chip_rev >= REV_GT96100A_1) {
656                 phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
657                 phy_addr = (phyAD >> (5*port_num)) & 0x1f;
658         } else {
659                 /*
660                  * not sure what's this about -- probably a gt bug
661                  */
662                 phy_addr = port_num;
663                 phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
664                 phyAD &= ~(0x1f << (port_num*5));
665                 phyAD |= phy_addr << (port_num*5);
666                 GT96100_WRITE(GT96100_ETH_PHY_ADDR_REG, phyAD);
667         }
668         
669         // probe for the external PHY
670         if ((phy_id1 = read_MII(phy_addr, 2)) <= 0 ||
671             (phy_id2 = read_MII(phy_addr, 3)) <= 0) {
672                 printk(KERN_ERR "%s: no PHY found on MII%d\n", __FUNCTION__, port_num);
673                 return -ENODEV;
674         }
675         
676         if (!request_region(gtif->iobase, GT96100_ETH_IO_SIZE, "GT96100ETH")) {
677                 printk(KERN_ERR "%s: request_region failed\n", __FUNCTION__);
678                 return -EBUSY;
679         }
680
681         dev = alloc_etherdev(sizeof(struct gt96100_private));
682         if (!dev)
683                 goto out;
684         gtif->dev = dev;
685         
686         /* private struct aligned and zeroed by alloc_etherdev */
687         /* Fill in the 'dev' fields. */
688         dev->base_addr = gtif->iobase;
689         dev->irq = gtif->irq;
690
691         if ((retval = parse_mac_addr(dev, gtif->mac_str))) {
692                 err("%s: MAC address parse failed\n", __FUNCTION__);
693                 retval = -EINVAL;
694                 goto out1;
695         }
696
697         gp = netdev_priv(dev);
698
699         memset(gp, 0, sizeof(*gp)); // clear it
700
701         gp->port_num = port_num;
702         gp->io_size = GT96100_ETH_IO_SIZE;
703         gp->port_offset = port_num * GT96100_ETH_IO_SIZE;
704         gp->phy_addr = phy_addr;
705         gp->chip_rev = chip_rev;
706
707         info("%s found at 0x%x, irq %d\n",
708              chip_name(gp->chip_rev), gtif->iobase, gtif->irq);
709         dump_hw_addr(0, dev, "%s: HW Address ", __FUNCTION__, dev->dev_addr);
710         info("%s chip revision=%d\n", chip_name(gp->chip_rev), gp->chip_rev);
711         info("%s ethernet port %d\n", chip_name(gp->chip_rev), gp->port_num);
712         info("external PHY ID1=0x%04x, ID2=0x%04x\n", phy_id1, phy_id2);
713
714         // Allocate Rx and Tx descriptor rings
715         if (gp->rx_ring == NULL) {
716                 // All descriptors in ring must be 16-byte aligned
717                 gp->rx_ring = dmaalloc(sizeof(gt96100_rd_t) * RX_RING_SIZE
718                                        + sizeof(gt96100_td_t) * TX_RING_SIZE,
719                                        &gp->rx_ring_dma);
720                 if (gp->rx_ring == NULL) {
721                         retval = -ENOMEM;
722                         goto out1;
723                 }
724         
725                 gp->tx_ring = (gt96100_td_t *)(gp->rx_ring + RX_RING_SIZE);
726                 gp->tx_ring_dma =
727                         gp->rx_ring_dma + sizeof(gt96100_rd_t) * RX_RING_SIZE;
728         }
729     
730         // Allocate the Rx Data Buffers
731         if (gp->rx_buff == NULL) {
732                 gp->rx_buff = dmaalloc(PKT_BUF_SZ*RX_RING_SIZE,
733                                        &gp->rx_buff_dma);
734                 if (gp->rx_buff == NULL) {
735                         retval = -ENOMEM;
736                         goto out2;
737                 }
738         }
739     
740         dbg(3, "%s: rx_ring=%p, tx_ring=%p\n", __FUNCTION__,
741             gp->rx_ring, gp->tx_ring);
742
743         // Allocate Rx Hash Table
744         if (gp->hash_table == NULL) {
745                 gp->hash_table = (char*)dmaalloc(RX_HASH_TABLE_SIZE,
746                                                  &gp->hash_table_dma);
747                 if (gp->hash_table == NULL) {
748                         retval = -ENOMEM;
749                         goto out3;
750                 }
751         }
752     
753         dbg(3, "%s: hash=%p\n", __FUNCTION__, gp->hash_table);
754
755         spin_lock_init(&gp->lock);
756     
757         dev->open = gt96100_open;
758         dev->hard_start_xmit = gt96100_tx;
759         dev->stop = gt96100_close;
760         dev->get_stats = gt96100_get_stats;
761         //dev->do_ioctl = gt96100_ioctl;
762         dev->set_multicast_list = gt96100_set_rx_mode;
763         dev->tx_timeout = gt96100_tx_timeout;
764         dev->watchdog_timeo = GT96100ETH_TX_TIMEOUT;
765
766         retval = register_netdev(dev);
767         if (retval)
768                 goto out4;
769         return 0;
770
771 out4:
772         dmafree(RX_HASH_TABLE_SIZE, gp->hash_table_dma);
773 out3:
774         dmafree(PKT_BUF_SZ*RX_RING_SIZE, gp->rx_buff);
775 out2:
776         dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
777                 + sizeof(gt96100_td_t) * TX_RING_SIZE,
778                 gp->rx_ring);
779 out1:
780         free_netdev (dev);
781 out:
782         release_region(gtif->iobase, GT96100_ETH_IO_SIZE);
783
784         err("%s failed.  Returns %d\n", __FUNCTION__, retval);
785         return retval;
786 }
787
788
789 static void
790 reset_tx(struct net_device *dev)
791 {
792         struct gt96100_private *gp = netdev_priv(dev);
793         int i;
794
795         abort(dev, sdcmrAT);
796
797         for (i=0; i<TX_RING_SIZE; i++) {
798                 if (gp->tx_skbuff[i]) {
799                         if (in_interrupt())
800                                 dev_kfree_skb_irq(gp->tx_skbuff[i]);
801                         else
802                                 dev_kfree_skb(gp->tx_skbuff[i]);
803                         gp->tx_skbuff[i] = NULL;
804                 }
805
806                 gp->tx_ring[i].cmdstat = 0; // CPU owns
807                 gp->tx_ring[i].byte_cnt = 0;
808                 gp->tx_ring[i].buff_ptr = 0;
809                 gp->tx_ring[i].next =
810                         cpu_to_dma32(gp->tx_ring_dma +
811                                      sizeof(gt96100_td_t) * (i+1));
812                 dump_tx_desc(4, dev, i);
813         }
814         /* Wrap the ring. */
815         gp->tx_ring[i-1].next = cpu_to_dma32(gp->tx_ring_dma);
816     
817         // setup only the lowest priority TxCDP reg
818         GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR0, gp->tx_ring_dma);
819         GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR1, 0);
820
821         // init Tx indeces and pkt counter
822         gp->tx_next_in = gp->tx_next_out = 0;
823         gp->tx_count = 0;
824
825 }
826
827 static void
828 reset_rx(struct net_device *dev)
829 {
830         struct gt96100_private *gp = netdev_priv(dev);
831         int i;
832
833         abort(dev, sdcmrAR);
834     
835         for (i=0; i<RX_RING_SIZE; i++) {
836                 gp->rx_ring[i].next =
837                         cpu_to_dma32(gp->rx_ring_dma +
838                                      sizeof(gt96100_rd_t) * (i+1));
839                 gp->rx_ring[i].buff_ptr =
840                         cpu_to_dma32(gp->rx_buff_dma + i*PKT_BUF_SZ);
841                 gp->rx_ring[i].buff_sz = cpu_to_dma16(PKT_BUF_SZ);
842                 // Give ownership to device, set first and last, enable intr
843                 gp->rx_ring[i].cmdstat =
844                         cpu_to_dma32((u32)(rxFirst | rxLast | rxOwn | rxEI));
845                 dump_rx_desc(4, dev, i);
846         }
847         /* Wrap the ring. */
848         gp->rx_ring[i-1].next = cpu_to_dma32(gp->rx_ring_dma);
849
850         // Setup only the lowest priority RxFDP and RxCDP regs
851         for (i=0; i<4; i++) {
852                 if (i == 0) {
853                         GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0,
854                                          gp->rx_ring_dma);
855                         GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0,
856                                          gp->rx_ring_dma);
857                 } else {
858                         GT96100ETH_WRITE(gp,
859                                          GT96100_ETH_1ST_RX_DESC_PTR0 + i*4,
860                                          0);
861                         GT96100ETH_WRITE(gp,
862                                          GT96100_ETH_CURR_RX_DESC_PTR0 + i*4,
863                                          0);
864                 }
865         }
866
867         // init Rx NextOut index
868         gp->rx_next_out = 0;
869 }
870
871
872 // Returns 1 if the Tx counter and indeces don't gel
873 static int
874 gt96100_check_tx_consistent(struct gt96100_private *gp)
875 {
876         int diff = gp->tx_next_in - gp->tx_next_out;
877
878         diff = diff<0 ? TX_RING_SIZE + diff : diff;
879         diff = gp->tx_count == TX_RING_SIZE ? diff + TX_RING_SIZE : diff;
880     
881         return (diff != gp->tx_count);
882 }
883
884 static int
885 gt96100_init(struct net_device *dev)
886 {
887         struct gt96100_private *gp = netdev_priv(dev);
888         u32 tmp;
889         u16 mii_reg;
890     
891         dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
892         dbg(3, "%s: scs10_lo=%4x, scs10_hi=%4x\n", __FUNCTION__, 
893             GT96100_READ(0x8), GT96100_READ(0x10));
894         dbg(3, "%s: scs32_lo=%4x, scs32_hi=%4x\n", __FUNCTION__,
895             GT96100_READ(0x18), GT96100_READ(0x20));
896     
897         // Stop and disable Port
898         hard_stop(dev);
899     
900         // Setup CIU Arbiter
901         tmp = GT96100_READ(GT96100_CIU_ARBITER_CONFIG);
902         tmp |= (0x0c << (gp->port_num*2)); // set Ether DMA req priority to hi
903 #ifndef DESC_BE
904         tmp &= ~(1<<31);                   // set desc endianess to little
905 #else
906         tmp |= (1<<31);
907 #endif
908         GT96100_WRITE(GT96100_CIU_ARBITER_CONFIG, tmp);
909         dbg(3, "%s: CIU Config=%x/%x\n", __FUNCTION__, 
910             tmp, GT96100_READ(GT96100_CIU_ARBITER_CONFIG));
911
912         // Set routing.
913         tmp = GT96100_READ(GT96100_ROUTE_MAIN) & (0x3f << 18);
914         tmp |= (0x07 << (18 + gp->port_num*3));
915         GT96100_WRITE(GT96100_ROUTE_MAIN, tmp);
916
917         /* set MII as peripheral func */
918         tmp = GT96100_READ(GT96100_GPP_CONFIG2);
919         tmp |= 0x7fff << (gp->port_num*16);
920         GT96100_WRITE(GT96100_GPP_CONFIG2, tmp);
921         
922         /* Set up MII port pin directions */
923         tmp = GT96100_READ(GT96100_GPP_IO2);
924         tmp |= 0x003d << (gp->port_num*16);
925         GT96100_WRITE(GT96100_GPP_IO2, tmp);
926
927         // Set-up hash table
928         memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear it
929         gp->hash_mode = 0;
930         // Add a single entry to hash table - our ethernet address
931         gt96100_add_hash_entry(dev, dev->dev_addr);
932         // Set-up DMA ptr to hash table
933         GT96100ETH_WRITE(gp, GT96100_ETH_HASH_TBL_PTR, gp->hash_table_dma);
934         dbg(3, "%s: Hash Tbl Ptr=%x\n", __FUNCTION__,
935             GT96100ETH_READ(gp, GT96100_ETH_HASH_TBL_PTR));
936
937         // Setup Tx
938         reset_tx(dev);
939
940         dbg(3, "%s: Curr Tx Desc Ptr0=%x\n", __FUNCTION__,
941             GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0));
942
943         // Setup Rx
944         reset_rx(dev);
945
946         dbg(3, "%s: 1st/Curr Rx Desc Ptr0=%x/%x\n", __FUNCTION__,
947             GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0),
948             GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0));
949
950         // eth port config register
951         GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
952                          pcxrFCTL | pcxrFCTLen | pcxrFLP | pcxrDPLXen);
953
954         mii_reg = read_MII(gp->phy_addr, 0x11); /* int enable register */
955         mii_reg |= 2;  /* enable mii interrupt */
956         write_MII(gp->phy_addr, 0x11, mii_reg);
957         
958         dbg(3, "%s: PhyAD=%x\n", __FUNCTION__,
959             GT96100_READ(GT96100_ETH_PHY_ADDR_REG));
960
961         // setup DMA
962
963         // We want the Rx/Tx DMA to write/read data to/from memory in
964         // Big Endian mode. Also set DMA Burst Size to 8 64Bit words.
965 #ifdef DESC_DATA_BE
966         GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
967                          (0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
968 #else
969         GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
970                          sdcrBLMR | sdcrBLMT |
971                          (0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
972 #endif
973         dbg(3, "%s: SDMA Config=%x\n", __FUNCTION__,
974             GT96100ETH_READ(gp, GT96100_ETH_SDMA_CONFIG));
975
976         // start Rx DMA
977         GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
978         dbg(3, "%s: SDMA Comm=%x\n", __FUNCTION__,
979             GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
980     
981         // enable this port (set hash size to 1/2K)
982         GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, pcrEN | pcrHS);
983         dbg(3, "%s: Port Config=%x\n", __FUNCTION__,
984             GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG));
985     
986         /*
987          * Disable all Type-of-Service queueing. All Rx packets will be
988          * treated normally and will be sent to the lowest priority
989          * queue.
990          *
991          * Disable flow-control for now. FIXME: support flow control?
992          */
993
994         // clear all the MIB ctr regs
995         GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
996                          pcxrFCTL | pcxrFCTLen | pcxrFLP |
997                          pcxrPRIOrxOverride);
998         read_mib_counters(gp);
999         GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
1000                          pcxrFCTL | pcxrFCTLen | pcxrFLP |
1001                          pcxrPRIOrxOverride | pcxrMIBclrMode);
1002     
1003         dbg(3, "%s: Port Config Ext=%x\n", __FUNCTION__,
1004             GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG_EXT));
1005
1006         netif_start_queue(dev);
1007
1008         dump_MII(4, dev);
1009
1010         // enable interrupts
1011         enable_ether_irq(dev);
1012
1013         // we should now be receiving frames
1014         return 0;
1015 }
1016
1017
1018 static int
1019 gt96100_open(struct net_device *dev)
1020 {
1021         int retval;
1022     
1023         dbg(2, "%s: dev=%p\n", __FUNCTION__, dev);
1024
1025         // Initialize and startup the GT-96100 ethernet port
1026         if ((retval = gt96100_init(dev))) {
1027                 err("error in gt96100_init\n");
1028                 free_irq(dev->irq, dev);
1029                 return retval;
1030         }
1031
1032         if ((retval = request_irq(dev->irq, &gt96100_interrupt,
1033                                   IRQF_SHARED, dev->name, dev))) {
1034                 err("unable to get IRQ %d\n", dev->irq);
1035                 return retval;
1036         }
1037         
1038         dbg(2, "%s: Initialization done.\n", __FUNCTION__);
1039
1040         return 0;
1041 }
1042
1043 static int
1044 gt96100_close(struct net_device *dev)
1045 {
1046         dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
1047
1048         // stop the device
1049         if (netif_device_present(dev)) {
1050                 netif_stop_queue(dev);
1051                 hard_stop(dev);
1052         }
1053
1054         free_irq(dev->irq, dev);
1055     
1056         return 0;
1057 }
1058
1059
1060 static int
1061 gt96100_tx(struct sk_buff *skb, struct net_device *dev)
1062 {
1063         struct gt96100_private *gp = netdev_priv(dev);
1064         unsigned long flags;
1065         int nextIn;
1066
1067         spin_lock_irqsave(&gp->lock, flags);
1068
1069         nextIn = gp->tx_next_in;
1070
1071         dbg(3, "%s: nextIn=%d\n", __FUNCTION__, nextIn);
1072     
1073         if (gp->tx_count >= TX_RING_SIZE) {
1074                 warn("Tx Ring full, pkt dropped.\n");
1075                 gp->stats.tx_dropped++;
1076                 spin_unlock_irqrestore(&gp->lock, flags);
1077                 return 1;
1078         }
1079     
1080         if (!(gp->last_psr & psrLink)) {
1081                 err("%s: Link down, pkt dropped.\n", __FUNCTION__);
1082                 gp->stats.tx_dropped++;
1083                 spin_unlock_irqrestore(&gp->lock, flags);
1084                 return 1;
1085         }
1086     
1087         if (dma32_to_cpu(gp->tx_ring[nextIn].cmdstat) & txOwn) {
1088                 err("%s: device owns descriptor, pkt dropped.\n", __FUNCTION__);
1089                 gp->stats.tx_dropped++;
1090                 // stop the queue, so Tx timeout can fix it
1091                 netif_stop_queue(dev);
1092                 spin_unlock_irqrestore(&gp->lock, flags);
1093                 return 1;
1094         }
1095     
1096         // Prepare the Descriptor at tx_next_in
1097         gp->tx_skbuff[nextIn] = skb;
1098         gp->tx_ring[nextIn].byte_cnt = cpu_to_dma16(skb->len);
1099         gp->tx_ring[nextIn].buff_ptr = cpu_to_dma32(virt_to_phys(skb->data));
1100         // make sure packet gets written back to memory
1101         dma_cache_wback_inv((unsigned long)(skb->data), skb->len);
1102         // Give ownership to device, set first and last desc, enable interrupt
1103         // Setting of ownership bit must be *last*!
1104         gp->tx_ring[nextIn].cmdstat =
1105                 cpu_to_dma32((u32)(txOwn | txGenCRC | txEI |
1106                                    txPad | txFirst | txLast));
1107     
1108         dump_tx_desc(4, dev, nextIn);
1109         dump_skb(4, dev, skb);
1110
1111         // increment tx_next_in with wrap
1112         gp->tx_next_in = (nextIn + 1) % TX_RING_SIZE;
1113         // If DMA is stopped, restart
1114         if (!(GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS) & psrTxLow))
1115                 GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
1116                                  sdcmrERD | sdcmrTXDL);
1117
1118         // increment count and stop queue if full
1119         if (++gp->tx_count == TX_RING_SIZE) {
1120                 gp->tx_full = 1;
1121                 netif_stop_queue(dev);
1122                 dbg(2, "Tx Ring now full, queue stopped.\n");
1123         }
1124     
1125         dev->trans_start = jiffies;
1126         spin_unlock_irqrestore(&gp->lock, flags);
1127
1128         return 0;
1129 }
1130
1131
1132 static int
1133 gt96100_rx(struct net_device *dev, u32 status)
1134 {
1135         struct gt96100_private *gp = netdev_priv(dev);
1136         struct sk_buff *skb;
1137         int pkt_len, nextOut, cdp;
1138         gt96100_rd_t *rd;
1139         u32 cmdstat;
1140     
1141         dbg(3, "%s: dev=%p, status=%x\n", __FUNCTION__, dev, status);
1142
1143         cdp = (GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0)
1144                - gp->rx_ring_dma) / sizeof(gt96100_rd_t);
1145
1146         // Continue until we reach 1st descriptor pointer
1147         for (nextOut = gp->rx_next_out; nextOut != cdp;
1148              nextOut = (nextOut + 1) % RX_RING_SIZE) {
1149         
1150                 if (--gp->intr_work_done == 0)
1151                         break;
1152
1153                 rd = &gp->rx_ring[nextOut];
1154                 cmdstat = dma32_to_cpu(rd->cmdstat);
1155         
1156                 dbg(4, "%s: Rx desc cmdstat=%x, nextOut=%d\n", __FUNCTION__,
1157                     cmdstat, nextOut);
1158
1159                 if (cmdstat & (u32)rxOwn) {
1160                         //err("%s: device owns descriptor!\n", __FUNCTION__);
1161                         // DMA is not finished updating descriptor???
1162                         // Leave and come back later to pick-up where
1163                         // we left off.
1164                         break;
1165                 }
1166
1167                 // Drop this received pkt if there were any errors
1168                 if (((cmdstat & (u32)(rxErrorSummary)) &&
1169                      (cmdstat & (u32)(rxFirst))) || (status & icrRxError)) {
1170                         // update the detailed rx error counters that
1171                         // are not covered by the MIB counters.
1172                         if (cmdstat & (u32)rxOverrun)
1173                                 gp->stats.rx_fifo_errors++;
1174                         cmdstat |= (u32)rxOwn;
1175                         rd->cmdstat = cpu_to_dma32(cmdstat);
1176                         continue;
1177                 }
1178
1179                 /*
1180                  * Must be first and last (ie only) descriptor of packet. We
1181                  * ignore (drop) any packets that do not fit in one descriptor.
1182                  * Every descriptor's receive buffer is large enough to hold
1183                  * the maximum 802.3 frame size, so a multi-descriptor packet
1184                  * indicates an error. Most if not all corrupted packets will
1185                  * have already been dropped by the above check for the
1186                  * rxErrorSummary status bit.
1187                  */
1188                 if (!(cmdstat & (u32)rxFirst) || !(cmdstat & (u32)rxLast)) {
1189                         if (cmdstat & (u32)rxFirst) {
1190                                 /*
1191                                  * This is the first descriptor of a
1192                                  * multi-descriptor packet. It isn't corrupted
1193                                  * because the above check for rxErrorSummary
1194                                  * would have dropped it already, so what's
1195                                  * the deal with this packet? Good question,
1196                                  * let's dump it out.
1197                                  */
1198                                 err("%s: desc not first and last!\n", __FUNCTION__);
1199                                 dump_rx_desc(0, dev, nextOut);
1200                         }
1201                         cmdstat |= (u32)rxOwn;
1202                         rd->cmdstat = cpu_to_dma32(cmdstat);
1203                         // continue to drop every descriptor of this packet
1204                         continue;
1205                 }
1206         
1207                 pkt_len = dma16_to_cpu(rd->byte_cnt);
1208         
1209                 /* Create new skb. */
1210                 skb = dev_alloc_skb(pkt_len+2);
1211                 if (skb == NULL) {
1212                         err("%s: Memory squeeze, dropping packet.\n", __FUNCTION__);
1213                         gp->stats.rx_dropped++;
1214                         cmdstat |= (u32)rxOwn;
1215                         rd->cmdstat = cpu_to_dma32(cmdstat);
1216                         continue;
1217                 }
1218                 skb->dev = dev;
1219                 skb_reserve(skb, 2);   /* 16 byte IP header align */
1220                 memcpy(skb_put(skb, pkt_len),
1221                        &gp->rx_buff[nextOut*PKT_BUF_SZ], pkt_len);
1222                 skb->protocol = eth_type_trans(skb, dev);
1223                 dump_skb(4, dev, skb);
1224         
1225                 netif_rx(skb);        /* pass the packet to upper layers */
1226                 dev->last_rx = jiffies;
1227
1228                 // now we can release ownership of this desc back to device
1229                 cmdstat |= (u32)rxOwn;
1230                 rd->cmdstat = cpu_to_dma32(cmdstat);
1231         }
1232     
1233         if (nextOut == gp->rx_next_out)
1234                 dbg(3, "%s: RxCDP did not increment?\n", __FUNCTION__);
1235
1236         gp->rx_next_out = nextOut;
1237         return 0;
1238 }
1239
1240
1241 static void
1242 gt96100_tx_complete(struct net_device *dev, u32 status)
1243 {
1244         struct gt96100_private *gp = netdev_priv(dev);
1245         int nextOut, cdp;
1246         gt96100_td_t *td;
1247         u32 cmdstat;
1248
1249         cdp = (GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0)
1250                - gp->tx_ring_dma) / sizeof(gt96100_td_t);
1251     
1252         // Continue until we reach the current descriptor pointer
1253         for (nextOut = gp->tx_next_out; nextOut != cdp;
1254              nextOut = (nextOut + 1) % TX_RING_SIZE) {
1255         
1256                 if (--gp->intr_work_done == 0)
1257                         break;
1258
1259                 td = &gp->tx_ring[nextOut];
1260                 cmdstat = dma32_to_cpu(td->cmdstat);
1261         
1262                 dbg(3, "%s: Tx desc cmdstat=%x, nextOut=%d\n", __FUNCTION__,
1263                     cmdstat, nextOut);
1264         
1265                 if (cmdstat & (u32)txOwn) {
1266                         /*
1267                          * DMA is not finished writing descriptor???
1268                          * Leave and come back later to pick-up where
1269                          * we left off.
1270                          */
1271                         break;
1272                 }
1273         
1274                 // increment Tx error stats
1275                 if (cmdstat & (u32)txErrorSummary) {
1276                         dbg(2, "%s: Tx error, cmdstat = %x\n", __FUNCTION__,
1277                             cmdstat);
1278                         gp->stats.tx_errors++;
1279                         if (cmdstat & (u32)txReTxLimit)
1280                                 gp->stats.tx_aborted_errors++;
1281                         if (cmdstat & (u32)txUnderrun)
1282                                 gp->stats.tx_fifo_errors++;
1283                         if (cmdstat & (u32)txLateCollision)
1284                                 gp->stats.tx_window_errors++;
1285                 }
1286         
1287                 if (cmdstat & (u32)txCollision)
1288                         gp->stats.collisions +=
1289                                 (u32)((cmdstat & txReTxCntMask) >>
1290                                       txReTxCntBit);
1291
1292                 // Wake the queue if the ring was full
1293                 if (gp->tx_full) {
1294                         gp->tx_full = 0;
1295                         if (gp->last_psr & psrLink) {
1296                                 netif_wake_queue(dev);
1297                                 dbg(2, "%s: Tx Ring was full, queue waked\n",
1298                                     __FUNCTION__);
1299                         }
1300                 }
1301         
1302                 // decrement tx ring buffer count
1303                 if (gp->tx_count) gp->tx_count--;
1304         
1305                 // free the skb
1306                 if (gp->tx_skbuff[nextOut]) {
1307                         dbg(3, "%s: good Tx, skb=%p\n", __FUNCTION__,
1308                             gp->tx_skbuff[nextOut]);
1309                         dev_kfree_skb_irq(gp->tx_skbuff[nextOut]);
1310                         gp->tx_skbuff[nextOut] = NULL;
1311                 } else {
1312                         err("%s: no skb!\n", __FUNCTION__);
1313                 }
1314         }
1315
1316         gp->tx_next_out = nextOut;
1317
1318         if (gt96100_check_tx_consistent(gp)) {
1319                 err("%s: Tx queue inconsistent!\n", __FUNCTION__);
1320         }
1321     
1322         if ((status & icrTxEndLow) && gp->tx_count != 0) {
1323                 // we must restart the DMA
1324                 dbg(3, "%s: Restarting Tx DMA\n", __FUNCTION__);
1325                 GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
1326                                  sdcmrERD | sdcmrTXDL);
1327         }
1328 }
1329
1330
1331 static irqreturn_t
1332 gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1333 {
1334         struct net_device *dev = (struct net_device *)dev_id;
1335         struct gt96100_private *gp = netdev_priv(dev);
1336         u32 status;
1337         int handled = 0;
1338
1339         if (dev == NULL) {
1340                 err("%s: null dev ptr\n", __FUNCTION__);
1341                 return IRQ_NONE;
1342         }
1343
1344         dbg(3, "%s: entry, icr=%x\n", __FUNCTION__,
1345             GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
1346
1347         spin_lock(&gp->lock);
1348
1349         gp->intr_work_done = max_interrupt_work;
1350
1351         while (gp->intr_work_done > 0) {
1352
1353                 status = GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE);
1354                 // ACK interrupts
1355                 GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, ~status);
1356
1357                 if ((status & icrEtherIntSum) == 0 &&
1358                     !(status & (icrTxBufferLow|icrTxBufferHigh|icrRxBuffer)))
1359                         break;
1360
1361                 handled = 1;
1362
1363                 if (status & icrMIIPhySTC) {
1364                         u32 psr = GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS);
1365                         if (gp->last_psr != psr) {
1366                                 dbg(0, "port status:\n");
1367                                 dbg(0, "    %s MBit/s, %s-duplex, "
1368                                     "flow-control %s, link is %s,\n",
1369                                     psr & psrSpeed ? "100":"10",
1370                                     psr & psrDuplex ? "full":"half",
1371                                     psr & psrFctl ? "disabled":"enabled",
1372                                     psr & psrLink ? "up":"down");
1373                                 dbg(0, "    TxLowQ is %s, TxHighQ is %s, "
1374                                     "Transmitter is %s\n",
1375                                     psr & psrTxLow ? "running":"stopped",
1376                                     psr & psrTxHigh ? "running":"stopped",
1377                                     psr & psrTxInProg ? "on":"off");
1378                 
1379                                 if ((psr & psrLink) && !gp->tx_full &&
1380                                     netif_queue_stopped(dev)) {
1381                                         dbg(0, "%s: Link up, waking queue.\n",
1382                                             __FUNCTION__);
1383                                         netif_wake_queue(dev);
1384                                 } else if (!(psr & psrLink) &&
1385                                            !netif_queue_stopped(dev)) {
1386                                         dbg(0, "%s: Link down, stopping queue.\n",
1387                                             __FUNCTION__);
1388                                         netif_stop_queue(dev);
1389                                 }
1390
1391                                 gp->last_psr = psr;
1392                         }
1393
1394                         if (--gp->intr_work_done == 0)
1395                                 break;
1396                 }
1397         
1398                 if (status & (icrTxBufferLow | icrTxEndLow))
1399                         gt96100_tx_complete(dev, status);
1400
1401                 if (status & (icrRxBuffer | icrRxError)) {
1402                         gt96100_rx(dev, status);
1403                 }
1404         
1405                 // Now check TX errors (RX errors were handled in gt96100_rx)
1406                 if (status & icrTxErrorLow) {
1407                         err("%s: Tx resource error\n", __FUNCTION__);
1408                         if (--gp->intr_work_done == 0)
1409                                 break;
1410                 }
1411         
1412                 if (status & icrTxUdr) {
1413                         err("%s: Tx underrun error\n", __FUNCTION__);
1414                         if (--gp->intr_work_done == 0)
1415                                 break;
1416                 }
1417         }
1418
1419         if (gp->intr_work_done == 0) {
1420                 // ACK any remaining pending interrupts
1421                 GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, 0);
1422                 dbg(3, "%s: hit max work\n", __FUNCTION__);
1423         }
1424     
1425         dbg(3, "%s: exit, icr=%x\n", __FUNCTION__,
1426             GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
1427
1428         spin_unlock(&gp->lock);
1429         return IRQ_RETVAL(handled);
1430 }
1431
1432
1433 static void
1434 gt96100_tx_timeout(struct net_device *dev)
1435 {
1436         struct gt96100_private *gp = netdev_priv(dev);
1437         unsigned long flags;
1438     
1439         spin_lock_irqsave(&gp->lock, flags);
1440     
1441         if (!(gp->last_psr & psrLink)) {
1442                 err("tx_timeout: link down.\n");
1443                 spin_unlock_irqrestore(&gp->lock, flags);
1444         } else {
1445                 if (gt96100_check_tx_consistent(gp))
1446                         err("tx_timeout: Tx ring error.\n");
1447
1448                 disable_ether_irq(dev);
1449                 spin_unlock_irqrestore(&gp->lock, flags);
1450                 reset_tx(dev);
1451                 enable_ether_irq(dev);
1452         
1453                 netif_wake_queue(dev);
1454         }
1455 }
1456
1457
1458 static void
1459 gt96100_set_rx_mode(struct net_device *dev)
1460 {
1461         struct gt96100_private *gp = netdev_priv(dev);
1462         unsigned long flags;
1463         //struct dev_mc_list *mcptr;
1464     
1465         dbg(3, "%s: dev=%p, flags=%x\n", __FUNCTION__, dev, dev->flags);
1466
1467         // stop the Receiver DMA
1468         abort(dev, sdcmrAR);
1469
1470         spin_lock_irqsave(&gp->lock, flags);
1471
1472         if (dev->flags & IFF_PROMISC) {
1473                 GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG,
1474                                  pcrEN | pcrHS | pcrPM);
1475         }
1476
1477 #if 0
1478         /*
1479           FIXME: currently multicast doesn't work - need to get hash table
1480           working first.
1481         */
1482         if (dev->mc_count) {
1483                 // clear hash table
1484                 memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE);
1485                 // Add our ethernet address
1486                 gt96100_add_hash_entry(dev, dev->dev_addr);
1487
1488                 for (mcptr = dev->mc_list; mcptr; mcptr = mcptr->next) {
1489                         dump_hw_addr(2, dev, "%s: addr=", __FUNCTION__,
1490                                      mcptr->dmi_addr);
1491                         gt96100_add_hash_entry(dev, mcptr->dmi_addr);
1492                 }
1493         }
1494 #endif
1495     
1496         // restart Rx DMA
1497         GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
1498
1499         spin_unlock_irqrestore(&gp->lock, flags);
1500 }
1501
1502 static struct net_device_stats *
1503 gt96100_get_stats(struct net_device *dev)
1504 {
1505         struct gt96100_private *gp = netdev_priv(dev);
1506         unsigned long flags;
1507
1508         dbg(3, "%s: dev=%p\n", __FUNCTION__, dev);
1509
1510         if (netif_device_present(dev)) {
1511                 spin_lock_irqsave (&gp->lock, flags);
1512                 update_stats(gp);
1513                 spin_unlock_irqrestore (&gp->lock, flags);
1514         }
1515
1516         return &gp->stats;
1517 }
1518
1519 static void gt96100_cleanup_module(void)
1520 {
1521         int i;
1522         for (i=0; i<NUM_INTERFACES; i++) {
1523                 struct gt96100_if_t *gtif = &gt96100_iflist[i];
1524                 if (gtif->dev != NULL) {
1525                         struct gt96100_private *gp = (struct gt96100_private *)
1526                                 netdev_priv(gtif->dev);
1527                         unregister_netdev(gtif->dev);
1528                         dmafree(RX_HASH_TABLE_SIZE, gp->hash_table_dma);
1529                         dmafree(PKT_BUF_SZ*RX_RING_SIZE, gp->rx_buff);
1530                         dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
1531                                 + sizeof(gt96100_td_t) * TX_RING_SIZE,
1532                                 gp->rx_ring);
1533                         free_netdev(gtif->dev);
1534                         release_region(gtif->iobase, gp->io_size);
1535                 }
1536         }
1537 }
1538
1539 static int __init gt96100_setup(char *options)
1540 {
1541         char *this_opt;
1542
1543         if (!options || !*options)
1544                 return 0;
1545
1546         while ((this_opt = strsep (&options, ",")) != NULL) {
1547                 if (!*this_opt)
1548                         continue;
1549                 if (!strncmp(this_opt, "mac0:", 5)) {
1550                         memcpy(mac0, this_opt+5, 17);
1551                         mac0[17]= '\0';
1552                 } else if (!strncmp(this_opt, "mac1:", 5)) {
1553                         memcpy(mac1, this_opt+5, 17);
1554                         mac1[17]= '\0';
1555                 }
1556         }
1557
1558         return 1;
1559 }
1560
1561 __setup("gt96100eth=", gt96100_setup);
1562
1563 module_init(gt96100_init_module);
1564 module_exit(gt96100_cleanup_module);
1565
1566 MODULE_AUTHOR("Steve Longerbeam <stevel@mvista.com>");
1567 MODULE_DESCRIPTION("GT96100 Ethernet driver");