Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for...
[sfrench/cifs-2.6.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112  *
113  * Known bugs:
114  * We suspect that on some hardware no TX done interrupts are generated.
115  * This means recovery from netif_stop_queue only happens if the hw timer
116  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
117  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
118  * If your hardware reliably generates tx done interrupts, then you can remove
119  * DEV_NEED_TIMERIRQ from the driver_data flags.
120  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
121  * superfluous timer interrupts from the nic.
122  */
123 #define FORCEDETH_VERSION               "0.56"
124 #define DRV_NAME                        "forcedeth"
125
126 #include <linux/module.h>
127 #include <linux/types.h>
128 #include <linux/pci.h>
129 #include <linux/interrupt.h>
130 #include <linux/netdevice.h>
131 #include <linux/etherdevice.h>
132 #include <linux/delay.h>
133 #include <linux/spinlock.h>
134 #include <linux/ethtool.h>
135 #include <linux/timer.h>
136 #include <linux/skbuff.h>
137 #include <linux/mii.h>
138 #include <linux/random.h>
139 #include <linux/init.h>
140 #include <linux/if_vlan.h>
141 #include <linux/dma-mapping.h>
142
143 #include <asm/irq.h>
144 #include <asm/io.h>
145 #include <asm/uaccess.h>
146 #include <asm/system.h>
147
148 #if 0
149 #define dprintk                 printk
150 #else
151 #define dprintk(x...)           do { } while (0)
152 #endif
153
154
155 /*
156  * Hardware access:
157  */
158
159 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
160 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
161 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
162 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
163 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
164 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
165 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
166 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
167 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
168 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
169 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
170 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
171
172 enum {
173         NvRegIrqStatus = 0x000,
174 #define NVREG_IRQSTAT_MIIEVENT  0x040
175 #define NVREG_IRQSTAT_MASK              0x1ff
176         NvRegIrqMask = 0x004,
177 #define NVREG_IRQ_RX_ERROR              0x0001
178 #define NVREG_IRQ_RX                    0x0002
179 #define NVREG_IRQ_RX_NOBUF              0x0004
180 #define NVREG_IRQ_TX_ERR                0x0008
181 #define NVREG_IRQ_TX_OK                 0x0010
182 #define NVREG_IRQ_TIMER                 0x0020
183 #define NVREG_IRQ_LINK                  0x0040
184 #define NVREG_IRQ_RX_FORCED             0x0080
185 #define NVREG_IRQ_TX_FORCED             0x0100
186 #define NVREG_IRQMASK_THROUGHPUT        0x00df
187 #define NVREG_IRQMASK_CPU               0x0040
188 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
189 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
190 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
191
192 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
193                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
194                                         NVREG_IRQ_TX_FORCED))
195
196         NvRegUnknownSetupReg6 = 0x008,
197 #define NVREG_UNKSETUP6_VAL             3
198
199 /*
200  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
201  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
202  */
203         NvRegPollingInterval = 0x00c,
204 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
205 #define NVREG_POLL_DEFAULT_CPU  13
206         NvRegMSIMap0 = 0x020,
207         NvRegMSIMap1 = 0x024,
208         NvRegMSIIrqMask = 0x030,
209 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
210         NvRegMisc1 = 0x080,
211 #define NVREG_MISC1_PAUSE_TX    0x01
212 #define NVREG_MISC1_HD          0x02
213 #define NVREG_MISC1_FORCE       0x3b0f3c
214
215         NvRegMacReset = 0x3c,
216 #define NVREG_MAC_RESET_ASSERT  0x0F3
217         NvRegTransmitterControl = 0x084,
218 #define NVREG_XMITCTL_START     0x01
219         NvRegTransmitterStatus = 0x088,
220 #define NVREG_XMITSTAT_BUSY     0x01
221
222         NvRegPacketFilterFlags = 0x8c,
223 #define NVREG_PFF_PAUSE_RX      0x08
224 #define NVREG_PFF_ALWAYS        0x7F0000
225 #define NVREG_PFF_PROMISC       0x80
226 #define NVREG_PFF_MYADDR        0x20
227 #define NVREG_PFF_LOOPBACK      0x10
228
229         NvRegOffloadConfig = 0x90,
230 #define NVREG_OFFLOAD_HOMEPHY   0x601
231 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
232         NvRegReceiverControl = 0x094,
233 #define NVREG_RCVCTL_START      0x01
234         NvRegReceiverStatus = 0x98,
235 #define NVREG_RCVSTAT_BUSY      0x01
236
237         NvRegRandomSeed = 0x9c,
238 #define NVREG_RNDSEED_MASK      0x00ff
239 #define NVREG_RNDSEED_FORCE     0x7f00
240 #define NVREG_RNDSEED_FORCE2    0x2d00
241 #define NVREG_RNDSEED_FORCE3    0x7400
242
243         NvRegTxDeferral = 0xA0,
244 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
245 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
246 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
247         NvRegRxDeferral = 0xA4,
248 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
249         NvRegMacAddrA = 0xA8,
250         NvRegMacAddrB = 0xAC,
251         NvRegMulticastAddrA = 0xB0,
252 #define NVREG_MCASTADDRA_FORCE  0x01
253         NvRegMulticastAddrB = 0xB4,
254         NvRegMulticastMaskA = 0xB8,
255         NvRegMulticastMaskB = 0xBC,
256
257         NvRegPhyInterface = 0xC0,
258 #define PHY_RGMII               0x10000000
259
260         NvRegTxRingPhysAddr = 0x100,
261         NvRegRxRingPhysAddr = 0x104,
262         NvRegRingSizes = 0x108,
263 #define NVREG_RINGSZ_TXSHIFT 0
264 #define NVREG_RINGSZ_RXSHIFT 16
265         NvRegUnknownTransmitterReg = 0x10c,
266         NvRegLinkSpeed = 0x110,
267 #define NVREG_LINKSPEED_FORCE 0x10000
268 #define NVREG_LINKSPEED_10      1000
269 #define NVREG_LINKSPEED_100     100
270 #define NVREG_LINKSPEED_1000    50
271 #define NVREG_LINKSPEED_MASK    (0xFFF)
272         NvRegUnknownSetupReg5 = 0x130,
273 #define NVREG_UNKSETUP5_BIT31   (1<<31)
274         NvRegTxWatermark = 0x13c,
275 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
276 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
277 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
278         NvRegTxRxControl = 0x144,
279 #define NVREG_TXRXCTL_KICK      0x0001
280 #define NVREG_TXRXCTL_BIT1      0x0002
281 #define NVREG_TXRXCTL_BIT2      0x0004
282 #define NVREG_TXRXCTL_IDLE      0x0008
283 #define NVREG_TXRXCTL_RESET     0x0010
284 #define NVREG_TXRXCTL_RXCHECK   0x0400
285 #define NVREG_TXRXCTL_DESC_1    0
286 #define NVREG_TXRXCTL_DESC_2    0x02100
287 #define NVREG_TXRXCTL_DESC_3    0x02200
288 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
289 #define NVREG_TXRXCTL_VLANINS   0x00080
290         NvRegTxRingPhysAddrHigh = 0x148,
291         NvRegRxRingPhysAddrHigh = 0x14C,
292         NvRegTxPauseFrame = 0x170,
293 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
294 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
295         NvRegMIIStatus = 0x180,
296 #define NVREG_MIISTAT_ERROR             0x0001
297 #define NVREG_MIISTAT_LINKCHANGE        0x0008
298 #define NVREG_MIISTAT_MASK              0x000f
299 #define NVREG_MIISTAT_MASK2             0x000f
300         NvRegUnknownSetupReg4 = 0x184,
301 #define NVREG_UNKSETUP4_VAL     8
302
303         NvRegAdapterControl = 0x188,
304 #define NVREG_ADAPTCTL_START    0x02
305 #define NVREG_ADAPTCTL_LINKUP   0x04
306 #define NVREG_ADAPTCTL_PHYVALID 0x40000
307 #define NVREG_ADAPTCTL_RUNNING  0x100000
308 #define NVREG_ADAPTCTL_PHYSHIFT 24
309         NvRegMIISpeed = 0x18c,
310 #define NVREG_MIISPEED_BIT8     (1<<8)
311 #define NVREG_MIIDELAY  5
312         NvRegMIIControl = 0x190,
313 #define NVREG_MIICTL_INUSE      0x08000
314 #define NVREG_MIICTL_WRITE      0x00400
315 #define NVREG_MIICTL_ADDRSHIFT  5
316         NvRegMIIData = 0x194,
317         NvRegWakeUpFlags = 0x200,
318 #define NVREG_WAKEUPFLAGS_VAL           0x7770
319 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
320 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
321 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
322 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
323 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
324 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
325 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
326 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
327 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
328 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
329
330         NvRegPatternCRC = 0x204,
331         NvRegPatternMask = 0x208,
332         NvRegPowerCap = 0x268,
333 #define NVREG_POWERCAP_D3SUPP   (1<<30)
334 #define NVREG_POWERCAP_D2SUPP   (1<<26)
335 #define NVREG_POWERCAP_D1SUPP   (1<<25)
336         NvRegPowerState = 0x26c,
337 #define NVREG_POWERSTATE_POWEREDUP      0x8000
338 #define NVREG_POWERSTATE_VALID          0x0100
339 #define NVREG_POWERSTATE_MASK           0x0003
340 #define NVREG_POWERSTATE_D0             0x0000
341 #define NVREG_POWERSTATE_D1             0x0001
342 #define NVREG_POWERSTATE_D2             0x0002
343 #define NVREG_POWERSTATE_D3             0x0003
344         NvRegTxCnt = 0x280,
345         NvRegTxZeroReXmt = 0x284,
346         NvRegTxOneReXmt = 0x288,
347         NvRegTxManyReXmt = 0x28c,
348         NvRegTxLateCol = 0x290,
349         NvRegTxUnderflow = 0x294,
350         NvRegTxLossCarrier = 0x298,
351         NvRegTxExcessDef = 0x29c,
352         NvRegTxRetryErr = 0x2a0,
353         NvRegRxFrameErr = 0x2a4,
354         NvRegRxExtraByte = 0x2a8,
355         NvRegRxLateCol = 0x2ac,
356         NvRegRxRunt = 0x2b0,
357         NvRegRxFrameTooLong = 0x2b4,
358         NvRegRxOverflow = 0x2b8,
359         NvRegRxFCSErr = 0x2bc,
360         NvRegRxFrameAlignErr = 0x2c0,
361         NvRegRxLenErr = 0x2c4,
362         NvRegRxUnicast = 0x2c8,
363         NvRegRxMulticast = 0x2cc,
364         NvRegRxBroadcast = 0x2d0,
365         NvRegTxDef = 0x2d4,
366         NvRegTxFrame = 0x2d8,
367         NvRegRxCnt = 0x2dc,
368         NvRegTxPause = 0x2e0,
369         NvRegRxPause = 0x2e4,
370         NvRegRxDropFrame = 0x2e8,
371         NvRegVlanControl = 0x300,
372 #define NVREG_VLANCONTROL_ENABLE        0x2000
373         NvRegMSIXMap0 = 0x3e0,
374         NvRegMSIXMap1 = 0x3e4,
375         NvRegMSIXIrqStatus = 0x3f0,
376
377         NvRegPowerState2 = 0x600,
378 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
379 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
380 };
381
382 /* Big endian: should work, but is untested */
383 struct ring_desc {
384         u32 PacketBuffer;
385         u32 FlagLen;
386 };
387
388 struct ring_desc_ex {
389         u32 PacketBufferHigh;
390         u32 PacketBufferLow;
391         u32 TxVlan;
392         u32 FlagLen;
393 };
394
395 typedef union _ring_type {
396         struct ring_desc* orig;
397         struct ring_desc_ex* ex;
398 } ring_type;
399
400 #define FLAG_MASK_V1 0xffff0000
401 #define FLAG_MASK_V2 0xffffc000
402 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
403 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
404
405 #define NV_TX_LASTPACKET        (1<<16)
406 #define NV_TX_RETRYERROR        (1<<19)
407 #define NV_TX_FORCED_INTERRUPT  (1<<24)
408 #define NV_TX_DEFERRED          (1<<26)
409 #define NV_TX_CARRIERLOST       (1<<27)
410 #define NV_TX_LATECOLLISION     (1<<28)
411 #define NV_TX_UNDERFLOW         (1<<29)
412 #define NV_TX_ERROR             (1<<30)
413 #define NV_TX_VALID             (1<<31)
414
415 #define NV_TX2_LASTPACKET       (1<<29)
416 #define NV_TX2_RETRYERROR       (1<<18)
417 #define NV_TX2_FORCED_INTERRUPT (1<<30)
418 #define NV_TX2_DEFERRED         (1<<25)
419 #define NV_TX2_CARRIERLOST      (1<<26)
420 #define NV_TX2_LATECOLLISION    (1<<27)
421 #define NV_TX2_UNDERFLOW        (1<<28)
422 /* error and valid are the same for both */
423 #define NV_TX2_ERROR            (1<<30)
424 #define NV_TX2_VALID            (1<<31)
425 #define NV_TX2_TSO              (1<<28)
426 #define NV_TX2_TSO_SHIFT        14
427 #define NV_TX2_TSO_MAX_SHIFT    14
428 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
429 #define NV_TX2_CHECKSUM_L3      (1<<27)
430 #define NV_TX2_CHECKSUM_L4      (1<<26)
431
432 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
433
434 #define NV_RX_DESCRIPTORVALID   (1<<16)
435 #define NV_RX_MISSEDFRAME       (1<<17)
436 #define NV_RX_SUBSTRACT1        (1<<18)
437 #define NV_RX_ERROR1            (1<<23)
438 #define NV_RX_ERROR2            (1<<24)
439 #define NV_RX_ERROR3            (1<<25)
440 #define NV_RX_ERROR4            (1<<26)
441 #define NV_RX_CRCERR            (1<<27)
442 #define NV_RX_OVERFLOW          (1<<28)
443 #define NV_RX_FRAMINGERR        (1<<29)
444 #define NV_RX_ERROR             (1<<30)
445 #define NV_RX_AVAIL             (1<<31)
446
447 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
448 #define NV_RX2_CHECKSUMOK1      (0x10000000)
449 #define NV_RX2_CHECKSUMOK2      (0x14000000)
450 #define NV_RX2_CHECKSUMOK3      (0x18000000)
451 #define NV_RX2_DESCRIPTORVALID  (1<<29)
452 #define NV_RX2_SUBSTRACT1       (1<<25)
453 #define NV_RX2_ERROR1           (1<<18)
454 #define NV_RX2_ERROR2           (1<<19)
455 #define NV_RX2_ERROR3           (1<<20)
456 #define NV_RX2_ERROR4           (1<<21)
457 #define NV_RX2_CRCERR           (1<<22)
458 #define NV_RX2_OVERFLOW         (1<<23)
459 #define NV_RX2_FRAMINGERR       (1<<24)
460 /* error and avail are the same for both */
461 #define NV_RX2_ERROR            (1<<30)
462 #define NV_RX2_AVAIL            (1<<31)
463
464 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
465 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
466
467 /* Miscelaneous hardware related defines: */
468 #define NV_PCI_REGSZ_VER1       0x270
469 #define NV_PCI_REGSZ_VER2       0x604
470
471 /* various timeout delays: all in usec */
472 #define NV_TXRX_RESET_DELAY     4
473 #define NV_TXSTOP_DELAY1        10
474 #define NV_TXSTOP_DELAY1MAX     500000
475 #define NV_TXSTOP_DELAY2        100
476 #define NV_RXSTOP_DELAY1        10
477 #define NV_RXSTOP_DELAY1MAX     500000
478 #define NV_RXSTOP_DELAY2        100
479 #define NV_SETUP5_DELAY         5
480 #define NV_SETUP5_DELAYMAX      50000
481 #define NV_POWERUP_DELAY        5
482 #define NV_POWERUP_DELAYMAX     5000
483 #define NV_MIIBUSY_DELAY        50
484 #define NV_MIIPHY_DELAY 10
485 #define NV_MIIPHY_DELAYMAX      10000
486 #define NV_MAC_RESET_DELAY      64
487
488 #define NV_WAKEUPPATTERNS       5
489 #define NV_WAKEUPMASKENTRIES    4
490
491 /* General driver defaults */
492 #define NV_WATCHDOG_TIMEO       (5*HZ)
493
494 #define RX_RING_DEFAULT         128
495 #define TX_RING_DEFAULT         256
496 #define RX_RING_MIN             128
497 #define TX_RING_MIN             64
498 #define RING_MAX_DESC_VER_1     1024
499 #define RING_MAX_DESC_VER_2_3   16384
500 /*
501  * Difference between the get and put pointers for the tx ring.
502  * This is used to throttle the amount of data outstanding in the
503  * tx ring.
504  */
505 #define TX_LIMIT_DIFFERENCE     1
506
507 /* rx/tx mac addr + type + vlan + align + slack*/
508 #define NV_RX_HEADERS           (64)
509 /* even more slack. */
510 #define NV_RX_ALLOC_PAD         (64)
511
512 /* maximum mtu size */
513 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
514 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
515
516 #define OOM_REFILL      (1+HZ/20)
517 #define POLL_WAIT       (1+HZ/100)
518 #define LINK_TIMEOUT    (3*HZ)
519 #define STATS_INTERVAL  (10*HZ)
520
521 /*
522  * desc_ver values:
523  * The nic supports three different descriptor types:
524  * - DESC_VER_1: Original
525  * - DESC_VER_2: support for jumbo frames.
526  * - DESC_VER_3: 64-bit format.
527  */
528 #define DESC_VER_1      1
529 #define DESC_VER_2      2
530 #define DESC_VER_3      3
531
532 /* PHY defines */
533 #define PHY_OUI_MARVELL 0x5043
534 #define PHY_OUI_CICADA  0x03f1
535 #define PHYID1_OUI_MASK 0x03ff
536 #define PHYID1_OUI_SHFT 6
537 #define PHYID2_OUI_MASK 0xfc00
538 #define PHYID2_OUI_SHFT 10
539 #define PHY_INIT1       0x0f000
540 #define PHY_INIT2       0x0e00
541 #define PHY_INIT3       0x01000
542 #define PHY_INIT4       0x0200
543 #define PHY_INIT5       0x0004
544 #define PHY_INIT6       0x02000
545 #define PHY_GIGABIT     0x0100
546
547 #define PHY_TIMEOUT     0x1
548 #define PHY_ERROR       0x2
549
550 #define PHY_100 0x1
551 #define PHY_1000        0x2
552 #define PHY_HALF        0x100
553
554 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
555 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
556 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
557 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
558 #define NV_PAUSEFRAME_RX_REQ     0x0010
559 #define NV_PAUSEFRAME_TX_REQ     0x0020
560 #define NV_PAUSEFRAME_AUTONEG    0x0040
561
562 /* MSI/MSI-X defines */
563 #define NV_MSI_X_MAX_VECTORS  8
564 #define NV_MSI_X_VECTORS_MASK 0x000f
565 #define NV_MSI_CAPABLE        0x0010
566 #define NV_MSI_X_CAPABLE      0x0020
567 #define NV_MSI_ENABLED        0x0040
568 #define NV_MSI_X_ENABLED      0x0080
569
570 #define NV_MSI_X_VECTOR_ALL   0x0
571 #define NV_MSI_X_VECTOR_RX    0x0
572 #define NV_MSI_X_VECTOR_TX    0x1
573 #define NV_MSI_X_VECTOR_OTHER 0x2
574
575 /* statistics */
576 struct nv_ethtool_str {
577         char name[ETH_GSTRING_LEN];
578 };
579
580 static const struct nv_ethtool_str nv_estats_str[] = {
581         { "tx_bytes" },
582         { "tx_zero_rexmt" },
583         { "tx_one_rexmt" },
584         { "tx_many_rexmt" },
585         { "tx_late_collision" },
586         { "tx_fifo_errors" },
587         { "tx_carrier_errors" },
588         { "tx_excess_deferral" },
589         { "tx_retry_error" },
590         { "tx_deferral" },
591         { "tx_packets" },
592         { "tx_pause" },
593         { "rx_frame_error" },
594         { "rx_extra_byte" },
595         { "rx_late_collision" },
596         { "rx_runt" },
597         { "rx_frame_too_long" },
598         { "rx_over_errors" },
599         { "rx_crc_errors" },
600         { "rx_frame_align_error" },
601         { "rx_length_error" },
602         { "rx_unicast" },
603         { "rx_multicast" },
604         { "rx_broadcast" },
605         { "rx_bytes" },
606         { "rx_pause" },
607         { "rx_drop_frame" },
608         { "rx_packets" },
609         { "rx_errors_total" }
610 };
611
612 struct nv_ethtool_stats {
613         u64 tx_bytes;
614         u64 tx_zero_rexmt;
615         u64 tx_one_rexmt;
616         u64 tx_many_rexmt;
617         u64 tx_late_collision;
618         u64 tx_fifo_errors;
619         u64 tx_carrier_errors;
620         u64 tx_excess_deferral;
621         u64 tx_retry_error;
622         u64 tx_deferral;
623         u64 tx_packets;
624         u64 tx_pause;
625         u64 rx_frame_error;
626         u64 rx_extra_byte;
627         u64 rx_late_collision;
628         u64 rx_runt;
629         u64 rx_frame_too_long;
630         u64 rx_over_errors;
631         u64 rx_crc_errors;
632         u64 rx_frame_align_error;
633         u64 rx_length_error;
634         u64 rx_unicast;
635         u64 rx_multicast;
636         u64 rx_broadcast;
637         u64 rx_bytes;
638         u64 rx_pause;
639         u64 rx_drop_frame;
640         u64 rx_packets;
641         u64 rx_errors_total;
642 };
643
644 /* diagnostics */
645 #define NV_TEST_COUNT_BASE 3
646 #define NV_TEST_COUNT_EXTENDED 4
647
648 static const struct nv_ethtool_str nv_etests_str[] = {
649         { "link      (online/offline)" },
650         { "register  (offline)       " },
651         { "interrupt (offline)       " },
652         { "loopback  (offline)       " }
653 };
654
655 struct register_test {
656         u32 reg;
657         u32 mask;
658 };
659
660 static const struct register_test nv_registers_test[] = {
661         { NvRegUnknownSetupReg6, 0x01 },
662         { NvRegMisc1, 0x03c },
663         { NvRegOffloadConfig, 0x03ff },
664         { NvRegMulticastAddrA, 0xffffffff },
665         { NvRegTxWatermark, 0x0ff },
666         { NvRegWakeUpFlags, 0x07777 },
667         { 0,0 }
668 };
669
670 /*
671  * SMP locking:
672  * All hardware access under dev->priv->lock, except the performance
673  * critical parts:
674  * - rx is (pseudo-) lockless: it relies on the single-threading provided
675  *      by the arch code for interrupts.
676  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
677  *      needs dev->priv->lock :-(
678  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
679  */
680
681 /* in dev: base, irq */
682 struct fe_priv {
683         spinlock_t lock;
684
685         /* General data:
686          * Locking: spin_lock(&np->lock); */
687         struct net_device_stats stats;
688         struct nv_ethtool_stats estats;
689         int in_shutdown;
690         u32 linkspeed;
691         int duplex;
692         int autoneg;
693         int fixed_mode;
694         int phyaddr;
695         int wolenabled;
696         unsigned int phy_oui;
697         u16 gigabit;
698         int intr_test;
699
700         /* General data: RO fields */
701         dma_addr_t ring_addr;
702         struct pci_dev *pci_dev;
703         u32 orig_mac[2];
704         u32 irqmask;
705         u32 desc_ver;
706         u32 txrxctl_bits;
707         u32 vlanctl_bits;
708         u32 driver_data;
709         u32 register_size;
710
711         void __iomem *base;
712
713         /* rx specific fields.
714          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
715          */
716         ring_type rx_ring;
717         unsigned int cur_rx, refill_rx;
718         struct sk_buff **rx_skbuff;
719         dma_addr_t *rx_dma;
720         unsigned int rx_buf_sz;
721         unsigned int pkt_limit;
722         struct timer_list oom_kick;
723         struct timer_list nic_poll;
724         struct timer_list stats_poll;
725         u32 nic_poll_irq;
726         int rx_ring_size;
727
728         /* media detection workaround.
729          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
730          */
731         int need_linktimer;
732         unsigned long link_timeout;
733         /*
734          * tx specific fields.
735          */
736         ring_type tx_ring;
737         unsigned int next_tx, nic_tx;
738         struct sk_buff **tx_skbuff;
739         dma_addr_t *tx_dma;
740         unsigned int *tx_dma_len;
741         u32 tx_flags;
742         int tx_ring_size;
743         int tx_limit_start;
744         int tx_limit_stop;
745
746         /* vlan fields */
747         struct vlan_group *vlangrp;
748
749         /* msi/msi-x fields */
750         u32 msi_flags;
751         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
752
753         /* flow control */
754         u32 pause_flags;
755 };
756
757 /*
758  * Maximum number of loops until we assume that a bit in the irq mask
759  * is stuck. Overridable with module param.
760  */
761 static int max_interrupt_work = 5;
762
763 /*
764  * Optimization can be either throuput mode or cpu mode
765  *
766  * Throughput Mode: Every tx and rx packet will generate an interrupt.
767  * CPU Mode: Interrupts are controlled by a timer.
768  */
769 enum {
770         NV_OPTIMIZATION_MODE_THROUGHPUT,
771         NV_OPTIMIZATION_MODE_CPU
772 };
773 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
774
775 /*
776  * Poll interval for timer irq
777  *
778  * This interval determines how frequent an interrupt is generated.
779  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
780  * Min = 0, and Max = 65535
781  */
782 static int poll_interval = -1;
783
784 /*
785  * MSI interrupts
786  */
787 enum {
788         NV_MSI_INT_DISABLED,
789         NV_MSI_INT_ENABLED
790 };
791 static int msi = NV_MSI_INT_ENABLED;
792
793 /*
794  * MSIX interrupts
795  */
796 enum {
797         NV_MSIX_INT_DISABLED,
798         NV_MSIX_INT_ENABLED
799 };
800 static int msix = NV_MSIX_INT_ENABLED;
801
802 /*
803  * DMA 64bit
804  */
805 enum {
806         NV_DMA_64BIT_DISABLED,
807         NV_DMA_64BIT_ENABLED
808 };
809 static int dma_64bit = NV_DMA_64BIT_ENABLED;
810
811 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
812 {
813         return netdev_priv(dev);
814 }
815
816 static inline u8 __iomem *get_hwbase(struct net_device *dev)
817 {
818         return ((struct fe_priv *)netdev_priv(dev))->base;
819 }
820
821 static inline void pci_push(u8 __iomem *base)
822 {
823         /* force out pending posted writes */
824         readl(base);
825 }
826
827 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
828 {
829         return le32_to_cpu(prd->FlagLen)
830                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
831 }
832
833 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
834 {
835         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
836 }
837
838 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
839                                 int delay, int delaymax, const char *msg)
840 {
841         u8 __iomem *base = get_hwbase(dev);
842
843         pci_push(base);
844         do {
845                 udelay(delay);
846                 delaymax -= delay;
847                 if (delaymax < 0) {
848                         if (msg)
849                                 printk(msg);
850                         return 1;
851                 }
852         } while ((readl(base + offset) & mask) != target);
853         return 0;
854 }
855
856 #define NV_SETUP_RX_RING 0x01
857 #define NV_SETUP_TX_RING 0x02
858
859 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
860 {
861         struct fe_priv *np = get_nvpriv(dev);
862         u8 __iomem *base = get_hwbase(dev);
863
864         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
865                 if (rxtx_flags & NV_SETUP_RX_RING) {
866                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
867                 }
868                 if (rxtx_flags & NV_SETUP_TX_RING) {
869                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
870                 }
871         } else {
872                 if (rxtx_flags & NV_SETUP_RX_RING) {
873                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
874                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
875                 }
876                 if (rxtx_flags & NV_SETUP_TX_RING) {
877                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
878                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
879                 }
880         }
881 }
882
883 static void free_rings(struct net_device *dev)
884 {
885         struct fe_priv *np = get_nvpriv(dev);
886
887         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
888                 if(np->rx_ring.orig)
889                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
890                                             np->rx_ring.orig, np->ring_addr);
891         } else {
892                 if (np->rx_ring.ex)
893                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
894                                             np->rx_ring.ex, np->ring_addr);
895         }
896         if (np->rx_skbuff)
897                 kfree(np->rx_skbuff);
898         if (np->rx_dma)
899                 kfree(np->rx_dma);
900         if (np->tx_skbuff)
901                 kfree(np->tx_skbuff);
902         if (np->tx_dma)
903                 kfree(np->tx_dma);
904         if (np->tx_dma_len)
905                 kfree(np->tx_dma_len);
906 }
907
908 static int using_multi_irqs(struct net_device *dev)
909 {
910         struct fe_priv *np = get_nvpriv(dev);
911
912         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
913             ((np->msi_flags & NV_MSI_X_ENABLED) &&
914              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
915                 return 0;
916         else
917                 return 1;
918 }
919
920 static void nv_enable_irq(struct net_device *dev)
921 {
922         struct fe_priv *np = get_nvpriv(dev);
923
924         if (!using_multi_irqs(dev)) {
925                 if (np->msi_flags & NV_MSI_X_ENABLED)
926                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
927                 else
928                         enable_irq(dev->irq);
929         } else {
930                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
931                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
932                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
933         }
934 }
935
936 static void nv_disable_irq(struct net_device *dev)
937 {
938         struct fe_priv *np = get_nvpriv(dev);
939
940         if (!using_multi_irqs(dev)) {
941                 if (np->msi_flags & NV_MSI_X_ENABLED)
942                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
943                 else
944                         disable_irq(dev->irq);
945         } else {
946                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
947                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
948                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
949         }
950 }
951
952 /* In MSIX mode, a write to irqmask behaves as XOR */
953 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
954 {
955         u8 __iomem *base = get_hwbase(dev);
956
957         writel(mask, base + NvRegIrqMask);
958 }
959
960 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
961 {
962         struct fe_priv *np = get_nvpriv(dev);
963         u8 __iomem *base = get_hwbase(dev);
964
965         if (np->msi_flags & NV_MSI_X_ENABLED) {
966                 writel(mask, base + NvRegIrqMask);
967         } else {
968                 if (np->msi_flags & NV_MSI_ENABLED)
969                         writel(0, base + NvRegMSIIrqMask);
970                 writel(0, base + NvRegIrqMask);
971         }
972 }
973
974 #define MII_READ        (-1)
975 /* mii_rw: read/write a register on the PHY.
976  *
977  * Caller must guarantee serialization
978  */
979 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
980 {
981         u8 __iomem *base = get_hwbase(dev);
982         u32 reg;
983         int retval;
984
985         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
986
987         reg = readl(base + NvRegMIIControl);
988         if (reg & NVREG_MIICTL_INUSE) {
989                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
990                 udelay(NV_MIIBUSY_DELAY);
991         }
992
993         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
994         if (value != MII_READ) {
995                 writel(value, base + NvRegMIIData);
996                 reg |= NVREG_MIICTL_WRITE;
997         }
998         writel(reg, base + NvRegMIIControl);
999
1000         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1001                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1002                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1003                                 dev->name, miireg, addr);
1004                 retval = -1;
1005         } else if (value != MII_READ) {
1006                 /* it was a write operation - fewer failures are detectable */
1007                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1008                                 dev->name, value, miireg, addr);
1009                 retval = 0;
1010         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1011                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1012                                 dev->name, miireg, addr);
1013                 retval = -1;
1014         } else {
1015                 retval = readl(base + NvRegMIIData);
1016                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1017                                 dev->name, miireg, addr, retval);
1018         }
1019
1020         return retval;
1021 }
1022
1023 static int phy_reset(struct net_device *dev)
1024 {
1025         struct fe_priv *np = netdev_priv(dev);
1026         u32 miicontrol;
1027         unsigned int tries = 0;
1028
1029         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1030         miicontrol |= BMCR_RESET;
1031         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1032                 return -1;
1033         }
1034
1035         /* wait for 500ms */
1036         msleep(500);
1037
1038         /* must wait till reset is deasserted */
1039         while (miicontrol & BMCR_RESET) {
1040                 msleep(10);
1041                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1042                 /* FIXME: 100 tries seem excessive */
1043                 if (tries++ > 100)
1044                         return -1;
1045         }
1046         return 0;
1047 }
1048
1049 static int phy_init(struct net_device *dev)
1050 {
1051         struct fe_priv *np = get_nvpriv(dev);
1052         u8 __iomem *base = get_hwbase(dev);
1053         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1054
1055         /* set advertise register */
1056         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1057         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1058         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1059                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1060                 return PHY_ERROR;
1061         }
1062
1063         /* get phy interface type */
1064         phyinterface = readl(base + NvRegPhyInterface);
1065
1066         /* see if gigabit phy */
1067         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1068         if (mii_status & PHY_GIGABIT) {
1069                 np->gigabit = PHY_GIGABIT;
1070                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1071                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1072                 if (phyinterface & PHY_RGMII)
1073                         mii_control_1000 |= ADVERTISE_1000FULL;
1074                 else
1075                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1076
1077                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1078                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1079                         return PHY_ERROR;
1080                 }
1081         }
1082         else
1083                 np->gigabit = 0;
1084
1085         /* reset the phy */
1086         if (phy_reset(dev)) {
1087                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1088                 return PHY_ERROR;
1089         }
1090
1091         /* phy vendor specific configuration */
1092         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1093                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1094                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1095                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1096                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1097                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1098                         return PHY_ERROR;
1099                 }
1100                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1101                 phy_reserved |= PHY_INIT5;
1102                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1103                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1104                         return PHY_ERROR;
1105                 }
1106         }
1107         if (np->phy_oui == PHY_OUI_CICADA) {
1108                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1109                 phy_reserved |= PHY_INIT6;
1110                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1111                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1112                         return PHY_ERROR;
1113                 }
1114         }
1115         /* some phys clear out pause advertisment on reset, set it back */
1116         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1117
1118         /* restart auto negotiation */
1119         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1120         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1121         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1122                 return PHY_ERROR;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static void nv_start_rx(struct net_device *dev)
1129 {
1130         struct fe_priv *np = netdev_priv(dev);
1131         u8 __iomem *base = get_hwbase(dev);
1132
1133         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1134         /* Already running? Stop it. */
1135         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1136                 writel(0, base + NvRegReceiverControl);
1137                 pci_push(base);
1138         }
1139         writel(np->linkspeed, base + NvRegLinkSpeed);
1140         pci_push(base);
1141         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1142         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1143                                 dev->name, np->duplex, np->linkspeed);
1144         pci_push(base);
1145 }
1146
1147 static void nv_stop_rx(struct net_device *dev)
1148 {
1149         u8 __iomem *base = get_hwbase(dev);
1150
1151         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1152         writel(0, base + NvRegReceiverControl);
1153         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1154                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1155                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1156
1157         udelay(NV_RXSTOP_DELAY2);
1158         writel(0, base + NvRegLinkSpeed);
1159 }
1160
1161 static void nv_start_tx(struct net_device *dev)
1162 {
1163         u8 __iomem *base = get_hwbase(dev);
1164
1165         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1166         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1167         pci_push(base);
1168 }
1169
1170 static void nv_stop_tx(struct net_device *dev)
1171 {
1172         u8 __iomem *base = get_hwbase(dev);
1173
1174         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1175         writel(0, base + NvRegTransmitterControl);
1176         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1177                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1178                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1179
1180         udelay(NV_TXSTOP_DELAY2);
1181         writel(0, base + NvRegUnknownTransmitterReg);
1182 }
1183
1184 static void nv_txrx_reset(struct net_device *dev)
1185 {
1186         struct fe_priv *np = netdev_priv(dev);
1187         u8 __iomem *base = get_hwbase(dev);
1188
1189         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1190         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1191         pci_push(base);
1192         udelay(NV_TXRX_RESET_DELAY);
1193         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1194         pci_push(base);
1195 }
1196
1197 static void nv_mac_reset(struct net_device *dev)
1198 {
1199         struct fe_priv *np = netdev_priv(dev);
1200         u8 __iomem *base = get_hwbase(dev);
1201
1202         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1203         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1204         pci_push(base);
1205         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1206         pci_push(base);
1207         udelay(NV_MAC_RESET_DELAY);
1208         writel(0, base + NvRegMacReset);
1209         pci_push(base);
1210         udelay(NV_MAC_RESET_DELAY);
1211         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1212         pci_push(base);
1213 }
1214
1215 /*
1216  * nv_get_stats: dev->get_stats function
1217  * Get latest stats value from the nic.
1218  * Called with read_lock(&dev_base_lock) held for read -
1219  * only synchronized against unregister_netdevice.
1220  */
1221 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1222 {
1223         struct fe_priv *np = netdev_priv(dev);
1224
1225         /* It seems that the nic always generates interrupts and doesn't
1226          * accumulate errors internally. Thus the current values in np->stats
1227          * are already up to date.
1228          */
1229         return &np->stats;
1230 }
1231
1232 /*
1233  * nv_alloc_rx: fill rx ring entries.
1234  * Return 1 if the allocations for the skbs failed and the
1235  * rx engine is without Available descriptors
1236  */
1237 static int nv_alloc_rx(struct net_device *dev)
1238 {
1239         struct fe_priv *np = netdev_priv(dev);
1240         unsigned int refill_rx = np->refill_rx;
1241         int nr;
1242
1243         while (np->cur_rx != refill_rx) {
1244                 struct sk_buff *skb;
1245
1246                 nr = refill_rx % np->rx_ring_size;
1247                 if (np->rx_skbuff[nr] == NULL) {
1248
1249                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1250                         if (!skb)
1251                                 break;
1252
1253                         skb->dev = dev;
1254                         np->rx_skbuff[nr] = skb;
1255                 } else {
1256                         skb = np->rx_skbuff[nr];
1257                 }
1258                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1259                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1260                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1261                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1262                         wmb();
1263                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1264                 } else {
1265                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1266                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1267                         wmb();
1268                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1269                 }
1270                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1271                                         dev->name, refill_rx);
1272                 refill_rx++;
1273         }
1274         np->refill_rx = refill_rx;
1275         if (np->cur_rx - refill_rx == np->rx_ring_size)
1276                 return 1;
1277         return 0;
1278 }
1279
1280 static void nv_do_rx_refill(unsigned long data)
1281 {
1282         struct net_device *dev = (struct net_device *) data;
1283         struct fe_priv *np = netdev_priv(dev);
1284
1285         if (!using_multi_irqs(dev)) {
1286                 if (np->msi_flags & NV_MSI_X_ENABLED)
1287                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1288                 else
1289                         disable_irq(dev->irq);
1290         } else {
1291                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1292         }
1293         if (nv_alloc_rx(dev)) {
1294                 spin_lock_irq(&np->lock);
1295                 if (!np->in_shutdown)
1296                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1297                 spin_unlock_irq(&np->lock);
1298         }
1299         if (!using_multi_irqs(dev)) {
1300                 if (np->msi_flags & NV_MSI_X_ENABLED)
1301                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1302                 else
1303                         enable_irq(dev->irq);
1304         } else {
1305                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1306         }
1307 }
1308
1309 static void nv_init_rx(struct net_device *dev)
1310 {
1311         struct fe_priv *np = netdev_priv(dev);
1312         int i;
1313
1314         np->cur_rx = np->rx_ring_size;
1315         np->refill_rx = 0;
1316         for (i = 0; i < np->rx_ring_size; i++)
1317                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1318                         np->rx_ring.orig[i].FlagLen = 0;
1319                 else
1320                         np->rx_ring.ex[i].FlagLen = 0;
1321 }
1322
1323 static void nv_init_tx(struct net_device *dev)
1324 {
1325         struct fe_priv *np = netdev_priv(dev);
1326         int i;
1327
1328         np->next_tx = np->nic_tx = 0;
1329         for (i = 0; i < np->tx_ring_size; i++) {
1330                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1331                         np->tx_ring.orig[i].FlagLen = 0;
1332                 else
1333                         np->tx_ring.ex[i].FlagLen = 0;
1334                 np->tx_skbuff[i] = NULL;
1335                 np->tx_dma[i] = 0;
1336         }
1337 }
1338
1339 static int nv_init_ring(struct net_device *dev)
1340 {
1341         nv_init_tx(dev);
1342         nv_init_rx(dev);
1343         return nv_alloc_rx(dev);
1344 }
1345
1346 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1347 {
1348         struct fe_priv *np = netdev_priv(dev);
1349
1350         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1351                 dev->name, skbnr);
1352
1353         if (np->tx_dma[skbnr]) {
1354                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1355                                np->tx_dma_len[skbnr],
1356                                PCI_DMA_TODEVICE);
1357                 np->tx_dma[skbnr] = 0;
1358         }
1359
1360         if (np->tx_skbuff[skbnr]) {
1361                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1362                 np->tx_skbuff[skbnr] = NULL;
1363                 return 1;
1364         } else {
1365                 return 0;
1366         }
1367 }
1368
1369 static void nv_drain_tx(struct net_device *dev)
1370 {
1371         struct fe_priv *np = netdev_priv(dev);
1372         unsigned int i;
1373
1374         for (i = 0; i < np->tx_ring_size; i++) {
1375                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1376                         np->tx_ring.orig[i].FlagLen = 0;
1377                 else
1378                         np->tx_ring.ex[i].FlagLen = 0;
1379                 if (nv_release_txskb(dev, i))
1380                         np->stats.tx_dropped++;
1381         }
1382 }
1383
1384 static void nv_drain_rx(struct net_device *dev)
1385 {
1386         struct fe_priv *np = netdev_priv(dev);
1387         int i;
1388         for (i = 0; i < np->rx_ring_size; i++) {
1389                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1390                         np->rx_ring.orig[i].FlagLen = 0;
1391                 else
1392                         np->rx_ring.ex[i].FlagLen = 0;
1393                 wmb();
1394                 if (np->rx_skbuff[i]) {
1395                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1396                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1397                                                 PCI_DMA_FROMDEVICE);
1398                         dev_kfree_skb(np->rx_skbuff[i]);
1399                         np->rx_skbuff[i] = NULL;
1400                 }
1401         }
1402 }
1403
1404 static void drain_ring(struct net_device *dev)
1405 {
1406         nv_drain_tx(dev);
1407         nv_drain_rx(dev);
1408 }
1409
1410 /*
1411  * nv_start_xmit: dev->hard_start_xmit function
1412  * Called with netif_tx_lock held.
1413  */
1414 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1415 {
1416         struct fe_priv *np = netdev_priv(dev);
1417         u32 tx_flags = 0;
1418         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1419         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1420         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1421         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1422         unsigned int i;
1423         u32 offset = 0;
1424         u32 bcnt;
1425         u32 size = skb->len-skb->data_len;
1426         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1427         u32 tx_flags_vlan = 0;
1428
1429         /* add fragments to entries count */
1430         for (i = 0; i < fragments; i++) {
1431                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1432                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1433         }
1434
1435         spin_lock_irq(&np->lock);
1436
1437         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1438                 spin_unlock_irq(&np->lock);
1439                 netif_stop_queue(dev);
1440                 return NETDEV_TX_BUSY;
1441         }
1442
1443         /* setup the header buffer */
1444         do {
1445                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1446                 nr = (nr + 1) % np->tx_ring_size;
1447
1448                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1449                                                 PCI_DMA_TODEVICE);
1450                 np->tx_dma_len[nr] = bcnt;
1451
1452                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1453                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1454                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1455                 } else {
1456                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1457                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1458                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1459                 }
1460                 tx_flags = np->tx_flags;
1461                 offset += bcnt;
1462                 size -= bcnt;
1463         } while(size);
1464
1465         /* setup the fragments */
1466         for (i = 0; i < fragments; i++) {
1467                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1468                 u32 size = frag->size;
1469                 offset = 0;
1470
1471                 do {
1472                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1473                         nr = (nr + 1) % np->tx_ring_size;
1474
1475                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1476                                                       PCI_DMA_TODEVICE);
1477                         np->tx_dma_len[nr] = bcnt;
1478
1479                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1480                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1481                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1482                         } else {
1483                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1484                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1485                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1486                         }
1487                         offset += bcnt;
1488                         size -= bcnt;
1489                 } while (size);
1490         }
1491
1492         /* set last fragment flag  */
1493         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1494                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1495         } else {
1496                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1497         }
1498
1499         np->tx_skbuff[nr] = skb;
1500
1501 #ifdef NETIF_F_TSO
1502         if (skb_is_gso(skb))
1503                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1504         else
1505 #endif
1506         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1507
1508         /* vlan tag */
1509         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1510                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1511         }
1512
1513         /* set tx flags */
1514         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1515                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1516         } else {
1517                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1518                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1519         }
1520
1521         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1522                 dev->name, np->next_tx, entries, tx_flags_extra);
1523         {
1524                 int j;
1525                 for (j=0; j<64; j++) {
1526                         if ((j%16) == 0)
1527                                 dprintk("\n%03x:", j);
1528                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1529                 }
1530                 dprintk("\n");
1531         }
1532
1533         np->next_tx += entries;
1534
1535         dev->trans_start = jiffies;
1536         spin_unlock_irq(&np->lock);
1537         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1538         pci_push(get_hwbase(dev));
1539         return NETDEV_TX_OK;
1540 }
1541
1542 /*
1543  * nv_tx_done: check for completed packets, release the skbs.
1544  *
1545  * Caller must own np->lock.
1546  */
1547 static void nv_tx_done(struct net_device *dev)
1548 {
1549         struct fe_priv *np = netdev_priv(dev);
1550         u32 Flags;
1551         unsigned int i;
1552         struct sk_buff *skb;
1553
1554         while (np->nic_tx != np->next_tx) {
1555                 i = np->nic_tx % np->tx_ring_size;
1556
1557                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1558                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1559                 else
1560                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1561
1562                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1563                                         dev->name, np->nic_tx, Flags);
1564                 if (Flags & NV_TX_VALID)
1565                         break;
1566                 if (np->desc_ver == DESC_VER_1) {
1567                         if (Flags & NV_TX_LASTPACKET) {
1568                                 skb = np->tx_skbuff[i];
1569                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1570                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1571                                         if (Flags & NV_TX_UNDERFLOW)
1572                                                 np->stats.tx_fifo_errors++;
1573                                         if (Flags & NV_TX_CARRIERLOST)
1574                                                 np->stats.tx_carrier_errors++;
1575                                         np->stats.tx_errors++;
1576                                 } else {
1577                                         np->stats.tx_packets++;
1578                                         np->stats.tx_bytes += skb->len;
1579                                 }
1580                         }
1581                 } else {
1582                         if (Flags & NV_TX2_LASTPACKET) {
1583                                 skb = np->tx_skbuff[i];
1584                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1585                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1586                                         if (Flags & NV_TX2_UNDERFLOW)
1587                                                 np->stats.tx_fifo_errors++;
1588                                         if (Flags & NV_TX2_CARRIERLOST)
1589                                                 np->stats.tx_carrier_errors++;
1590                                         np->stats.tx_errors++;
1591                                 } else {
1592                                         np->stats.tx_packets++;
1593                                         np->stats.tx_bytes += skb->len;
1594                                 }
1595                         }
1596                 }
1597                 nv_release_txskb(dev, i);
1598                 np->nic_tx++;
1599         }
1600         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1601                 netif_wake_queue(dev);
1602 }
1603
1604 /*
1605  * nv_tx_timeout: dev->tx_timeout function
1606  * Called with netif_tx_lock held.
1607  */
1608 static void nv_tx_timeout(struct net_device *dev)
1609 {
1610         struct fe_priv *np = netdev_priv(dev);
1611         u8 __iomem *base = get_hwbase(dev);
1612         u32 status;
1613
1614         if (np->msi_flags & NV_MSI_X_ENABLED)
1615                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1616         else
1617                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1618
1619         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1620
1621         {
1622                 int i;
1623
1624                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1625                                 dev->name, (unsigned long)np->ring_addr,
1626                                 np->next_tx, np->nic_tx);
1627                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1628                 for (i=0;i<=np->register_size;i+= 32) {
1629                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1630                                         i,
1631                                         readl(base + i + 0), readl(base + i + 4),
1632                                         readl(base + i + 8), readl(base + i + 12),
1633                                         readl(base + i + 16), readl(base + i + 20),
1634                                         readl(base + i + 24), readl(base + i + 28));
1635                 }
1636                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1637                 for (i=0;i<np->tx_ring_size;i+= 4) {
1638                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1639                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1640                                        i,
1641                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1642                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1643                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1644                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1645                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1646                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1647                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1648                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1649                         } else {
1650                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1651                                        i,
1652                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1653                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1654                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1655                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1656                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1657                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1658                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1659                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1660                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1661                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1662                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1663                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1664                         }
1665                 }
1666         }
1667
1668         spin_lock_irq(&np->lock);
1669
1670         /* 1) stop tx engine */
1671         nv_stop_tx(dev);
1672
1673         /* 2) check that the packets were not sent already: */
1674         nv_tx_done(dev);
1675
1676         /* 3) if there are dead entries: clear everything */
1677         if (np->next_tx != np->nic_tx) {
1678                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1679                 nv_drain_tx(dev);
1680                 np->next_tx = np->nic_tx = 0;
1681                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1682                 netif_wake_queue(dev);
1683         }
1684
1685         /* 4) restart tx engine */
1686         nv_start_tx(dev);
1687         spin_unlock_irq(&np->lock);
1688 }
1689
1690 /*
1691  * Called when the nic notices a mismatch between the actual data len on the
1692  * wire and the len indicated in the 802 header
1693  */
1694 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1695 {
1696         int hdrlen;     /* length of the 802 header */
1697         int protolen;   /* length as stored in the proto field */
1698
1699         /* 1) calculate len according to header */
1700         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1701                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1702                 hdrlen = VLAN_HLEN;
1703         } else {
1704                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1705                 hdrlen = ETH_HLEN;
1706         }
1707         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1708                                 dev->name, datalen, protolen, hdrlen);
1709         if (protolen > ETH_DATA_LEN)
1710                 return datalen; /* Value in proto field not a len, no checks possible */
1711
1712         protolen += hdrlen;
1713         /* consistency checks: */
1714         if (datalen > ETH_ZLEN) {
1715                 if (datalen >= protolen) {
1716                         /* more data on wire than in 802 header, trim of
1717                          * additional data.
1718                          */
1719                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1720                                         dev->name, protolen);
1721                         return protolen;
1722                 } else {
1723                         /* less data on wire than mentioned in header.
1724                          * Discard the packet.
1725                          */
1726                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1727                                         dev->name);
1728                         return -1;
1729                 }
1730         } else {
1731                 /* short packet. Accept only if 802 values are also short */
1732                 if (protolen > ETH_ZLEN) {
1733                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1734                                         dev->name);
1735                         return -1;
1736                 }
1737                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1738                                 dev->name, datalen);
1739                 return datalen;
1740         }
1741 }
1742
1743 static void nv_rx_process(struct net_device *dev)
1744 {
1745         struct fe_priv *np = netdev_priv(dev);
1746         u32 Flags;
1747         u32 vlanflags = 0;
1748
1749         for (;;) {
1750                 struct sk_buff *skb;
1751                 int len;
1752                 int i;
1753                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1754                         break;  /* we scanned the whole ring - do not continue */
1755
1756                 i = np->cur_rx % np->rx_ring_size;
1757                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1758                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1759                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1760                 } else {
1761                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1762                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1763                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1764                 }
1765
1766                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1767                                         dev->name, np->cur_rx, Flags);
1768
1769                 if (Flags & NV_RX_AVAIL)
1770                         break;  /* still owned by hardware, */
1771
1772                 /*
1773                  * the packet is for us - immediately tear down the pci mapping.
1774                  * TODO: check if a prefetch of the first cacheline improves
1775                  * the performance.
1776                  */
1777                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1778                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1779                                 PCI_DMA_FROMDEVICE);
1780
1781                 {
1782                         int j;
1783                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1784                         for (j=0; j<64; j++) {
1785                                 if ((j%16) == 0)
1786                                         dprintk("\n%03x:", j);
1787                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1788                         }
1789                         dprintk("\n");
1790                 }
1791                 /* look at what we actually got: */
1792                 if (np->desc_ver == DESC_VER_1) {
1793                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1794                                 goto next_pkt;
1795
1796                         if (Flags & NV_RX_ERROR) {
1797                                 if (Flags & NV_RX_MISSEDFRAME) {
1798                                         np->stats.rx_missed_errors++;
1799                                         np->stats.rx_errors++;
1800                                         goto next_pkt;
1801                                 }
1802                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1803                                         np->stats.rx_errors++;
1804                                         goto next_pkt;
1805                                 }
1806                                 if (Flags & NV_RX_CRCERR) {
1807                                         np->stats.rx_crc_errors++;
1808                                         np->stats.rx_errors++;
1809                                         goto next_pkt;
1810                                 }
1811                                 if (Flags & NV_RX_OVERFLOW) {
1812                                         np->stats.rx_over_errors++;
1813                                         np->stats.rx_errors++;
1814                                         goto next_pkt;
1815                                 }
1816                                 if (Flags & NV_RX_ERROR4) {
1817                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1818                                         if (len < 0) {
1819                                                 np->stats.rx_errors++;
1820                                                 goto next_pkt;
1821                                         }
1822                                 }
1823                                 /* framing errors are soft errors. */
1824                                 if (Flags & NV_RX_FRAMINGERR) {
1825                                         if (Flags & NV_RX_SUBSTRACT1) {
1826                                                 len--;
1827                                         }
1828                                 }
1829                         }
1830                 } else {
1831                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1832                                 goto next_pkt;
1833
1834                         if (Flags & NV_RX2_ERROR) {
1835                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1836                                         np->stats.rx_errors++;
1837                                         goto next_pkt;
1838                                 }
1839                                 if (Flags & NV_RX2_CRCERR) {
1840                                         np->stats.rx_crc_errors++;
1841                                         np->stats.rx_errors++;
1842                                         goto next_pkt;
1843                                 }
1844                                 if (Flags & NV_RX2_OVERFLOW) {
1845                                         np->stats.rx_over_errors++;
1846                                         np->stats.rx_errors++;
1847                                         goto next_pkt;
1848                                 }
1849                                 if (Flags & NV_RX2_ERROR4) {
1850                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1851                                         if (len < 0) {
1852                                                 np->stats.rx_errors++;
1853                                                 goto next_pkt;
1854                                         }
1855                                 }
1856                                 /* framing errors are soft errors */
1857                                 if (Flags & NV_RX2_FRAMINGERR) {
1858                                         if (Flags & NV_RX2_SUBSTRACT1) {
1859                                                 len--;
1860                                         }
1861                                 }
1862                         }
1863                         if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1864                                 Flags &= NV_RX2_CHECKSUMMASK;
1865                                 if (Flags == NV_RX2_CHECKSUMOK1 ||
1866                                     Flags == NV_RX2_CHECKSUMOK2 ||
1867                                     Flags == NV_RX2_CHECKSUMOK3) {
1868                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1869                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1870                                 } else {
1871                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1872                                 }
1873                         }
1874                 }
1875                 /* got a valid packet - forward it to the network core */
1876                 skb = np->rx_skbuff[i];
1877                 np->rx_skbuff[i] = NULL;
1878
1879                 skb_put(skb, len);
1880                 skb->protocol = eth_type_trans(skb, dev);
1881                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1882                                         dev->name, np->cur_rx, len, skb->protocol);
1883                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1884                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1885                 } else {
1886                         netif_rx(skb);
1887                 }
1888                 dev->last_rx = jiffies;
1889                 np->stats.rx_packets++;
1890                 np->stats.rx_bytes += len;
1891 next_pkt:
1892                 np->cur_rx++;
1893         }
1894 }
1895
1896 static void set_bufsize(struct net_device *dev)
1897 {
1898         struct fe_priv *np = netdev_priv(dev);
1899
1900         if (dev->mtu <= ETH_DATA_LEN)
1901                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1902         else
1903                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1904 }
1905
1906 /*
1907  * nv_change_mtu: dev->change_mtu function
1908  * Called with dev_base_lock held for read.
1909  */
1910 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1911 {
1912         struct fe_priv *np = netdev_priv(dev);
1913         int old_mtu;
1914
1915         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1916                 return -EINVAL;
1917
1918         old_mtu = dev->mtu;
1919         dev->mtu = new_mtu;
1920
1921         /* return early if the buffer sizes will not change */
1922         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1923                 return 0;
1924         if (old_mtu == new_mtu)
1925                 return 0;
1926
1927         /* synchronized against open : rtnl_lock() held by caller */
1928         if (netif_running(dev)) {
1929                 u8 __iomem *base = get_hwbase(dev);
1930                 /*
1931                  * It seems that the nic preloads valid ring entries into an
1932                  * internal buffer. The procedure for flushing everything is
1933                  * guessed, there is probably a simpler approach.
1934                  * Changing the MTU is a rare event, it shouldn't matter.
1935                  */
1936                 nv_disable_irq(dev);
1937                 netif_tx_lock_bh(dev);
1938                 spin_lock(&np->lock);
1939                 /* stop engines */
1940                 nv_stop_rx(dev);
1941                 nv_stop_tx(dev);
1942                 nv_txrx_reset(dev);
1943                 /* drain rx queue */
1944                 nv_drain_rx(dev);
1945                 nv_drain_tx(dev);
1946                 /* reinit driver view of the rx queue */
1947                 set_bufsize(dev);
1948                 if (nv_init_ring(dev)) {
1949                         if (!np->in_shutdown)
1950                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1951                 }
1952                 /* reinit nic view of the rx queue */
1953                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1954                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1955                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1956                         base + NvRegRingSizes);
1957                 pci_push(base);
1958                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1959                 pci_push(base);
1960
1961                 /* restart rx engine */
1962                 nv_start_rx(dev);
1963                 nv_start_tx(dev);
1964                 spin_unlock(&np->lock);
1965                 netif_tx_unlock_bh(dev);
1966                 nv_enable_irq(dev);
1967         }
1968         return 0;
1969 }
1970
1971 static void nv_copy_mac_to_hw(struct net_device *dev)
1972 {
1973         u8 __iomem *base = get_hwbase(dev);
1974         u32 mac[2];
1975
1976         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1977                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1978         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1979
1980         writel(mac[0], base + NvRegMacAddrA);
1981         writel(mac[1], base + NvRegMacAddrB);
1982 }
1983
1984 /*
1985  * nv_set_mac_address: dev->set_mac_address function
1986  * Called with rtnl_lock() held.
1987  */
1988 static int nv_set_mac_address(struct net_device *dev, void *addr)
1989 {
1990         struct fe_priv *np = netdev_priv(dev);
1991         struct sockaddr *macaddr = (struct sockaddr*)addr;
1992
1993         if(!is_valid_ether_addr(macaddr->sa_data))
1994                 return -EADDRNOTAVAIL;
1995
1996         /* synchronized against open : rtnl_lock() held by caller */
1997         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1998
1999         if (netif_running(dev)) {
2000                 netif_tx_lock_bh(dev);
2001                 spin_lock_irq(&np->lock);
2002
2003                 /* stop rx engine */
2004                 nv_stop_rx(dev);
2005
2006                 /* set mac address */
2007                 nv_copy_mac_to_hw(dev);
2008
2009                 /* restart rx engine */
2010                 nv_start_rx(dev);
2011                 spin_unlock_irq(&np->lock);
2012                 netif_tx_unlock_bh(dev);
2013         } else {
2014                 nv_copy_mac_to_hw(dev);
2015         }
2016         return 0;
2017 }
2018
2019 /*
2020  * nv_set_multicast: dev->set_multicast function
2021  * Called with netif_tx_lock held.
2022  */
2023 static void nv_set_multicast(struct net_device *dev)
2024 {
2025         struct fe_priv *np = netdev_priv(dev);
2026         u8 __iomem *base = get_hwbase(dev);
2027         u32 addr[2];
2028         u32 mask[2];
2029         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2030
2031         memset(addr, 0, sizeof(addr));
2032         memset(mask, 0, sizeof(mask));
2033
2034         if (dev->flags & IFF_PROMISC) {
2035                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2036                 pff |= NVREG_PFF_PROMISC;
2037         } else {
2038                 pff |= NVREG_PFF_MYADDR;
2039
2040                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2041                         u32 alwaysOff[2];
2042                         u32 alwaysOn[2];
2043
2044                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2045                         if (dev->flags & IFF_ALLMULTI) {
2046                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2047                         } else {
2048                                 struct dev_mc_list *walk;
2049
2050                                 walk = dev->mc_list;
2051                                 while (walk != NULL) {
2052                                         u32 a, b;
2053                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2054                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2055                                         alwaysOn[0] &= a;
2056                                         alwaysOff[0] &= ~a;
2057                                         alwaysOn[1] &= b;
2058                                         alwaysOff[1] &= ~b;
2059                                         walk = walk->next;
2060                                 }
2061                         }
2062                         addr[0] = alwaysOn[0];
2063                         addr[1] = alwaysOn[1];
2064                         mask[0] = alwaysOn[0] | alwaysOff[0];
2065                         mask[1] = alwaysOn[1] | alwaysOff[1];
2066                 }
2067         }
2068         addr[0] |= NVREG_MCASTADDRA_FORCE;
2069         pff |= NVREG_PFF_ALWAYS;
2070         spin_lock_irq(&np->lock);
2071         nv_stop_rx(dev);
2072         writel(addr[0], base + NvRegMulticastAddrA);
2073         writel(addr[1], base + NvRegMulticastAddrB);
2074         writel(mask[0], base + NvRegMulticastMaskA);
2075         writel(mask[1], base + NvRegMulticastMaskB);
2076         writel(pff, base + NvRegPacketFilterFlags);
2077         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2078                 dev->name);
2079         nv_start_rx(dev);
2080         spin_unlock_irq(&np->lock);
2081 }
2082
2083 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2084 {
2085         struct fe_priv *np = netdev_priv(dev);
2086         u8 __iomem *base = get_hwbase(dev);
2087
2088         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2089
2090         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2091                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2092                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2093                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2094                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2095                 } else {
2096                         writel(pff, base + NvRegPacketFilterFlags);
2097                 }
2098         }
2099         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2100                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2101                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2102                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2103                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2104                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2105                 } else {
2106                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2107                         writel(regmisc, base + NvRegMisc1);
2108                 }
2109         }
2110 }
2111
2112 /**
2113  * nv_update_linkspeed: Setup the MAC according to the link partner
2114  * @dev: Network device to be configured
2115  *
2116  * The function queries the PHY and checks if there is a link partner.
2117  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2118  * set to 10 MBit HD.
2119  *
2120  * The function returns 0 if there is no link partner and 1 if there is
2121  * a good link partner.
2122  */
2123 static int nv_update_linkspeed(struct net_device *dev)
2124 {
2125         struct fe_priv *np = netdev_priv(dev);
2126         u8 __iomem *base = get_hwbase(dev);
2127         int adv = 0;
2128         int lpa = 0;
2129         int adv_lpa, adv_pause, lpa_pause;
2130         int newls = np->linkspeed;
2131         int newdup = np->duplex;
2132         int mii_status;
2133         int retval = 0;
2134         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2135
2136         /* BMSR_LSTATUS is latched, read it twice:
2137          * we want the current value.
2138          */
2139         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2140         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2141
2142         if (!(mii_status & BMSR_LSTATUS)) {
2143                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2144                                 dev->name);
2145                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2146                 newdup = 0;
2147                 retval = 0;
2148                 goto set_speed;
2149         }
2150
2151         if (np->autoneg == 0) {
2152                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2153                                 dev->name, np->fixed_mode);
2154                 if (np->fixed_mode & LPA_100FULL) {
2155                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2156                         newdup = 1;
2157                 } else if (np->fixed_mode & LPA_100HALF) {
2158                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2159                         newdup = 0;
2160                 } else if (np->fixed_mode & LPA_10FULL) {
2161                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2162                         newdup = 1;
2163                 } else {
2164                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2165                         newdup = 0;
2166                 }
2167                 retval = 1;
2168                 goto set_speed;
2169         }
2170         /* check auto negotiation is complete */
2171         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2172                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2173                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2174                 newdup = 0;
2175                 retval = 0;
2176                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2177                 goto set_speed;
2178         }
2179
2180         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2181         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2182         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2183                                 dev->name, adv, lpa);
2184
2185         retval = 1;
2186         if (np->gigabit == PHY_GIGABIT) {
2187                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2188                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2189
2190                 if ((control_1000 & ADVERTISE_1000FULL) &&
2191                         (status_1000 & LPA_1000FULL)) {
2192                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2193                                 dev->name);
2194                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2195                         newdup = 1;
2196                         goto set_speed;
2197                 }
2198         }
2199
2200         /* FIXME: handle parallel detection properly */
2201         adv_lpa = lpa & adv;
2202         if (adv_lpa & LPA_100FULL) {
2203                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2204                 newdup = 1;
2205         } else if (adv_lpa & LPA_100HALF) {
2206                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2207                 newdup = 0;
2208         } else if (adv_lpa & LPA_10FULL) {
2209                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2210                 newdup = 1;
2211         } else if (adv_lpa & LPA_10HALF) {
2212                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2213                 newdup = 0;
2214         } else {
2215                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2216                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2217                 newdup = 0;
2218         }
2219
2220 set_speed:
2221         if (np->duplex == newdup && np->linkspeed == newls)
2222                 return retval;
2223
2224         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2225                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2226
2227         np->duplex = newdup;
2228         np->linkspeed = newls;
2229
2230         if (np->gigabit == PHY_GIGABIT) {
2231                 phyreg = readl(base + NvRegRandomSeed);
2232                 phyreg &= ~(0x3FF00);
2233                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2234                         phyreg |= NVREG_RNDSEED_FORCE3;
2235                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2236                         phyreg |= NVREG_RNDSEED_FORCE2;
2237                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2238                         phyreg |= NVREG_RNDSEED_FORCE;
2239                 writel(phyreg, base + NvRegRandomSeed);
2240         }
2241
2242         phyreg = readl(base + NvRegPhyInterface);
2243         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2244         if (np->duplex == 0)
2245                 phyreg |= PHY_HALF;
2246         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2247                 phyreg |= PHY_100;
2248         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2249                 phyreg |= PHY_1000;
2250         writel(phyreg, base + NvRegPhyInterface);
2251
2252         if (phyreg & PHY_RGMII) {
2253                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2254                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2255                 else
2256                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2257         } else {
2258                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2259         }
2260         writel(txreg, base + NvRegTxDeferral);
2261
2262         if (np->desc_ver == DESC_VER_1) {
2263                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2264         } else {
2265                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2266                         txreg = NVREG_TX_WM_DESC2_3_1000;
2267                 else
2268                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2269         }
2270         writel(txreg, base + NvRegTxWatermark);
2271
2272         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2273                 base + NvRegMisc1);
2274         pci_push(base);
2275         writel(np->linkspeed, base + NvRegLinkSpeed);
2276         pci_push(base);
2277
2278         pause_flags = 0;
2279         /* setup pause frame */
2280         if (np->duplex != 0) {
2281                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2282                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2283                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2284
2285                         switch (adv_pause) {
2286                         case (ADVERTISE_PAUSE_CAP):
2287                                 if (lpa_pause & LPA_PAUSE_CAP) {
2288                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2289                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2290                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2291                                 }
2292                                 break;
2293                         case (ADVERTISE_PAUSE_ASYM):
2294                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2295                                 {
2296                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2297                                 }
2298                                 break;
2299                         case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2300                                 if (lpa_pause & LPA_PAUSE_CAP)
2301                                 {
2302                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2303                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2304                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2305                                 }
2306                                 if (lpa_pause == LPA_PAUSE_ASYM)
2307                                 {
2308                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2309                                 }
2310                                 break;
2311                         }
2312                 } else {
2313                         pause_flags = np->pause_flags;
2314                 }
2315         }
2316         nv_update_pause(dev, pause_flags);
2317
2318         return retval;
2319 }
2320
2321 static void nv_linkchange(struct net_device *dev)
2322 {
2323         if (nv_update_linkspeed(dev)) {
2324                 if (!netif_carrier_ok(dev)) {
2325                         netif_carrier_on(dev);
2326                         printk(KERN_INFO "%s: link up.\n", dev->name);
2327                         nv_start_rx(dev);
2328                 }
2329         } else {
2330                 if (netif_carrier_ok(dev)) {
2331                         netif_carrier_off(dev);
2332                         printk(KERN_INFO "%s: link down.\n", dev->name);
2333                         nv_stop_rx(dev);
2334                 }
2335         }
2336 }
2337
2338 static void nv_link_irq(struct net_device *dev)
2339 {
2340         u8 __iomem *base = get_hwbase(dev);
2341         u32 miistat;
2342
2343         miistat = readl(base + NvRegMIIStatus);
2344         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2345         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2346
2347         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2348                 nv_linkchange(dev);
2349         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2350 }
2351
2352 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2353 {
2354         struct net_device *dev = (struct net_device *) data;
2355         struct fe_priv *np = netdev_priv(dev);
2356         u8 __iomem *base = get_hwbase(dev);
2357         u32 events;
2358         int i;
2359
2360         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2361
2362         for (i=0; ; i++) {
2363                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2364                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2365                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2366                 } else {
2367                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2368                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2369                 }
2370                 pci_push(base);
2371                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2372                 if (!(events & np->irqmask))
2373                         break;
2374
2375                 spin_lock(&np->lock);
2376                 nv_tx_done(dev);
2377                 spin_unlock(&np->lock);
2378
2379                 nv_rx_process(dev);
2380                 if (nv_alloc_rx(dev)) {
2381                         spin_lock(&np->lock);
2382                         if (!np->in_shutdown)
2383                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2384                         spin_unlock(&np->lock);
2385                 }
2386
2387                 if (events & NVREG_IRQ_LINK) {
2388                         spin_lock(&np->lock);
2389                         nv_link_irq(dev);
2390                         spin_unlock(&np->lock);
2391                 }
2392                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2393                         spin_lock(&np->lock);
2394                         nv_linkchange(dev);
2395                         spin_unlock(&np->lock);
2396                         np->link_timeout = jiffies + LINK_TIMEOUT;
2397                 }
2398                 if (events & (NVREG_IRQ_TX_ERR)) {
2399                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2400                                                 dev->name, events);
2401                 }
2402                 if (events & (NVREG_IRQ_UNKNOWN)) {
2403                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2404                                                 dev->name, events);
2405                 }
2406                 if (i > max_interrupt_work) {
2407                         spin_lock(&np->lock);
2408                         /* disable interrupts on the nic */
2409                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2410                                 writel(0, base + NvRegIrqMask);
2411                         else
2412                                 writel(np->irqmask, base + NvRegIrqMask);
2413                         pci_push(base);
2414
2415                         if (!np->in_shutdown) {
2416                                 np->nic_poll_irq = np->irqmask;
2417                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2418                         }
2419                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2420                         spin_unlock(&np->lock);
2421                         break;
2422                 }
2423
2424         }
2425         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2426
2427         return IRQ_RETVAL(i);
2428 }
2429
2430 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2431 {
2432         struct net_device *dev = (struct net_device *) data;
2433         struct fe_priv *np = netdev_priv(dev);
2434         u8 __iomem *base = get_hwbase(dev);
2435         u32 events;
2436         int i;
2437
2438         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2439
2440         for (i=0; ; i++) {
2441                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2442                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2443                 pci_push(base);
2444                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2445                 if (!(events & np->irqmask))
2446                         break;
2447
2448                 spin_lock_irq(&np->lock);
2449                 nv_tx_done(dev);
2450                 spin_unlock_irq(&np->lock);
2451
2452                 if (events & (NVREG_IRQ_TX_ERR)) {
2453                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2454                                                 dev->name, events);
2455                 }
2456                 if (i > max_interrupt_work) {
2457                         spin_lock_irq(&np->lock);
2458                         /* disable interrupts on the nic */
2459                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2460                         pci_push(base);
2461
2462                         if (!np->in_shutdown) {
2463                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2464                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2465                         }
2466                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2467                         spin_unlock_irq(&np->lock);
2468                         break;
2469                 }
2470
2471         }
2472         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2473
2474         return IRQ_RETVAL(i);
2475 }
2476
2477 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2478 {
2479         struct net_device *dev = (struct net_device *) data;
2480         struct fe_priv *np = netdev_priv(dev);
2481         u8 __iomem *base = get_hwbase(dev);
2482         u32 events;
2483         int i;
2484
2485         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2486
2487         for (i=0; ; i++) {
2488                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2489                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2490                 pci_push(base);
2491                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2492                 if (!(events & np->irqmask))
2493                         break;
2494
2495                 nv_rx_process(dev);
2496                 if (nv_alloc_rx(dev)) {
2497                         spin_lock_irq(&np->lock);
2498                         if (!np->in_shutdown)
2499                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2500                         spin_unlock_irq(&np->lock);
2501                 }
2502
2503                 if (i > max_interrupt_work) {
2504                         spin_lock_irq(&np->lock);
2505                         /* disable interrupts on the nic */
2506                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2507                         pci_push(base);
2508
2509                         if (!np->in_shutdown) {
2510                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2511                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2512                         }
2513                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2514                         spin_unlock_irq(&np->lock);
2515                         break;
2516                 }
2517
2518         }
2519         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2520
2521         return IRQ_RETVAL(i);
2522 }
2523
2524 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2525 {
2526         struct net_device *dev = (struct net_device *) data;
2527         struct fe_priv *np = netdev_priv(dev);
2528         u8 __iomem *base = get_hwbase(dev);
2529         u32 events;
2530         int i;
2531
2532         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2533
2534         for (i=0; ; i++) {
2535                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2536                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2537                 pci_push(base);
2538                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2539                 if (!(events & np->irqmask))
2540                         break;
2541
2542                 if (events & NVREG_IRQ_LINK) {
2543                         spin_lock_irq(&np->lock);
2544                         nv_link_irq(dev);
2545                         spin_unlock_irq(&np->lock);
2546                 }
2547                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2548                         spin_lock_irq(&np->lock);
2549                         nv_linkchange(dev);
2550                         spin_unlock_irq(&np->lock);
2551                         np->link_timeout = jiffies + LINK_TIMEOUT;
2552                 }
2553                 if (events & (NVREG_IRQ_UNKNOWN)) {
2554                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2555                                                 dev->name, events);
2556                 }
2557                 if (i > max_interrupt_work) {
2558                         spin_lock_irq(&np->lock);
2559                         /* disable interrupts on the nic */
2560                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2561                         pci_push(base);
2562
2563                         if (!np->in_shutdown) {
2564                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2565                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2566                         }
2567                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2568                         spin_unlock_irq(&np->lock);
2569                         break;
2570                 }
2571
2572         }
2573         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2574
2575         return IRQ_RETVAL(i);
2576 }
2577
2578 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2579 {
2580         struct net_device *dev = (struct net_device *) data;
2581         struct fe_priv *np = netdev_priv(dev);
2582         u8 __iomem *base = get_hwbase(dev);
2583         u32 events;
2584
2585         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2586
2587         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2588                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2589                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2590         } else {
2591                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2592                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2593         }
2594         pci_push(base);
2595         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2596         if (!(events & NVREG_IRQ_TIMER))
2597                 return IRQ_RETVAL(0);
2598
2599         spin_lock(&np->lock);
2600         np->intr_test = 1;
2601         spin_unlock(&np->lock);
2602
2603         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2604
2605         return IRQ_RETVAL(1);
2606 }
2607
2608 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2609 {
2610         u8 __iomem *base = get_hwbase(dev);
2611         int i;
2612         u32 msixmap = 0;
2613
2614         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2615          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2616          * the remaining 8 interrupts.
2617          */
2618         for (i = 0; i < 8; i++) {
2619                 if ((irqmask >> i) & 0x1) {
2620                         msixmap |= vector << (i << 2);
2621                 }
2622         }
2623         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2624
2625         msixmap = 0;
2626         for (i = 0; i < 8; i++) {
2627                 if ((irqmask >> (i + 8)) & 0x1) {
2628                         msixmap |= vector << (i << 2);
2629                 }
2630         }
2631         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2632 }
2633
2634 static int nv_request_irq(struct net_device *dev, int intr_test)
2635 {
2636         struct fe_priv *np = get_nvpriv(dev);
2637         u8 __iomem *base = get_hwbase(dev);
2638         int ret = 1;
2639         int i;
2640
2641         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2642                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2643                         np->msi_x_entry[i].entry = i;
2644                 }
2645                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2646                         np->msi_flags |= NV_MSI_X_ENABLED;
2647                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2648                                 /* Request irq for rx handling */
2649                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2650                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2651                                         pci_disable_msix(np->pci_dev);
2652                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2653                                         goto out_err;
2654                                 }
2655                                 /* Request irq for tx handling */
2656                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2657                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2658                                         pci_disable_msix(np->pci_dev);
2659                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2660                                         goto out_free_rx;
2661                                 }
2662                                 /* Request irq for link and timer handling */
2663                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2664                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2665                                         pci_disable_msix(np->pci_dev);
2666                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2667                                         goto out_free_tx;
2668                                 }
2669                                 /* map interrupts to their respective vector */
2670                                 writel(0, base + NvRegMSIXMap0);
2671                                 writel(0, base + NvRegMSIXMap1);
2672                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2673                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2674                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2675                         } else {
2676                                 /* Request irq for all interrupts */
2677                                 if ((!intr_test &&
2678                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2679                                     (intr_test &&
2680                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2681                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2682                                         pci_disable_msix(np->pci_dev);
2683                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2684                                         goto out_err;
2685                                 }
2686
2687                                 /* map interrupts to vector 0 */
2688                                 writel(0, base + NvRegMSIXMap0);
2689                                 writel(0, base + NvRegMSIXMap1);
2690                         }
2691                 }
2692         }
2693         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2694                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2695                         np->msi_flags |= NV_MSI_ENABLED;
2696                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2697                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2698                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2699                                 pci_disable_msi(np->pci_dev);
2700                                 np->msi_flags &= ~NV_MSI_ENABLED;
2701                                 goto out_err;
2702                         }
2703
2704                         /* map interrupts to vector 0 */
2705                         writel(0, base + NvRegMSIMap0);
2706                         writel(0, base + NvRegMSIMap1);
2707                         /* enable msi vector 0 */
2708                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2709                 }
2710         }
2711         if (ret != 0) {
2712                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2713                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2714                         goto out_err;
2715
2716         }
2717
2718         return 0;
2719 out_free_tx:
2720         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2721 out_free_rx:
2722         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2723 out_err:
2724         return 1;
2725 }
2726
2727 static void nv_free_irq(struct net_device *dev)
2728 {
2729         struct fe_priv *np = get_nvpriv(dev);
2730         int i;
2731
2732         if (np->msi_flags & NV_MSI_X_ENABLED) {
2733                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2734                         free_irq(np->msi_x_entry[i].vector, dev);
2735                 }
2736                 pci_disable_msix(np->pci_dev);
2737                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2738         } else {
2739                 free_irq(np->pci_dev->irq, dev);
2740                 if (np->msi_flags & NV_MSI_ENABLED) {
2741                         pci_disable_msi(np->pci_dev);
2742                         np->msi_flags &= ~NV_MSI_ENABLED;
2743                 }
2744         }
2745 }
2746
2747 static void nv_do_nic_poll(unsigned long data)
2748 {
2749         struct net_device *dev = (struct net_device *) data;
2750         struct fe_priv *np = netdev_priv(dev);
2751         u8 __iomem *base = get_hwbase(dev);
2752         u32 mask = 0;
2753
2754         /*
2755          * First disable irq(s) and then
2756          * reenable interrupts on the nic, we have to do this before calling
2757          * nv_nic_irq because that may decide to do otherwise
2758          */
2759
2760         if (!using_multi_irqs(dev)) {
2761                 if (np->msi_flags & NV_MSI_X_ENABLED)
2762                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2763                 else
2764                         disable_irq_lockdep(dev->irq);
2765                 mask = np->irqmask;
2766         } else {
2767                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2768                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2769                         mask |= NVREG_IRQ_RX_ALL;
2770                 }
2771                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2772                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2773                         mask |= NVREG_IRQ_TX_ALL;
2774                 }
2775                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2776                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2777                         mask |= NVREG_IRQ_OTHER;
2778                 }
2779         }
2780         np->nic_poll_irq = 0;
2781
2782         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2783
2784         writel(mask, base + NvRegIrqMask);
2785         pci_push(base);
2786
2787         if (!using_multi_irqs(dev)) {
2788                 nv_nic_irq(0, dev, NULL);
2789                 if (np->msi_flags & NV_MSI_X_ENABLED)
2790                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2791                 else
2792                         enable_irq_lockdep(dev->irq);
2793         } else {
2794                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2795                         nv_nic_irq_rx(0, dev, NULL);
2796                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2797                 }
2798                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2799                         nv_nic_irq_tx(0, dev, NULL);
2800                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2801                 }
2802                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2803                         nv_nic_irq_other(0, dev, NULL);
2804                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2805                 }
2806         }
2807 }
2808
2809 #ifdef CONFIG_NET_POLL_CONTROLLER
2810 static void nv_poll_controller(struct net_device *dev)
2811 {
2812         nv_do_nic_poll((unsigned long) dev);
2813 }
2814 #endif
2815
2816 static void nv_do_stats_poll(unsigned long data)
2817 {
2818         struct net_device *dev = (struct net_device *) data;
2819         struct fe_priv *np = netdev_priv(dev);
2820         u8 __iomem *base = get_hwbase(dev);
2821
2822         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2823         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2824         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2825         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2826         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2827         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2828         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2829         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2830         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2831         np->estats.tx_deferral += readl(base + NvRegTxDef);
2832         np->estats.tx_packets += readl(base + NvRegTxFrame);
2833         np->estats.tx_pause += readl(base + NvRegTxPause);
2834         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2835         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2836         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2837         np->estats.rx_runt += readl(base + NvRegRxRunt);
2838         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2839         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2840         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2841         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2842         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2843         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2844         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2845         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2846         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2847         np->estats.rx_pause += readl(base + NvRegRxPause);
2848         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2849         np->estats.rx_packets =
2850                 np->estats.rx_unicast +
2851                 np->estats.rx_multicast +
2852                 np->estats.rx_broadcast;
2853         np->estats.rx_errors_total =
2854                 np->estats.rx_crc_errors +
2855                 np->estats.rx_over_errors +
2856                 np->estats.rx_frame_error +
2857                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2858                 np->estats.rx_late_collision +
2859                 np->estats.rx_runt +
2860                 np->estats.rx_frame_too_long;
2861
2862         if (!np->in_shutdown)
2863                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2864 }
2865
2866 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2867 {
2868         struct fe_priv *np = netdev_priv(dev);
2869         strcpy(info->driver, "forcedeth");
2870         strcpy(info->version, FORCEDETH_VERSION);
2871         strcpy(info->bus_info, pci_name(np->pci_dev));
2872 }
2873
2874 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2875 {
2876         struct fe_priv *np = netdev_priv(dev);
2877         wolinfo->supported = WAKE_MAGIC;
2878
2879         spin_lock_irq(&np->lock);
2880         if (np->wolenabled)
2881                 wolinfo->wolopts = WAKE_MAGIC;
2882         spin_unlock_irq(&np->lock);
2883 }
2884
2885 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2886 {
2887         struct fe_priv *np = netdev_priv(dev);
2888         u8 __iomem *base = get_hwbase(dev);
2889         u32 flags = 0;
2890
2891         if (wolinfo->wolopts == 0) {
2892                 np->wolenabled = 0;
2893         } else if (wolinfo->wolopts & WAKE_MAGIC) {
2894                 np->wolenabled = 1;
2895                 flags = NVREG_WAKEUPFLAGS_ENABLE;
2896         }
2897         if (netif_running(dev)) {
2898                 spin_lock_irq(&np->lock);
2899                 writel(flags, base + NvRegWakeUpFlags);
2900                 spin_unlock_irq(&np->lock);
2901         }
2902         return 0;
2903 }
2904
2905 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2906 {
2907         struct fe_priv *np = netdev_priv(dev);
2908         int adv;
2909
2910         spin_lock_irq(&np->lock);
2911         ecmd->port = PORT_MII;
2912         if (!netif_running(dev)) {
2913                 /* We do not track link speed / duplex setting if the
2914                  * interface is disabled. Force a link check */
2915                 if (nv_update_linkspeed(dev)) {
2916                         if (!netif_carrier_ok(dev))
2917                                 netif_carrier_on(dev);
2918                 } else {
2919                         if (netif_carrier_ok(dev))
2920                                 netif_carrier_off(dev);
2921                 }
2922         }
2923
2924         if (netif_carrier_ok(dev)) {
2925                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2926                 case NVREG_LINKSPEED_10:
2927                         ecmd->speed = SPEED_10;
2928                         break;
2929                 case NVREG_LINKSPEED_100:
2930                         ecmd->speed = SPEED_100;
2931                         break;
2932                 case NVREG_LINKSPEED_1000:
2933                         ecmd->speed = SPEED_1000;
2934                         break;
2935                 }
2936                 ecmd->duplex = DUPLEX_HALF;
2937                 if (np->duplex)
2938                         ecmd->duplex = DUPLEX_FULL;
2939         } else {
2940                 ecmd->speed = -1;
2941                 ecmd->duplex = -1;
2942         }
2943
2944         ecmd->autoneg = np->autoneg;
2945
2946         ecmd->advertising = ADVERTISED_MII;
2947         if (np->autoneg) {
2948                 ecmd->advertising |= ADVERTISED_Autoneg;
2949                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2950                 if (adv & ADVERTISE_10HALF)
2951                         ecmd->advertising |= ADVERTISED_10baseT_Half;
2952                 if (adv & ADVERTISE_10FULL)
2953                         ecmd->advertising |= ADVERTISED_10baseT_Full;
2954                 if (adv & ADVERTISE_100HALF)
2955                         ecmd->advertising |= ADVERTISED_100baseT_Half;
2956                 if (adv & ADVERTISE_100FULL)
2957                         ecmd->advertising |= ADVERTISED_100baseT_Full;
2958                 if (np->gigabit == PHY_GIGABIT) {
2959                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2960                         if (adv & ADVERTISE_1000FULL)
2961                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2962                 }
2963         }
2964         ecmd->supported = (SUPPORTED_Autoneg |
2965                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2966                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2967                 SUPPORTED_MII);
2968         if (np->gigabit == PHY_GIGABIT)
2969                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2970
2971         ecmd->phy_address = np->phyaddr;
2972         ecmd->transceiver = XCVR_EXTERNAL;
2973
2974         /* ignore maxtxpkt, maxrxpkt for now */
2975         spin_unlock_irq(&np->lock);
2976         return 0;
2977 }
2978
2979 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2980 {
2981         struct fe_priv *np = netdev_priv(dev);
2982
2983         if (ecmd->port != PORT_MII)
2984                 return -EINVAL;
2985         if (ecmd->transceiver != XCVR_EXTERNAL)
2986                 return -EINVAL;
2987         if (ecmd->phy_address != np->phyaddr) {
2988                 /* TODO: support switching between multiple phys. Should be
2989                  * trivial, but not enabled due to lack of test hardware. */
2990                 return -EINVAL;
2991         }
2992         if (ecmd->autoneg == AUTONEG_ENABLE) {
2993                 u32 mask;
2994
2995                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2996                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2997                 if (np->gigabit == PHY_GIGABIT)
2998                         mask |= ADVERTISED_1000baseT_Full;
2999
3000                 if ((ecmd->advertising & mask) == 0)
3001                         return -EINVAL;
3002
3003         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3004                 /* Note: autonegotiation disable, speed 1000 intentionally
3005                  * forbidden - noone should need that. */
3006
3007                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3008                         return -EINVAL;
3009                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3010                         return -EINVAL;
3011         } else {
3012                 return -EINVAL;
3013         }
3014
3015         netif_carrier_off(dev);
3016         if (netif_running(dev)) {
3017                 nv_disable_irq(dev);
3018                 netif_tx_lock_bh(dev);
3019                 spin_lock(&np->lock);
3020                 /* stop engines */
3021                 nv_stop_rx(dev);
3022                 nv_stop_tx(dev);
3023                 spin_unlock(&np->lock);
3024                 netif_tx_unlock_bh(dev);
3025         }
3026
3027         if (ecmd->autoneg == AUTONEG_ENABLE) {
3028                 int adv, bmcr;
3029
3030                 np->autoneg = 1;
3031
3032                 /* advertise only what has been requested */
3033                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3034                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3035                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3036                         adv |= ADVERTISE_10HALF;
3037                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3038                         adv |= ADVERTISE_10FULL;
3039                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3040                         adv |= ADVERTISE_100HALF;
3041                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3042                         adv |= ADVERTISE_100FULL;
3043                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3044                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3045                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3046                         adv |=  ADVERTISE_PAUSE_ASYM;
3047                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3048
3049                 if (np->gigabit == PHY_GIGABIT) {
3050                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3051                         adv &= ~ADVERTISE_1000FULL;
3052                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3053                                 adv |= ADVERTISE_1000FULL;
3054                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3055                 }
3056
3057                 if (netif_running(dev))
3058                         printk(KERN_INFO "%s: link down.\n", dev->name);
3059                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3060                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3061                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3062
3063         } else {
3064                 int adv, bmcr;
3065
3066                 np->autoneg = 0;
3067
3068                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3069                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3070                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3071                         adv |= ADVERTISE_10HALF;
3072                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3073                         adv |= ADVERTISE_10FULL;
3074                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3075                         adv |= ADVERTISE_100HALF;
3076                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3077                         adv |= ADVERTISE_100FULL;
3078                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3079                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3080                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3081                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3082                 }
3083                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3084                         adv |=  ADVERTISE_PAUSE_ASYM;
3085                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3086                 }
3087                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3088                 np->fixed_mode = adv;
3089
3090                 if (np->gigabit == PHY_GIGABIT) {
3091                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3092                         adv &= ~ADVERTISE_1000FULL;
3093                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3094                 }
3095
3096                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3097                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3098                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3099                         bmcr |= BMCR_FULLDPLX;
3100                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3101                         bmcr |= BMCR_SPEED100;
3102                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3103                 if (np->phy_oui == PHY_OUI_MARVELL) {
3104                         /* reset the phy */
3105                         if (phy_reset(dev)) {
3106                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3107                                 return -EINVAL;
3108                         }
3109                 } else if (netif_running(dev)) {
3110                         /* Wait a bit and then reconfigure the nic. */
3111                         udelay(10);
3112                         nv_linkchange(dev);
3113                 }
3114         }
3115
3116         if (netif_running(dev)) {
3117                 nv_start_rx(dev);
3118                 nv_start_tx(dev);
3119                 nv_enable_irq(dev);
3120         }
3121
3122         return 0;
3123 }
3124
3125 #define FORCEDETH_REGS_VER      1
3126
3127 static int nv_get_regs_len(struct net_device *dev)
3128 {
3129         struct fe_priv *np = netdev_priv(dev);
3130         return np->register_size;
3131 }
3132
3133 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3134 {
3135         struct fe_priv *np = netdev_priv(dev);
3136         u8 __iomem *base = get_hwbase(dev);
3137         u32 *rbuf = buf;
3138         int i;
3139
3140         regs->version = FORCEDETH_REGS_VER;
3141         spin_lock_irq(&np->lock);
3142         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3143                 rbuf[i] = readl(base + i*sizeof(u32));
3144         spin_unlock_irq(&np->lock);
3145 }
3146
3147 static int nv_nway_reset(struct net_device *dev)
3148 {
3149         struct fe_priv *np = netdev_priv(dev);
3150         int ret;
3151
3152         if (np->autoneg) {
3153                 int bmcr;
3154
3155                 netif_carrier_off(dev);
3156                 if (netif_running(dev)) {
3157                         nv_disable_irq(dev);
3158                         netif_tx_lock_bh(dev);
3159                         spin_lock(&np->lock);
3160                         /* stop engines */
3161                         nv_stop_rx(dev);
3162                         nv_stop_tx(dev);
3163                         spin_unlock(&np->lock);
3164                         netif_tx_unlock_bh(dev);
3165                         printk(KERN_INFO "%s: link down.\n", dev->name);
3166                 }
3167
3168                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3169                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3170                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3171
3172                 if (netif_running(dev)) {
3173                         nv_start_rx(dev);
3174                         nv_start_tx(dev);
3175                         nv_enable_irq(dev);
3176                 }
3177                 ret = 0;
3178         } else {
3179                 ret = -EINVAL;
3180         }
3181
3182         return ret;
3183 }
3184
3185 static int nv_set_tso(struct net_device *dev, u32 value)
3186 {
3187         struct fe_priv *np = netdev_priv(dev);
3188
3189         if ((np->driver_data & DEV_HAS_CHECKSUM))
3190                 return ethtool_op_set_tso(dev, value);
3191         else
3192                 return -EOPNOTSUPP;
3193 }
3194
3195 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3196 {
3197         struct fe_priv *np = netdev_priv(dev);
3198
3199         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3200         ring->rx_mini_max_pending = 0;
3201         ring->rx_jumbo_max_pending = 0;
3202         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3203
3204         ring->rx_pending = np->rx_ring_size;
3205         ring->rx_mini_pending = 0;
3206         ring->rx_jumbo_pending = 0;
3207         ring->tx_pending = np->tx_ring_size;
3208 }
3209
3210 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3211 {
3212         struct fe_priv *np = netdev_priv(dev);
3213         u8 __iomem *base = get_hwbase(dev);
3214         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3215         dma_addr_t ring_addr;
3216
3217         if (ring->rx_pending < RX_RING_MIN ||
3218             ring->tx_pending < TX_RING_MIN ||
3219             ring->rx_mini_pending != 0 ||
3220             ring->rx_jumbo_pending != 0 ||
3221             (np->desc_ver == DESC_VER_1 &&
3222              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3223               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3224             (np->desc_ver != DESC_VER_1 &&
3225              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3226               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3227                 return -EINVAL;
3228         }
3229
3230         /* allocate new rings */
3231         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3232                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3233                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3234                                             &ring_addr);
3235         } else {
3236                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3237                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3238                                             &ring_addr);
3239         }
3240         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3241         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3242         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3243         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3244         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3245         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3246                 /* fall back to old rings */
3247                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3248                         if(rxtx_ring)
3249                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3250                                                     rxtx_ring, ring_addr);
3251                 } else {
3252                         if (rxtx_ring)
3253                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3254                                                     rxtx_ring, ring_addr);
3255                 }
3256                 if (rx_skbuff)
3257                         kfree(rx_skbuff);
3258                 if (rx_dma)
3259                         kfree(rx_dma);
3260                 if (tx_skbuff)
3261                         kfree(tx_skbuff);
3262                 if (tx_dma)
3263                         kfree(tx_dma);
3264                 if (tx_dma_len)
3265                         kfree(tx_dma_len);
3266                 goto exit;
3267         }
3268
3269         if (netif_running(dev)) {
3270                 nv_disable_irq(dev);
3271                 netif_tx_lock_bh(dev);
3272                 spin_lock(&np->lock);
3273                 /* stop engines */
3274                 nv_stop_rx(dev);
3275                 nv_stop_tx(dev);
3276                 nv_txrx_reset(dev);
3277                 /* drain queues */
3278                 nv_drain_rx(dev);
3279                 nv_drain_tx(dev);
3280                 /* delete queues */
3281                 free_rings(dev);
3282         }
3283
3284         /* set new values */
3285         np->rx_ring_size = ring->rx_pending;
3286         np->tx_ring_size = ring->tx_pending;
3287         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3288         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3289         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3290                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3291                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3292         } else {
3293                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3294                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3295         }
3296         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3297         np->rx_dma = (dma_addr_t*)rx_dma;
3298         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3299         np->tx_dma = (dma_addr_t*)tx_dma;
3300         np->tx_dma_len = (unsigned int*)tx_dma_len;
3301         np->ring_addr = ring_addr;
3302
3303         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3304         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3305         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3306         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3307         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3308
3309         if (netif_running(dev)) {
3310                 /* reinit driver view of the queues */
3311                 set_bufsize(dev);
3312                 if (nv_init_ring(dev)) {
3313                         if (!np->in_shutdown)
3314                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3315                 }
3316
3317                 /* reinit nic view of the queues */
3318                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3319                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3320                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3321                         base + NvRegRingSizes);
3322                 pci_push(base);
3323                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3324                 pci_push(base);
3325
3326                 /* restart engines */
3327                 nv_start_rx(dev);
3328                 nv_start_tx(dev);
3329                 spin_unlock(&np->lock);
3330                 netif_tx_unlock_bh(dev);
3331                 nv_enable_irq(dev);
3332         }
3333         return 0;
3334 exit:
3335         return -ENOMEM;
3336 }
3337
3338 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3339 {
3340         struct fe_priv *np = netdev_priv(dev);
3341
3342         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3343         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3344         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3345 }
3346
3347 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3348 {
3349         struct fe_priv *np = netdev_priv(dev);
3350         int adv, bmcr;
3351
3352         if ((!np->autoneg && np->duplex == 0) ||
3353             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3354                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3355                        dev->name);
3356                 return -EINVAL;
3357         }
3358         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3359                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3360                 return -EINVAL;
3361         }
3362
3363         netif_carrier_off(dev);
3364         if (netif_running(dev)) {
3365                 nv_disable_irq(dev);
3366                 netif_tx_lock_bh(dev);
3367                 spin_lock(&np->lock);
3368                 /* stop engines */
3369                 nv_stop_rx(dev);
3370                 nv_stop_tx(dev);
3371                 spin_unlock(&np->lock);
3372                 netif_tx_unlock_bh(dev);
3373         }
3374
3375         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3376         if (pause->rx_pause)
3377                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3378         if (pause->tx_pause)
3379                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3380
3381         if (np->autoneg && pause->autoneg) {
3382                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3383
3384                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3385                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3386                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3387                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3388                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3389                         adv |=  ADVERTISE_PAUSE_ASYM;
3390                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3391
3392                 if (netif_running(dev))
3393                         printk(KERN_INFO "%s: link down.\n", dev->name);
3394                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3395                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3396                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3397         } else {
3398                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3399                 if (pause->rx_pause)
3400                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3401                 if (pause->tx_pause)
3402                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3403
3404                 if (!netif_running(dev))
3405                         nv_update_linkspeed(dev);
3406                 else
3407                         nv_update_pause(dev, np->pause_flags);
3408         }
3409
3410         if (netif_running(dev)) {
3411                 nv_start_rx(dev);
3412                 nv_start_tx(dev);
3413                 nv_enable_irq(dev);
3414         }
3415         return 0;
3416 }
3417
3418 static u32 nv_get_rx_csum(struct net_device *dev)
3419 {
3420         struct fe_priv *np = netdev_priv(dev);
3421         return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3422 }
3423
3424 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3425 {
3426         struct fe_priv *np = netdev_priv(dev);
3427         u8 __iomem *base = get_hwbase(dev);
3428         int retcode = 0;
3429
3430         if (np->driver_data & DEV_HAS_CHECKSUM) {
3431
3432                 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3433                     (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3434                         /* already set or unset */
3435                         return 0;
3436                 }
3437
3438                 if (data) {
3439                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3440                 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3441                         np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3442                 } else {
3443                         printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3444                         return -EINVAL;
3445                 }
3446
3447                 if (netif_running(dev)) {
3448                         spin_lock_irq(&np->lock);
3449                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3450                         spin_unlock_irq(&np->lock);
3451                 }
3452         } else {
3453                 return -EINVAL;
3454         }
3455
3456         return retcode;
3457 }
3458
3459 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3460 {
3461         struct fe_priv *np = netdev_priv(dev);
3462
3463         if (np->driver_data & DEV_HAS_CHECKSUM)
3464                 return ethtool_op_set_tx_hw_csum(dev, data);
3465         else
3466                 return -EOPNOTSUPP;
3467 }
3468
3469 static int nv_set_sg(struct net_device *dev, u32 data)
3470 {
3471         struct fe_priv *np = netdev_priv(dev);
3472
3473         if (np->driver_data & DEV_HAS_CHECKSUM)
3474                 return ethtool_op_set_sg(dev, data);
3475         else
3476                 return -EOPNOTSUPP;
3477 }
3478
3479 static int nv_get_stats_count(struct net_device *dev)
3480 {
3481         struct fe_priv *np = netdev_priv(dev);
3482
3483         if (np->driver_data & DEV_HAS_STATISTICS)
3484                 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3485         else
3486                 return 0;
3487 }
3488
3489 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3490 {
3491         struct fe_priv *np = netdev_priv(dev);
3492
3493         /* update stats */
3494         nv_do_stats_poll((unsigned long)dev);
3495
3496         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3497 }
3498
3499 static int nv_self_test_count(struct net_device *dev)
3500 {
3501         struct fe_priv *np = netdev_priv(dev);
3502
3503         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3504                 return NV_TEST_COUNT_EXTENDED;
3505         else
3506                 return NV_TEST_COUNT_BASE;
3507 }
3508
3509 static int nv_link_test(struct net_device *dev)
3510 {
3511         struct fe_priv *np = netdev_priv(dev);
3512         int mii_status;
3513
3514         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3515         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3516
3517         /* check phy link status */
3518         if (!(mii_status & BMSR_LSTATUS))
3519                 return 0;
3520         else
3521                 return 1;
3522 }
3523
3524 static int nv_register_test(struct net_device *dev)
3525 {
3526         u8 __iomem *base = get_hwbase(dev);
3527         int i = 0;
3528         u32 orig_read, new_read;
3529
3530         do {
3531                 orig_read = readl(base + nv_registers_test[i].reg);
3532
3533                 /* xor with mask to toggle bits */
3534                 orig_read ^= nv_registers_test[i].mask;
3535
3536                 writel(orig_read, base + nv_registers_test[i].reg);
3537
3538                 new_read = readl(base + nv_registers_test[i].reg);
3539
3540                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3541                         return 0;
3542
3543                 /* restore original value */
3544                 orig_read ^= nv_registers_test[i].mask;
3545                 writel(orig_read, base + nv_registers_test[i].reg);
3546
3547         } while (nv_registers_test[++i].reg != 0);
3548
3549         return 1;
3550 }
3551
3552 static int nv_interrupt_test(struct net_device *dev)
3553 {
3554         struct fe_priv *np = netdev_priv(dev);
3555         u8 __iomem *base = get_hwbase(dev);
3556         int ret = 1;
3557         int testcnt;
3558         u32 save_msi_flags, save_poll_interval = 0;
3559
3560         if (netif_running(dev)) {
3561                 /* free current irq */
3562                 nv_free_irq(dev);
3563                 save_poll_interval = readl(base+NvRegPollingInterval);
3564         }
3565
3566         /* flag to test interrupt handler */
3567         np->intr_test = 0;
3568
3569         /* setup test irq */
3570         save_msi_flags = np->msi_flags;
3571         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3572         np->msi_flags |= 0x001; /* setup 1 vector */
3573         if (nv_request_irq(dev, 1))
3574                 return 0;
3575
3576         /* setup timer interrupt */
3577         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3578         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3579
3580         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3581
3582         /* wait for at least one interrupt */
3583         msleep(100);
3584
3585         spin_lock_irq(&np->lock);
3586
3587         /* flag should be set within ISR */
3588         testcnt = np->intr_test;
3589         if (!testcnt)
3590                 ret = 2;
3591
3592         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3593         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3594                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3595         else
3596                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3597
3598         spin_unlock_irq(&np->lock);
3599
3600         nv_free_irq(dev);
3601
3602         np->msi_flags = save_msi_flags;
3603
3604         if (netif_running(dev)) {
3605                 writel(save_poll_interval, base + NvRegPollingInterval);
3606                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3607                 /* restore original irq */
3608                 if (nv_request_irq(dev, 0))
3609                         return 0;
3610         }
3611
3612         return ret;
3613 }
3614
3615 static int nv_loopback_test(struct net_device *dev)
3616 {
3617         struct fe_priv *np = netdev_priv(dev);
3618         u8 __iomem *base = get_hwbase(dev);
3619         struct sk_buff *tx_skb, *rx_skb;
3620         dma_addr_t test_dma_addr;
3621         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3622         u32 Flags;
3623         int len, i, pkt_len;
3624         u8 *pkt_data;
3625         u32 filter_flags = 0;
3626         u32 misc1_flags = 0;
3627         int ret = 1;
3628
3629         if (netif_running(dev)) {
3630                 nv_disable_irq(dev);
3631                 filter_flags = readl(base + NvRegPacketFilterFlags);
3632                 misc1_flags = readl(base + NvRegMisc1);
3633         } else {
3634                 nv_txrx_reset(dev);
3635         }
3636
3637         /* reinit driver view of the rx queue */
3638         set_bufsize(dev);
3639         nv_init_ring(dev);
3640
3641         /* setup hardware for loopback */
3642         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3643         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3644
3645         /* reinit nic view of the rx queue */
3646         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3647         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3648         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3649                 base + NvRegRingSizes);
3650         pci_push(base);
3651
3652         /* restart rx engine */
3653         nv_start_rx(dev);
3654         nv_start_tx(dev);
3655
3656         /* setup packet for tx */
3657         pkt_len = ETH_DATA_LEN;
3658         tx_skb = dev_alloc_skb(pkt_len);
3659         pkt_data = skb_put(tx_skb, pkt_len);
3660         for (i = 0; i < pkt_len; i++)
3661                 pkt_data[i] = (u8)(i & 0xff);
3662         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3663                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3664
3665         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3666                 np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
3667                 np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3668         } else {
3669                 np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
3670                 np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3671                 np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3672         }
3673         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3674         pci_push(get_hwbase(dev));
3675
3676         msleep(500);
3677
3678         /* check for rx of the packet */
3679         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3680                 Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
3681                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3682
3683         } else {
3684                 Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
3685                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3686         }
3687
3688         if (Flags & NV_RX_AVAIL) {
3689                 ret = 0;
3690         } else if (np->desc_ver == DESC_VER_1) {
3691                 if (Flags & NV_RX_ERROR)
3692                         ret = 0;
3693         } else {
3694                 if (Flags & NV_RX2_ERROR) {
3695                         ret = 0;
3696                 }
3697         }
3698
3699         if (ret) {
3700                 if (len != pkt_len) {
3701                         ret = 0;
3702                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3703                                 dev->name, len, pkt_len);
3704                 } else {
3705                         rx_skb = np->rx_skbuff[0];
3706                         for (i = 0; i < pkt_len; i++) {
3707                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3708                                         ret = 0;
3709                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3710                                                 dev->name, i);
3711                                         break;
3712                                 }
3713                         }
3714                 }
3715         } else {
3716                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3717         }
3718
3719         pci_unmap_page(np->pci_dev, test_dma_addr,
3720                        tx_skb->end-tx_skb->data,
3721                        PCI_DMA_TODEVICE);
3722         dev_kfree_skb_any(tx_skb);
3723
3724         /* stop engines */
3725         nv_stop_rx(dev);
3726         nv_stop_tx(dev);
3727         nv_txrx_reset(dev);
3728         /* drain rx queue */
3729         nv_drain_rx(dev);
3730         nv_drain_tx(dev);
3731
3732         if (netif_running(dev)) {
3733                 writel(misc1_flags, base + NvRegMisc1);
3734                 writel(filter_flags, base + NvRegPacketFilterFlags);
3735                 nv_enable_irq(dev);
3736         }
3737
3738         return ret;
3739 }
3740
3741 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3742 {
3743         struct fe_priv *np = netdev_priv(dev);
3744         u8 __iomem *base = get_hwbase(dev);
3745         int result;
3746         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3747
3748         if (!nv_link_test(dev)) {
3749                 test->flags |= ETH_TEST_FL_FAILED;
3750                 buffer[0] = 1;
3751         }
3752
3753         if (test->flags & ETH_TEST_FL_OFFLINE) {
3754                 if (netif_running(dev)) {
3755                         netif_stop_queue(dev);
3756                         netif_tx_lock_bh(dev);
3757                         spin_lock_irq(&np->lock);
3758                         nv_disable_hw_interrupts(dev, np->irqmask);
3759                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3760                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3761                         } else {
3762                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3763                         }
3764                         /* stop engines */
3765                         nv_stop_rx(dev);
3766                         nv_stop_tx(dev);
3767                         nv_txrx_reset(dev);
3768                         /* drain rx queue */
3769                         nv_drain_rx(dev);
3770                         nv_drain_tx(dev);
3771                         spin_unlock_irq(&np->lock);
3772                         netif_tx_unlock_bh(dev);
3773                 }
3774
3775                 if (!nv_register_test(dev)) {
3776                         test->flags |= ETH_TEST_FL_FAILED;
3777                         buffer[1] = 1;
3778                 }
3779
3780                 result = nv_interrupt_test(dev);
3781                 if (result != 1) {
3782                         test->flags |= ETH_TEST_FL_FAILED;
3783                         buffer[2] = 1;
3784                 }
3785                 if (result == 0) {
3786                         /* bail out */
3787                         return;
3788                 }
3789
3790                 if (!nv_loopback_test(dev)) {
3791                         test->flags |= ETH_TEST_FL_FAILED;
3792                         buffer[3] = 1;
3793                 }
3794
3795                 if (netif_running(dev)) {
3796                         /* reinit driver view of the rx queue */
3797                         set_bufsize(dev);
3798                         if (nv_init_ring(dev)) {
3799                                 if (!np->in_shutdown)
3800                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3801                         }
3802                         /* reinit nic view of the rx queue */
3803                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3804                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3805                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3806                                 base + NvRegRingSizes);
3807                         pci_push(base);
3808                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3809                         pci_push(base);
3810                         /* restart rx engine */
3811                         nv_start_rx(dev);
3812                         nv_start_tx(dev);
3813                         netif_start_queue(dev);
3814                         nv_enable_hw_interrupts(dev, np->irqmask);
3815                 }
3816         }
3817 }
3818
3819 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3820 {
3821         switch (stringset) {
3822         case ETH_SS_STATS:
3823                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3824                 break;
3825         case ETH_SS_TEST:
3826                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3827                 break;
3828         }
3829 }
3830
3831 static struct ethtool_ops ops = {
3832         .get_drvinfo = nv_get_drvinfo,
3833         .get_link = ethtool_op_get_link,
3834         .get_wol = nv_get_wol,
3835         .set_wol = nv_set_wol,
3836         .get_settings = nv_get_settings,
3837         .set_settings = nv_set_settings,
3838         .get_regs_len = nv_get_regs_len,
3839         .get_regs = nv_get_regs,
3840         .nway_reset = nv_nway_reset,
3841         .get_perm_addr = ethtool_op_get_perm_addr,
3842         .get_tso = ethtool_op_get_tso,
3843         .set_tso = nv_set_tso,
3844         .get_ringparam = nv_get_ringparam,
3845         .set_ringparam = nv_set_ringparam,
3846         .get_pauseparam = nv_get_pauseparam,
3847         .set_pauseparam = nv_set_pauseparam,
3848         .get_rx_csum = nv_get_rx_csum,
3849         .set_rx_csum = nv_set_rx_csum,
3850         .get_tx_csum = ethtool_op_get_tx_csum,
3851         .set_tx_csum = nv_set_tx_csum,
3852         .get_sg = ethtool_op_get_sg,
3853         .set_sg = nv_set_sg,
3854         .get_strings = nv_get_strings,
3855         .get_stats_count = nv_get_stats_count,
3856         .get_ethtool_stats = nv_get_ethtool_stats,
3857         .self_test_count = nv_self_test_count,
3858         .self_test = nv_self_test,
3859 };
3860
3861 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3862 {
3863         struct fe_priv *np = get_nvpriv(dev);
3864
3865         spin_lock_irq(&np->lock);
3866
3867         /* save vlan group */
3868         np->vlangrp = grp;
3869
3870         if (grp) {
3871                 /* enable vlan on MAC */
3872                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3873         } else {
3874                 /* disable vlan on MAC */
3875                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3876                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3877         }
3878
3879         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3880
3881         spin_unlock_irq(&np->lock);
3882 };
3883
3884 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3885 {
3886         /* nothing to do */
3887 };
3888
3889 static int nv_open(struct net_device *dev)
3890 {
3891         struct fe_priv *np = netdev_priv(dev);
3892         u8 __iomem *base = get_hwbase(dev);
3893         int ret = 1;
3894         int oom, i;
3895
3896         dprintk(KERN_DEBUG "nv_open: begin\n");
3897
3898         /* 1) erase previous misconfiguration */
3899         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3900                 nv_mac_reset(dev);
3901         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3902         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3903         writel(0, base + NvRegMulticastAddrB);
3904         writel(0, base + NvRegMulticastMaskA);
3905         writel(0, base + NvRegMulticastMaskB);
3906         writel(0, base + NvRegPacketFilterFlags);
3907
3908         writel(0, base + NvRegTransmitterControl);
3909         writel(0, base + NvRegReceiverControl);
3910
3911         writel(0, base + NvRegAdapterControl);
3912
3913         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3914                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3915
3916         /* 2) initialize descriptor rings */
3917         set_bufsize(dev);
3918         oom = nv_init_ring(dev);
3919
3920         writel(0, base + NvRegLinkSpeed);
3921         writel(0, base + NvRegUnknownTransmitterReg);
3922         nv_txrx_reset(dev);
3923         writel(0, base + NvRegUnknownSetupReg6);
3924
3925         np->in_shutdown = 0;
3926
3927         /* 3) set mac address */
3928         nv_copy_mac_to_hw(dev);
3929
3930         /* 4) give hw rings */
3931         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3932         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3933                 base + NvRegRingSizes);
3934
3935         /* 5) continue setup */
3936         writel(np->linkspeed, base + NvRegLinkSpeed);
3937         if (np->desc_ver == DESC_VER_1)
3938                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
3939         else
3940                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
3941         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3942         writel(np->vlanctl_bits, base + NvRegVlanControl);
3943         pci_push(base);
3944         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3945         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3946                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3947                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3948
3949         writel(0, base + NvRegUnknownSetupReg4);
3950         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3951         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3952
3953         /* 6) continue setup */
3954         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3955         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3956         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3957         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3958
3959         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3960         get_random_bytes(&i, sizeof(i));
3961         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3962         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
3963         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
3964         if (poll_interval == -1) {
3965                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3966                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3967                 else
3968                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3969         }
3970         else
3971                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3972         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3973         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3974                         base + NvRegAdapterControl);
3975         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3976         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3977         if (np->wolenabled)
3978                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3979
3980         i = readl(base + NvRegPowerState);
3981         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3982                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3983
3984         pci_push(base);
3985         udelay(10);
3986         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3987
3988         nv_disable_hw_interrupts(dev, np->irqmask);
3989         pci_push(base);
3990         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3991         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3992         pci_push(base);
3993
3994         if (nv_request_irq(dev, 0)) {
3995                 goto out_drain;
3996         }
3997
3998         /* ask for interrupts */
3999         nv_enable_hw_interrupts(dev, np->irqmask);
4000
4001         spin_lock_irq(&np->lock);
4002         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4003         writel(0, base + NvRegMulticastAddrB);
4004         writel(0, base + NvRegMulticastMaskA);
4005         writel(0, base + NvRegMulticastMaskB);
4006         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4007         /* One manual link speed update: Interrupts are enabled, future link
4008          * speed changes cause interrupts and are handled by nv_link_irq().
4009          */
4010         {
4011                 u32 miistat;
4012                 miistat = readl(base + NvRegMIIStatus);
4013                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4014                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4015         }
4016         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4017          * to init hw */
4018         np->linkspeed = 0;
4019         ret = nv_update_linkspeed(dev);
4020         nv_start_rx(dev);
4021         nv_start_tx(dev);
4022         netif_start_queue(dev);
4023         if (ret) {
4024                 netif_carrier_on(dev);
4025         } else {
4026                 printk("%s: no link during initialization.\n", dev->name);
4027                 netif_carrier_off(dev);
4028         }
4029         if (oom)
4030                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4031
4032         /* start statistics timer */
4033         if (np->driver_data & DEV_HAS_STATISTICS)
4034                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4035
4036         spin_unlock_irq(&np->lock);
4037
4038         return 0;
4039 out_drain:
4040         drain_ring(dev);
4041         return ret;
4042 }
4043
4044 static int nv_close(struct net_device *dev)
4045 {
4046         struct fe_priv *np = netdev_priv(dev);
4047         u8 __iomem *base;
4048
4049         spin_lock_irq(&np->lock);
4050         np->in_shutdown = 1;
4051         spin_unlock_irq(&np->lock);
4052         synchronize_irq(dev->irq);
4053
4054         del_timer_sync(&np->oom_kick);
4055         del_timer_sync(&np->nic_poll);
4056         del_timer_sync(&np->stats_poll);
4057
4058         netif_stop_queue(dev);
4059         spin_lock_irq(&np->lock);
4060         nv_stop_tx(dev);
4061         nv_stop_rx(dev);
4062         nv_txrx_reset(dev);
4063
4064         /* disable interrupts on the nic or we will lock up */
4065         base = get_hwbase(dev);
4066         nv_disable_hw_interrupts(dev, np->irqmask);
4067         pci_push(base);
4068         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4069
4070         spin_unlock_irq(&np->lock);
4071
4072         nv_free_irq(dev);
4073
4074         drain_ring(dev);
4075
4076         if (np->wolenabled)
4077                 nv_start_rx(dev);
4078
4079         /* special op: write back the misordered MAC address - otherwise
4080          * the next nv_probe would see a wrong address.
4081          */
4082         writel(np->orig_mac[0], base + NvRegMacAddrA);
4083         writel(np->orig_mac[1], base + NvRegMacAddrB);
4084
4085         /* FIXME: power down nic */
4086
4087         return 0;
4088 }
4089
4090 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4091 {
4092         struct net_device *dev;
4093         struct fe_priv *np;
4094         unsigned long addr;
4095         u8 __iomem *base;
4096         int err, i;
4097         u32 powerstate;
4098
4099         dev = alloc_etherdev(sizeof(struct fe_priv));
4100         err = -ENOMEM;
4101         if (!dev)
4102                 goto out;
4103
4104         np = netdev_priv(dev);
4105         np->pci_dev = pci_dev;
4106         spin_lock_init(&np->lock);
4107         SET_MODULE_OWNER(dev);
4108         SET_NETDEV_DEV(dev, &pci_dev->dev);
4109
4110         init_timer(&np->oom_kick);
4111         np->oom_kick.data = (unsigned long) dev;
4112         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4113         init_timer(&np->nic_poll);
4114         np->nic_poll.data = (unsigned long) dev;
4115         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4116         init_timer(&np->stats_poll);
4117         np->stats_poll.data = (unsigned long) dev;
4118         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4119
4120         err = pci_enable_device(pci_dev);
4121         if (err) {
4122                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4123                                 err, pci_name(pci_dev));
4124                 goto out_free;
4125         }
4126
4127         pci_set_master(pci_dev);
4128
4129         err = pci_request_regions(pci_dev, DRV_NAME);
4130         if (err < 0)
4131                 goto out_disable;
4132
4133         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4134                 np->register_size = NV_PCI_REGSZ_VER2;
4135         else
4136                 np->register_size = NV_PCI_REGSZ_VER1;
4137
4138         err = -EINVAL;
4139         addr = 0;
4140         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4141                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4142                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4143                                 pci_resource_len(pci_dev, i),
4144                                 pci_resource_flags(pci_dev, i));
4145                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4146                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4147                         addr = pci_resource_start(pci_dev, i);
4148                         break;
4149                 }
4150         }
4151         if (i == DEVICE_COUNT_RESOURCE) {
4152                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4153                                         pci_name(pci_dev));
4154                 goto out_relreg;
4155         }
4156
4157         /* copy of driver data */
4158         np->driver_data = id->driver_data;
4159
4160         /* handle different descriptor versions */
4161         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4162                 /* packet format 3: supports 40-bit addressing */
4163                 np->desc_ver = DESC_VER_3;
4164                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4165                 if (dma_64bit) {
4166                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4167                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4168                                        pci_name(pci_dev));
4169                         } else {
4170                                 dev->features |= NETIF_F_HIGHDMA;
4171                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4172                         }
4173                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4174                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4175                                        pci_name(pci_dev));
4176                         }
4177                 }
4178         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4179                 /* packet format 2: supports jumbo frames */
4180                 np->desc_ver = DESC_VER_2;
4181                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4182         } else {
4183                 /* original packet format */
4184                 np->desc_ver = DESC_VER_1;
4185                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4186         }
4187
4188         np->pkt_limit = NV_PKTLIMIT_1;
4189         if (id->driver_data & DEV_HAS_LARGEDESC)
4190                 np->pkt_limit = NV_PKTLIMIT_2;
4191
4192         if (id->driver_data & DEV_HAS_CHECKSUM) {
4193                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4194                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4195 #ifdef NETIF_F_TSO
4196                 dev->features |= NETIF_F_TSO;
4197 #endif
4198         }
4199
4200         np->vlanctl_bits = 0;
4201         if (id->driver_data & DEV_HAS_VLAN) {
4202                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4203                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4204                 dev->vlan_rx_register = nv_vlan_rx_register;
4205                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4206         }
4207
4208         np->msi_flags = 0;
4209         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4210                 np->msi_flags |= NV_MSI_CAPABLE;
4211         }
4212         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4213                 np->msi_flags |= NV_MSI_X_CAPABLE;
4214         }
4215
4216         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4217         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4218                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4219         }
4220
4221
4222         err = -ENOMEM;
4223         np->base = ioremap(addr, np->register_size);
4224         if (!np->base)
4225                 goto out_relreg;
4226         dev->base_addr = (unsigned long)np->base;
4227
4228         dev->irq = pci_dev->irq;
4229
4230         np->rx_ring_size = RX_RING_DEFAULT;
4231         np->tx_ring_size = TX_RING_DEFAULT;
4232         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4233         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4234
4235         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4236                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4237                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4238                                         &np->ring_addr);
4239                 if (!np->rx_ring.orig)
4240                         goto out_unmap;
4241                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4242         } else {
4243                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4244                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4245                                         &np->ring_addr);
4246                 if (!np->rx_ring.ex)
4247                         goto out_unmap;
4248                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4249         }
4250         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4251         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4252         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4253         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4254         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4255         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4256                 goto out_freering;
4257         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4258         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4259         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4260         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4261         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4262
4263         dev->open = nv_open;
4264         dev->stop = nv_close;
4265         dev->hard_start_xmit = nv_start_xmit;
4266         dev->get_stats = nv_get_stats;
4267         dev->change_mtu = nv_change_mtu;
4268         dev->set_mac_address = nv_set_mac_address;
4269         dev->set_multicast_list = nv_set_multicast;
4270 #ifdef CONFIG_NET_POLL_CONTROLLER
4271         dev->poll_controller = nv_poll_controller;
4272 #endif
4273         SET_ETHTOOL_OPS(dev, &ops);
4274         dev->tx_timeout = nv_tx_timeout;
4275         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4276
4277         pci_set_drvdata(pci_dev, dev);
4278
4279         /* read the mac address */
4280         base = get_hwbase(dev);
4281         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4282         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4283
4284         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4285         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4286         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4287         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4288         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4289         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4290         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4291
4292         if (!is_valid_ether_addr(dev->perm_addr)) {
4293                 /*
4294                  * Bad mac address. At least one bios sets the mac address
4295                  * to 01:23:45:67:89:ab
4296                  */
4297                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4298                         pci_name(pci_dev),
4299                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4300                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4301                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4302                 dev->dev_addr[0] = 0x00;
4303                 dev->dev_addr[1] = 0x00;
4304                 dev->dev_addr[2] = 0x6c;
4305                 get_random_bytes(&dev->dev_addr[3], 3);
4306         }
4307
4308         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4309                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4310                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4311
4312         /* disable WOL */
4313         writel(0, base + NvRegWakeUpFlags);
4314         np->wolenabled = 0;
4315
4316         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4317                 u8 revision_id;
4318                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4319
4320                 /* take phy and nic out of low power mode */
4321                 powerstate = readl(base + NvRegPowerState2);
4322                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4323                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4324                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4325                     revision_id >= 0xA3)
4326                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4327                 writel(powerstate, base + NvRegPowerState2);
4328         }
4329
4330         if (np->desc_ver == DESC_VER_1) {
4331                 np->tx_flags = NV_TX_VALID;
4332         } else {
4333                 np->tx_flags = NV_TX2_VALID;
4334         }
4335         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4336                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4337                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4338                         np->msi_flags |= 0x0003;
4339         } else {
4340                 np->irqmask = NVREG_IRQMASK_CPU;
4341                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4342                         np->msi_flags |= 0x0001;
4343         }
4344
4345         if (id->driver_data & DEV_NEED_TIMERIRQ)
4346                 np->irqmask |= NVREG_IRQ_TIMER;
4347         if (id->driver_data & DEV_NEED_LINKTIMER) {
4348                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4349                 np->need_linktimer = 1;
4350                 np->link_timeout = jiffies + LINK_TIMEOUT;
4351         } else {
4352                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4353                 np->need_linktimer = 0;
4354         }
4355
4356         /* find a suitable phy */
4357         for (i = 1; i <= 32; i++) {
4358                 int id1, id2;
4359                 int phyaddr = i & 0x1F;
4360
4361                 spin_lock_irq(&np->lock);
4362                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4363                 spin_unlock_irq(&np->lock);
4364                 if (id1 < 0 || id1 == 0xffff)
4365                         continue;
4366                 spin_lock_irq(&np->lock);
4367                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4368                 spin_unlock_irq(&np->lock);
4369                 if (id2 < 0 || id2 == 0xffff)
4370                         continue;
4371
4372                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4373                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4374                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4375                         pci_name(pci_dev), id1, id2, phyaddr);
4376                 np->phyaddr = phyaddr;
4377                 np->phy_oui = id1 | id2;
4378                 break;
4379         }
4380         if (i == 33) {
4381                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4382                        pci_name(pci_dev));
4383                 goto out_error;
4384         }
4385
4386         /* reset it */
4387         phy_init(dev);
4388
4389         /* set default link speed settings */
4390         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4391         np->duplex = 0;
4392         np->autoneg = 1;
4393
4394         err = register_netdev(dev);
4395         if (err) {
4396                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4397                 goto out_error;
4398         }
4399         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4400                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4401                         pci_name(pci_dev));
4402
4403         return 0;
4404
4405 out_error:
4406         pci_set_drvdata(pci_dev, NULL);
4407 out_freering:
4408         free_rings(dev);
4409 out_unmap:
4410         iounmap(get_hwbase(dev));
4411 out_relreg:
4412         pci_release_regions(pci_dev);
4413 out_disable:
4414         pci_disable_device(pci_dev);
4415 out_free:
4416         free_netdev(dev);
4417 out:
4418         return err;
4419 }
4420
4421 static void __devexit nv_remove(struct pci_dev *pci_dev)
4422 {
4423         struct net_device *dev = pci_get_drvdata(pci_dev);
4424
4425         unregister_netdev(dev);
4426
4427         /* free all structures */
4428         free_rings(dev);
4429         iounmap(get_hwbase(dev));
4430         pci_release_regions(pci_dev);
4431         pci_disable_device(pci_dev);
4432         free_netdev(dev);
4433         pci_set_drvdata(pci_dev, NULL);
4434 }
4435
4436 static struct pci_device_id pci_tbl[] = {
4437         {       /* nForce Ethernet Controller */
4438                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4439                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4440         },
4441         {       /* nForce2 Ethernet Controller */
4442                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4443                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4444         },
4445         {       /* nForce3 Ethernet Controller */
4446                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4447                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4448         },
4449         {       /* nForce3 Ethernet Controller */
4450                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4451                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4452         },
4453         {       /* nForce3 Ethernet Controller */
4454                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4455                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4456         },
4457         {       /* nForce3 Ethernet Controller */
4458                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4459                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4460         },
4461         {       /* nForce3 Ethernet Controller */
4462                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4463                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4464         },
4465         {       /* CK804 Ethernet Controller */
4466                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4467                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4468         },
4469         {       /* CK804 Ethernet Controller */
4470                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4471                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4472         },
4473         {       /* MCP04 Ethernet Controller */
4474                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4475                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4476         },
4477         {       /* MCP04 Ethernet Controller */
4478                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4479                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4480         },
4481         {       /* MCP51 Ethernet Controller */
4482                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4483                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4484         },
4485         {       /* MCP51 Ethernet Controller */
4486                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4487                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4488         },
4489         {       /* MCP55 Ethernet Controller */
4490                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4491                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4492         },
4493         {       /* MCP55 Ethernet Controller */
4494                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4495                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4496         },
4497         {       /* MCP61 Ethernet Controller */
4498                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4499                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4500         },
4501         {       /* MCP61 Ethernet Controller */
4502                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4503                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4504         },
4505         {       /* MCP61 Ethernet Controller */
4506                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4507                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4508         },
4509         {       /* MCP61 Ethernet Controller */
4510                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4511                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4512         },
4513         {       /* MCP65 Ethernet Controller */
4514                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4515                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4516         },
4517         {       /* MCP65 Ethernet Controller */
4518                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4519                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4520         },
4521         {       /* MCP65 Ethernet Controller */
4522                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4523                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4524         },
4525         {       /* MCP65 Ethernet Controller */
4526                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4527                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4528         },
4529         {0,},
4530 };
4531
4532 static struct pci_driver driver = {
4533         .name = "forcedeth",
4534         .id_table = pci_tbl,
4535         .probe = nv_probe,
4536         .remove = __devexit_p(nv_remove),
4537 };
4538
4539
4540 static int __init init_nic(void)
4541 {
4542         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4543         return pci_module_init(&driver);
4544 }
4545
4546 static void __exit exit_nic(void)
4547 {
4548         pci_unregister_driver(&driver);
4549 }
4550
4551 module_param(max_interrupt_work, int, 0);
4552 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4553 module_param(optimization_mode, int, 0);
4554 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4555 module_param(poll_interval, int, 0);
4556 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4557 module_param(msi, int, 0);
4558 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4559 module_param(msix, int, 0);
4560 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4561 module_param(dma_64bit, int, 0);
4562 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4563
4564 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4565 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4566 MODULE_LICENSE("GPL");
4567
4568 MODULE_DEVICE_TABLE(pci, pci_tbl);
4569
4570 module_init(init_nic);
4571 module_exit(exit_nic);