Merge tag 'imx-fixes-5.0-2' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[sfrench/cifs-2.6.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  *              01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
200  */
201
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230
231 static const char version[] =
232         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233         "  Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261
262 /* Define module-wide (static) routines */
263
264 static void             dfx_bus_init(struct net_device *dev);
265 static void             dfx_bus_uninit(struct net_device *dev);
266 static void             dfx_bus_config_check(DFX_board_t *bp);
267
268 static int              dfx_driver_init(struct net_device *dev,
269                                         const char *print_name,
270                                         resource_size_t bar_start);
271 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273 static int              dfx_open(struct net_device *dev);
274 static int              dfx_close(struct net_device *dev);
275
276 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void             dfx_int_type_0_process(DFX_board_t *bp);
278 static void             dfx_int_common(struct net_device *dev);
279 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
280
281 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int              dfx_ctl_update_cam(DFX_board_t *bp);
285 static int              dfx_ctl_update_filters(DFX_board_t *bp);
286
287 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void             dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void             dfx_rcv_flush(DFX_board_t *bp);
297 #else
298 static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302                                      struct net_device *dev);
303 static int              dfx_xmt_done(DFX_board_t *bp);
304 static void             dfx_xmt_flush(DFX_board_t *bp);
305
306 /* Define module-wide (static) variables */
307
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311
312
313 /*
314  * =======================
315  * = dfx_port_write_long =
316  * = dfx_port_read_long  =
317  * =======================
318  *
319  * Overview:
320  *   Routines for reading and writing values from/to adapter
321  *
322  * Returns:
323  *   None
324  *
325  * Arguments:
326  *   bp         - pointer to board information
327  *   offset     - register offset from base I/O address
328  *   data       - for dfx_port_write_long, this is a value to write;
329  *                for dfx_port_read_long, this is a pointer to store
330  *                the read value
331  *
332  * Functional Description:
333  *   These routines perform the correct operation to read or write
334  *   the adapter register.
335  *
336  *   EISA port block base addresses are based on the slot number in which the
337  *   controller is installed.  For example, if the EISA controller is installed
338  *   in slot 4, the port block base address is 0x4000.  If the controller is
339  *   installed in slot 2, the port block base address is 0x2000, and so on.
340  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341  *   registers using the register offsets defined in DEFXX.H.
342  *
343  *   PCI port block base addresses are assigned by the PCI BIOS or system
344  *   firmware.  There is one 128 byte port block which can be accessed.  It
345  *   allows for I/O mapping of both PDQ and PFI registers using the register
346  *   offsets defined in DEFXX.H.
347  *
348  * Return Codes:
349  *   None
350  *
351  * Assumptions:
352  *   bp->base is a valid base I/O address for this adapter.
353  *   offset is a valid register offset for this adapter.
354  *
355  * Side Effects:
356  *   Rather than produce macros for these functions, these routines
357  *   are defined using "inline" to ensure that the compiler will
358  *   generate inline code and not waste a procedure call and return.
359  *   This provides all the benefits of macros, but with the
360  *   advantage of strict data type checking.
361  */
362
363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365         writel(data, bp->base.mem + offset);
366         mb();
367 }
368
369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371         outl(data, bp->base.port + offset);
372 }
373
374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376         struct device __maybe_unused *bdev = bp->bus_dev;
377         int dfx_bus_tc = DFX_BUS_TC(bdev);
378         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380         if (dfx_use_mmio)
381                 dfx_writel(bp, offset, data);
382         else
383                 dfx_outl(bp, offset, data);
384 }
385
386
387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389         mb();
390         *data = readl(bp->base.mem + offset);
391 }
392
393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395         *data = inl(bp->base.port + offset);
396 }
397
398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400         struct device __maybe_unused *bdev = bp->bus_dev;
401         int dfx_bus_tc = DFX_BUS_TC(bdev);
402         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404         if (dfx_use_mmio)
405                 dfx_readl(bp, offset, data);
406         else
407                 dfx_inl(bp, offset, data);
408 }
409
410
411 /*
412  * ================
413  * = dfx_get_bars =
414  * ================
415  *
416  * Overview:
417  *   Retrieves the address ranges used to access control and status
418  *   registers.
419  *
420  * Returns:
421  *   None
422  *
423  * Arguments:
424  *   bdev       - pointer to device information
425  *   bar_start  - pointer to store the start addresses
426  *   bar_len    - pointer to store the lengths of the areas
427  *
428  * Assumptions:
429  *   I am sure there are some.
430  *
431  * Side Effects:
432  *   None
433  */
434 static void dfx_get_bars(struct device *bdev,
435                          resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437         int dfx_bus_pci = dev_is_pci(bdev);
438         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439         int dfx_bus_tc = DFX_BUS_TC(bdev);
440         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442         if (dfx_bus_pci) {
443                 int num = dfx_use_mmio ? 0 : 1;
444
445                 bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446                 bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447                 bar_start[2] = bar_start[1] = 0;
448                 bar_len[2] = bar_len[1] = 0;
449         }
450         if (dfx_bus_eisa) {
451                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452                 resource_size_t bar_lo;
453                 resource_size_t bar_hi;
454
455                 if (dfx_use_mmio) {
456                         bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457                         bar_lo <<= 8;
458                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459                         bar_lo <<= 8;
460                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461                         bar_lo <<= 8;
462                         bar_start[0] = bar_lo;
463                         bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464                         bar_hi <<= 8;
465                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466                         bar_hi <<= 8;
467                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468                         bar_hi <<= 8;
469                         bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470                                      1;
471                 } else {
472                         bar_start[0] = base_addr;
473                         bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474                 }
475                 bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476                 bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477                 bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478                 bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479         }
480         if (dfx_bus_tc) {
481                 bar_start[0] = to_tc_dev(bdev)->resource.start +
482                                PI_TC_K_CSR_OFFSET;
483                 bar_len[0] = PI_TC_K_CSR_LEN;
484                 bar_start[2] = bar_start[1] = 0;
485                 bar_len[2] = bar_len[1] = 0;
486         }
487 }
488
489 static const struct net_device_ops dfx_netdev_ops = {
490         .ndo_open               = dfx_open,
491         .ndo_stop               = dfx_close,
492         .ndo_start_xmit         = dfx_xmt_queue_pkt,
493         .ndo_get_stats          = dfx_ctl_get_stats,
494         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
495         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
496 };
497
498 /*
499  * ================
500  * = dfx_register =
501  * ================
502  *
503  * Overview:
504  *   Initializes a supported FDDI controller
505  *
506  * Returns:
507  *   Condition code
508  *
509  * Arguments:
510  *   bdev - pointer to device information
511  *
512  * Functional Description:
513  *
514  * Return Codes:
515  *   0           - This device (fddi0, fddi1, etc) configured successfully
516  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
517  *
518  * Assumptions:
519  *   It compiles so it should work :-( (PCI cards do :-)
520  *
521  * Side Effects:
522  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
523  *   initialized and the board resources are read and stored in
524  *   the device structure.
525  */
526 static int dfx_register(struct device *bdev)
527 {
528         static int version_disp;
529         int dfx_bus_pci = dev_is_pci(bdev);
530         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
531         int dfx_bus_tc = DFX_BUS_TC(bdev);
532         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
533         const char *print_name = dev_name(bdev);
534         struct net_device *dev;
535         DFX_board_t       *bp;                  /* board pointer */
536         resource_size_t bar_start[3] = {0};     /* pointers to ports */
537         resource_size_t bar_len[3] = {0};       /* resource length */
538         int alloc_size;                         /* total buffer size used */
539         struct resource *region;
540         int err = 0;
541
542         if (!version_disp) {    /* display version info if adapter is found */
543                 version_disp = 1;       /* set display flag to TRUE so that */
544                 printk(version);        /* we only display this string ONCE */
545         }
546
547         dev = alloc_fddidev(sizeof(*bp));
548         if (!dev) {
549                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
550                        print_name);
551                 return -ENOMEM;
552         }
553
554         /* Enable PCI device. */
555         if (dfx_bus_pci) {
556                 err = pci_enable_device(to_pci_dev(bdev));
557                 if (err) {
558                         pr_err("%s: Cannot enable PCI device, aborting\n",
559                                print_name);
560                         goto err_out;
561                 }
562         }
563
564         SET_NETDEV_DEV(dev, bdev);
565
566         bp = netdev_priv(dev);
567         bp->bus_dev = bdev;
568         dev_set_drvdata(bdev, dev);
569
570         dfx_get_bars(bdev, bar_start, bar_len);
571         if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) {
572                 pr_err("%s: Cannot use MMIO, no address set, aborting\n",
573                        print_name);
574                 pr_err("%s: Run ECU and set adapter's MMIO location\n",
575                        print_name);
576                 pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
577                        "\n", print_name);
578                 err = -ENXIO;
579                 goto err_out;
580         }
581
582         if (dfx_use_mmio)
583                 region = request_mem_region(bar_start[0], bar_len[0],
584                                             print_name);
585         else
586                 region = request_region(bar_start[0], bar_len[0], print_name);
587         if (!region) {
588                 pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
589                        "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name,
590                        (long)bar_len[0], (long)bar_start[0]);
591                 err = -EBUSY;
592                 goto err_out_disable;
593         }
594         if (bar_start[1] != 0) {
595                 region = request_region(bar_start[1], bar_len[1], print_name);
596                 if (!region) {
597                         pr_err("%s: Cannot reserve I/O resource "
598                                "0x%lx @ 0x%lx, aborting\n", print_name,
599                                (long)bar_len[1], (long)bar_start[1]);
600                         err = -EBUSY;
601                         goto err_out_csr_region;
602                 }
603         }
604         if (bar_start[2] != 0) {
605                 region = request_region(bar_start[2], bar_len[2], print_name);
606                 if (!region) {
607                         pr_err("%s: Cannot reserve I/O resource "
608                                "0x%lx @ 0x%lx, aborting\n", print_name,
609                                (long)bar_len[2], (long)bar_start[2]);
610                         err = -EBUSY;
611                         goto err_out_bh_region;
612                 }
613         }
614
615         /* Set up I/O base address. */
616         if (dfx_use_mmio) {
617                 bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
618                 if (!bp->base.mem) {
619                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
620                         err = -ENOMEM;
621                         goto err_out_esic_region;
622                 }
623         } else {
624                 bp->base.port = bar_start[0];
625                 dev->base_addr = bar_start[0];
626         }
627
628         /* Initialize new device structure */
629         dev->netdev_ops                 = &dfx_netdev_ops;
630
631         if (dfx_bus_pci)
632                 pci_set_master(to_pci_dev(bdev));
633
634         if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
635                 err = -ENODEV;
636                 goto err_out_unmap;
637         }
638
639         err = register_netdev(dev);
640         if (err)
641                 goto err_out_kfree;
642
643         printk("%s: registered as %s\n", print_name, dev->name);
644         return 0;
645
646 err_out_kfree:
647         alloc_size = sizeof(PI_DESCR_BLOCK) +
648                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
649 #ifndef DYNAMIC_BUFFERS
650                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
651 #endif
652                      sizeof(PI_CONSUMER_BLOCK) +
653                      (PI_ALIGN_K_DESC_BLK - 1);
654         if (bp->kmalloced)
655                 dma_free_coherent(bdev, alloc_size,
656                                   bp->kmalloced, bp->kmalloced_dma);
657
658 err_out_unmap:
659         if (dfx_use_mmio)
660                 iounmap(bp->base.mem);
661
662 err_out_esic_region:
663         if (bar_start[2] != 0)
664                 release_region(bar_start[2], bar_len[2]);
665
666 err_out_bh_region:
667         if (bar_start[1] != 0)
668                 release_region(bar_start[1], bar_len[1]);
669
670 err_out_csr_region:
671         if (dfx_use_mmio)
672                 release_mem_region(bar_start[0], bar_len[0]);
673         else
674                 release_region(bar_start[0], bar_len[0]);
675
676 err_out_disable:
677         if (dfx_bus_pci)
678                 pci_disable_device(to_pci_dev(bdev));
679
680 err_out:
681         free_netdev(dev);
682         return err;
683 }
684
685
686 /*
687  * ================
688  * = dfx_bus_init =
689  * ================
690  *
691  * Overview:
692  *   Initializes the bus-specific controller logic.
693  *
694  * Returns:
695  *   None
696  *
697  * Arguments:
698  *   dev - pointer to device information
699  *
700  * Functional Description:
701  *   Determine and save adapter IRQ in device table,
702  *   then perform bus-specific logic initialization.
703  *
704  * Return Codes:
705  *   None
706  *
707  * Assumptions:
708  *   bp->base has already been set with the proper
709  *       base I/O address for this device.
710  *
711  * Side Effects:
712  *   Interrupts are enabled at the adapter bus-specific logic.
713  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
714  *   enabled yet.
715  */
716
717 static void dfx_bus_init(struct net_device *dev)
718 {
719         DFX_board_t *bp = netdev_priv(dev);
720         struct device *bdev = bp->bus_dev;
721         int dfx_bus_pci = dev_is_pci(bdev);
722         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
723         int dfx_bus_tc = DFX_BUS_TC(bdev);
724         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
725         u8 val;
726
727         DBG_printk("In dfx_bus_init...\n");
728
729         /* Initialize a pointer back to the net_device struct */
730         bp->dev = dev;
731
732         /* Initialize adapter based on bus type */
733
734         if (dfx_bus_tc)
735                 dev->irq = to_tc_dev(bdev)->interrupt;
736         if (dfx_bus_eisa) {
737                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
738
739                 /* Disable the board before fiddling with the decoders.  */
740                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
741
742                 /* Get the interrupt level from the ESIC chip.  */
743                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
744                 val &= PI_CONFIG_STAT_0_M_IRQ;
745                 val >>= PI_CONFIG_STAT_0_V_IRQ;
746
747                 switch (val) {
748                 case PI_CONFIG_STAT_0_IRQ_K_9:
749                         dev->irq = 9;
750                         break;
751
752                 case PI_CONFIG_STAT_0_IRQ_K_10:
753                         dev->irq = 10;
754                         break;
755
756                 case PI_CONFIG_STAT_0_IRQ_K_11:
757                         dev->irq = 11;
758                         break;
759
760                 case PI_CONFIG_STAT_0_IRQ_K_15:
761                         dev->irq = 15;
762                         break;
763                 }
764
765                 /*
766                  * Enable memory decoding (MEMCS1) and/or port decoding
767                  * (IOCS1/IOCS0) as appropriate in Function Control
768                  * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
769                  * taking 16 32-bit words, while IOCS1 is used for the
770                  * Burst Holdoff register, taking a single 32-bit word
771                  * only.  We use the slot-specific I/O range as per the
772                  * ESIC spec, that is set bits 15:12 in the mask registers
773                  * to mask them out.
774                  */
775
776                 /* Set the decode range of the board.  */
777                 val = 0;
778                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
779                 val = PI_DEFEA_K_CSR_IO;
780                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
781
782                 val = PI_IO_CMP_M_SLOT;
783                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
784                 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
785                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
786
787                 val = 0;
788                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
789                 val = PI_DEFEA_K_BURST_HOLDOFF;
790                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
791
792                 val = PI_IO_CMP_M_SLOT;
793                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
794                 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
795                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
796
797                 /* Enable the decoders.  */
798                 val = PI_FUNCTION_CNTRL_M_IOCS1;
799                 if (dfx_use_mmio)
800                         val |= PI_FUNCTION_CNTRL_M_MEMCS1;
801                 else
802                         val |= PI_FUNCTION_CNTRL_M_IOCS0;
803                 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
804
805                 /*
806                  * Enable access to the rest of the module
807                  * (including PDQ and packet memory).
808                  */
809                 val = PI_SLOT_CNTRL_M_ENB;
810                 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
811
812                 /*
813                  * Map PDQ registers into memory or port space.  This is
814                  * done with a bit in the Burst Holdoff register.
815                  */
816                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
817                 if (dfx_use_mmio)
818                         val |= PI_BURST_HOLDOFF_M_MEM_MAP;
819                 else
820                         val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
821                 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
822
823                 /* Enable interrupts at EISA bus interface chip (ESIC) */
824                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
825                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
826                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
827         }
828         if (dfx_bus_pci) {
829                 struct pci_dev *pdev = to_pci_dev(bdev);
830
831                 /* Get the interrupt level from the PCI Configuration Table */
832
833                 dev->irq = pdev->irq;
834
835                 /* Check Latency Timer and set if less than minimal */
836
837                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
838                 if (val < PFI_K_LAT_TIMER_MIN) {
839                         val = PFI_K_LAT_TIMER_DEF;
840                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
841                 }
842
843                 /* Enable interrupts at PCI bus interface chip (PFI) */
844                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
845                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
846         }
847 }
848
849 /*
850  * ==================
851  * = dfx_bus_uninit =
852  * ==================
853  *
854  * Overview:
855  *   Uninitializes the bus-specific controller logic.
856  *
857  * Returns:
858  *   None
859  *
860  * Arguments:
861  *   dev - pointer to device information
862  *
863  * Functional Description:
864  *   Perform bus-specific logic uninitialization.
865  *
866  * Return Codes:
867  *   None
868  *
869  * Assumptions:
870  *   bp->base has already been set with the proper
871  *       base I/O address for this device.
872  *
873  * Side Effects:
874  *   Interrupts are disabled at the adapter bus-specific logic.
875  */
876
877 static void dfx_bus_uninit(struct net_device *dev)
878 {
879         DFX_board_t *bp = netdev_priv(dev);
880         struct device *bdev = bp->bus_dev;
881         int dfx_bus_pci = dev_is_pci(bdev);
882         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
883         u8 val;
884
885         DBG_printk("In dfx_bus_uninit...\n");
886
887         /* Uninitialize adapter based on bus type */
888
889         if (dfx_bus_eisa) {
890                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
891
892                 /* Disable interrupts at EISA bus interface chip (ESIC) */
893                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
894                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
895                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
896
897                 /* Disable the board.  */
898                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
899
900                 /* Disable memory and port decoders.  */
901                 outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
902         }
903         if (dfx_bus_pci) {
904                 /* Disable interrupts at PCI bus interface chip (PFI) */
905                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
906         }
907 }
908
909
910 /*
911  * ========================
912  * = dfx_bus_config_check =
913  * ========================
914  *
915  * Overview:
916  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
917  *   are illegal, then this routine will set new defaults.
918  *
919  * Returns:
920  *   None
921  *
922  * Arguments:
923  *   bp - pointer to board information
924  *
925  * Functional Description:
926  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
927  *   PDQ, and all FDDI PCI controllers, all values are legal.
928  *
929  * Return Codes:
930  *   None
931  *
932  * Assumptions:
933  *   dfx_adap_init has NOT been called yet so burst size and other items have
934  *   not been set.
935  *
936  * Side Effects:
937  *   None
938  */
939
940 static void dfx_bus_config_check(DFX_board_t *bp)
941 {
942         struct device __maybe_unused *bdev = bp->bus_dev;
943         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
944         int     status;                         /* return code from adapter port control call */
945         u32     host_data;                      /* LW data returned from port control call */
946
947         DBG_printk("In dfx_bus_config_check...\n");
948
949         /* Configuration check only valid for EISA adapter */
950
951         if (dfx_bus_eisa) {
952                 /*
953                  * First check if revision 2 EISA controller.  Rev. 1 cards used
954                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
955                  * cards used PDQ revision E, so no workaround needed in this
956                  * case, either.  Only Rev. 2 cards used either Rev. D or E
957                  * chips, so we must verify the chip revision on Rev. 2 cards.
958                  */
959                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
960                         /*
961                          * Revision 2 FDDI EISA controller found,
962                          * so let's check PDQ revision of adapter.
963                          */
964                         status = dfx_hw_port_ctrl_req(bp,
965                                                                                         PI_PCTRL_M_SUB_CMD,
966                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
967                                                                                         0,
968                                                                                         &host_data);
969                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
970                                 {
971                                 /*
972                                  * Either we couldn't determine the PDQ revision, or
973                                  * we determined that it is at revision D.  In either case,
974                                  * we need to implement the workaround.
975                                  */
976
977                                 /* Ensure that the burst size is set to 8 longwords or less */
978
979                                 switch (bp->burst_size)
980                                         {
981                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
982                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
983                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
984                                                 break;
985
986                                         default:
987                                                 break;
988                                         }
989
990                                 /* Ensure that full-duplex mode is not enabled */
991
992                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
993                                 }
994                         }
995                 }
996         }
997
998
999 /*
1000  * ===================
1001  * = dfx_driver_init =
1002  * ===================
1003  *
1004  * Overview:
1005  *   Initializes remaining adapter board structure information
1006  *   and makes sure adapter is in a safe state prior to dfx_open().
1007  *
1008  * Returns:
1009  *   Condition code
1010  *
1011  * Arguments:
1012  *   dev - pointer to device information
1013  *   print_name - printable device name
1014  *
1015  * Functional Description:
1016  *   This function allocates additional resources such as the host memory
1017  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1018  *       Remaining bus initialization steps are also completed.  The adapter
1019  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1020  *   must call dfx_open() to open the adapter and bring it on-line.
1021  *
1022  * Return Codes:
1023  *   DFX_K_SUCCESS      - initialization succeeded
1024  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
1025  *                                              or read adapter MAC address
1026  *
1027  * Assumptions:
1028  *   Memory allocated from pci_alloc_consistent() call is physically
1029  *   contiguous, locked memory.
1030  *
1031  * Side Effects:
1032  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1033  *   returning from this routine.
1034  */
1035
1036 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1037                            resource_size_t bar_start)
1038 {
1039         DFX_board_t *bp = netdev_priv(dev);
1040         struct device *bdev = bp->bus_dev;
1041         int dfx_bus_pci = dev_is_pci(bdev);
1042         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1043         int dfx_bus_tc = DFX_BUS_TC(bdev);
1044         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1045         int alloc_size;                 /* total buffer size needed */
1046         char *top_v, *curr_v;           /* virtual addrs into memory block */
1047         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
1048         u32 data;                       /* host data register value */
1049         __le32 le32;
1050         char *board_name = NULL;
1051
1052         DBG_printk("In dfx_driver_init...\n");
1053
1054         /* Initialize bus-specific hardware registers */
1055
1056         dfx_bus_init(dev);
1057
1058         /*
1059          * Initialize default values for configurable parameters
1060          *
1061          * Note: All of these parameters are ones that a user may
1062          *       want to customize.  It'd be nice to break these
1063          *               out into Space.c or someplace else that's more
1064          *               accessible/understandable than this file.
1065          */
1066
1067         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
1068         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
1069         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1070         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1071
1072         /*
1073          * Ensure that HW configuration is OK
1074          *
1075          * Note: Depending on the hardware revision, we may need to modify
1076          *       some of the configurable parameters to workaround hardware
1077          *       limitations.  We'll perform this configuration check AFTER
1078          *       setting the parameters to their default values.
1079          */
1080
1081         dfx_bus_config_check(bp);
1082
1083         /* Disable PDQ interrupts first */
1084
1085         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1086
1087         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1088
1089         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1090
1091         /*  Read the factory MAC address from the adapter then save it */
1092
1093         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1094                                  &data) != DFX_K_SUCCESS) {
1095                 printk("%s: Could not read adapter factory MAC address!\n",
1096                        print_name);
1097                 return DFX_K_FAILURE;
1098         }
1099         le32 = cpu_to_le32(data);
1100         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1101
1102         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1103                                  &data) != DFX_K_SUCCESS) {
1104                 printk("%s: Could not read adapter factory MAC address!\n",
1105                        print_name);
1106                 return DFX_K_FAILURE;
1107         }
1108         le32 = cpu_to_le32(data);
1109         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1110
1111         /*
1112          * Set current address to factory address
1113          *
1114          * Note: Node address override support is handled through
1115          *       dfx_ctl_set_mac_address.
1116          */
1117
1118         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1119         if (dfx_bus_tc)
1120                 board_name = "DEFTA";
1121         if (dfx_bus_eisa)
1122                 board_name = "DEFEA";
1123         if (dfx_bus_pci)
1124                 board_name = "DEFPA";
1125         pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1126                 print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1127                 (long long)bar_start, dev->irq, dev->dev_addr);
1128
1129         /*
1130          * Get memory for descriptor block, consumer block, and other buffers
1131          * that need to be DMA read or written to by the adapter.
1132          */
1133
1134         alloc_size = sizeof(PI_DESCR_BLOCK) +
1135                                         PI_CMD_REQ_K_SIZE_MAX +
1136                                         PI_CMD_RSP_K_SIZE_MAX +
1137 #ifndef DYNAMIC_BUFFERS
1138                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1139 #endif
1140                                         sizeof(PI_CONSUMER_BLOCK) +
1141                                         (PI_ALIGN_K_DESC_BLK - 1);
1142         bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1143                                                    &bp->kmalloced_dma,
1144                                                    GFP_ATOMIC);
1145         if (top_v == NULL)
1146                 return DFX_K_FAILURE;
1147
1148         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1149
1150         /*
1151          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1152          *  plus the amount of memory needed was allocated.  The physical address
1153          *      is now 8K aligned.  By carving up the memory in a specific order,
1154          *  we'll guarantee the alignment requirements for all other structures.
1155          *
1156          *  Note: If the assumptions change regarding the non-paged, non-cached,
1157          *                physically contiguous nature of the memory block or the address
1158          *                alignments, then we'll need to implement a different algorithm
1159          *                for allocating the needed memory.
1160          */
1161
1162         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1163         curr_v = top_v + (curr_p - top_p);
1164
1165         /* Reserve space for descriptor block */
1166
1167         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1168         bp->descr_block_phys = curr_p;
1169         curr_v += sizeof(PI_DESCR_BLOCK);
1170         curr_p += sizeof(PI_DESCR_BLOCK);
1171
1172         /* Reserve space for command request buffer */
1173
1174         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1175         bp->cmd_req_phys = curr_p;
1176         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1177         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1178
1179         /* Reserve space for command response buffer */
1180
1181         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1182         bp->cmd_rsp_phys = curr_p;
1183         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1184         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1185
1186         /* Reserve space for the LLC host receive queue buffers */
1187
1188         bp->rcv_block_virt = curr_v;
1189         bp->rcv_block_phys = curr_p;
1190
1191 #ifndef DYNAMIC_BUFFERS
1192         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1193         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1194 #endif
1195
1196         /* Reserve space for the consumer block */
1197
1198         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1199         bp->cons_block_phys = curr_p;
1200
1201         /* Display virtual and physical addresses if debug driver */
1202
1203         DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1204                    print_name, bp->descr_block_virt, &bp->descr_block_phys);
1205         DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1206                    print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1207         DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1208                    print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1209         DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1210                    print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1211         DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1212                    print_name, bp->cons_block_virt, &bp->cons_block_phys);
1213
1214         return DFX_K_SUCCESS;
1215 }
1216
1217
1218 /*
1219  * =================
1220  * = dfx_adap_init =
1221  * =================
1222  *
1223  * Overview:
1224  *   Brings the adapter to the link avail/link unavailable state.
1225  *
1226  * Returns:
1227  *   Condition code
1228  *
1229  * Arguments:
1230  *   bp - pointer to board information
1231  *   get_buffers - non-zero if buffers to be allocated
1232  *
1233  * Functional Description:
1234  *   Issues the low-level firmware/hardware calls necessary to bring
1235  *   the adapter up, or to properly reset and restore adapter during
1236  *   run-time.
1237  *
1238  * Return Codes:
1239  *   DFX_K_SUCCESS - Adapter brought up successfully
1240  *   DFX_K_FAILURE - Adapter initialization failed
1241  *
1242  * Assumptions:
1243  *   bp->reset_type should be set to a valid reset type value before
1244  *   calling this routine.
1245  *
1246  * Side Effects:
1247  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1248  *   upon a successful return of this routine.
1249  */
1250
1251 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1252         {
1253         DBG_printk("In dfx_adap_init...\n");
1254
1255         /* Disable PDQ interrupts first */
1256
1257         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1258
1259         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1260
1261         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1262                 {
1263                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1264                 return DFX_K_FAILURE;
1265                 }
1266
1267         /*
1268          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1269          * so we'll acknowledge all Type 0 interrupts now before continuing.
1270          */
1271
1272         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1273
1274         /*
1275          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1276          *
1277          * Note: We only need to clear host copies of these registers.  The PDQ reset
1278          *       takes care of the on-board register values.
1279          */
1280
1281         bp->cmd_req_reg.lword   = 0;
1282         bp->cmd_rsp_reg.lword   = 0;
1283         bp->rcv_xmt_reg.lword   = 0;
1284
1285         /* Clear consumer block before going to DMA_AVAILABLE state */
1286
1287         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1288
1289         /* Initialize the DMA Burst Size */
1290
1291         if (dfx_hw_port_ctrl_req(bp,
1292                                                         PI_PCTRL_M_SUB_CMD,
1293                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1294                                                         bp->burst_size,
1295                                                         NULL) != DFX_K_SUCCESS)
1296                 {
1297                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1298                 return DFX_K_FAILURE;
1299                 }
1300
1301         /*
1302          * Set base address of Consumer Block
1303          *
1304          * Assumption: 32-bit physical address of consumer block is 64 byte
1305          *                         aligned.  That is, bits 0-5 of the address must be zero.
1306          */
1307
1308         if (dfx_hw_port_ctrl_req(bp,
1309                                                         PI_PCTRL_M_CONS_BLOCK,
1310                                                         bp->cons_block_phys,
1311                                                         0,
1312                                                         NULL) != DFX_K_SUCCESS)
1313                 {
1314                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1315                 return DFX_K_FAILURE;
1316                 }
1317
1318         /*
1319          * Set the base address of Descriptor Block and bring adapter
1320          * to DMA_AVAILABLE state.
1321          *
1322          * Note: We also set the literal and data swapping requirements
1323          *       in this command.
1324          *
1325          * Assumption: 32-bit physical address of descriptor block
1326          *       is 8Kbyte aligned.
1327          */
1328         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1329                                  (u32)(bp->descr_block_phys |
1330                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1331                                  0, NULL) != DFX_K_SUCCESS) {
1332                 printk("%s: Could not set descriptor block address!\n",
1333                        bp->dev->name);
1334                 return DFX_K_FAILURE;
1335         }
1336
1337         /* Set transmit flush timeout value */
1338
1339         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1340         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1341         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1342         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1343         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1344         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1345                 {
1346                 printk("%s: DMA command request failed!\n", bp->dev->name);
1347                 return DFX_K_FAILURE;
1348                 }
1349
1350         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1351
1352         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1353         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1354         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1355         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1356         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1357         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1358         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1359         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1360         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1361                 {
1362                 printk("%s: DMA command request failed!\n", bp->dev->name);
1363                 return DFX_K_FAILURE;
1364                 }
1365
1366         /* Initialize adapter CAM */
1367
1368         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1369                 {
1370                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1371                 return DFX_K_FAILURE;
1372                 }
1373
1374         /* Initialize adapter filters */
1375
1376         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1377                 {
1378                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1379                 return DFX_K_FAILURE;
1380                 }
1381
1382         /*
1383          * Remove any existing dynamic buffers (i.e. if the adapter is being
1384          * reinitialized)
1385          */
1386
1387         if (get_buffers)
1388                 dfx_rcv_flush(bp);
1389
1390         /* Initialize receive descriptor block and produce buffers */
1391
1392         if (dfx_rcv_init(bp, get_buffers))
1393                 {
1394                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1395                 if (get_buffers)
1396                         dfx_rcv_flush(bp);
1397                 return DFX_K_FAILURE;
1398                 }
1399
1400         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1401
1402         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1403         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1404                 {
1405                 printk("%s: Start command failed\n", bp->dev->name);
1406                 if (get_buffers)
1407                         dfx_rcv_flush(bp);
1408                 return DFX_K_FAILURE;
1409                 }
1410
1411         /* Initialization succeeded, reenable PDQ interrupts */
1412
1413         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1414         return DFX_K_SUCCESS;
1415         }
1416
1417
1418 /*
1419  * ============
1420  * = dfx_open =
1421  * ============
1422  *
1423  * Overview:
1424  *   Opens the adapter
1425  *
1426  * Returns:
1427  *   Condition code
1428  *
1429  * Arguments:
1430  *   dev - pointer to device information
1431  *
1432  * Functional Description:
1433  *   This function brings the adapter to an operational state.
1434  *
1435  * Return Codes:
1436  *   0           - Adapter was successfully opened
1437  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1438  *
1439  * Assumptions:
1440  *   This routine should only be called for a device that was
1441  *   initialized successfully.
1442  *
1443  * Side Effects:
1444  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1445  *   if the open is successful.
1446  */
1447
1448 static int dfx_open(struct net_device *dev)
1449 {
1450         DFX_board_t *bp = netdev_priv(dev);
1451         int ret;
1452
1453         DBG_printk("In dfx_open...\n");
1454
1455         /* Register IRQ - support shared interrupts by passing device ptr */
1456
1457         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1458                           dev);
1459         if (ret) {
1460                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1461                 return ret;
1462         }
1463
1464         /*
1465          * Set current address to factory MAC address
1466          *
1467          * Note: We've already done this step in dfx_driver_init.
1468          *       However, it's possible that a user has set a node
1469          *               address override, then closed and reopened the
1470          *               adapter.  Unless we reset the device address field
1471          *               now, we'll continue to use the existing modified
1472          *               address.
1473          */
1474
1475         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1476
1477         /* Clear local unicast/multicast address tables and counts */
1478
1479         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1480         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1481         bp->uc_count = 0;
1482         bp->mc_count = 0;
1483
1484         /* Disable promiscuous filter settings */
1485
1486         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1487         bp->group_prom          = PI_FSTATE_K_BLOCK;
1488
1489         spin_lock_init(&bp->lock);
1490
1491         /* Reset and initialize adapter */
1492
1493         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1494         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1495         {
1496                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1497                 free_irq(dev->irq, dev);
1498                 return -EAGAIN;
1499         }
1500
1501         /* Set device structure info */
1502         netif_start_queue(dev);
1503         return 0;
1504 }
1505
1506
1507 /*
1508  * =============
1509  * = dfx_close =
1510  * =============
1511  *
1512  * Overview:
1513  *   Closes the device/module.
1514  *
1515  * Returns:
1516  *   Condition code
1517  *
1518  * Arguments:
1519  *   dev - pointer to device information
1520  *
1521  * Functional Description:
1522  *   This routine closes the adapter and brings it to a safe state.
1523  *   The interrupt service routine is deregistered with the OS.
1524  *   The adapter can be opened again with another call to dfx_open().
1525  *
1526  * Return Codes:
1527  *   Always return 0.
1528  *
1529  * Assumptions:
1530  *   No further requests for this adapter are made after this routine is
1531  *   called.  dfx_open() can be called to reset and reinitialize the
1532  *   adapter.
1533  *
1534  * Side Effects:
1535  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1536  *   routine.
1537  */
1538
1539 static int dfx_close(struct net_device *dev)
1540 {
1541         DFX_board_t *bp = netdev_priv(dev);
1542
1543         DBG_printk("In dfx_close...\n");
1544
1545         /* Disable PDQ interrupts first */
1546
1547         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1548
1549         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1550
1551         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1552
1553         /*
1554          * Flush any pending transmit buffers
1555          *
1556          * Note: It's important that we flush the transmit buffers
1557          *               BEFORE we clear our copy of the Type 2 register.
1558          *               Otherwise, we'll have no idea how many buffers
1559          *               we need to free.
1560          */
1561
1562         dfx_xmt_flush(bp);
1563
1564         /*
1565          * Clear Type 1 and Type 2 registers after adapter reset
1566          *
1567          * Note: Even though we're closing the adapter, it's
1568          *       possible that an interrupt will occur after
1569          *               dfx_close is called.  Without some assurance to
1570          *               the contrary we want to make sure that we don't
1571          *               process receive and transmit LLC frames and update
1572          *               the Type 2 register with bad information.
1573          */
1574
1575         bp->cmd_req_reg.lword   = 0;
1576         bp->cmd_rsp_reg.lword   = 0;
1577         bp->rcv_xmt_reg.lword   = 0;
1578
1579         /* Clear consumer block for the same reason given above */
1580
1581         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1582
1583         /* Release all dynamically allocate skb in the receive ring. */
1584
1585         dfx_rcv_flush(bp);
1586
1587         /* Clear device structure flags */
1588
1589         netif_stop_queue(dev);
1590
1591         /* Deregister (free) IRQ */
1592
1593         free_irq(dev->irq, dev);
1594
1595         return 0;
1596 }
1597
1598
1599 /*
1600  * ======================
1601  * = dfx_int_pr_halt_id =
1602  * ======================
1603  *
1604  * Overview:
1605  *   Displays halt id's in string form.
1606  *
1607  * Returns:
1608  *   None
1609  *
1610  * Arguments:
1611  *   bp - pointer to board information
1612  *
1613  * Functional Description:
1614  *   Determine current halt id and display appropriate string.
1615  *
1616  * Return Codes:
1617  *   None
1618  *
1619  * Assumptions:
1620  *   None
1621  *
1622  * Side Effects:
1623  *   None
1624  */
1625
1626 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1627         {
1628         PI_UINT32       port_status;                    /* PDQ port status register value */
1629         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1630
1631         /* Read the latest port status */
1632
1633         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1634
1635         /* Display halt state transition information */
1636
1637         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1638         switch (halt_id)
1639                 {
1640                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1641                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1642                         break;
1643
1644                 case PI_HALT_ID_K_PARITY_ERROR:
1645                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1646                         break;
1647
1648                 case PI_HALT_ID_K_HOST_DIR_HALT:
1649                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1650                         break;
1651
1652                 case PI_HALT_ID_K_SW_FAULT:
1653                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1654                         break;
1655
1656                 case PI_HALT_ID_K_HW_FAULT:
1657                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1658                         break;
1659
1660                 case PI_HALT_ID_K_PC_TRACE:
1661                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1662                         break;
1663
1664                 case PI_HALT_ID_K_DMA_ERROR:
1665                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1666                         break;
1667
1668                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1669                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1670                         break;
1671
1672                 case PI_HALT_ID_K_BUS_EXCEPTION:
1673                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1674                         break;
1675
1676                 default:
1677                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1678                         break;
1679                 }
1680         }
1681
1682
1683 /*
1684  * ==========================
1685  * = dfx_int_type_0_process =
1686  * ==========================
1687  *
1688  * Overview:
1689  *   Processes Type 0 interrupts.
1690  *
1691  * Returns:
1692  *   None
1693  *
1694  * Arguments:
1695  *   bp - pointer to board information
1696  *
1697  * Functional Description:
1698  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1699  *   is a serious fault on the adapter, then an error message is displayed
1700  *   and the adapter is reset.
1701  *
1702  *   One tricky potential timing window is the rapid succession of "link avail"
1703  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1704  *   interrupt must be done before reading the state from the Port Status
1705  *   register.  This is true because a state change could occur after reading
1706  *   the data, but before acknowledging the interrupt.  If this state change
1707  *   does happen, it would be lost because the driver is using the old state,
1708  *   and it will never know about the new state because it subsequently
1709  *   acknowledges the state change interrupt.
1710  *
1711  *          INCORRECT                                      CORRECT
1712  *      read type 0 int reasons                   read type 0 int reasons
1713  *      read adapter state                        ack type 0 interrupts
1714  *      ack type 0 interrupts                     read adapter state
1715  *      ... process interrupt ...                 ... process interrupt ...
1716  *
1717  * Return Codes:
1718  *   None
1719  *
1720  * Assumptions:
1721  *   None
1722  *
1723  * Side Effects:
1724  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1725  *   or if the port status indicates that the adapter is halted.  The driver
1726  *   is responsible for reinitializing the adapter with the current CAM
1727  *   contents and adapter filter settings.
1728  */
1729
1730 static void dfx_int_type_0_process(DFX_board_t  *bp)
1731
1732         {
1733         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1734         PI_UINT32       state;                          /* current adap state (from port status) */
1735
1736         /*
1737          * Read host interrupt Type 0 register to determine which Type 0
1738          * interrupts are pending.  Immediately write it back out to clear
1739          * those interrupts.
1740          */
1741
1742         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1743         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1744
1745         /* Check for Type 0 error interrupts */
1746
1747         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1748                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1749                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1750                 {
1751                 /* Check for Non-Existent Memory error */
1752
1753                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1754                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1755
1756                 /* Check for Packet Memory Parity error */
1757
1758                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1759                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1760
1761                 /* Check for Host Bus Parity error */
1762
1763                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1764                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1765
1766                 /* Reset adapter and bring it back on-line */
1767
1768                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1769                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1770                 printk("%s: Resetting adapter...\n", bp->dev->name);
1771                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1772                         {
1773                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1774                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1775                         return;
1776                         }
1777                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1778                 return;
1779                 }
1780
1781         /* Check for transmit flush interrupt */
1782
1783         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1784                 {
1785                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1786
1787                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1788                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1789                 (void) dfx_hw_port_ctrl_req(bp,
1790                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1791                                                                         0,
1792                                                                         0,
1793                                                                         NULL);
1794                 }
1795
1796         /* Check for adapter state change */
1797
1798         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1799                 {
1800                 /* Get latest adapter state */
1801
1802                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1803                 if (state == PI_STATE_K_HALTED)
1804                         {
1805                         /*
1806                          * Adapter has transitioned to HALTED state, try to reset
1807                          * adapter to bring it back on-line.  If reset fails,
1808                          * leave the adapter in the broken state.
1809                          */
1810
1811                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1812                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1813
1814                         /* Reset adapter and bring it back on-line */
1815
1816                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1817                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1818                         printk("%s: Resetting adapter...\n", bp->dev->name);
1819                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1820                                 {
1821                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1822                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1823                                 return;
1824                                 }
1825                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1826                         }
1827                 else if (state == PI_STATE_K_LINK_AVAIL)
1828                         {
1829                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1830                         }
1831                 }
1832         }
1833
1834
1835 /*
1836  * ==================
1837  * = dfx_int_common =
1838  * ==================
1839  *
1840  * Overview:
1841  *   Interrupt service routine (ISR)
1842  *
1843  * Returns:
1844  *   None
1845  *
1846  * Arguments:
1847  *   bp - pointer to board information
1848  *
1849  * Functional Description:
1850  *   This is the ISR which processes incoming adapter interrupts.
1851  *
1852  * Return Codes:
1853  *   None
1854  *
1855  * Assumptions:
1856  *   This routine assumes PDQ interrupts have not been disabled.
1857  *   When interrupts are disabled at the PDQ, the Port Status register
1858  *   is automatically cleared.  This routine uses the Port Status
1859  *   register value to determine whether a Type 0 interrupt occurred,
1860  *   so it's important that adapter interrupts are not normally
1861  *   enabled/disabled at the PDQ.
1862  *
1863  *   It's vital that this routine is NOT reentered for the
1864  *   same board and that the OS is not in another section of
1865  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1866  *   different thread.
1867  *
1868  * Side Effects:
1869  *   Pending interrupts are serviced.  Depending on the type of
1870  *   interrupt, acknowledging and clearing the interrupt at the
1871  *   PDQ involves writing a register to clear the interrupt bit
1872  *   or updating completion indices.
1873  */
1874
1875 static void dfx_int_common(struct net_device *dev)
1876 {
1877         DFX_board_t *bp = netdev_priv(dev);
1878         PI_UINT32       port_status;            /* Port Status register */
1879
1880         /* Process xmt interrupts - frequent case, so always call this routine */
1881
1882         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1883                 netif_wake_queue(dev);
1884
1885         /* Process rcv interrupts - frequent case, so always call this routine */
1886
1887         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1888
1889         /*
1890          * Transmit and receive producer and completion indices are updated on the
1891          * adapter by writing to the Type 2 Producer register.  Since the frequent
1892          * case is that we'll be processing either LLC transmit or receive buffers,
1893          * we'll optimize I/O writes by doing a single register write here.
1894          */
1895
1896         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1897
1898         /* Read PDQ Port Status register to find out which interrupts need processing */
1899
1900         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1901
1902         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1903
1904         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1905                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1906         }
1907
1908
1909 /*
1910  * =================
1911  * = dfx_interrupt =
1912  * =================
1913  *
1914  * Overview:
1915  *   Interrupt processing routine
1916  *
1917  * Returns:
1918  *   Whether a valid interrupt was seen.
1919  *
1920  * Arguments:
1921  *   irq        - interrupt vector
1922  *   dev_id     - pointer to device information
1923  *
1924  * Functional Description:
1925  *   This routine calls the interrupt processing routine for this adapter.  It
1926  *   disables and reenables adapter interrupts, as appropriate.  We can support
1927  *   shared interrupts since the incoming dev_id pointer provides our device
1928  *   structure context.
1929  *
1930  * Return Codes:
1931  *   IRQ_HANDLED - an IRQ was handled.
1932  *   IRQ_NONE    - no IRQ was handled.
1933  *
1934  * Assumptions:
1935  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1936  *   on Intel-based systems) is done by the operating system outside this
1937  *   routine.
1938  *
1939  *       System interrupts are enabled through this call.
1940  *
1941  * Side Effects:
1942  *   Interrupts are disabled, then reenabled at the adapter.
1943  */
1944
1945 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1946 {
1947         struct net_device *dev = dev_id;
1948         DFX_board_t *bp = netdev_priv(dev);
1949         struct device *bdev = bp->bus_dev;
1950         int dfx_bus_pci = dev_is_pci(bdev);
1951         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1952         int dfx_bus_tc = DFX_BUS_TC(bdev);
1953
1954         /* Service adapter interrupts */
1955
1956         if (dfx_bus_pci) {
1957                 u32 status;
1958
1959                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1960                 if (!(status & PFI_STATUS_M_PDQ_INT))
1961                         return IRQ_NONE;
1962
1963                 spin_lock(&bp->lock);
1964
1965                 /* Disable PDQ-PFI interrupts at PFI */
1966                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1967                                     PFI_MODE_M_DMA_ENB);
1968
1969                 /* Call interrupt service routine for this adapter */
1970                 dfx_int_common(dev);
1971
1972                 /* Clear PDQ interrupt status bit and reenable interrupts */
1973                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1974                                     PFI_STATUS_M_PDQ_INT);
1975                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1976                                     (PFI_MODE_M_PDQ_INT_ENB |
1977                                      PFI_MODE_M_DMA_ENB));
1978
1979                 spin_unlock(&bp->lock);
1980         }
1981         if (dfx_bus_eisa) {
1982                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1983                 u8 status;
1984
1985                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1986                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1987                         return IRQ_NONE;
1988
1989                 spin_lock(&bp->lock);
1990
1991                 /* Disable interrupts at the ESIC */
1992                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1993                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1994
1995                 /* Call interrupt service routine for this adapter */
1996                 dfx_int_common(dev);
1997
1998                 /* Reenable interrupts at the ESIC */
1999                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2000                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
2001                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002
2003                 spin_unlock(&bp->lock);
2004         }
2005         if (dfx_bus_tc) {
2006                 u32 status;
2007
2008                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2009                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2010                                 PI_PSTATUS_M_XMT_DATA_PENDING |
2011                                 PI_PSTATUS_M_SMT_HOST_PENDING |
2012                                 PI_PSTATUS_M_UNSOL_PENDING |
2013                                 PI_PSTATUS_M_CMD_RSP_PENDING |
2014                                 PI_PSTATUS_M_CMD_REQ_PENDING |
2015                                 PI_PSTATUS_M_TYPE_0_PENDING)))
2016                         return IRQ_NONE;
2017
2018                 spin_lock(&bp->lock);
2019
2020                 /* Call interrupt service routine for this adapter */
2021                 dfx_int_common(dev);
2022
2023                 spin_unlock(&bp->lock);
2024         }
2025
2026         return IRQ_HANDLED;
2027 }
2028
2029
2030 /*
2031  * =====================
2032  * = dfx_ctl_get_stats =
2033  * =====================
2034  *
2035  * Overview:
2036  *   Get statistics for FDDI adapter
2037  *
2038  * Returns:
2039  *   Pointer to FDDI statistics structure
2040  *
2041  * Arguments:
2042  *   dev - pointer to device information
2043  *
2044  * Functional Description:
2045  *   Gets current MIB objects from adapter, then
2046  *   returns FDDI statistics structure as defined
2047  *   in if_fddi.h.
2048  *
2049  *   Note: Since the FDDI statistics structure is
2050  *   still new and the device structure doesn't
2051  *   have an FDDI-specific get statistics handler,
2052  *   we'll return the FDDI statistics structure as
2053  *   a pointer to an Ethernet statistics structure.
2054  *   That way, at least the first part of the statistics
2055  *   structure can be decoded properly, and it allows
2056  *   "smart" applications to perform a second cast to
2057  *   decode the FDDI-specific statistics.
2058  *
2059  *   We'll have to pay attention to this routine as the
2060  *   device structure becomes more mature and LAN media
2061  *   independent.
2062  *
2063  * Return Codes:
2064  *   None
2065  *
2066  * Assumptions:
2067  *   None
2068  *
2069  * Side Effects:
2070  *   None
2071  */
2072
2073 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2074         {
2075         DFX_board_t *bp = netdev_priv(dev);
2076
2077         /* Fill the bp->stats structure with driver-maintained counters */
2078
2079         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2080         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2081         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2082         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2083         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2084                                    bp->rcv_frame_status_errors +
2085                                    bp->rcv_length_errors;
2086         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2087         bp->stats.gen.rx_dropped = bp->rcv_discards;
2088         bp->stats.gen.tx_dropped = bp->xmt_discards;
2089         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2090         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2091
2092         /* Get FDDI SMT MIB objects */
2093
2094         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2095         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2096                 return (struct net_device_stats *)&bp->stats;
2097
2098         /* Fill the bp->stats structure with the SMT MIB object values */
2099
2100         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2101         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2102         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2103         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2104         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2105         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2106         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2107         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2108         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2109         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2110         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2111         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2112         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2113         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2114         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2115         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2116         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2117         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2118         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2119         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2120         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2121         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2122         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2123         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2124         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2125         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2126         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2127         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2128         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2129         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2130         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2131         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2132         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2133         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2134         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2135         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2136         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2137         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2138         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2139         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2140         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2141         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2142         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2143         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2144         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2145         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2146         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2147         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2148         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2149         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2150         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2151         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2152         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2153         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2154         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2155         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2156         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2157         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2158         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2159         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2160         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2161         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2162         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2163         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2164         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2165         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2166         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2167         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2168         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2169         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2170         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2171         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2172         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2173         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2174         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2175         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2176         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2177         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2178         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2179         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2180         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2181         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2182         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2183         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2184         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2185         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2186         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2187         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2188         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2189         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2190         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2191         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2192
2193         /* Get FDDI counters */
2194
2195         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2196         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2197                 return (struct net_device_stats *)&bp->stats;
2198
2199         /* Fill the bp->stats structure with the FDDI counter values */
2200
2201         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2202         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2203         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2204         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2205         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2206         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2207         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2208         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2209         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2210         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2211         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2212
2213         return (struct net_device_stats *)&bp->stats;
2214         }
2215
2216
2217 /*
2218  * ==============================
2219  * = dfx_ctl_set_multicast_list =
2220  * ==============================
2221  *
2222  * Overview:
2223  *   Enable/Disable LLC frame promiscuous mode reception
2224  *   on the adapter and/or update multicast address table.
2225  *
2226  * Returns:
2227  *   None
2228  *
2229  * Arguments:
2230  *   dev - pointer to device information
2231  *
2232  * Functional Description:
2233  *   This routine follows a fairly simple algorithm for setting the
2234  *   adapter filters and CAM:
2235  *
2236  *              if IFF_PROMISC flag is set
2237  *                      enable LLC individual/group promiscuous mode
2238  *              else
2239  *                      disable LLC individual/group promiscuous mode
2240  *                      if number of incoming multicast addresses >
2241  *                                      (CAM max size - number of unicast addresses in CAM)
2242  *                              enable LLC group promiscuous mode
2243  *                              set driver-maintained multicast address count to zero
2244  *                      else
2245  *                              disable LLC group promiscuous mode
2246  *                              set driver-maintained multicast address count to incoming count
2247  *                      update adapter CAM
2248  *              update adapter filters
2249  *
2250  * Return Codes:
2251  *   None
2252  *
2253  * Assumptions:
2254  *   Multicast addresses are presented in canonical (LSB) format.
2255  *
2256  * Side Effects:
2257  *   On-board adapter CAM and filters are updated.
2258  */
2259
2260 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2261 {
2262         DFX_board_t *bp = netdev_priv(dev);
2263         int                                     i;                      /* used as index in for loop */
2264         struct netdev_hw_addr *ha;
2265
2266         /* Enable LLC frame promiscuous mode, if necessary */
2267
2268         if (dev->flags & IFF_PROMISC)
2269                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2270
2271         /* Else, update multicast address table */
2272
2273         else
2274                 {
2275                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2276                 /*
2277                  * Check whether incoming multicast address count exceeds table size
2278                  *
2279                  * Note: The adapters utilize an on-board 64 entry CAM for
2280                  *       supporting perfect filtering of multicast packets
2281                  *               and bridge functions when adding unicast addresses.
2282                  *               There is no hash function available.  To support
2283                  *               additional multicast addresses, the all multicast
2284                  *               filter (LLC group promiscuous mode) must be enabled.
2285                  *
2286                  *               The firmware reserves two CAM entries for SMT-related
2287                  *               multicast addresses, which leaves 62 entries available.
2288                  *               The following code ensures that we're not being asked
2289                  *               to add more than 62 addresses to the CAM.  If we are,
2290                  *               the driver will enable the all multicast filter.
2291                  *               Should the number of multicast addresses drop below
2292                  *               the high water mark, the filter will be disabled and
2293                  *               perfect filtering will be used.
2294                  */
2295
2296                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2297                         {
2298                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2299                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2300                         }
2301                 else
2302                         {
2303                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2304                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2305                         }
2306
2307                 /* Copy addresses to multicast address table, then update adapter CAM */
2308
2309                 i = 0;
2310                 netdev_for_each_mc_addr(ha, dev)
2311                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2312                                ha->addr, FDDI_K_ALEN);
2313
2314                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2315                         {
2316                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2317                         }
2318                 else
2319                         {
2320                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2321                         }
2322                 }
2323
2324         /* Update adapter filters */
2325
2326         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327                 {
2328                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329                 }
2330         else
2331                 {
2332                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333                 }
2334         }
2335
2336
2337 /*
2338  * ===========================
2339  * = dfx_ctl_set_mac_address =
2340  * ===========================
2341  *
2342  * Overview:
2343  *   Add node address override (unicast address) to adapter
2344  *   CAM and update dev_addr field in device table.
2345  *
2346  * Returns:
2347  *   None
2348  *
2349  * Arguments:
2350  *   dev  - pointer to device information
2351  *   addr - pointer to sockaddr structure containing unicast address to add
2352  *
2353  * Functional Description:
2354  *   The adapter supports node address overrides by adding one or more
2355  *   unicast addresses to the adapter CAM.  This is similar to adding
2356  *   multicast addresses.  In this routine we'll update the driver and
2357  *   device structures with the new address, then update the adapter CAM
2358  *   to ensure that the adapter will copy and strip frames destined and
2359  *   sourced by that address.
2360  *
2361  * Return Codes:
2362  *   Always returns zero.
2363  *
2364  * Assumptions:
2365  *   The address pointed to by addr->sa_data is a valid unicast
2366  *   address and is presented in canonical (LSB) format.
2367  *
2368  * Side Effects:
2369  *   On-board adapter CAM is updated.  On-board adapter filters
2370  *   may be updated.
2371  */
2372
2373 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2374         {
2375         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2376         DFX_board_t *bp = netdev_priv(dev);
2377
2378         /* Copy unicast address to driver-maintained structs and update count */
2379
2380         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2381         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2382         bp->uc_count = 1;
2383
2384         /*
2385          * Verify we're not exceeding the CAM size by adding unicast address
2386          *
2387          * Note: It's possible that before entering this routine we've
2388          *       already filled the CAM with 62 multicast addresses.
2389          *               Since we need to place the node address override into
2390          *               the CAM, we have to check to see that we're not
2391          *               exceeding the CAM size.  If we are, we have to enable
2392          *               the LLC group (multicast) promiscuous mode filter as
2393          *               in dfx_ctl_set_multicast_list.
2394          */
2395
2396         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2397                 {
2398                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2399                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2400
2401                 /* Update adapter filters */
2402
2403                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2404                         {
2405                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2406                         }
2407                 else
2408                         {
2409                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2410                         }
2411                 }
2412
2413         /* Update adapter CAM with new unicast address */
2414
2415         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2416                 {
2417                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2418                 }
2419         else
2420                 {
2421                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2422                 }
2423         return 0;                       /* always return zero */
2424         }
2425
2426
2427 /*
2428  * ======================
2429  * = dfx_ctl_update_cam =
2430  * ======================
2431  *
2432  * Overview:
2433  *   Procedure to update adapter CAM (Content Addressable Memory)
2434  *   with desired unicast and multicast address entries.
2435  *
2436  * Returns:
2437  *   Condition code
2438  *
2439  * Arguments:
2440  *   bp - pointer to board information
2441  *
2442  * Functional Description:
2443  *   Updates adapter CAM with current contents of board structure
2444  *   unicast and multicast address tables.  Since there are only 62
2445  *   free entries in CAM, this routine ensures that the command
2446  *   request buffer is not overrun.
2447  *
2448  * Return Codes:
2449  *   DFX_K_SUCCESS - Request succeeded
2450  *   DFX_K_FAILURE - Request failed
2451  *
2452  * Assumptions:
2453  *   All addresses being added (unicast and multicast) are in canonical
2454  *   order.
2455  *
2456  * Side Effects:
2457  *   On-board adapter CAM is updated.
2458  */
2459
2460 static int dfx_ctl_update_cam(DFX_board_t *bp)
2461         {
2462         int                     i;                              /* used as index */
2463         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2464
2465         /*
2466          * Fill in command request information
2467          *
2468          * Note: Even though both the unicast and multicast address
2469          *       table entries are stored as contiguous 6 byte entries,
2470          *               the firmware address filter set command expects each
2471          *               entry to be two longwords (8 bytes total).  We must be
2472          *               careful to only copy the six bytes of each unicast and
2473          *               multicast table entry into each command entry.  This
2474          *               is also why we must first clear the entire command
2475          *               request buffer.
2476          */
2477
2478         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2479         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2480         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2481
2482         /* Now add unicast addresses to command request buffer, if any */
2483
2484         for (i=0; i < (int)bp->uc_count; i++)
2485                 {
2486                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2487                         {
2488                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2489                         p_addr++;                       /* point to next command entry */
2490                         }
2491                 }
2492
2493         /* Now add multicast addresses to command request buffer, if any */
2494
2495         for (i=0; i < (int)bp->mc_count; i++)
2496                 {
2497                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2498                         {
2499                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2500                         p_addr++;                       /* point to next command entry */
2501                         }
2502                 }
2503
2504         /* Issue command to update adapter CAM, then return */
2505
2506         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507                 return DFX_K_FAILURE;
2508         return DFX_K_SUCCESS;
2509         }
2510
2511
2512 /*
2513  * ==========================
2514  * = dfx_ctl_update_filters =
2515  * ==========================
2516  *
2517  * Overview:
2518  *   Procedure to update adapter filters with desired
2519  *   filter settings.
2520  *
2521  * Returns:
2522  *   Condition code
2523  *
2524  * Arguments:
2525  *   bp - pointer to board information
2526  *
2527  * Functional Description:
2528  *   Enables or disables filter using current filter settings.
2529  *
2530  * Return Codes:
2531  *   DFX_K_SUCCESS - Request succeeded.
2532  *   DFX_K_FAILURE - Request failed.
2533  *
2534  * Assumptions:
2535  *   We must always pass up packets destined to the broadcast
2536  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2537  *   broadcast filter enabled.
2538  *
2539  * Side Effects:
2540  *   On-board adapter filters are updated.
2541  */
2542
2543 static int dfx_ctl_update_filters(DFX_board_t *bp)
2544         {
2545         int     i = 0;                                  /* used as index */
2546
2547         /* Fill in command request information */
2548
2549         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2550
2551         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2552
2553         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2554         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2555
2556         /* Initialize LLC Individual/Group Promiscuous filter */
2557
2558         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2559         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2560
2561         /* Initialize LLC Group Promiscuous filter */
2562
2563         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2564         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2565
2566         /* Terminate the item code list */
2567
2568         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2569
2570         /* Issue command to update adapter filters, then return */
2571
2572         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2573                 return DFX_K_FAILURE;
2574         return DFX_K_SUCCESS;
2575         }
2576
2577
2578 /*
2579  * ======================
2580  * = dfx_hw_dma_cmd_req =
2581  * ======================
2582  *
2583  * Overview:
2584  *   Sends PDQ DMA command to adapter firmware
2585  *
2586  * Returns:
2587  *   Condition code
2588  *
2589  * Arguments:
2590  *   bp - pointer to board information
2591  *
2592  * Functional Description:
2593  *   The command request and response buffers are posted to the adapter in the manner
2594  *   described in the PDQ Port Specification:
2595  *
2596  *              1. Command Response Buffer is posted to adapter.
2597  *              2. Command Request Buffer is posted to adapter.
2598  *              3. Command Request consumer index is polled until it indicates that request
2599  *         buffer has been DMA'd to adapter.
2600  *              4. Command Response consumer index is polled until it indicates that response
2601  *         buffer has been DMA'd from adapter.
2602  *
2603  *   This ordering ensures that a response buffer is already available for the firmware
2604  *   to use once it's done processing the request buffer.
2605  *
2606  * Return Codes:
2607  *   DFX_K_SUCCESS        - DMA command succeeded
2608  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2609  *   DFX_K_HW_TIMEOUT - DMA command timed out
2610  *
2611  * Assumptions:
2612  *   Command request buffer has already been filled with desired DMA command.
2613  *
2614  * Side Effects:
2615  *   None
2616  */
2617
2618 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2619         {
2620         int status;                     /* adapter status */
2621         int timeout_cnt;        /* used in for loops */
2622
2623         /* Make sure the adapter is in a state that we can issue the DMA command in */
2624
2625         status = dfx_hw_adap_state_rd(bp);
2626         if ((status == PI_STATE_K_RESET)                ||
2627                 (status == PI_STATE_K_HALTED)           ||
2628                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2629                 (status == PI_STATE_K_UPGRADE))
2630                 return DFX_K_OUTSTATE;
2631
2632         /* Put response buffer on the command response queue */
2633
2634         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2635                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2636         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2637
2638         /* Bump (and wrap) the producer index and write out to register */
2639
2640         bp->cmd_rsp_reg.index.prod += 1;
2641         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2642         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2643
2644         /* Put request buffer on the command request queue */
2645
2646         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2647                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2648         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2649
2650         /* Bump (and wrap) the producer index and write out to register */
2651
2652         bp->cmd_req_reg.index.prod += 1;
2653         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2654         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2655
2656         /*
2657          * Here we wait for the command request consumer index to be equal
2658          * to the producer, indicating that the adapter has DMAed the request.
2659          */
2660
2661         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2662                 {
2663                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2664                         break;
2665                 udelay(100);                    /* wait for 100 microseconds */
2666                 }
2667         if (timeout_cnt == 0)
2668                 return DFX_K_HW_TIMEOUT;
2669
2670         /* Bump (and wrap) the completion index and write out to register */
2671
2672         bp->cmd_req_reg.index.comp += 1;
2673         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2674         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2675
2676         /*
2677          * Here we wait for the command response consumer index to be equal
2678          * to the producer, indicating that the adapter has DMAed the response.
2679          */
2680
2681         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2682                 {
2683                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2684                         break;
2685                 udelay(100);                    /* wait for 100 microseconds */
2686                 }
2687         if (timeout_cnt == 0)
2688                 return DFX_K_HW_TIMEOUT;
2689
2690         /* Bump (and wrap) the completion index and write out to register */
2691
2692         bp->cmd_rsp_reg.index.comp += 1;
2693         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2694         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2695         return DFX_K_SUCCESS;
2696         }
2697
2698
2699 /*
2700  * ========================
2701  * = dfx_hw_port_ctrl_req =
2702  * ========================
2703  *
2704  * Overview:
2705  *   Sends PDQ port control command to adapter firmware
2706  *
2707  * Returns:
2708  *   Host data register value in host_data if ptr is not NULL
2709  *
2710  * Arguments:
2711  *   bp                 - pointer to board information
2712  *       command        - port control command
2713  *       data_a         - port data A register value
2714  *       data_b         - port data B register value
2715  *       host_data      - ptr to host data register value
2716  *
2717  * Functional Description:
2718  *   Send generic port control command to adapter by writing
2719  *   to various PDQ port registers, then polling for completion.
2720  *
2721  * Return Codes:
2722  *   DFX_K_SUCCESS        - port control command succeeded
2723  *   DFX_K_HW_TIMEOUT - port control command timed out
2724  *
2725  * Assumptions:
2726  *   None
2727  *
2728  * Side Effects:
2729  *   None
2730  */
2731
2732 static int dfx_hw_port_ctrl_req(
2733         DFX_board_t     *bp,
2734         PI_UINT32       command,
2735         PI_UINT32       data_a,
2736         PI_UINT32       data_b,
2737         PI_UINT32       *host_data
2738         )
2739
2740         {
2741         PI_UINT32       port_cmd;               /* Port Control command register value */
2742         int                     timeout_cnt;    /* used in for loops */
2743
2744         /* Set Command Error bit in command longword */
2745
2746         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2747
2748         /* Issue port command to the adapter */
2749
2750         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2751         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2752         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2753
2754         /* Now wait for command to complete */
2755
2756         if (command == PI_PCTRL_M_BLAST_FLASH)
2757                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2758         else
2759                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2760
2761         for (; timeout_cnt > 0; timeout_cnt--)
2762                 {
2763                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2764                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2765                         break;
2766                 udelay(100);                    /* wait for 100 microseconds */
2767                 }
2768         if (timeout_cnt == 0)
2769                 return DFX_K_HW_TIMEOUT;
2770
2771         /*
2772          * If the address of host_data is non-zero, assume caller has supplied a
2773          * non NULL pointer, and return the contents of the HOST_DATA register in
2774          * it.
2775          */
2776
2777         if (host_data != NULL)
2778                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2779         return DFX_K_SUCCESS;
2780         }
2781
2782
2783 /*
2784  * =====================
2785  * = dfx_hw_adap_reset =
2786  * =====================
2787  *
2788  * Overview:
2789  *   Resets adapter
2790  *
2791  * Returns:
2792  *   None
2793  *
2794  * Arguments:
2795  *   bp   - pointer to board information
2796  *   type - type of reset to perform
2797  *
2798  * Functional Description:
2799  *   Issue soft reset to adapter by writing to PDQ Port Reset
2800  *   register.  Use incoming reset type to tell adapter what
2801  *   kind of reset operation to perform.
2802  *
2803  * Return Codes:
2804  *   None
2805  *
2806  * Assumptions:
2807  *   This routine merely issues a soft reset to the adapter.
2808  *   It is expected that after this routine returns, the caller
2809  *   will appropriately poll the Port Status register for the
2810  *   adapter to enter the proper state.
2811  *
2812  * Side Effects:
2813  *   Internal adapter registers are cleared.
2814  */
2815
2816 static void dfx_hw_adap_reset(
2817         DFX_board_t     *bp,
2818         PI_UINT32       type
2819         )
2820
2821         {
2822         /* Set Reset type and assert reset */
2823
2824         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2825         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2826
2827         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2828
2829         udelay(20);
2830
2831         /* Deassert reset */
2832
2833         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2834         }
2835
2836
2837 /*
2838  * ========================
2839  * = dfx_hw_adap_state_rd =
2840  * ========================
2841  *
2842  * Overview:
2843  *   Returns current adapter state
2844  *
2845  * Returns:
2846  *   Adapter state per PDQ Port Specification
2847  *
2848  * Arguments:
2849  *   bp - pointer to board information
2850  *
2851  * Functional Description:
2852  *   Reads PDQ Port Status register and returns adapter state.
2853  *
2854  * Return Codes:
2855  *   None
2856  *
2857  * Assumptions:
2858  *   None
2859  *
2860  * Side Effects:
2861  *   None
2862  */
2863
2864 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2865         {
2866         PI_UINT32 port_status;          /* Port Status register value */
2867
2868         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2869         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2870         }
2871
2872
2873 /*
2874  * =====================
2875  * = dfx_hw_dma_uninit =
2876  * =====================
2877  *
2878  * Overview:
2879  *   Brings adapter to DMA_UNAVAILABLE state
2880  *
2881  * Returns:
2882  *   Condition code
2883  *
2884  * Arguments:
2885  *   bp   - pointer to board information
2886  *   type - type of reset to perform
2887  *
2888  * Functional Description:
2889  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2890  *              1. Set reset type bit in Port Data A Register then reset adapter.
2891  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2892  *
2893  * Return Codes:
2894  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2895  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2896  *
2897  * Assumptions:
2898  *   None
2899  *
2900  * Side Effects:
2901  *   Internal adapter registers are cleared.
2902  */
2903
2904 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2905         {
2906         int timeout_cnt;        /* used in for loops */
2907
2908         /* Set reset type bit and reset adapter */
2909
2910         dfx_hw_adap_reset(bp, type);
2911
2912         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2913
2914         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2915                 {
2916                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2917                         break;
2918                 udelay(100);                                    /* wait for 100 microseconds */
2919                 }
2920         if (timeout_cnt == 0)
2921                 return DFX_K_HW_TIMEOUT;
2922         return DFX_K_SUCCESS;
2923         }
2924
2925 /*
2926  *      Align an sk_buff to a boundary power of 2
2927  *
2928  */
2929 #ifdef DYNAMIC_BUFFERS
2930 static void my_skb_align(struct sk_buff *skb, int n)
2931 {
2932         unsigned long x = (unsigned long)skb->data;
2933         unsigned long v;
2934
2935         v = ALIGN(x, n);        /* Where we want to be */
2936
2937         skb_reserve(skb, v - x);
2938 }
2939 #endif
2940
2941 /*
2942  * ================
2943  * = dfx_rcv_init =
2944  * ================
2945  *
2946  * Overview:
2947  *   Produces buffers to adapter LLC Host receive descriptor block
2948  *
2949  * Returns:
2950  *   None
2951  *
2952  * Arguments:
2953  *   bp - pointer to board information
2954  *   get_buffers - non-zero if buffers to be allocated
2955  *
2956  * Functional Description:
2957  *   This routine can be called during dfx_adap_init() or during an adapter
2958  *       reset.  It initializes the descriptor block and produces all allocated
2959  *   LLC Host queue receive buffers.
2960  *
2961  * Return Codes:
2962  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2963  *   dynamic buffer allocation). If the buffer allocation failed, the
2964  *   already allocated buffers will not be released and the caller should do
2965  *   this.
2966  *
2967  * Assumptions:
2968  *   The PDQ has been reset and the adapter and driver maintained Type 2
2969  *   register indices are cleared.
2970  *
2971  * Side Effects:
2972  *   Receive buffers are posted to the adapter LLC queue and the adapter
2973  *   is notified.
2974  */
2975
2976 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2977         {
2978         int     i, j;                                   /* used in for loop */
2979
2980         /*
2981          *  Since each receive buffer is a single fragment of same length, initialize
2982          *  first longword in each receive descriptor for entire LLC Host descriptor
2983          *  block.  Also initialize second longword in each receive descriptor with
2984          *  physical address of receive buffer.  We'll always allocate receive
2985          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2986          *  block and produce new receive buffers by simply updating the receive
2987          *  producer index.
2988          *
2989          *      Assumptions:
2990          *              To support all shipping versions of PDQ, the receive buffer size
2991          *              must be mod 128 in length and the physical address must be 128 byte
2992          *              aligned.  In other words, bits 0-6 of the length and address must
2993          *              be zero for the following descriptor field entries to be correct on
2994          *              all PDQ-based boards.  We guaranteed both requirements during
2995          *              driver initialization when we allocated memory for the receive buffers.
2996          */
2997
2998         if (get_buffers) {
2999 #ifdef DYNAMIC_BUFFERS
3000         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3001                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3002                 {
3003                         struct sk_buff *newskb;
3004                         dma_addr_t dma_addr;
3005
3006                         newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3007                                                     GFP_NOIO);
3008                         if (!newskb)
3009                                 return -ENOMEM;
3010                         /*
3011                          * align to 128 bytes for compatibility with
3012                          * the old EISA boards.
3013                          */
3014
3015                         my_skb_align(newskb, 128);
3016                         dma_addr = dma_map_single(bp->bus_dev,
3017                                                   newskb->data,
3018                                                   PI_RCV_DATA_K_SIZE_MAX,
3019                                                   DMA_FROM_DEVICE);
3020                         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3021                                 dev_kfree_skb(newskb);
3022                                 return -ENOMEM;
3023                         }
3024                         bp->descr_block_virt->rcv_data[i + j].long_0 =
3025                                 (u32)(PI_RCV_DESCR_M_SOP |
3026                                       ((PI_RCV_DATA_K_SIZE_MAX /
3027                                         PI_ALIGN_K_RCV_DATA_BUFF) <<
3028                                        PI_RCV_DESCR_V_SEG_LEN));
3029                         bp->descr_block_virt->rcv_data[i + j].long_1 =
3030                                 (u32)dma_addr;
3031
3032                         /*
3033                          * p_rcv_buff_va is only used inside the
3034                          * kernel so we put the skb pointer here.
3035                          */
3036                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
3037                 }
3038 #else
3039         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3040                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3041                         {
3042                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3043                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3044                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3045                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3046                         }
3047 #endif
3048         }
3049
3050         /* Update receive producer and Type 2 register */
3051
3052         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3053         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3054         return 0;
3055         }
3056
3057
3058 /*
3059  * =========================
3060  * = dfx_rcv_queue_process =
3061  * =========================
3062  *
3063  * Overview:
3064  *   Process received LLC frames.
3065  *
3066  * Returns:
3067  *   None
3068  *
3069  * Arguments:
3070  *   bp - pointer to board information
3071  *
3072  * Functional Description:
3073  *   Received LLC frames are processed until there are no more consumed frames.
3074  *   Once all frames are processed, the receive buffers are returned to the
3075  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3076  *   in this routine, because there are a fixed number of receive buffers to
3077  *   process and buffers are not produced until this routine exits and returns
3078  *   to the ISR.
3079  *
3080  * Return Codes:
3081  *   None
3082  *
3083  * Assumptions:
3084  *   None
3085  *
3086  * Side Effects:
3087  *   None
3088  */
3089
3090 static void dfx_rcv_queue_process(
3091         DFX_board_t *bp
3092         )
3093
3094         {
3095         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3096         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3097         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3098         struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
3099
3100         /* Service all consumed LLC receive frames */
3101
3102         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3103         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3104                 {
3105                 /* Process any errors */
3106                 dma_addr_t dma_addr;
3107                 int entry;
3108
3109                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3110 #ifdef DYNAMIC_BUFFERS
3111                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3112 #else
3113                 p_buff = bp->p_rcv_buff_va[entry];
3114 #endif
3115                 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3116                 dma_sync_single_for_cpu(bp->bus_dev,
3117                                         dma_addr + RCV_BUFF_K_DESCR,
3118                                         sizeof(u32),
3119                                         DMA_FROM_DEVICE);
3120                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3121
3122                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3123                         {
3124                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3125                                 bp->rcv_crc_errors++;
3126                         else
3127                                 bp->rcv_frame_status_errors++;
3128                         }
3129                 else
3130                 {
3131                         int rx_in_place = 0;
3132
3133                         /* The frame was received without errors - verify packet length */
3134
3135                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3136                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3137                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3138                                 bp->rcv_length_errors++;
3139                         else{
3140 #ifdef DYNAMIC_BUFFERS
3141                                 struct sk_buff *newskb = NULL;
3142
3143                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3144                                         dma_addr_t new_dma_addr;
3145
3146                                         newskb = netdev_alloc_skb(bp->dev,
3147                                                                   NEW_SKB_SIZE);
3148                                         if (newskb){
3149                                                 my_skb_align(newskb, 128);
3150                                                 new_dma_addr = dma_map_single(
3151                                                                 bp->bus_dev,
3152                                                                 newskb->data,
3153                                                                 PI_RCV_DATA_K_SIZE_MAX,
3154                                                                 DMA_FROM_DEVICE);
3155                                                 if (dma_mapping_error(
3156                                                                 bp->bus_dev,
3157                                                                 new_dma_addr)) {
3158                                                         dev_kfree_skb(newskb);
3159                                                         newskb = NULL;
3160                                                 }
3161                                         }
3162                                         if (newskb) {
3163                                                 rx_in_place = 1;
3164
3165                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3166                                                 dma_unmap_single(bp->bus_dev,
3167                                                         dma_addr,
3168                                                         PI_RCV_DATA_K_SIZE_MAX,
3169                                                         DMA_FROM_DEVICE);
3170                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3171                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3172                                                 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3173                                         }
3174                                 }
3175                                 if (!newskb)
3176 #endif
3177                                         /* Alloc new buffer to pass up,
3178                                          * add room for PRH. */
3179                                         skb = netdev_alloc_skb(bp->dev,
3180                                                                pkt_len + 3);
3181                                 if (skb == NULL)
3182                                         {
3183                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3184                                         bp->rcv_discards++;
3185                                         break;
3186                                         }
3187                                 else {
3188                                         if (!rx_in_place) {
3189                                                 /* Receive buffer allocated, pass receive packet up */
3190                                                 dma_sync_single_for_cpu(
3191                                                         bp->bus_dev,
3192                                                         dma_addr +
3193                                                         RCV_BUFF_K_PADDING,
3194                                                         pkt_len + 3,
3195                                                         DMA_FROM_DEVICE);
3196
3197                                                 skb_copy_to_linear_data(skb,
3198                                                                p_buff + RCV_BUFF_K_PADDING,
3199                                                                pkt_len + 3);
3200                                         }
3201
3202                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3203                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3204                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3205                                         bp->rcv_total_bytes += skb->len;
3206                                         netif_rx(skb);
3207
3208                                         /* Update the rcv counters */
3209                                         bp->rcv_total_frames++;
3210                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3211                                                 bp->rcv_multicast_frames++;
3212                                 }
3213                         }
3214                         }
3215
3216                 /*
3217                  * Advance the producer (for recycling) and advance the completion
3218                  * (for servicing received frames).  Note that it is okay to
3219                  * advance the producer without checking that it passes the
3220                  * completion index because they are both advanced at the same
3221                  * rate.
3222                  */
3223
3224                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3225                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3226                 }
3227         }
3228
3229
3230 /*
3231  * =====================
3232  * = dfx_xmt_queue_pkt =
3233  * =====================
3234  *
3235  * Overview:
3236  *   Queues packets for transmission
3237  *
3238  * Returns:
3239  *   Condition code
3240  *
3241  * Arguments:
3242  *   skb - pointer to sk_buff to queue for transmission
3243  *   dev - pointer to device information
3244  *
3245  * Functional Description:
3246  *   Here we assume that an incoming skb transmit request
3247  *   is contained in a single physically contiguous buffer
3248  *   in which the virtual address of the start of packet
3249  *   (skb->data) can be converted to a physical address
3250  *   by using pci_map_single().
3251  *
3252  *   Since the adapter architecture requires a three byte
3253  *   packet request header to prepend the start of packet,
3254  *   we'll write the three byte field immediately prior to
3255  *   the FC byte.  This assumption is valid because we've
3256  *   ensured that dev->hard_header_len includes three pad
3257  *   bytes.  By posting a single fragment to the adapter,
3258  *   we'll reduce the number of descriptor fetches and
3259  *   bus traffic needed to send the request.
3260  *
3261  *   Also, we can't free the skb until after it's been DMA'd
3262  *   out by the adapter, so we'll queue it in the driver and
3263  *   return it in dfx_xmt_done.
3264  *
3265  * Return Codes:
3266  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3267  *       1 - caller should requeue the sk_buff for later transmission
3268  *
3269  * Assumptions:
3270  *       First and foremost, we assume the incoming skb pointer
3271  *   is NOT NULL and is pointing to a valid sk_buff structure.
3272  *
3273  *   The outgoing packet is complete, starting with the
3274  *   frame control byte including the last byte of data,
3275  *   but NOT including the 4 byte CRC.  We'll let the
3276  *   adapter hardware generate and append the CRC.
3277  *
3278  *   The entire packet is stored in one physically
3279  *   contiguous buffer which is not cached and whose
3280  *   32-bit physical address can be determined.
3281  *
3282  *   It's vital that this routine is NOT reentered for the
3283  *   same board and that the OS is not in another section of
3284  *   code (eg. dfx_int_common) for the same board on a
3285  *   different thread.
3286  *
3287  * Side Effects:
3288  *   None
3289  */
3290
3291 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3292                                      struct net_device *dev)
3293         {
3294         DFX_board_t             *bp = netdev_priv(dev);
3295         u8                      prod;                           /* local transmit producer index */
3296         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3297         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3298         dma_addr_t              dma_addr;
3299         unsigned long           flags;
3300
3301         netif_stop_queue(dev);
3302
3303         /*
3304          * Verify that incoming transmit request is OK
3305          *
3306          * Note: The packet size check is consistent with other
3307          *               Linux device drivers, although the correct packet
3308          *               size should be verified before calling the
3309          *               transmit routine.
3310          */
3311
3312         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3313         {
3314                 printk("%s: Invalid packet length - %u bytes\n",
3315                         dev->name, skb->len);
3316                 bp->xmt_length_errors++;                /* bump error counter */
3317                 netif_wake_queue(dev);
3318                 dev_kfree_skb(skb);
3319                 return NETDEV_TX_OK;                    /* return "success" */
3320         }
3321         /*
3322          * See if adapter link is available, if not, free buffer
3323          *
3324          * Note: If the link isn't available, free buffer and return 0
3325          *               rather than tell the upper layer to requeue the packet.
3326          *               The methodology here is that by the time the link
3327          *               becomes available, the packet to be sent will be
3328          *               fairly stale.  By simply dropping the packet, the
3329          *               higher layer protocols will eventually time out
3330          *               waiting for response packets which it won't receive.
3331          */
3332
3333         if (bp->link_available == PI_K_FALSE)
3334                 {
3335                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3336                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3337                 else
3338                         {
3339                         bp->xmt_discards++;                                     /* bump error counter */
3340                         dev_kfree_skb(skb);             /* free sk_buff now */
3341                         netif_wake_queue(dev);
3342                         return NETDEV_TX_OK;            /* return "success" */
3343                         }
3344                 }
3345
3346         /* Write the three PRH bytes immediately before the FC byte */
3347
3348         skb_push(skb, 3);
3349         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3350         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3351         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3352
3353         dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3354                                   DMA_TO_DEVICE);
3355         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3356                 skb_pull(skb, 3);
3357                 return NETDEV_TX_BUSY;
3358         }
3359
3360         spin_lock_irqsave(&bp->lock, flags);
3361
3362         /* Get the current producer and the next free xmt data descriptor */
3363
3364         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3365         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3366
3367         /*
3368          * Get pointer to auxiliary queue entry to contain information
3369          * for this packet.
3370          *
3371          * Note: The current xmt producer index will become the
3372          *       current xmt completion index when we complete this
3373          *       packet later on.  So, we'll get the pointer to the
3374          *       next auxiliary queue entry now before we bump the
3375          *       producer index.
3376          */
3377
3378         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3379
3380         /*
3381          * Write the descriptor with buffer info and bump producer
3382          *
3383          * Note: Since we need to start DMA from the packet request
3384          *               header, we'll add 3 bytes to the DMA buffer length,
3385          *               and we'll determine the physical address of the
3386          *               buffer from the PRH, not skb->data.
3387          *
3388          * Assumptions:
3389          *               1. Packet starts with the frame control (FC) byte
3390          *                  at skb->data.
3391          *               2. The 4-byte CRC is not appended to the buffer or
3392          *                      included in the length.
3393          *               3. Packet length (skb->len) is from FC to end of
3394          *                      data, inclusive.
3395          *               4. The packet length does not exceed the maximum
3396          *                      FDDI LLC frame length of 4491 bytes.
3397          *               5. The entire packet is contained in a physically
3398          *                      contiguous, non-cached, locked memory space
3399          *                      comprised of a single buffer pointed to by
3400          *                      skb->data.
3401          *               6. The physical address of the start of packet
3402          *                      can be determined from the virtual address
3403          *                      by using pci_map_single() and is only 32-bits
3404          *                      wide.
3405          */
3406
3407         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3408         p_xmt_descr->long_1 = (u32)dma_addr;
3409
3410         /*
3411          * Verify that descriptor is actually available
3412          *
3413          * Note: If descriptor isn't available, return 1 which tells
3414          *       the upper layer to requeue the packet for later
3415          *       transmission.
3416          *
3417          *       We need to ensure that the producer never reaches the
3418          *       completion, except to indicate that the queue is empty.
3419          */
3420
3421         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3422         {
3423                 skb_pull(skb,3);
3424                 spin_unlock_irqrestore(&bp->lock, flags);
3425                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3426         }
3427
3428         /*
3429          * Save info for this packet for xmt done indication routine
3430          *
3431          * Normally, we'd save the producer index in the p_xmt_drv_descr
3432          * structure so that we'd have it handy when we complete this
3433          * packet later (in dfx_xmt_done).  However, since the current
3434          * transmit architecture guarantees a single fragment for the
3435          * entire packet, we can simply bump the completion index by
3436          * one (1) for each completed packet.
3437          *
3438          * Note: If this assumption changes and we're presented with
3439          *       an inconsistent number of transmit fragments for packet
3440          *       data, we'll need to modify this code to save the current
3441          *       transmit producer index.
3442          */
3443
3444         p_xmt_drv_descr->p_skb = skb;
3445
3446         /* Update Type 2 register */
3447
3448         bp->rcv_xmt_reg.index.xmt_prod = prod;
3449         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3450         spin_unlock_irqrestore(&bp->lock, flags);
3451         netif_wake_queue(dev);
3452         return NETDEV_TX_OK;    /* packet queued to adapter */
3453         }
3454
3455
3456 /*
3457  * ================
3458  * = dfx_xmt_done =
3459  * ================
3460  *
3461  * Overview:
3462  *   Processes all frames that have been transmitted.
3463  *
3464  * Returns:
3465  *   None
3466  *
3467  * Arguments:
3468  *   bp - pointer to board information
3469  *
3470  * Functional Description:
3471  *   For all consumed transmit descriptors that have not
3472  *   yet been completed, we'll free the skb we were holding
3473  *   onto using dev_kfree_skb and bump the appropriate
3474  *   counters.
3475  *
3476  * Return Codes:
3477  *   None
3478  *
3479  * Assumptions:
3480  *   The Type 2 register is not updated in this routine.  It is
3481  *   assumed that it will be updated in the ISR when dfx_xmt_done
3482  *   returns.
3483  *
3484  * Side Effects:
3485  *   None
3486  */
3487
3488 static int dfx_xmt_done(DFX_board_t *bp)
3489         {
3490         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3491         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3492         u8                      comp;                   /* local transmit completion index */
3493         int                     freed = 0;              /* buffers freed */
3494
3495         /* Service all consumed transmit frames */
3496
3497         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3498         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3499                 {
3500                 /* Get pointer to the transmit driver descriptor block information */
3501
3502                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3503
3504                 /* Increment transmit counters */
3505
3506                 bp->xmt_total_frames++;
3507                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3508
3509                 /* Return skb to operating system */
3510                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3511                 dma_unmap_single(bp->bus_dev,
3512                                  bp->descr_block_virt->xmt_data[comp].long_1,
3513                                  p_xmt_drv_descr->p_skb->len,
3514                                  DMA_TO_DEVICE);
3515                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3516
3517                 /*
3518                  * Move to start of next packet by updating completion index
3519                  *
3520                  * Here we assume that a transmit packet request is always
3521                  * serviced by posting one fragment.  We can therefore
3522                  * simplify the completion code by incrementing the
3523                  * completion index by one.  This code will need to be
3524                  * modified if this assumption changes.  See comments
3525                  * in dfx_xmt_queue_pkt for more details.
3526                  */
3527
3528                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3529                 freed++;
3530                 }
3531         return freed;
3532         }
3533
3534
3535 /*
3536  * =================
3537  * = dfx_rcv_flush =
3538  * =================
3539  *
3540  * Overview:
3541  *   Remove all skb's in the receive ring.
3542  *
3543  * Returns:
3544  *   None
3545  *
3546  * Arguments:
3547  *   bp - pointer to board information
3548  *
3549  * Functional Description:
3550  *   Free's all the dynamically allocated skb's that are
3551  *   currently attached to the device receive ring. This
3552  *   function is typically only used when the device is
3553  *   initialized or reinitialized.
3554  *
3555  * Return Codes:
3556  *   None
3557  *
3558  * Side Effects:
3559  *   None
3560  */
3561 #ifdef DYNAMIC_BUFFERS
3562 static void dfx_rcv_flush( DFX_board_t *bp )
3563         {
3564         int i, j;
3565
3566         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3567                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3568                 {
3569                         struct sk_buff *skb;
3570                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3571                         if (skb) {
3572                                 dma_unmap_single(bp->bus_dev,
3573                                                  bp->descr_block_virt->rcv_data[i+j].long_1,
3574                                                  PI_RCV_DATA_K_SIZE_MAX,
3575                                                  DMA_FROM_DEVICE);
3576                                 dev_kfree_skb(skb);
3577                         }
3578                         bp->p_rcv_buff_va[i+j] = NULL;
3579                 }
3580
3581         }
3582 #endif /* DYNAMIC_BUFFERS */
3583
3584 /*
3585  * =================
3586  * = dfx_xmt_flush =
3587  * =================
3588  *
3589  * Overview:
3590  *   Processes all frames whether they've been transmitted
3591  *   or not.
3592  *
3593  * Returns:
3594  *   None
3595  *
3596  * Arguments:
3597  *   bp - pointer to board information
3598  *
3599  * Functional Description:
3600  *   For all produced transmit descriptors that have not
3601  *   yet been completed, we'll free the skb we were holding
3602  *   onto using dev_kfree_skb and bump the appropriate
3603  *   counters.  Of course, it's possible that some of
3604  *   these transmit requests actually did go out, but we
3605  *   won't make that distinction here.  Finally, we'll
3606  *   update the consumer index to match the producer.
3607  *
3608  * Return Codes:
3609  *   None
3610  *
3611  * Assumptions:
3612  *   This routine does NOT update the Type 2 register.  It
3613  *   is assumed that this routine is being called during a
3614  *   transmit flush interrupt, or a shutdown or close routine.
3615  *
3616  * Side Effects:
3617  *   None
3618  */
3619
3620 static void dfx_xmt_flush( DFX_board_t *bp )
3621         {
3622         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3623         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3624         u8                      comp;                   /* local transmit completion index */
3625
3626         /* Flush all outstanding transmit frames */
3627
3628         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3629                 {
3630                 /* Get pointer to the transmit driver descriptor block information */
3631
3632                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3633
3634                 /* Return skb to operating system */
3635                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3636                 dma_unmap_single(bp->bus_dev,
3637                                  bp->descr_block_virt->xmt_data[comp].long_1,
3638                                  p_xmt_drv_descr->p_skb->len,
3639                                  DMA_TO_DEVICE);
3640                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3641
3642                 /* Increment transmit error counter */
3643
3644                 bp->xmt_discards++;
3645
3646                 /*
3647                  * Move to start of next packet by updating completion index
3648                  *
3649                  * Here we assume that a transmit packet request is always
3650                  * serviced by posting one fragment.  We can therefore
3651                  * simplify the completion code by incrementing the
3652                  * completion index by one.  This code will need to be
3653                  * modified if this assumption changes.  See comments
3654                  * in dfx_xmt_queue_pkt for more details.
3655                  */
3656
3657                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3658                 }
3659
3660         /* Update the transmit consumer index in the consumer block */
3661
3662         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3663         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3664         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3665         }
3666
3667 /*
3668  * ==================
3669  * = dfx_unregister =
3670  * ==================
3671  *
3672  * Overview:
3673  *   Shuts down an FDDI controller
3674  *
3675  * Returns:
3676  *   Condition code
3677  *
3678  * Arguments:
3679  *   bdev - pointer to device information
3680  *
3681  * Functional Description:
3682  *
3683  * Return Codes:
3684  *   None
3685  *
3686  * Assumptions:
3687  *   It compiles so it should work :-( (PCI cards do :-)
3688  *
3689  * Side Effects:
3690  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3691  *   freed.
3692  */
3693 static void dfx_unregister(struct device *bdev)
3694 {
3695         struct net_device *dev = dev_get_drvdata(bdev);
3696         DFX_board_t *bp = netdev_priv(dev);
3697         int dfx_bus_pci = dev_is_pci(bdev);
3698         int dfx_bus_tc = DFX_BUS_TC(bdev);
3699         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3700         resource_size_t bar_start[3] = {0};     /* pointers to ports */
3701         resource_size_t bar_len[3] = {0};       /* resource lengths */
3702         int             alloc_size;             /* total buffer size used */
3703
3704         unregister_netdev(dev);
3705
3706         alloc_size = sizeof(PI_DESCR_BLOCK) +
3707                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708 #ifndef DYNAMIC_BUFFERS
3709                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710 #endif
3711                      sizeof(PI_CONSUMER_BLOCK) +
3712                      (PI_ALIGN_K_DESC_BLK - 1);
3713         if (bp->kmalloced)
3714                 dma_free_coherent(bdev, alloc_size,
3715                                   bp->kmalloced, bp->kmalloced_dma);
3716
3717         dfx_bus_uninit(dev);
3718
3719         dfx_get_bars(bdev, bar_start, bar_len);
3720         if (bar_start[2] != 0)
3721                 release_region(bar_start[2], bar_len[2]);
3722         if (bar_start[1] != 0)
3723                 release_region(bar_start[1], bar_len[1]);
3724         if (dfx_use_mmio) {
3725                 iounmap(bp->base.mem);
3726                 release_mem_region(bar_start[0], bar_len[0]);
3727         } else
3728                 release_region(bar_start[0], bar_len[0]);
3729
3730         if (dfx_bus_pci)
3731                 pci_disable_device(to_pci_dev(bdev));
3732
3733         free_netdev(dev);
3734 }
3735
3736
3737 static int __maybe_unused dfx_dev_register(struct device *);
3738 static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740 #ifdef CONFIG_PCI
3741 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742 static void dfx_pci_unregister(struct pci_dev *);
3743
3744 static const struct pci_device_id dfx_pci_table[] = {
3745         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746         { }
3747 };
3748 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750 static struct pci_driver dfx_pci_driver = {
3751         .name           = "defxx",
3752         .id_table       = dfx_pci_table,
3753         .probe          = dfx_pci_register,
3754         .remove         = dfx_pci_unregister,
3755 };
3756
3757 static int dfx_pci_register(struct pci_dev *pdev,
3758                             const struct pci_device_id *ent)
3759 {
3760         return dfx_register(&pdev->dev);
3761 }
3762
3763 static void dfx_pci_unregister(struct pci_dev *pdev)
3764 {
3765         dfx_unregister(&pdev->dev);
3766 }
3767 #endif /* CONFIG_PCI */
3768
3769 #ifdef CONFIG_EISA
3770 static const struct eisa_device_id dfx_eisa_table[] = {
3771         { "DEC3001", DEFEA_PROD_ID_1 },
3772         { "DEC3002", DEFEA_PROD_ID_2 },
3773         { "DEC3003", DEFEA_PROD_ID_3 },
3774         { "DEC3004", DEFEA_PROD_ID_4 },
3775         { }
3776 };
3777 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779 static struct eisa_driver dfx_eisa_driver = {
3780         .id_table       = dfx_eisa_table,
3781         .driver         = {
3782                 .name   = "defxx",
3783                 .bus    = &eisa_bus_type,
3784                 .probe  = dfx_dev_register,
3785                 .remove = dfx_dev_unregister,
3786         },
3787 };
3788 #endif /* CONFIG_EISA */
3789
3790 #ifdef CONFIG_TC
3791 static struct tc_device_id const dfx_tc_table[] = {
3792         { "DEC     ", "PMAF-FA " },
3793         { "DEC     ", "PMAF-FD " },
3794         { "DEC     ", "PMAF-FS " },
3795         { "DEC     ", "PMAF-FU " },
3796         { }
3797 };
3798 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800 static struct tc_driver dfx_tc_driver = {
3801         .id_table       = dfx_tc_table,
3802         .driver         = {
3803                 .name   = "defxx",
3804                 .bus    = &tc_bus_type,
3805                 .probe  = dfx_dev_register,
3806                 .remove = dfx_dev_unregister,
3807         },
3808 };
3809 #endif /* CONFIG_TC */
3810
3811 static int __maybe_unused dfx_dev_register(struct device *dev)
3812 {
3813         int status;
3814
3815         status = dfx_register(dev);
3816         if (!status)
3817                 get_device(dev);
3818         return status;
3819 }
3820
3821 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822 {
3823         put_device(dev);
3824         dfx_unregister(dev);
3825         return 0;
3826 }
3827
3828
3829 static int dfx_init(void)
3830 {
3831         int status;
3832
3833         status = pci_register_driver(&dfx_pci_driver);
3834         if (!status)
3835                 status = eisa_driver_register(&dfx_eisa_driver);
3836         if (!status)
3837                 status = tc_register_driver(&dfx_tc_driver);
3838         return status;
3839 }
3840
3841 static void dfx_cleanup(void)
3842 {
3843         tc_unregister_driver(&dfx_tc_driver);
3844         eisa_driver_unregister(&dfx_eisa_driver);
3845         pci_unregister_driver(&dfx_pci_driver);
3846 }
3847
3848 module_init(dfx_init);
3849 module_exit(dfx_cleanup);
3850 MODULE_AUTHOR("Lawrence V. Stefani");
3851 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852                    DRV_VERSION " " DRV_RELDATE);
3853 MODULE_LICENSE("GPL");