Merge tag 'sound-4.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO        5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK     256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
100                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER        1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors,
109  * but allow user to force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131         if (unlikely(watchdog < 0))
132                 watchdog = TX_TIMEO;
133         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134                 buf_sz = DEFAULT_BUFSIZE;
135         if (unlikely(flow_ctrl > 1))
136                 flow_ctrl = FLOW_AUTO;
137         else if (likely(flow_ctrl < 0))
138                 flow_ctrl = FLOW_OFF;
139         if (unlikely((pause < 0) || (pause > 0xffff)))
140                 pause = PAUSE_TIME;
141         if (eee_timer < 0)
142                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *      If a specific clk_csr value is passed from the platform
152  *      this means that the CSR Clock Range selection cannot be
153  *      changed at run-time and it is fixed (as reported in the driver
154  *      documentation). Viceversa the driver will try to set the MDC
155  *      clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159         u32 clk_rate;
160
161         clk_rate = clk_get_rate(priv->stmmac_clk);
162
163         /* Platform provided default clk_csr would be assumed valid
164          * for all other cases except for the below mentioned ones.
165          * For values higher than the IEEE 802.3 specified frequency
166          * we can not estimate the proper divider as it is not known
167          * the frequency of clk_csr_i. So we do not change the default
168          * divider.
169          */
170         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171                 if (clk_rate < CSR_F_35M)
172                         priv->clk_csr = STMMAC_CSR_20_35M;
173                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174                         priv->clk_csr = STMMAC_CSR_35_60M;
175                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176                         priv->clk_csr = STMMAC_CSR_60_100M;
177                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178                         priv->clk_csr = STMMAC_CSR_100_150M;
179                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180                         priv->clk_csr = STMMAC_CSR_150_250M;
181                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182                         priv->clk_csr = STMMAC_CSR_250_300M;
183         }
184 }
185
186 static void print_pkt(unsigned char *buf, int len)
187 {
188         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194         unsigned avail;
195
196         if (priv->dirty_tx > priv->cur_tx)
197                 avail = priv->dirty_tx - priv->cur_tx - 1;
198         else
199                 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201         return avail;
202 }
203
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206         unsigned dirty;
207
208         if (priv->dirty_rx <= priv->cur_rx)
209                 dirty = priv->cur_rx - priv->dirty_rx;
210         else
211                 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213         return dirty;
214 }
215
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224         struct net_device *ndev = priv->dev;
225         struct phy_device *phydev = ndev->phydev;
226
227         if (likely(priv->plat->fix_mac_speed))
228                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
229 }
230
231 /**
232  * stmmac_enable_eee_mode - check and enter in LPI mode
233  * @priv: driver private structure
234  * Description: this function is to verify and enter in LPI mode in case of
235  * EEE.
236  */
237 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
238 {
239         /* Check and enter in LPI mode */
240         if ((priv->dirty_tx == priv->cur_tx) &&
241             (priv->tx_path_in_lpi_mode == false))
242                 priv->hw->mac->set_eee_mode(priv->hw);
243 }
244
245 /**
246  * stmmac_disable_eee_mode - disable and exit from LPI mode
247  * @priv: driver private structure
248  * Description: this function is to exit and disable EEE in case of
249  * LPI state is true. This is called by the xmit.
250  */
251 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
252 {
253         priv->hw->mac->reset_eee_mode(priv->hw);
254         del_timer_sync(&priv->eee_ctrl_timer);
255         priv->tx_path_in_lpi_mode = false;
256 }
257
258 /**
259  * stmmac_eee_ctrl_timer - EEE TX SW timer.
260  * @arg : data hook
261  * Description:
262  *  if there is no data transfer and if we are not in LPI state,
263  *  then MAC Transmitter can be moved to LPI state.
264  */
265 static void stmmac_eee_ctrl_timer(unsigned long arg)
266 {
267         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
268
269         stmmac_enable_eee_mode(priv);
270         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
271 }
272
273 /**
274  * stmmac_eee_init - init EEE
275  * @priv: driver private structure
276  * Description:
277  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
278  *  can also manage EEE, this function enable the LPI state and start related
279  *  timer.
280  */
281 bool stmmac_eee_init(struct stmmac_priv *priv)
282 {
283         struct net_device *ndev = priv->dev;
284         unsigned long flags;
285         bool ret = false;
286
287         /* Using PCS we cannot dial with the phy registers at this stage
288          * so we do not support extra feature like EEE.
289          */
290         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
291             (priv->hw->pcs == STMMAC_PCS_TBI) ||
292             (priv->hw->pcs == STMMAC_PCS_RTBI))
293                 goto out;
294
295         /* MAC core supports the EEE feature. */
296         if (priv->dma_cap.eee) {
297                 int tx_lpi_timer = priv->tx_lpi_timer;
298
299                 /* Check if the PHY supports EEE */
300                 if (phy_init_eee(ndev->phydev, 1)) {
301                         /* To manage at run-time if the EEE cannot be supported
302                          * anymore (for example because the lp caps have been
303                          * changed).
304                          * In that case the driver disable own timers.
305                          */
306                         spin_lock_irqsave(&priv->lock, flags);
307                         if (priv->eee_active) {
308                                 netdev_dbg(priv->dev, "disable EEE\n");
309                                 del_timer_sync(&priv->eee_ctrl_timer);
310                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
311                                                              tx_lpi_timer);
312                         }
313                         priv->eee_active = 0;
314                         spin_unlock_irqrestore(&priv->lock, flags);
315                         goto out;
316                 }
317                 /* Activate the EEE and start timers */
318                 spin_lock_irqsave(&priv->lock, flags);
319                 if (!priv->eee_active) {
320                         priv->eee_active = 1;
321                         setup_timer(&priv->eee_ctrl_timer,
322                                     stmmac_eee_ctrl_timer,
323                                     (unsigned long)priv);
324                         mod_timer(&priv->eee_ctrl_timer,
325                                   STMMAC_LPI_T(eee_timer));
326
327                         priv->hw->mac->set_eee_timer(priv->hw,
328                                                      STMMAC_DEFAULT_LIT_LS,
329                                                      tx_lpi_timer);
330                 }
331                 /* Set HW EEE according to the speed */
332                 priv->hw->mac->set_eee_pls(priv->hw, ndev->phydev->link);
333
334                 ret = true;
335                 spin_unlock_irqrestore(&priv->lock, flags);
336
337                 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
338         }
339 out:
340         return ret;
341 }
342
343 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
344  * @priv: driver private structure
345  * @p : descriptor pointer
346  * @skb : the socket buffer
347  * Description :
348  * This function will read timestamp from the descriptor & pass it to stack.
349  * and also perform some sanity checks.
350  */
351 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
352                                    struct dma_desc *p, struct sk_buff *skb)
353 {
354         struct skb_shared_hwtstamps shhwtstamp;
355         u64 ns;
356
357         if (!priv->hwts_tx_en)
358                 return;
359
360         /* exit if skb doesn't support hw tstamp */
361         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
362                 return;
363
364         /* check tx tstamp status */
365         if (!priv->hw->desc->get_tx_timestamp_status(p)) {
366                 /* get the valid tstamp */
367                 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
368
369                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371
372                 netdev_info(priv->dev, "get valid TX hw timestamp %llu\n", ns);
373                 /* pass tstamp to stack */
374                 skb_tstamp_tx(skb, &shhwtstamp);
375         }
376
377         return;
378 }
379
380 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
381  * @priv: driver private structure
382  * @p : descriptor pointer
383  * @np : next descriptor pointer
384  * @skb : the socket buffer
385  * Description :
386  * This function will read received packet's timestamp from the descriptor
387  * and pass it to stack. It also perform some sanity checks.
388  */
389 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
390                                    struct dma_desc *np, struct sk_buff *skb)
391 {
392         struct skb_shared_hwtstamps *shhwtstamp = NULL;
393         u64 ns;
394
395         if (!priv->hwts_rx_en)
396                 return;
397
398         /* Check if timestamp is available */
399         if (!priv->hw->desc->get_rx_timestamp_status(p, priv->adv_ts)) {
400                 /* For GMAC4, the valid timestamp is from CTX next desc. */
401                 if (priv->plat->has_gmac4)
402                         ns = priv->hw->desc->get_timestamp(np, priv->adv_ts);
403                 else
404                         ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
405
406                 netdev_info(priv->dev, "get valid RX hw timestamp %llu\n", ns);
407                 shhwtstamp = skb_hwtstamps(skb);
408                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
410         } else  {
411                 netdev_err(priv->dev, "cannot get RX hw timestamp\n");
412         }
413 }
414
415 /**
416  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
417  *  @dev: device pointer.
418  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
419  *  a proprietary structure used to pass information to the driver.
420  *  Description:
421  *  This function configures the MAC to enable/disable both outgoing(TX)
422  *  and incoming(RX) packets time stamping based on user input.
423  *  Return Value:
424  *  0 on success and an appropriate -ve integer on failure.
425  */
426 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
427 {
428         struct stmmac_priv *priv = netdev_priv(dev);
429         struct hwtstamp_config config;
430         struct timespec64 now;
431         u64 temp = 0;
432         u32 ptp_v2 = 0;
433         u32 tstamp_all = 0;
434         u32 ptp_over_ipv4_udp = 0;
435         u32 ptp_over_ipv6_udp = 0;
436         u32 ptp_over_ethernet = 0;
437         u32 snap_type_sel = 0;
438         u32 ts_master_en = 0;
439         u32 ts_event_en = 0;
440         u32 value = 0;
441         u32 sec_inc;
442
443         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
444                 netdev_alert(priv->dev, "No support for HW time stamping\n");
445                 priv->hwts_tx_en = 0;
446                 priv->hwts_rx_en = 0;
447
448                 return -EOPNOTSUPP;
449         }
450
451         if (copy_from_user(&config, ifr->ifr_data,
452                            sizeof(struct hwtstamp_config)))
453                 return -EFAULT;
454
455         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
456                    __func__, config.flags, config.tx_type, config.rx_filter);
457
458         /* reserved for future extensions */
459         if (config.flags)
460                 return -EINVAL;
461
462         if (config.tx_type != HWTSTAMP_TX_OFF &&
463             config.tx_type != HWTSTAMP_TX_ON)
464                 return -ERANGE;
465
466         if (priv->adv_ts) {
467                 switch (config.rx_filter) {
468                 case HWTSTAMP_FILTER_NONE:
469                         /* time stamp no incoming packet at all */
470                         config.rx_filter = HWTSTAMP_FILTER_NONE;
471                         break;
472
473                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
474                         /* PTP v1, UDP, any kind of event packet */
475                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
476                         /* take time stamp for all event messages */
477                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
478
479                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
480                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
481                         break;
482
483                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
484                         /* PTP v1, UDP, Sync packet */
485                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
486                         /* take time stamp for SYNC messages only */
487                         ts_event_en = PTP_TCR_TSEVNTENA;
488
489                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
490                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
491                         break;
492
493                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
494                         /* PTP v1, UDP, Delay_req packet */
495                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
496                         /* take time stamp for Delay_Req messages only */
497                         ts_master_en = PTP_TCR_TSMSTRENA;
498                         ts_event_en = PTP_TCR_TSEVNTENA;
499
500                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
501                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
502                         break;
503
504                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
505                         /* PTP v2, UDP, any kind of event packet */
506                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
507                         ptp_v2 = PTP_TCR_TSVER2ENA;
508                         /* take time stamp for all event messages */
509                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
510
511                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
512                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
513                         break;
514
515                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
516                         /* PTP v2, UDP, Sync packet */
517                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
518                         ptp_v2 = PTP_TCR_TSVER2ENA;
519                         /* take time stamp for SYNC messages only */
520                         ts_event_en = PTP_TCR_TSEVNTENA;
521
522                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
523                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
524                         break;
525
526                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
527                         /* PTP v2, UDP, Delay_req packet */
528                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
529                         ptp_v2 = PTP_TCR_TSVER2ENA;
530                         /* take time stamp for Delay_Req messages only */
531                         ts_master_en = PTP_TCR_TSMSTRENA;
532                         ts_event_en = PTP_TCR_TSEVNTENA;
533
534                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
535                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
536                         break;
537
538                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
539                         /* PTP v2/802.AS1 any layer, any kind of event packet */
540                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
541                         ptp_v2 = PTP_TCR_TSVER2ENA;
542                         /* take time stamp for all event messages */
543                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
544
545                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
546                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
547                         ptp_over_ethernet = PTP_TCR_TSIPENA;
548                         break;
549
550                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
551                         /* PTP v2/802.AS1, any layer, Sync packet */
552                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
553                         ptp_v2 = PTP_TCR_TSVER2ENA;
554                         /* take time stamp for SYNC messages only */
555                         ts_event_en = PTP_TCR_TSEVNTENA;
556
557                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
558                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
559                         ptp_over_ethernet = PTP_TCR_TSIPENA;
560                         break;
561
562                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
563                         /* PTP v2/802.AS1, any layer, Delay_req packet */
564                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
565                         ptp_v2 = PTP_TCR_TSVER2ENA;
566                         /* take time stamp for Delay_Req messages only */
567                         ts_master_en = PTP_TCR_TSMSTRENA;
568                         ts_event_en = PTP_TCR_TSEVNTENA;
569
570                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
571                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
572                         ptp_over_ethernet = PTP_TCR_TSIPENA;
573                         break;
574
575                 case HWTSTAMP_FILTER_ALL:
576                         /* time stamp any incoming packet */
577                         config.rx_filter = HWTSTAMP_FILTER_ALL;
578                         tstamp_all = PTP_TCR_TSENALL;
579                         break;
580
581                 default:
582                         return -ERANGE;
583                 }
584         } else {
585                 switch (config.rx_filter) {
586                 case HWTSTAMP_FILTER_NONE:
587                         config.rx_filter = HWTSTAMP_FILTER_NONE;
588                         break;
589                 default:
590                         /* PTP v1, UDP, any kind of event packet */
591                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
592                         break;
593                 }
594         }
595         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
596         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
597
598         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
599                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
600         else {
601                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
602                          tstamp_all | ptp_v2 | ptp_over_ethernet |
603                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
604                          ts_master_en | snap_type_sel);
605                 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
606
607                 /* program Sub Second Increment reg */
608                 sec_inc = priv->hw->ptp->config_sub_second_increment(
609                         priv->ptpaddr, priv->clk_ptp_rate,
610                         priv->plat->has_gmac4);
611                 temp = div_u64(1000000000ULL, sec_inc);
612
613                 /* calculate default added value:
614                  * formula is :
615                  * addend = (2^32)/freq_div_ratio;
616                  * where, freq_div_ratio = 1e9ns/sec_inc
617                  */
618                 temp = (u64)(temp << 32);
619                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620                 priv->hw->ptp->config_addend(priv->ptpaddr,
621                                              priv->default_addend);
622
623                 /* initialize system time */
624                 ktime_get_real_ts64(&now);
625
626                 /* lower 32 bits of tv_sec are safe until y2106 */
627                 priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
628                                             now.tv_nsec);
629         }
630
631         return copy_to_user(ifr->ifr_data, &config,
632                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634
635 /**
636  * stmmac_init_ptp - init PTP
637  * @priv: driver private structure
638  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639  * This is done by looking at the HW cap. register.
640  * This function also registers the ptp driver.
641  */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645                 return -EOPNOTSUPP;
646
647         /* Fall-back to main clock in case of no PTP ref is passed */
648         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649         if (IS_ERR(priv->clk_ptp_ref)) {
650                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651                 priv->clk_ptp_ref = NULL;
652                 netdev_dbg(priv->dev, "PTP uses main clock\n");
653         } else {
654                 clk_prepare_enable(priv->clk_ptp_ref);
655                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656                 netdev_dbg(priv->dev, "PTP rate %d\n", priv->clk_ptp_rate);
657         }
658
659         priv->adv_ts = 0;
660         /* Check if adv_ts can be enabled for dwmac 4.x core */
661         if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
662                 priv->adv_ts = 1;
663         /* Dwmac 3.x core with extend_desc can support adv_ts */
664         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
665                 priv->adv_ts = 1;
666
667         if (priv->dma_cap.time_stamp)
668                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
669
670         if (priv->adv_ts)
671                 netdev_info(priv->dev,
672                             "IEEE 1588-2008 Advanced Timestamp supported\n");
673
674         priv->hw->ptp = &stmmac_ptp;
675         priv->hwts_tx_en = 0;
676         priv->hwts_rx_en = 0;
677
678         stmmac_ptp_register(priv);
679
680         return 0;
681 }
682
683 static void stmmac_release_ptp(struct stmmac_priv *priv)
684 {
685         if (priv->clk_ptp_ref)
686                 clk_disable_unprepare(priv->clk_ptp_ref);
687         stmmac_ptp_unregister(priv);
688 }
689
690 /**
691  * stmmac_adjust_link - adjusts the link parameters
692  * @dev: net device structure
693  * Description: this is the helper called by the physical abstraction layer
694  * drivers to communicate the phy link status. According the speed and duplex
695  * this driver can invoke registered glue-logic as well.
696  * It also invoke the eee initialization because it could happen when switch
697  * on different networks (that are eee capable).
698  */
699 static void stmmac_adjust_link(struct net_device *dev)
700 {
701         struct stmmac_priv *priv = netdev_priv(dev);
702         struct phy_device *phydev = dev->phydev;
703         unsigned long flags;
704         int new_state = 0;
705         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
706
707         if (phydev == NULL)
708                 return;
709
710         spin_lock_irqsave(&priv->lock, flags);
711
712         if (phydev->link) {
713                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
714
715                 /* Now we make sure that we can be in full duplex mode.
716                  * If not, we operate in half-duplex mode. */
717                 if (phydev->duplex != priv->oldduplex) {
718                         new_state = 1;
719                         if (!(phydev->duplex))
720                                 ctrl &= ~priv->hw->link.duplex;
721                         else
722                                 ctrl |= priv->hw->link.duplex;
723                         priv->oldduplex = phydev->duplex;
724                 }
725                 /* Flow Control operation */
726                 if (phydev->pause)
727                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
728                                                  fc, pause_time);
729
730                 if (phydev->speed != priv->speed) {
731                         new_state = 1;
732                         switch (phydev->speed) {
733                         case 1000:
734                                 if (likely((priv->plat->has_gmac) ||
735                                            (priv->plat->has_gmac4)))
736                                         ctrl &= ~priv->hw->link.port;
737                                 stmmac_hw_fix_mac_speed(priv);
738                                 break;
739                         case 100:
740                         case 10:
741                                 if (likely((priv->plat->has_gmac) ||
742                                            (priv->plat->has_gmac4))) {
743                                         ctrl |= priv->hw->link.port;
744                                         if (phydev->speed == SPEED_100) {
745                                                 ctrl |= priv->hw->link.speed;
746                                         } else {
747                                                 ctrl &= ~(priv->hw->link.speed);
748                                         }
749                                 } else {
750                                         ctrl &= ~priv->hw->link.port;
751                                 }
752                                 stmmac_hw_fix_mac_speed(priv);
753                                 break;
754                         default:
755                                 netif_warn(priv, link, priv->dev,
756                                            "Speed (%d) not 10/100\n",
757                                            phydev->speed);
758                                 break;
759                         }
760
761                         priv->speed = phydev->speed;
762                 }
763
764                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
765
766                 if (!priv->oldlink) {
767                         new_state = 1;
768                         priv->oldlink = 1;
769                 }
770         } else if (priv->oldlink) {
771                 new_state = 1;
772                 priv->oldlink = 0;
773                 priv->speed = 0;
774                 priv->oldduplex = -1;
775         }
776
777         if (new_state && netif_msg_link(priv))
778                 phy_print_status(phydev);
779
780         spin_unlock_irqrestore(&priv->lock, flags);
781
782         if (phydev->is_pseudo_fixed_link)
783                 /* Stop PHY layer to call the hook to adjust the link in case
784                  * of a switch is attached to the stmmac driver.
785                  */
786                 phydev->irq = PHY_IGNORE_INTERRUPT;
787         else
788                 /* At this stage, init the EEE if supported.
789                  * Never called in case of fixed_link.
790                  */
791                 priv->eee_enabled = stmmac_eee_init(priv);
792 }
793
794 /**
795  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
796  * @priv: driver private structure
797  * Description: this is to verify if the HW supports the PCS.
798  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
799  * configured for the TBI, RTBI, or SGMII PHY interface.
800  */
801 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
802 {
803         int interface = priv->plat->interface;
804
805         if (priv->dma_cap.pcs) {
806                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
807                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
808                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
809                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
810                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
811                         priv->hw->pcs = STMMAC_PCS_RGMII;
812                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
813                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
814                         priv->hw->pcs = STMMAC_PCS_SGMII;
815                 }
816         }
817 }
818
819 /**
820  * stmmac_init_phy - PHY initialization
821  * @dev: net device structure
822  * Description: it initializes the driver's PHY state, and attaches the PHY
823  * to the mac driver.
824  *  Return value:
825  *  0 on success
826  */
827 static int stmmac_init_phy(struct net_device *dev)
828 {
829         struct stmmac_priv *priv = netdev_priv(dev);
830         struct phy_device *phydev;
831         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
832         char bus_id[MII_BUS_ID_SIZE];
833         int interface = priv->plat->interface;
834         int max_speed = priv->plat->max_speed;
835         priv->oldlink = 0;
836         priv->speed = 0;
837         priv->oldduplex = -1;
838
839         if (priv->plat->phy_node) {
840                 phydev = of_phy_connect(dev, priv->plat->phy_node,
841                                         &stmmac_adjust_link, 0, interface);
842         } else {
843                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
844                          priv->plat->bus_id);
845
846                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
847                          priv->plat->phy_addr);
848                 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
849                            phy_id_fmt);
850
851                 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
852                                      interface);
853         }
854
855         if (IS_ERR_OR_NULL(phydev)) {
856                 netdev_err(priv->dev, "Could not attach to PHY\n");
857                 if (!phydev)
858                         return -ENODEV;
859
860                 return PTR_ERR(phydev);
861         }
862
863         /* Stop Advertising 1000BASE Capability if interface is not GMII */
864         if ((interface == PHY_INTERFACE_MODE_MII) ||
865             (interface == PHY_INTERFACE_MODE_RMII) ||
866                 (max_speed < 1000 && max_speed > 0))
867                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
868                                          SUPPORTED_1000baseT_Full);
869
870         /*
871          * Broken HW is sometimes missing the pull-up resistor on the
872          * MDIO line, which results in reads to non-existent devices returning
873          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
874          * device as well.
875          * Note: phydev->phy_id is the result of reading the UID PHY registers.
876          */
877         if (!priv->plat->phy_node && phydev->phy_id == 0) {
878                 phy_disconnect(phydev);
879                 return -ENODEV;
880         }
881
882         /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
883          * subsequent PHY polling, make sure we force a link transition if
884          * we have a UP/DOWN/UP transition
885          */
886         if (phydev->is_pseudo_fixed_link)
887                 phydev->irq = PHY_POLL;
888
889         netdev_dbg(priv->dev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
890                    __func__, phydev->phy_id, phydev->link);
891
892         return 0;
893 }
894
895 static void stmmac_display_rings(struct stmmac_priv *priv)
896 {
897         void *head_rx, *head_tx;
898
899         if (priv->extend_desc) {
900                 head_rx = (void *)priv->dma_erx;
901                 head_tx = (void *)priv->dma_etx;
902         } else {
903                 head_rx = (void *)priv->dma_rx;
904                 head_tx = (void *)priv->dma_tx;
905         }
906
907         /* Display Rx ring */
908         priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
909         /* Display Tx ring */
910         priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
911 }
912
913 static int stmmac_set_bfsize(int mtu, int bufsize)
914 {
915         int ret = bufsize;
916
917         if (mtu >= BUF_SIZE_4KiB)
918                 ret = BUF_SIZE_8KiB;
919         else if (mtu >= BUF_SIZE_2KiB)
920                 ret = BUF_SIZE_4KiB;
921         else if (mtu > DEFAULT_BUFSIZE)
922                 ret = BUF_SIZE_2KiB;
923         else
924                 ret = DEFAULT_BUFSIZE;
925
926         return ret;
927 }
928
929 /**
930  * stmmac_clear_descriptors - clear descriptors
931  * @priv: driver private structure
932  * Description: this function is called to clear the tx and rx descriptors
933  * in case of both basic and extended descriptors are used.
934  */
935 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
936 {
937         int i;
938
939         /* Clear the Rx/Tx descriptors */
940         for (i = 0; i < DMA_RX_SIZE; i++)
941                 if (priv->extend_desc)
942                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
943                                                      priv->use_riwt, priv->mode,
944                                                      (i == DMA_RX_SIZE - 1));
945                 else
946                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
947                                                      priv->use_riwt, priv->mode,
948                                                      (i == DMA_RX_SIZE - 1));
949         for (i = 0; i < DMA_TX_SIZE; i++)
950                 if (priv->extend_desc)
951                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
952                                                      priv->mode,
953                                                      (i == DMA_TX_SIZE - 1));
954                 else
955                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
956                                                      priv->mode,
957                                                      (i == DMA_TX_SIZE - 1));
958 }
959
960 /**
961  * stmmac_init_rx_buffers - init the RX descriptor buffer.
962  * @priv: driver private structure
963  * @p: descriptor pointer
964  * @i: descriptor index
965  * @flags: gfp flag.
966  * Description: this function is called to allocate a receive buffer, perform
967  * the DMA mapping and init the descriptor.
968  */
969 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
970                                   int i, gfp_t flags)
971 {
972         struct sk_buff *skb;
973
974         skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
975         if (!skb) {
976                 netdev_err(priv->dev,
977                            "%s: Rx init fails; skb is NULL\n", __func__);
978                 return -ENOMEM;
979         }
980         priv->rx_skbuff[i] = skb;
981         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
982                                                 priv->dma_buf_sz,
983                                                 DMA_FROM_DEVICE);
984         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
985                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
986                 dev_kfree_skb_any(skb);
987                 return -EINVAL;
988         }
989
990         if (priv->synopsys_id >= DWMAC_CORE_4_00)
991                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[i]);
992         else
993                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[i]);
994
995         if ((priv->hw->mode->init_desc3) &&
996             (priv->dma_buf_sz == BUF_SIZE_16KiB))
997                 priv->hw->mode->init_desc3(p);
998
999         return 0;
1000 }
1001
1002 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1003 {
1004         if (priv->rx_skbuff[i]) {
1005                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1006                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1007                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1008         }
1009         priv->rx_skbuff[i] = NULL;
1010 }
1011
1012 /**
1013  * init_dma_desc_rings - init the RX/TX descriptor rings
1014  * @dev: net device structure
1015  * @flags: gfp flag.
1016  * Description: this function initializes the DMA RX/TX descriptors
1017  * and allocates the socket buffers. It suppors the chained and ring
1018  * modes.
1019  */
1020 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1021 {
1022         int i;
1023         struct stmmac_priv *priv = netdev_priv(dev);
1024         unsigned int bfsize = 0;
1025         int ret = -ENOMEM;
1026
1027         if (priv->hw->mode->set_16kib_bfsize)
1028                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1029
1030         if (bfsize < BUF_SIZE_16KiB)
1031                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1032
1033         priv->dma_buf_sz = bfsize;
1034
1035         netif_dbg(priv, probe, priv->dev,
1036                   "(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n",
1037                   __func__, (u32)priv->dma_rx_phy, (u32)priv->dma_tx_phy);
1038
1039         /* RX INITIALIZATION */
1040         netif_dbg(priv, probe, priv->dev,
1041                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1042
1043         for (i = 0; i < DMA_RX_SIZE; i++) {
1044                 struct dma_desc *p;
1045                 if (priv->extend_desc)
1046                         p = &((priv->dma_erx + i)->basic);
1047                 else
1048                         p = priv->dma_rx + i;
1049
1050                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1051                 if (ret)
1052                         goto err_init_rx_buffers;
1053
1054                 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1055                           priv->rx_skbuff[i], priv->rx_skbuff[i]->data,
1056                           (unsigned int)priv->rx_skbuff_dma[i]);
1057         }
1058         priv->cur_rx = 0;
1059         priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1060         buf_sz = bfsize;
1061
1062         /* Setup the chained descriptor addresses */
1063         if (priv->mode == STMMAC_CHAIN_MODE) {
1064                 if (priv->extend_desc) {
1065                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1066                                              DMA_RX_SIZE, 1);
1067                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1068                                              DMA_TX_SIZE, 1);
1069                 } else {
1070                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1071                                              DMA_RX_SIZE, 0);
1072                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1073                                              DMA_TX_SIZE, 0);
1074                 }
1075         }
1076
1077         /* TX INITIALIZATION */
1078         for (i = 0; i < DMA_TX_SIZE; i++) {
1079                 struct dma_desc *p;
1080                 if (priv->extend_desc)
1081                         p = &((priv->dma_etx + i)->basic);
1082                 else
1083                         p = priv->dma_tx + i;
1084
1085                 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1086                         p->des0 = 0;
1087                         p->des1 = 0;
1088                         p->des2 = 0;
1089                         p->des3 = 0;
1090                 } else {
1091                         p->des2 = 0;
1092                 }
1093
1094                 priv->tx_skbuff_dma[i].buf = 0;
1095                 priv->tx_skbuff_dma[i].map_as_page = false;
1096                 priv->tx_skbuff_dma[i].len = 0;
1097                 priv->tx_skbuff_dma[i].last_segment = false;
1098                 priv->tx_skbuff[i] = NULL;
1099         }
1100
1101         priv->dirty_tx = 0;
1102         priv->cur_tx = 0;
1103         netdev_reset_queue(priv->dev);
1104
1105         stmmac_clear_descriptors(priv);
1106
1107         if (netif_msg_hw(priv))
1108                 stmmac_display_rings(priv);
1109
1110         return 0;
1111 err_init_rx_buffers:
1112         while (--i >= 0)
1113                 stmmac_free_rx_buffers(priv, i);
1114         return ret;
1115 }
1116
1117 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1118 {
1119         int i;
1120
1121         for (i = 0; i < DMA_RX_SIZE; i++)
1122                 stmmac_free_rx_buffers(priv, i);
1123 }
1124
1125 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1126 {
1127         int i;
1128
1129         for (i = 0; i < DMA_TX_SIZE; i++) {
1130                 struct dma_desc *p;
1131
1132                 if (priv->extend_desc)
1133                         p = &((priv->dma_etx + i)->basic);
1134                 else
1135                         p = priv->dma_tx + i;
1136
1137                 if (priv->tx_skbuff_dma[i].buf) {
1138                         if (priv->tx_skbuff_dma[i].map_as_page)
1139                                 dma_unmap_page(priv->device,
1140                                                priv->tx_skbuff_dma[i].buf,
1141                                                priv->tx_skbuff_dma[i].len,
1142                                                DMA_TO_DEVICE);
1143                         else
1144                                 dma_unmap_single(priv->device,
1145                                                  priv->tx_skbuff_dma[i].buf,
1146                                                  priv->tx_skbuff_dma[i].len,
1147                                                  DMA_TO_DEVICE);
1148                 }
1149
1150                 if (priv->tx_skbuff[i] != NULL) {
1151                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1152                         priv->tx_skbuff[i] = NULL;
1153                         priv->tx_skbuff_dma[i].buf = 0;
1154                         priv->tx_skbuff_dma[i].map_as_page = false;
1155                 }
1156         }
1157 }
1158
1159 /**
1160  * alloc_dma_desc_resources - alloc TX/RX resources.
1161  * @priv: private structure
1162  * Description: according to which descriptor can be used (extend or basic)
1163  * this function allocates the resources for TX and RX paths. In case of
1164  * reception, for example, it pre-allocated the RX socket buffer in order to
1165  * allow zero-copy mechanism.
1166  */
1167 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1168 {
1169         int ret = -ENOMEM;
1170
1171         priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1172                                             GFP_KERNEL);
1173         if (!priv->rx_skbuff_dma)
1174                 return -ENOMEM;
1175
1176         priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1177                                         GFP_KERNEL);
1178         if (!priv->rx_skbuff)
1179                 goto err_rx_skbuff;
1180
1181         priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1182                                             sizeof(*priv->tx_skbuff_dma),
1183                                             GFP_KERNEL);
1184         if (!priv->tx_skbuff_dma)
1185                 goto err_tx_skbuff_dma;
1186
1187         priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1188                                         GFP_KERNEL);
1189         if (!priv->tx_skbuff)
1190                 goto err_tx_skbuff;
1191
1192         if (priv->extend_desc) {
1193                 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1194                                                     sizeof(struct
1195                                                            dma_extended_desc),
1196                                                     &priv->dma_rx_phy,
1197                                                     GFP_KERNEL);
1198                 if (!priv->dma_erx)
1199                         goto err_dma;
1200
1201                 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1202                                                     sizeof(struct
1203                                                            dma_extended_desc),
1204                                                     &priv->dma_tx_phy,
1205                                                     GFP_KERNEL);
1206                 if (!priv->dma_etx) {
1207                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1208                                           sizeof(struct dma_extended_desc),
1209                                           priv->dma_erx, priv->dma_rx_phy);
1210                         goto err_dma;
1211                 }
1212         } else {
1213                 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1214                                                    sizeof(struct dma_desc),
1215                                                    &priv->dma_rx_phy,
1216                                                    GFP_KERNEL);
1217                 if (!priv->dma_rx)
1218                         goto err_dma;
1219
1220                 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1221                                                    sizeof(struct dma_desc),
1222                                                    &priv->dma_tx_phy,
1223                                                    GFP_KERNEL);
1224                 if (!priv->dma_tx) {
1225                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1226                                           sizeof(struct dma_desc),
1227                                           priv->dma_rx, priv->dma_rx_phy);
1228                         goto err_dma;
1229                 }
1230         }
1231
1232         return 0;
1233
1234 err_dma:
1235         kfree(priv->tx_skbuff);
1236 err_tx_skbuff:
1237         kfree(priv->tx_skbuff_dma);
1238 err_tx_skbuff_dma:
1239         kfree(priv->rx_skbuff);
1240 err_rx_skbuff:
1241         kfree(priv->rx_skbuff_dma);
1242         return ret;
1243 }
1244
1245 static void free_dma_desc_resources(struct stmmac_priv *priv)
1246 {
1247         /* Release the DMA TX/RX socket buffers */
1248         dma_free_rx_skbufs(priv);
1249         dma_free_tx_skbufs(priv);
1250
1251         /* Free DMA regions of consistent memory previously allocated */
1252         if (!priv->extend_desc) {
1253                 dma_free_coherent(priv->device,
1254                                   DMA_TX_SIZE * sizeof(struct dma_desc),
1255                                   priv->dma_tx, priv->dma_tx_phy);
1256                 dma_free_coherent(priv->device,
1257                                   DMA_RX_SIZE * sizeof(struct dma_desc),
1258                                   priv->dma_rx, priv->dma_rx_phy);
1259         } else {
1260                 dma_free_coherent(priv->device, DMA_TX_SIZE *
1261                                   sizeof(struct dma_extended_desc),
1262                                   priv->dma_etx, priv->dma_tx_phy);
1263                 dma_free_coherent(priv->device, DMA_RX_SIZE *
1264                                   sizeof(struct dma_extended_desc),
1265                                   priv->dma_erx, priv->dma_rx_phy);
1266         }
1267         kfree(priv->rx_skbuff_dma);
1268         kfree(priv->rx_skbuff);
1269         kfree(priv->tx_skbuff_dma);
1270         kfree(priv->tx_skbuff);
1271 }
1272
1273 /**
1274  *  stmmac_dma_operation_mode - HW DMA operation mode
1275  *  @priv: driver private structure
1276  *  Description: it is used for configuring the DMA operation mode register in
1277  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1278  */
1279 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1280 {
1281         int rxfifosz = priv->plat->rx_fifo_size;
1282
1283         if (priv->plat->force_thresh_dma_mode)
1284                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1285         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1286                 /*
1287                  * In case of GMAC, SF mode can be enabled
1288                  * to perform the TX COE in HW. This depends on:
1289                  * 1) TX COE if actually supported
1290                  * 2) There is no bugged Jumbo frame support
1291                  *    that needs to not insert csum in the TDES.
1292                  */
1293                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1294                                         rxfifosz);
1295                 priv->xstats.threshold = SF_DMA_MODE;
1296         } else
1297                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1298                                         rxfifosz);
1299 }
1300
1301 /**
1302  * stmmac_tx_clean - to manage the transmission completion
1303  * @priv: driver private structure
1304  * Description: it reclaims the transmit resources after transmission completes.
1305  */
1306 static void stmmac_tx_clean(struct stmmac_priv *priv)
1307 {
1308         unsigned int bytes_compl = 0, pkts_compl = 0;
1309         unsigned int entry = priv->dirty_tx;
1310
1311         netif_tx_lock(priv->dev);
1312
1313         priv->xstats.tx_clean++;
1314
1315         while (entry != priv->cur_tx) {
1316                 struct sk_buff *skb = priv->tx_skbuff[entry];
1317                 struct dma_desc *p;
1318                 int status;
1319
1320                 if (priv->extend_desc)
1321                         p = (struct dma_desc *)(priv->dma_etx + entry);
1322                 else
1323                         p = priv->dma_tx + entry;
1324
1325                 status = priv->hw->desc->tx_status(&priv->dev->stats,
1326                                                       &priv->xstats, p,
1327                                                       priv->ioaddr);
1328                 /* Check if the descriptor is owned by the DMA */
1329                 if (unlikely(status & tx_dma_own))
1330                         break;
1331
1332                 /* Just consider the last segment and ...*/
1333                 if (likely(!(status & tx_not_ls))) {
1334                         /* ... verify the status error condition */
1335                         if (unlikely(status & tx_err)) {
1336                                 priv->dev->stats.tx_errors++;
1337                         } else {
1338                                 priv->dev->stats.tx_packets++;
1339                                 priv->xstats.tx_pkt_n++;
1340                         }
1341                         stmmac_get_tx_hwtstamp(priv, p, skb);
1342                 }
1343
1344                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1345                         if (priv->tx_skbuff_dma[entry].map_as_page)
1346                                 dma_unmap_page(priv->device,
1347                                                priv->tx_skbuff_dma[entry].buf,
1348                                                priv->tx_skbuff_dma[entry].len,
1349                                                DMA_TO_DEVICE);
1350                         else
1351                                 dma_unmap_single(priv->device,
1352                                                  priv->tx_skbuff_dma[entry].buf,
1353                                                  priv->tx_skbuff_dma[entry].len,
1354                                                  DMA_TO_DEVICE);
1355                         priv->tx_skbuff_dma[entry].buf = 0;
1356                         priv->tx_skbuff_dma[entry].len = 0;
1357                         priv->tx_skbuff_dma[entry].map_as_page = false;
1358                 }
1359
1360                 if (priv->hw->mode->clean_desc3)
1361                         priv->hw->mode->clean_desc3(priv, p);
1362
1363                 priv->tx_skbuff_dma[entry].last_segment = false;
1364                 priv->tx_skbuff_dma[entry].is_jumbo = false;
1365
1366                 if (likely(skb != NULL)) {
1367                         pkts_compl++;
1368                         bytes_compl += skb->len;
1369                         dev_consume_skb_any(skb);
1370                         priv->tx_skbuff[entry] = NULL;
1371                 }
1372
1373                 priv->hw->desc->release_tx_desc(p, priv->mode);
1374
1375                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1376         }
1377         priv->dirty_tx = entry;
1378
1379         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1380
1381         if (unlikely(netif_queue_stopped(priv->dev) &&
1382             stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1383                 netif_dbg(priv, tx_done, priv->dev,
1384                           "%s: restart transmit\n", __func__);
1385                 netif_wake_queue(priv->dev);
1386         }
1387
1388         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1389                 stmmac_enable_eee_mode(priv);
1390                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1391         }
1392         netif_tx_unlock(priv->dev);
1393 }
1394
1395 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1396 {
1397         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1398 }
1399
1400 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1401 {
1402         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1403 }
1404
1405 /**
1406  * stmmac_tx_err - to manage the tx error
1407  * @priv: driver private structure
1408  * Description: it cleans the descriptors and restarts the transmission
1409  * in case of transmission errors.
1410  */
1411 static void stmmac_tx_err(struct stmmac_priv *priv)
1412 {
1413         int i;
1414         netif_stop_queue(priv->dev);
1415
1416         priv->hw->dma->stop_tx(priv->ioaddr);
1417         dma_free_tx_skbufs(priv);
1418         for (i = 0; i < DMA_TX_SIZE; i++)
1419                 if (priv->extend_desc)
1420                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1421                                                      priv->mode,
1422                                                      (i == DMA_TX_SIZE - 1));
1423                 else
1424                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1425                                                      priv->mode,
1426                                                      (i == DMA_TX_SIZE - 1));
1427         priv->dirty_tx = 0;
1428         priv->cur_tx = 0;
1429         netdev_reset_queue(priv->dev);
1430         priv->hw->dma->start_tx(priv->ioaddr);
1431
1432         priv->dev->stats.tx_errors++;
1433         netif_wake_queue(priv->dev);
1434 }
1435
1436 /**
1437  * stmmac_dma_interrupt - DMA ISR
1438  * @priv: driver private structure
1439  * Description: this is the DMA ISR. It is called by the main ISR.
1440  * It calls the dwmac dma routine and schedule poll method in case of some
1441  * work can be done.
1442  */
1443 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1444 {
1445         int status;
1446         int rxfifosz = priv->plat->rx_fifo_size;
1447
1448         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1449         if (likely((status & handle_rx)) || (status & handle_tx)) {
1450                 if (likely(napi_schedule_prep(&priv->napi))) {
1451                         stmmac_disable_dma_irq(priv);
1452                         __napi_schedule(&priv->napi);
1453                 }
1454         }
1455         if (unlikely(status & tx_hard_error_bump_tc)) {
1456                 /* Try to bump up the dma threshold on this failure */
1457                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1458                     (tc <= 256)) {
1459                         tc += 64;
1460                         if (priv->plat->force_thresh_dma_mode)
1461                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1462                                                         rxfifosz);
1463                         else
1464                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1465                                                         SF_DMA_MODE, rxfifosz);
1466                         priv->xstats.threshold = tc;
1467                 }
1468         } else if (unlikely(status == tx_hard_error))
1469                 stmmac_tx_err(priv);
1470 }
1471
1472 /**
1473  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1474  * @priv: driver private structure
1475  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1476  */
1477 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1478 {
1479         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1480                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1481
1482         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1483                 priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
1484                 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1485         } else {
1486                 priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
1487                 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1488         }
1489
1490         dwmac_mmc_intr_all_mask(priv->mmcaddr);
1491
1492         if (priv->dma_cap.rmon) {
1493                 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1494                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1495         } else
1496                 netdev_info(priv->dev, "No MAC Management Counters available\n");
1497 }
1498
1499 /**
1500  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1501  * @priv: driver private structure
1502  * Description: select the Enhanced/Alternate or Normal descriptors.
1503  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1504  * supported by the HW capability register.
1505  */
1506 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1507 {
1508         if (priv->plat->enh_desc) {
1509                 dev_info(priv->device, "Enhanced/Alternate descriptors\n");
1510
1511                 /* GMAC older than 3.50 has no extended descriptors */
1512                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1513                         dev_info(priv->device, "Enabled extended descriptors\n");
1514                         priv->extend_desc = 1;
1515                 } else
1516                         dev_warn(priv->device, "Extended descriptors not supported\n");
1517
1518                 priv->hw->desc = &enh_desc_ops;
1519         } else {
1520                 dev_info(priv->device, "Normal descriptors\n");
1521                 priv->hw->desc = &ndesc_ops;
1522         }
1523 }
1524
1525 /**
1526  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1527  * @priv: driver private structure
1528  * Description:
1529  *  new GMAC chip generations have a new register to indicate the
1530  *  presence of the optional feature/functions.
1531  *  This can be also used to override the value passed through the
1532  *  platform and necessary for old MAC10/100 and GMAC chips.
1533  */
1534 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1535 {
1536         u32 ret = 0;
1537
1538         if (priv->hw->dma->get_hw_feature) {
1539                 priv->hw->dma->get_hw_feature(priv->ioaddr,
1540                                               &priv->dma_cap);
1541                 ret = 1;
1542         }
1543
1544         return ret;
1545 }
1546
1547 /**
1548  * stmmac_check_ether_addr - check if the MAC addr is valid
1549  * @priv: driver private structure
1550  * Description:
1551  * it is to verify if the MAC address is valid, in case of failures it
1552  * generates a random MAC address
1553  */
1554 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1555 {
1556         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1557                 priv->hw->mac->get_umac_addr(priv->hw,
1558                                              priv->dev->dev_addr, 0);
1559                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1560                         eth_hw_addr_random(priv->dev);
1561                 netdev_info(priv->dev, "device MAC address %pM\n",
1562                             priv->dev->dev_addr);
1563         }
1564 }
1565
1566 /**
1567  * stmmac_init_dma_engine - DMA init.
1568  * @priv: driver private structure
1569  * Description:
1570  * It inits the DMA invoking the specific MAC/GMAC callback.
1571  * Some DMA parameters can be passed from the platform;
1572  * in case of these are not passed a default is kept for the MAC or GMAC.
1573  */
1574 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1575 {
1576         int atds = 0;
1577         int ret = 0;
1578
1579         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
1580                 dev_err(priv->device, "Invalid DMA configuration\n");
1581                 return -EINVAL;
1582         }
1583
1584         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1585                 atds = 1;
1586
1587         ret = priv->hw->dma->reset(priv->ioaddr);
1588         if (ret) {
1589                 dev_err(priv->device, "Failed to reset the dma\n");
1590                 return ret;
1591         }
1592
1593         priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
1594                             priv->dma_tx_phy, priv->dma_rx_phy, atds);
1595
1596         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1597                 priv->rx_tail_addr = priv->dma_rx_phy +
1598                             (DMA_RX_SIZE * sizeof(struct dma_desc));
1599                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1600                                                STMMAC_CHAN0);
1601
1602                 priv->tx_tail_addr = priv->dma_tx_phy +
1603                             (DMA_TX_SIZE * sizeof(struct dma_desc));
1604                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1605                                                STMMAC_CHAN0);
1606         }
1607
1608         if (priv->plat->axi && priv->hw->dma->axi)
1609                 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1610
1611         return ret;
1612 }
1613
1614 /**
1615  * stmmac_tx_timer - mitigation sw timer for tx.
1616  * @data: data pointer
1617  * Description:
1618  * This is the timer handler to directly invoke the stmmac_tx_clean.
1619  */
1620 static void stmmac_tx_timer(unsigned long data)
1621 {
1622         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1623
1624         stmmac_tx_clean(priv);
1625 }
1626
1627 /**
1628  * stmmac_init_tx_coalesce - init tx mitigation options.
1629  * @priv: driver private structure
1630  * Description:
1631  * This inits the transmit coalesce parameters: i.e. timer rate,
1632  * timer handler and default threshold used for enabling the
1633  * interrupt on completion bit.
1634  */
1635 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1636 {
1637         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1638         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1639         init_timer(&priv->txtimer);
1640         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1641         priv->txtimer.data = (unsigned long)priv;
1642         priv->txtimer.function = stmmac_tx_timer;
1643         add_timer(&priv->txtimer);
1644 }
1645
1646 /**
1647  * stmmac_hw_setup - setup mac in a usable state.
1648  *  @dev : pointer to the device structure.
1649  *  Description:
1650  *  this is the main function to setup the HW in a usable state because the
1651  *  dma engine is reset, the core registers are configured (e.g. AXI,
1652  *  Checksum features, timers). The DMA is ready to start receiving and
1653  *  transmitting.
1654  *  Return value:
1655  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1656  *  file on failure.
1657  */
1658 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1659 {
1660         struct stmmac_priv *priv = netdev_priv(dev);
1661         int ret;
1662
1663         /* DMA initialization and SW reset */
1664         ret = stmmac_init_dma_engine(priv);
1665         if (ret < 0) {
1666                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
1667                            __func__);
1668                 return ret;
1669         }
1670
1671         /* Copy the MAC addr into the HW  */
1672         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1673
1674         /* If required, perform hw setup of the bus. */
1675         if (priv->plat->bus_setup)
1676                 priv->plat->bus_setup(priv->ioaddr);
1677
1678         /* PS and related bits will be programmed according to the speed */
1679         if (priv->hw->pcs) {
1680                 int speed = priv->plat->mac_port_sel_speed;
1681
1682                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
1683                     (speed == SPEED_1000)) {
1684                         priv->hw->ps = speed;
1685                 } else {
1686                         dev_warn(priv->device, "invalid port speed\n");
1687                         priv->hw->ps = 0;
1688                 }
1689         }
1690
1691         /* Initialize the MAC Core */
1692         priv->hw->mac->core_init(priv->hw, dev->mtu);
1693
1694         ret = priv->hw->mac->rx_ipc(priv->hw);
1695         if (!ret) {
1696                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
1697                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1698                 priv->hw->rx_csum = 0;
1699         }
1700
1701         /* Enable the MAC Rx/Tx */
1702         if (priv->synopsys_id >= DWMAC_CORE_4_00)
1703                 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1704         else
1705                 stmmac_set_mac(priv->ioaddr, true);
1706
1707         /* Set the HW DMA mode and the COE */
1708         stmmac_dma_operation_mode(priv);
1709
1710         stmmac_mmc_setup(priv);
1711
1712         if (init_ptp) {
1713                 ret = stmmac_init_ptp(priv);
1714                 if (ret)
1715                         netdev_warn(priv->dev, "fail to init PTP.\n");
1716         }
1717
1718 #ifdef CONFIG_DEBUG_FS
1719         ret = stmmac_init_fs(dev);
1720         if (ret < 0)
1721                 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
1722                             __func__);
1723 #endif
1724         /* Start the ball rolling... */
1725         netdev_dbg(priv->dev, "DMA RX/TX processes started...\n");
1726         priv->hw->dma->start_tx(priv->ioaddr);
1727         priv->hw->dma->start_rx(priv->ioaddr);
1728
1729         /* Dump DMA/MAC registers */
1730         if (netif_msg_hw(priv)) {
1731                 priv->hw->mac->dump_regs(priv->hw);
1732                 priv->hw->dma->dump_regs(priv->ioaddr);
1733         }
1734         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1735
1736         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1737                 priv->rx_riwt = MAX_DMA_RIWT;
1738                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1739         }
1740
1741         if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1742                 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1743
1744         /*  set TX ring length */
1745         if (priv->hw->dma->set_tx_ring_len)
1746                 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1747                                                (DMA_TX_SIZE - 1));
1748         /*  set RX ring length */
1749         if (priv->hw->dma->set_rx_ring_len)
1750                 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1751                                                (DMA_RX_SIZE - 1));
1752         /* Enable TSO */
1753         if (priv->tso)
1754                 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1755
1756         return 0;
1757 }
1758
1759 /**
1760  *  stmmac_open - open entry point of the driver
1761  *  @dev : pointer to the device structure.
1762  *  Description:
1763  *  This function is the open entry point of the driver.
1764  *  Return value:
1765  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1766  *  file on failure.
1767  */
1768 static int stmmac_open(struct net_device *dev)
1769 {
1770         struct stmmac_priv *priv = netdev_priv(dev);
1771         int ret;
1772
1773         stmmac_check_ether_addr(priv);
1774
1775         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1776             priv->hw->pcs != STMMAC_PCS_TBI &&
1777             priv->hw->pcs != STMMAC_PCS_RTBI) {
1778                 ret = stmmac_init_phy(dev);
1779                 if (ret) {
1780                         netdev_err(priv->dev,
1781                                    "%s: Cannot attach to PHY (error: %d)\n",
1782                                    __func__, ret);
1783                         return ret;
1784                 }
1785         }
1786
1787         /* Extra statistics */
1788         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1789         priv->xstats.threshold = tc;
1790
1791         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1792         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1793
1794         ret = alloc_dma_desc_resources(priv);
1795         if (ret < 0) {
1796                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
1797                            __func__);
1798                 goto dma_desc_error;
1799         }
1800
1801         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1802         if (ret < 0) {
1803                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
1804                            __func__);
1805                 goto init_error;
1806         }
1807
1808         ret = stmmac_hw_setup(dev, true);
1809         if (ret < 0) {
1810                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
1811                 goto init_error;
1812         }
1813
1814         stmmac_init_tx_coalesce(priv);
1815
1816         if (dev->phydev)
1817                 phy_start(dev->phydev);
1818
1819         /* Request the IRQ lines */
1820         ret = request_irq(dev->irq, stmmac_interrupt,
1821                           IRQF_SHARED, dev->name, dev);
1822         if (unlikely(ret < 0)) {
1823                 netdev_err(priv->dev,
1824                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1825                            __func__, dev->irq, ret);
1826                 goto init_error;
1827         }
1828
1829         /* Request the Wake IRQ in case of another line is used for WoL */
1830         if (priv->wol_irq != dev->irq) {
1831                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1832                                   IRQF_SHARED, dev->name, dev);
1833                 if (unlikely(ret < 0)) {
1834                         netdev_err(priv->dev,
1835                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1836                                    __func__, priv->wol_irq, ret);
1837                         goto wolirq_error;
1838                 }
1839         }
1840
1841         /* Request the IRQ lines */
1842         if (priv->lpi_irq > 0) {
1843                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1844                                   dev->name, dev);
1845                 if (unlikely(ret < 0)) {
1846                         netdev_err(priv->dev,
1847                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1848                                    __func__, priv->lpi_irq, ret);
1849                         goto lpiirq_error;
1850                 }
1851         }
1852
1853         napi_enable(&priv->napi);
1854         netif_start_queue(dev);
1855
1856         return 0;
1857
1858 lpiirq_error:
1859         if (priv->wol_irq != dev->irq)
1860                 free_irq(priv->wol_irq, dev);
1861 wolirq_error:
1862         free_irq(dev->irq, dev);
1863
1864 init_error:
1865         free_dma_desc_resources(priv);
1866 dma_desc_error:
1867         if (dev->phydev)
1868                 phy_disconnect(dev->phydev);
1869
1870         return ret;
1871 }
1872
1873 /**
1874  *  stmmac_release - close entry point of the driver
1875  *  @dev : device pointer.
1876  *  Description:
1877  *  This is the stop entry point of the driver.
1878  */
1879 static int stmmac_release(struct net_device *dev)
1880 {
1881         struct stmmac_priv *priv = netdev_priv(dev);
1882
1883         if (priv->eee_enabled)
1884                 del_timer_sync(&priv->eee_ctrl_timer);
1885
1886         /* Stop and disconnect the PHY */
1887         if (dev->phydev) {
1888                 phy_stop(dev->phydev);
1889                 phy_disconnect(dev->phydev);
1890         }
1891
1892         netif_stop_queue(dev);
1893
1894         napi_disable(&priv->napi);
1895
1896         del_timer_sync(&priv->txtimer);
1897
1898         /* Free the IRQ lines */
1899         free_irq(dev->irq, dev);
1900         if (priv->wol_irq != dev->irq)
1901                 free_irq(priv->wol_irq, dev);
1902         if (priv->lpi_irq > 0)
1903                 free_irq(priv->lpi_irq, dev);
1904
1905         /* Stop TX/RX DMA and clear the descriptors */
1906         priv->hw->dma->stop_tx(priv->ioaddr);
1907         priv->hw->dma->stop_rx(priv->ioaddr);
1908
1909         /* Release and free the Rx/Tx resources */
1910         free_dma_desc_resources(priv);
1911
1912         /* Disable the MAC Rx/Tx */
1913         stmmac_set_mac(priv->ioaddr, false);
1914
1915         netif_carrier_off(dev);
1916
1917 #ifdef CONFIG_DEBUG_FS
1918         stmmac_exit_fs(dev);
1919 #endif
1920
1921         stmmac_release_ptp(priv);
1922
1923         return 0;
1924 }
1925
1926 /**
1927  *  stmmac_tso_allocator - close entry point of the driver
1928  *  @priv: driver private structure
1929  *  @des: buffer start address
1930  *  @total_len: total length to fill in descriptors
1931  *  @last_segmant: condition for the last descriptor
1932  *  Description:
1933  *  This function fills descriptor and request new descriptors according to
1934  *  buffer length to fill
1935  */
1936 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1937                                  int total_len, bool last_segment)
1938 {
1939         struct dma_desc *desc;
1940         int tmp_len;
1941         u32 buff_size;
1942
1943         tmp_len = total_len;
1944
1945         while (tmp_len > 0) {
1946                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1947                 desc = priv->dma_tx + priv->cur_tx;
1948
1949                 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
1950                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1951                             TSO_MAX_BUFF_SIZE : tmp_len;
1952
1953                 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1954                         0, 1,
1955                         (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1956                         0, 0);
1957
1958                 tmp_len -= TSO_MAX_BUFF_SIZE;
1959         }
1960 }
1961
1962 /**
1963  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1964  *  @skb : the socket buffer
1965  *  @dev : device pointer
1966  *  Description: this is the transmit function that is called on TSO frames
1967  *  (support available on GMAC4 and newer chips).
1968  *  Diagram below show the ring programming in case of TSO frames:
1969  *
1970  *  First Descriptor
1971  *   --------
1972  *   | DES0 |---> buffer1 = L2/L3/L4 header
1973  *   | DES1 |---> TCP Payload (can continue on next descr...)
1974  *   | DES2 |---> buffer 1 and 2 len
1975  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1976  *   --------
1977  *      |
1978  *     ...
1979  *      |
1980  *   --------
1981  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1982  *   | DES1 | --|
1983  *   | DES2 | --> buffer 1 and 2 len
1984  *   | DES3 |
1985  *   --------
1986  *
1987  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1988  */
1989 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1990 {
1991         u32 pay_len, mss;
1992         int tmp_pay_len = 0;
1993         struct stmmac_priv *priv = netdev_priv(dev);
1994         int nfrags = skb_shinfo(skb)->nr_frags;
1995         unsigned int first_entry, des;
1996         struct dma_desc *desc, *first, *mss_desc = NULL;
1997         u8 proto_hdr_len;
1998         int i;
1999
2000         /* Compute header lengths */
2001         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2002
2003         /* Desc availability based on threshold should be enough safe */
2004         if (unlikely(stmmac_tx_avail(priv) <
2005                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2006                 if (!netif_queue_stopped(dev)) {
2007                         netif_stop_queue(dev);
2008                         /* This is a hard error, log it. */
2009                         netdev_err(priv->dev,
2010                                    "%s: Tx Ring full when queue awake\n",
2011                                    __func__);
2012                 }
2013                 return NETDEV_TX_BUSY;
2014         }
2015
2016         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2017
2018         mss = skb_shinfo(skb)->gso_size;
2019
2020         /* set new MSS value if needed */
2021         if (mss != priv->mss) {
2022                 mss_desc = priv->dma_tx + priv->cur_tx;
2023                 priv->hw->desc->set_mss(mss_desc, mss);
2024                 priv->mss = mss;
2025                 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2026         }
2027
2028         if (netif_msg_tx_queued(priv)) {
2029                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2030                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2031                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2032                         skb->data_len);
2033         }
2034
2035         first_entry = priv->cur_tx;
2036
2037         desc = priv->dma_tx + first_entry;
2038         first = desc;
2039
2040         /* first descriptor: fill Headers on Buf1 */
2041         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2042                              DMA_TO_DEVICE);
2043         if (dma_mapping_error(priv->device, des))
2044                 goto dma_map_err;
2045
2046         priv->tx_skbuff_dma[first_entry].buf = des;
2047         priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2048         priv->tx_skbuff[first_entry] = skb;
2049
2050         first->des0 = cpu_to_le32(des);
2051
2052         /* Fill start of payload in buff2 of first descriptor */
2053         if (pay_len)
2054                 first->des1 = cpu_to_le32(des + proto_hdr_len);
2055
2056         /* If needed take extra descriptors to fill the remaining payload */
2057         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2058
2059         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2060
2061         /* Prepare fragments */
2062         for (i = 0; i < nfrags; i++) {
2063                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2064
2065                 des = skb_frag_dma_map(priv->device, frag, 0,
2066                                        skb_frag_size(frag),
2067                                        DMA_TO_DEVICE);
2068
2069                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2070                                      (i == nfrags - 1));
2071
2072                 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2073                 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2074                 priv->tx_skbuff[priv->cur_tx] = NULL;
2075                 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2076         }
2077
2078         priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2079
2080         priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2081
2082         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2083                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2084                           __func__);
2085                 netif_stop_queue(dev);
2086         }
2087
2088         dev->stats.tx_bytes += skb->len;
2089         priv->xstats.tx_tso_frames++;
2090         priv->xstats.tx_tso_nfrags += nfrags;
2091
2092         /* Manage tx mitigation */
2093         priv->tx_count_frames += nfrags + 1;
2094         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2095                 mod_timer(&priv->txtimer,
2096                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2097         } else {
2098                 priv->tx_count_frames = 0;
2099                 priv->hw->desc->set_tx_ic(desc);
2100                 priv->xstats.tx_set_ic_bit++;
2101         }
2102
2103         if (!priv->hwts_tx_en)
2104                 skb_tx_timestamp(skb);
2105
2106         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2107                      priv->hwts_tx_en)) {
2108                 /* declare that device is doing timestamping */
2109                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2110                 priv->hw->desc->enable_tx_timestamp(first);
2111         }
2112
2113         /* Complete the first descriptor before granting the DMA */
2114         priv->hw->desc->prepare_tso_tx_desc(first, 1,
2115                         proto_hdr_len,
2116                         pay_len,
2117                         1, priv->tx_skbuff_dma[first_entry].last_segment,
2118                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2119
2120         /* If context desc is used to change MSS */
2121         if (mss_desc)
2122                 priv->hw->desc->set_tx_owner(mss_desc);
2123
2124         /* The own bit must be the latest setting done when prepare the
2125          * descriptor and then barrier is needed to make sure that
2126          * all is coherent before granting the DMA engine.
2127          */
2128         dma_wmb();
2129
2130         if (netif_msg_pktdata(priv)) {
2131                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2132                         __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2133                         priv->cur_tx, first, nfrags);
2134
2135                 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2136                                              0);
2137
2138                 pr_info(">>> frame to be transmitted: ");
2139                 print_pkt(skb->data, skb_headlen(skb));
2140         }
2141
2142         netdev_sent_queue(dev, skb->len);
2143
2144         priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2145                                        STMMAC_CHAN0);
2146
2147         return NETDEV_TX_OK;
2148
2149 dma_map_err:
2150         dev_err(priv->device, "Tx dma map failed\n");
2151         dev_kfree_skb(skb);
2152         priv->dev->stats.tx_dropped++;
2153         return NETDEV_TX_OK;
2154 }
2155
2156 /**
2157  *  stmmac_xmit - Tx entry point of the driver
2158  *  @skb : the socket buffer
2159  *  @dev : device pointer
2160  *  Description : this is the tx entry point of the driver.
2161  *  It programs the chain or the ring and supports oversized frames
2162  *  and SG feature.
2163  */
2164 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2165 {
2166         struct stmmac_priv *priv = netdev_priv(dev);
2167         unsigned int nopaged_len = skb_headlen(skb);
2168         int i, csum_insertion = 0, is_jumbo = 0;
2169         int nfrags = skb_shinfo(skb)->nr_frags;
2170         unsigned int entry, first_entry;
2171         struct dma_desc *desc, *first;
2172         unsigned int enh_desc;
2173         unsigned int des;
2174
2175         /* Manage oversized TCP frames for GMAC4 device */
2176         if (skb_is_gso(skb) && priv->tso) {
2177                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2178                         return stmmac_tso_xmit(skb, dev);
2179         }
2180
2181         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2182                 if (!netif_queue_stopped(dev)) {
2183                         netif_stop_queue(dev);
2184                         /* This is a hard error, log it. */
2185                         netdev_err(priv->dev,
2186                                    "%s: Tx Ring full when queue awake\n",
2187                                    __func__);
2188                 }
2189                 return NETDEV_TX_BUSY;
2190         }
2191
2192         if (priv->tx_path_in_lpi_mode)
2193                 stmmac_disable_eee_mode(priv);
2194
2195         entry = priv->cur_tx;
2196         first_entry = entry;
2197
2198         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2199
2200         if (likely(priv->extend_desc))
2201                 desc = (struct dma_desc *)(priv->dma_etx + entry);
2202         else
2203                 desc = priv->dma_tx + entry;
2204
2205         first = desc;
2206
2207         priv->tx_skbuff[first_entry] = skb;
2208
2209         enh_desc = priv->plat->enh_desc;
2210         /* To program the descriptors according to the size of the frame */
2211         if (enh_desc)
2212                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2213
2214         if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2215                                          DWMAC_CORE_4_00)) {
2216                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2217                 if (unlikely(entry < 0))
2218                         goto dma_map_err;
2219         }
2220
2221         for (i = 0; i < nfrags; i++) {
2222                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2223                 int len = skb_frag_size(frag);
2224                 bool last_segment = (i == (nfrags - 1));
2225
2226                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2227
2228                 if (likely(priv->extend_desc))
2229                         desc = (struct dma_desc *)(priv->dma_etx + entry);
2230                 else
2231                         desc = priv->dma_tx + entry;
2232
2233                 des = skb_frag_dma_map(priv->device, frag, 0, len,
2234                                        DMA_TO_DEVICE);
2235                 if (dma_mapping_error(priv->device, des))
2236                         goto dma_map_err; /* should reuse desc w/o issues */
2237
2238                 priv->tx_skbuff[entry] = NULL;
2239
2240                 priv->tx_skbuff_dma[entry].buf = des;
2241                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2242                         desc->des0 = cpu_to_le32(des);
2243                 else
2244                         desc->des2 = cpu_to_le32(des);
2245
2246                 priv->tx_skbuff_dma[entry].map_as_page = true;
2247                 priv->tx_skbuff_dma[entry].len = len;
2248                 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2249
2250                 /* Prepare the descriptor and set the own bit too */
2251                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2252                                                 priv->mode, 1, last_segment);
2253         }
2254
2255         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2256
2257         priv->cur_tx = entry;
2258
2259         if (netif_msg_pktdata(priv)) {
2260                 void *tx_head;
2261
2262                 netdev_dbg(priv->dev,
2263                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2264                            __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2265                            entry, first, nfrags);
2266
2267                 if (priv->extend_desc)
2268                         tx_head = (void *)priv->dma_etx;
2269                 else
2270                         tx_head = (void *)priv->dma_tx;
2271
2272                 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2273
2274                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
2275                 print_pkt(skb->data, skb->len);
2276         }
2277
2278         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2279                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2280                           __func__);
2281                 netif_stop_queue(dev);
2282         }
2283
2284         dev->stats.tx_bytes += skb->len;
2285
2286         /* According to the coalesce parameter the IC bit for the latest
2287          * segment is reset and the timer re-started to clean the tx status.
2288          * This approach takes care about the fragments: desc is the first
2289          * element in case of no SG.
2290          */
2291         priv->tx_count_frames += nfrags + 1;
2292         if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2293                 mod_timer(&priv->txtimer,
2294                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2295         } else {
2296                 priv->tx_count_frames = 0;
2297                 priv->hw->desc->set_tx_ic(desc);
2298                 priv->xstats.tx_set_ic_bit++;
2299         }
2300
2301         if (!priv->hwts_tx_en)
2302                 skb_tx_timestamp(skb);
2303
2304         /* Ready to fill the first descriptor and set the OWN bit w/o any
2305          * problems because all the descriptors are actually ready to be
2306          * passed to the DMA engine.
2307          */
2308         if (likely(!is_jumbo)) {
2309                 bool last_segment = (nfrags == 0);
2310
2311                 des = dma_map_single(priv->device, skb->data,
2312                                      nopaged_len, DMA_TO_DEVICE);
2313                 if (dma_mapping_error(priv->device, des))
2314                         goto dma_map_err;
2315
2316                 priv->tx_skbuff_dma[first_entry].buf = des;
2317                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2318                         first->des0 = cpu_to_le32(des);
2319                 else
2320                         first->des2 = cpu_to_le32(des);
2321
2322                 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2323                 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2324
2325                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2326                              priv->hwts_tx_en)) {
2327                         /* declare that device is doing timestamping */
2328                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2329                         priv->hw->desc->enable_tx_timestamp(first);
2330                 }
2331
2332                 /* Prepare the first descriptor setting the OWN bit too */
2333                 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2334                                                 csum_insertion, priv->mode, 1,
2335                                                 last_segment);
2336
2337                 /* The own bit must be the latest setting done when prepare the
2338                  * descriptor and then barrier is needed to make sure that
2339                  * all is coherent before granting the DMA engine.
2340                  */
2341                 dma_wmb();
2342         }
2343
2344         netdev_sent_queue(dev, skb->len);
2345
2346         if (priv->synopsys_id < DWMAC_CORE_4_00)
2347                 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2348         else
2349                 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2350                                                STMMAC_CHAN0);
2351
2352         return NETDEV_TX_OK;
2353
2354 dma_map_err:
2355         netdev_err(priv->dev, "Tx DMA map failed\n");
2356         dev_kfree_skb(skb);
2357         priv->dev->stats.tx_dropped++;
2358         return NETDEV_TX_OK;
2359 }
2360
2361 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2362 {
2363         struct ethhdr *ehdr;
2364         u16 vlanid;
2365
2366         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2367             NETIF_F_HW_VLAN_CTAG_RX &&
2368             !__vlan_get_tag(skb, &vlanid)) {
2369                 /* pop the vlan tag */
2370                 ehdr = (struct ethhdr *)skb->data;
2371                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2372                 skb_pull(skb, VLAN_HLEN);
2373                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2374         }
2375 }
2376
2377
2378 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2379 {
2380         if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2381                 return 0;
2382
2383         return 1;
2384 }
2385
2386 /**
2387  * stmmac_rx_refill - refill used skb preallocated buffers
2388  * @priv: driver private structure
2389  * Description : this is to reallocate the skb for the reception process
2390  * that is based on zero-copy.
2391  */
2392 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2393 {
2394         int bfsize = priv->dma_buf_sz;
2395         unsigned int entry = priv->dirty_rx;
2396         int dirty = stmmac_rx_dirty(priv);
2397
2398         while (dirty-- > 0) {
2399                 struct dma_desc *p;
2400
2401                 if (priv->extend_desc)
2402                         p = (struct dma_desc *)(priv->dma_erx + entry);
2403                 else
2404                         p = priv->dma_rx + entry;
2405
2406                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2407                         struct sk_buff *skb;
2408
2409                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2410                         if (unlikely(!skb)) {
2411                                 /* so for a while no zero-copy! */
2412                                 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2413                                 if (unlikely(net_ratelimit()))
2414                                         dev_err(priv->device,
2415                                                 "fail to alloc skb entry %d\n",
2416                                                 entry);
2417                                 break;
2418                         }
2419
2420                         priv->rx_skbuff[entry] = skb;
2421                         priv->rx_skbuff_dma[entry] =
2422                             dma_map_single(priv->device, skb->data, bfsize,
2423                                            DMA_FROM_DEVICE);
2424                         if (dma_mapping_error(priv->device,
2425                                               priv->rx_skbuff_dma[entry])) {
2426                                 netdev_err(priv->dev, "Rx DMA map failed\n");
2427                                 dev_kfree_skb(skb);
2428                                 break;
2429                         }
2430
2431                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2432                                 p->des0 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2433                                 p->des1 = 0;
2434                         } else {
2435                                 p->des2 = cpu_to_le32(priv->rx_skbuff_dma[entry]);
2436                         }
2437                         if (priv->hw->mode->refill_desc3)
2438                                 priv->hw->mode->refill_desc3(priv, p);
2439
2440                         if (priv->rx_zeroc_thresh > 0)
2441                                 priv->rx_zeroc_thresh--;
2442
2443                         netif_dbg(priv, rx_status, priv->dev,
2444                                   "refill entry #%d\n", entry);
2445                 }
2446                 dma_wmb();
2447
2448                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2449                         priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2450                 else
2451                         priv->hw->desc->set_rx_owner(p);
2452
2453                 dma_wmb();
2454
2455                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2456         }
2457         priv->dirty_rx = entry;
2458 }
2459
2460 /**
2461  * stmmac_rx - manage the receive process
2462  * @priv: driver private structure
2463  * @limit: napi bugget.
2464  * Description :  this the function called by the napi poll method.
2465  * It gets all the frames inside the ring.
2466  */
2467 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2468 {
2469         unsigned int entry = priv->cur_rx;
2470         unsigned int next_entry;
2471         unsigned int count = 0;
2472         int coe = priv->hw->rx_csum;
2473
2474         if (netif_msg_rx_status(priv)) {
2475                 void *rx_head;
2476
2477                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
2478                 if (priv->extend_desc)
2479                         rx_head = (void *)priv->dma_erx;
2480                 else
2481                         rx_head = (void *)priv->dma_rx;
2482
2483                 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2484         }
2485         while (count < limit) {
2486                 int status;
2487                 struct dma_desc *p;
2488                 struct dma_desc *np;
2489
2490                 if (priv->extend_desc)
2491                         p = (struct dma_desc *)(priv->dma_erx + entry);
2492                 else
2493                         p = priv->dma_rx + entry;
2494
2495                 /* read the status of the incoming frame */
2496                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2497                                                    &priv->xstats, p);
2498                 /* check if managed by the DMA otherwise go ahead */
2499                 if (unlikely(status & dma_own))
2500                         break;
2501
2502                 count++;
2503
2504                 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2505                 next_entry = priv->cur_rx;
2506
2507                 if (priv->extend_desc)
2508                         np = (struct dma_desc *)(priv->dma_erx + next_entry);
2509                 else
2510                         np = priv->dma_rx + next_entry;
2511
2512                 prefetch(np);
2513
2514                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2515                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2516                                                            &priv->xstats,
2517                                                            priv->dma_erx +
2518                                                            entry);
2519                 if (unlikely(status == discard_frame)) {
2520                         priv->dev->stats.rx_errors++;
2521                         if (priv->hwts_rx_en && !priv->extend_desc) {
2522                                 /* DESC2 & DESC3 will be overwitten by device
2523                                  * with timestamp value, hence reinitialize
2524                                  * them in stmmac_rx_refill() function so that
2525                                  * device can reuse it.
2526                                  */
2527                                 priv->rx_skbuff[entry] = NULL;
2528                                 dma_unmap_single(priv->device,
2529                                                  priv->rx_skbuff_dma[entry],
2530                                                  priv->dma_buf_sz,
2531                                                  DMA_FROM_DEVICE);
2532                         }
2533                 } else {
2534                         struct sk_buff *skb;
2535                         int frame_len;
2536                         unsigned int des;
2537
2538                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2539                                 des = le32_to_cpu(p->des0);
2540                         else
2541                                 des = le32_to_cpu(p->des2);
2542
2543                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2544
2545                         /*  If frame length is greather than skb buffer size
2546                          *  (preallocated during init) then the packet is
2547                          *  ignored
2548                          */
2549                         if (frame_len > priv->dma_buf_sz) {
2550                                 netdev_err(priv->dev,
2551                                            "len %d larger than size (%d)\n",
2552                                            frame_len, priv->dma_buf_sz);
2553                                 priv->dev->stats.rx_length_errors++;
2554                                 break;
2555                         }
2556
2557                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2558                          * Type frames (LLC/LLC-SNAP)
2559                          */
2560                         if (unlikely(status != llc_snap))
2561                                 frame_len -= ETH_FCS_LEN;
2562
2563                         if (netif_msg_rx_status(priv)) {
2564                                 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
2565                                            p, entry, des);
2566                                 if (frame_len > ETH_FRAME_LEN)
2567                                         netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
2568                                                    frame_len, status);
2569                         }
2570
2571                         /* The zero-copy is always used for all the sizes
2572                          * in case of GMAC4 because it needs
2573                          * to refill the used descriptors, always.
2574                          */
2575                         if (unlikely(!priv->plat->has_gmac4 &&
2576                                      ((frame_len < priv->rx_copybreak) ||
2577                                      stmmac_rx_threshold_count(priv)))) {
2578                                 skb = netdev_alloc_skb_ip_align(priv->dev,
2579                                                                 frame_len);
2580                                 if (unlikely(!skb)) {
2581                                         if (net_ratelimit())
2582                                                 dev_warn(priv->device,
2583                                                          "packet dropped\n");
2584                                         priv->dev->stats.rx_dropped++;
2585                                         break;
2586                                 }
2587
2588                                 dma_sync_single_for_cpu(priv->device,
2589                                                         priv->rx_skbuff_dma
2590                                                         [entry], frame_len,
2591                                                         DMA_FROM_DEVICE);
2592                                 skb_copy_to_linear_data(skb,
2593                                                         priv->
2594                                                         rx_skbuff[entry]->data,
2595                                                         frame_len);
2596
2597                                 skb_put(skb, frame_len);
2598                                 dma_sync_single_for_device(priv->device,
2599                                                            priv->rx_skbuff_dma
2600                                                            [entry], frame_len,
2601                                                            DMA_FROM_DEVICE);
2602                         } else {
2603                                 skb = priv->rx_skbuff[entry];
2604                                 if (unlikely(!skb)) {
2605                                         netdev_err(priv->dev,
2606                                                    "%s: Inconsistent Rx chain\n",
2607                                                    priv->dev->name);
2608                                         priv->dev->stats.rx_dropped++;
2609                                         break;
2610                                 }
2611                                 prefetch(skb->data - NET_IP_ALIGN);
2612                                 priv->rx_skbuff[entry] = NULL;
2613                                 priv->rx_zeroc_thresh++;
2614
2615                                 skb_put(skb, frame_len);
2616                                 dma_unmap_single(priv->device,
2617                                                  priv->rx_skbuff_dma[entry],
2618                                                  priv->dma_buf_sz,
2619                                                  DMA_FROM_DEVICE);
2620                         }
2621
2622                         if (netif_msg_pktdata(priv)) {
2623                                 netdev_dbg(priv->dev, "frame received (%dbytes)",
2624                                            frame_len);
2625                                 print_pkt(skb->data, frame_len);
2626                         }
2627
2628                         stmmac_get_rx_hwtstamp(priv, p, np, skb);
2629
2630                         stmmac_rx_vlan(priv->dev, skb);
2631
2632                         skb->protocol = eth_type_trans(skb, priv->dev);
2633
2634                         if (unlikely(!coe))
2635                                 skb_checksum_none_assert(skb);
2636                         else
2637                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2638
2639                         napi_gro_receive(&priv->napi, skb);
2640
2641                         priv->dev->stats.rx_packets++;
2642                         priv->dev->stats.rx_bytes += frame_len;
2643                 }
2644                 entry = next_entry;
2645         }
2646
2647         stmmac_rx_refill(priv);
2648
2649         priv->xstats.rx_pkt_n += count;
2650
2651         return count;
2652 }
2653
2654 /**
2655  *  stmmac_poll - stmmac poll method (NAPI)
2656  *  @napi : pointer to the napi structure.
2657  *  @budget : maximum number of packets that the current CPU can receive from
2658  *            all interfaces.
2659  *  Description :
2660  *  To look at the incoming frames and clear the tx resources.
2661  */
2662 static int stmmac_poll(struct napi_struct *napi, int budget)
2663 {
2664         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2665         int work_done = 0;
2666
2667         priv->xstats.napi_poll++;
2668         stmmac_tx_clean(priv);
2669
2670         work_done = stmmac_rx(priv, budget);
2671         if (work_done < budget) {
2672                 napi_complete(napi);
2673                 stmmac_enable_dma_irq(priv);
2674         }
2675         return work_done;
2676 }
2677
2678 /**
2679  *  stmmac_tx_timeout
2680  *  @dev : Pointer to net device structure
2681  *  Description: this function is called when a packet transmission fails to
2682  *   complete within a reasonable time. The driver will mark the error in the
2683  *   netdev structure and arrange for the device to be reset to a sane state
2684  *   in order to transmit a new packet.
2685  */
2686 static void stmmac_tx_timeout(struct net_device *dev)
2687 {
2688         struct stmmac_priv *priv = netdev_priv(dev);
2689
2690         /* Clear Tx resources and restart transmitting again */
2691         stmmac_tx_err(priv);
2692 }
2693
2694 /**
2695  *  stmmac_set_rx_mode - entry point for multicast addressing
2696  *  @dev : pointer to the device structure
2697  *  Description:
2698  *  This function is a driver entry point which gets called by the kernel
2699  *  whenever multicast addresses must be enabled/disabled.
2700  *  Return value:
2701  *  void.
2702  */
2703 static void stmmac_set_rx_mode(struct net_device *dev)
2704 {
2705         struct stmmac_priv *priv = netdev_priv(dev);
2706
2707         priv->hw->mac->set_filter(priv->hw, dev);
2708 }
2709
2710 /**
2711  *  stmmac_change_mtu - entry point to change MTU size for the device.
2712  *  @dev : device pointer.
2713  *  @new_mtu : the new MTU size for the device.
2714  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2715  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2716  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2717  *  Return value:
2718  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2719  *  file on failure.
2720  */
2721 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2722 {
2723         struct stmmac_priv *priv = netdev_priv(dev);
2724
2725         if (netif_running(dev)) {
2726                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
2727                 return -EBUSY;
2728         }
2729
2730         dev->mtu = new_mtu;
2731
2732         netdev_update_features(dev);
2733
2734         return 0;
2735 }
2736
2737 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2738                                              netdev_features_t features)
2739 {
2740         struct stmmac_priv *priv = netdev_priv(dev);
2741
2742         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2743                 features &= ~NETIF_F_RXCSUM;
2744
2745         if (!priv->plat->tx_coe)
2746                 features &= ~NETIF_F_CSUM_MASK;
2747
2748         /* Some GMAC devices have a bugged Jumbo frame support that
2749          * needs to have the Tx COE disabled for oversized frames
2750          * (due to limited buffer sizes). In this case we disable
2751          * the TX csum insertionin the TDES and not use SF.
2752          */
2753         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2754                 features &= ~NETIF_F_CSUM_MASK;
2755
2756         /* Disable tso if asked by ethtool */
2757         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2758                 if (features & NETIF_F_TSO)
2759                         priv->tso = true;
2760                 else
2761                         priv->tso = false;
2762         }
2763
2764         return features;
2765 }
2766
2767 static int stmmac_set_features(struct net_device *netdev,
2768                                netdev_features_t features)
2769 {
2770         struct stmmac_priv *priv = netdev_priv(netdev);
2771
2772         /* Keep the COE Type in case of csum is supporting */
2773         if (features & NETIF_F_RXCSUM)
2774                 priv->hw->rx_csum = priv->plat->rx_coe;
2775         else
2776                 priv->hw->rx_csum = 0;
2777         /* No check needed because rx_coe has been set before and it will be
2778          * fixed in case of issue.
2779          */
2780         priv->hw->mac->rx_ipc(priv->hw);
2781
2782         return 0;
2783 }
2784
2785 /**
2786  *  stmmac_interrupt - main ISR
2787  *  @irq: interrupt number.
2788  *  @dev_id: to pass the net device pointer.
2789  *  Description: this is the main driver interrupt service routine.
2790  *  It can call:
2791  *  o DMA service routine (to manage incoming frame reception and transmission
2792  *    status)
2793  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2794  *    interrupts.
2795  */
2796 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2797 {
2798         struct net_device *dev = (struct net_device *)dev_id;
2799         struct stmmac_priv *priv = netdev_priv(dev);
2800
2801         if (priv->irq_wake)
2802                 pm_wakeup_event(priv->device, 0);
2803
2804         if (unlikely(!dev)) {
2805                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
2806                 return IRQ_NONE;
2807         }
2808
2809         /* To handle GMAC own interrupts */
2810         if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2811                 int status = priv->hw->mac->host_irq_status(priv->hw,
2812                                                             &priv->xstats);
2813                 if (unlikely(status)) {
2814                         /* For LPI we need to save the tx status */
2815                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2816                                 priv->tx_path_in_lpi_mode = true;
2817                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2818                                 priv->tx_path_in_lpi_mode = false;
2819                         if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2820                                 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2821                                                         priv->rx_tail_addr,
2822                                                         STMMAC_CHAN0);
2823                 }
2824
2825                 /* PCS link status */
2826                 if (priv->hw->pcs) {
2827                         if (priv->xstats.pcs_link)
2828                                 netif_carrier_on(dev);
2829                         else
2830                                 netif_carrier_off(dev);
2831                 }
2832         }
2833
2834         /* To handle DMA interrupts */
2835         stmmac_dma_interrupt(priv);
2836
2837         return IRQ_HANDLED;
2838 }
2839
2840 #ifdef CONFIG_NET_POLL_CONTROLLER
2841 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2842  * to allow network I/O with interrupts disabled.
2843  */
2844 static void stmmac_poll_controller(struct net_device *dev)
2845 {
2846         disable_irq(dev->irq);
2847         stmmac_interrupt(dev->irq, dev);
2848         enable_irq(dev->irq);
2849 }
2850 #endif
2851
2852 /**
2853  *  stmmac_ioctl - Entry point for the Ioctl
2854  *  @dev: Device pointer.
2855  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2856  *  a proprietary structure used to pass information to the driver.
2857  *  @cmd: IOCTL command
2858  *  Description:
2859  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2860  */
2861 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2862 {
2863         int ret = -EOPNOTSUPP;
2864
2865         if (!netif_running(dev))
2866                 return -EINVAL;
2867
2868         switch (cmd) {
2869         case SIOCGMIIPHY:
2870         case SIOCGMIIREG:
2871         case SIOCSMIIREG:
2872                 if (!dev->phydev)
2873                         return -EINVAL;
2874                 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
2875                 break;
2876         case SIOCSHWTSTAMP:
2877                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2878                 break;
2879         default:
2880                 break;
2881         }
2882
2883         return ret;
2884 }
2885
2886 #ifdef CONFIG_DEBUG_FS
2887 static struct dentry *stmmac_fs_dir;
2888
2889 static void sysfs_display_ring(void *head, int size, int extend_desc,
2890                                struct seq_file *seq)
2891 {
2892         int i;
2893         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2894         struct dma_desc *p = (struct dma_desc *)head;
2895
2896         for (i = 0; i < size; i++) {
2897                 u64 x;
2898                 if (extend_desc) {
2899                         x = *(u64 *) ep;
2900                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2901                                    i, (unsigned int)virt_to_phys(ep),
2902                                    le32_to_cpu(ep->basic.des0),
2903                                    le32_to_cpu(ep->basic.des1),
2904                                    le32_to_cpu(ep->basic.des2),
2905                                    le32_to_cpu(ep->basic.des3));
2906                         ep++;
2907                 } else {
2908                         x = *(u64 *) p;
2909                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2910                                    i, (unsigned int)virt_to_phys(ep),
2911                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
2912                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
2913                         p++;
2914                 }
2915                 seq_printf(seq, "\n");
2916         }
2917 }
2918
2919 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2920 {
2921         struct net_device *dev = seq->private;
2922         struct stmmac_priv *priv = netdev_priv(dev);
2923
2924         if (priv->extend_desc) {
2925                 seq_printf(seq, "Extended RX descriptor ring:\n");
2926                 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2927                 seq_printf(seq, "Extended TX descriptor ring:\n");
2928                 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2929         } else {
2930                 seq_printf(seq, "RX descriptor ring:\n");
2931                 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2932                 seq_printf(seq, "TX descriptor ring:\n");
2933                 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2934         }
2935
2936         return 0;
2937 }
2938
2939 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2940 {
2941         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2942 }
2943
2944 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
2945
2946 static const struct file_operations stmmac_rings_status_fops = {
2947         .owner = THIS_MODULE,
2948         .open = stmmac_sysfs_ring_open,
2949         .read = seq_read,
2950         .llseek = seq_lseek,
2951         .release = single_release,
2952 };
2953
2954 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2955 {
2956         struct net_device *dev = seq->private;
2957         struct stmmac_priv *priv = netdev_priv(dev);
2958
2959         if (!priv->hw_cap_support) {
2960                 seq_printf(seq, "DMA HW features not supported\n");
2961                 return 0;
2962         }
2963
2964         seq_printf(seq, "==============================\n");
2965         seq_printf(seq, "\tDMA HW features\n");
2966         seq_printf(seq, "==============================\n");
2967
2968         seq_printf(seq, "\t10/100 Mbps: %s\n",
2969                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2970         seq_printf(seq, "\t1000 Mbps: %s\n",
2971                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2972         seq_printf(seq, "\tHalf duplex: %s\n",
2973                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2974         seq_printf(seq, "\tHash Filter: %s\n",
2975                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2976         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2977                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2978         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2979                    (priv->dma_cap.pcs) ? "Y" : "N");
2980         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2981                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2982         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2983                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2984         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2985                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2986         seq_printf(seq, "\tRMON module: %s\n",
2987                    (priv->dma_cap.rmon) ? "Y" : "N");
2988         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2989                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2990         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
2991                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2992         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
2993                    (priv->dma_cap.eee) ? "Y" : "N");
2994         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2995         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2996                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2997         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2998                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2999                            (priv->dma_cap.rx_coe) ? "Y" : "N");
3000         } else {
3001                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3002                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3003                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3004                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3005         }
3006         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3007                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3008         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3009                    priv->dma_cap.number_rx_channel);
3010         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3011                    priv->dma_cap.number_tx_channel);
3012         seq_printf(seq, "\tEnhanced descriptors: %s\n",
3013                    (priv->dma_cap.enh_desc) ? "Y" : "N");
3014
3015         return 0;
3016 }
3017
3018 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3019 {
3020         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3021 }
3022
3023 static const struct file_operations stmmac_dma_cap_fops = {
3024         .owner = THIS_MODULE,
3025         .open = stmmac_sysfs_dma_cap_open,
3026         .read = seq_read,
3027         .llseek = seq_lseek,
3028         .release = single_release,
3029 };
3030
3031 static int stmmac_init_fs(struct net_device *dev)
3032 {
3033         struct stmmac_priv *priv = netdev_priv(dev);
3034
3035         /* Create per netdev entries */
3036         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3037
3038         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3039                 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3040
3041                 return -ENOMEM;
3042         }
3043
3044         /* Entry to report DMA RX/TX rings */
3045         priv->dbgfs_rings_status =
3046                 debugfs_create_file("descriptors_status", S_IRUGO,
3047                                     priv->dbgfs_dir, dev,
3048                                     &stmmac_rings_status_fops);
3049
3050         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3051                 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3052                 debugfs_remove_recursive(priv->dbgfs_dir);
3053
3054                 return -ENOMEM;
3055         }
3056
3057         /* Entry to report the DMA HW features */
3058         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3059                                             priv->dbgfs_dir,
3060                                             dev, &stmmac_dma_cap_fops);
3061
3062         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3063                 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3064                 debugfs_remove_recursive(priv->dbgfs_dir);
3065
3066                 return -ENOMEM;
3067         }
3068
3069         return 0;
3070 }
3071
3072 static void stmmac_exit_fs(struct net_device *dev)
3073 {
3074         struct stmmac_priv *priv = netdev_priv(dev);
3075
3076         debugfs_remove_recursive(priv->dbgfs_dir);
3077 }
3078 #endif /* CONFIG_DEBUG_FS */
3079
3080 static const struct net_device_ops stmmac_netdev_ops = {
3081         .ndo_open = stmmac_open,
3082         .ndo_start_xmit = stmmac_xmit,
3083         .ndo_stop = stmmac_release,
3084         .ndo_change_mtu = stmmac_change_mtu,
3085         .ndo_fix_features = stmmac_fix_features,
3086         .ndo_set_features = stmmac_set_features,
3087         .ndo_set_rx_mode = stmmac_set_rx_mode,
3088         .ndo_tx_timeout = stmmac_tx_timeout,
3089         .ndo_do_ioctl = stmmac_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091         .ndo_poll_controller = stmmac_poll_controller,
3092 #endif
3093         .ndo_set_mac_address = eth_mac_addr,
3094 };
3095
3096 /**
3097  *  stmmac_hw_init - Init the MAC device
3098  *  @priv: driver private structure
3099  *  Description: this function is to configure the MAC device according to
3100  *  some platform parameters or the HW capability register. It prepares the
3101  *  driver to use either ring or chain modes and to setup either enhanced or
3102  *  normal descriptors.
3103  */
3104 static int stmmac_hw_init(struct stmmac_priv *priv)
3105 {
3106         struct mac_device_info *mac;
3107
3108         /* Identify the MAC HW device */
3109         if (priv->plat->has_gmac) {
3110                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3111                 mac = dwmac1000_setup(priv->ioaddr,
3112                                       priv->plat->multicast_filter_bins,
3113                                       priv->plat->unicast_filter_entries,
3114                                       &priv->synopsys_id);
3115         } else if (priv->plat->has_gmac4) {
3116                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3117                 mac = dwmac4_setup(priv->ioaddr,
3118                                    priv->plat->multicast_filter_bins,
3119                                    priv->plat->unicast_filter_entries,
3120                                    &priv->synopsys_id);
3121         } else {
3122                 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3123         }
3124         if (!mac)
3125                 return -ENOMEM;
3126
3127         priv->hw = mac;
3128
3129         /* To use the chained or ring mode */
3130         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3131                 priv->hw->mode = &dwmac4_ring_mode_ops;
3132         } else {
3133                 if (chain_mode) {
3134                         priv->hw->mode = &chain_mode_ops;
3135                         dev_info(priv->device, "Chain mode enabled\n");
3136                         priv->mode = STMMAC_CHAIN_MODE;
3137                 } else {
3138                         priv->hw->mode = &ring_mode_ops;
3139                         dev_info(priv->device, "Ring mode enabled\n");
3140                         priv->mode = STMMAC_RING_MODE;
3141                 }
3142         }
3143
3144         /* Get the HW capability (new GMAC newer than 3.50a) */
3145         priv->hw_cap_support = stmmac_get_hw_features(priv);
3146         if (priv->hw_cap_support) {
3147                 dev_info(priv->device, "DMA HW capability register supported\n");
3148
3149                 /* We can override some gmac/dma configuration fields: e.g.
3150                  * enh_desc, tx_coe (e.g. that are passed through the
3151                  * platform) with the values from the HW capability
3152                  * register (if supported).
3153                  */
3154                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3155                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3156                 priv->hw->pmt = priv->plat->pmt;
3157
3158                 /* TXCOE doesn't work in thresh DMA mode */
3159                 if (priv->plat->force_thresh_dma_mode)
3160                         priv->plat->tx_coe = 0;
3161                 else
3162                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
3163
3164                 /* In case of GMAC4 rx_coe is from HW cap register. */
3165                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3166
3167                 if (priv->dma_cap.rx_coe_type2)
3168                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3169                 else if (priv->dma_cap.rx_coe_type1)
3170                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3171
3172         } else {
3173                 dev_info(priv->device, "No HW DMA feature register supported\n");
3174         }
3175
3176         /* To use alternate (extended), normal or GMAC4 descriptor structures */
3177         if (priv->synopsys_id >= DWMAC_CORE_4_00)
3178                 priv->hw->desc = &dwmac4_desc_ops;
3179         else
3180                 stmmac_selec_desc_mode(priv);
3181
3182         if (priv->plat->rx_coe) {
3183                 priv->hw->rx_csum = priv->plat->rx_coe;
3184                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
3185                 if (priv->synopsys_id < DWMAC_CORE_4_00)
3186                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
3187         }
3188         if (priv->plat->tx_coe)
3189                 dev_info(priv->device, "TX Checksum insertion supported\n");
3190
3191         if (priv->plat->pmt) {
3192                 dev_info(priv->device, "Wake-Up On Lan supported\n");
3193                 device_set_wakeup_capable(priv->device, 1);
3194         }
3195
3196         if (priv->dma_cap.tsoen)
3197                 dev_info(priv->device, "TSO supported\n");
3198
3199         return 0;
3200 }
3201
3202 /**
3203  * stmmac_dvr_probe
3204  * @device: device pointer
3205  * @plat_dat: platform data pointer
3206  * @res: stmmac resource pointer
3207  * Description: this is the main probe function used to
3208  * call the alloc_etherdev, allocate the priv structure.
3209  * Return:
3210  * returns 0 on success, otherwise errno.
3211  */
3212 int stmmac_dvr_probe(struct device *device,
3213                      struct plat_stmmacenet_data *plat_dat,
3214                      struct stmmac_resources *res)
3215 {
3216         int ret = 0;
3217         struct net_device *ndev = NULL;
3218         struct stmmac_priv *priv;
3219
3220         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3221         if (!ndev)
3222                 return -ENOMEM;
3223
3224         SET_NETDEV_DEV(ndev, device);
3225
3226         priv = netdev_priv(ndev);
3227         priv->device = device;
3228         priv->dev = ndev;
3229
3230         stmmac_set_ethtool_ops(ndev);
3231         priv->pause = pause;
3232         priv->plat = plat_dat;
3233         priv->ioaddr = res->addr;
3234         priv->dev->base_addr = (unsigned long)res->addr;
3235
3236         priv->dev->irq = res->irq;
3237         priv->wol_irq = res->wol_irq;
3238         priv->lpi_irq = res->lpi_irq;
3239
3240         if (res->mac)
3241                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3242
3243         dev_set_drvdata(device, priv->dev);
3244
3245         /* Verify driver arguments */
3246         stmmac_verify_args();
3247
3248         /* Override with kernel parameters if supplied XXX CRS XXX
3249          * this needs to have multiple instances
3250          */
3251         if ((phyaddr >= 0) && (phyaddr <= 31))
3252                 priv->plat->phy_addr = phyaddr;
3253
3254         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3255         if (IS_ERR(priv->stmmac_clk)) {
3256                 netdev_warn(priv->dev, "%s: warning: cannot get CSR clock\n",
3257                             __func__);
3258                 /* If failed to obtain stmmac_clk and specific clk_csr value
3259                  * is NOT passed from the platform, probe fail.
3260                  */
3261                 if (!priv->plat->clk_csr) {
3262                         ret = PTR_ERR(priv->stmmac_clk);
3263                         goto error_clk_get;
3264                 } else {
3265                         priv->stmmac_clk = NULL;
3266                 }
3267         }
3268         clk_prepare_enable(priv->stmmac_clk);
3269
3270         priv->pclk = devm_clk_get(priv->device, "pclk");
3271         if (IS_ERR(priv->pclk)) {
3272                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3273                         ret = -EPROBE_DEFER;
3274                         goto error_pclk_get;
3275                 }
3276                 priv->pclk = NULL;
3277         }
3278         clk_prepare_enable(priv->pclk);
3279
3280         priv->stmmac_rst = devm_reset_control_get(priv->device,
3281                                                   STMMAC_RESOURCE_NAME);
3282         if (IS_ERR(priv->stmmac_rst)) {
3283                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3284                         ret = -EPROBE_DEFER;
3285                         goto error_hw_init;
3286                 }
3287                 dev_info(priv->device, "no reset control found\n");
3288                 priv->stmmac_rst = NULL;
3289         }
3290         if (priv->stmmac_rst)
3291                 reset_control_deassert(priv->stmmac_rst);
3292
3293         /* Init MAC and get the capabilities */
3294         ret = stmmac_hw_init(priv);
3295         if (ret)
3296                 goto error_hw_init;
3297
3298         ndev->netdev_ops = &stmmac_netdev_ops;
3299
3300         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3301                             NETIF_F_RXCSUM;
3302
3303         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3304                 ndev->hw_features |= NETIF_F_TSO;
3305                 priv->tso = true;
3306                 dev_info(priv->device, "TSO feature enabled\n");
3307         }
3308         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3309         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3310 #ifdef STMMAC_VLAN_TAG_USED
3311         /* Both mac100 and gmac support receive VLAN tag detection */
3312         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3313 #endif
3314         priv->msg_enable = netif_msg_init(debug, default_msg_level);
3315
3316         /* MTU range: 46 - hw-specific max */
3317         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
3318         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
3319                 ndev->max_mtu = JUMBO_LEN;
3320         else
3321                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
3322         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
3323          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
3324          */
3325         if ((priv->plat->maxmtu < ndev->max_mtu) &&
3326             (priv->plat->maxmtu >= ndev->min_mtu))
3327                 ndev->max_mtu = priv->plat->maxmtu;
3328         else if (priv->plat->maxmtu < ndev->min_mtu)
3329                 netdev_warn(priv->dev,
3330                             "%s: warning: maxmtu having invalid value (%d)\n",
3331                             __func__, priv->plat->maxmtu);
3332
3333         if (flow_ctrl)
3334                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
3335
3336         /* Rx Watchdog is available in the COREs newer than the 3.40.
3337          * In some case, for example on bugged HW this feature
3338          * has to be disable and this can be done by passing the
3339          * riwt_off field from the platform.
3340          */
3341         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3342                 priv->use_riwt = 1;
3343                 netdev_info(priv->dev, "Enable RX Mitigation via HW Watchdog Timer\n");
3344         }
3345
3346         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3347
3348         spin_lock_init(&priv->lock);
3349
3350         /* If a specific clk_csr value is passed from the platform
3351          * this means that the CSR Clock Range selection cannot be
3352          * changed at run-time and it is fixed. Viceversa the driver'll try to
3353          * set the MDC clock dynamically according to the csr actual
3354          * clock input.
3355          */
3356         if (!priv->plat->clk_csr)
3357                 stmmac_clk_csr_set(priv);
3358         else
3359                 priv->clk_csr = priv->plat->clk_csr;
3360
3361         stmmac_check_pcs_mode(priv);
3362
3363         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3364             priv->hw->pcs != STMMAC_PCS_TBI &&
3365             priv->hw->pcs != STMMAC_PCS_RTBI) {
3366                 /* MDIO bus Registration */
3367                 ret = stmmac_mdio_register(ndev);
3368                 if (ret < 0) {
3369                         netdev_err(priv->dev,
3370                                    "%s: MDIO bus (id: %d) registration failed",
3371                                    __func__, priv->plat->bus_id);
3372                         goto error_mdio_register;
3373                 }
3374         }
3375
3376         ret = register_netdev(ndev);
3377         if (ret) {
3378                 netdev_err(priv->dev, "%s: ERROR %i registering the device\n",
3379                            __func__, ret);
3380                 goto error_netdev_register;
3381         }
3382
3383         return ret;
3384
3385 error_netdev_register:
3386         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3387             priv->hw->pcs != STMMAC_PCS_TBI &&
3388             priv->hw->pcs != STMMAC_PCS_RTBI)
3389                 stmmac_mdio_unregister(ndev);
3390 error_mdio_register:
3391         netif_napi_del(&priv->napi);
3392 error_hw_init:
3393         clk_disable_unprepare(priv->pclk);
3394 error_pclk_get:
3395         clk_disable_unprepare(priv->stmmac_clk);
3396 error_clk_get:
3397         free_netdev(ndev);
3398
3399         return ret;
3400 }
3401 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3402
3403 /**
3404  * stmmac_dvr_remove
3405  * @dev: device pointer
3406  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3407  * changes the link status, releases the DMA descriptor rings.
3408  */
3409 int stmmac_dvr_remove(struct device *dev)
3410 {
3411         struct net_device *ndev = dev_get_drvdata(dev);
3412         struct stmmac_priv *priv = netdev_priv(ndev);
3413
3414         netdev_info(priv->dev, "%s: removing driver", __func__);
3415
3416         priv->hw->dma->stop_rx(priv->ioaddr);
3417         priv->hw->dma->stop_tx(priv->ioaddr);
3418
3419         stmmac_set_mac(priv->ioaddr, false);
3420         netif_carrier_off(ndev);
3421         unregister_netdev(ndev);
3422         if (priv->stmmac_rst)
3423                 reset_control_assert(priv->stmmac_rst);
3424         clk_disable_unprepare(priv->pclk);
3425         clk_disable_unprepare(priv->stmmac_clk);
3426         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3427             priv->hw->pcs != STMMAC_PCS_TBI &&
3428             priv->hw->pcs != STMMAC_PCS_RTBI)
3429                 stmmac_mdio_unregister(ndev);
3430         free_netdev(ndev);
3431
3432         return 0;
3433 }
3434 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3435
3436 /**
3437  * stmmac_suspend - suspend callback
3438  * @dev: device pointer
3439  * Description: this is the function to suspend the device and it is called
3440  * by the platform driver to stop the network queue, release the resources,
3441  * program the PMT register (for WoL), clean and release driver resources.
3442  */
3443 int stmmac_suspend(struct device *dev)
3444 {
3445         struct net_device *ndev = dev_get_drvdata(dev);
3446         struct stmmac_priv *priv = netdev_priv(ndev);
3447         unsigned long flags;
3448
3449         if (!ndev || !netif_running(ndev))
3450                 return 0;
3451
3452         if (ndev->phydev)
3453                 phy_stop(ndev->phydev);
3454
3455         spin_lock_irqsave(&priv->lock, flags);
3456
3457         netif_device_detach(ndev);
3458         netif_stop_queue(ndev);
3459
3460         napi_disable(&priv->napi);
3461
3462         /* Stop TX/RX DMA */
3463         priv->hw->dma->stop_tx(priv->ioaddr);
3464         priv->hw->dma->stop_rx(priv->ioaddr);
3465
3466         /* Enable Power down mode by programming the PMT regs */
3467         if (device_may_wakeup(priv->device)) {
3468                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3469                 priv->irq_wake = 1;
3470         } else {
3471                 stmmac_set_mac(priv->ioaddr, false);
3472                 pinctrl_pm_select_sleep_state(priv->device);
3473                 /* Disable clock in case of PWM is off */
3474                 clk_disable(priv->pclk);
3475                 clk_disable(priv->stmmac_clk);
3476         }
3477         spin_unlock_irqrestore(&priv->lock, flags);
3478
3479         priv->oldlink = 0;
3480         priv->speed = 0;
3481         priv->oldduplex = -1;
3482         return 0;
3483 }
3484 EXPORT_SYMBOL_GPL(stmmac_suspend);
3485
3486 /**
3487  * stmmac_resume - resume callback
3488  * @dev: device pointer
3489  * Description: when resume this function is invoked to setup the DMA and CORE
3490  * in a usable state.
3491  */
3492 int stmmac_resume(struct device *dev)
3493 {
3494         struct net_device *ndev = dev_get_drvdata(dev);
3495         struct stmmac_priv *priv = netdev_priv(ndev);
3496         unsigned long flags;
3497
3498         if (!netif_running(ndev))
3499                 return 0;
3500
3501         /* Power Down bit, into the PM register, is cleared
3502          * automatically as soon as a magic packet or a Wake-up frame
3503          * is received. Anyway, it's better to manually clear
3504          * this bit because it can generate problems while resuming
3505          * from another devices (e.g. serial console).
3506          */
3507         if (device_may_wakeup(priv->device)) {
3508                 spin_lock_irqsave(&priv->lock, flags);
3509                 priv->hw->mac->pmt(priv->hw, 0);
3510                 spin_unlock_irqrestore(&priv->lock, flags);
3511                 priv->irq_wake = 0;
3512         } else {
3513                 pinctrl_pm_select_default_state(priv->device);
3514                 /* enable the clk prevously disabled */
3515                 clk_enable(priv->stmmac_clk);
3516                 clk_enable(priv->pclk);
3517                 /* reset the phy so that it's ready */
3518                 if (priv->mii)
3519                         stmmac_mdio_reset(priv->mii);
3520         }
3521
3522         netif_device_attach(ndev);
3523
3524         spin_lock_irqsave(&priv->lock, flags);
3525
3526         priv->cur_rx = 0;
3527         priv->dirty_rx = 0;
3528         priv->dirty_tx = 0;
3529         priv->cur_tx = 0;
3530         /* reset private mss value to force mss context settings at
3531          * next tso xmit (only used for gmac4).
3532          */
3533         priv->mss = 0;
3534
3535         stmmac_clear_descriptors(priv);
3536
3537         stmmac_hw_setup(ndev, false);
3538         stmmac_init_tx_coalesce(priv);
3539         stmmac_set_rx_mode(ndev);
3540
3541         napi_enable(&priv->napi);
3542
3543         netif_start_queue(ndev);
3544
3545         spin_unlock_irqrestore(&priv->lock, flags);
3546
3547         if (ndev->phydev)
3548                 phy_start(ndev->phydev);
3549
3550         return 0;
3551 }
3552 EXPORT_SYMBOL_GPL(stmmac_resume);
3553
3554 #ifndef MODULE
3555 static int __init stmmac_cmdline_opt(char *str)
3556 {
3557         char *opt;
3558
3559         if (!str || !*str)
3560                 return -EINVAL;
3561         while ((opt = strsep(&str, ",")) != NULL) {
3562                 if (!strncmp(opt, "debug:", 6)) {
3563                         if (kstrtoint(opt + 6, 0, &debug))
3564                                 goto err;
3565                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3566                         if (kstrtoint(opt + 8, 0, &phyaddr))
3567                                 goto err;
3568                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3569                         if (kstrtoint(opt + 7, 0, &buf_sz))
3570                                 goto err;
3571                 } else if (!strncmp(opt, "tc:", 3)) {
3572                         if (kstrtoint(opt + 3, 0, &tc))
3573                                 goto err;
3574                 } else if (!strncmp(opt, "watchdog:", 9)) {
3575                         if (kstrtoint(opt + 9, 0, &watchdog))
3576                                 goto err;
3577                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3578                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3579                                 goto err;
3580                 } else if (!strncmp(opt, "pause:", 6)) {
3581                         if (kstrtoint(opt + 6, 0, &pause))
3582                                 goto err;
3583                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3584                         if (kstrtoint(opt + 10, 0, &eee_timer))
3585                                 goto err;
3586                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3587                         if (kstrtoint(opt + 11, 0, &chain_mode))
3588                                 goto err;
3589                 }
3590         }
3591         return 0;
3592
3593 err:
3594         pr_err("%s: ERROR broken module parameter conversion", __func__);
3595         return -EINVAL;
3596 }
3597
3598 __setup("stmmaceth=", stmmac_cmdline_opt);
3599 #endif /* MODULE */
3600
3601 static int __init stmmac_init(void)
3602 {
3603 #ifdef CONFIG_DEBUG_FS
3604         /* Create debugfs main directory if it doesn't exist yet */
3605         if (!stmmac_fs_dir) {
3606                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3607
3608                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3609                         pr_err("ERROR %s, debugfs create directory failed\n",
3610                                STMMAC_RESOURCE_NAME);
3611
3612                         return -ENOMEM;
3613                 }
3614         }
3615 #endif
3616
3617         return 0;
3618 }
3619
3620 static void __exit stmmac_exit(void)
3621 {
3622 #ifdef CONFIG_DEBUG_FS
3623         debugfs_remove_recursive(stmmac_fs_dir);
3624 #endif
3625 }
3626
3627 module_init(stmmac_init)
3628 module_exit(stmmac_exit)
3629
3630 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3631 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3632 MODULE_LICENSE("GPL");