Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56                 ((void)(netif_msg_##nlevel(priv) && \
57                 printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...)  do { } while (0)
68 #endif
69
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...)  do { } while (0)
76 #endif
77
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN       9000
80
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86
87 static int debug = -1;          /* -1: default, 0: no output, 16:  all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117
118 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
119 static int buf_sz = DMA_BUFFER_SIZE;
120 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
122
123 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
124                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
125                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
126
127 #define STMMAC_DEFAULT_LPI_TIMER        1000
128 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
129 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
131 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
132
133 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
134
135 #ifdef CONFIG_STMMAC_DEBUG_FS
136 static int stmmac_init_fs(struct net_device *dev);
137 static void stmmac_exit_fs(void);
138 #endif
139
140 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
141
142 /**
143  * stmmac_verify_args - verify the driver parameters.
144  * Description: it verifies if some wrong parameter is passed to the driver.
145  * Note that wrong parameters are replaced with the default values.
146  */
147 static void stmmac_verify_args(void)
148 {
149         if (unlikely(watchdog < 0))
150                 watchdog = TX_TIMEO;
151         if (unlikely(dma_rxsize < 0))
152                 dma_rxsize = DMA_RX_SIZE;
153         if (unlikely(dma_txsize < 0))
154                 dma_txsize = DMA_TX_SIZE;
155         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
156                 buf_sz = DMA_BUFFER_SIZE;
157         if (unlikely(flow_ctrl > 1))
158                 flow_ctrl = FLOW_AUTO;
159         else if (likely(flow_ctrl < 0))
160                 flow_ctrl = FLOW_OFF;
161         if (unlikely((pause < 0) || (pause > 0xffff)))
162                 pause = PAUSE_TIME;
163         if (eee_timer < 0)
164                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166
167 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
168 {
169         u32 clk_rate;
170
171         clk_rate = clk_get_rate(priv->stmmac_clk);
172
173         /* Platform provided default clk_csr would be assumed valid
174          * for all other cases except for the below mentioned ones. */
175         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176                 if (clk_rate < CSR_F_35M)
177                         priv->clk_csr = STMMAC_CSR_20_35M;
178                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179                         priv->clk_csr = STMMAC_CSR_35_60M;
180                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181                         priv->clk_csr = STMMAC_CSR_60_100M;
182                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183                         priv->clk_csr = STMMAC_CSR_100_150M;
184                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185                         priv->clk_csr = STMMAC_CSR_150_250M;
186                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187                         priv->clk_csr = STMMAC_CSR_250_300M;
188         } /* For values higher than the IEEE 802.3 specified frequency
189            * we can not estimate the proper divider as it is not known
190            * the frequency of clk_csr_i. So we do not change the default
191            * divider. */
192 }
193
194 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
195 static void print_pkt(unsigned char *buf, int len)
196 {
197         int j;
198         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
199         for (j = 0; j < len; j++) {
200                 if ((j % 16) == 0)
201                         pr_info("\n %03x:", j);
202                 pr_info(" %02x", buf[j]);
203         }
204         pr_info("\n");
205 }
206 #endif
207
208 /* minimum number of free TX descriptors required to wake up TX process */
209 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
210
211 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
212 {
213         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
214 }
215
216 /* On some ST platforms, some HW system configuraton registers have to be
217  * set according to the link speed negotiated.
218  */
219 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
220 {
221         struct phy_device *phydev = priv->phydev;
222
223         if (likely(priv->plat->fix_mac_speed))
224                 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
225                                           phydev->speed);
226 }
227
228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
229 {
230         /* Check and enter in LPI mode */
231         if ((priv->dirty_tx == priv->cur_tx) &&
232             (priv->tx_path_in_lpi_mode == false))
233                 priv->hw->mac->set_eee_mode(priv->ioaddr);
234 }
235
236 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
237 {
238         /* Exit and disable EEE in case of we are are in LPI state. */
239         priv->hw->mac->reset_eee_mode(priv->ioaddr);
240         del_timer_sync(&priv->eee_ctrl_timer);
241         priv->tx_path_in_lpi_mode = false;
242 }
243
244 /**
245  * stmmac_eee_ctrl_timer
246  * @arg : data hook
247  * Description:
248  *  If there is no data transfer and if we are not in LPI state,
249  *  then MAC Transmitter can be moved to LPI state.
250  */
251 static void stmmac_eee_ctrl_timer(unsigned long arg)
252 {
253         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
254
255         stmmac_enable_eee_mode(priv);
256         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
257 }
258
259 /**
260  * stmmac_eee_init
261  * @priv: private device pointer
262  * Description:
263  *  If the EEE support has been enabled while configuring the driver,
264  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
265  *  phy can also manage EEE, so enable the LPI state and start the timer
266  *  to verify if the tx path can enter in LPI state.
267  */
268 bool stmmac_eee_init(struct stmmac_priv *priv)
269 {
270         bool ret = false;
271
272         /* MAC core supports the EEE feature. */
273         if (priv->dma_cap.eee) {
274                 /* Check if the PHY supports EEE */
275                 if (phy_init_eee(priv->phydev, 1))
276                         goto out;
277
278                 priv->eee_active = 1;
279                 init_timer(&priv->eee_ctrl_timer);
280                 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
281                 priv->eee_ctrl_timer.data = (unsigned long)priv;
282                 priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
283                 add_timer(&priv->eee_ctrl_timer);
284
285                 priv->hw->mac->set_eee_timer(priv->ioaddr,
286                                              STMMAC_DEFAULT_LIT_LS_TIMER,
287                                              priv->tx_lpi_timer);
288
289                 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
290
291                 ret = true;
292         }
293 out:
294         return ret;
295 }
296
297 static void stmmac_eee_adjust(struct stmmac_priv *priv)
298 {
299         /* When the EEE has been already initialised we have to
300          * modify the PLS bit in the LPI ctrl & status reg according
301          * to the PHY link status. For this reason.
302          */
303         if (priv->eee_enabled)
304                 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
305 }
306
307 /**
308  * stmmac_adjust_link
309  * @dev: net device structure
310  * Description: it adjusts the link parameters.
311  */
312 static void stmmac_adjust_link(struct net_device *dev)
313 {
314         struct stmmac_priv *priv = netdev_priv(dev);
315         struct phy_device *phydev = priv->phydev;
316         unsigned long flags;
317         int new_state = 0;
318         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
319
320         if (phydev == NULL)
321                 return;
322
323         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
324             phydev->addr, phydev->link);
325
326         spin_lock_irqsave(&priv->lock, flags);
327
328         if (phydev->link) {
329                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
330
331                 /* Now we make sure that we can be in full duplex mode.
332                  * If not, we operate in half-duplex mode. */
333                 if (phydev->duplex != priv->oldduplex) {
334                         new_state = 1;
335                         if (!(phydev->duplex))
336                                 ctrl &= ~priv->hw->link.duplex;
337                         else
338                                 ctrl |= priv->hw->link.duplex;
339                         priv->oldduplex = phydev->duplex;
340                 }
341                 /* Flow Control operation */
342                 if (phydev->pause)
343                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
344                                                  fc, pause_time);
345
346                 if (phydev->speed != priv->speed) {
347                         new_state = 1;
348                         switch (phydev->speed) {
349                         case 1000:
350                                 if (likely(priv->plat->has_gmac))
351                                         ctrl &= ~priv->hw->link.port;
352                                         stmmac_hw_fix_mac_speed(priv);
353                                 break;
354                         case 100:
355                         case 10:
356                                 if (priv->plat->has_gmac) {
357                                         ctrl |= priv->hw->link.port;
358                                         if (phydev->speed == SPEED_100) {
359                                                 ctrl |= priv->hw->link.speed;
360                                         } else {
361                                                 ctrl &= ~(priv->hw->link.speed);
362                                         }
363                                 } else {
364                                         ctrl &= ~priv->hw->link.port;
365                                 }
366                                 stmmac_hw_fix_mac_speed(priv);
367                                 break;
368                         default:
369                                 if (netif_msg_link(priv))
370                                         pr_warning("%s: Speed (%d) is not 10"
371                                        " or 100!\n", dev->name, phydev->speed);
372                                 break;
373                         }
374
375                         priv->speed = phydev->speed;
376                 }
377
378                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
379
380                 if (!priv->oldlink) {
381                         new_state = 1;
382                         priv->oldlink = 1;
383                 }
384         } else if (priv->oldlink) {
385                 new_state = 1;
386                 priv->oldlink = 0;
387                 priv->speed = 0;
388                 priv->oldduplex = -1;
389         }
390
391         if (new_state && netif_msg_link(priv))
392                 phy_print_status(phydev);
393
394         stmmac_eee_adjust(priv);
395
396         spin_unlock_irqrestore(&priv->lock, flags);
397
398         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
399 }
400
401 /**
402  * stmmac_init_phy - PHY initialization
403  * @dev: net device structure
404  * Description: it initializes the driver's PHY state, and attaches the PHY
405  * to the mac driver.
406  *  Return value:
407  *  0 on success
408  */
409 static int stmmac_init_phy(struct net_device *dev)
410 {
411         struct stmmac_priv *priv = netdev_priv(dev);
412         struct phy_device *phydev;
413         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
414         char bus_id[MII_BUS_ID_SIZE];
415         int interface = priv->plat->interface;
416         priv->oldlink = 0;
417         priv->speed = 0;
418         priv->oldduplex = -1;
419
420         if (priv->plat->phy_bus_name)
421                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
422                                 priv->plat->phy_bus_name, priv->plat->bus_id);
423         else
424                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
425                                 priv->plat->bus_id);
426
427         snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
428                  priv->plat->phy_addr);
429         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
430
431         phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
432                              interface);
433
434         if (IS_ERR(phydev)) {
435                 pr_err("%s: Could not attach to PHY\n", dev->name);
436                 return PTR_ERR(phydev);
437         }
438
439         /* Stop Advertising 1000BASE Capability if interface is not GMII */
440         if ((interface == PHY_INTERFACE_MODE_MII) ||
441             (interface == PHY_INTERFACE_MODE_RMII))
442                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
443                                          SUPPORTED_1000baseT_Full);
444
445         /*
446          * Broken HW is sometimes missing the pull-up resistor on the
447          * MDIO line, which results in reads to non-existent devices returning
448          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
449          * device as well.
450          * Note: phydev->phy_id is the result of reading the UID PHY registers.
451          */
452         if (phydev->phy_id == 0) {
453                 phy_disconnect(phydev);
454                 return -ENODEV;
455         }
456         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
457                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
458
459         priv->phydev = phydev;
460
461         return 0;
462 }
463
464 /**
465  * display_ring
466  * @p: pointer to the ring.
467  * @size: size of the ring.
468  * Description: display all the descriptors within the ring.
469  */
470 static void display_ring(struct dma_desc *p, int size)
471 {
472         struct tmp_s {
473                 u64 a;
474                 unsigned int b;
475                 unsigned int c;
476         };
477         int i;
478         for (i = 0; i < size; i++) {
479                 struct tmp_s *x = (struct tmp_s *)(p + i);
480                 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
481                        i, (unsigned int)virt_to_phys(&p[i]),
482                        (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
483                        x->b, x->c);
484                 pr_info("\n");
485         }
486 }
487
488 static int stmmac_set_bfsize(int mtu, int bufsize)
489 {
490         int ret = bufsize;
491
492         if (mtu >= BUF_SIZE_4KiB)
493                 ret = BUF_SIZE_8KiB;
494         else if (mtu >= BUF_SIZE_2KiB)
495                 ret = BUF_SIZE_4KiB;
496         else if (mtu >= DMA_BUFFER_SIZE)
497                 ret = BUF_SIZE_2KiB;
498         else
499                 ret = DMA_BUFFER_SIZE;
500
501         return ret;
502 }
503
504 /**
505  * init_dma_desc_rings - init the RX/TX descriptor rings
506  * @dev: net device structure
507  * Description:  this function initializes the DMA RX/TX descriptors
508  * and allocates the socket buffers. It suppors the chained and ring
509  * modes.
510  */
511 static void init_dma_desc_rings(struct net_device *dev)
512 {
513         int i;
514         struct stmmac_priv *priv = netdev_priv(dev);
515         struct sk_buff *skb;
516         unsigned int txsize = priv->dma_tx_size;
517         unsigned int rxsize = priv->dma_rx_size;
518         unsigned int bfsize;
519         int dis_ic = 0;
520         int des3_as_data_buf = 0;
521
522         /* Set the max buffer size according to the DESC mode
523          * and the MTU. Note that RING mode allows 16KiB bsize. */
524         bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
525
526         if (bfsize == BUF_SIZE_16KiB)
527                 des3_as_data_buf = 1;
528         else
529                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
530
531         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
532             txsize, rxsize, bfsize);
533
534         priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
535         priv->rx_skbuff =
536             kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
537         priv->dma_rx =
538             (struct dma_desc *)dma_alloc_coherent(priv->device,
539                                                   rxsize *
540                                                   sizeof(struct dma_desc),
541                                                   &priv->dma_rx_phy,
542                                                   GFP_KERNEL);
543         priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
544                                        GFP_KERNEL);
545         priv->dma_tx =
546             (struct dma_desc *)dma_alloc_coherent(priv->device,
547                                                   txsize *
548                                                   sizeof(struct dma_desc),
549                                                   &priv->dma_tx_phy,
550                                                   GFP_KERNEL);
551
552         if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
553                 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
554                 return;
555         }
556
557         DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
558             "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
559             dev->name, priv->dma_rx, priv->dma_tx,
560             (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
561
562         /* RX INITIALIZATION */
563         DBG(probe, INFO, "stmmac: SKB addresses:\n"
564                          "skb\t\tskb data\tdma data\n");
565
566         for (i = 0; i < rxsize; i++) {
567                 struct dma_desc *p = priv->dma_rx + i;
568
569                 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
570                                          GFP_KERNEL);
571                 if (unlikely(skb == NULL)) {
572                         pr_err("%s: Rx init fails; skb is NULL\n", __func__);
573                         break;
574                 }
575                 skb_reserve(skb, NET_IP_ALIGN);
576                 priv->rx_skbuff[i] = skb;
577                 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
578                                                 bfsize, DMA_FROM_DEVICE);
579
580                 p->des2 = priv->rx_skbuff_dma[i];
581
582                 priv->hw->ring->init_desc3(des3_as_data_buf, p);
583
584                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
585                         priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
586         }
587         priv->cur_rx = 0;
588         priv->dirty_rx = (unsigned int)(i - rxsize);
589         priv->dma_buf_sz = bfsize;
590         buf_sz = bfsize;
591
592         /* TX INITIALIZATION */
593         for (i = 0; i < txsize; i++) {
594                 priv->tx_skbuff[i] = NULL;
595                 priv->dma_tx[i].des2 = 0;
596         }
597
598         /* In case of Chained mode this sets the des3 to the next
599          * element in the chain */
600         priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
601         priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
602
603         priv->dirty_tx = 0;
604         priv->cur_tx = 0;
605
606         if (priv->use_riwt)
607                 dis_ic = 1;
608         /* Clear the Rx/Tx descriptors */
609         priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
610         priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
611
612         if (netif_msg_hw(priv)) {
613                 pr_info("RX descriptor ring:\n");
614                 display_ring(priv->dma_rx, rxsize);
615                 pr_info("TX descriptor ring:\n");
616                 display_ring(priv->dma_tx, txsize);
617         }
618 }
619
620 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
621 {
622         int i;
623
624         for (i = 0; i < priv->dma_rx_size; i++) {
625                 if (priv->rx_skbuff[i]) {
626                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
627                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
628                         dev_kfree_skb_any(priv->rx_skbuff[i]);
629                 }
630                 priv->rx_skbuff[i] = NULL;
631         }
632 }
633
634 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
635 {
636         int i;
637
638         for (i = 0; i < priv->dma_tx_size; i++) {
639                 if (priv->tx_skbuff[i] != NULL) {
640                         struct dma_desc *p = priv->dma_tx + i;
641                         if (p->des2)
642                                 dma_unmap_single(priv->device, p->des2,
643                                                  priv->hw->desc->get_tx_len(p),
644                                                  DMA_TO_DEVICE);
645                         dev_kfree_skb_any(priv->tx_skbuff[i]);
646                         priv->tx_skbuff[i] = NULL;
647                 }
648         }
649 }
650
651 static void free_dma_desc_resources(struct stmmac_priv *priv)
652 {
653         /* Release the DMA TX/RX socket buffers */
654         dma_free_rx_skbufs(priv);
655         dma_free_tx_skbufs(priv);
656
657         /* Free the region of consistent memory previously allocated for
658          * the DMA */
659         dma_free_coherent(priv->device,
660                           priv->dma_tx_size * sizeof(struct dma_desc),
661                           priv->dma_tx, priv->dma_tx_phy);
662         dma_free_coherent(priv->device,
663                           priv->dma_rx_size * sizeof(struct dma_desc),
664                           priv->dma_rx, priv->dma_rx_phy);
665         kfree(priv->rx_skbuff_dma);
666         kfree(priv->rx_skbuff);
667         kfree(priv->tx_skbuff);
668 }
669
670 /**
671  *  stmmac_dma_operation_mode - HW DMA operation mode
672  *  @priv : pointer to the private device structure.
673  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
674  *  or Store-And-Forward capability.
675  */
676 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
677 {
678         if (likely(priv->plat->force_sf_dma_mode ||
679                 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
680                 /*
681                  * In case of GMAC, SF mode can be enabled
682                  * to perform the TX COE in HW. This depends on:
683                  * 1) TX COE if actually supported
684                  * 2) There is no bugged Jumbo frame support
685                  *    that needs to not insert csum in the TDES.
686                  */
687                 priv->hw->dma->dma_mode(priv->ioaddr,
688                                         SF_DMA_MODE, SF_DMA_MODE);
689                 tc = SF_DMA_MODE;
690         } else
691                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
692 }
693
694 /**
695  * stmmac_tx_clean:
696  * @priv: private data pointer
697  * Description: it reclaims resources after transmission completes.
698  */
699 static void stmmac_tx_clean(struct stmmac_priv *priv)
700 {
701         unsigned int txsize = priv->dma_tx_size;
702
703         spin_lock(&priv->tx_lock);
704
705         priv->xstats.tx_clean++;
706
707         while (priv->dirty_tx != priv->cur_tx) {
708                 int last;
709                 unsigned int entry = priv->dirty_tx % txsize;
710                 struct sk_buff *skb = priv->tx_skbuff[entry];
711                 struct dma_desc *p = priv->dma_tx + entry;
712
713                 /* Check if the descriptor is owned by the DMA. */
714                 if (priv->hw->desc->get_tx_owner(p))
715                         break;
716
717                 /* Verify tx error by looking at the last segment */
718                 last = priv->hw->desc->get_tx_ls(p);
719                 if (likely(last)) {
720                         int tx_error =
721                                 priv->hw->desc->tx_status(&priv->dev->stats,
722                                                           &priv->xstats, p,
723                                                           priv->ioaddr);
724                         if (likely(tx_error == 0)) {
725                                 priv->dev->stats.tx_packets++;
726                                 priv->xstats.tx_pkt_n++;
727                         } else
728                                 priv->dev->stats.tx_errors++;
729                 }
730                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
731                         priv->cur_tx, priv->dirty_tx);
732
733                 if (likely(p->des2))
734                         dma_unmap_single(priv->device, p->des2,
735                                          priv->hw->desc->get_tx_len(p),
736                                          DMA_TO_DEVICE);
737                 priv->hw->ring->clean_desc3(p);
738
739                 if (likely(skb != NULL)) {
740                         dev_kfree_skb(skb);
741                         priv->tx_skbuff[entry] = NULL;
742                 }
743
744                 priv->hw->desc->release_tx_desc(p);
745
746                 priv->dirty_tx++;
747         }
748         if (unlikely(netif_queue_stopped(priv->dev) &&
749                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
750                 netif_tx_lock(priv->dev);
751                 if (netif_queue_stopped(priv->dev) &&
752                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
753                         TX_DBG("%s: restart transmit\n", __func__);
754                         netif_wake_queue(priv->dev);
755                 }
756                 netif_tx_unlock(priv->dev);
757         }
758
759         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
760                 stmmac_enable_eee_mode(priv);
761                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
762         }
763         spin_unlock(&priv->tx_lock);
764 }
765
766 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
767 {
768         priv->hw->dma->enable_dma_irq(priv->ioaddr);
769 }
770
771 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
772 {
773         priv->hw->dma->disable_dma_irq(priv->ioaddr);
774 }
775
776
777 /**
778  * stmmac_tx_err:
779  * @priv: pointer to the private device structure
780  * Description: it cleans the descriptors and restarts the transmission
781  * in case of errors.
782  */
783 static void stmmac_tx_err(struct stmmac_priv *priv)
784 {
785         netif_stop_queue(priv->dev);
786
787         priv->hw->dma->stop_tx(priv->ioaddr);
788         dma_free_tx_skbufs(priv);
789         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
790         priv->dirty_tx = 0;
791         priv->cur_tx = 0;
792         priv->hw->dma->start_tx(priv->ioaddr);
793
794         priv->dev->stats.tx_errors++;
795         netif_wake_queue(priv->dev);
796 }
797
798 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
799 {
800         int status;
801
802         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
803         if (likely((status & handle_rx)) || (status & handle_tx)) {
804                 if (likely(napi_schedule_prep(&priv->napi))) {
805                         stmmac_disable_dma_irq(priv);
806                         __napi_schedule(&priv->napi);
807                 }
808         }
809         if (unlikely(status & tx_hard_error_bump_tc)) {
810                 /* Try to bump up the dma threshold on this failure */
811                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
812                         tc += 64;
813                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
814                         priv->xstats.threshold = tc;
815                 }
816         } else if (unlikely(status == tx_hard_error))
817                 stmmac_tx_err(priv);
818 }
819
820 static void stmmac_mmc_setup(struct stmmac_priv *priv)
821 {
822         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
823                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
824
825         /* Mask MMC irq, counters are managed in SW and registers
826          * are cleared on each READ eventually. */
827         dwmac_mmc_intr_all_mask(priv->ioaddr);
828
829         if (priv->dma_cap.rmon) {
830                 dwmac_mmc_ctrl(priv->ioaddr, mode);
831                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
832         } else
833                 pr_info(" No MAC Management Counters available\n");
834 }
835
836 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
837 {
838         u32 hwid = priv->hw->synopsys_uid;
839
840         /* Only check valid Synopsys Id because old MAC chips
841          * have no HW registers where get the ID */
842         if (likely(hwid)) {
843                 u32 uid = ((hwid & 0x0000ff00) >> 8);
844                 u32 synid = (hwid & 0x000000ff);
845
846                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
847                         uid, synid);
848
849                 return synid;
850         }
851         return 0;
852 }
853
854 /**
855  * stmmac_selec_desc_mode
856  * @priv : private structure
857  * Description: select the Enhanced/Alternate or Normal descriptors
858  */
859 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
860 {
861         if (priv->plat->enh_desc) {
862                 pr_info(" Enhanced/Alternate descriptors\n");
863                 priv->hw->desc = &enh_desc_ops;
864         } else {
865                 pr_info(" Normal descriptors\n");
866                 priv->hw->desc = &ndesc_ops;
867         }
868 }
869
870 /**
871  * stmmac_get_hw_features
872  * @priv : private device pointer
873  * Description:
874  *  new GMAC chip generations have a new register to indicate the
875  *  presence of the optional feature/functions.
876  *  This can be also used to override the value passed through the
877  *  platform and necessary for old MAC10/100 and GMAC chips.
878  */
879 static int stmmac_get_hw_features(struct stmmac_priv *priv)
880 {
881         u32 hw_cap = 0;
882
883         if (priv->hw->dma->get_hw_feature) {
884                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
885
886                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
887                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
888                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
889                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
890                 priv->dma_cap.multi_addr =
891                         (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
892                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
893                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
894                 priv->dma_cap.pmt_remote_wake_up =
895                         (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
896                 priv->dma_cap.pmt_magic_frame =
897                         (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
898                 /* MMC */
899                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
900                 /* IEEE 1588-2002*/
901                 priv->dma_cap.time_stamp =
902                         (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
903                 /* IEEE 1588-2008*/
904                 priv->dma_cap.atime_stamp =
905                         (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
906                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
907                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
908                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
909                 /* TX and RX csum */
910                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
911                 priv->dma_cap.rx_coe_type1 =
912                         (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
913                 priv->dma_cap.rx_coe_type2 =
914                         (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
915                 priv->dma_cap.rxfifo_over_2048 =
916                         (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
917                 /* TX and RX number of channels */
918                 priv->dma_cap.number_rx_channel =
919                         (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
920                 priv->dma_cap.number_tx_channel =
921                         (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
922                 /* Alternate (enhanced) DESC mode*/
923                 priv->dma_cap.enh_desc =
924                         (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
925         }
926
927         return hw_cap;
928 }
929
930 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
931 {
932         /* verify if the MAC address is valid, in case of failures it
933          * generates a random MAC address */
934         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
935                 priv->hw->mac->get_umac_addr((void __iomem *)
936                                              priv->dev->base_addr,
937                                              priv->dev->dev_addr, 0);
938                 if  (!is_valid_ether_addr(priv->dev->dev_addr))
939                         eth_hw_addr_random(priv->dev);
940         }
941         pr_warning("%s: device MAC address %pM\n", priv->dev->name,
942                                                    priv->dev->dev_addr);
943 }
944
945 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
946 {
947         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
948         int mixed_burst = 0;
949
950         /* Some DMA parameters can be passed from the platform;
951          * in case of these are not passed we keep a default
952          * (good for all the chips) and init the DMA! */
953         if (priv->plat->dma_cfg) {
954                 pbl = priv->plat->dma_cfg->pbl;
955                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
956                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
957                 burst_len = priv->plat->dma_cfg->burst_len;
958         }
959
960         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
961                                    burst_len, priv->dma_tx_phy,
962                                    priv->dma_rx_phy);
963 }
964
965 /**
966  * stmmac_tx_timer:
967  * @data: data pointer
968  * Description:
969  * This is the timer handler to directly invoke the stmmac_tx_clean.
970  */
971 static void stmmac_tx_timer(unsigned long data)
972 {
973         struct stmmac_priv *priv = (struct stmmac_priv *)data;
974
975         stmmac_tx_clean(priv);
976 }
977
978 /**
979  * stmmac_tx_timer:
980  * @priv: private data structure
981  * Description:
982  * This inits the transmit coalesce parameters: i.e. timer rate,
983  * timer handler and default threshold used for enabling the
984  * interrupt on completion bit.
985  */
986 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
987 {
988         priv->tx_coal_frames = STMMAC_TX_FRAMES;
989         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
990         init_timer(&priv->txtimer);
991         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
992         priv->txtimer.data = (unsigned long)priv;
993         priv->txtimer.function = stmmac_tx_timer;
994         add_timer(&priv->txtimer);
995 }
996
997 /**
998  *  stmmac_open - open entry point of the driver
999  *  @dev : pointer to the device structure.
1000  *  Description:
1001  *  This function is the open entry point of the driver.
1002  *  Return value:
1003  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1004  *  file on failure.
1005  */
1006 static int stmmac_open(struct net_device *dev)
1007 {
1008         struct stmmac_priv *priv = netdev_priv(dev);
1009         int ret;
1010
1011         clk_prepare_enable(priv->stmmac_clk);
1012
1013         stmmac_check_ether_addr(priv);
1014
1015         ret = stmmac_init_phy(dev);
1016         if (unlikely(ret)) {
1017                 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1018                 goto open_error;
1019         }
1020
1021         /* Create and initialize the TX/RX descriptors chains. */
1022         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1023         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1024         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1025         init_dma_desc_rings(dev);
1026
1027         /* DMA initialization and SW reset */
1028         ret = stmmac_init_dma_engine(priv);
1029         if (ret < 0) {
1030                 pr_err("%s: DMA initialization failed\n", __func__);
1031                 goto open_error;
1032         }
1033
1034         /* Copy the MAC addr into the HW  */
1035         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1036
1037         /* If required, perform hw setup of the bus. */
1038         if (priv->plat->bus_setup)
1039                 priv->plat->bus_setup(priv->ioaddr);
1040
1041         /* Initialize the MAC Core */
1042         priv->hw->mac->core_init(priv->ioaddr);
1043
1044         /* Request the IRQ lines */
1045         ret = request_irq(dev->irq, stmmac_interrupt,
1046                          IRQF_SHARED, dev->name, dev);
1047         if (unlikely(ret < 0)) {
1048                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1049                        __func__, dev->irq, ret);
1050                 goto open_error;
1051         }
1052
1053         /* Request the Wake IRQ in case of another line is used for WoL */
1054         if (priv->wol_irq != dev->irq) {
1055                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1056                                   IRQF_SHARED, dev->name, dev);
1057                 if (unlikely(ret < 0)) {
1058                         pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1059                                "(error: %d)\n", __func__, priv->wol_irq, ret);
1060                         goto open_error_wolirq;
1061                 }
1062         }
1063
1064         /* Request the IRQ lines */
1065         if (priv->lpi_irq != -ENXIO) {
1066                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1067                                   dev->name, dev);
1068                 if (unlikely(ret < 0)) {
1069                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1070                                __func__, priv->lpi_irq, ret);
1071                         goto open_error_lpiirq;
1072                 }
1073         }
1074
1075         /* Enable the MAC Rx/Tx */
1076         stmmac_set_mac(priv->ioaddr, true);
1077
1078         /* Set the HW DMA mode and the COE */
1079         stmmac_dma_operation_mode(priv);
1080
1081         /* Extra statistics */
1082         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1083         priv->xstats.threshold = tc;
1084
1085         stmmac_mmc_setup(priv);
1086
1087 #ifdef CONFIG_STMMAC_DEBUG_FS
1088         ret = stmmac_init_fs(dev);
1089         if (ret < 0)
1090                 pr_warning("%s: failed debugFS registration\n", __func__);
1091 #endif
1092         /* Start the ball rolling... */
1093         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1094         priv->hw->dma->start_tx(priv->ioaddr);
1095         priv->hw->dma->start_rx(priv->ioaddr);
1096
1097         /* Dump DMA/MAC registers */
1098         if (netif_msg_hw(priv)) {
1099                 priv->hw->mac->dump_regs(priv->ioaddr);
1100                 priv->hw->dma->dump_regs(priv->ioaddr);
1101         }
1102
1103         if (priv->phydev)
1104                 phy_start(priv->phydev);
1105
1106         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1107         priv->eee_enabled = stmmac_eee_init(priv);
1108
1109         stmmac_init_tx_coalesce(priv);
1110
1111         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1112                 priv->rx_riwt = MAX_DMA_RIWT;
1113                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1114         }
1115
1116         napi_enable(&priv->napi);
1117         netif_start_queue(dev);
1118
1119         return 0;
1120
1121 open_error_lpiirq:
1122         if (priv->wol_irq != dev->irq)
1123                 free_irq(priv->wol_irq, dev);
1124
1125 open_error_wolirq:
1126         free_irq(dev->irq, dev);
1127
1128 open_error:
1129         if (priv->phydev)
1130                 phy_disconnect(priv->phydev);
1131
1132         clk_disable_unprepare(priv->stmmac_clk);
1133
1134         return ret;
1135 }
1136
1137 /**
1138  *  stmmac_release - close entry point of the driver
1139  *  @dev : device pointer.
1140  *  Description:
1141  *  This is the stop entry point of the driver.
1142  */
1143 static int stmmac_release(struct net_device *dev)
1144 {
1145         struct stmmac_priv *priv = netdev_priv(dev);
1146
1147         if (priv->eee_enabled)
1148                 del_timer_sync(&priv->eee_ctrl_timer);
1149
1150         /* Stop and disconnect the PHY */
1151         if (priv->phydev) {
1152                 phy_stop(priv->phydev);
1153                 phy_disconnect(priv->phydev);
1154                 priv->phydev = NULL;
1155         }
1156
1157         netif_stop_queue(dev);
1158
1159         napi_disable(&priv->napi);
1160
1161         del_timer_sync(&priv->txtimer);
1162
1163         /* Free the IRQ lines */
1164         free_irq(dev->irq, dev);
1165         if (priv->wol_irq != dev->irq)
1166                 free_irq(priv->wol_irq, dev);
1167         if (priv->lpi_irq != -ENXIO)
1168                 free_irq(priv->lpi_irq, dev);
1169
1170         /* Stop TX/RX DMA and clear the descriptors */
1171         priv->hw->dma->stop_tx(priv->ioaddr);
1172         priv->hw->dma->stop_rx(priv->ioaddr);
1173
1174         /* Release and free the Rx/Tx resources */
1175         free_dma_desc_resources(priv);
1176
1177         /* Disable the MAC Rx/Tx */
1178         stmmac_set_mac(priv->ioaddr, false);
1179
1180         netif_carrier_off(dev);
1181
1182 #ifdef CONFIG_STMMAC_DEBUG_FS
1183         stmmac_exit_fs();
1184 #endif
1185         clk_disable_unprepare(priv->stmmac_clk);
1186
1187         return 0;
1188 }
1189
1190 /**
1191  *  stmmac_xmit:
1192  *  @skb : the socket buffer
1193  *  @dev : device pointer
1194  *  Description : Tx entry point of the driver.
1195  */
1196 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1197 {
1198         struct stmmac_priv *priv = netdev_priv(dev);
1199         unsigned int txsize = priv->dma_tx_size;
1200         unsigned int entry;
1201         int i, csum_insertion = 0;
1202         int nfrags = skb_shinfo(skb)->nr_frags;
1203         struct dma_desc *desc, *first;
1204         unsigned int nopaged_len = skb_headlen(skb);
1205
1206         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1207                 if (!netif_queue_stopped(dev)) {
1208                         netif_stop_queue(dev);
1209                         /* This is a hard error, log it. */
1210                         pr_err("%s: BUG! Tx Ring full when queue awake\n",
1211                                 __func__);
1212                 }
1213                 return NETDEV_TX_BUSY;
1214         }
1215
1216         spin_lock(&priv->tx_lock);
1217
1218         if (priv->tx_path_in_lpi_mode)
1219                 stmmac_disable_eee_mode(priv);
1220
1221         entry = priv->cur_tx % txsize;
1222
1223 #ifdef STMMAC_XMIT_DEBUG
1224         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1225                 pr_debug("stmmac xmit: [entry %d]\n"
1226                          "\tskb addr %p - len: %d - nopaged_len: %d\n"
1227                          "\tn_frags: %d - ip_summed: %d - %s gso\n"
1228                          "\ttx_count_frames %d\n", entry,
1229                          skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1230                          !skb_is_gso(skb) ? "isn't" : "is",
1231                          priv->tx_count_frames);
1232 #endif
1233
1234         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1235
1236         desc = priv->dma_tx + entry;
1237         first = desc;
1238
1239 #ifdef STMMAC_XMIT_DEBUG
1240         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1241                 pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1242                          "\t\tn_frags: %d, ip_summed: %d\n",
1243                          skb->len, nopaged_len, nfrags, skb->ip_summed);
1244 #endif
1245         priv->tx_skbuff[entry] = skb;
1246
1247         if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1248                 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1249                 desc = priv->dma_tx + entry;
1250         } else {
1251                 desc->des2 = dma_map_single(priv->device, skb->data,
1252                                         nopaged_len, DMA_TO_DEVICE);
1253                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1254                                                 csum_insertion);
1255         }
1256
1257         for (i = 0; i < nfrags; i++) {
1258                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259                 int len = skb_frag_size(frag);
1260
1261                 entry = (++priv->cur_tx) % txsize;
1262                 desc = priv->dma_tx + entry;
1263
1264                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1265                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1266                                               DMA_TO_DEVICE);
1267                 priv->tx_skbuff[entry] = NULL;
1268                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1269                 wmb();
1270                 priv->hw->desc->set_tx_owner(desc);
1271                 wmb();
1272         }
1273
1274         /* Finalize the latest segment. */
1275         priv->hw->desc->close_tx_desc(desc);
1276
1277         wmb();
1278         /* According to the coalesce parameter the IC bit for the latest
1279          * segment could be reset and the timer re-started to invoke the
1280          * stmmac_tx function. This approach takes care about the fragments.
1281          */
1282         priv->tx_count_frames += nfrags + 1;
1283         if (priv->tx_coal_frames > priv->tx_count_frames) {
1284                 priv->hw->desc->clear_tx_ic(desc);
1285                 priv->xstats.tx_reset_ic_bit++;
1286                 TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1287                        priv->tx_count_frames);
1288                 mod_timer(&priv->txtimer,
1289                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
1290         } else
1291                 priv->tx_count_frames = 0;
1292
1293         /* To avoid raise condition */
1294         priv->hw->desc->set_tx_owner(first);
1295         wmb();
1296
1297         priv->cur_tx++;
1298
1299 #ifdef STMMAC_XMIT_DEBUG
1300         if (netif_msg_pktdata(priv)) {
1301                 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1302                        "first=%p, nfrags=%d\n",
1303                        (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1304                        entry, first, nfrags);
1305                 display_ring(priv->dma_tx, txsize);
1306                 pr_info(">>> frame to be transmitted: ");
1307                 print_pkt(skb->data, skb->len);
1308         }
1309 #endif
1310         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1311                 TX_DBG("%s: stop transmitted packets\n", __func__);
1312                 netif_stop_queue(dev);
1313         }
1314
1315         dev->stats.tx_bytes += skb->len;
1316
1317         skb_tx_timestamp(skb);
1318
1319         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1320
1321         spin_unlock(&priv->tx_lock);
1322
1323         return NETDEV_TX_OK;
1324 }
1325
1326 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1327 {
1328         unsigned int rxsize = priv->dma_rx_size;
1329         int bfsize = priv->dma_buf_sz;
1330         struct dma_desc *p = priv->dma_rx;
1331
1332         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1333                 unsigned int entry = priv->dirty_rx % rxsize;
1334                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1335                         struct sk_buff *skb;
1336
1337                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1338
1339                         if (unlikely(skb == NULL))
1340                                 break;
1341
1342                         priv->rx_skbuff[entry] = skb;
1343                         priv->rx_skbuff_dma[entry] =
1344                             dma_map_single(priv->device, skb->data, bfsize,
1345                                            DMA_FROM_DEVICE);
1346
1347                         (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1348
1349                         if (unlikely(priv->plat->has_gmac))
1350                                 priv->hw->ring->refill_desc3(bfsize, p + entry);
1351
1352                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1353                 }
1354                 wmb();
1355                 priv->hw->desc->set_rx_owner(p + entry);
1356                 wmb();
1357         }
1358 }
1359
1360 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1361 {
1362         unsigned int rxsize = priv->dma_rx_size;
1363         unsigned int entry = priv->cur_rx % rxsize;
1364         unsigned int next_entry;
1365         unsigned int count = 0;
1366         struct dma_desc *p = priv->dma_rx + entry;
1367         struct dma_desc *p_next;
1368
1369 #ifdef STMMAC_RX_DEBUG
1370         if (netif_msg_hw(priv)) {
1371                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1372                 display_ring(priv->dma_rx, rxsize);
1373         }
1374 #endif
1375         while (!priv->hw->desc->get_rx_owner(p)) {
1376                 int status;
1377
1378                 if (count >= limit)
1379                         break;
1380
1381                 count++;
1382
1383                 next_entry = (++priv->cur_rx) % rxsize;
1384                 p_next = priv->dma_rx + next_entry;
1385                 prefetch(p_next);
1386
1387                 /* read the status of the incoming frame */
1388                 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1389                                                     &priv->xstats, p));
1390                 if (unlikely(status == discard_frame))
1391                         priv->dev->stats.rx_errors++;
1392                 else {
1393                         struct sk_buff *skb;
1394                         int frame_len;
1395
1396                         frame_len = priv->hw->desc->get_rx_frame_len(p,
1397                                         priv->plat->rx_coe);
1398                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1399                          * Type frames (LLC/LLC-SNAP) */
1400                         if (unlikely(status != llc_snap))
1401                                 frame_len -= ETH_FCS_LEN;
1402 #ifdef STMMAC_RX_DEBUG
1403                         if (frame_len > ETH_FRAME_LEN)
1404                                 pr_debug("\tRX frame size %d, COE status: %d\n",
1405                                         frame_len, status);
1406
1407                         if (netif_msg_hw(priv))
1408                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1409                                         p, entry, p->des2);
1410 #endif
1411                         skb = priv->rx_skbuff[entry];
1412                         if (unlikely(!skb)) {
1413                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
1414                                         priv->dev->name);
1415                                 priv->dev->stats.rx_dropped++;
1416                                 break;
1417                         }
1418                         prefetch(skb->data - NET_IP_ALIGN);
1419                         priv->rx_skbuff[entry] = NULL;
1420
1421                         skb_put(skb, frame_len);
1422                         dma_unmap_single(priv->device,
1423                                          priv->rx_skbuff_dma[entry],
1424                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1425 #ifdef STMMAC_RX_DEBUG
1426                         if (netif_msg_pktdata(priv)) {
1427                                 pr_info(" frame received (%dbytes)", frame_len);
1428                                 print_pkt(skb->data, frame_len);
1429                         }
1430 #endif
1431                         skb->protocol = eth_type_trans(skb, priv->dev);
1432
1433                         if (unlikely(!priv->plat->rx_coe))
1434                                 skb_checksum_none_assert(skb);
1435                         else
1436                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1437
1438                         napi_gro_receive(&priv->napi, skb);
1439
1440                         priv->dev->stats.rx_packets++;
1441                         priv->dev->stats.rx_bytes += frame_len;
1442                 }
1443                 entry = next_entry;
1444                 p = p_next;     /* use prefetched values */
1445         }
1446
1447         stmmac_rx_refill(priv);
1448
1449         priv->xstats.rx_pkt_n += count;
1450
1451         return count;
1452 }
1453
1454 /**
1455  *  stmmac_poll - stmmac poll method (NAPI)
1456  *  @napi : pointer to the napi structure.
1457  *  @budget : maximum number of packets that the current CPU can receive from
1458  *            all interfaces.
1459  *  Description :
1460  *  To look at the incoming frames and clear the tx resources.
1461  */
1462 static int stmmac_poll(struct napi_struct *napi, int budget)
1463 {
1464         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1465         int work_done = 0;
1466
1467         priv->xstats.napi_poll++;
1468         stmmac_tx_clean(priv);
1469
1470         work_done = stmmac_rx(priv, budget);
1471         if (work_done < budget) {
1472                 napi_complete(napi);
1473                 stmmac_enable_dma_irq(priv);
1474         }
1475         return work_done;
1476 }
1477
1478 /**
1479  *  stmmac_tx_timeout
1480  *  @dev : Pointer to net device structure
1481  *  Description: this function is called when a packet transmission fails to
1482  *   complete within a reasonable time. The driver will mark the error in the
1483  *   netdev structure and arrange for the device to be reset to a sane state
1484  *   in order to transmit a new packet.
1485  */
1486 static void stmmac_tx_timeout(struct net_device *dev)
1487 {
1488         struct stmmac_priv *priv = netdev_priv(dev);
1489
1490         /* Clear Tx resources and restart transmitting again */
1491         stmmac_tx_err(priv);
1492 }
1493
1494 /* Configuration changes (passed on by ifconfig) */
1495 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1496 {
1497         if (dev->flags & IFF_UP)        /* can't act on a running interface */
1498                 return -EBUSY;
1499
1500         /* Don't allow changing the I/O address */
1501         if (map->base_addr != dev->base_addr) {
1502                 pr_warning("%s: can't change I/O address\n", dev->name);
1503                 return -EOPNOTSUPP;
1504         }
1505
1506         /* Don't allow changing the IRQ */
1507         if (map->irq != dev->irq) {
1508                 pr_warning("%s: can't change IRQ number %d\n",
1509                        dev->name, dev->irq);
1510                 return -EOPNOTSUPP;
1511         }
1512
1513         /* ignore other fields */
1514         return 0;
1515 }
1516
1517 /**
1518  *  stmmac_set_rx_mode - entry point for multicast addressing
1519  *  @dev : pointer to the device structure
1520  *  Description:
1521  *  This function is a driver entry point which gets called by the kernel
1522  *  whenever multicast addresses must be enabled/disabled.
1523  *  Return value:
1524  *  void.
1525  */
1526 static void stmmac_set_rx_mode(struct net_device *dev)
1527 {
1528         struct stmmac_priv *priv = netdev_priv(dev);
1529
1530         spin_lock(&priv->lock);
1531         priv->hw->mac->set_filter(dev, priv->synopsys_id);
1532         spin_unlock(&priv->lock);
1533 }
1534
1535 /**
1536  *  stmmac_change_mtu - entry point to change MTU size for the device.
1537  *  @dev : device pointer.
1538  *  @new_mtu : the new MTU size for the device.
1539  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1540  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1541  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1542  *  Return value:
1543  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1544  *  file on failure.
1545  */
1546 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1547 {
1548         struct stmmac_priv *priv = netdev_priv(dev);
1549         int max_mtu;
1550
1551         if (netif_running(dev)) {
1552                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1553                 return -EBUSY;
1554         }
1555
1556         if (priv->plat->enh_desc)
1557                 max_mtu = JUMBO_LEN;
1558         else
1559                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1560
1561         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1562                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1563                 return -EINVAL;
1564         }
1565
1566         dev->mtu = new_mtu;
1567         netdev_update_features(dev);
1568
1569         return 0;
1570 }
1571
1572 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1573         netdev_features_t features)
1574 {
1575         struct stmmac_priv *priv = netdev_priv(dev);
1576
1577         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1578                 features &= ~NETIF_F_RXCSUM;
1579         else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1580                 features &= ~NETIF_F_IPV6_CSUM;
1581         if (!priv->plat->tx_coe)
1582                 features &= ~NETIF_F_ALL_CSUM;
1583
1584         /* Some GMAC devices have a bugged Jumbo frame support that
1585          * needs to have the Tx COE disabled for oversized frames
1586          * (due to limited buffer sizes). In this case we disable
1587          * the TX csum insertionin the TDES and not use SF. */
1588         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1589                 features &= ~NETIF_F_ALL_CSUM;
1590
1591         return features;
1592 }
1593
1594 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1595 {
1596         struct net_device *dev = (struct net_device *)dev_id;
1597         struct stmmac_priv *priv = netdev_priv(dev);
1598
1599         if (unlikely(!dev)) {
1600                 pr_err("%s: invalid dev pointer\n", __func__);
1601                 return IRQ_NONE;
1602         }
1603
1604         /* To handle GMAC own interrupts */
1605         if (priv->plat->has_gmac) {
1606                 int status = priv->hw->mac->host_irq_status((void __iomem *)
1607                                                             dev->base_addr);
1608                 if (unlikely(status)) {
1609                         if (status & core_mmc_tx_irq)
1610                                 priv->xstats.mmc_tx_irq_n++;
1611                         if (status & core_mmc_rx_irq)
1612                                 priv->xstats.mmc_rx_irq_n++;
1613                         if (status & core_mmc_rx_csum_offload_irq)
1614                                 priv->xstats.mmc_rx_csum_offload_irq_n++;
1615                         if (status & core_irq_receive_pmt_irq)
1616                                 priv->xstats.irq_receive_pmt_irq_n++;
1617
1618                         /* For LPI we need to save the tx status */
1619                         if (status & core_irq_tx_path_in_lpi_mode) {
1620                                 priv->xstats.irq_tx_path_in_lpi_mode_n++;
1621                                 priv->tx_path_in_lpi_mode = true;
1622                         }
1623                         if (status & core_irq_tx_path_exit_lpi_mode) {
1624                                 priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1625                                 priv->tx_path_in_lpi_mode = false;
1626                         }
1627                         if (status & core_irq_rx_path_in_lpi_mode)
1628                                 priv->xstats.irq_rx_path_in_lpi_mode_n++;
1629                         if (status & core_irq_rx_path_exit_lpi_mode)
1630                                 priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1631                 }
1632         }
1633
1634         /* To handle DMA interrupts */
1635         stmmac_dma_interrupt(priv);
1636
1637         return IRQ_HANDLED;
1638 }
1639
1640 #ifdef CONFIG_NET_POLL_CONTROLLER
1641 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1642  * to allow network I/O with interrupts disabled. */
1643 static void stmmac_poll_controller(struct net_device *dev)
1644 {
1645         disable_irq(dev->irq);
1646         stmmac_interrupt(dev->irq, dev);
1647         enable_irq(dev->irq);
1648 }
1649 #endif
1650
1651 /**
1652  *  stmmac_ioctl - Entry point for the Ioctl
1653  *  @dev: Device pointer.
1654  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1655  *  a proprietary structure used to pass information to the driver.
1656  *  @cmd: IOCTL command
1657  *  Description:
1658  *  Currently there are no special functionality supported in IOCTL, just the
1659  *  phy_mii_ioctl(...) can be invoked.
1660  */
1661 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1662 {
1663         struct stmmac_priv *priv = netdev_priv(dev);
1664         int ret;
1665
1666         if (!netif_running(dev))
1667                 return -EINVAL;
1668
1669         if (!priv->phydev)
1670                 return -EINVAL;
1671
1672         ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1673
1674         return ret;
1675 }
1676
1677 #ifdef CONFIG_STMMAC_DEBUG_FS
1678 static struct dentry *stmmac_fs_dir;
1679 static struct dentry *stmmac_rings_status;
1680 static struct dentry *stmmac_dma_cap;
1681
1682 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1683 {
1684         struct tmp_s {
1685                 u64 a;
1686                 unsigned int b;
1687                 unsigned int c;
1688         };
1689         int i;
1690         struct net_device *dev = seq->private;
1691         struct stmmac_priv *priv = netdev_priv(dev);
1692
1693         seq_printf(seq, "=======================\n");
1694         seq_printf(seq, " RX descriptor ring\n");
1695         seq_printf(seq, "=======================\n");
1696
1697         for (i = 0; i < priv->dma_rx_size; i++) {
1698                 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1699                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1700                            i, (unsigned int)(x->a),
1701                            (unsigned int)((x->a) >> 32), x->b, x->c);
1702                 seq_printf(seq, "\n");
1703         }
1704
1705         seq_printf(seq, "\n");
1706         seq_printf(seq, "=======================\n");
1707         seq_printf(seq, "  TX descriptor ring\n");
1708         seq_printf(seq, "=======================\n");
1709
1710         for (i = 0; i < priv->dma_tx_size; i++) {
1711                 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1712                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1713                            i, (unsigned int)(x->a),
1714                            (unsigned int)((x->a) >> 32), x->b, x->c);
1715                 seq_printf(seq, "\n");
1716         }
1717
1718         return 0;
1719 }
1720
1721 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1722 {
1723         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1724 }
1725
1726 static const struct file_operations stmmac_rings_status_fops = {
1727         .owner = THIS_MODULE,
1728         .open = stmmac_sysfs_ring_open,
1729         .read = seq_read,
1730         .llseek = seq_lseek,
1731         .release = single_release,
1732 };
1733
1734 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1735 {
1736         struct net_device *dev = seq->private;
1737         struct stmmac_priv *priv = netdev_priv(dev);
1738
1739         if (!priv->hw_cap_support) {
1740                 seq_printf(seq, "DMA HW features not supported\n");
1741                 return 0;
1742         }
1743
1744         seq_printf(seq, "==============================\n");
1745         seq_printf(seq, "\tDMA HW features\n");
1746         seq_printf(seq, "==============================\n");
1747
1748         seq_printf(seq, "\t10/100 Mbps %s\n",
1749                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1750         seq_printf(seq, "\t1000 Mbps %s\n",
1751                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
1752         seq_printf(seq, "\tHalf duple %s\n",
1753                    (priv->dma_cap.half_duplex) ? "Y" : "N");
1754         seq_printf(seq, "\tHash Filter: %s\n",
1755                    (priv->dma_cap.hash_filter) ? "Y" : "N");
1756         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1757                    (priv->dma_cap.multi_addr) ? "Y" : "N");
1758         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1759                    (priv->dma_cap.pcs) ? "Y" : "N");
1760         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1761                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
1762         seq_printf(seq, "\tPMT Remote wake up: %s\n",
1763                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1764         seq_printf(seq, "\tPMT Magic Frame: %s\n",
1765                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1766         seq_printf(seq, "\tRMON module: %s\n",
1767                    (priv->dma_cap.rmon) ? "Y" : "N");
1768         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1769                    (priv->dma_cap.time_stamp) ? "Y" : "N");
1770         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1771                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
1772         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1773                    (priv->dma_cap.eee) ? "Y" : "N");
1774         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1775         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1776                    (priv->dma_cap.tx_coe) ? "Y" : "N");
1777         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1778                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1779         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1780                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1781         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1782                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1783         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1784                    priv->dma_cap.number_rx_channel);
1785         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1786                    priv->dma_cap.number_tx_channel);
1787         seq_printf(seq, "\tEnhanced descriptors: %s\n",
1788                    (priv->dma_cap.enh_desc) ? "Y" : "N");
1789
1790         return 0;
1791 }
1792
1793 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1794 {
1795         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1796 }
1797
1798 static const struct file_operations stmmac_dma_cap_fops = {
1799         .owner = THIS_MODULE,
1800         .open = stmmac_sysfs_dma_cap_open,
1801         .read = seq_read,
1802         .llseek = seq_lseek,
1803         .release = single_release,
1804 };
1805
1806 static int stmmac_init_fs(struct net_device *dev)
1807 {
1808         /* Create debugfs entries */
1809         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1810
1811         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1812                 pr_err("ERROR %s, debugfs create directory failed\n",
1813                        STMMAC_RESOURCE_NAME);
1814
1815                 return -ENOMEM;
1816         }
1817
1818         /* Entry to report DMA RX/TX rings */
1819         stmmac_rings_status = debugfs_create_file("descriptors_status",
1820                                            S_IRUGO, stmmac_fs_dir, dev,
1821                                            &stmmac_rings_status_fops);
1822
1823         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1824                 pr_info("ERROR creating stmmac ring debugfs file\n");
1825                 debugfs_remove(stmmac_fs_dir);
1826
1827                 return -ENOMEM;
1828         }
1829
1830         /* Entry to report the DMA HW features */
1831         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1832                                              dev, &stmmac_dma_cap_fops);
1833
1834         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1835                 pr_info("ERROR creating stmmac MMC debugfs file\n");
1836                 debugfs_remove(stmmac_rings_status);
1837                 debugfs_remove(stmmac_fs_dir);
1838
1839                 return -ENOMEM;
1840         }
1841
1842         return 0;
1843 }
1844
1845 static void stmmac_exit_fs(void)
1846 {
1847         debugfs_remove(stmmac_rings_status);
1848         debugfs_remove(stmmac_dma_cap);
1849         debugfs_remove(stmmac_fs_dir);
1850 }
1851 #endif /* CONFIG_STMMAC_DEBUG_FS */
1852
1853 static const struct net_device_ops stmmac_netdev_ops = {
1854         .ndo_open = stmmac_open,
1855         .ndo_start_xmit = stmmac_xmit,
1856         .ndo_stop = stmmac_release,
1857         .ndo_change_mtu = stmmac_change_mtu,
1858         .ndo_fix_features = stmmac_fix_features,
1859         .ndo_set_rx_mode = stmmac_set_rx_mode,
1860         .ndo_tx_timeout = stmmac_tx_timeout,
1861         .ndo_do_ioctl = stmmac_ioctl,
1862         .ndo_set_config = stmmac_config,
1863 #ifdef CONFIG_NET_POLL_CONTROLLER
1864         .ndo_poll_controller = stmmac_poll_controller,
1865 #endif
1866         .ndo_set_mac_address = eth_mac_addr,
1867 };
1868
1869 /**
1870  *  stmmac_hw_init - Init the MAC device
1871  *  @priv : pointer to the private device structure.
1872  *  Description: this function detects which MAC device
1873  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1874  *  (if supported) and sets the driver's features (for example
1875  *  to use the ring or chaine mode or support the normal/enh
1876  *  descriptor structure).
1877  */
1878 static int stmmac_hw_init(struct stmmac_priv *priv)
1879 {
1880         int ret = 0;
1881         struct mac_device_info *mac;
1882
1883         /* Identify the MAC HW device */
1884         if (priv->plat->has_gmac) {
1885                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
1886                 mac = dwmac1000_setup(priv->ioaddr);
1887         } else {
1888                 mac = dwmac100_setup(priv->ioaddr);
1889         }
1890         if (!mac)
1891                 return -ENOMEM;
1892
1893         priv->hw = mac;
1894
1895         /* To use the chained or ring mode */
1896         priv->hw->ring = &ring_mode_ops;
1897
1898         /* Get and dump the chip ID */
1899         priv->synopsys_id = stmmac_get_synopsys_id(priv);
1900
1901         /* Get the HW capability (new GMAC newer than 3.50a) */
1902         priv->hw_cap_support = stmmac_get_hw_features(priv);
1903         if (priv->hw_cap_support) {
1904                 pr_info(" DMA HW capability register supported");
1905
1906                 /* We can override some gmac/dma configuration fields: e.g.
1907                  * enh_desc, tx_coe (e.g. that are passed through the
1908                  * platform) with the values from the HW capability
1909                  * register (if supported).
1910                  */
1911                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
1912                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1913
1914                 priv->plat->tx_coe = priv->dma_cap.tx_coe;
1915
1916                 if (priv->dma_cap.rx_coe_type2)
1917                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1918                 else if (priv->dma_cap.rx_coe_type1)
1919                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1920
1921         } else
1922                 pr_info(" No HW DMA feature register supported");
1923
1924         /* Select the enhnaced/normal descriptor structures */
1925         stmmac_selec_desc_mode(priv);
1926
1927         /* Enable the IPC (Checksum Offload) and check if the feature has been
1928          * enabled during the core configuration. */
1929         ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1930         if (!ret) {
1931                 pr_warning(" RX IPC Checksum Offload not configured.\n");
1932                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1933         }
1934
1935         if (priv->plat->rx_coe)
1936                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1937                         priv->plat->rx_coe);
1938         if (priv->plat->tx_coe)
1939                 pr_info(" TX Checksum insertion supported\n");
1940
1941         if (priv->plat->pmt) {
1942                 pr_info(" Wake-Up On Lan supported\n");
1943                 device_set_wakeup_capable(priv->device, 1);
1944         }
1945
1946         return ret;
1947 }
1948
1949 /**
1950  * stmmac_dvr_probe
1951  * @device: device pointer
1952  * @plat_dat: platform data pointer
1953  * @addr: iobase memory address
1954  * Description: this is the main probe function used to
1955  * call the alloc_etherdev, allocate the priv structure.
1956  */
1957 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1958                                      struct plat_stmmacenet_data *plat_dat,
1959                                      void __iomem *addr)
1960 {
1961         int ret = 0;
1962         struct net_device *ndev = NULL;
1963         struct stmmac_priv *priv;
1964
1965         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1966         if (!ndev)
1967                 return NULL;
1968
1969         SET_NETDEV_DEV(ndev, device);
1970
1971         priv = netdev_priv(ndev);
1972         priv->device = device;
1973         priv->dev = ndev;
1974
1975         ether_setup(ndev);
1976
1977         stmmac_set_ethtool_ops(ndev);
1978         priv->pause = pause;
1979         priv->plat = plat_dat;
1980         priv->ioaddr = addr;
1981         priv->dev->base_addr = (unsigned long)addr;
1982
1983         /* Verify driver arguments */
1984         stmmac_verify_args();
1985
1986         /* Override with kernel parameters if supplied XXX CRS XXX
1987          * this needs to have multiple instances */
1988         if ((phyaddr >= 0) && (phyaddr <= 31))
1989                 priv->plat->phy_addr = phyaddr;
1990
1991         /* Init MAC and get the capabilities */
1992         stmmac_hw_init(priv);
1993
1994         ndev->netdev_ops = &stmmac_netdev_ops;
1995
1996         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1997                             NETIF_F_RXCSUM;
1998         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1999         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2000 #ifdef STMMAC_VLAN_TAG_USED
2001         /* Both mac100 and gmac support receive VLAN tag detection */
2002         ndev->features |= NETIF_F_HW_VLAN_RX;
2003 #endif
2004         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2005
2006         if (flow_ctrl)
2007                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2008
2009         /* Rx Watchdog is available in the COREs newer than the 3.40.
2010          * In some case, for example on bugged HW this feature
2011          * has to be disable and this can be done by passing the
2012          * riwt_off field from the platform.
2013          */
2014         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2015                 priv->use_riwt = 1;
2016                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2017         }
2018
2019         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2020
2021         spin_lock_init(&priv->lock);
2022         spin_lock_init(&priv->tx_lock);
2023
2024         ret = register_netdev(ndev);
2025         if (ret) {
2026                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2027                 goto error_netdev_register;
2028         }
2029
2030         priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2031         if (IS_ERR(priv->stmmac_clk)) {
2032                 pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2033                 goto error_clk_get;
2034         }
2035
2036         /* If a specific clk_csr value is passed from the platform
2037          * this means that the CSR Clock Range selection cannot be
2038          * changed at run-time and it is fixed. Viceversa the driver'll try to
2039          * set the MDC clock dynamically according to the csr actual
2040          * clock input.
2041          */
2042         if (!priv->plat->clk_csr)
2043                 stmmac_clk_csr_set(priv);
2044         else
2045                 priv->clk_csr = priv->plat->clk_csr;
2046
2047         /* MDIO bus Registration */
2048         ret = stmmac_mdio_register(ndev);
2049         if (ret < 0) {
2050                 pr_debug("%s: MDIO bus (id: %d) registration failed",
2051                          __func__, priv->plat->bus_id);
2052                 goto error_mdio_register;
2053         }
2054
2055         return priv;
2056
2057 error_mdio_register:
2058         clk_put(priv->stmmac_clk);
2059 error_clk_get:
2060         unregister_netdev(ndev);
2061 error_netdev_register:
2062         netif_napi_del(&priv->napi);
2063         free_netdev(ndev);
2064
2065         return NULL;
2066 }
2067
2068 /**
2069  * stmmac_dvr_remove
2070  * @ndev: net device pointer
2071  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2072  * changes the link status, releases the DMA descriptor rings.
2073  */
2074 int stmmac_dvr_remove(struct net_device *ndev)
2075 {
2076         struct stmmac_priv *priv = netdev_priv(ndev);
2077
2078         pr_info("%s:\n\tremoving driver", __func__);
2079
2080         priv->hw->dma->stop_rx(priv->ioaddr);
2081         priv->hw->dma->stop_tx(priv->ioaddr);
2082
2083         stmmac_set_mac(priv->ioaddr, false);
2084         stmmac_mdio_unregister(ndev);
2085         netif_carrier_off(ndev);
2086         unregister_netdev(ndev);
2087         free_netdev(ndev);
2088
2089         return 0;
2090 }
2091
2092 #ifdef CONFIG_PM
2093 int stmmac_suspend(struct net_device *ndev)
2094 {
2095         struct stmmac_priv *priv = netdev_priv(ndev);
2096         int dis_ic = 0;
2097         unsigned long flags;
2098
2099         if (!ndev || !netif_running(ndev))
2100                 return 0;
2101
2102         if (priv->phydev)
2103                 phy_stop(priv->phydev);
2104
2105         spin_lock_irqsave(&priv->lock, flags);
2106
2107         netif_device_detach(ndev);
2108         netif_stop_queue(ndev);
2109
2110         if (priv->use_riwt)
2111                 dis_ic = 1;
2112
2113         napi_disable(&priv->napi);
2114
2115         /* Stop TX/RX DMA */
2116         priv->hw->dma->stop_tx(priv->ioaddr);
2117         priv->hw->dma->stop_rx(priv->ioaddr);
2118         /* Clear the Rx/Tx descriptors */
2119         priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2120                                      dis_ic);
2121         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2122
2123         /* Enable Power down mode by programming the PMT regs */
2124         if (device_may_wakeup(priv->device))
2125                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2126         else {
2127                 stmmac_set_mac(priv->ioaddr, false);
2128                 /* Disable clock in case of PWM is off */
2129                 clk_disable_unprepare(priv->stmmac_clk);
2130         }
2131         spin_unlock_irqrestore(&priv->lock, flags);
2132         return 0;
2133 }
2134
2135 int stmmac_resume(struct net_device *ndev)
2136 {
2137         struct stmmac_priv *priv = netdev_priv(ndev);
2138         unsigned long flags;
2139
2140         if (!netif_running(ndev))
2141                 return 0;
2142
2143         spin_lock_irqsave(&priv->lock, flags);
2144
2145         /* Power Down bit, into the PM register, is cleared
2146          * automatically as soon as a magic packet or a Wake-up frame
2147          * is received. Anyway, it's better to manually clear
2148          * this bit because it can generate problems while resuming
2149          * from another devices (e.g. serial console). */
2150         if (device_may_wakeup(priv->device))
2151                 priv->hw->mac->pmt(priv->ioaddr, 0);
2152         else
2153                 /* enable the clk prevously disabled */
2154                 clk_prepare_enable(priv->stmmac_clk);
2155
2156         netif_device_attach(ndev);
2157
2158         /* Enable the MAC and DMA */
2159         stmmac_set_mac(priv->ioaddr, true);
2160         priv->hw->dma->start_tx(priv->ioaddr);
2161         priv->hw->dma->start_rx(priv->ioaddr);
2162
2163         napi_enable(&priv->napi);
2164
2165         netif_start_queue(ndev);
2166
2167         spin_unlock_irqrestore(&priv->lock, flags);
2168
2169         if (priv->phydev)
2170                 phy_start(priv->phydev);
2171
2172         return 0;
2173 }
2174
2175 int stmmac_freeze(struct net_device *ndev)
2176 {
2177         if (!ndev || !netif_running(ndev))
2178                 return 0;
2179
2180         return stmmac_release(ndev);
2181 }
2182
2183 int stmmac_restore(struct net_device *ndev)
2184 {
2185         if (!ndev || !netif_running(ndev))
2186                 return 0;
2187
2188         return stmmac_open(ndev);
2189 }
2190 #endif /* CONFIG_PM */
2191
2192 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2193  * depending on the configuration selected.
2194  */
2195 static int __init stmmac_init(void)
2196 {
2197         int err_plt = 0;
2198         int err_pci = 0;
2199
2200         err_plt = stmmac_register_platform();
2201         err_pci = stmmac_register_pci();
2202
2203         if ((err_pci) && (err_plt)) {
2204                 pr_err("stmmac: driver registration failed\n");
2205                 return -EINVAL;
2206         }
2207
2208         return 0;
2209 }
2210
2211 static void __exit stmmac_exit(void)
2212 {
2213         stmmac_unregister_platform();
2214         stmmac_unregister_pci();
2215 }
2216
2217 module_init(stmmac_init);
2218 module_exit(stmmac_exit);
2219
2220 #ifndef MODULE
2221 static int __init stmmac_cmdline_opt(char *str)
2222 {
2223         char *opt;
2224
2225         if (!str || !*str)
2226                 return -EINVAL;
2227         while ((opt = strsep(&str, ",")) != NULL) {
2228                 if (!strncmp(opt, "debug:", 6)) {
2229                         if (kstrtoint(opt + 6, 0, &debug))
2230                                 goto err;
2231                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2232                         if (kstrtoint(opt + 8, 0, &phyaddr))
2233                                 goto err;
2234                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2235                         if (kstrtoint(opt + 11, 0, &dma_txsize))
2236                                 goto err;
2237                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2238                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
2239                                 goto err;
2240                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2241                         if (kstrtoint(opt + 7, 0, &buf_sz))
2242                                 goto err;
2243                 } else if (!strncmp(opt, "tc:", 3)) {
2244                         if (kstrtoint(opt + 3, 0, &tc))
2245                                 goto err;
2246                 } else if (!strncmp(opt, "watchdog:", 9)) {
2247                         if (kstrtoint(opt + 9, 0, &watchdog))
2248                                 goto err;
2249                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2250                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
2251                                 goto err;
2252                 } else if (!strncmp(opt, "pause:", 6)) {
2253                         if (kstrtoint(opt + 6, 0, &pause))
2254                                 goto err;
2255                 } else if (!strncmp(opt, "eee_timer:", 6)) {
2256                         if (kstrtoint(opt + 10, 0, &eee_timer))
2257                                 goto err;
2258                 }
2259         }
2260         return 0;
2261
2262 err:
2263         pr_err("%s: ERROR broken module parameter conversion", __func__);
2264         return -EINVAL;
2265 }
2266
2267 __setup("stmmaceth=", stmmac_cmdline_opt);
2268 #endif
2269
2270 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2271 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2272 MODULE_LICENSE("GPL");