Merge remote-tracking branch 'asoc/fix/rcar' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / net / ethernet / qualcomm / emac / emac-mac.c
1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14  */
15
16 #include <linux/tcp.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
23 #include <linux/of.h>
24 #include <net/ip6_checksum.h>
25 #include "emac.h"
26 #include "emac-sgmii.h"
27
28 /* EMAC_MAC_CTRL */
29 #define SINGLE_PAUSE_MODE               0x10000000
30 #define DEBUG_MODE                      0x08000000
31 #define BROAD_EN                        0x04000000
32 #define MULTI_ALL                       0x02000000
33 #define RX_CHKSUM_EN                    0x01000000
34 #define HUGE                            0x00800000
35 #define SPEED(x)                        (((x) & 0x3) << 20)
36 #define SPEED_MASK                      SPEED(0x3)
37 #define SIMR                            0x00080000
38 #define TPAUSE                          0x00010000
39 #define PROM_MODE                       0x00008000
40 #define VLAN_STRIP                      0x00004000
41 #define PRLEN_BMSK                      0x00003c00
42 #define PRLEN_SHFT                      10
43 #define HUGEN                           0x00000200
44 #define FLCHK                           0x00000100
45 #define PCRCE                           0x00000080
46 #define CRCE                            0x00000040
47 #define FULLD                           0x00000020
48 #define MAC_LP_EN                       0x00000010
49 #define RXFC                            0x00000008
50 #define TXFC                            0x00000004
51 #define RXEN                            0x00000002
52 #define TXEN                            0x00000001
53
54 /* EMAC_DESC_CTRL_3 */
55 #define RFD_RING_SIZE_BMSK                                       0xfff
56
57 /* EMAC_DESC_CTRL_4 */
58 #define RX_BUFFER_SIZE_BMSK                                     0xffff
59
60 /* EMAC_DESC_CTRL_6 */
61 #define RRD_RING_SIZE_BMSK                                       0xfff
62
63 /* EMAC_DESC_CTRL_9 */
64 #define TPD_RING_SIZE_BMSK                                      0xffff
65
66 /* EMAC_TXQ_CTRL_0 */
67 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
68 #define NUM_TXF_BURST_PREF_SHFT                                     16
69 #define LS_8023_SP                                                0x80
70 #define TXQ_MODE                                                  0x40
71 #define TXQ_EN                                                    0x20
72 #define IP_OP_SP                                                  0x10
73 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
74 #define NUM_TPD_BURST_PREF_SHFT                                      0
75
76 /* EMAC_TXQ_CTRL_1 */
77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
78
79 /* EMAC_TXQ_CTRL_2 */
80 #define TXF_HWM_BMSK                                         0xfff0000
81 #define TXF_LWM_BMSK                                             0xfff
82
83 /* EMAC_RXQ_CTRL_0 */
84 #define RXQ_EN                                                 BIT(31)
85 #define CUT_THRU_EN                                            BIT(30)
86 #define RSS_HASH_EN                                            BIT(29)
87 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
88 #define NUM_RFD_BURST_PREF_SHFT                                     20
89 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
90 #define IDT_TABLE_SIZE_SHFT                                          8
91 #define SP_IPV6                                                   0x80
92
93 /* EMAC_RXQ_CTRL_1 */
94 #define JUMBO_1KAH_BMSK                                         0xf000
95 #define JUMBO_1KAH_SHFT                                             12
96 #define RFD_PREF_LOW_TH                                           0x10
97 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
98 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
99 #define RFD_PREF_UP_TH                                            0x10
100 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
101 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
102
103 /* EMAC_RXQ_CTRL_2 */
104 #define RXF_DOF_THRESFHOLD                                       0x1a0
105 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
106 #define RXF_DOF_THRESHOLD_SHFT                                      16
107 #define RXF_UOF_THRESFHOLD                                        0xbe
108 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
109 #define RXF_UOF_THRESHOLD_SHFT                                       0
110
111 /* EMAC_RXQ_CTRL_3 */
112 #define RXD_TIMER_BMSK                                      0xffff0000
113 #define RXD_THRESHOLD_BMSK                                       0xfff
114 #define RXD_THRESHOLD_SHFT                                           0
115
116 /* EMAC_DMA_CTRL */
117 #define DMAW_DLY_CNT_BMSK                                      0xf0000
118 #define DMAW_DLY_CNT_SHFT                                           16
119 #define DMAR_DLY_CNT_BMSK                                       0xf800
120 #define DMAR_DLY_CNT_SHFT                                           11
121 #define DMAR_REQ_PRI                                             0x400
122 #define REGWRBLEN_BMSK                                           0x380
123 #define REGWRBLEN_SHFT                                               7
124 #define REGRDBLEN_BMSK                                            0x70
125 #define REGRDBLEN_SHFT                                               4
126 #define OUT_ORDER_MODE                                             0x4
127 #define ENH_ORDER_MODE                                             0x2
128 #define IN_ORDER_MODE                                              0x1
129
130 /* EMAC_MAILBOX_13 */
131 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
132 #define RFD3_PROC_IDX_SHFT                                          16
133 #define RFD3_PROD_IDX_BMSK                                       0xfff
134 #define RFD3_PROD_IDX_SHFT                                           0
135
136 /* EMAC_MAILBOX_2 */
137 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
138 #define NTPD_CONS_IDX_SHFT                                          16
139
140 /* EMAC_MAILBOX_3 */
141 #define RFD0_CONS_IDX_BMSK                                       0xfff
142 #define RFD0_CONS_IDX_SHFT                                           0
143
144 /* EMAC_MAILBOX_11 */
145 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
146 #define H3TPD_PROD_IDX_SHFT                                         16
147
148 /* EMAC_AXI_MAST_CTRL */
149 #define DATA_BYTE_SWAP                                             0x8
150 #define MAX_BOUND                                                  0x2
151 #define MAX_BTYPE                                                  0x1
152
153 /* EMAC_MAILBOX_12 */
154 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
155 #define H3TPD_CONS_IDX_SHFT                                         16
156
157 /* EMAC_MAILBOX_9 */
158 #define H2TPD_PROD_IDX_BMSK                                     0xffff
159 #define H2TPD_PROD_IDX_SHFT                                          0
160
161 /* EMAC_MAILBOX_10 */
162 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
163 #define H1TPD_CONS_IDX_SHFT                                         16
164 #define H2TPD_CONS_IDX_BMSK                                     0xffff
165 #define H2TPD_CONS_IDX_SHFT                                          0
166
167 /* EMAC_ATHR_HEADER_CTRL */
168 #define HEADER_CNT_EN                                              0x2
169 #define HEADER_ENABLE                                              0x1
170
171 /* EMAC_MAILBOX_0 */
172 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
173 #define RFD0_PROC_IDX_SHFT                                          16
174 #define RFD0_PROD_IDX_BMSK                                       0xfff
175 #define RFD0_PROD_IDX_SHFT                                           0
176
177 /* EMAC_MAILBOX_5 */
178 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
179 #define RFD1_PROC_IDX_SHFT                                          16
180 #define RFD1_PROD_IDX_BMSK                                       0xfff
181 #define RFD1_PROD_IDX_SHFT                                           0
182
183 /* EMAC_MISC_CTRL */
184 #define RX_UNCPL_INT_EN                                            0x1
185
186 /* EMAC_MAILBOX_7 */
187 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
188 #define RFD2_CONS_IDX_SHFT                                          16
189 #define RFD1_CONS_IDX_BMSK                                       0xfff
190 #define RFD1_CONS_IDX_SHFT                                           0
191
192 /* EMAC_MAILBOX_8 */
193 #define RFD3_CONS_IDX_BMSK                                       0xfff
194 #define RFD3_CONS_IDX_SHFT                                           0
195
196 /* EMAC_MAILBOX_15 */
197 #define NTPD_PROD_IDX_BMSK                                      0xffff
198 #define NTPD_PROD_IDX_SHFT                                           0
199
200 /* EMAC_MAILBOX_16 */
201 #define H1TPD_PROD_IDX_BMSK                                     0xffff
202 #define H1TPD_PROD_IDX_SHFT                                          0
203
204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
205 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
207 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
208
209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
210 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
211 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
212
213 struct emac_skb_cb {
214         u32           tpd_idx;
215         unsigned long jiffies;
216 };
217
218 #define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
219 #define EMAC_RSS_IDT_SIZE       256
220 #define JUMBO_1KAH              0x4
221 #define RXD_TH                  0x100
222 #define EMAC_TPD_LAST_FRAGMENT  0x80000000
223 #define EMAC_TPD_TSTAMP_SAVE    0x80000000
224
225 /* EMAC Errors in emac_rrd.word[3] */
226 #define EMAC_RRD_L4F            BIT(14)
227 #define EMAC_RRD_IPF            BIT(15)
228 #define EMAC_RRD_CRC            BIT(21)
229 #define EMAC_RRD_FAE            BIT(22)
230 #define EMAC_RRD_TRN            BIT(23)
231 #define EMAC_RRD_RNT            BIT(24)
232 #define EMAC_RRD_INC            BIT(25)
233 #define EMAC_RRD_FOV            BIT(29)
234 #define EMAC_RRD_LEN            BIT(30)
235
236 /* Error bits that will result in a received frame being discarded */
237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238                         EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239                         EMAC_RRD_FOV | EMAC_RRD_LEN)
240 #define EMAC_RRD_STATS_DW_IDX 3
241
242 #define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243 #define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244 #define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
245
246 #define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
247 #define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
248
249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
250
251 #define ISR_RX_PKT      (\
252         RX_PKT_INT0     |\
253         RX_PKT_INT1     |\
254         RX_PKT_INT2     |\
255         RX_PKT_INT3)
256
257 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
258 {
259         u32 crc32, bit, reg, mta;
260
261         /* Calculate the CRC of the MAC address */
262         crc32 = ether_crc(ETH_ALEN, addr);
263
264         /* The HASH Table is an array of 2 32-bit registers. It is
265          * treated like an array of 64 bits (BitArray[hash_value]).
266          * Use the upper 6 bits of the above CRC as the hash value.
267          */
268         reg = (crc32 >> 31) & 0x1;
269         bit = (crc32 >> 26) & 0x1F;
270
271         mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
272         mta |= BIT(bit);
273         writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
274 }
275
276 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
277 {
278         writel(0, adpt->base + EMAC_HASH_TAB_REG0);
279         writel(0, adpt->base + EMAC_HASH_TAB_REG1);
280 }
281
282 /* definitions for RSS */
283 #define EMAC_RSS_KEY(_i, _type) \
284                 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285 #define EMAC_RSS_TBL(_i, _type) \
286                 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
287
288 /* Config MAC modes */
289 void emac_mac_mode_config(struct emac_adapter *adpt)
290 {
291         struct net_device *netdev = adpt->netdev;
292         u32 mac;
293
294         mac = readl(adpt->base + EMAC_MAC_CTRL);
295         mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
296
297         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
298                 mac |= VLAN_STRIP;
299
300         if (netdev->flags & IFF_PROMISC)
301                 mac |= PROM_MODE;
302
303         if (netdev->flags & IFF_ALLMULTI)
304                 mac |= MULTI_ALL;
305
306         writel(mac, adpt->base + EMAC_MAC_CTRL);
307 }
308
309 /* Config descriptor rings */
310 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
311 {
312         static const unsigned short tpd_q_offset[] = {
313                 EMAC_DESC_CTRL_8,        EMAC_H1TPD_BASE_ADDR_LO,
314                 EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
315         static const unsigned short rfd_q_offset[] = {
316                 EMAC_DESC_CTRL_2,        EMAC_DESC_CTRL_10,
317                 EMAC_DESC_CTRL_12,       EMAC_DESC_CTRL_13};
318         static const unsigned short rrd_q_offset[] = {
319                 EMAC_DESC_CTRL_5,        EMAC_DESC_CTRL_14,
320                 EMAC_DESC_CTRL_15,       EMAC_DESC_CTRL_16};
321
322         /* TPD (Transmit Packet Descriptor) */
323         writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
324                adpt->base + EMAC_DESC_CTRL_1);
325
326         writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
327                adpt->base + tpd_q_offset[0]);
328
329         writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
330                adpt->base + EMAC_DESC_CTRL_9);
331
332         /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
333         writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
334                adpt->base + EMAC_DESC_CTRL_0);
335
336         writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
337                adpt->base + rfd_q_offset[0]);
338         writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
339                adpt->base + rrd_q_offset[0]);
340
341         writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
342                adpt->base + EMAC_DESC_CTRL_3);
343         writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
344                adpt->base + EMAC_DESC_CTRL_6);
345
346         writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
347                adpt->base + EMAC_DESC_CTRL_4);
348
349         writel(0, adpt->base + EMAC_DESC_CTRL_11);
350
351         /* Load all of the base addresses above and ensure that triggering HW to
352          * read ring pointers is flushed
353          */
354         writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
355 }
356
357 /* Config transmit parameters */
358 static void emac_mac_tx_config(struct emac_adapter *adpt)
359 {
360         u32 val;
361
362         writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
363                JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
364
365         val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
366                NUM_TPD_BURST_PREF_BMSK;
367
368         val |= TXQ_MODE | LS_8023_SP;
369         val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
370                 NUM_TXF_BURST_PREF_BMSK;
371
372         writel(val, adpt->base + EMAC_TXQ_CTRL_0);
373         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
374                           (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
375 }
376
377 /* Config receive parameters */
378 static void emac_mac_rx_config(struct emac_adapter *adpt)
379 {
380         u32 val;
381
382         val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
383                NUM_RFD_BURST_PREF_BMSK;
384         val |= (SP_IPV6 | CUT_THRU_EN);
385
386         writel(val, adpt->base + EMAC_RXQ_CTRL_0);
387
388         val = readl(adpt->base + EMAC_RXQ_CTRL_1);
389         val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
390                  RFD_PREF_UP_THRESHOLD_BMSK);
391         val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
392                 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
393                 (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
394         writel(val, adpt->base + EMAC_RXQ_CTRL_1);
395
396         val = readl(adpt->base + EMAC_RXQ_CTRL_2);
397         val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
398         val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
399                 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
400         writel(val, adpt->base + EMAC_RXQ_CTRL_2);
401
402         val = readl(adpt->base + EMAC_RXQ_CTRL_3);
403         val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
404         val |= RXD_TH << RXD_THRESHOLD_SHFT;
405         writel(val, adpt->base + EMAC_RXQ_CTRL_3);
406 }
407
408 /* Config dma */
409 static void emac_mac_dma_config(struct emac_adapter *adpt)
410 {
411         u32 dma_ctrl = DMAR_REQ_PRI;
412
413         switch (adpt->dma_order) {
414         case emac_dma_ord_in:
415                 dma_ctrl |= IN_ORDER_MODE;
416                 break;
417         case emac_dma_ord_enh:
418                 dma_ctrl |= ENH_ORDER_MODE;
419                 break;
420         case emac_dma_ord_out:
421                 dma_ctrl |= OUT_ORDER_MODE;
422                 break;
423         default:
424                 break;
425         }
426
427         dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
428                                                 REGRDBLEN_BMSK;
429         dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
430                                                 REGWRBLEN_BMSK;
431         dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
432                                                 DMAR_DLY_CNT_BMSK;
433         dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
434                                                 DMAW_DLY_CNT_BMSK;
435
436         /* config DMA and ensure that configuration is flushed to HW */
437         writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
438 }
439
440 /* set MAC address */
441 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
442 {
443         u32 sta;
444
445         /* for example: 00-A0-C6-11-22-33
446          * 0<-->C6112233, 1<-->00A0.
447          */
448
449         /* low 32bit word */
450         sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
451               (((u32)addr[4]) << 8)  | (((u32)addr[5]));
452         writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
453
454         /* hight 32bit word */
455         sta = (((u32)addr[0]) << 8) | (u32)addr[1];
456         writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
457 }
458
459 static void emac_mac_config(struct emac_adapter *adpt)
460 {
461         struct net_device *netdev = adpt->netdev;
462         unsigned int max_frame;
463         u32 val;
464
465         emac_set_mac_address(adpt, netdev->dev_addr);
466
467         max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
468         adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
469                 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
470
471         emac_mac_dma_rings_config(adpt);
472
473         writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
474                adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
475
476         emac_mac_tx_config(adpt);
477         emac_mac_rx_config(adpt);
478         emac_mac_dma_config(adpt);
479
480         val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
481         val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
482         val |= MAX_BTYPE;
483         writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
484         writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
485         writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
486 }
487
488 void emac_mac_reset(struct emac_adapter *adpt)
489 {
490         emac_mac_stop(adpt);
491
492         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
493         usleep_range(100, 150); /* reset may take up to 100usec */
494
495         /* interrupt clear-on-read */
496         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
497 }
498
499 static void emac_mac_start(struct emac_adapter *adpt)
500 {
501         struct phy_device *phydev = adpt->phydev;
502         u32 mac, csr1;
503
504         /* enable tx queue */
505         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
506
507         /* enable rx queue */
508         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
509
510         /* enable mac control */
511         mac = readl(adpt->base + EMAC_MAC_CTRL);
512         csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
513
514         mac |= TXEN | RXEN;     /* enable RX/TX */
515
516         /* Configure MAC flow control. If set to automatic, then match
517          * whatever the PHY does. Otherwise, enable or disable it, depending
518          * on what the user configured via ethtool.
519          */
520         mac &= ~(RXFC | TXFC);
521
522         if (adpt->automatic) {
523                 /* If it's set to automatic, then update our local values */
524                 adpt->rx_flow_control = phydev->pause;
525                 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
526         }
527         mac |= adpt->rx_flow_control ? RXFC : 0;
528         mac |= adpt->tx_flow_control ? TXFC : 0;
529
530         /* setup link speed */
531         mac &= ~SPEED_MASK;
532         if (phydev->speed == SPEED_1000) {
533                 mac |= SPEED(2);
534                 csr1 |= FREQ_MODE;
535         } else {
536                 mac |= SPEED(1);
537                 csr1 &= ~FREQ_MODE;
538         }
539
540         if (phydev->duplex == DUPLEX_FULL)
541                 mac |= FULLD;
542         else
543                 mac &= ~FULLD;
544
545         /* other parameters */
546         mac |= (CRCE | PCRCE);
547         mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
548         mac |= BROAD_EN;
549         mac |= FLCHK;
550         mac &= ~RX_CHKSUM_EN;
551         mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
552                  DEBUG_MODE | SINGLE_PAUSE_MODE);
553
554         writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
555
556         writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
557
558         /* enable interrupt read clear, low power sleep mode and
559          * the irq moderators
560          */
561
562         writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
563         writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
564                         IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
565
566         emac_mac_mode_config(adpt);
567
568         emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
569                           (HEADER_ENABLE | HEADER_CNT_EN), 0);
570 }
571
572 void emac_mac_stop(struct emac_adapter *adpt)
573 {
574         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
575         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
576         emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
577         usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
578 }
579
580 /* Free all descriptors of given transmit queue */
581 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
582 {
583         struct emac_tx_queue *tx_q = &adpt->tx_q;
584         unsigned int i;
585         size_t size;
586
587         /* ring already cleared, nothing to do */
588         if (!tx_q->tpd.tpbuff)
589                 return;
590
591         for (i = 0; i < tx_q->tpd.count; i++) {
592                 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
593
594                 if (tpbuf->dma_addr) {
595                         dma_unmap_single(adpt->netdev->dev.parent,
596                                          tpbuf->dma_addr, tpbuf->length,
597                                          DMA_TO_DEVICE);
598                         tpbuf->dma_addr = 0;
599                 }
600                 if (tpbuf->skb) {
601                         dev_kfree_skb_any(tpbuf->skb);
602                         tpbuf->skb = NULL;
603                 }
604         }
605
606         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
607         memset(tx_q->tpd.tpbuff, 0, size);
608
609         /* clear the descriptor ring */
610         memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
611
612         tx_q->tpd.consume_idx = 0;
613         tx_q->tpd.produce_idx = 0;
614 }
615
616 /* Free all descriptors of given receive queue */
617 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
618 {
619         struct device *dev = adpt->netdev->dev.parent;
620         struct emac_rx_queue *rx_q = &adpt->rx_q;
621         unsigned int i;
622         size_t size;
623
624         /* ring already cleared, nothing to do */
625         if (!rx_q->rfd.rfbuff)
626                 return;
627
628         for (i = 0; i < rx_q->rfd.count; i++) {
629                 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
630
631                 if (rfbuf->dma_addr) {
632                         dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
633                                          DMA_FROM_DEVICE);
634                         rfbuf->dma_addr = 0;
635                 }
636                 if (rfbuf->skb) {
637                         dev_kfree_skb(rfbuf->skb);
638                         rfbuf->skb = NULL;
639                 }
640         }
641
642         size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
643         memset(rx_q->rfd.rfbuff, 0, size);
644
645         /* clear the descriptor rings */
646         memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
647         rx_q->rrd.produce_idx = 0;
648         rx_q->rrd.consume_idx = 0;
649
650         memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
651         rx_q->rfd.produce_idx = 0;
652         rx_q->rfd.consume_idx = 0;
653 }
654
655 /* Free all buffers associated with given transmit queue */
656 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
657 {
658         struct emac_tx_queue *tx_q = &adpt->tx_q;
659
660         emac_tx_q_descs_free(adpt);
661
662         kfree(tx_q->tpd.tpbuff);
663         tx_q->tpd.tpbuff = NULL;
664         tx_q->tpd.v_addr = NULL;
665         tx_q->tpd.dma_addr = 0;
666         tx_q->tpd.size = 0;
667 }
668
669 /* Allocate TX descriptor ring for the given transmit queue */
670 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
671                                 struct emac_tx_queue *tx_q)
672 {
673         struct emac_ring_header *ring_header = &adpt->ring_header;
674         size_t size;
675
676         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
677         tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
678         if (!tx_q->tpd.tpbuff)
679                 return -ENOMEM;
680
681         tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
682         tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
683         tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
684         ring_header->used += ALIGN(tx_q->tpd.size, 8);
685         tx_q->tpd.produce_idx = 0;
686         tx_q->tpd.consume_idx = 0;
687
688         return 0;
689 }
690
691 /* Free all buffers associated with given transmit queue */
692 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
693 {
694         struct emac_rx_queue *rx_q = &adpt->rx_q;
695
696         emac_rx_q_free_descs(adpt);
697
698         kfree(rx_q->rfd.rfbuff);
699         rx_q->rfd.rfbuff   = NULL;
700
701         rx_q->rfd.v_addr   = NULL;
702         rx_q->rfd.dma_addr = 0;
703         rx_q->rfd.size     = 0;
704
705         rx_q->rrd.v_addr   = NULL;
706         rx_q->rrd.dma_addr = 0;
707         rx_q->rrd.size     = 0;
708 }
709
710 /* Allocate RX descriptor rings for the given receive queue */
711 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
712 {
713         struct emac_ring_header *ring_header = &adpt->ring_header;
714         struct emac_rx_queue *rx_q = &adpt->rx_q;
715         size_t size;
716
717         size = sizeof(struct emac_buffer) * rx_q->rfd.count;
718         rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
719         if (!rx_q->rfd.rfbuff)
720                 return -ENOMEM;
721
722         rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
723         rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
724
725         rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
726         rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
727         ring_header->used += ALIGN(rx_q->rrd.size, 8);
728
729         rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
730         rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
731         ring_header->used += ALIGN(rx_q->rfd.size, 8);
732
733         rx_q->rrd.produce_idx = 0;
734         rx_q->rrd.consume_idx = 0;
735
736         rx_q->rfd.produce_idx = 0;
737         rx_q->rfd.consume_idx = 0;
738
739         return 0;
740 }
741
742 /* Allocate all TX and RX descriptor rings */
743 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
744 {
745         struct emac_ring_header *ring_header = &adpt->ring_header;
746         struct device *dev = adpt->netdev->dev.parent;
747         unsigned int num_tx_descs = adpt->tx_desc_cnt;
748         unsigned int num_rx_descs = adpt->rx_desc_cnt;
749         int ret;
750
751         adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
752
753         adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
754         adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
755
756         /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
757          * hence the additional padding bytes are allocated.
758          */
759         ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
760                             num_rx_descs * (adpt->rfd_size * 4) +
761                             num_rx_descs * (adpt->rrd_size * 4) +
762                             8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
763
764         ring_header->used = 0;
765         ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
766                                                  &ring_header->dma_addr,
767                                                  GFP_KERNEL);
768         if (!ring_header->v_addr)
769                 return -ENOMEM;
770
771         ring_header->used = ALIGN(ring_header->dma_addr, 8) -
772                                                         ring_header->dma_addr;
773
774         ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
775         if (ret) {
776                 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
777                 goto err_alloc_tx;
778         }
779
780         ret = emac_rx_descs_alloc(adpt);
781         if (ret) {
782                 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
783                 goto err_alloc_rx;
784         }
785
786         return 0;
787
788 err_alloc_rx:
789         emac_tx_q_bufs_free(adpt);
790 err_alloc_tx:
791         dma_free_coherent(dev, ring_header->size,
792                           ring_header->v_addr, ring_header->dma_addr);
793
794         ring_header->v_addr   = NULL;
795         ring_header->dma_addr = 0;
796         ring_header->size     = 0;
797         ring_header->used     = 0;
798
799         return ret;
800 }
801
802 /* Free all TX and RX descriptor rings */
803 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
804 {
805         struct emac_ring_header *ring_header = &adpt->ring_header;
806         struct device *dev = adpt->netdev->dev.parent;
807
808         emac_tx_q_bufs_free(adpt);
809         emac_rx_q_bufs_free(adpt);
810
811         dma_free_coherent(dev, ring_header->size,
812                           ring_header->v_addr, ring_header->dma_addr);
813
814         ring_header->v_addr   = NULL;
815         ring_header->dma_addr = 0;
816         ring_header->size     = 0;
817         ring_header->used     = 0;
818 }
819
820 /* Initialize descriptor rings */
821 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
822 {
823         unsigned int i;
824
825         adpt->tx_q.tpd.produce_idx = 0;
826         adpt->tx_q.tpd.consume_idx = 0;
827         for (i = 0; i < adpt->tx_q.tpd.count; i++)
828                 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
829
830         adpt->rx_q.rrd.produce_idx = 0;
831         adpt->rx_q.rrd.consume_idx = 0;
832         adpt->rx_q.rfd.produce_idx = 0;
833         adpt->rx_q.rfd.consume_idx = 0;
834         for (i = 0; i < adpt->rx_q.rfd.count; i++)
835                 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
836 }
837
838 /* Produce new receive free descriptor */
839 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
840                                    struct emac_rx_queue *rx_q,
841                                    dma_addr_t addr)
842 {
843         u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
844
845         *(hw_rfd++) = lower_32_bits(addr);
846         *hw_rfd = upper_32_bits(addr);
847
848         if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
849                 rx_q->rfd.produce_idx = 0;
850 }
851
852 /* Fill up receive queue's RFD with preallocated receive buffers */
853 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
854                                     struct emac_rx_queue *rx_q)
855 {
856         struct emac_buffer *curr_rxbuf;
857         struct emac_buffer *next_rxbuf;
858         unsigned int count = 0;
859         u32 next_produce_idx;
860
861         next_produce_idx = rx_q->rfd.produce_idx + 1;
862         if (next_produce_idx == rx_q->rfd.count)
863                 next_produce_idx = 0;
864
865         curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
866         next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
867
868         /* this always has a blank rx_buffer*/
869         while (!next_rxbuf->dma_addr) {
870                 struct sk_buff *skb;
871                 int ret;
872
873                 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
874                 if (!skb)
875                         break;
876
877                 curr_rxbuf->dma_addr =
878                         dma_map_single(adpt->netdev->dev.parent, skb->data,
879                                        curr_rxbuf->length, DMA_FROM_DEVICE);
880                 ret = dma_mapping_error(adpt->netdev->dev.parent,
881                                         curr_rxbuf->dma_addr);
882                 if (ret) {
883                         dev_kfree_skb(skb);
884                         break;
885                 }
886                 curr_rxbuf->skb = skb;
887                 curr_rxbuf->length = adpt->rxbuf_size;
888
889                 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
890                 next_produce_idx = rx_q->rfd.produce_idx + 1;
891                 if (next_produce_idx == rx_q->rfd.count)
892                         next_produce_idx = 0;
893
894                 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
895                 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
896                 count++;
897         }
898
899         if (count) {
900                 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
901                                 rx_q->produce_mask;
902                 emac_reg_update32(adpt->base + rx_q->produce_reg,
903                                   rx_q->produce_mask, prod_idx);
904         }
905 }
906
907 static void emac_adjust_link(struct net_device *netdev)
908 {
909         struct emac_adapter *adpt = netdev_priv(netdev);
910         struct emac_sgmii *sgmii = &adpt->phy;
911         struct phy_device *phydev = netdev->phydev;
912
913         if (phydev->link) {
914                 emac_mac_start(adpt);
915                 sgmii->link_up(adpt);
916         } else {
917                 sgmii->link_down(adpt);
918                 emac_mac_stop(adpt);
919         }
920
921         phy_print_status(phydev);
922 }
923
924 /* Bringup the interface/HW */
925 int emac_mac_up(struct emac_adapter *adpt)
926 {
927         struct net_device *netdev = adpt->netdev;
928         int ret;
929
930         emac_mac_rx_tx_ring_reset_all(adpt);
931         emac_mac_config(adpt);
932         emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
933
934         adpt->phydev->irq = PHY_POLL;
935         ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
936                                  PHY_INTERFACE_MODE_SGMII);
937         if (ret) {
938                 netdev_err(adpt->netdev, "could not connect phy\n");
939                 return ret;
940         }
941
942         phy_attached_print(adpt->phydev, NULL);
943
944         /* enable mac irq */
945         writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
946         writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
947
948         phy_start(adpt->phydev);
949
950         napi_enable(&adpt->rx_q.napi);
951         netif_start_queue(netdev);
952
953         return 0;
954 }
955
956 /* Bring down the interface/HW */
957 void emac_mac_down(struct emac_adapter *adpt)
958 {
959         struct net_device *netdev = adpt->netdev;
960
961         netif_stop_queue(netdev);
962         napi_disable(&adpt->rx_q.napi);
963
964         phy_stop(adpt->phydev);
965
966         /* Interrupts must be disabled before the PHY is disconnected, to
967          * avoid a race condition where adjust_link is null when we get
968          * an interrupt.
969          */
970         writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
971         writel(0, adpt->base + EMAC_INT_MASK);
972         synchronize_irq(adpt->irq.irq);
973
974         phy_disconnect(adpt->phydev);
975
976         emac_mac_reset(adpt);
977
978         emac_tx_q_descs_free(adpt);
979         netdev_reset_queue(adpt->netdev);
980         emac_rx_q_free_descs(adpt);
981 }
982
983 /* Consume next received packet descriptor */
984 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
985                                 struct emac_rx_queue *rx_q,
986                                 struct emac_rrd *rrd)
987 {
988         u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
989
990         rrd->word[3] = *(hw_rrd + 3);
991
992         if (!RRD_UPDT(rrd))
993                 return false;
994
995         rrd->word[4] = 0;
996         rrd->word[5] = 0;
997
998         rrd->word[0] = *(hw_rrd++);
999         rrd->word[1] = *(hw_rrd++);
1000         rrd->word[2] = *(hw_rrd++);
1001
1002         if (unlikely(RRD_NOR(rrd) != 1)) {
1003                 netdev_err(adpt->netdev,
1004                            "error: multi-RFD not support yet! nor:%lu\n",
1005                            RRD_NOR(rrd));
1006         }
1007
1008         /* mark rrd as processed */
1009         RRD_UPDT_SET(rrd, 0);
1010         *hw_rrd = rrd->word[3];
1011
1012         if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1013                 rx_q->rrd.consume_idx = 0;
1014
1015         return true;
1016 }
1017
1018 /* Produce new transmit descriptor */
1019 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1020                                struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1021 {
1022         u32 *hw_tpd;
1023
1024         tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1025         hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1026
1027         if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1028                 tx_q->tpd.produce_idx = 0;
1029
1030         *(hw_tpd++) = tpd->word[0];
1031         *(hw_tpd++) = tpd->word[1];
1032         *(hw_tpd++) = tpd->word[2];
1033         *hw_tpd = tpd->word[3];
1034 }
1035
1036 /* Mark the last transmit descriptor as such (for the transmit packet) */
1037 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1038                                   struct emac_tx_queue *tx_q)
1039 {
1040         u32 *hw_tpd =
1041                 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1042         u32 tmp_tpd;
1043
1044         tmp_tpd = *(hw_tpd + 1);
1045         tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1046         *(hw_tpd + 1) = tmp_tpd;
1047 }
1048
1049 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1050 {
1051         struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1052         u32 consume_idx = RRD_SI(rrd);
1053         unsigned int i;
1054
1055         for (i = 0; i < RRD_NOR(rrd); i++) {
1056                 rfbuf[consume_idx].skb = NULL;
1057                 if (++consume_idx == rx_q->rfd.count)
1058                         consume_idx = 0;
1059         }
1060
1061         rx_q->rfd.consume_idx = consume_idx;
1062         rx_q->rfd.process_idx = consume_idx;
1063 }
1064
1065 /* Push the received skb to upper layers */
1066 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1067                              struct sk_buff *skb,
1068                              u16 vlan_tag, bool vlan_flag)
1069 {
1070         if (vlan_flag) {
1071                 u16 vlan;
1072
1073                 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1074                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1075         }
1076
1077         napi_gro_receive(&rx_q->napi, skb);
1078 }
1079
1080 /* Process receive event */
1081 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1082                          int *num_pkts, int max_pkts)
1083 {
1084         u32 proc_idx, hw_consume_idx, num_consume_pkts;
1085         struct net_device *netdev  = adpt->netdev;
1086         struct emac_buffer *rfbuf;
1087         unsigned int count = 0;
1088         struct emac_rrd rrd;
1089         struct sk_buff *skb;
1090         u32 reg;
1091
1092         reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1093
1094         hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1095         num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1096                 (hw_consume_idx -  rx_q->rrd.consume_idx) :
1097                 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1098
1099         do {
1100                 if (!num_consume_pkts)
1101                         break;
1102
1103                 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1104                         break;
1105
1106                 if (likely(RRD_NOR(&rrd) == 1)) {
1107                         /* good receive */
1108                         rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1109                         dma_unmap_single(adpt->netdev->dev.parent,
1110                                          rfbuf->dma_addr, rfbuf->length,
1111                                          DMA_FROM_DEVICE);
1112                         rfbuf->dma_addr = 0;
1113                         skb = rfbuf->skb;
1114                 } else {
1115                         netdev_err(adpt->netdev,
1116                                    "error: multi-RFD not support yet!\n");
1117                         break;
1118                 }
1119                 emac_rx_rfd_clean(rx_q, &rrd);
1120                 num_consume_pkts--;
1121                 count++;
1122
1123                 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1124                  * with DF set are marked as error), drop packets based on the
1125                  * error mask rather than the summary bit (ignoring L4F errors)
1126                  */
1127                 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1128                         netif_dbg(adpt, rx_status, adpt->netdev,
1129                                   "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1130                                   rrd.word[0], rrd.word[1],
1131                                   rrd.word[2], rrd.word[3]);
1132
1133                         dev_kfree_skb(skb);
1134                         continue;
1135                 }
1136
1137                 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1138                 skb->dev = netdev;
1139                 skb->protocol = eth_type_trans(skb, skb->dev);
1140                 if (netdev->features & NETIF_F_RXCSUM)
1141                         skb->ip_summed = RRD_L4F(&rrd) ?
1142                                           CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1143                 else
1144                         skb_checksum_none_assert(skb);
1145
1146                 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1147                                  (bool)RRD_CVTAG(&rrd));
1148
1149                 (*num_pkts)++;
1150         } while (*num_pkts < max_pkts);
1151
1152         if (count) {
1153                 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1154                                 rx_q->process_mask;
1155                 emac_reg_update32(adpt->base + rx_q->process_reg,
1156                                   rx_q->process_mask, proc_idx);
1157                 emac_mac_rx_descs_refill(adpt, rx_q);
1158         }
1159 }
1160
1161 /* get the number of free transmit descriptors */
1162 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1163 {
1164         u32 produce_idx = tx_q->tpd.produce_idx;
1165         u32 consume_idx = tx_q->tpd.consume_idx;
1166
1167         return (consume_idx > produce_idx) ?
1168                 (consume_idx - produce_idx - 1) :
1169                 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1170 }
1171
1172 /* Process transmit event */
1173 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1174 {
1175         u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1176         u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1177         struct emac_buffer *tpbuf;
1178
1179         hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1180
1181         while (tx_q->tpd.consume_idx != hw_consume_idx) {
1182                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1183                 if (tpbuf->dma_addr) {
1184                         dma_unmap_single(adpt->netdev->dev.parent,
1185                                          tpbuf->dma_addr, tpbuf->length,
1186                                          DMA_TO_DEVICE);
1187                         tpbuf->dma_addr = 0;
1188                 }
1189
1190                 if (tpbuf->skb) {
1191                         pkts_compl++;
1192                         bytes_compl += tpbuf->skb->len;
1193                         dev_kfree_skb_irq(tpbuf->skb);
1194                         tpbuf->skb = NULL;
1195                 }
1196
1197                 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1198                         tx_q->tpd.consume_idx = 0;
1199         }
1200
1201         netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1202
1203         if (netif_queue_stopped(adpt->netdev))
1204                 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1205                         netif_wake_queue(adpt->netdev);
1206 }
1207
1208 /* Initialize all queue data structures */
1209 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1210                                   struct emac_adapter *adpt)
1211 {
1212         adpt->rx_q.netdev = adpt->netdev;
1213
1214         adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1215         adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1216         adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1217
1218         adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1219         adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1220         adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1221
1222         adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1223         adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1224         adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1225
1226         adpt->rx_q.irq          = &adpt->irq;
1227         adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1228
1229         adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1230         adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1231         adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1232
1233         adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1234         adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1235         adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1236 }
1237
1238 /* Fill up transmit descriptors with TSO and Checksum offload information */
1239 static int emac_tso_csum(struct emac_adapter *adpt,
1240                          struct emac_tx_queue *tx_q,
1241                          struct sk_buff *skb,
1242                          struct emac_tpd *tpd)
1243 {
1244         unsigned int hdr_len;
1245         int ret;
1246
1247         if (skb_is_gso(skb)) {
1248                 if (skb_header_cloned(skb)) {
1249                         ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1250                         if (unlikely(ret))
1251                                 return ret;
1252                 }
1253
1254                 if (skb->protocol == htons(ETH_P_IP)) {
1255                         u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1256                                        + ntohs(ip_hdr(skb)->tot_len);
1257                         if (skb->len > pkt_len)
1258                                 pskb_trim(skb, pkt_len);
1259                 }
1260
1261                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1262                 if (unlikely(skb->len == hdr_len)) {
1263                         /* we only need to do csum */
1264                         netif_warn(adpt, tx_err, adpt->netdev,
1265                                    "tso not needed for packet with 0 data\n");
1266                         goto do_csum;
1267                 }
1268
1269                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1270                         ip_hdr(skb)->check = 0;
1271                         tcp_hdr(skb)->check =
1272                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1273                                                    ip_hdr(skb)->daddr,
1274                                                    0, IPPROTO_TCP, 0);
1275                         TPD_IPV4_SET(tpd, 1);
1276                 }
1277
1278                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1279                         /* ipv6 tso need an extra tpd */
1280                         struct emac_tpd extra_tpd;
1281
1282                         memset(tpd, 0, sizeof(*tpd));
1283                         memset(&extra_tpd, 0, sizeof(extra_tpd));
1284
1285                         ipv6_hdr(skb)->payload_len = 0;
1286                         tcp_hdr(skb)->check =
1287                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1288                                                  &ipv6_hdr(skb)->daddr,
1289                                                  0, IPPROTO_TCP, 0);
1290                         TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1291                         TPD_LSO_SET(&extra_tpd, 1);
1292                         TPD_LSOV_SET(&extra_tpd, 1);
1293                         emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1294                         TPD_LSOV_SET(tpd, 1);
1295                 }
1296
1297                 TPD_LSO_SET(tpd, 1);
1298                 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1299                 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1300                 return 0;
1301         }
1302
1303 do_csum:
1304         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1305                 unsigned int css, cso;
1306
1307                 cso = skb_transport_offset(skb);
1308                 if (unlikely(cso & 0x1)) {
1309                         netdev_err(adpt->netdev,
1310                                    "error: payload offset should be even\n");
1311                         return -EINVAL;
1312                 }
1313                 css = cso + skb->csum_offset;
1314
1315                 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1316                 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1317                 TPD_CSX_SET(tpd, 1);
1318         }
1319
1320         return 0;
1321 }
1322
1323 /* Fill up transmit descriptors */
1324 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1325                              struct emac_tx_queue *tx_q, struct sk_buff *skb,
1326                              struct emac_tpd *tpd)
1327 {
1328         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1329         unsigned int first = tx_q->tpd.produce_idx;
1330         unsigned int len = skb_headlen(skb);
1331         struct emac_buffer *tpbuf = NULL;
1332         unsigned int mapped_len = 0;
1333         unsigned int i;
1334         int count = 0;
1335         int ret;
1336
1337         /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1338         if (TPD_LSO(tpd)) {
1339                 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1340
1341                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1342                 tpbuf->length = mapped_len;
1343                 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1344                                                  skb->data, tpbuf->length,
1345                                                  DMA_TO_DEVICE);
1346                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1347                                         tpbuf->dma_addr);
1348                 if (ret)
1349                         goto error;
1350
1351                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1352                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1353                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1354                 emac_tx_tpd_create(adpt, tx_q, tpd);
1355                 count++;
1356         }
1357
1358         if (mapped_len < len) {
1359                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1360                 tpbuf->length = len - mapped_len;
1361                 tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1362                                                  skb->data + mapped_len,
1363                                                  tpbuf->length, DMA_TO_DEVICE);
1364                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1365                                         tpbuf->dma_addr);
1366                 if (ret)
1367                         goto error;
1368
1369                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1370                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1371                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1372                 emac_tx_tpd_create(adpt, tx_q, tpd);
1373                 count++;
1374         }
1375
1376         for (i = 0; i < nr_frags; i++) {
1377                 struct skb_frag_struct *frag;
1378
1379                 frag = &skb_shinfo(skb)->frags[i];
1380
1381                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1382                 tpbuf->length = frag->size;
1383                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1384                                                frag->page.p, frag->page_offset,
1385                                                tpbuf->length, DMA_TO_DEVICE);
1386                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1387                                         tpbuf->dma_addr);
1388                 if (ret)
1389                         goto error;
1390
1391                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1392                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1393                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1394                 emac_tx_tpd_create(adpt, tx_q, tpd);
1395                 count++;
1396         }
1397
1398         /* The last tpd */
1399         wmb();
1400         emac_tx_tpd_mark_last(adpt, tx_q);
1401
1402         /* The last buffer info contain the skb address,
1403          * so it will be freed after unmap
1404          */
1405         tpbuf->skb = skb;
1406
1407         return;
1408
1409 error:
1410         /* One of the memory mappings failed, so undo everything */
1411         tx_q->tpd.produce_idx = first;
1412
1413         while (count--) {
1414                 tpbuf = GET_TPD_BUFFER(tx_q, first);
1415                 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1416                                tpbuf->length, DMA_TO_DEVICE);
1417                 tpbuf->dma_addr = 0;
1418                 tpbuf->length = 0;
1419
1420                 if (++first == tx_q->tpd.count)
1421                         first = 0;
1422         }
1423
1424         dev_kfree_skb(skb);
1425 }
1426
1427 /* Transmit the packet using specified transmit queue */
1428 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1429                          struct sk_buff *skb)
1430 {
1431         struct emac_tpd tpd;
1432         u32 prod_idx;
1433
1434         memset(&tpd, 0, sizeof(tpd));
1435
1436         if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1437                 dev_kfree_skb_any(skb);
1438                 return NETDEV_TX_OK;
1439         }
1440
1441         if (skb_vlan_tag_present(skb)) {
1442                 u16 tag;
1443
1444                 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1445                 TPD_CVLAN_TAG_SET(&tpd, tag);
1446                 TPD_INSTC_SET(&tpd, 1);
1447         }
1448
1449         if (skb_network_offset(skb) != ETH_HLEN)
1450                 TPD_TYP_SET(&tpd, 1);
1451
1452         emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1453
1454         netdev_sent_queue(adpt->netdev, skb->len);
1455
1456         /* Make sure the are enough free descriptors to hold one
1457          * maximum-sized SKB.  We need one desc for each fragment,
1458          * one for the checksum (emac_tso_csum), one for TSO, and
1459          * and one for the SKB header.
1460          */
1461         if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1462                 netif_stop_queue(adpt->netdev);
1463
1464         /* update produce idx */
1465         prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1466                     tx_q->produce_mask;
1467         emac_reg_update32(adpt->base + tx_q->produce_reg,
1468                           tx_q->produce_mask, prod_idx);
1469
1470         return NETDEV_TX_OK;
1471 }