bb8541847aa56df37f368697bbed9503ba44f8e2
[sfrench/cifs-2.6.git] / drivers / net / ethernet / qlogic / qed / qed_mcp.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
50
51 #define QED_MCP_RESP_ITER_US    10
52
53 #define QED_DRV_MB_MAX_RETRIES  (500 * 1000)    /* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES   (50 * 1000)     /* Account for 500 msec */
55
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)           \
57         qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58                _val)
59
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61         qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
62
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
64         DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65                      offsetof(struct public_drv_mb, _field), _val)
66
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)         \
68         DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69                      offsetof(struct public_drv_mb, _field))
70
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72                   DRV_ID_PDA_COMP_VER_SHIFT)
73
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
75
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
77 {
78         if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79                 return false;
80         return true;
81 }
82
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
84 {
85         u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86                                         PUBLIC_PORT);
87         u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
88
89         p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90                                                    MFW_PORT(p_hwfn));
91         DP_VERBOSE(p_hwfn, QED_MSG_SP,
92                    "port_addr = 0x%x, port_id 0x%02x\n",
93                    p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
94 }
95
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
97 {
98         u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99         u32 tmp, i;
100
101         if (!p_hwfn->mcp_info->public_base)
102                 return;
103
104         for (i = 0; i < length; i++) {
105                 tmp = qed_rd(p_hwfn, p_ptt,
106                              p_hwfn->mcp_info->mfw_mb_addr +
107                              (i << 2) + sizeof(u32));
108
109                 /* The MB data is actually BE; Need to force it to cpu */
110                 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111                         be32_to_cpu((__force __be32)tmp);
112         }
113 }
114
115 struct qed_mcp_cmd_elem {
116         struct list_head list;
117         struct qed_mcp_mb_params *p_mb_params;
118         u16 expected_seq_num;
119         bool b_is_completed;
120 };
121
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125                      struct qed_mcp_mb_params *p_mb_params,
126                      u16 expected_seq_num)
127 {
128         struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
129
130         p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131         if (!p_cmd_elem)
132                 goto out;
133
134         p_cmd_elem->p_mb_params = p_mb_params;
135         p_cmd_elem->expected_seq_num = expected_seq_num;
136         list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138         return p_cmd_elem;
139 }
140
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143                                  struct qed_mcp_cmd_elem *p_cmd_elem)
144 {
145         list_del(&p_cmd_elem->list);
146         kfree(p_cmd_elem);
147 }
148
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151                                                      u16 seq_num)
152 {
153         struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
154
155         list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156                 if (p_cmd_elem->expected_seq_num == seq_num)
157                         return p_cmd_elem;
158         }
159
160         return NULL;
161 }
162
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
164 {
165         if (p_hwfn->mcp_info) {
166                 struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
167
168                 kfree(p_hwfn->mcp_info->mfw_mb_cur);
169                 kfree(p_hwfn->mcp_info->mfw_mb_shadow);
170
171                 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172                 list_for_each_entry_safe(p_cmd_elem,
173                                          p_tmp,
174                                          &p_hwfn->mcp_info->cmd_list, list) {
175                         qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
176                 }
177                 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
178         }
179
180         kfree(p_hwfn->mcp_info);
181         p_hwfn->mcp_info = NULL;
182
183         return 0;
184 }
185
186 /* Maximum of 1 sec to wait for the SHMEM ready indication */
187 #define QED_MCP_SHMEM_RDY_MAX_RETRIES   20
188 #define QED_MCP_SHMEM_RDY_ITER_MS       50
189
190 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
191 {
192         struct qed_mcp_info *p_info = p_hwfn->mcp_info;
193         u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES;
194         u8 msec = QED_MCP_SHMEM_RDY_ITER_MS;
195         u32 drv_mb_offsize, mfw_mb_offsize;
196         u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
197
198         p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
199         if (!p_info->public_base) {
200                 DP_NOTICE(p_hwfn,
201                           "The address of the MCP scratch-pad is not configured\n");
202                 return -EINVAL;
203         }
204
205         p_info->public_base |= GRCBASE_MCP;
206
207         /* Get the MFW MB address and number of supported messages */
208         mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209                                 SECTION_OFFSIZE_ADDR(p_info->public_base,
210                                                      PUBLIC_MFW_MB));
211         p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212         p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt,
213                                             p_info->mfw_mb_addr +
214                                             offsetof(struct public_mfw_mb,
215                                                      sup_msgs));
216
217         /* The driver can notify that there was an MCP reset, and might read the
218          * SHMEM values before the MFW has completed initializing them.
219          * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a
220          * data ready indication.
221          */
222         while (!p_info->mfw_mb_length && --cnt) {
223                 msleep(msec);
224                 p_info->mfw_mb_length =
225                         (u16)qed_rd(p_hwfn, p_ptt,
226                                     p_info->mfw_mb_addr +
227                                     offsetof(struct public_mfw_mb, sup_msgs));
228         }
229
230         if (!cnt) {
231                 DP_NOTICE(p_hwfn,
232                           "Failed to get the SHMEM ready notification after %d msec\n",
233                           QED_MCP_SHMEM_RDY_MAX_RETRIES * msec);
234                 return -EBUSY;
235         }
236
237         /* Calculate the driver and MFW mailbox address */
238         drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
239                                 SECTION_OFFSIZE_ADDR(p_info->public_base,
240                                                      PUBLIC_DRV_MB));
241         p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
242         DP_VERBOSE(p_hwfn, QED_MSG_SP,
243                    "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
244                    drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
245
246         /* Get the current driver mailbox sequence before sending
247          * the first command
248          */
249         p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
250                              DRV_MSG_SEQ_NUMBER_MASK;
251
252         /* Get current FW pulse sequence */
253         p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
254                                 DRV_PULSE_SEQ_MASK;
255
256         p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
257
258         return 0;
259 }
260
261 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
262 {
263         struct qed_mcp_info *p_info;
264         u32 size;
265
266         /* Allocate mcp_info structure */
267         p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
268         if (!p_hwfn->mcp_info)
269                 goto err;
270         p_info = p_hwfn->mcp_info;
271
272         /* Initialize the MFW spinlock */
273         spin_lock_init(&p_info->cmd_lock);
274         spin_lock_init(&p_info->link_lock);
275
276         INIT_LIST_HEAD(&p_info->cmd_list);
277
278         if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
279                 DP_NOTICE(p_hwfn, "MCP is not initialized\n");
280                 /* Do not free mcp_info here, since public_base indicate that
281                  * the MCP is not initialized
282                  */
283                 return 0;
284         }
285
286         size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
287         p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
288         p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
289         if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
290                 goto err;
291
292         return 0;
293
294 err:
295         qed_mcp_free(p_hwfn);
296         return -ENOMEM;
297 }
298
299 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
300                                    struct qed_ptt *p_ptt)
301 {
302         u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
303
304         /* Use MCP history register to check if MCP reset occurred between init
305          * time and now.
306          */
307         if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
308                 DP_VERBOSE(p_hwfn,
309                            QED_MSG_SP,
310                            "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
311                            p_hwfn->mcp_info->mcp_hist, generic_por_0);
312
313                 qed_load_mcp_offsets(p_hwfn, p_ptt);
314                 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
315         }
316 }
317
318 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
319 {
320         u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0;
321         int rc = 0;
322
323         if (p_hwfn->mcp_info->b_block_cmd) {
324                 DP_NOTICE(p_hwfn,
325                           "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n");
326                 return -EBUSY;
327         }
328
329         /* Ensure that only a single thread is accessing the mailbox */
330         spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
331
332         org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
333
334         /* Set drv command along with the updated sequence */
335         qed_mcp_reread_offsets(p_hwfn, p_ptt);
336         seq = ++p_hwfn->mcp_info->drv_mb_seq;
337         DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
338
339         do {
340                 /* Wait for MFW response */
341                 udelay(delay);
342                 /* Give the FW up to 500 second (50*1000*10usec) */
343         } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
344                                               MISCS_REG_GENERIC_POR_0)) &&
345                  (cnt++ < QED_MCP_RESET_RETRIES));
346
347         if (org_mcp_reset_seq !=
348             qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
349                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
350                            "MCP was reset after %d usec\n", cnt * delay);
351         } else {
352                 DP_ERR(p_hwfn, "Failed to reset MCP\n");
353                 rc = -EAGAIN;
354         }
355
356         spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
357
358         return rc;
359 }
360
361 /* Must be called while cmd_lock is acquired */
362 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
363 {
364         struct qed_mcp_cmd_elem *p_cmd_elem;
365
366         /* There is at most one pending command at a certain time, and if it
367          * exists - it is placed at the HEAD of the list.
368          */
369         if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
370                 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
371                                               struct qed_mcp_cmd_elem, list);
372                 return !p_cmd_elem->b_is_completed;
373         }
374
375         return false;
376 }
377
378 /* Must be called while cmd_lock is acquired */
379 static int
380 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
381 {
382         struct qed_mcp_mb_params *p_mb_params;
383         struct qed_mcp_cmd_elem *p_cmd_elem;
384         u32 mcp_resp;
385         u16 seq_num;
386
387         mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
388         seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
389
390         /* Return if no new non-handled response has been received */
391         if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
392                 return -EAGAIN;
393
394         p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
395         if (!p_cmd_elem) {
396                 DP_ERR(p_hwfn,
397                        "Failed to find a pending mailbox cmd that expects sequence number %d\n",
398                        seq_num);
399                 return -EINVAL;
400         }
401
402         p_mb_params = p_cmd_elem->p_mb_params;
403
404         /* Get the MFW response along with the sequence number */
405         p_mb_params->mcp_resp = mcp_resp;
406
407         /* Get the MFW param */
408         p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
409
410         /* Get the union data */
411         if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
412                 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
413                                       offsetof(struct public_drv_mb,
414                                                union_data);
415                 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
416                                 union_data_addr, p_mb_params->data_dst_size);
417         }
418
419         p_cmd_elem->b_is_completed = true;
420
421         return 0;
422 }
423
424 /* Must be called while cmd_lock is acquired */
425 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
426                                     struct qed_ptt *p_ptt,
427                                     struct qed_mcp_mb_params *p_mb_params,
428                                     u16 seq_num)
429 {
430         union drv_union_data union_data;
431         u32 union_data_addr;
432
433         /* Set the union data */
434         union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
435                           offsetof(struct public_drv_mb, union_data);
436         memset(&union_data, 0, sizeof(union_data));
437         if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
438                 memcpy(&union_data, p_mb_params->p_data_src,
439                        p_mb_params->data_src_size);
440         qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
441                       sizeof(union_data));
442
443         /* Set the drv param */
444         DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
445
446         /* Set the drv command along with the sequence number */
447         DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
448
449         DP_VERBOSE(p_hwfn, QED_MSG_SP,
450                    "MFW mailbox: command 0x%08x param 0x%08x\n",
451                    (p_mb_params->cmd | seq_num), p_mb_params->param);
452 }
453
454 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd)
455 {
456         p_hwfn->mcp_info->b_block_cmd = block_cmd;
457
458         DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n",
459                 block_cmd ? "Block" : "Unblock");
460 }
461
462 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn,
463                                    struct qed_ptt *p_ptt)
464 {
465         u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2;
466         u32 delay = QED_MCP_RESP_ITER_US;
467
468         cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
469         cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
470         cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
471         udelay(delay);
472         cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
473         udelay(delay);
474         cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
475
476         DP_NOTICE(p_hwfn,
477                   "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n",
478                   cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2);
479 }
480
481 static int
482 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
483                        struct qed_ptt *p_ptt,
484                        struct qed_mcp_mb_params *p_mb_params,
485                        u32 max_retries, u32 usecs)
486 {
487         u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000);
488         struct qed_mcp_cmd_elem *p_cmd_elem;
489         u16 seq_num;
490         int rc = 0;
491
492         /* Wait until the mailbox is non-occupied */
493         do {
494                 /* Exit the loop if there is no pending command, or if the
495                  * pending command is completed during this iteration.
496                  * The spinlock stays locked until the command is sent.
497                  */
498
499                 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
500
501                 if (!qed_mcp_has_pending_cmd(p_hwfn))
502                         break;
503
504                 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
505                 if (!rc)
506                         break;
507                 else if (rc != -EAGAIN)
508                         goto err;
509
510                 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
511
512                 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
513                         msleep(msecs);
514                 else
515                         udelay(usecs);
516         } while (++cnt < max_retries);
517
518         if (cnt >= max_retries) {
519                 DP_NOTICE(p_hwfn,
520                           "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
521                           p_mb_params->cmd, p_mb_params->param);
522                 return -EAGAIN;
523         }
524
525         /* Send the mailbox command */
526         qed_mcp_reread_offsets(p_hwfn, p_ptt);
527         seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
528         p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
529         if (!p_cmd_elem) {
530                 rc = -ENOMEM;
531                 goto err;
532         }
533
534         __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
535         spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
536
537         /* Wait for the MFW response */
538         do {
539                 /* Exit the loop if the command is already completed, or if the
540                  * command is completed during this iteration.
541                  * The spinlock stays locked until the list element is removed.
542                  */
543
544                 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
545                         msleep(msecs);
546                 else
547                         udelay(usecs);
548
549                 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
550
551                 if (p_cmd_elem->b_is_completed)
552                         break;
553
554                 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
555                 if (!rc)
556                         break;
557                 else if (rc != -EAGAIN)
558                         goto err;
559
560                 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
561         } while (++cnt < max_retries);
562
563         if (cnt >= max_retries) {
564                 DP_NOTICE(p_hwfn,
565                           "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
566                           p_mb_params->cmd, p_mb_params->param);
567                 qed_mcp_print_cpu_info(p_hwfn, p_ptt);
568
569                 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
570                 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
571                 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
572
573                 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK))
574                         qed_mcp_cmd_set_blocking(p_hwfn, true);
575
576                 return -EAGAIN;
577         }
578
579         qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
580         spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
581
582         DP_VERBOSE(p_hwfn,
583                    QED_MSG_SP,
584                    "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
585                    p_mb_params->mcp_resp,
586                    p_mb_params->mcp_param,
587                    (cnt * usecs) / 1000, (cnt * usecs) % 1000);
588
589         /* Clear the sequence number from the MFW response */
590         p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
591
592         return 0;
593
594 err:
595         spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
596         return rc;
597 }
598
599 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
600                                  struct qed_ptt *p_ptt,
601                                  struct qed_mcp_mb_params *p_mb_params)
602 {
603         size_t union_data_size = sizeof(union drv_union_data);
604         u32 max_retries = QED_DRV_MB_MAX_RETRIES;
605         u32 usecs = QED_MCP_RESP_ITER_US;
606
607         /* MCP not initialized */
608         if (!qed_mcp_is_init(p_hwfn)) {
609                 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
610                 return -EBUSY;
611         }
612
613         if (p_hwfn->mcp_info->b_block_cmd) {
614                 DP_NOTICE(p_hwfn,
615                           "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n",
616                           p_mb_params->cmd, p_mb_params->param);
617                 return -EBUSY;
618         }
619
620         if (p_mb_params->data_src_size > union_data_size ||
621             p_mb_params->data_dst_size > union_data_size) {
622                 DP_ERR(p_hwfn,
623                        "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
624                        p_mb_params->data_src_size,
625                        p_mb_params->data_dst_size, union_data_size);
626                 return -EINVAL;
627         }
628
629         if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) {
630                 max_retries = DIV_ROUND_UP(max_retries, 1000);
631                 usecs *= 1000;
632         }
633
634         return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
635                                       usecs);
636 }
637
638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
639                 struct qed_ptt *p_ptt,
640                 u32 cmd,
641                 u32 param,
642                 u32 *o_mcp_resp,
643                 u32 *o_mcp_param)
644 {
645         struct qed_mcp_mb_params mb_params;
646         int rc;
647
648         memset(&mb_params, 0, sizeof(mb_params));
649         mb_params.cmd = cmd;
650         mb_params.param = param;
651
652         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
653         if (rc)
654                 return rc;
655
656         *o_mcp_resp = mb_params.mcp_resp;
657         *o_mcp_param = mb_params.mcp_param;
658
659         return 0;
660 }
661
662 static int
663 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
664                    struct qed_ptt *p_ptt,
665                    u32 cmd,
666                    u32 param,
667                    u32 *o_mcp_resp,
668                    u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
669 {
670         struct qed_mcp_mb_params mb_params;
671         int rc;
672
673         memset(&mb_params, 0, sizeof(mb_params));
674         mb_params.cmd = cmd;
675         mb_params.param = param;
676         mb_params.p_data_src = i_buf;
677         mb_params.data_src_size = (u8)i_txn_size;
678         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
679         if (rc)
680                 return rc;
681
682         *o_mcp_resp = mb_params.mcp_resp;
683         *o_mcp_param = mb_params.mcp_param;
684
685         /* nvm_info needs to be updated */
686         p_hwfn->nvm_info.valid = false;
687
688         return 0;
689 }
690
691 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
692                        struct qed_ptt *p_ptt,
693                        u32 cmd,
694                        u32 param,
695                        u32 *o_mcp_resp,
696                        u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
697 {
698         struct qed_mcp_mb_params mb_params;
699         u8 raw_data[MCP_DRV_NVM_BUF_LEN];
700         int rc;
701
702         memset(&mb_params, 0, sizeof(mb_params));
703         mb_params.cmd = cmd;
704         mb_params.param = param;
705         mb_params.p_data_dst = raw_data;
706
707         /* Use the maximal value since the actual one is part of the response */
708         mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
709
710         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
711         if (rc)
712                 return rc;
713
714         *o_mcp_resp = mb_params.mcp_resp;
715         *o_mcp_param = mb_params.mcp_param;
716
717         *o_txn_size = *o_mcp_param;
718         memcpy(o_buf, raw_data, *o_txn_size);
719
720         return 0;
721 }
722
723 static bool
724 qed_mcp_can_force_load(u8 drv_role,
725                        u8 exist_drv_role,
726                        enum qed_override_force_load override_force_load)
727 {
728         bool can_force_load = false;
729
730         switch (override_force_load) {
731         case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
732                 can_force_load = true;
733                 break;
734         case QED_OVERRIDE_FORCE_LOAD_NEVER:
735                 can_force_load = false;
736                 break;
737         default:
738                 can_force_load = (drv_role == DRV_ROLE_OS &&
739                                   exist_drv_role == DRV_ROLE_PREBOOT) ||
740                                  (drv_role == DRV_ROLE_KDUMP &&
741                                   exist_drv_role == DRV_ROLE_OS);
742                 break;
743         }
744
745         return can_force_load;
746 }
747
748 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
749                                    struct qed_ptt *p_ptt)
750 {
751         u32 resp = 0, param = 0;
752         int rc;
753
754         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
755                          &resp, &param);
756         if (rc)
757                 DP_NOTICE(p_hwfn,
758                           "Failed to send cancel load request, rc = %d\n", rc);
759
760         return rc;
761 }
762
763 #define CONFIG_QEDE_BITMAP_IDX          BIT(0)
764 #define CONFIG_QED_SRIOV_BITMAP_IDX     BIT(1)
765 #define CONFIG_QEDR_BITMAP_IDX          BIT(2)
766 #define CONFIG_QEDF_BITMAP_IDX          BIT(4)
767 #define CONFIG_QEDI_BITMAP_IDX          BIT(5)
768 #define CONFIG_QED_LL2_BITMAP_IDX       BIT(6)
769
770 static u32 qed_get_config_bitmap(void)
771 {
772         u32 config_bitmap = 0x0;
773
774         if (IS_ENABLED(CONFIG_QEDE))
775                 config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
776
777         if (IS_ENABLED(CONFIG_QED_SRIOV))
778                 config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
779
780         if (IS_ENABLED(CONFIG_QED_RDMA))
781                 config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
782
783         if (IS_ENABLED(CONFIG_QED_FCOE))
784                 config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
785
786         if (IS_ENABLED(CONFIG_QED_ISCSI))
787                 config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
788
789         if (IS_ENABLED(CONFIG_QED_LL2))
790                 config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
791
792         return config_bitmap;
793 }
794
795 struct qed_load_req_in_params {
796         u8 hsi_ver;
797 #define QED_LOAD_REQ_HSI_VER_DEFAULT    0
798 #define QED_LOAD_REQ_HSI_VER_1          1
799         u32 drv_ver_0;
800         u32 drv_ver_1;
801         u32 fw_ver;
802         u8 drv_role;
803         u8 timeout_val;
804         u8 force_cmd;
805         bool avoid_eng_reset;
806 };
807
808 struct qed_load_req_out_params {
809         u32 load_code;
810         u32 exist_drv_ver_0;
811         u32 exist_drv_ver_1;
812         u32 exist_fw_ver;
813         u8 exist_drv_role;
814         u8 mfw_hsi_ver;
815         bool drv_exists;
816 };
817
818 static int
819 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
820                    struct qed_ptt *p_ptt,
821                    struct qed_load_req_in_params *p_in_params,
822                    struct qed_load_req_out_params *p_out_params)
823 {
824         struct qed_mcp_mb_params mb_params;
825         struct load_req_stc load_req;
826         struct load_rsp_stc load_rsp;
827         u32 hsi_ver;
828         int rc;
829
830         memset(&load_req, 0, sizeof(load_req));
831         load_req.drv_ver_0 = p_in_params->drv_ver_0;
832         load_req.drv_ver_1 = p_in_params->drv_ver_1;
833         load_req.fw_ver = p_in_params->fw_ver;
834         QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
835         QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
836                           p_in_params->timeout_val);
837         QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
838                           p_in_params->force_cmd);
839         QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
840                           p_in_params->avoid_eng_reset);
841
842         hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
843                   DRV_ID_MCP_HSI_VER_CURRENT :
844                   (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
845
846         memset(&mb_params, 0, sizeof(mb_params));
847         mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
848         mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
849         mb_params.p_data_src = &load_req;
850         mb_params.data_src_size = sizeof(load_req);
851         mb_params.p_data_dst = &load_rsp;
852         mb_params.data_dst_size = sizeof(load_rsp);
853         mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
854
855         DP_VERBOSE(p_hwfn, QED_MSG_SP,
856                    "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
857                    mb_params.param,
858                    QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
859                    QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
860                    QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
861                    QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
862
863         if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
864                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
865                            "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
866                            load_req.drv_ver_0,
867                            load_req.drv_ver_1,
868                            load_req.fw_ver,
869                            load_req.misc0,
870                            QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
871                            QED_MFW_GET_FIELD(load_req.misc0,
872                                              LOAD_REQ_LOCK_TO),
873                            QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
874                            QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
875         }
876
877         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
878         if (rc) {
879                 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
880                 return rc;
881         }
882
883         DP_VERBOSE(p_hwfn, QED_MSG_SP,
884                    "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
885         p_out_params->load_code = mb_params.mcp_resp;
886
887         if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
888             p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
889                 DP_VERBOSE(p_hwfn,
890                            QED_MSG_SP,
891                            "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
892                            load_rsp.drv_ver_0,
893                            load_rsp.drv_ver_1,
894                            load_rsp.fw_ver,
895                            load_rsp.misc0,
896                            QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
897                            QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
898                            QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
899
900                 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
901                 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
902                 p_out_params->exist_fw_ver = load_rsp.fw_ver;
903                 p_out_params->exist_drv_role =
904                     QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
905                 p_out_params->mfw_hsi_ver =
906                     QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
907                 p_out_params->drv_exists =
908                     QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
909                     LOAD_RSP_FLAGS0_DRV_EXISTS;
910         }
911
912         return 0;
913 }
914
915 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
916                                   enum qed_drv_role drv_role,
917                                   u8 *p_mfw_drv_role)
918 {
919         switch (drv_role) {
920         case QED_DRV_ROLE_OS:
921                 *p_mfw_drv_role = DRV_ROLE_OS;
922                 break;
923         case QED_DRV_ROLE_KDUMP:
924                 *p_mfw_drv_role = DRV_ROLE_KDUMP;
925                 break;
926         default:
927                 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
928                 return -EINVAL;
929         }
930
931         return 0;
932 }
933
934 enum qed_load_req_force {
935         QED_LOAD_REQ_FORCE_NONE,
936         QED_LOAD_REQ_FORCE_PF,
937         QED_LOAD_REQ_FORCE_ALL,
938 };
939
940 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
941
942                                   enum qed_load_req_force force_cmd,
943                                   u8 *p_mfw_force_cmd)
944 {
945         switch (force_cmd) {
946         case QED_LOAD_REQ_FORCE_NONE:
947                 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
948                 break;
949         case QED_LOAD_REQ_FORCE_PF:
950                 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
951                 break;
952         case QED_LOAD_REQ_FORCE_ALL:
953                 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
954                 break;
955         }
956 }
957
958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
959                      struct qed_ptt *p_ptt,
960                      struct qed_load_req_params *p_params)
961 {
962         struct qed_load_req_out_params out_params;
963         struct qed_load_req_in_params in_params;
964         u8 mfw_drv_role, mfw_force_cmd;
965         int rc;
966
967         memset(&in_params, 0, sizeof(in_params));
968         in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
969         in_params.drv_ver_0 = QED_VERSION;
970         in_params.drv_ver_1 = qed_get_config_bitmap();
971         in_params.fw_ver = STORM_FW_VERSION;
972         rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
973         if (rc)
974                 return rc;
975
976         in_params.drv_role = mfw_drv_role;
977         in_params.timeout_val = p_params->timeout_val;
978         qed_get_mfw_force_cmd(p_hwfn,
979                               QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
980
981         in_params.force_cmd = mfw_force_cmd;
982         in_params.avoid_eng_reset = p_params->avoid_eng_reset;
983
984         memset(&out_params, 0, sizeof(out_params));
985         rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
986         if (rc)
987                 return rc;
988
989         /* First handle cases where another load request should/might be sent:
990          * - MFW expects the old interface [HSI version = 1]
991          * - MFW responds that a force load request is required
992          */
993         if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
994                 DP_INFO(p_hwfn,
995                         "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
996
997                 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
998                 memset(&out_params, 0, sizeof(out_params));
999                 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
1000                 if (rc)
1001                         return rc;
1002         } else if (out_params.load_code ==
1003                    FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
1004                 if (qed_mcp_can_force_load(in_params.drv_role,
1005                                            out_params.exist_drv_role,
1006                                            p_params->override_force_load)) {
1007                         DP_INFO(p_hwfn,
1008                                 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
1009                                 in_params.drv_role, in_params.fw_ver,
1010                                 in_params.drv_ver_0, in_params.drv_ver_1,
1011                                 out_params.exist_drv_role,
1012                                 out_params.exist_fw_ver,
1013                                 out_params.exist_drv_ver_0,
1014                                 out_params.exist_drv_ver_1);
1015
1016                         qed_get_mfw_force_cmd(p_hwfn,
1017                                               QED_LOAD_REQ_FORCE_ALL,
1018                                               &mfw_force_cmd);
1019
1020                         in_params.force_cmd = mfw_force_cmd;
1021                         memset(&out_params, 0, sizeof(out_params));
1022                         rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
1023                                                 &out_params);
1024                         if (rc)
1025                                 return rc;
1026                 } else {
1027                         DP_NOTICE(p_hwfn,
1028                                   "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
1029                                   in_params.drv_role, in_params.fw_ver,
1030                                   in_params.drv_ver_0, in_params.drv_ver_1,
1031                                   out_params.exist_drv_role,
1032                                   out_params.exist_fw_ver,
1033                                   out_params.exist_drv_ver_0,
1034                                   out_params.exist_drv_ver_1);
1035                         DP_NOTICE(p_hwfn,
1036                                   "Avoid sending a force load request to prevent disruption of active PFs\n");
1037
1038                         qed_mcp_cancel_load_req(p_hwfn, p_ptt);
1039                         return -EBUSY;
1040                 }
1041         }
1042
1043         /* Now handle the other types of responses.
1044          * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
1045          * expected here after the additional revised load requests were sent.
1046          */
1047         switch (out_params.load_code) {
1048         case FW_MSG_CODE_DRV_LOAD_ENGINE:
1049         case FW_MSG_CODE_DRV_LOAD_PORT:
1050         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1051                 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
1052                     out_params.drv_exists) {
1053                         /* The role and fw/driver version match, but the PF is
1054                          * already loaded and has not been unloaded gracefully.
1055                          */
1056                         DP_NOTICE(p_hwfn,
1057                                   "PF is already loaded\n");
1058                         return -EINVAL;
1059                 }
1060                 break;
1061         default:
1062                 DP_NOTICE(p_hwfn,
1063                           "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
1064                           out_params.load_code);
1065                 return -EBUSY;
1066         }
1067
1068         p_params->load_code = out_params.load_code;
1069
1070         return 0;
1071 }
1072
1073 int qed_mcp_load_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1074 {
1075         u32 resp = 0, param = 0;
1076         int rc;
1077
1078         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &resp,
1079                          &param);
1080         if (rc) {
1081                 DP_NOTICE(p_hwfn,
1082                           "Failed to send a LOAD_DONE command, rc = %d\n", rc);
1083                 return rc;
1084         }
1085
1086         /* Check if there is a DID mismatch between nvm-cfg/efuse */
1087         if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
1088                 DP_NOTICE(p_hwfn,
1089                           "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
1090
1091         return 0;
1092 }
1093
1094 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1095 {
1096         struct qed_mcp_mb_params mb_params;
1097         u32 wol_param;
1098
1099         switch (p_hwfn->cdev->wol_config) {
1100         case QED_OV_WOL_DISABLED:
1101                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
1102                 break;
1103         case QED_OV_WOL_ENABLED:
1104                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
1105                 break;
1106         default:
1107                 DP_NOTICE(p_hwfn,
1108                           "Unknown WoL configuration %02x\n",
1109                           p_hwfn->cdev->wol_config);
1110                 /* Fallthrough */
1111         case QED_OV_WOL_DEFAULT:
1112                 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1113         }
1114
1115         memset(&mb_params, 0, sizeof(mb_params));
1116         mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ;
1117         mb_params.param = wol_param;
1118         mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
1119
1120         return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1121 }
1122
1123 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1124 {
1125         struct qed_mcp_mb_params mb_params;
1126         struct mcp_mac wol_mac;
1127
1128         memset(&mb_params, 0, sizeof(mb_params));
1129         mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1130
1131         /* Set the primary MAC if WoL is enabled */
1132         if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1133                 u8 *p_mac = p_hwfn->cdev->wol_mac;
1134
1135                 memset(&wol_mac, 0, sizeof(wol_mac));
1136                 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1137                 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1138                                     p_mac[4] << 8 | p_mac[5];
1139
1140                 DP_VERBOSE(p_hwfn,
1141                            (QED_MSG_SP | NETIF_MSG_IFDOWN),
1142                            "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1143                            p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1144
1145                 mb_params.p_data_src = &wol_mac;
1146                 mb_params.data_src_size = sizeof(wol_mac);
1147         }
1148
1149         return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1150 }
1151
1152 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1153                                   struct qed_ptt *p_ptt)
1154 {
1155         u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1156                                         PUBLIC_PATH);
1157         u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1158         u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1159                                      QED_PATH_ID(p_hwfn));
1160         u32 disabled_vfs[VF_MAX_STATIC / 32];
1161         int i;
1162
1163         DP_VERBOSE(p_hwfn,
1164                    QED_MSG_SP,
1165                    "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1166                    mfw_path_offsize, path_addr);
1167
1168         for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1169                 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1170                                          path_addr +
1171                                          offsetof(struct public_path,
1172                                                   mcp_vf_disabled) +
1173                                          sizeof(u32) * i);
1174                 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1175                            "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1176                            i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1177         }
1178
1179         if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1180                 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1181 }
1182
1183 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1184                        struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1185 {
1186         u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1187                                         PUBLIC_FUNC);
1188         u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1189         u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1190                                      MCP_PF_ID(p_hwfn));
1191         struct qed_mcp_mb_params mb_params;
1192         int rc;
1193         int i;
1194
1195         for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1196                 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1197                            "Acking VFs [%08x,...,%08x] - %08x\n",
1198                            i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1199
1200         memset(&mb_params, 0, sizeof(mb_params));
1201         mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1202         mb_params.p_data_src = vfs_to_ack;
1203         mb_params.data_src_size = VF_MAX_STATIC / 8;
1204         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1205         if (rc) {
1206                 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1207                 return -EBUSY;
1208         }
1209
1210         /* Clear the ACK bits */
1211         for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1212                 qed_wr(p_hwfn, p_ptt,
1213                        func_addr +
1214                        offsetof(struct public_func, drv_ack_vf_disabled) +
1215                        i * sizeof(u32), 0);
1216
1217         return rc;
1218 }
1219
1220 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1221                                               struct qed_ptt *p_ptt)
1222 {
1223         u32 transceiver_state;
1224
1225         transceiver_state = qed_rd(p_hwfn, p_ptt,
1226                                    p_hwfn->mcp_info->port_addr +
1227                                    offsetof(struct public_port,
1228                                             transceiver_data));
1229
1230         DP_VERBOSE(p_hwfn,
1231                    (NETIF_MSG_HW | QED_MSG_SP),
1232                    "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1233                    transceiver_state,
1234                    (u32)(p_hwfn->mcp_info->port_addr +
1235                           offsetof(struct public_port, transceiver_data)));
1236
1237         transceiver_state = GET_FIELD(transceiver_state,
1238                                       ETH_TRANSCEIVER_STATE);
1239
1240         if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1241                 DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1242         else
1243                 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1244 }
1245
1246 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1247                                     struct qed_ptt *p_ptt,
1248                                     struct qed_mcp_link_state *p_link)
1249 {
1250         u32 eee_status, val;
1251
1252         p_link->eee_adv_caps = 0;
1253         p_link->eee_lp_adv_caps = 0;
1254         eee_status = qed_rd(p_hwfn,
1255                             p_ptt,
1256                             p_hwfn->mcp_info->port_addr +
1257                             offsetof(struct public_port, eee_status));
1258         p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1259         val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1260         if (val & EEE_1G_ADV)
1261                 p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1262         if (val & EEE_10G_ADV)
1263                 p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1264         val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1265         if (val & EEE_1G_ADV)
1266                 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1267         if (val & EEE_10G_ADV)
1268                 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1269 }
1270
1271 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1272                                   struct qed_ptt *p_ptt,
1273                                   struct public_func *p_data, int pfid)
1274 {
1275         u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1276                                         PUBLIC_FUNC);
1277         u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1278         u32 func_addr;
1279         u32 i, size;
1280
1281         func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1282         memset(p_data, 0, sizeof(*p_data));
1283
1284         size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1285         for (i = 0; i < size / sizeof(u32); i++)
1286                 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1287                                             func_addr + (i << 2));
1288         return size;
1289 }
1290
1291 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1292                                   struct public_func *p_shmem_info)
1293 {
1294         struct qed_mcp_function_info *p_info;
1295
1296         p_info = &p_hwfn->mcp_info->func_info;
1297
1298         p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config,
1299                                                   FUNC_MF_CFG_MIN_BW);
1300         if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1301                 DP_INFO(p_hwfn,
1302                         "bandwidth minimum out of bounds [%02x]. Set to 1\n",
1303                         p_info->bandwidth_min);
1304                 p_info->bandwidth_min = 1;
1305         }
1306
1307         p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config,
1308                                                   FUNC_MF_CFG_MAX_BW);
1309         if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1310                 DP_INFO(p_hwfn,
1311                         "bandwidth maximum out of bounds [%02x]. Set to 100\n",
1312                         p_info->bandwidth_max);
1313                 p_info->bandwidth_max = 100;
1314         }
1315 }
1316
1317 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1318                                        struct qed_ptt *p_ptt, bool b_reset)
1319 {
1320         struct qed_mcp_link_state *p_link;
1321         u8 max_bw, min_bw;
1322         u32 status = 0;
1323
1324         /* Prevent SW/attentions from doing this at the same time */
1325         spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1326
1327         p_link = &p_hwfn->mcp_info->link_output;
1328         memset(p_link, 0, sizeof(*p_link));
1329         if (!b_reset) {
1330                 status = qed_rd(p_hwfn, p_ptt,
1331                                 p_hwfn->mcp_info->port_addr +
1332                                 offsetof(struct public_port, link_status));
1333                 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1334                            "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1335                            status,
1336                            (u32)(p_hwfn->mcp_info->port_addr +
1337                                  offsetof(struct public_port, link_status)));
1338         } else {
1339                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1340                            "Resetting link indications\n");
1341                 goto out;
1342         }
1343
1344         if (p_hwfn->b_drv_link_init) {
1345                 /* Link indication with modern MFW arrives as per-PF
1346                  * indication.
1347                  */
1348                 if (p_hwfn->mcp_info->capabilities &
1349                     FW_MB_PARAM_FEATURE_SUPPORT_VLINK) {
1350                         struct public_func shmem_info;
1351
1352                         qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info,
1353                                                MCP_PF_ID(p_hwfn));
1354                         p_link->link_up = !!(shmem_info.status &
1355                                              FUNC_STATUS_VIRTUAL_LINK_UP);
1356                         qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1357                         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1358                                    "Virtual link_up = %d\n", p_link->link_up);
1359                 } else {
1360                         p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1361                         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1362                                    "Physical link_up = %d\n", p_link->link_up);
1363                 }
1364         } else {
1365                 p_link->link_up = false;
1366         }
1367
1368         p_link->full_duplex = true;
1369         switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1370         case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1371                 p_link->speed = 100000;
1372                 break;
1373         case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1374                 p_link->speed = 50000;
1375                 break;
1376         case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1377                 p_link->speed = 40000;
1378                 break;
1379         case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1380                 p_link->speed = 25000;
1381                 break;
1382         case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1383                 p_link->speed = 20000;
1384                 break;
1385         case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1386                 p_link->speed = 10000;
1387                 break;
1388         case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1389                 p_link->full_duplex = false;
1390         /* Fall-through */
1391         case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1392                 p_link->speed = 1000;
1393                 break;
1394         default:
1395                 p_link->speed = 0;
1396                 p_link->link_up = 0;
1397         }
1398
1399         if (p_link->link_up && p_link->speed)
1400                 p_link->line_speed = p_link->speed;
1401         else
1402                 p_link->line_speed = 0;
1403
1404         max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1405         min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1406
1407         /* Max bandwidth configuration */
1408         __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1409
1410         /* Min bandwidth configuration */
1411         __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1412         qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1413                                             p_link->min_pf_rate);
1414
1415         p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1416         p_link->an_complete = !!(status &
1417                                  LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1418         p_link->parallel_detection = !!(status &
1419                                         LINK_STATUS_PARALLEL_DETECTION_USED);
1420         p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1421
1422         p_link->partner_adv_speed |=
1423                 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1424                 QED_LINK_PARTNER_SPEED_1G_FD : 0;
1425         p_link->partner_adv_speed |=
1426                 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1427                 QED_LINK_PARTNER_SPEED_1G_HD : 0;
1428         p_link->partner_adv_speed |=
1429                 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1430                 QED_LINK_PARTNER_SPEED_10G : 0;
1431         p_link->partner_adv_speed |=
1432                 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1433                 QED_LINK_PARTNER_SPEED_20G : 0;
1434         p_link->partner_adv_speed |=
1435                 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1436                 QED_LINK_PARTNER_SPEED_25G : 0;
1437         p_link->partner_adv_speed |=
1438                 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1439                 QED_LINK_PARTNER_SPEED_40G : 0;
1440         p_link->partner_adv_speed |=
1441                 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1442                 QED_LINK_PARTNER_SPEED_50G : 0;
1443         p_link->partner_adv_speed |=
1444                 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1445                 QED_LINK_PARTNER_SPEED_100G : 0;
1446
1447         p_link->partner_tx_flow_ctrl_en =
1448                 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1449         p_link->partner_rx_flow_ctrl_en =
1450                 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1451
1452         switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1453         case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1454                 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1455                 break;
1456         case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1457                 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1458                 break;
1459         case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1460                 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1461                 break;
1462         default:
1463                 p_link->partner_adv_pause = 0;
1464         }
1465
1466         p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1467
1468         if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1469                 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1470
1471         qed_link_update(p_hwfn, p_ptt);
1472 out:
1473         spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1474 }
1475
1476 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1477 {
1478         struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1479         struct qed_mcp_mb_params mb_params;
1480         struct eth_phy_cfg phy_cfg;
1481         int rc = 0;
1482         u32 cmd;
1483
1484         /* Set the shmem configuration according to params */
1485         memset(&phy_cfg, 0, sizeof(phy_cfg));
1486         cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1487         if (!params->speed.autoneg)
1488                 phy_cfg.speed = params->speed.forced_speed;
1489         phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1490         phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1491         phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1492         phy_cfg.adv_speed = params->speed.advertised_speeds;
1493         phy_cfg.loopback_mode = params->loopback_mode;
1494
1495         /* There are MFWs that share this capability regardless of whether
1496          * this is feasible or not. And given that at the very least adv_caps
1497          * would be set internally by qed, we want to make sure LFA would
1498          * still work.
1499          */
1500         if ((p_hwfn->mcp_info->capabilities &
1501              FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) {
1502                 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1503                 if (params->eee.tx_lpi_enable)
1504                         phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1505                 if (params->eee.adv_caps & QED_EEE_1G_ADV)
1506                         phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1507                 if (params->eee.adv_caps & QED_EEE_10G_ADV)
1508                         phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1509                 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1510                                     EEE_TX_TIMER_USEC_OFFSET) &
1511                                    EEE_TX_TIMER_USEC_MASK;
1512         }
1513
1514         p_hwfn->b_drv_link_init = b_up;
1515
1516         if (b_up) {
1517                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1518                            "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1519                            phy_cfg.speed,
1520                            phy_cfg.pause,
1521                            phy_cfg.adv_speed,
1522                            phy_cfg.loopback_mode,
1523                            phy_cfg.feature_config_flags);
1524         } else {
1525                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1526                            "Resetting link\n");
1527         }
1528
1529         memset(&mb_params, 0, sizeof(mb_params));
1530         mb_params.cmd = cmd;
1531         mb_params.p_data_src = &phy_cfg;
1532         mb_params.data_src_size = sizeof(phy_cfg);
1533         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1534
1535         /* if mcp fails to respond we must abort */
1536         if (rc) {
1537                 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1538                 return rc;
1539         }
1540
1541         /* Mimic link-change attention, done for several reasons:
1542          *  - On reset, there's no guarantee MFW would trigger
1543          *    an attention.
1544          *  - On initialization, older MFWs might not indicate link change
1545          *    during LFA, so we'll never get an UP indication.
1546          */
1547         qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1548
1549         return 0;
1550 }
1551
1552 u32 qed_get_process_kill_counter(struct qed_hwfn *p_hwfn,
1553                                  struct qed_ptt *p_ptt)
1554 {
1555         u32 path_offsize_addr, path_offsize, path_addr, proc_kill_cnt;
1556
1557         if (IS_VF(p_hwfn->cdev))
1558                 return -EINVAL;
1559
1560         path_offsize_addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1561                                                  PUBLIC_PATH);
1562         path_offsize = qed_rd(p_hwfn, p_ptt, path_offsize_addr);
1563         path_addr = SECTION_ADDR(path_offsize, QED_PATH_ID(p_hwfn));
1564
1565         proc_kill_cnt = qed_rd(p_hwfn, p_ptt,
1566                                path_addr +
1567                                offsetof(struct public_path, process_kill)) &
1568                         PROCESS_KILL_COUNTER_MASK;
1569
1570         return proc_kill_cnt;
1571 }
1572
1573 static void qed_mcp_handle_process_kill(struct qed_hwfn *p_hwfn,
1574                                         struct qed_ptt *p_ptt)
1575 {
1576         struct qed_dev *cdev = p_hwfn->cdev;
1577         u32 proc_kill_cnt;
1578
1579         /* Prevent possible attentions/interrupts during the recovery handling
1580          * and till its load phase, during which they will be re-enabled.
1581          */
1582         qed_int_igu_disable_int(p_hwfn, p_ptt);
1583
1584         DP_NOTICE(p_hwfn, "Received a process kill indication\n");
1585
1586         /* The following operations should be done once, and thus in CMT mode
1587          * are carried out by only the first HW function.
1588          */
1589         if (p_hwfn != QED_LEADING_HWFN(cdev))
1590                 return;
1591
1592         if (cdev->recov_in_prog) {
1593                 DP_NOTICE(p_hwfn,
1594                           "Ignoring the indication since a recovery process is already in progress\n");
1595                 return;
1596         }
1597
1598         cdev->recov_in_prog = true;
1599
1600         proc_kill_cnt = qed_get_process_kill_counter(p_hwfn, p_ptt);
1601         DP_NOTICE(p_hwfn, "Process kill counter: %d\n", proc_kill_cnt);
1602
1603         qed_schedule_recovery_handler(p_hwfn);
1604 }
1605
1606 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1607                                         struct qed_ptt *p_ptt,
1608                                         enum MFW_DRV_MSG_TYPE type)
1609 {
1610         enum qed_mcp_protocol_type stats_type;
1611         union qed_mcp_protocol_stats stats;
1612         struct qed_mcp_mb_params mb_params;
1613         u32 hsi_param;
1614
1615         switch (type) {
1616         case MFW_DRV_MSG_GET_LAN_STATS:
1617                 stats_type = QED_MCP_LAN_STATS;
1618                 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1619                 break;
1620         case MFW_DRV_MSG_GET_FCOE_STATS:
1621                 stats_type = QED_MCP_FCOE_STATS;
1622                 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1623                 break;
1624         case MFW_DRV_MSG_GET_ISCSI_STATS:
1625                 stats_type = QED_MCP_ISCSI_STATS;
1626                 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1627                 break;
1628         case MFW_DRV_MSG_GET_RDMA_STATS:
1629                 stats_type = QED_MCP_RDMA_STATS;
1630                 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1631                 break;
1632         default:
1633                 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1634                 return;
1635         }
1636
1637         qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1638
1639         memset(&mb_params, 0, sizeof(mb_params));
1640         mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1641         mb_params.param = hsi_param;
1642         mb_params.p_data_src = &stats;
1643         mb_params.data_src_size = sizeof(stats);
1644         qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1645 }
1646
1647 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1648 {
1649         struct qed_mcp_function_info *p_info;
1650         struct public_func shmem_info;
1651         u32 resp = 0, param = 0;
1652
1653         qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1654
1655         qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1656
1657         p_info = &p_hwfn->mcp_info->func_info;
1658
1659         qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1660         qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1661
1662         /* Acknowledge the MFW */
1663         qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1664                     &param);
1665 }
1666
1667 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1668 {
1669         struct public_func shmem_info;
1670         u32 resp = 0, param = 0;
1671
1672         qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1673
1674         p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1675                                                  FUNC_MF_CFG_OV_STAG_MASK;
1676         p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1677         if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) {
1678                 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) {
1679                         qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE,
1680                                p_hwfn->hw_info.ovlan);
1681                         qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1);
1682
1683                         /* Configure DB to add external vlan to EDPM packets */
1684                         qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1);
1685                         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2,
1686                                p_hwfn->hw_info.ovlan);
1687                 } else {
1688                         qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0);
1689                         qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0);
1690                         qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0);
1691                         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0);
1692                 }
1693
1694                 qed_sp_pf_update_stag(p_hwfn);
1695         }
1696
1697         DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n",
1698                    p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode);
1699
1700         /* Acknowledge the MFW */
1701         qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1702                     &resp, &param);
1703 }
1704
1705 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1706 {
1707         struct public_func shmem_info;
1708         u32 port_cfg, val;
1709
1710         if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1711                 return;
1712
1713         memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1714         port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1715                           offsetof(struct public_port, oem_cfg_port));
1716         val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1717                 OEM_CFG_CHANNEL_TYPE_OFFSET;
1718         if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1719                 DP_NOTICE(p_hwfn,
1720                           "Incorrect UFP Channel type  %d port_id 0x%02x\n",
1721                           val, MFW_PORT(p_hwfn));
1722
1723         val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1724         if (val == OEM_CFG_SCHED_TYPE_ETS) {
1725                 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1726         } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1727                 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1728         } else {
1729                 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1730                 DP_NOTICE(p_hwfn,
1731                           "Unknown UFP scheduling mode %d port_id 0x%02x\n",
1732                           val, MFW_PORT(p_hwfn));
1733         }
1734
1735         qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1736         val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1737                 OEM_CFG_FUNC_TC_OFFSET;
1738         p_hwfn->ufp_info.tc = (u8)val;
1739         val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1740                 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1741         if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1742                 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1743         } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1744                 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1745         } else {
1746                 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1747                 DP_NOTICE(p_hwfn,
1748                           "Unknown Host priority control %d port_id 0x%02x\n",
1749                           val, MFW_PORT(p_hwfn));
1750         }
1751
1752         DP_NOTICE(p_hwfn,
1753                   "UFP shmem config: mode = %d tc = %d pri_type = %d port_id 0x%02x\n",
1754                   p_hwfn->ufp_info.mode, p_hwfn->ufp_info.tc,
1755                   p_hwfn->ufp_info.pri_type, MFW_PORT(p_hwfn));
1756 }
1757
1758 static int
1759 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1760 {
1761         qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1762
1763         if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1764                 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1765                 qed_hw_info_set_offload_tc(&p_hwfn->hw_info,
1766                                            p_hwfn->ufp_info.tc);
1767
1768                 qed_qm_reconf(p_hwfn, p_ptt);
1769         } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1770                 /* Merge UFP TC with the dcbx TC data */
1771                 qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1772                                           QED_DCBX_OPERATIONAL_MIB);
1773         } else {
1774                 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1775                 return -EINVAL;
1776         }
1777
1778         /* update storm FW with negotiation results */
1779         qed_sp_pf_update_ufp(p_hwfn);
1780
1781         /* update stag pcp value */
1782         qed_sp_pf_update_stag(p_hwfn);
1783
1784         return 0;
1785 }
1786
1787 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1788                           struct qed_ptt *p_ptt)
1789 {
1790         struct qed_mcp_info *info = p_hwfn->mcp_info;
1791         int rc = 0;
1792         bool found = false;
1793         u16 i;
1794
1795         DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1796
1797         /* Read Messages from MFW */
1798         qed_mcp_read_mb(p_hwfn, p_ptt);
1799
1800         /* Compare current messages to old ones */
1801         for (i = 0; i < info->mfw_mb_length; i++) {
1802                 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1803                         continue;
1804
1805                 found = true;
1806
1807                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1808                            "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1809                            i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1810
1811                 switch (i) {
1812                 case MFW_DRV_MSG_LINK_CHANGE:
1813                         qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1814                         break;
1815                 case MFW_DRV_MSG_VF_DISABLED:
1816                         qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1817                         break;
1818                 case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1819                         qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1820                                                   QED_DCBX_REMOTE_LLDP_MIB);
1821                         break;
1822                 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1823                         qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1824                                                   QED_DCBX_REMOTE_MIB);
1825                         break;
1826                 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1827                         qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1828                                                   QED_DCBX_OPERATIONAL_MIB);
1829                         break;
1830                 case MFW_DRV_MSG_OEM_CFG_UPDATE:
1831                         qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1832                         break;
1833                 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1834                         qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1835                         break;
1836                 case MFW_DRV_MSG_ERROR_RECOVERY:
1837                         qed_mcp_handle_process_kill(p_hwfn, p_ptt);
1838                         break;
1839                 case MFW_DRV_MSG_GET_LAN_STATS:
1840                 case MFW_DRV_MSG_GET_FCOE_STATS:
1841                 case MFW_DRV_MSG_GET_ISCSI_STATS:
1842                 case MFW_DRV_MSG_GET_RDMA_STATS:
1843                         qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1844                         break;
1845                 case MFW_DRV_MSG_BW_UPDATE:
1846                         qed_mcp_update_bw(p_hwfn, p_ptt);
1847                         break;
1848                 case MFW_DRV_MSG_S_TAG_UPDATE:
1849                         qed_mcp_update_stag(p_hwfn, p_ptt);
1850                         break;
1851                 case MFW_DRV_MSG_GET_TLV_REQ:
1852                         qed_mfw_tlv_req(p_hwfn);
1853                         break;
1854                 default:
1855                         DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1856                         rc = -EINVAL;
1857                 }
1858         }
1859
1860         /* ACK everything */
1861         for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1862                 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1863
1864                 /* MFW expect answer in BE, so we force write in that format */
1865                 qed_wr(p_hwfn, p_ptt,
1866                        info->mfw_mb_addr + sizeof(u32) +
1867                        MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1868                        sizeof(u32) + i * sizeof(u32),
1869                        (__force u32)val);
1870         }
1871
1872         if (!found) {
1873                 DP_NOTICE(p_hwfn,
1874                           "Received an MFW message indication but no new message!\n");
1875                 rc = -EINVAL;
1876         }
1877
1878         /* Copy the new mfw messages into the shadow */
1879         memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1880
1881         return rc;
1882 }
1883
1884 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1885                         struct qed_ptt *p_ptt,
1886                         u32 *p_mfw_ver, u32 *p_running_bundle_id)
1887 {
1888         u32 global_offsize;
1889
1890         if (IS_VF(p_hwfn->cdev)) {
1891                 if (p_hwfn->vf_iov_info) {
1892                         struct pfvf_acquire_resp_tlv *p_resp;
1893
1894                         p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1895                         *p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1896                         return 0;
1897                 } else {
1898                         DP_VERBOSE(p_hwfn,
1899                                    QED_MSG_IOV,
1900                                    "VF requested MFW version prior to ACQUIRE\n");
1901                         return -EINVAL;
1902                 }
1903         }
1904
1905         global_offsize = qed_rd(p_hwfn, p_ptt,
1906                                 SECTION_OFFSIZE_ADDR(p_hwfn->
1907                                                      mcp_info->public_base,
1908                                                      PUBLIC_GLOBAL));
1909         *p_mfw_ver =
1910             qed_rd(p_hwfn, p_ptt,
1911                    SECTION_ADDR(global_offsize,
1912                                 0) + offsetof(struct public_global, mfw_ver));
1913
1914         if (p_running_bundle_id != NULL) {
1915                 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1916                                               SECTION_ADDR(global_offsize, 0) +
1917                                               offsetof(struct public_global,
1918                                                        running_bundle_id));
1919         }
1920
1921         return 0;
1922 }
1923
1924 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1925                         struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1926 {
1927         u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1928
1929         if (IS_VF(p_hwfn->cdev))
1930                 return -EINVAL;
1931
1932         /* Read the address of the nvm_cfg */
1933         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1934         if (!nvm_cfg_addr) {
1935                 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1936                 return -EINVAL;
1937         }
1938
1939         /* Read the offset of nvm_cfg1 */
1940         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1941
1942         mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1943                        offsetof(struct nvm_cfg1, glob) +
1944                        offsetof(struct nvm_cfg1_glob, mbi_version);
1945         *p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1946                             mbi_ver_addr) &
1947                      (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1948                       NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1949                       NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1950
1951         return 0;
1952 }
1953
1954 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn,
1955                            struct qed_ptt *p_ptt, u32 *p_media_type)
1956 {
1957         *p_media_type = MEDIA_UNSPECIFIED;
1958
1959         if (IS_VF(p_hwfn->cdev))
1960                 return -EINVAL;
1961
1962         if (!qed_mcp_is_init(p_hwfn)) {
1963                 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1964                 return -EBUSY;
1965         }
1966
1967         if (!p_ptt) {
1968                 *p_media_type = MEDIA_UNSPECIFIED;
1969                 return -EINVAL;
1970         }
1971
1972         *p_media_type = qed_rd(p_hwfn, p_ptt,
1973                                p_hwfn->mcp_info->port_addr +
1974                                offsetof(struct public_port,
1975                                         media_type));
1976
1977         return 0;
1978 }
1979
1980 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn,
1981                                  struct qed_ptt *p_ptt,
1982                                  u32 *p_transceiver_state,
1983                                  u32 *p_transceiver_type)
1984 {
1985         u32 transceiver_info;
1986
1987         *p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE;
1988         *p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING;
1989
1990         if (IS_VF(p_hwfn->cdev))
1991                 return -EINVAL;
1992
1993         if (!qed_mcp_is_init(p_hwfn)) {
1994                 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1995                 return -EBUSY;
1996         }
1997
1998         transceiver_info = qed_rd(p_hwfn, p_ptt,
1999                                   p_hwfn->mcp_info->port_addr +
2000                                   offsetof(struct public_port,
2001                                            transceiver_data));
2002
2003         *p_transceiver_state = (transceiver_info &
2004                                 ETH_TRANSCEIVER_STATE_MASK) >>
2005                                 ETH_TRANSCEIVER_STATE_OFFSET;
2006
2007         if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
2008                 *p_transceiver_type = (transceiver_info &
2009                                        ETH_TRANSCEIVER_TYPE_MASK) >>
2010                                        ETH_TRANSCEIVER_TYPE_OFFSET;
2011         else
2012                 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN;
2013
2014         return 0;
2015 }
2016 static bool qed_is_transceiver_ready(u32 transceiver_state,
2017                                      u32 transceiver_type)
2018 {
2019         if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) &&
2020             ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) &&
2021             (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE))
2022                 return true;
2023
2024         return false;
2025 }
2026
2027 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn,
2028                              struct qed_ptt *p_ptt, u32 *p_speed_mask)
2029 {
2030         u32 transceiver_type, transceiver_state;
2031         int ret;
2032
2033         ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state,
2034                                            &transceiver_type);
2035         if (ret)
2036                 return ret;
2037
2038         if (qed_is_transceiver_ready(transceiver_state, transceiver_type) ==
2039                                      false)
2040                 return -EINVAL;
2041
2042         switch (transceiver_type) {
2043         case ETH_TRANSCEIVER_TYPE_1G_LX:
2044         case ETH_TRANSCEIVER_TYPE_1G_SX:
2045         case ETH_TRANSCEIVER_TYPE_1G_PCC:
2046         case ETH_TRANSCEIVER_TYPE_1G_ACC:
2047         case ETH_TRANSCEIVER_TYPE_1000BASET:
2048                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2049                 break;
2050         case ETH_TRANSCEIVER_TYPE_10G_SR:
2051         case ETH_TRANSCEIVER_TYPE_10G_LR:
2052         case ETH_TRANSCEIVER_TYPE_10G_LRM:
2053         case ETH_TRANSCEIVER_TYPE_10G_ER:
2054         case ETH_TRANSCEIVER_TYPE_10G_PCC:
2055         case ETH_TRANSCEIVER_TYPE_10G_ACC:
2056         case ETH_TRANSCEIVER_TYPE_4x10G:
2057                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2058                 break;
2059         case ETH_TRANSCEIVER_TYPE_40G_LR4:
2060         case ETH_TRANSCEIVER_TYPE_40G_SR4:
2061         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR:
2062         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR:
2063                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2064                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2065                 break;
2066         case ETH_TRANSCEIVER_TYPE_100G_AOC:
2067         case ETH_TRANSCEIVER_TYPE_100G_SR4:
2068         case ETH_TRANSCEIVER_TYPE_100G_LR4:
2069         case ETH_TRANSCEIVER_TYPE_100G_ER4:
2070         case ETH_TRANSCEIVER_TYPE_100G_ACC:
2071                 *p_speed_mask =
2072                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2073                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
2074                 break;
2075         case ETH_TRANSCEIVER_TYPE_25G_SR:
2076         case ETH_TRANSCEIVER_TYPE_25G_LR:
2077         case ETH_TRANSCEIVER_TYPE_25G_AOC:
2078         case ETH_TRANSCEIVER_TYPE_25G_ACC_S:
2079         case ETH_TRANSCEIVER_TYPE_25G_ACC_M:
2080         case ETH_TRANSCEIVER_TYPE_25G_ACC_L:
2081                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
2082                 break;
2083         case ETH_TRANSCEIVER_TYPE_25G_CA_N:
2084         case ETH_TRANSCEIVER_TYPE_25G_CA_S:
2085         case ETH_TRANSCEIVER_TYPE_25G_CA_L:
2086         case ETH_TRANSCEIVER_TYPE_4x25G_CR:
2087                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2088                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2089                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2090                 break;
2091         case ETH_TRANSCEIVER_TYPE_40G_CR4:
2092         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR:
2093                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2094                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2095                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2096                 break;
2097         case ETH_TRANSCEIVER_TYPE_100G_CR4:
2098         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR:
2099                 *p_speed_mask =
2100                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2101                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G |
2102                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2103                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2104                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G |
2105                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2106                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2107                 break;
2108         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR:
2109         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR:
2110         case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC:
2111                 *p_speed_mask =
2112                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2113                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2114                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2115                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2116                 break;
2117         case ETH_TRANSCEIVER_TYPE_XLPPI:
2118                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G;
2119                 break;
2120         case ETH_TRANSCEIVER_TYPE_10G_BASET:
2121                 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2122                     NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2123                 break;
2124         default:
2125                 DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n",
2126                         transceiver_type);
2127                 *p_speed_mask = 0xff;
2128                 break;
2129         }
2130
2131         return 0;
2132 }
2133
2134 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn,
2135                              struct qed_ptt *p_ptt, u32 *p_board_config)
2136 {
2137         u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr;
2138
2139         if (IS_VF(p_hwfn->cdev))
2140                 return -EINVAL;
2141
2142         if (!qed_mcp_is_init(p_hwfn)) {
2143                 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
2144                 return -EBUSY;
2145         }
2146         if (!p_ptt) {
2147                 *p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED;
2148                 return -EINVAL;
2149         }
2150
2151         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2152         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2153         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2154                         offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2155         *p_board_config = qed_rd(p_hwfn, p_ptt,
2156                                  port_cfg_addr +
2157                                  offsetof(struct nvm_cfg1_port,
2158                                           board_cfg));
2159
2160         return 0;
2161 }
2162
2163 /* Old MFW has a global configuration for all PFs regarding RDMA support */
2164 static void
2165 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
2166                                enum qed_pci_personality *p_proto)
2167 {
2168         /* There wasn't ever a legacy MFW that published iwarp.
2169          * So at this point, this is either plain l2 or RoCE.
2170          */
2171         if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
2172                 *p_proto = QED_PCI_ETH_ROCE;
2173         else
2174                 *p_proto = QED_PCI_ETH;
2175
2176         DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2177                    "According to Legacy capabilities, L2 personality is %08x\n",
2178                    (u32) *p_proto);
2179 }
2180
2181 static int
2182 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
2183                             struct qed_ptt *p_ptt,
2184                             enum qed_pci_personality *p_proto)
2185 {
2186         u32 resp = 0, param = 0;
2187         int rc;
2188
2189         rc = qed_mcp_cmd(p_hwfn, p_ptt,
2190                          DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
2191         if (rc)
2192                 return rc;
2193         if (resp != FW_MSG_CODE_OK) {
2194                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2195                            "MFW lacks support for command; Returns %08x\n",
2196                            resp);
2197                 return -EINVAL;
2198         }
2199
2200         switch (param) {
2201         case FW_MB_PARAM_GET_PF_RDMA_NONE:
2202                 *p_proto = QED_PCI_ETH;
2203                 break;
2204         case FW_MB_PARAM_GET_PF_RDMA_ROCE:
2205                 *p_proto = QED_PCI_ETH_ROCE;
2206                 break;
2207         case FW_MB_PARAM_GET_PF_RDMA_IWARP:
2208                 *p_proto = QED_PCI_ETH_IWARP;
2209                 break;
2210         case FW_MB_PARAM_GET_PF_RDMA_BOTH:
2211                 *p_proto = QED_PCI_ETH_RDMA;
2212                 break;
2213         default:
2214                 DP_NOTICE(p_hwfn,
2215                           "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
2216                           param);
2217                 return -EINVAL;
2218         }
2219
2220         DP_VERBOSE(p_hwfn,
2221                    NETIF_MSG_IFUP,
2222                    "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
2223                    (u32) *p_proto, resp, param);
2224         return 0;
2225 }
2226
2227 static int
2228 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
2229                         struct public_func *p_info,
2230                         struct qed_ptt *p_ptt,
2231                         enum qed_pci_personality *p_proto)
2232 {
2233         int rc = 0;
2234
2235         switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
2236         case FUNC_MF_CFG_PROTOCOL_ETHERNET:
2237                 if (!IS_ENABLED(CONFIG_QED_RDMA))
2238                         *p_proto = QED_PCI_ETH;
2239                 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
2240                         qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
2241                 break;
2242         case FUNC_MF_CFG_PROTOCOL_ISCSI:
2243                 *p_proto = QED_PCI_ISCSI;
2244                 break;
2245         case FUNC_MF_CFG_PROTOCOL_FCOE:
2246                 *p_proto = QED_PCI_FCOE;
2247                 break;
2248         case FUNC_MF_CFG_PROTOCOL_ROCE:
2249                 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
2250         /* Fallthrough */
2251         default:
2252                 rc = -EINVAL;
2253         }
2254
2255         return rc;
2256 }
2257
2258 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
2259                                  struct qed_ptt *p_ptt)
2260 {
2261         struct qed_mcp_function_info *info;
2262         struct public_func shmem_info;
2263
2264         qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
2265         info = &p_hwfn->mcp_info->func_info;
2266
2267         info->pause_on_host = (shmem_info.config &
2268                                FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
2269
2270         if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
2271                                     &info->protocol)) {
2272                 DP_ERR(p_hwfn, "Unknown personality %08x\n",
2273                        (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
2274                 return -EINVAL;
2275         }
2276
2277         qed_read_pf_bandwidth(p_hwfn, &shmem_info);
2278
2279         if (shmem_info.mac_upper || shmem_info.mac_lower) {
2280                 info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
2281                 info->mac[1] = (u8)(shmem_info.mac_upper);
2282                 info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
2283                 info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
2284                 info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
2285                 info->mac[5] = (u8)(shmem_info.mac_lower);
2286
2287                 /* Store primary MAC for later possible WoL */
2288                 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
2289         } else {
2290                 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
2291         }
2292
2293         info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
2294                          (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
2295         info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
2296                          (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
2297
2298         info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
2299
2300         info->mtu = (u16)shmem_info.mtu_size;
2301
2302         p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
2303         p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
2304         if (qed_mcp_is_init(p_hwfn)) {
2305                 u32 resp = 0, param = 0;
2306                 int rc;
2307
2308                 rc = qed_mcp_cmd(p_hwfn, p_ptt,
2309                                  DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
2310                 if (rc)
2311                         return rc;
2312                 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
2313                         p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
2314         }
2315
2316         DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
2317                    "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
2318                 info->pause_on_host, info->protocol,
2319                 info->bandwidth_min, info->bandwidth_max,
2320                 info->mac[0], info->mac[1], info->mac[2],
2321                 info->mac[3], info->mac[4], info->mac[5],
2322                 info->wwn_port, info->wwn_node,
2323                 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
2324
2325         return 0;
2326 }
2327
2328 struct qed_mcp_link_params
2329 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
2330 {
2331         if (!p_hwfn || !p_hwfn->mcp_info)
2332                 return NULL;
2333         return &p_hwfn->mcp_info->link_input;
2334 }
2335
2336 struct qed_mcp_link_state
2337 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
2338 {
2339         if (!p_hwfn || !p_hwfn->mcp_info)
2340                 return NULL;
2341         return &p_hwfn->mcp_info->link_output;
2342 }
2343
2344 struct qed_mcp_link_capabilities
2345 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
2346 {
2347         if (!p_hwfn || !p_hwfn->mcp_info)
2348                 return NULL;
2349         return &p_hwfn->mcp_info->link_capabilities;
2350 }
2351
2352 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2353 {
2354         u32 resp = 0, param = 0;
2355         int rc;
2356
2357         rc = qed_mcp_cmd(p_hwfn, p_ptt,
2358                          DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
2359
2360         /* Wait for the drain to complete before returning */
2361         msleep(1020);
2362
2363         return rc;
2364 }
2365
2366 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
2367                            struct qed_ptt *p_ptt, u32 *p_flash_size)
2368 {
2369         u32 flash_size;
2370
2371         if (IS_VF(p_hwfn->cdev))
2372                 return -EINVAL;
2373
2374         flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
2375         flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
2376                       MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
2377         flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
2378
2379         *p_flash_size = flash_size;
2380
2381         return 0;
2382 }
2383
2384 int qed_start_recovery_process(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2385 {
2386         struct qed_dev *cdev = p_hwfn->cdev;
2387
2388         if (cdev->recov_in_prog) {
2389                 DP_NOTICE(p_hwfn,
2390                           "Avoid triggering a recovery since such a process is already in progress\n");
2391                 return -EAGAIN;
2392         }
2393
2394         DP_NOTICE(p_hwfn, "Triggering a recovery process\n");
2395         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_GENERAL_ATTN_35, 0x1);
2396
2397         return 0;
2398 }
2399
2400 #define QED_RECOVERY_PROLOG_SLEEP_MS    100
2401
2402 int qed_recovery_prolog(struct qed_dev *cdev)
2403 {
2404         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2405         struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
2406         int rc;
2407
2408         /* Allow ongoing PCIe transactions to complete */
2409         msleep(QED_RECOVERY_PROLOG_SLEEP_MS);
2410
2411         /* Clear the PF's internal FID_enable in the PXP */
2412         rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
2413         if (rc)
2414                 DP_NOTICE(p_hwfn,
2415                           "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
2416                           rc);
2417
2418         return rc;
2419 }
2420
2421 static int
2422 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
2423                           struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2424 {
2425         u32 resp = 0, param = 0, rc_param = 0;
2426         int rc;
2427
2428         /* Only Leader can configure MSIX, and need to take CMT into account */
2429         if (!IS_LEAD_HWFN(p_hwfn))
2430                 return 0;
2431         num *= p_hwfn->cdev->num_hwfns;
2432
2433         param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
2434                  DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
2435         param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
2436                  DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
2437
2438         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
2439                          &resp, &rc_param);
2440
2441         if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2442                 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2443                 rc = -EINVAL;
2444         } else {
2445                 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2446                            "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2447                            num, vf_id);
2448         }
2449
2450         return rc;
2451 }
2452
2453 static int
2454 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2455                           struct qed_ptt *p_ptt, u8 num)
2456 {
2457         u32 resp = 0, param = num, rc_param = 0;
2458         int rc;
2459
2460         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2461                          param, &resp, &rc_param);
2462
2463         if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2464                 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2465                 rc = -EINVAL;
2466         } else {
2467                 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2468                            "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2469         }
2470
2471         return rc;
2472 }
2473
2474 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2475                            struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2476 {
2477         if (QED_IS_BB(p_hwfn->cdev))
2478                 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2479         else
2480                 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2481 }
2482
2483 int
2484 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2485                          struct qed_ptt *p_ptt,
2486                          struct qed_mcp_drv_version *p_ver)
2487 {
2488         struct qed_mcp_mb_params mb_params;
2489         struct drv_version_stc drv_version;
2490         __be32 val;
2491         u32 i;
2492         int rc;
2493
2494         memset(&drv_version, 0, sizeof(drv_version));
2495         drv_version.version = p_ver->version;
2496         for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2497                 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2498                 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2499         }
2500
2501         memset(&mb_params, 0, sizeof(mb_params));
2502         mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2503         mb_params.p_data_src = &drv_version;
2504         mb_params.data_src_size = sizeof(drv_version);
2505         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2506         if (rc)
2507                 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2508
2509         return rc;
2510 }
2511
2512 /* A maximal 100 msec waiting time for the MCP to halt */
2513 #define QED_MCP_HALT_SLEEP_MS           10
2514 #define QED_MCP_HALT_MAX_RETRIES        10
2515
2516 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2517 {
2518         u32 resp = 0, param = 0, cpu_state, cnt = 0;
2519         int rc;
2520
2521         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2522                          &param);
2523         if (rc) {
2524                 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2525                 return rc;
2526         }
2527
2528         do {
2529                 msleep(QED_MCP_HALT_SLEEP_MS);
2530                 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2531                 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED)
2532                         break;
2533         } while (++cnt < QED_MCP_HALT_MAX_RETRIES);
2534
2535         if (cnt == QED_MCP_HALT_MAX_RETRIES) {
2536                 DP_NOTICE(p_hwfn,
2537                           "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2538                           qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state);
2539                 return -EBUSY;
2540         }
2541
2542         qed_mcp_cmd_set_blocking(p_hwfn, true);
2543
2544         return 0;
2545 }
2546
2547 #define QED_MCP_RESUME_SLEEP_MS 10
2548
2549 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2550 {
2551         u32 cpu_mode, cpu_state;
2552
2553         qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2554
2555         cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2556         cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2557         qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode);
2558         msleep(QED_MCP_RESUME_SLEEP_MS);
2559         cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2560
2561         if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) {
2562                 DP_NOTICE(p_hwfn,
2563                           "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2564                           cpu_mode, cpu_state);
2565                 return -EBUSY;
2566         }
2567
2568         qed_mcp_cmd_set_blocking(p_hwfn, false);
2569
2570         return 0;
2571 }
2572
2573 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2574                                      struct qed_ptt *p_ptt,
2575                                      enum qed_ov_client client)
2576 {
2577         u32 resp = 0, param = 0;
2578         u32 drv_mb_param;
2579         int rc;
2580
2581         switch (client) {
2582         case QED_OV_CLIENT_DRV:
2583                 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2584                 break;
2585         case QED_OV_CLIENT_USER:
2586                 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2587                 break;
2588         case QED_OV_CLIENT_VENDOR_SPEC:
2589                 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2590                 break;
2591         default:
2592                 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2593                 return -EINVAL;
2594         }
2595
2596         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2597                          drv_mb_param, &resp, &param);
2598         if (rc)
2599                 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2600
2601         return rc;
2602 }
2603
2604 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2605                                    struct qed_ptt *p_ptt,
2606                                    enum qed_ov_driver_state drv_state)
2607 {
2608         u32 resp = 0, param = 0;
2609         u32 drv_mb_param;
2610         int rc;
2611
2612         switch (drv_state) {
2613         case QED_OV_DRIVER_STATE_NOT_LOADED:
2614                 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2615                 break;
2616         case QED_OV_DRIVER_STATE_DISABLED:
2617                 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2618                 break;
2619         case QED_OV_DRIVER_STATE_ACTIVE:
2620                 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2621                 break;
2622         default:
2623                 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2624                 return -EINVAL;
2625         }
2626
2627         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2628                          drv_mb_param, &resp, &param);
2629         if (rc)
2630                 DP_ERR(p_hwfn, "Failed to send driver state\n");
2631
2632         return rc;
2633 }
2634
2635 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2636                           struct qed_ptt *p_ptt, u16 mtu)
2637 {
2638         u32 resp = 0, param = 0;
2639         u32 drv_mb_param;
2640         int rc;
2641
2642         drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2643         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2644                          drv_mb_param, &resp, &param);
2645         if (rc)
2646                 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2647
2648         return rc;
2649 }
2650
2651 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2652                           struct qed_ptt *p_ptt, u8 *mac)
2653 {
2654         struct qed_mcp_mb_params mb_params;
2655         u32 mfw_mac[2];
2656         int rc;
2657
2658         memset(&mb_params, 0, sizeof(mb_params));
2659         mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2660         mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2661                           DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2662         mb_params.param |= MCP_PF_ID(p_hwfn);
2663
2664         /* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2665          * in 32-bit granularity.
2666          * So the MAC has to be set in native order [and not byte order],
2667          * otherwise it would be read incorrectly by MFW after swap.
2668          */
2669         mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2670         mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2671
2672         mb_params.p_data_src = (u8 *)mfw_mac;
2673         mb_params.data_src_size = 8;
2674         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2675         if (rc)
2676                 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2677
2678         /* Store primary MAC for later possible WoL */
2679         memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2680
2681         return rc;
2682 }
2683
2684 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2685                           struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2686 {
2687         u32 resp = 0, param = 0;
2688         u32 drv_mb_param;
2689         int rc;
2690
2691         if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2692                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
2693                            "Can't change WoL configuration when WoL isn't supported\n");
2694                 return -EINVAL;
2695         }
2696
2697         switch (wol) {
2698         case QED_OV_WOL_DEFAULT:
2699                 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2700                 break;
2701         case QED_OV_WOL_DISABLED:
2702                 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2703                 break;
2704         case QED_OV_WOL_ENABLED:
2705                 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2706                 break;
2707         default:
2708                 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2709                 return -EINVAL;
2710         }
2711
2712         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2713                          drv_mb_param, &resp, &param);
2714         if (rc)
2715                 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2716
2717         /* Store the WoL update for a future unload */
2718         p_hwfn->cdev->wol_config = (u8)wol;
2719
2720         return rc;
2721 }
2722
2723 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2724                               struct qed_ptt *p_ptt,
2725                               enum qed_ov_eswitch eswitch)
2726 {
2727         u32 resp = 0, param = 0;
2728         u32 drv_mb_param;
2729         int rc;
2730
2731         switch (eswitch) {
2732         case QED_OV_ESWITCH_NONE:
2733                 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2734                 break;
2735         case QED_OV_ESWITCH_VEB:
2736                 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2737                 break;
2738         case QED_OV_ESWITCH_VEPA:
2739                 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2740                 break;
2741         default:
2742                 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2743                 return -EINVAL;
2744         }
2745
2746         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2747                          drv_mb_param, &resp, &param);
2748         if (rc)
2749                 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2750
2751         return rc;
2752 }
2753
2754 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2755                     struct qed_ptt *p_ptt, enum qed_led_mode mode)
2756 {
2757         u32 resp = 0, param = 0, drv_mb_param;
2758         int rc;
2759
2760         switch (mode) {
2761         case QED_LED_MODE_ON:
2762                 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2763                 break;
2764         case QED_LED_MODE_OFF:
2765                 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2766                 break;
2767         case QED_LED_MODE_RESTORE:
2768                 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2769                 break;
2770         default:
2771                 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2772                 return -EINVAL;
2773         }
2774
2775         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2776                          drv_mb_param, &resp, &param);
2777
2778         return rc;
2779 }
2780
2781 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2782                           struct qed_ptt *p_ptt, u32 mask_parities)
2783 {
2784         u32 resp = 0, param = 0;
2785         int rc;
2786
2787         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2788                          mask_parities, &resp, &param);
2789
2790         if (rc) {
2791                 DP_ERR(p_hwfn,
2792                        "MCP response failure for mask parities, aborting\n");
2793         } else if (resp != FW_MSG_CODE_OK) {
2794                 DP_ERR(p_hwfn,
2795                        "MCP did not acknowledge mask parity request. Old MFW?\n");
2796                 rc = -EINVAL;
2797         }
2798
2799         return rc;
2800 }
2801
2802 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2803 {
2804         u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2805         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2806         u32 resp = 0, resp_param = 0;
2807         struct qed_ptt *p_ptt;
2808         int rc = 0;
2809
2810         p_ptt = qed_ptt_acquire(p_hwfn);
2811         if (!p_ptt)
2812                 return -EBUSY;
2813
2814         while (bytes_left > 0) {
2815                 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2816
2817                 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2818                                         DRV_MSG_CODE_NVM_READ_NVRAM,
2819                                         addr + offset +
2820                                         (bytes_to_copy <<
2821                                          DRV_MB_PARAM_NVM_LEN_OFFSET),
2822                                         &resp, &resp_param,
2823                                         &read_len,
2824                                         (u32 *)(p_buf + offset));
2825
2826                 if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2827                         DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2828                         break;
2829                 }
2830
2831                 /* This can be a lengthy process, and it's possible scheduler
2832                  * isn't preemptable. Sleep a bit to prevent CPU hogging.
2833                  */
2834                 if (bytes_left % 0x1000 <
2835                     (bytes_left - read_len) % 0x1000)
2836                         usleep_range(1000, 2000);
2837
2838                 offset += read_len;
2839                 bytes_left -= read_len;
2840         }
2841
2842         cdev->mcp_nvm_resp = resp;
2843         qed_ptt_release(p_hwfn, p_ptt);
2844
2845         return rc;
2846 }
2847
2848 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2849 {
2850         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2851         struct qed_ptt *p_ptt;
2852
2853         p_ptt = qed_ptt_acquire(p_hwfn);
2854         if (!p_ptt)
2855                 return -EBUSY;
2856
2857         memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2858         qed_ptt_release(p_hwfn, p_ptt);
2859
2860         return 0;
2861 }
2862
2863 int qed_mcp_nvm_write(struct qed_dev *cdev,
2864                       u32 cmd, u32 addr, u8 *p_buf, u32 len)
2865 {
2866         u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2867         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2868         struct qed_ptt *p_ptt;
2869         int rc = -EINVAL;
2870
2871         p_ptt = qed_ptt_acquire(p_hwfn);
2872         if (!p_ptt)
2873                 return -EBUSY;
2874
2875         switch (cmd) {
2876         case QED_PUT_FILE_BEGIN:
2877                 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_BEGIN;
2878                 break;
2879         case QED_PUT_FILE_DATA:
2880                 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2881                 break;
2882         case QED_NVM_WRITE_NVRAM:
2883                 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2884                 break;
2885         default:
2886                 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2887                 rc = -EINVAL;
2888                 goto out;
2889         }
2890
2891         buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2892         while (buf_idx < len) {
2893                 if (cmd == QED_PUT_FILE_BEGIN)
2894                         nvm_offset = addr;
2895                 else
2896                         nvm_offset = ((buf_size <<
2897                                        DRV_MB_PARAM_NVM_LEN_OFFSET) | addr) +
2898                                        buf_idx;
2899                 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2900                                         &resp, &param, buf_size,
2901                                         (u32 *)&p_buf[buf_idx]);
2902                 if (rc) {
2903                         DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2904                         resp = FW_MSG_CODE_ERROR;
2905                         break;
2906                 }
2907
2908                 if (resp != FW_MSG_CODE_OK &&
2909                     resp != FW_MSG_CODE_NVM_OK &&
2910                     resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2911                         DP_NOTICE(cdev,
2912                                   "nvm write failed, resp = 0x%08x\n", resp);
2913                         rc = -EINVAL;
2914                         break;
2915                 }
2916
2917                 /* This can be a lengthy process, and it's possible scheduler
2918                  * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2919                  */
2920                 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2921                         usleep_range(1000, 2000);
2922
2923                 /* For MBI upgrade, MFW response includes the next buffer offset
2924                  * to be delivered to MFW.
2925                  */
2926                 if (param && cmd == QED_PUT_FILE_DATA) {
2927                         buf_idx = QED_MFW_GET_FIELD(param,
2928                                         FW_MB_PARAM_NVM_PUT_FILE_REQ_OFFSET);
2929                         buf_size = QED_MFW_GET_FIELD(param,
2930                                          FW_MB_PARAM_NVM_PUT_FILE_REQ_SIZE);
2931                 } else {
2932                         buf_idx += buf_size;
2933                         buf_size = min_t(u32, (len - buf_idx),
2934                                          MCP_DRV_NVM_BUF_LEN);
2935                 }
2936         }
2937
2938         cdev->mcp_nvm_resp = resp;
2939 out:
2940         qed_ptt_release(p_hwfn, p_ptt);
2941
2942         return rc;
2943 }
2944
2945 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2946                          u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf)
2947 {
2948         u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0;
2949         u32 resp, param;
2950         int rc;
2951
2952         nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) &
2953                        DRV_MB_PARAM_TRANSCEIVER_PORT_MASK;
2954         nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) &
2955                        DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK;
2956
2957         addr = offset;
2958         offset = 0;
2959         bytes_left = len;
2960         while (bytes_left > 0) {
2961                 bytes_to_copy = min_t(u32, bytes_left,
2962                                       MAX_I2C_TRANSACTION_SIZE);
2963                 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK |
2964                                DRV_MB_PARAM_TRANSCEIVER_PORT_MASK);
2965                 nvm_offset |= ((addr + offset) <<
2966                                DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) &
2967                                DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK;
2968                 nvm_offset |= (bytes_to_copy <<
2969                                DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) &
2970                                DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK;
2971                 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2972                                         DRV_MSG_CODE_TRANSCEIVER_READ,
2973                                         nvm_offset, &resp, &param, &buf_size,
2974                                         (u32 *)(p_buf + offset));
2975                 if (rc) {
2976                         DP_NOTICE(p_hwfn,
2977                                   "Failed to send a transceiver read command to the MFW. rc = %d.\n",
2978                                   rc);
2979                         return rc;
2980                 }
2981
2982                 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT)
2983                         return -ENODEV;
2984                 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK)
2985                         return -EINVAL;
2986
2987                 offset += buf_size;
2988                 bytes_left -= buf_size;
2989         }
2990
2991         return 0;
2992 }
2993
2994 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2995 {
2996         u32 drv_mb_param = 0, rsp, param;
2997         int rc = 0;
2998
2999         drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
3000                         DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3001
3002         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3003                          drv_mb_param, &rsp, &param);
3004
3005         if (rc)
3006                 return rc;
3007
3008         if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3009             (param != DRV_MB_PARAM_BIST_RC_PASSED))
3010                 rc = -EAGAIN;
3011
3012         return rc;
3013 }
3014
3015 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3016 {
3017         u32 drv_mb_param, rsp, param;
3018         int rc = 0;
3019
3020         drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
3021                         DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3022
3023         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3024                          drv_mb_param, &rsp, &param);
3025
3026         if (rc)
3027                 return rc;
3028
3029         if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3030             (param != DRV_MB_PARAM_BIST_RC_PASSED))
3031                 rc = -EAGAIN;
3032
3033         return rc;
3034 }
3035
3036 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
3037                                     struct qed_ptt *p_ptt,
3038                                     u32 *num_images)
3039 {
3040         u32 drv_mb_param = 0, rsp;
3041         int rc = 0;
3042
3043         drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
3044                         DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3045
3046         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3047                          drv_mb_param, &rsp, num_images);
3048         if (rc)
3049                 return rc;
3050
3051         if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
3052                 rc = -EINVAL;
3053
3054         return rc;
3055 }
3056
3057 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
3058                                    struct qed_ptt *p_ptt,
3059                                    struct bist_nvm_image_att *p_image_att,
3060                                    u32 image_index)
3061 {
3062         u32 buf_size = 0, param, resp = 0, resp_param = 0;
3063         int rc;
3064
3065         param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
3066                 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
3067         param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
3068
3069         rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
3070                                 DRV_MSG_CODE_BIST_TEST, param,
3071                                 &resp, &resp_param,
3072                                 &buf_size,
3073                                 (u32 *)p_image_att);
3074         if (rc)
3075                 return rc;
3076
3077         if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3078             (p_image_att->return_code != 1))
3079                 rc = -EINVAL;
3080
3081         return rc;
3082 }
3083
3084 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
3085 {
3086         struct qed_nvm_image_info nvm_info;
3087         struct qed_ptt *p_ptt;
3088         int rc;
3089         u32 i;
3090
3091         if (p_hwfn->nvm_info.valid)
3092                 return 0;
3093
3094         p_ptt = qed_ptt_acquire(p_hwfn);
3095         if (!p_ptt) {
3096                 DP_ERR(p_hwfn, "failed to acquire ptt\n");
3097                 return -EBUSY;
3098         }
3099
3100         /* Acquire from MFW the amount of available images */
3101         nvm_info.num_images = 0;
3102         rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
3103                                              p_ptt, &nvm_info.num_images);
3104         if (rc == -EOPNOTSUPP) {
3105                 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
3106                 goto out;
3107         } else if (rc || !nvm_info.num_images) {
3108                 DP_ERR(p_hwfn, "Failed getting number of images\n");
3109                 goto err0;
3110         }
3111
3112         nvm_info.image_att = kmalloc_array(nvm_info.num_images,
3113                                            sizeof(struct bist_nvm_image_att),
3114                                            GFP_KERNEL);
3115         if (!nvm_info.image_att) {
3116                 rc = -ENOMEM;
3117                 goto err0;
3118         }
3119
3120         /* Iterate over images and get their attributes */
3121         for (i = 0; i < nvm_info.num_images; i++) {
3122                 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
3123                                                     &nvm_info.image_att[i], i);
3124                 if (rc) {
3125                         DP_ERR(p_hwfn,
3126                                "Failed getting image index %d attributes\n", i);
3127                         goto err1;
3128                 }
3129
3130                 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
3131                            nvm_info.image_att[i].len);
3132         }
3133 out:
3134         /* Update hwfn's nvm_info */
3135         if (nvm_info.num_images) {
3136                 p_hwfn->nvm_info.num_images = nvm_info.num_images;
3137                 kfree(p_hwfn->nvm_info.image_att);
3138                 p_hwfn->nvm_info.image_att = nvm_info.image_att;
3139                 p_hwfn->nvm_info.valid = true;
3140         }
3141
3142         qed_ptt_release(p_hwfn, p_ptt);
3143         return 0;
3144
3145 err1:
3146         kfree(nvm_info.image_att);
3147 err0:
3148         qed_ptt_release(p_hwfn, p_ptt);
3149         return rc;
3150 }
3151
3152 int
3153 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
3154                           enum qed_nvm_images image_id,
3155                           struct qed_nvm_image_att *p_image_att)
3156 {
3157         enum nvm_image_type type;
3158         u32 i;
3159
3160         /* Translate image_id into MFW definitions */
3161         switch (image_id) {
3162         case QED_NVM_IMAGE_ISCSI_CFG:
3163                 type = NVM_TYPE_ISCSI_CFG;
3164                 break;
3165         case QED_NVM_IMAGE_FCOE_CFG:
3166                 type = NVM_TYPE_FCOE_CFG;
3167                 break;
3168         case QED_NVM_IMAGE_NVM_CFG1:
3169                 type = NVM_TYPE_NVM_CFG1;
3170                 break;
3171         case QED_NVM_IMAGE_DEFAULT_CFG:
3172                 type = NVM_TYPE_DEFAULT_CFG;
3173                 break;
3174         case QED_NVM_IMAGE_NVM_META:
3175                 type = NVM_TYPE_META;
3176                 break;
3177         default:
3178                 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
3179                           image_id);
3180                 return -EINVAL;
3181         }
3182
3183         qed_mcp_nvm_info_populate(p_hwfn);
3184         for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
3185                 if (type == p_hwfn->nvm_info.image_att[i].image_type)
3186                         break;
3187         if (i == p_hwfn->nvm_info.num_images) {
3188                 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3189                            "Failed to find nvram image of type %08x\n",
3190                            image_id);
3191                 return -ENOENT;
3192         }
3193
3194         p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
3195         p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
3196
3197         return 0;
3198 }
3199
3200 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
3201                           enum qed_nvm_images image_id,
3202                           u8 *p_buffer, u32 buffer_len)
3203 {
3204         struct qed_nvm_image_att image_att;
3205         int rc;
3206
3207         memset(p_buffer, 0, buffer_len);
3208
3209         rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
3210         if (rc)
3211                 return rc;
3212
3213         /* Validate sizes - both the image's and the supplied buffer's */
3214         if (image_att.length <= 4) {
3215                 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3216                            "Image [%d] is too small - only %d bytes\n",
3217                            image_id, image_att.length);
3218                 return -EINVAL;
3219         }
3220
3221         if (image_att.length > buffer_len) {
3222                 DP_VERBOSE(p_hwfn,
3223                            QED_MSG_STORAGE,
3224                            "Image [%d] is too big - %08x bytes where only %08x are available\n",
3225                            image_id, image_att.length, buffer_len);
3226                 return -ENOMEM;
3227         }
3228
3229         return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
3230                                 p_buffer, image_att.length);
3231 }
3232
3233 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
3234 {
3235         enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
3236
3237         switch (res_id) {
3238         case QED_SB:
3239                 mfw_res_id = RESOURCE_NUM_SB_E;
3240                 break;
3241         case QED_L2_QUEUE:
3242                 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
3243                 break;
3244         case QED_VPORT:
3245                 mfw_res_id = RESOURCE_NUM_VPORT_E;
3246                 break;
3247         case QED_RSS_ENG:
3248                 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
3249                 break;
3250         case QED_PQ:
3251                 mfw_res_id = RESOURCE_NUM_PQ_E;
3252                 break;
3253         case QED_RL:
3254                 mfw_res_id = RESOURCE_NUM_RL_E;
3255                 break;
3256         case QED_MAC:
3257         case QED_VLAN:
3258                 /* Each VFC resource can accommodate both a MAC and a VLAN */
3259                 mfw_res_id = RESOURCE_VFC_FILTER_E;
3260                 break;
3261         case QED_ILT:
3262                 mfw_res_id = RESOURCE_ILT_E;
3263                 break;
3264         case QED_LL2_QUEUE:
3265                 mfw_res_id = RESOURCE_LL2_QUEUE_E;
3266                 break;
3267         case QED_RDMA_CNQ_RAM:
3268         case QED_CMDQS_CQS:
3269                 /* CNQ/CMDQS are the same resource */
3270                 mfw_res_id = RESOURCE_CQS_E;
3271                 break;
3272         case QED_RDMA_STATS_QUEUE:
3273                 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
3274                 break;
3275         case QED_BDQ:
3276                 mfw_res_id = RESOURCE_BDQ_E;
3277                 break;
3278         default:
3279                 break;
3280         }
3281
3282         return mfw_res_id;
3283 }
3284
3285 #define QED_RESC_ALLOC_VERSION_MAJOR    2
3286 #define QED_RESC_ALLOC_VERSION_MINOR    0
3287 #define QED_RESC_ALLOC_VERSION                               \
3288         ((QED_RESC_ALLOC_VERSION_MAJOR <<                    \
3289           DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
3290          (QED_RESC_ALLOC_VERSION_MINOR <<                    \
3291           DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
3292
3293 struct qed_resc_alloc_in_params {
3294         u32 cmd;
3295         enum qed_resources res_id;
3296         u32 resc_max_val;
3297 };
3298
3299 struct qed_resc_alloc_out_params {
3300         u32 mcp_resp;
3301         u32 mcp_param;
3302         u32 resc_num;
3303         u32 resc_start;
3304         u32 vf_resc_num;
3305         u32 vf_resc_start;
3306         u32 flags;
3307 };
3308
3309 static int
3310 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
3311                             struct qed_ptt *p_ptt,
3312                             struct qed_resc_alloc_in_params *p_in_params,
3313                             struct qed_resc_alloc_out_params *p_out_params)
3314 {
3315         struct qed_mcp_mb_params mb_params;
3316         struct resource_info mfw_resc_info;
3317         int rc;
3318
3319         memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
3320
3321         mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
3322         if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
3323                 DP_ERR(p_hwfn,
3324                        "Failed to match resource %d [%s] with the MFW resources\n",
3325                        p_in_params->res_id,
3326                        qed_hw_get_resc_name(p_in_params->res_id));
3327                 return -EINVAL;
3328         }
3329
3330         switch (p_in_params->cmd) {
3331         case DRV_MSG_SET_RESOURCE_VALUE_MSG:
3332                 mfw_resc_info.size = p_in_params->resc_max_val;
3333                 /* Fallthrough */
3334         case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
3335                 break;
3336         default:
3337                 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
3338                        p_in_params->cmd);
3339                 return -EINVAL;
3340         }
3341
3342         memset(&mb_params, 0, sizeof(mb_params));
3343         mb_params.cmd = p_in_params->cmd;
3344         mb_params.param = QED_RESC_ALLOC_VERSION;
3345         mb_params.p_data_src = &mfw_resc_info;
3346         mb_params.data_src_size = sizeof(mfw_resc_info);
3347         mb_params.p_data_dst = mb_params.p_data_src;
3348         mb_params.data_dst_size = mb_params.data_src_size;
3349
3350         DP_VERBOSE(p_hwfn,
3351                    QED_MSG_SP,
3352                    "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
3353                    p_in_params->cmd,
3354                    p_in_params->res_id,
3355                    qed_hw_get_resc_name(p_in_params->res_id),
3356                    QED_MFW_GET_FIELD(mb_params.param,
3357                                      DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3358                    QED_MFW_GET_FIELD(mb_params.param,
3359                                      DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3360                    p_in_params->resc_max_val);
3361
3362         rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
3363         if (rc)
3364                 return rc;
3365
3366         p_out_params->mcp_resp = mb_params.mcp_resp;
3367         p_out_params->mcp_param = mb_params.mcp_param;
3368         p_out_params->resc_num = mfw_resc_info.size;
3369         p_out_params->resc_start = mfw_resc_info.offset;
3370         p_out_params->vf_resc_num = mfw_resc_info.vf_size;
3371         p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
3372         p_out_params->flags = mfw_resc_info.flags;
3373
3374         DP_VERBOSE(p_hwfn,
3375                    QED_MSG_SP,
3376                    "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
3377                    QED_MFW_GET_FIELD(p_out_params->mcp_param,
3378                                      FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3379                    QED_MFW_GET_FIELD(p_out_params->mcp_param,
3380                                      FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3381                    p_out_params->resc_num,
3382                    p_out_params->resc_start,
3383                    p_out_params->vf_resc_num,
3384                    p_out_params->vf_resc_start, p_out_params->flags);
3385
3386         return 0;
3387 }
3388
3389 int
3390 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
3391                          struct qed_ptt *p_ptt,
3392                          enum qed_resources res_id,
3393                          u32 resc_max_val, u32 *p_mcp_resp)
3394 {
3395         struct qed_resc_alloc_out_params out_params;
3396         struct qed_resc_alloc_in_params in_params;
3397         int rc;
3398
3399         memset(&in_params, 0, sizeof(in_params));
3400         in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
3401         in_params.res_id = res_id;
3402         in_params.resc_max_val = resc_max_val;
3403         memset(&out_params, 0, sizeof(out_params));
3404         rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3405                                          &out_params);
3406         if (rc)
3407                 return rc;
3408
3409         *p_mcp_resp = out_params.mcp_resp;
3410
3411         return 0;
3412 }
3413
3414 int
3415 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
3416                       struct qed_ptt *p_ptt,
3417                       enum qed_resources res_id,
3418                       u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
3419 {
3420         struct qed_resc_alloc_out_params out_params;
3421         struct qed_resc_alloc_in_params in_params;
3422         int rc;
3423
3424         memset(&in_params, 0, sizeof(in_params));
3425         in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
3426         in_params.res_id = res_id;
3427         memset(&out_params, 0, sizeof(out_params));
3428         rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3429                                          &out_params);
3430         if (rc)
3431                 return rc;
3432
3433         *p_mcp_resp = out_params.mcp_resp;
3434
3435         if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3436                 *p_resc_num = out_params.resc_num;
3437                 *p_resc_start = out_params.resc_start;
3438         }
3439
3440         return 0;
3441 }
3442
3443 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3444 {
3445         u32 mcp_resp, mcp_param;
3446
3447         return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
3448                            &mcp_resp, &mcp_param);
3449 }
3450
3451 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
3452                                 struct qed_ptt *p_ptt,
3453                                 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
3454 {
3455         int rc;
3456
3457         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
3458                          p_mcp_resp, p_mcp_param);
3459         if (rc)
3460                 return rc;
3461
3462         if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
3463                 DP_INFO(p_hwfn,
3464                         "The resource command is unsupported by the MFW\n");
3465                 return -EINVAL;
3466         }
3467
3468         if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
3469                 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
3470
3471                 DP_NOTICE(p_hwfn,
3472                           "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
3473                           param, opcode);
3474                 return -EINVAL;
3475         }
3476
3477         return rc;
3478 }
3479
3480 static int
3481 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3482                     struct qed_ptt *p_ptt,
3483                     struct qed_resc_lock_params *p_params)
3484 {
3485         u32 param = 0, mcp_resp, mcp_param;
3486         u8 opcode;
3487         int rc;
3488
3489         switch (p_params->timeout) {
3490         case QED_MCP_RESC_LOCK_TO_DEFAULT:
3491                 opcode = RESOURCE_OPCODE_REQ;
3492                 p_params->timeout = 0;
3493                 break;
3494         case QED_MCP_RESC_LOCK_TO_NONE:
3495                 opcode = RESOURCE_OPCODE_REQ_WO_AGING;
3496                 p_params->timeout = 0;
3497                 break;
3498         default:
3499                 opcode = RESOURCE_OPCODE_REQ_W_AGING;
3500                 break;
3501         }
3502
3503         QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3504         QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3505         QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
3506
3507         DP_VERBOSE(p_hwfn,
3508                    QED_MSG_SP,
3509                    "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
3510                    param, p_params->timeout, opcode, p_params->resource);
3511
3512         /* Attempt to acquire the resource */
3513         rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3514         if (rc)
3515                 return rc;
3516
3517         /* Analyze the response */
3518         p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
3519         opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3520
3521         DP_VERBOSE(p_hwfn,
3522                    QED_MSG_SP,
3523                    "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
3524                    mcp_param, opcode, p_params->owner);
3525
3526         switch (opcode) {
3527         case RESOURCE_OPCODE_GNT:
3528                 p_params->b_granted = true;
3529                 break;
3530         case RESOURCE_OPCODE_BUSY:
3531                 p_params->b_granted = false;
3532                 break;
3533         default:
3534                 DP_NOTICE(p_hwfn,
3535                           "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3536                           mcp_param, opcode);
3537                 return -EINVAL;
3538         }
3539
3540         return 0;
3541 }
3542
3543 int
3544 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3545                   struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3546 {
3547         u32 retry_cnt = 0;
3548         int rc;
3549
3550         do {
3551                 /* No need for an interval before the first iteration */
3552                 if (retry_cnt) {
3553                         if (p_params->sleep_b4_retry) {
3554                                 u16 retry_interval_in_ms =
3555                                     DIV_ROUND_UP(p_params->retry_interval,
3556                                                  1000);
3557
3558                                 msleep(retry_interval_in_ms);
3559                         } else {
3560                                 udelay(p_params->retry_interval);
3561                         }
3562                 }
3563
3564                 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3565                 if (rc)
3566                         return rc;
3567
3568                 if (p_params->b_granted)
3569                         break;
3570         } while (retry_cnt++ < p_params->retry_num);
3571
3572         return 0;
3573 }
3574
3575 int
3576 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3577                     struct qed_ptt *p_ptt,
3578                     struct qed_resc_unlock_params *p_params)
3579 {
3580         u32 param = 0, mcp_resp, mcp_param;
3581         u8 opcode;
3582         int rc;
3583
3584         opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3585                                    : RESOURCE_OPCODE_RELEASE;
3586         QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3587         QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3588
3589         DP_VERBOSE(p_hwfn, QED_MSG_SP,
3590                    "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3591                    param, opcode, p_params->resource);
3592
3593         /* Attempt to release the resource */
3594         rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3595         if (rc)
3596                 return rc;
3597
3598         /* Analyze the response */
3599         opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3600
3601         DP_VERBOSE(p_hwfn, QED_MSG_SP,
3602                    "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3603                    mcp_param, opcode);
3604
3605         switch (opcode) {
3606         case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3607                 DP_INFO(p_hwfn,
3608                         "Resource unlock request for an already released resource [%d]\n",
3609                         p_params->resource);
3610                 /* Fallthrough */
3611         case RESOURCE_OPCODE_RELEASED:
3612                 p_params->b_released = true;
3613                 break;
3614         case RESOURCE_OPCODE_WRONG_OWNER:
3615                 p_params->b_released = false;
3616                 break;
3617         default:
3618                 DP_NOTICE(p_hwfn,
3619                           "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3620                           mcp_param, opcode);
3621                 return -EINVAL;
3622         }
3623
3624         return 0;
3625 }
3626
3627 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3628                                     struct qed_resc_unlock_params *p_unlock,
3629                                     enum qed_resc_lock
3630                                     resource, bool b_is_permanent)
3631 {
3632         if (p_lock) {
3633                 memset(p_lock, 0, sizeof(*p_lock));
3634
3635                 /* Permanent resources don't require aging, and there's no
3636                  * point in trying to acquire them more than once since it's
3637                  * unexpected another entity would release them.
3638                  */
3639                 if (b_is_permanent) {
3640                         p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3641                 } else {
3642                         p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3643                         p_lock->retry_interval =
3644                             QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3645                         p_lock->sleep_b4_retry = true;
3646                 }
3647
3648                 p_lock->resource = resource;
3649         }
3650
3651         if (p_unlock) {
3652                 memset(p_unlock, 0, sizeof(*p_unlock));
3653                 p_unlock->resource = resource;
3654         }
3655 }
3656
3657 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3658 {
3659         u32 mcp_resp;
3660         int rc;
3661
3662         rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3663                          0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3664         if (!rc)
3665                 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3666                            "MFW supported features: %08x\n",
3667                            p_hwfn->mcp_info->capabilities);
3668
3669         return rc;
3670 }
3671
3672 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3673 {
3674         u32 mcp_resp, mcp_param, features;
3675
3676         features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE |
3677                    DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK;
3678
3679         return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3680                            features, &mcp_resp, &mcp_param);
3681 }