6af9a7eee114969ed874161ffe059bfba57f40ac
[sfrench/cifs-2.6.git] / drivers / net / ethernet / natsemi / ns83820.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #define VERSION "0.23"
3 /* ns83820.c by Benjamin LaHaise with contributions.
4  *
5  * Questions/comments/discussion to linux-ns83820@kvack.org.
6  *
7  * $Revision: 1.34.2.23 $
8  *
9  * Copyright 2001 Benjamin LaHaise.
10  * Copyright 2001, 2002 Red Hat.
11  *
12  * Mmmm, chocolate vanilla mocha...
13  *
14  * ChangeLog
15  * =========
16  *      20010414        0.1 - created
17  *      20010622        0.2 - basic rx and tx.
18  *      20010711        0.3 - added duplex and link state detection support.
19  *      20010713        0.4 - zero copy, no hangs.
20  *                      0.5 - 64 bit dma support (davem will hate me for this)
21  *                          - disable jumbo frames to avoid tx hangs
22  *                          - work around tx deadlocks on my 1.02 card via
23  *                            fiddling with TXCFG
24  *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
25  *      20010816        0.7 - misc cleanups
26  *      20010826        0.8 - fix critical zero copy bugs
27  *                      0.9 - internal experiment
28  *      20010827        0.10 - fix ia64 unaligned access.
29  *      20010906        0.11 - accept all packets with checksum errors as
30  *                             otherwise fragments get lost
31  *                           - fix >> 32 bugs
32  *                      0.12 - add statistics counters
33  *                           - add allmulti/promisc support
34  *      20011009        0.13 - hotplug support, other smaller pci api cleanups
35  *      20011204        0.13a - optical transceiver support added
36  *                              by Michael Clark <michael@metaparadigm.com>
37  *      20011205        0.13b - call register_netdev earlier in initialization
38  *                              suppress duplicate link status messages
39  *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
40  *      20011204        0.15    get ppc (big endian) working
41  *      20011218        0.16    various cleanups
42  *      20020310        0.17    speedups
43  *      20020610        0.18 -  actually use the pci dma api for highmem
44  *                           -  remove pci latency register fiddling
45  *                      0.19 -  better bist support
46  *                           -  add ihr and reset_phy parameters
47  *                           -  gmii bus probing
48  *                           -  fix missed txok introduced during performance
49  *                              tuning
50  *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
51  *      20040828        0.21 -  add hardware vlan accleration
52  *                              by Neil Horman <nhorman@redhat.com>
53  *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
54  *                           -  removal of dead code from Adrian Bunk
55  *                           -  fix half duplex collision behaviour
56  * Driver Overview
57  * ===============
58  *
59  * This driver was originally written for the National Semiconductor
60  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
61  * this code will turn out to be a) clean, b) correct, and c) fast.
62  * With that in mind, I'm aiming to split the code up as much as
63  * reasonably possible.  At present there are X major sections that
64  * break down into a) packet receive, b) packet transmit, c) link
65  * management, d) initialization and configuration.  Where possible,
66  * these code paths are designed to run in parallel.
67  *
68  * This driver has been tested and found to work with the following
69  * cards (in no particular order):
70  *
71  *      Cameo           SOHO-GA2000T    SOHO-GA2500T
72  *      D-Link          DGE-500T
73  *      PureData        PDP8023Z-TG
74  *      SMC             SMC9452TX       SMC9462TX
75  *      Netgear         GA621
76  *
77  * Special thanks to SMC for providing hardware to test this driver on.
78  *
79  * Reports of success or failure would be greatly appreciated.
80  */
81 //#define dprintk               printk
82 #define dprintk(x...)           do { } while (0)
83
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/types.h>
87 #include <linux/pci.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/delay.h>
92 #include <linux/workqueue.h>
93 #include <linux/init.h>
94 #include <linux/interrupt.h>
95 #include <linux/ip.h>   /* for iph */
96 #include <linux/in.h>   /* for IPPROTO_... */
97 #include <linux/compiler.h>
98 #include <linux/prefetch.h>
99 #include <linux/ethtool.h>
100 #include <linux/sched.h>
101 #include <linux/timer.h>
102 #include <linux/if_vlan.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/jiffies.h>
105 #include <linux/slab.h>
106
107 #include <asm/io.h>
108 #include <linux/uaccess.h>
109
110 #define DRV_NAME "ns83820"
111
112 /* Global parameters.  See module_param near the bottom. */
113 static int ihr = 2;
114 static int reset_phy = 0;
115 static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
116
117 /* Dprintk is used for more interesting debug events */
118 #undef Dprintk
119 #define Dprintk                 dprintk
120
121 /* tunables */
122 #define RX_BUF_SIZE     1500    /* 8192 */
123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
124 #define NS83820_VLAN_ACCEL_SUPPORT
125 #endif
126
127 /* Must not exceed ~65000. */
128 #define NR_RX_DESC      64
129 #define NR_TX_DESC      128
130
131 /* not tunable */
132 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
133
134 #define MIN_TX_DESC_FREE        8
135
136 /* register defines */
137 #define CFGCS           0x04
138
139 #define CR_TXE          0x00000001
140 #define CR_TXD          0x00000002
141 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
142  * The Receive engine skips one descriptor and moves
143  * onto the next one!! */
144 #define CR_RXE          0x00000004
145 #define CR_RXD          0x00000008
146 #define CR_TXR          0x00000010
147 #define CR_RXR          0x00000020
148 #define CR_SWI          0x00000080
149 #define CR_RST          0x00000100
150
151 #define PTSCR_EEBIST_FAIL       0x00000001
152 #define PTSCR_EEBIST_EN         0x00000002
153 #define PTSCR_EELOAD_EN         0x00000004
154 #define PTSCR_RBIST_FAIL        0x000001b8
155 #define PTSCR_RBIST_DONE        0x00000200
156 #define PTSCR_RBIST_EN          0x00000400
157 #define PTSCR_RBIST_RST         0x00002000
158
159 #define MEAR_EEDI               0x00000001
160 #define MEAR_EEDO               0x00000002
161 #define MEAR_EECLK              0x00000004
162 #define MEAR_EESEL              0x00000008
163 #define MEAR_MDIO               0x00000010
164 #define MEAR_MDDIR              0x00000020
165 #define MEAR_MDC                0x00000040
166
167 #define ISR_TXDESC3     0x40000000
168 #define ISR_TXDESC2     0x20000000
169 #define ISR_TXDESC1     0x10000000
170 #define ISR_TXDESC0     0x08000000
171 #define ISR_RXDESC3     0x04000000
172 #define ISR_RXDESC2     0x02000000
173 #define ISR_RXDESC1     0x01000000
174 #define ISR_RXDESC0     0x00800000
175 #define ISR_TXRCMP      0x00400000
176 #define ISR_RXRCMP      0x00200000
177 #define ISR_DPERR       0x00100000
178 #define ISR_SSERR       0x00080000
179 #define ISR_RMABT       0x00040000
180 #define ISR_RTABT       0x00020000
181 #define ISR_RXSOVR      0x00010000
182 #define ISR_HIBINT      0x00008000
183 #define ISR_PHY         0x00004000
184 #define ISR_PME         0x00002000
185 #define ISR_SWI         0x00001000
186 #define ISR_MIB         0x00000800
187 #define ISR_TXURN       0x00000400
188 #define ISR_TXIDLE      0x00000200
189 #define ISR_TXERR       0x00000100
190 #define ISR_TXDESC      0x00000080
191 #define ISR_TXOK        0x00000040
192 #define ISR_RXORN       0x00000020
193 #define ISR_RXIDLE      0x00000010
194 #define ISR_RXEARLY     0x00000008
195 #define ISR_RXERR       0x00000004
196 #define ISR_RXDESC      0x00000002
197 #define ISR_RXOK        0x00000001
198
199 #define TXCFG_CSI       0x80000000
200 #define TXCFG_HBI       0x40000000
201 #define TXCFG_MLB       0x20000000
202 #define TXCFG_ATP       0x10000000
203 #define TXCFG_ECRETRY   0x00800000
204 #define TXCFG_BRST_DIS  0x00080000
205 #define TXCFG_MXDMA1024 0x00000000
206 #define TXCFG_MXDMA512  0x00700000
207 #define TXCFG_MXDMA256  0x00600000
208 #define TXCFG_MXDMA128  0x00500000
209 #define TXCFG_MXDMA64   0x00400000
210 #define TXCFG_MXDMA32   0x00300000
211 #define TXCFG_MXDMA16   0x00200000
212 #define TXCFG_MXDMA8    0x00100000
213
214 #define CFG_LNKSTS      0x80000000
215 #define CFG_SPDSTS      0x60000000
216 #define CFG_SPDSTS1     0x40000000
217 #define CFG_SPDSTS0     0x20000000
218 #define CFG_DUPSTS      0x10000000
219 #define CFG_TBI_EN      0x01000000
220 #define CFG_MODE_1000   0x00400000
221 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
222  * Read the Phy response and then configure the MAC accordingly */
223 #define CFG_AUTO_1000   0x00200000
224 #define CFG_PINT_CTL    0x001c0000
225 #define CFG_PINT_DUPSTS 0x00100000
226 #define CFG_PINT_LNKSTS 0x00080000
227 #define CFG_PINT_SPDSTS 0x00040000
228 #define CFG_TMRTEST     0x00020000
229 #define CFG_MRM_DIS     0x00010000
230 #define CFG_MWI_DIS     0x00008000
231 #define CFG_T64ADDR     0x00004000
232 #define CFG_PCI64_DET   0x00002000
233 #define CFG_DATA64_EN   0x00001000
234 #define CFG_M64ADDR     0x00000800
235 #define CFG_PHY_RST     0x00000400
236 #define CFG_PHY_DIS     0x00000200
237 #define CFG_EXTSTS_EN   0x00000100
238 #define CFG_REQALG      0x00000080
239 #define CFG_SB          0x00000040
240 #define CFG_POW         0x00000020
241 #define CFG_EXD         0x00000010
242 #define CFG_PESEL       0x00000008
243 #define CFG_BROM_DIS    0x00000004
244 #define CFG_EXT_125     0x00000002
245 #define CFG_BEM         0x00000001
246
247 #define EXTSTS_UDPPKT   0x00200000
248 #define EXTSTS_TCPPKT   0x00080000
249 #define EXTSTS_IPPKT    0x00020000
250 #define EXTSTS_VPKT     0x00010000
251 #define EXTSTS_VTG_MASK 0x0000ffff
252
253 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
254
255 #define MIBC_MIBS       0x00000008
256 #define MIBC_ACLR       0x00000004
257 #define MIBC_FRZ        0x00000002
258 #define MIBC_WRN        0x00000001
259
260 #define PCR_PSEN        (1 << 31)
261 #define PCR_PS_MCAST    (1 << 30)
262 #define PCR_PS_DA       (1 << 29)
263 #define PCR_STHI_8      (3 << 23)
264 #define PCR_STLO_4      (1 << 23)
265 #define PCR_FFHI_8K     (3 << 21)
266 #define PCR_FFLO_4K     (1 << 21)
267 #define PCR_PAUSE_CNT   0xFFFE
268
269 #define RXCFG_AEP       0x80000000
270 #define RXCFG_ARP       0x40000000
271 #define RXCFG_STRIPCRC  0x20000000
272 #define RXCFG_RX_FD     0x10000000
273 #define RXCFG_ALP       0x08000000
274 #define RXCFG_AIRL      0x04000000
275 #define RXCFG_MXDMA512  0x00700000
276 #define RXCFG_DRTH      0x0000003e
277 #define RXCFG_DRTH0     0x00000002
278
279 #define RFCR_RFEN       0x80000000
280 #define RFCR_AAB        0x40000000
281 #define RFCR_AAM        0x20000000
282 #define RFCR_AAU        0x10000000
283 #define RFCR_APM        0x08000000
284 #define RFCR_APAT       0x07800000
285 #define RFCR_APAT3      0x04000000
286 #define RFCR_APAT2      0x02000000
287 #define RFCR_APAT1      0x01000000
288 #define RFCR_APAT0      0x00800000
289 #define RFCR_AARP       0x00400000
290 #define RFCR_MHEN       0x00200000
291 #define RFCR_UHEN       0x00100000
292 #define RFCR_ULM        0x00080000
293
294 #define VRCR_RUDPE      0x00000080
295 #define VRCR_RTCPE      0x00000040
296 #define VRCR_RIPE       0x00000020
297 #define VRCR_IPEN       0x00000010
298 #define VRCR_DUTF       0x00000008
299 #define VRCR_DVTF       0x00000004
300 #define VRCR_VTREN      0x00000002
301 #define VRCR_VTDEN      0x00000001
302
303 #define VTCR_PPCHK      0x00000008
304 #define VTCR_GCHK       0x00000004
305 #define VTCR_VPPTI      0x00000002
306 #define VTCR_VGTI       0x00000001
307
308 #define CR              0x00
309 #define CFG             0x04
310 #define MEAR            0x08
311 #define PTSCR           0x0c
312 #define ISR             0x10
313 #define IMR             0x14
314 #define IER             0x18
315 #define IHR             0x1c
316 #define TXDP            0x20
317 #define TXDP_HI         0x24
318 #define TXCFG           0x28
319 #define GPIOR           0x2c
320 #define RXDP            0x30
321 #define RXDP_HI         0x34
322 #define RXCFG           0x38
323 #define PQCR            0x3c
324 #define WCSR            0x40
325 #define PCR             0x44
326 #define RFCR            0x48
327 #define RFDR            0x4c
328
329 #define SRR             0x58
330
331 #define VRCR            0xbc
332 #define VTCR            0xc0
333 #define VDR             0xc4
334 #define CCSR            0xcc
335
336 #define TBICR           0xe0
337 #define TBISR           0xe4
338 #define TANAR           0xe8
339 #define TANLPAR         0xec
340 #define TANER           0xf0
341 #define TESR            0xf4
342
343 #define TBICR_MR_AN_ENABLE      0x00001000
344 #define TBICR_MR_RESTART_AN     0x00000200
345
346 #define TBISR_MR_LINK_STATUS    0x00000020
347 #define TBISR_MR_AN_COMPLETE    0x00000004
348
349 #define TANAR_PS2               0x00000100
350 #define TANAR_PS1               0x00000080
351 #define TANAR_HALF_DUP          0x00000040
352 #define TANAR_FULL_DUP          0x00000020
353
354 #define GPIOR_GP5_OE            0x00000200
355 #define GPIOR_GP4_OE            0x00000100
356 #define GPIOR_GP3_OE            0x00000080
357 #define GPIOR_GP2_OE            0x00000040
358 #define GPIOR_GP1_OE            0x00000020
359 #define GPIOR_GP3_OUT           0x00000004
360 #define GPIOR_GP1_OUT           0x00000001
361
362 #define LINK_AUTONEGOTIATE      0x01
363 #define LINK_DOWN               0x02
364 #define LINK_UP                 0x04
365
366 #define HW_ADDR_LEN     sizeof(dma_addr_t)
367 #define desc_addr_set(desc, addr)                               \
368         do {                                                    \
369                 ((desc)[0] = cpu_to_le32(addr));                \
370                 if (HW_ADDR_LEN == 8)                           \
371                         (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
372         } while(0)
373 #define desc_addr_get(desc)                                     \
374         (le32_to_cpu((desc)[0]) | \
375         (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
376
377 #define DESC_LINK               0
378 #define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
379 #define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
380 #define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
381
382 #define CMDSTS_OWN      0x80000000
383 #define CMDSTS_MORE     0x40000000
384 #define CMDSTS_INTR     0x20000000
385 #define CMDSTS_ERR      0x10000000
386 #define CMDSTS_OK       0x08000000
387 #define CMDSTS_RUNT     0x00200000
388 #define CMDSTS_LEN_MASK 0x0000ffff
389
390 #define CMDSTS_DEST_MASK        0x01800000
391 #define CMDSTS_DEST_SELF        0x00800000
392 #define CMDSTS_DEST_MULTI       0x01000000
393
394 #define DESC_SIZE       8               /* Should be cache line sized */
395
396 struct rx_info {
397         spinlock_t      lock;
398         int             up;
399         unsigned long   idle;
400
401         struct sk_buff  *skbs[NR_RX_DESC];
402
403         __le32          *next_rx_desc;
404         u16             next_rx, next_empty;
405
406         __le32          *descs;
407         dma_addr_t      phy_descs;
408 };
409
410
411 struct ns83820 {
412         u8                      __iomem *base;
413
414         struct pci_dev          *pci_dev;
415         struct net_device       *ndev;
416
417         struct rx_info          rx_info;
418         struct tasklet_struct   rx_tasklet;
419
420         unsigned                ihr;
421         struct work_struct      tq_refill;
422
423         /* protects everything below.  irqsave when using. */
424         spinlock_t              misc_lock;
425
426         u32                     CFG_cache;
427
428         u32                     MEAR_cache;
429         u32                     IMR_cache;
430
431         unsigned                linkstate;
432
433         spinlock_t      tx_lock;
434
435         u16             tx_done_idx;
436         u16             tx_idx;
437         volatile u16    tx_free_idx;    /* idx of free desc chain */
438         u16             tx_intr_idx;
439
440         atomic_t        nr_tx_skbs;
441         struct sk_buff  *tx_skbs[NR_TX_DESC];
442
443         char            pad[16] __attribute__((aligned(16)));
444         __le32          *tx_descs;
445         dma_addr_t      tx_phy_descs;
446
447         struct timer_list       tx_watchdog;
448 };
449
450 static inline struct ns83820 *PRIV(struct net_device *dev)
451 {
452         return netdev_priv(dev);
453 }
454
455 #define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
456
457 static inline void kick_rx(struct net_device *ndev)
458 {
459         struct ns83820 *dev = PRIV(ndev);
460         dprintk("kick_rx: maybe kicking\n");
461         if (test_and_clear_bit(0, &dev->rx_info.idle)) {
462                 dprintk("actually kicking\n");
463                 writel(dev->rx_info.phy_descs +
464                         (4 * DESC_SIZE * dev->rx_info.next_rx),
465                        dev->base + RXDP);
466                 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
467                         printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
468                                 ndev->name);
469                 __kick_rx(dev);
470         }
471 }
472
473 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
474 #define start_tx_okay(dev)      \
475         (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
476
477 /* Packet Receiver
478  *
479  * The hardware supports linked lists of receive descriptors for
480  * which ownership is transferred back and forth by means of an
481  * ownership bit.  While the hardware does support the use of a
482  * ring for receive descriptors, we only make use of a chain in
483  * an attempt to reduce bus traffic under heavy load scenarios.
484  * This will also make bugs a bit more obvious.  The current code
485  * only makes use of a single rx chain; I hope to implement
486  * priority based rx for version 1.0.  Goal: even under overload
487  * conditions, still route realtime traffic with as low jitter as
488  * possible.
489  */
490 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
491 {
492         desc_addr_set(desc + DESC_LINK, link);
493         desc_addr_set(desc + DESC_BUFPTR, buf);
494         desc[DESC_EXTSTS] = cpu_to_le32(extsts);
495         mb();
496         desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
497 }
498
499 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
500 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
501 {
502         unsigned next_empty;
503         u32 cmdsts;
504         __le32 *sg;
505         dma_addr_t buf;
506
507         next_empty = dev->rx_info.next_empty;
508
509         /* don't overrun last rx marker */
510         if (unlikely(nr_rx_empty(dev) <= 2)) {
511                 kfree_skb(skb);
512                 return 1;
513         }
514
515 #if 0
516         dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
517                 dev->rx_info.next_empty,
518                 dev->rx_info.nr_used,
519                 dev->rx_info.next_rx
520                 );
521 #endif
522
523         sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
524         BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
525         dev->rx_info.skbs[next_empty] = skb;
526
527         dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
528         cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
529         buf = pci_map_single(dev->pci_dev, skb->data,
530                              REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
531         build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
532         /* update link of previous rx */
533         if (likely(next_empty != dev->rx_info.next_rx))
534                 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
535
536         return 0;
537 }
538
539 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
540 {
541         struct ns83820 *dev = PRIV(ndev);
542         unsigned i;
543         unsigned long flags = 0;
544
545         if (unlikely(nr_rx_empty(dev) <= 2))
546                 return 0;
547
548         dprintk("rx_refill(%p)\n", ndev);
549         if (gfp == GFP_ATOMIC)
550                 spin_lock_irqsave(&dev->rx_info.lock, flags);
551         for (i=0; i<NR_RX_DESC; i++) {
552                 struct sk_buff *skb;
553                 long res;
554
555                 /* extra 16 bytes for alignment */
556                 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
557                 if (unlikely(!skb))
558                         break;
559
560                 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
561                 if (gfp != GFP_ATOMIC)
562                         spin_lock_irqsave(&dev->rx_info.lock, flags);
563                 res = ns83820_add_rx_skb(dev, skb);
564                 if (gfp != GFP_ATOMIC)
565                         spin_unlock_irqrestore(&dev->rx_info.lock, flags);
566                 if (res) {
567                         i = 1;
568                         break;
569                 }
570         }
571         if (gfp == GFP_ATOMIC)
572                 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
573
574         return i ? 0 : -ENOMEM;
575 }
576
577 static void rx_refill_atomic(struct net_device *ndev)
578 {
579         rx_refill(ndev, GFP_ATOMIC);
580 }
581
582 /* REFILL */
583 static inline void queue_refill(struct work_struct *work)
584 {
585         struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
586         struct net_device *ndev = dev->ndev;
587
588         rx_refill(ndev, GFP_KERNEL);
589         if (dev->rx_info.up)
590                 kick_rx(ndev);
591 }
592
593 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
594 {
595         build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
596 }
597
598 static void phy_intr(struct net_device *ndev)
599 {
600         struct ns83820 *dev = PRIV(ndev);
601         static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
602         u32 cfg, new_cfg;
603         u32 tbisr, tanar, tanlpar;
604         int speed, fullduplex, newlinkstate;
605
606         cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
607
608         if (dev->CFG_cache & CFG_TBI_EN) {
609                 /* we have an optical transceiver */
610                 tbisr = readl(dev->base + TBISR);
611                 tanar = readl(dev->base + TANAR);
612                 tanlpar = readl(dev->base + TANLPAR);
613                 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
614                         tbisr, tanar, tanlpar);
615
616                 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
617                       (tanar & TANAR_FULL_DUP)) ) {
618
619                         /* both of us are full duplex */
620                         writel(readl(dev->base + TXCFG)
621                                | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
622                                dev->base + TXCFG);
623                         writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
624                                dev->base + RXCFG);
625                         /* Light up full duplex LED */
626                         writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
627                                dev->base + GPIOR);
628
629                 } else if (((tanlpar & TANAR_HALF_DUP) &&
630                             (tanar & TANAR_HALF_DUP)) ||
631                            ((tanlpar & TANAR_FULL_DUP) &&
632                             (tanar & TANAR_HALF_DUP)) ||
633                            ((tanlpar & TANAR_HALF_DUP) &&
634                             (tanar & TANAR_FULL_DUP))) {
635
636                         /* one or both of us are half duplex */
637                         writel((readl(dev->base + TXCFG)
638                                 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
639                                dev->base + TXCFG);
640                         writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
641                                dev->base + RXCFG);
642                         /* Turn off full duplex LED */
643                         writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
644                                dev->base + GPIOR);
645                 }
646
647                 speed = 4; /* 1000F */
648
649         } else {
650                 /* we have a copper transceiver */
651                 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
652
653                 if (cfg & CFG_SPDSTS1)
654                         new_cfg |= CFG_MODE_1000;
655                 else
656                         new_cfg &= ~CFG_MODE_1000;
657
658                 speed = ((cfg / CFG_SPDSTS0) & 3);
659                 fullduplex = (cfg & CFG_DUPSTS);
660
661                 if (fullduplex) {
662                         new_cfg |= CFG_SB;
663                         writel(readl(dev->base + TXCFG)
664                                         | TXCFG_CSI | TXCFG_HBI,
665                                dev->base + TXCFG);
666                         writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
667                                dev->base + RXCFG);
668                 } else {
669                         writel(readl(dev->base + TXCFG)
670                                         & ~(TXCFG_CSI | TXCFG_HBI),
671                                dev->base + TXCFG);
672                         writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
673                                dev->base + RXCFG);
674                 }
675
676                 if ((cfg & CFG_LNKSTS) &&
677                     ((new_cfg ^ dev->CFG_cache) != 0)) {
678                         writel(new_cfg, dev->base + CFG);
679                         dev->CFG_cache = new_cfg;
680                 }
681
682                 dev->CFG_cache &= ~CFG_SPDSTS;
683                 dev->CFG_cache |= cfg & CFG_SPDSTS;
684         }
685
686         newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
687
688         if (newlinkstate & LINK_UP &&
689             dev->linkstate != newlinkstate) {
690                 netif_start_queue(ndev);
691                 netif_wake_queue(ndev);
692                 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
693                         ndev->name,
694                         speeds[speed],
695                         fullduplex ? "full" : "half");
696         } else if (newlinkstate & LINK_DOWN &&
697                    dev->linkstate != newlinkstate) {
698                 netif_stop_queue(ndev);
699                 printk(KERN_INFO "%s: link now down.\n", ndev->name);
700         }
701
702         dev->linkstate = newlinkstate;
703 }
704
705 static int ns83820_setup_rx(struct net_device *ndev)
706 {
707         struct ns83820 *dev = PRIV(ndev);
708         unsigned i;
709         int ret;
710
711         dprintk("ns83820_setup_rx(%p)\n", ndev);
712
713         dev->rx_info.idle = 1;
714         dev->rx_info.next_rx = 0;
715         dev->rx_info.next_rx_desc = dev->rx_info.descs;
716         dev->rx_info.next_empty = 0;
717
718         for (i=0; i<NR_RX_DESC; i++)
719                 clear_rx_desc(dev, i);
720
721         writel(0, dev->base + RXDP_HI);
722         writel(dev->rx_info.phy_descs, dev->base + RXDP);
723
724         ret = rx_refill(ndev, GFP_KERNEL);
725         if (!ret) {
726                 dprintk("starting receiver\n");
727                 /* prevent the interrupt handler from stomping on us */
728                 spin_lock_irq(&dev->rx_info.lock);
729
730                 writel(0x0001, dev->base + CCSR);
731                 writel(0, dev->base + RFCR);
732                 writel(0x7fc00000, dev->base + RFCR);
733                 writel(0xffc00000, dev->base + RFCR);
734
735                 dev->rx_info.up = 1;
736
737                 phy_intr(ndev);
738
739                 /* Okay, let it rip */
740                 spin_lock(&dev->misc_lock);
741                 dev->IMR_cache |= ISR_PHY;
742                 dev->IMR_cache |= ISR_RXRCMP;
743                 //dev->IMR_cache |= ISR_RXERR;
744                 //dev->IMR_cache |= ISR_RXOK;
745                 dev->IMR_cache |= ISR_RXORN;
746                 dev->IMR_cache |= ISR_RXSOVR;
747                 dev->IMR_cache |= ISR_RXDESC;
748                 dev->IMR_cache |= ISR_RXIDLE;
749                 dev->IMR_cache |= ISR_TXDESC;
750                 dev->IMR_cache |= ISR_TXIDLE;
751
752                 writel(dev->IMR_cache, dev->base + IMR);
753                 writel(1, dev->base + IER);
754                 spin_unlock(&dev->misc_lock);
755
756                 kick_rx(ndev);
757
758                 spin_unlock_irq(&dev->rx_info.lock);
759         }
760         return ret;
761 }
762
763 static void ns83820_cleanup_rx(struct ns83820 *dev)
764 {
765         unsigned i;
766         unsigned long flags;
767
768         dprintk("ns83820_cleanup_rx(%p)\n", dev);
769
770         /* disable receive interrupts */
771         spin_lock_irqsave(&dev->misc_lock, flags);
772         dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
773         writel(dev->IMR_cache, dev->base + IMR);
774         spin_unlock_irqrestore(&dev->misc_lock, flags);
775
776         /* synchronize with the interrupt handler and kill it */
777         dev->rx_info.up = 0;
778         synchronize_irq(dev->pci_dev->irq);
779
780         /* touch the pci bus... */
781         readl(dev->base + IMR);
782
783         /* assumes the transmitter is already disabled and reset */
784         writel(0, dev->base + RXDP_HI);
785         writel(0, dev->base + RXDP);
786
787         for (i=0; i<NR_RX_DESC; i++) {
788                 struct sk_buff *skb = dev->rx_info.skbs[i];
789                 dev->rx_info.skbs[i] = NULL;
790                 clear_rx_desc(dev, i);
791                 kfree_skb(skb);
792         }
793 }
794
795 static void ns83820_rx_kick(struct net_device *ndev)
796 {
797         struct ns83820 *dev = PRIV(ndev);
798         /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
799                 if (dev->rx_info.up) {
800                         rx_refill_atomic(ndev);
801                         kick_rx(ndev);
802                 }
803         }
804
805         if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
806                 schedule_work(&dev->tq_refill);
807         else
808                 kick_rx(ndev);
809         if (dev->rx_info.idle)
810                 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
811 }
812
813 /* rx_irq
814  *
815  */
816 static void rx_irq(struct net_device *ndev)
817 {
818         struct ns83820 *dev = PRIV(ndev);
819         struct rx_info *info = &dev->rx_info;
820         unsigned next_rx;
821         int rx_rc, len;
822         u32 cmdsts;
823         __le32 *desc;
824         unsigned long flags;
825         int nr = 0;
826
827         dprintk("rx_irq(%p)\n", ndev);
828         dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
829                 readl(dev->base + RXDP),
830                 (long)(dev->rx_info.phy_descs),
831                 (int)dev->rx_info.next_rx,
832                 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
833                 (int)dev->rx_info.next_empty,
834                 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
835                 );
836
837         spin_lock_irqsave(&info->lock, flags);
838         if (!info->up)
839                 goto out;
840
841         dprintk("walking descs\n");
842         next_rx = info->next_rx;
843         desc = info->next_rx_desc;
844         while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
845                (cmdsts != CMDSTS_OWN)) {
846                 struct sk_buff *skb;
847                 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
848                 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
849
850                 dprintk("cmdsts: %08x\n", cmdsts);
851                 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
852                 dprintk("extsts: %08x\n", extsts);
853
854                 skb = info->skbs[next_rx];
855                 info->skbs[next_rx] = NULL;
856                 info->next_rx = (next_rx + 1) % NR_RX_DESC;
857
858                 mb();
859                 clear_rx_desc(dev, next_rx);
860
861                 pci_unmap_single(dev->pci_dev, bufptr,
862                                  RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
863                 len = cmdsts & CMDSTS_LEN_MASK;
864 #ifdef NS83820_VLAN_ACCEL_SUPPORT
865                 /* NH: As was mentioned below, this chip is kinda
866                  * brain dead about vlan tag stripping.  Frames
867                  * that are 64 bytes with a vlan header appended
868                  * like arp frames, or pings, are flagged as Runts
869                  * when the tag is stripped and hardware.  This
870                  * also means that the OK bit in the descriptor
871                  * is cleared when the frame comes in so we have
872                  * to do a specific length check here to make sure
873                  * the frame would have been ok, had we not stripped
874                  * the tag.
875                  */
876                 if (likely((CMDSTS_OK & cmdsts) ||
877                         ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
878 #else
879                 if (likely(CMDSTS_OK & cmdsts)) {
880 #endif
881                         skb_put(skb, len);
882                         if (unlikely(!skb))
883                                 goto netdev_mangle_me_harder_failed;
884                         if (cmdsts & CMDSTS_DEST_MULTI)
885                                 ndev->stats.multicast++;
886                         ndev->stats.rx_packets++;
887                         ndev->stats.rx_bytes += len;
888                         if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
889                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
890                         } else {
891                                 skb_checksum_none_assert(skb);
892                         }
893                         skb->protocol = eth_type_trans(skb, ndev);
894 #ifdef NS83820_VLAN_ACCEL_SUPPORT
895                         if(extsts & EXTSTS_VPKT) {
896                                 unsigned short tag;
897
898                                 tag = ntohs(extsts & EXTSTS_VTG_MASK);
899                                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
900                         }
901 #endif
902                         rx_rc = netif_rx(skb);
903                         if (NET_RX_DROP == rx_rc) {
904 netdev_mangle_me_harder_failed:
905                                 ndev->stats.rx_dropped++;
906                         }
907                 } else {
908                         dev_kfree_skb_irq(skb);
909                 }
910
911                 nr++;
912                 next_rx = info->next_rx;
913                 desc = info->descs + (DESC_SIZE * next_rx);
914         }
915         info->next_rx = next_rx;
916         info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
917
918 out:
919         if (0 && !nr) {
920                 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
921         }
922
923         spin_unlock_irqrestore(&info->lock, flags);
924 }
925
926 static void rx_action(unsigned long _dev)
927 {
928         struct net_device *ndev = (void *)_dev;
929         struct ns83820 *dev = PRIV(ndev);
930         rx_irq(ndev);
931         writel(ihr, dev->base + IHR);
932
933         spin_lock_irq(&dev->misc_lock);
934         dev->IMR_cache |= ISR_RXDESC;
935         writel(dev->IMR_cache, dev->base + IMR);
936         spin_unlock_irq(&dev->misc_lock);
937
938         rx_irq(ndev);
939         ns83820_rx_kick(ndev);
940 }
941
942 /* Packet Transmit code
943  */
944 static inline void kick_tx(struct ns83820 *dev)
945 {
946         dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
947                 dev, dev->tx_idx, dev->tx_free_idx);
948         writel(CR_TXE, dev->base + CR);
949 }
950
951 /* No spinlock needed on the transmit irq path as the interrupt handler is
952  * serialized.
953  */
954 static void do_tx_done(struct net_device *ndev)
955 {
956         struct ns83820 *dev = PRIV(ndev);
957         u32 cmdsts, tx_done_idx;
958         __le32 *desc;
959
960         dprintk("do_tx_done(%p)\n", ndev);
961         tx_done_idx = dev->tx_done_idx;
962         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
963
964         dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
965                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
966         while ((tx_done_idx != dev->tx_free_idx) &&
967                !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
968                 struct sk_buff *skb;
969                 unsigned len;
970                 dma_addr_t addr;
971
972                 if (cmdsts & CMDSTS_ERR)
973                         ndev->stats.tx_errors++;
974                 if (cmdsts & CMDSTS_OK)
975                         ndev->stats.tx_packets++;
976                 if (cmdsts & CMDSTS_OK)
977                         ndev->stats.tx_bytes += cmdsts & 0xffff;
978
979                 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980                         tx_done_idx, dev->tx_free_idx, cmdsts);
981                 skb = dev->tx_skbs[tx_done_idx];
982                 dev->tx_skbs[tx_done_idx] = NULL;
983                 dprintk("done(%p)\n", skb);
984
985                 len = cmdsts & CMDSTS_LEN_MASK;
986                 addr = desc_addr_get(desc + DESC_BUFPTR);
987                 if (skb) {
988                         pci_unmap_single(dev->pci_dev,
989                                         addr,
990                                         len,
991                                         PCI_DMA_TODEVICE);
992                         dev_consume_skb_irq(skb);
993                         atomic_dec(&dev->nr_tx_skbs);
994                 } else
995                         pci_unmap_page(dev->pci_dev,
996                                         addr,
997                                         len,
998                                         PCI_DMA_TODEVICE);
999
1000                 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1001                 dev->tx_done_idx = tx_done_idx;
1002                 desc[DESC_CMDSTS] = cpu_to_le32(0);
1003                 mb();
1004                 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1005         }
1006
1007         /* Allow network stack to resume queueing packets after we've
1008          * finished transmitting at least 1/4 of the packets in the queue.
1009          */
1010         if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1011                 dprintk("start_queue(%p)\n", ndev);
1012                 netif_start_queue(ndev);
1013                 netif_wake_queue(ndev);
1014         }
1015 }
1016
1017 static void ns83820_cleanup_tx(struct ns83820 *dev)
1018 {
1019         unsigned i;
1020
1021         for (i=0; i<NR_TX_DESC; i++) {
1022                 struct sk_buff *skb = dev->tx_skbs[i];
1023                 dev->tx_skbs[i] = NULL;
1024                 if (skb) {
1025                         __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1026                         pci_unmap_single(dev->pci_dev,
1027                                         desc_addr_get(desc + DESC_BUFPTR),
1028                                         le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1029                                         PCI_DMA_TODEVICE);
1030                         dev_kfree_skb_irq(skb);
1031                         atomic_dec(&dev->nr_tx_skbs);
1032                 }
1033         }
1034
1035         memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1036 }
1037
1038 /* transmit routine.  This code relies on the network layer serializing
1039  * its calls in, but will run happily in parallel with the interrupt
1040  * handler.  This code currently has provisions for fragmenting tx buffers
1041  * while trying to track down a bug in either the zero copy code or
1042  * the tx fifo (hence the MAX_FRAG_LEN).
1043  */
1044 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1045                                            struct net_device *ndev)
1046 {
1047         struct ns83820 *dev = PRIV(ndev);
1048         u32 free_idx, cmdsts, extsts;
1049         int nr_free, nr_frags;
1050         unsigned tx_done_idx, last_idx;
1051         dma_addr_t buf;
1052         unsigned len;
1053         skb_frag_t *frag;
1054         int stopped = 0;
1055         int do_intr = 0;
1056         volatile __le32 *first_desc;
1057
1058         dprintk("ns83820_hard_start_xmit\n");
1059
1060         nr_frags =  skb_shinfo(skb)->nr_frags;
1061 again:
1062         if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1063                 netif_stop_queue(ndev);
1064                 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1065                         return NETDEV_TX_BUSY;
1066                 netif_start_queue(ndev);
1067         }
1068
1069         last_idx = free_idx = dev->tx_free_idx;
1070         tx_done_idx = dev->tx_done_idx;
1071         nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1072         nr_free -= 1;
1073         if (nr_free <= nr_frags) {
1074                 dprintk("stop_queue - not enough(%p)\n", ndev);
1075                 netif_stop_queue(ndev);
1076
1077                 /* Check again: we may have raced with a tx done irq */
1078                 if (dev->tx_done_idx != tx_done_idx) {
1079                         dprintk("restart queue(%p)\n", ndev);
1080                         netif_start_queue(ndev);
1081                         goto again;
1082                 }
1083                 return NETDEV_TX_BUSY;
1084         }
1085
1086         if (free_idx == dev->tx_intr_idx) {
1087                 do_intr = 1;
1088                 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1089         }
1090
1091         nr_free -= nr_frags;
1092         if (nr_free < MIN_TX_DESC_FREE) {
1093                 dprintk("stop_queue - last entry(%p)\n", ndev);
1094                 netif_stop_queue(ndev);
1095                 stopped = 1;
1096         }
1097
1098         frag = skb_shinfo(skb)->frags;
1099         if (!nr_frags)
1100                 frag = NULL;
1101         extsts = 0;
1102         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1103                 extsts |= EXTSTS_IPPKT;
1104                 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1105                         extsts |= EXTSTS_TCPPKT;
1106                 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1107                         extsts |= EXTSTS_UDPPKT;
1108         }
1109
1110 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1111         if (skb_vlan_tag_present(skb)) {
1112                 /* fetch the vlan tag info out of the
1113                  * ancillary data if the vlan code
1114                  * is using hw vlan acceleration
1115                  */
1116                 short tag = skb_vlan_tag_get(skb);
1117                 extsts |= (EXTSTS_VPKT | htons(tag));
1118         }
1119 #endif
1120
1121         len = skb->len;
1122         if (nr_frags)
1123                 len -= skb->data_len;
1124         buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1125
1126         first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1127
1128         for (;;) {
1129                 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1130
1131                 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1132                         (unsigned long long)buf);
1133                 last_idx = free_idx;
1134                 free_idx = (free_idx + 1) % NR_TX_DESC;
1135                 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1136                 desc_addr_set(desc + DESC_BUFPTR, buf);
1137                 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1138
1139                 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1140                 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1141                 cmdsts |= len;
1142                 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1143
1144                 if (!nr_frags)
1145                         break;
1146
1147                 buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1148                                        skb_frag_size(frag), DMA_TO_DEVICE);
1149                 dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1150                         (long long)buf, (long) page_to_pfn(frag->page),
1151                         frag->page_offset);
1152                 len = skb_frag_size(frag);
1153                 frag++;
1154                 nr_frags--;
1155         }
1156         dprintk("done pkt\n");
1157
1158         spin_lock_irq(&dev->tx_lock);
1159         dev->tx_skbs[last_idx] = skb;
1160         first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1161         dev->tx_free_idx = free_idx;
1162         atomic_inc(&dev->nr_tx_skbs);
1163         spin_unlock_irq(&dev->tx_lock);
1164
1165         kick_tx(dev);
1166
1167         /* Check again: we may have raced with a tx done irq */
1168         if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1169                 netif_start_queue(ndev);
1170
1171         return NETDEV_TX_OK;
1172 }
1173
1174 static void ns83820_update_stats(struct ns83820 *dev)
1175 {
1176         struct net_device *ndev = dev->ndev;
1177         u8 __iomem *base = dev->base;
1178
1179         /* the DP83820 will freeze counters, so we need to read all of them */
1180         ndev->stats.rx_errors           += readl(base + 0x60) & 0xffff;
1181         ndev->stats.rx_crc_errors       += readl(base + 0x64) & 0xffff;
1182         ndev->stats.rx_missed_errors    += readl(base + 0x68) & 0xffff;
1183         ndev->stats.rx_frame_errors     += readl(base + 0x6c) & 0xffff;
1184         /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1185         ndev->stats.rx_length_errors    += readl(base + 0x74) & 0xffff;
1186         ndev->stats.rx_length_errors    += readl(base + 0x78) & 0xffff;
1187         /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1188         /*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1189         /*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1190         ndev->stats.tx_carrier_errors   += readl(base + 0x88) & 0xff;
1191 }
1192
1193 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1194 {
1195         struct ns83820 *dev = PRIV(ndev);
1196
1197         /* somewhat overkill */
1198         spin_lock_irq(&dev->misc_lock);
1199         ns83820_update_stats(dev);
1200         spin_unlock_irq(&dev->misc_lock);
1201
1202         return &ndev->stats;
1203 }
1204
1205 /* Let ethtool retrieve info */
1206 static int ns83820_get_link_ksettings(struct net_device *ndev,
1207                                       struct ethtool_link_ksettings *cmd)
1208 {
1209         struct ns83820 *dev = PRIV(ndev);
1210         u32 cfg, tanar, tbicr;
1211         int fullduplex   = 0;
1212         u32 supported;
1213
1214         /*
1215          * Here's the list of available ethtool commands from other drivers:
1216          *      cmd->advertising =
1217          *      ethtool_cmd_speed_set(cmd, ...)
1218          *      cmd->duplex =
1219          *      cmd->port = 0;
1220          *      cmd->phy_address =
1221          *      cmd->transceiver = 0;
1222          *      cmd->autoneg =
1223          *      cmd->maxtxpkt = 0;
1224          *      cmd->maxrxpkt = 0;
1225          */
1226
1227         /* read current configuration */
1228         cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1229         tanar = readl(dev->base + TANAR);
1230         tbicr = readl(dev->base + TBICR);
1231
1232         fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1233
1234         supported = SUPPORTED_Autoneg;
1235
1236         if (dev->CFG_cache & CFG_TBI_EN) {
1237                 /* we have optical interface */
1238                 supported |= SUPPORTED_1000baseT_Half |
1239                                         SUPPORTED_1000baseT_Full |
1240                                         SUPPORTED_FIBRE;
1241                 cmd->base.port       = PORT_FIBRE;
1242         } else {
1243                 /* we have copper */
1244                 supported |= SUPPORTED_10baseT_Half |
1245                         SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1246                         SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1247                         SUPPORTED_1000baseT_Full |
1248                         SUPPORTED_MII;
1249                 cmd->base.port = PORT_MII;
1250         }
1251
1252         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1253                                                 supported);
1254
1255         cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1256         switch (cfg / CFG_SPDSTS0 & 3) {
1257         case 2:
1258                 cmd->base.speed = SPEED_1000;
1259                 break;
1260         case 1:
1261                 cmd->base.speed = SPEED_100;
1262                 break;
1263         default:
1264                 cmd->base.speed = SPEED_10;
1265                 break;
1266         }
1267         cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1268                 ? AUTONEG_ENABLE : AUTONEG_DISABLE;
1269         return 0;
1270 }
1271
1272 /* Let ethool change settings*/
1273 static int ns83820_set_link_ksettings(struct net_device *ndev,
1274                                       const struct ethtool_link_ksettings *cmd)
1275 {
1276         struct ns83820 *dev = PRIV(ndev);
1277         u32 cfg, tanar;
1278         int have_optical = 0;
1279         int fullduplex   = 0;
1280
1281         /* read current configuration */
1282         cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1283         tanar = readl(dev->base + TANAR);
1284
1285         if (dev->CFG_cache & CFG_TBI_EN) {
1286                 /* we have optical */
1287                 have_optical = 1;
1288                 fullduplex   = (tanar & TANAR_FULL_DUP);
1289
1290         } else {
1291                 /* we have copper */
1292                 fullduplex = cfg & CFG_DUPSTS;
1293         }
1294
1295         spin_lock_irq(&dev->misc_lock);
1296         spin_lock(&dev->tx_lock);
1297
1298         /* Set duplex */
1299         if (cmd->base.duplex != fullduplex) {
1300                 if (have_optical) {
1301                         /*set full duplex*/
1302                         if (cmd->base.duplex == DUPLEX_FULL) {
1303                                 /* force full duplex */
1304                                 writel(readl(dev->base + TXCFG)
1305                                         | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1306                                         dev->base + TXCFG);
1307                                 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1308                                         dev->base + RXCFG);
1309                                 /* Light up full duplex LED */
1310                                 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1311                                         dev->base + GPIOR);
1312                         } else {
1313                                 /*TODO: set half duplex */
1314                         }
1315
1316                 } else {
1317                         /*we have copper*/
1318                         /* TODO: Set duplex for copper cards */
1319                 }
1320                 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1321                 ndev->name);
1322         }
1323
1324         /* Set autonegotiation */
1325         if (1) {
1326                 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1327                         /* restart auto negotiation */
1328                         writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1329                                 dev->base + TBICR);
1330                         writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1331                                 dev->linkstate = LINK_AUTONEGOTIATE;
1332
1333                         printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1334                                 ndev->name);
1335                 } else {
1336                         /* disable auto negotiation */
1337                         writel(0x00000000, dev->base + TBICR);
1338                 }
1339
1340                 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1341                                 cmd->base.autoneg ? "ENABLED" : "DISABLED");
1342         }
1343
1344         phy_intr(ndev);
1345         spin_unlock(&dev->tx_lock);
1346         spin_unlock_irq(&dev->misc_lock);
1347
1348         return 0;
1349 }
1350 /* end ethtool get/set support -df */
1351
1352 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1353 {
1354         struct ns83820 *dev = PRIV(ndev);
1355         strlcpy(info->driver, "ns83820", sizeof(info->driver));
1356         strlcpy(info->version, VERSION, sizeof(info->version));
1357         strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1358 }
1359
1360 static u32 ns83820_get_link(struct net_device *ndev)
1361 {
1362         struct ns83820 *dev = PRIV(ndev);
1363         u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1364         return cfg & CFG_LNKSTS ? 1 : 0;
1365 }
1366
1367 static const struct ethtool_ops ops = {
1368         .get_drvinfo     = ns83820_get_drvinfo,
1369         .get_link        = ns83820_get_link,
1370         .get_link_ksettings = ns83820_get_link_ksettings,
1371         .set_link_ksettings = ns83820_set_link_ksettings,
1372 };
1373
1374 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1375 {
1376         writel(0, dev->base + IMR);
1377         writel(0, dev->base + IER);
1378         readl(dev->base + IER);
1379 }
1380
1381 /* this function is called in irq context from the ISR */
1382 static void ns83820_mib_isr(struct ns83820 *dev)
1383 {
1384         unsigned long flags;
1385         spin_lock_irqsave(&dev->misc_lock, flags);
1386         ns83820_update_stats(dev);
1387         spin_unlock_irqrestore(&dev->misc_lock, flags);
1388 }
1389
1390 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1391 static irqreturn_t ns83820_irq(int foo, void *data)
1392 {
1393         struct net_device *ndev = data;
1394         struct ns83820 *dev = PRIV(ndev);
1395         u32 isr;
1396         dprintk("ns83820_irq(%p)\n", ndev);
1397
1398         dev->ihr = 0;
1399
1400         isr = readl(dev->base + ISR);
1401         dprintk("irq: %08x\n", isr);
1402         ns83820_do_isr(ndev, isr);
1403         return IRQ_HANDLED;
1404 }
1405
1406 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1407 {
1408         struct ns83820 *dev = PRIV(ndev);
1409         unsigned long flags;
1410
1411 #ifdef DEBUG
1412         if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1413                 Dprintk("odd isr? 0x%08x\n", isr);
1414 #endif
1415
1416         if (ISR_RXIDLE & isr) {
1417                 dev->rx_info.idle = 1;
1418                 Dprintk("oh dear, we are idle\n");
1419                 ns83820_rx_kick(ndev);
1420         }
1421
1422         if ((ISR_RXDESC | ISR_RXOK) & isr) {
1423                 prefetch(dev->rx_info.next_rx_desc);
1424
1425                 spin_lock_irqsave(&dev->misc_lock, flags);
1426                 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1427                 writel(dev->IMR_cache, dev->base + IMR);
1428                 spin_unlock_irqrestore(&dev->misc_lock, flags);
1429
1430                 tasklet_schedule(&dev->rx_tasklet);
1431                 //rx_irq(ndev);
1432                 //writel(4, dev->base + IHR);
1433         }
1434
1435         if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1436                 ns83820_rx_kick(ndev);
1437
1438         if (unlikely(ISR_RXSOVR & isr)) {
1439                 //printk("overrun: rxsovr\n");
1440                 ndev->stats.rx_fifo_errors++;
1441         }
1442
1443         if (unlikely(ISR_RXORN & isr)) {
1444                 //printk("overrun: rxorn\n");
1445                 ndev->stats.rx_fifo_errors++;
1446         }
1447
1448         if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1449                 writel(CR_RXE, dev->base + CR);
1450
1451         if (ISR_TXIDLE & isr) {
1452                 u32 txdp;
1453                 txdp = readl(dev->base + TXDP);
1454                 dprintk("txdp: %08x\n", txdp);
1455                 txdp -= dev->tx_phy_descs;
1456                 dev->tx_idx = txdp / (DESC_SIZE * 4);
1457                 if (dev->tx_idx >= NR_TX_DESC) {
1458                         printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1459                         dev->tx_idx = 0;
1460                 }
1461                 /* The may have been a race between a pci originated read
1462                  * and the descriptor update from the cpu.  Just in case,
1463                  * kick the transmitter if the hardware thinks it is on a
1464                  * different descriptor than we are.
1465                  */
1466                 if (dev->tx_idx != dev->tx_free_idx)
1467                         kick_tx(dev);
1468         }
1469
1470         /* Defer tx ring processing until more than a minimum amount of
1471          * work has accumulated
1472          */
1473         if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1474                 spin_lock_irqsave(&dev->tx_lock, flags);
1475                 do_tx_done(ndev);
1476                 spin_unlock_irqrestore(&dev->tx_lock, flags);
1477
1478                 /* Disable TxOk if there are no outstanding tx packets.
1479                  */
1480                 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1481                     (dev->IMR_cache & ISR_TXOK)) {
1482                         spin_lock_irqsave(&dev->misc_lock, flags);
1483                         dev->IMR_cache &= ~ISR_TXOK;
1484                         writel(dev->IMR_cache, dev->base + IMR);
1485                         spin_unlock_irqrestore(&dev->misc_lock, flags);
1486                 }
1487         }
1488
1489         /* The TxIdle interrupt can come in before the transmit has
1490          * completed.  Normally we reap packets off of the combination
1491          * of TxDesc and TxIdle and leave TxOk disabled (since it
1492          * occurs on every packet), but when no further irqs of this
1493          * nature are expected, we must enable TxOk.
1494          */
1495         if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1496                 spin_lock_irqsave(&dev->misc_lock, flags);
1497                 dev->IMR_cache |= ISR_TXOK;
1498                 writel(dev->IMR_cache, dev->base + IMR);
1499                 spin_unlock_irqrestore(&dev->misc_lock, flags);
1500         }
1501
1502         /* MIB interrupt: one of the statistics counters is about to overflow */
1503         if (unlikely(ISR_MIB & isr))
1504                 ns83820_mib_isr(dev);
1505
1506         /* PHY: Link up/down/negotiation state change */
1507         if (unlikely(ISR_PHY & isr))
1508                 phy_intr(ndev);
1509
1510 #if 0   /* Still working on the interrupt mitigation strategy */
1511         if (dev->ihr)
1512                 writel(dev->ihr, dev->base + IHR);
1513 #endif
1514 }
1515
1516 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1517 {
1518         Dprintk("resetting chip...\n");
1519         writel(which, dev->base + CR);
1520         do {
1521                 schedule();
1522         } while (readl(dev->base + CR) & which);
1523         Dprintk("okay!\n");
1524 }
1525
1526 static int ns83820_stop(struct net_device *ndev)
1527 {
1528         struct ns83820 *dev = PRIV(ndev);
1529
1530         /* FIXME: protect against interrupt handler? */
1531         del_timer_sync(&dev->tx_watchdog);
1532
1533         ns83820_disable_interrupts(dev);
1534
1535         dev->rx_info.up = 0;
1536         synchronize_irq(dev->pci_dev->irq);
1537
1538         ns83820_do_reset(dev, CR_RST);
1539
1540         synchronize_irq(dev->pci_dev->irq);
1541
1542         spin_lock_irq(&dev->misc_lock);
1543         dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1544         spin_unlock_irq(&dev->misc_lock);
1545
1546         ns83820_cleanup_rx(dev);
1547         ns83820_cleanup_tx(dev);
1548
1549         return 0;
1550 }
1551
1552 static void ns83820_tx_timeout(struct net_device *ndev)
1553 {
1554         struct ns83820 *dev = PRIV(ndev);
1555         u32 tx_done_idx;
1556         __le32 *desc;
1557         unsigned long flags;
1558
1559         spin_lock_irqsave(&dev->tx_lock, flags);
1560
1561         tx_done_idx = dev->tx_done_idx;
1562         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1563
1564         printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1565                 ndev->name,
1566                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1567
1568 #if defined(DEBUG)
1569         {
1570                 u32 isr;
1571                 isr = readl(dev->base + ISR);
1572                 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1573                 ns83820_do_isr(ndev, isr);
1574         }
1575 #endif
1576
1577         do_tx_done(ndev);
1578
1579         tx_done_idx = dev->tx_done_idx;
1580         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1581
1582         printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1583                 ndev->name,
1584                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1585
1586         spin_unlock_irqrestore(&dev->tx_lock, flags);
1587 }
1588
1589 static void ns83820_tx_watch(struct timer_list *t)
1590 {
1591         struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1592         struct net_device *ndev = dev->ndev;
1593
1594 #if defined(DEBUG)
1595         printk("ns83820_tx_watch: %u %u %d\n",
1596                 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1597                 );
1598 #endif
1599
1600         if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1601             dev->tx_done_idx != dev->tx_free_idx) {
1602                 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1603                         ndev->name,
1604                         dev->tx_done_idx, dev->tx_free_idx,
1605                         atomic_read(&dev->nr_tx_skbs));
1606                 ns83820_tx_timeout(ndev);
1607         }
1608
1609         mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1610 }
1611
1612 static int ns83820_open(struct net_device *ndev)
1613 {
1614         struct ns83820 *dev = PRIV(ndev);
1615         unsigned i;
1616         u32 desc;
1617         int ret;
1618
1619         dprintk("ns83820_open\n");
1620
1621         writel(0, dev->base + PQCR);
1622
1623         ret = ns83820_setup_rx(ndev);
1624         if (ret)
1625                 goto failed;
1626
1627         memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1628         for (i=0; i<NR_TX_DESC; i++) {
1629                 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1630                                 = cpu_to_le32(
1631                                   dev->tx_phy_descs
1632                                   + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1633         }
1634
1635         dev->tx_idx = 0;
1636         dev->tx_done_idx = 0;
1637         desc = dev->tx_phy_descs;
1638         writel(0, dev->base + TXDP_HI);
1639         writel(desc, dev->base + TXDP);
1640
1641         timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1642         mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1643
1644         netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1645
1646         return 0;
1647
1648 failed:
1649         ns83820_stop(ndev);
1650         return ret;
1651 }
1652
1653 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1654 {
1655         unsigned i;
1656         for (i=0; i<3; i++) {
1657                 u32 data;
1658
1659                 /* Read from the perfect match memory: this is loaded by
1660                  * the chip from the EEPROM via the EELOAD self test.
1661                  */
1662                 writel(i*2, dev->base + RFCR);
1663                 data = readl(dev->base + RFDR);
1664
1665                 *mac++ = data;
1666                 *mac++ = data >> 8;
1667         }
1668 }
1669
1670 static void ns83820_set_multicast(struct net_device *ndev)
1671 {
1672         struct ns83820 *dev = PRIV(ndev);
1673         u8 __iomem *rfcr = dev->base + RFCR;
1674         u32 and_mask = 0xffffffff;
1675         u32 or_mask = 0;
1676         u32 val;
1677
1678         if (ndev->flags & IFF_PROMISC)
1679                 or_mask |= RFCR_AAU | RFCR_AAM;
1680         else
1681                 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1682
1683         if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1684                 or_mask |= RFCR_AAM;
1685         else
1686                 and_mask &= ~RFCR_AAM;
1687
1688         spin_lock_irq(&dev->misc_lock);
1689         val = (readl(rfcr) & and_mask) | or_mask;
1690         /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1691         writel(val & ~RFCR_RFEN, rfcr);
1692         writel(val, rfcr);
1693         spin_unlock_irq(&dev->misc_lock);
1694 }
1695
1696 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1697 {
1698         struct ns83820 *dev = PRIV(ndev);
1699         int timed_out = 0;
1700         unsigned long start;
1701         u32 status;
1702         int loops = 0;
1703
1704         dprintk("%s: start %s\n", ndev->name, name);
1705
1706         start = jiffies;
1707
1708         writel(enable, dev->base + PTSCR);
1709         for (;;) {
1710                 loops++;
1711                 status = readl(dev->base + PTSCR);
1712                 if (!(status & enable))
1713                         break;
1714                 if (status & done)
1715                         break;
1716                 if (status & fail)
1717                         break;
1718                 if (time_after_eq(jiffies, start + HZ)) {
1719                         timed_out = 1;
1720                         break;
1721                 }
1722                 schedule_timeout_uninterruptible(1);
1723         }
1724
1725         if (status & fail)
1726                 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1727                         ndev->name, name, status, fail);
1728         else if (timed_out)
1729                 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1730                         ndev->name, name, status);
1731
1732         dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1733 }
1734
1735 #ifdef PHY_CODE_IS_FINISHED
1736 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1737 {
1738         /* drive MDC low */
1739         dev->MEAR_cache &= ~MEAR_MDC;
1740         writel(dev->MEAR_cache, dev->base + MEAR);
1741         readl(dev->base + MEAR);
1742
1743         /* enable output, set bit */
1744         dev->MEAR_cache |= MEAR_MDDIR;
1745         if (bit)
1746                 dev->MEAR_cache |= MEAR_MDIO;
1747         else
1748                 dev->MEAR_cache &= ~MEAR_MDIO;
1749
1750         /* set the output bit */
1751         writel(dev->MEAR_cache, dev->base + MEAR);
1752         readl(dev->base + MEAR);
1753
1754         /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1755         udelay(1);
1756
1757         /* drive MDC high causing the data bit to be latched */
1758         dev->MEAR_cache |= MEAR_MDC;
1759         writel(dev->MEAR_cache, dev->base + MEAR);
1760         readl(dev->base + MEAR);
1761
1762         /* Wait again... */
1763         udelay(1);
1764 }
1765
1766 static int ns83820_mii_read_bit(struct ns83820 *dev)
1767 {
1768         int bit;
1769
1770         /* drive MDC low, disable output */
1771         dev->MEAR_cache &= ~MEAR_MDC;
1772         dev->MEAR_cache &= ~MEAR_MDDIR;
1773         writel(dev->MEAR_cache, dev->base + MEAR);
1774         readl(dev->base + MEAR);
1775
1776         /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1777         udelay(1);
1778
1779         /* drive MDC high causing the data bit to be latched */
1780         bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1781         dev->MEAR_cache |= MEAR_MDC;
1782         writel(dev->MEAR_cache, dev->base + MEAR);
1783
1784         /* Wait again... */
1785         udelay(1);
1786
1787         return bit;
1788 }
1789
1790 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1791 {
1792         unsigned data = 0;
1793         int i;
1794
1795         /* read some garbage so that we eventually sync up */
1796         for (i=0; i<64; i++)
1797                 ns83820_mii_read_bit(dev);
1798
1799         ns83820_mii_write_bit(dev, 0);  /* start */
1800         ns83820_mii_write_bit(dev, 1);
1801         ns83820_mii_write_bit(dev, 1);  /* opcode read */
1802         ns83820_mii_write_bit(dev, 0);
1803
1804         /* write out the phy address: 5 bits, msb first */
1805         for (i=0; i<5; i++)
1806                 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1807
1808         /* write out the register address, 5 bits, msb first */
1809         for (i=0; i<5; i++)
1810                 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1811
1812         ns83820_mii_read_bit(dev);      /* turn around cycles */
1813         ns83820_mii_read_bit(dev);
1814
1815         /* read in the register data, 16 bits msb first */
1816         for (i=0; i<16; i++) {
1817                 data <<= 1;
1818                 data |= ns83820_mii_read_bit(dev);
1819         }
1820
1821         return data;
1822 }
1823
1824 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1825 {
1826         int i;
1827
1828         /* read some garbage so that we eventually sync up */
1829         for (i=0; i<64; i++)
1830                 ns83820_mii_read_bit(dev);
1831
1832         ns83820_mii_write_bit(dev, 0);  /* start */
1833         ns83820_mii_write_bit(dev, 1);
1834         ns83820_mii_write_bit(dev, 0);  /* opcode read */
1835         ns83820_mii_write_bit(dev, 1);
1836
1837         /* write out the phy address: 5 bits, msb first */
1838         for (i=0; i<5; i++)
1839                 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1840
1841         /* write out the register address, 5 bits, msb first */
1842         for (i=0; i<5; i++)
1843                 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1844
1845         ns83820_mii_read_bit(dev);      /* turn around cycles */
1846         ns83820_mii_read_bit(dev);
1847
1848         /* read in the register data, 16 bits msb first */
1849         for (i=0; i<16; i++)
1850                 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1851
1852         return data;
1853 }
1854
1855 static void ns83820_probe_phy(struct net_device *ndev)
1856 {
1857         struct ns83820 *dev = PRIV(ndev);
1858         int j;
1859         unsigned a, b;
1860
1861         for (j = 0; j < 0x16; j += 4) {
1862                 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1863                         ndev->name, j,
1864                         ns83820_mii_read_reg(dev, 1, 0 + j),
1865                         ns83820_mii_read_reg(dev, 1, 1 + j),
1866                         ns83820_mii_read_reg(dev, 1, 2 + j),
1867                         ns83820_mii_read_reg(dev, 1, 3 + j)
1868                         );
1869         }
1870
1871         /* read firmware version: memory addr is 0x8402 and 0x8403 */
1872         ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1873         ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1874         a = ns83820_mii_read_reg(dev, 1, 0x1d);
1875
1876         ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1877         ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1878         b = ns83820_mii_read_reg(dev, 1, 0x1d);
1879         dprintk("version: 0x%04x 0x%04x\n", a, b);
1880 }
1881 #endif
1882
1883 static const struct net_device_ops netdev_ops = {
1884         .ndo_open               = ns83820_open,
1885         .ndo_stop               = ns83820_stop,
1886         .ndo_start_xmit         = ns83820_hard_start_xmit,
1887         .ndo_get_stats          = ns83820_get_stats,
1888         .ndo_set_rx_mode        = ns83820_set_multicast,
1889         .ndo_validate_addr      = eth_validate_addr,
1890         .ndo_set_mac_address    = eth_mac_addr,
1891         .ndo_tx_timeout         = ns83820_tx_timeout,
1892 };
1893
1894 static int ns83820_init_one(struct pci_dev *pci_dev,
1895                             const struct pci_device_id *id)
1896 {
1897         struct net_device *ndev;
1898         struct ns83820 *dev;
1899         long addr;
1900         int err;
1901         int using_dac = 0;
1902
1903         /* See if we can set the dma mask early on; failure is fatal. */
1904         if (sizeof(dma_addr_t) == 8 &&
1905                 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1906                 using_dac = 1;
1907         } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1908                 using_dac = 0;
1909         } else {
1910                 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1911                 return -ENODEV;
1912         }
1913
1914         ndev = alloc_etherdev(sizeof(struct ns83820));
1915         err = -ENOMEM;
1916         if (!ndev)
1917                 goto out;
1918
1919         dev = PRIV(ndev);
1920         dev->ndev = ndev;
1921
1922         spin_lock_init(&dev->rx_info.lock);
1923         spin_lock_init(&dev->tx_lock);
1924         spin_lock_init(&dev->misc_lock);
1925         dev->pci_dev = pci_dev;
1926
1927         SET_NETDEV_DEV(ndev, &pci_dev->dev);
1928
1929         INIT_WORK(&dev->tq_refill, queue_refill);
1930         tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1931
1932         err = pci_enable_device(pci_dev);
1933         if (err) {
1934                 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1935                 goto out_free;
1936         }
1937
1938         pci_set_master(pci_dev);
1939         addr = pci_resource_start(pci_dev, 1);
1940         dev->base = ioremap_nocache(addr, PAGE_SIZE);
1941         dev->tx_descs = pci_alloc_consistent(pci_dev,
1942                         4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1943         dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1944                         4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1945         err = -ENOMEM;
1946         if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1947                 goto out_disable;
1948
1949         dprintk("%p: %08lx  %p: %08lx\n",
1950                 dev->tx_descs, (long)dev->tx_phy_descs,
1951                 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1952
1953         ns83820_disable_interrupts(dev);
1954
1955         dev->IMR_cache = 0;
1956
1957         err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1958                           DRV_NAME, ndev);
1959         if (err) {
1960                 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1961                         pci_dev->irq, err);
1962                 goto out_disable;
1963         }
1964
1965         /*
1966          * FIXME: we are holding rtnl_lock() over obscenely long area only
1967          * because some of the setup code uses dev->name.  It's Wrong(tm) -
1968          * we should be using driver-specific names for all that stuff.
1969          * For now that will do, but we really need to come back and kill
1970          * most of the dev_alloc_name() users later.
1971          */
1972         rtnl_lock();
1973         err = dev_alloc_name(ndev, ndev->name);
1974         if (err < 0) {
1975                 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1976                 goto out_free_irq;
1977         }
1978
1979         printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1980                 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1981                 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1982
1983         ndev->netdev_ops = &netdev_ops;
1984         ndev->ethtool_ops = &ops;
1985         ndev->watchdog_timeo = 5 * HZ;
1986         pci_set_drvdata(pci_dev, ndev);
1987
1988         ns83820_do_reset(dev, CR_RST);
1989
1990         /* Must reset the ram bist before running it */
1991         writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1992         ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1993                          PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1994         ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1995                          PTSCR_EEBIST_FAIL);
1996         ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1997
1998         /* I love config registers */
1999         dev->CFG_cache = readl(dev->base + CFG);
2000
2001         if ((dev->CFG_cache & CFG_PCI64_DET)) {
2002                 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2003                         ndev->name);
2004                 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2005                 if (!(dev->CFG_cache & CFG_DATA64_EN))
2006                         printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2007                                 ndev->name);
2008         } else
2009                 dev->CFG_cache &= ~(CFG_DATA64_EN);
2010
2011         dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2012                            CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2013                            CFG_M64ADDR);
2014         dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2015                           CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2016         dev->CFG_cache |= CFG_REQALG;
2017         dev->CFG_cache |= CFG_POW;
2018         dev->CFG_cache |= CFG_TMRTEST;
2019
2020         /* When compiled with 64 bit addressing, we must always enable
2021          * the 64 bit descriptor format.
2022          */
2023         if (sizeof(dma_addr_t) == 8)
2024                 dev->CFG_cache |= CFG_M64ADDR;
2025         if (using_dac)
2026                 dev->CFG_cache |= CFG_T64ADDR;
2027
2028         /* Big endian mode does not seem to do what the docs suggest */
2029         dev->CFG_cache &= ~CFG_BEM;
2030
2031         /* setup optical transceiver if we have one */
2032         if (dev->CFG_cache & CFG_TBI_EN) {
2033                 printk(KERN_INFO "%s: enabling optical transceiver\n",
2034                         ndev->name);
2035                 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2036
2037                 /* setup auto negotiation feature advertisement */
2038                 writel(readl(dev->base + TANAR)
2039                        | TANAR_HALF_DUP | TANAR_FULL_DUP,
2040                        dev->base + TANAR);
2041
2042                 /* start auto negotiation */
2043                 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2044                        dev->base + TBICR);
2045                 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2046                 dev->linkstate = LINK_AUTONEGOTIATE;
2047
2048                 dev->CFG_cache |= CFG_MODE_1000;
2049         }
2050
2051         writel(dev->CFG_cache, dev->base + CFG);
2052         dprintk("CFG: %08x\n", dev->CFG_cache);
2053
2054         if (reset_phy) {
2055                 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2056                 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2057                 msleep(10);
2058                 writel(dev->CFG_cache, dev->base + CFG);
2059         }
2060
2061 #if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2062          * the PCI layer.  FIXME.
2063          */
2064         if (readl(dev->base + SRR))
2065                 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2066 #endif
2067
2068         /* Note!  The DMA burst size interacts with packet
2069          * transmission, such that the largest packet that
2070          * can be transmitted is 8192 - FLTH - burst size.
2071          * If only the transmit fifo was larger...
2072          */
2073         /* Ramit : 1024 DMA is not a good idea, it ends up banging
2074          * some DELL and COMPAQ SMP systems */
2075         writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2076                 | ((1600 / 32) * 0x100),
2077                 dev->base + TXCFG);
2078
2079         /* Flush the interrupt holdoff timer */
2080         writel(0x000, dev->base + IHR);
2081         writel(0x100, dev->base + IHR);
2082         writel(0x000, dev->base + IHR);
2083
2084         /* Set Rx to full duplex, don't accept runt, errored, long or length
2085          * range errored packets.  Use 512 byte DMA.
2086          */
2087         /* Ramit : 1024 DMA is not a good idea, it ends up banging
2088          * some DELL and COMPAQ SMP systems
2089          * Turn on ALP, only we are accpeting Jumbo Packets */
2090         writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2091                 | RXCFG_STRIPCRC
2092                 //| RXCFG_ALP
2093                 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2094
2095         /* Disable priority queueing */
2096         writel(0, dev->base + PQCR);
2097
2098         /* Enable IP checksum validation and detetion of VLAN headers.
2099          * Note: do not set the reject options as at least the 0x102
2100          * revision of the chip does not properly accept IP fragments
2101          * at least for UDP.
2102          */
2103         /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2104          * the MAC it calculates the packetsize AFTER stripping the VLAN
2105          * header, and if a VLAN Tagged packet of 64 bytes is received (like
2106          * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2107          * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2108          * it discrards it!.  These guys......
2109          * also turn on tag stripping if hardware acceleration is enabled
2110          */
2111 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2112 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2113 #else
2114 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2115 #endif
2116         writel(VRCR_INIT_VALUE, dev->base + VRCR);
2117
2118         /* Enable per-packet TCP/UDP/IP checksumming
2119          * and per packet vlan tag insertion if
2120          * vlan hardware acceleration is enabled
2121          */
2122 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2123 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2124 #else
2125 #define VTCR_INIT_VALUE VTCR_PPCHK
2126 #endif
2127         writel(VTCR_INIT_VALUE, dev->base + VTCR);
2128
2129         /* Ramit : Enable async and sync pause frames */
2130         /* writel(0, dev->base + PCR); */
2131         writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2132                 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2133                 dev->base + PCR);
2134
2135         /* Disable Wake On Lan */
2136         writel(0, dev->base + WCSR);
2137
2138         ns83820_getmac(dev, ndev->dev_addr);
2139
2140         /* Yes, we support dumb IP checksum on transmit */
2141         ndev->features |= NETIF_F_SG;
2142         ndev->features |= NETIF_F_IP_CSUM;
2143
2144         ndev->min_mtu = 0;
2145
2146 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2147         /* We also support hardware vlan acceleration */
2148         ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2149 #endif
2150
2151         if (using_dac) {
2152                 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2153                         ndev->name);
2154                 ndev->features |= NETIF_F_HIGHDMA;
2155         }
2156
2157         printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2158                 ndev->name,
2159                 (unsigned)readl(dev->base + SRR) >> 8,
2160                 (unsigned)readl(dev->base + SRR) & 0xff,
2161                 ndev->dev_addr, addr, pci_dev->irq,
2162                 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2163                 );
2164
2165 #ifdef PHY_CODE_IS_FINISHED
2166         ns83820_probe_phy(ndev);
2167 #endif
2168
2169         err = register_netdevice(ndev);
2170         if (err) {
2171                 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2172                 goto out_cleanup;
2173         }
2174         rtnl_unlock();
2175
2176         return 0;
2177
2178 out_cleanup:
2179         ns83820_disable_interrupts(dev); /* paranoia */
2180 out_free_irq:
2181         rtnl_unlock();
2182         free_irq(pci_dev->irq, ndev);
2183 out_disable:
2184         if (dev->base)
2185                 iounmap(dev->base);
2186         pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2187         pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2188         pci_disable_device(pci_dev);
2189 out_free:
2190         free_netdev(ndev);
2191 out:
2192         return err;
2193 }
2194
2195 static void ns83820_remove_one(struct pci_dev *pci_dev)
2196 {
2197         struct net_device *ndev = pci_get_drvdata(pci_dev);
2198         struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2199
2200         if (!ndev)                      /* paranoia */
2201                 return;
2202
2203         ns83820_disable_interrupts(dev); /* paranoia */
2204
2205         unregister_netdev(ndev);
2206         free_irq(dev->pci_dev->irq, ndev);
2207         iounmap(dev->base);
2208         pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2209                         dev->tx_descs, dev->tx_phy_descs);
2210         pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2211                         dev->rx_info.descs, dev->rx_info.phy_descs);
2212         pci_disable_device(dev->pci_dev);
2213         free_netdev(ndev);
2214 }
2215
2216 static const struct pci_device_id ns83820_pci_tbl[] = {
2217         { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2218         { 0, },
2219 };
2220
2221 static struct pci_driver driver = {
2222         .name           = "ns83820",
2223         .id_table       = ns83820_pci_tbl,
2224         .probe          = ns83820_init_one,
2225         .remove         = ns83820_remove_one,
2226 #if 0   /* FIXME: implement */
2227         .suspend        = ,
2228         .resume         = ,
2229 #endif
2230 };
2231
2232
2233 static int __init ns83820_init(void)
2234 {
2235         printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2236         return pci_register_driver(&driver);
2237 }
2238
2239 static void __exit ns83820_exit(void)
2240 {
2241         pci_unregister_driver(&driver);
2242 }
2243
2244 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2245 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2246 MODULE_LICENSE("GPL");
2247
2248 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2249
2250 module_param(lnksts, int, 0);
2251 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2252
2253 module_param(ihr, int, 0);
2254 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2255
2256 module_param(reset_phy, int, 0);
2257 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2258
2259 module_init(ns83820_init);
2260 module_exit(ns83820_exit);