net/faraday: Explicitly include linux/of.h and linux/property.h
[sfrench/cifs-2.6.git] / drivers / net / ethernet / korina.c
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <linux/slab.h>
45 #include <linux/string.h>
46 #include <linux/delay.h>
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/skbuff.h>
50 #include <linux/errno.h>
51 #include <linux/platform_device.h>
52 #include <linux/mii.h>
53 #include <linux/ethtool.h>
54 #include <linux/crc32.h>
55
56 #include <asm/bootinfo.h>
57 #include <asm/bitops.h>
58 #include <asm/pgtable.h>
59 #include <asm/io.h>
60 #include <asm/dma.h>
61
62 #include <asm/mach-rc32434/rb.h>
63 #include <asm/mach-rc32434/rc32434.h>
64 #include <asm/mach-rc32434/eth.h>
65 #include <asm/mach-rc32434/dma_v.h>
66
67 #define DRV_NAME        "korina"
68 #define DRV_VERSION     "0.10"
69 #define DRV_RELDATE     "04Mar2008"
70
71 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
72                                    ((dev)->dev_addr[1]))
73 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
74                                    ((dev)->dev_addr[3] << 16) | \
75                                    ((dev)->dev_addr[4] << 8)  | \
76                                    ((dev)->dev_addr[5]))
77
78 #define MII_CLOCK 1250000       /* no more than 2.5MHz */
79
80 /* the following must be powers of two */
81 #define KORINA_NUM_RDS  64  /* number of receive descriptors */
82 #define KORINA_NUM_TDS  64  /* number of transmit descriptors */
83
84 /* KORINA_RBSIZE is the hardware's default maximum receive
85  * frame size in bytes. Having this hardcoded means that there
86  * is no support for MTU sizes greater than 1500. */
87 #define KORINA_RBSIZE   1536 /* size of one resource buffer = Ether MTU */
88 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
89 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
90 #define RD_RING_SIZE    (KORINA_NUM_RDS * sizeof(struct dma_desc))
91 #define TD_RING_SIZE    (KORINA_NUM_TDS * sizeof(struct dma_desc))
92
93 #define TX_TIMEOUT      (6000 * HZ / 1000)
94
95 enum chain_status { desc_filled, desc_empty };
96 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
97 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
98 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
99
100 /* Information that need to be kept for each board. */
101 struct korina_private {
102         struct eth_regs *eth_regs;
103         struct dma_reg *rx_dma_regs;
104         struct dma_reg *tx_dma_regs;
105         struct dma_desc *td_ring; /* transmit descriptor ring */
106         struct dma_desc *rd_ring; /* receive descriptor ring  */
107
108         struct sk_buff *tx_skb[KORINA_NUM_TDS];
109         struct sk_buff *rx_skb[KORINA_NUM_RDS];
110
111         int rx_next_done;
112         int rx_chain_head;
113         int rx_chain_tail;
114         enum chain_status rx_chain_status;
115
116         int tx_next_done;
117         int tx_chain_head;
118         int tx_chain_tail;
119         enum chain_status tx_chain_status;
120         int tx_count;
121         int tx_full;
122
123         int rx_irq;
124         int tx_irq;
125         int ovr_irq;
126         int und_irq;
127
128         spinlock_t lock;        /* NIC xmit lock */
129
130         int dma_halt_cnt;
131         int dma_run_cnt;
132         struct napi_struct napi;
133         struct timer_list media_check_timer;
134         struct mii_if_info mii_if;
135         struct work_struct restart_task;
136         struct net_device *dev;
137         int phy_addr;
138 };
139
140 extern unsigned int idt_cpu_freq;
141
142 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
143 {
144         writel(0, &ch->dmandptr);
145         writel(dma_addr, &ch->dmadptr);
146 }
147
148 static inline void korina_abort_dma(struct net_device *dev,
149                                         struct dma_reg *ch)
150 {
151        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
152                writel(0x10, &ch->dmac);
153
154                while (!(readl(&ch->dmas) & DMA_STAT_HALT))
155                        netif_trans_update(dev);
156
157                writel(0, &ch->dmas);
158        }
159
160        writel(0, &ch->dmadptr);
161        writel(0, &ch->dmandptr);
162 }
163
164 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
165 {
166         writel(dma_addr, &ch->dmandptr);
167 }
168
169 static void korina_abort_tx(struct net_device *dev)
170 {
171         struct korina_private *lp = netdev_priv(dev);
172
173         korina_abort_dma(dev, lp->tx_dma_regs);
174 }
175
176 static void korina_abort_rx(struct net_device *dev)
177 {
178         struct korina_private *lp = netdev_priv(dev);
179
180         korina_abort_dma(dev, lp->rx_dma_regs);
181 }
182
183 static void korina_start_rx(struct korina_private *lp,
184                                         struct dma_desc *rd)
185 {
186         korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
187 }
188
189 static void korina_chain_rx(struct korina_private *lp,
190                                         struct dma_desc *rd)
191 {
192         korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
193 }
194
195 /* transmit packet */
196 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
197 {
198         struct korina_private *lp = netdev_priv(dev);
199         unsigned long flags;
200         u32 length;
201         u32 chain_prev, chain_next;
202         struct dma_desc *td;
203
204         spin_lock_irqsave(&lp->lock, flags);
205
206         td = &lp->td_ring[lp->tx_chain_tail];
207
208         /* stop queue when full, drop pkts if queue already full */
209         if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
210                 lp->tx_full = 1;
211
212                 if (lp->tx_count == (KORINA_NUM_TDS - 2))
213                         netif_stop_queue(dev);
214                 else {
215                         dev->stats.tx_dropped++;
216                         dev_kfree_skb_any(skb);
217                         spin_unlock_irqrestore(&lp->lock, flags);
218
219                         return NETDEV_TX_BUSY;
220                 }
221         }
222
223         lp->tx_count++;
224
225         lp->tx_skb[lp->tx_chain_tail] = skb;
226
227         length = skb->len;
228         dma_cache_wback((u32)skb->data, skb->len);
229
230         /* Setup the transmit descriptor. */
231         dma_cache_inv((u32) td, sizeof(*td));
232         td->ca = CPHYSADDR(skb->data);
233         chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
234         chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
235
236         if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
237                 if (lp->tx_chain_status == desc_empty) {
238                         /* Update tail */
239                         td->control = DMA_COUNT(length) |
240                                         DMA_DESC_COF | DMA_DESC_IOF;
241                         /* Move tail */
242                         lp->tx_chain_tail = chain_next;
243                         /* Write to NDPTR */
244                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
245                                         &lp->tx_dma_regs->dmandptr);
246                         /* Move head to tail */
247                         lp->tx_chain_head = lp->tx_chain_tail;
248                 } else {
249                         /* Update tail */
250                         td->control = DMA_COUNT(length) |
251                                         DMA_DESC_COF | DMA_DESC_IOF;
252                         /* Link to prev */
253                         lp->td_ring[chain_prev].control &=
254                                         ~DMA_DESC_COF;
255                         /* Link to prev */
256                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
257                         /* Move tail */
258                         lp->tx_chain_tail = chain_next;
259                         /* Write to NDPTR */
260                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
261                                         &(lp->tx_dma_regs->dmandptr));
262                         /* Move head to tail */
263                         lp->tx_chain_head = lp->tx_chain_tail;
264                         lp->tx_chain_status = desc_empty;
265                 }
266         } else {
267                 if (lp->tx_chain_status == desc_empty) {
268                         /* Update tail */
269                         td->control = DMA_COUNT(length) |
270                                         DMA_DESC_COF | DMA_DESC_IOF;
271                         /* Move tail */
272                         lp->tx_chain_tail = chain_next;
273                         lp->tx_chain_status = desc_filled;
274                 } else {
275                         /* Update tail */
276                         td->control = DMA_COUNT(length) |
277                                         DMA_DESC_COF | DMA_DESC_IOF;
278                         lp->td_ring[chain_prev].control &=
279                                         ~DMA_DESC_COF;
280                         lp->td_ring[chain_prev].link =  CPHYSADDR(td);
281                         lp->tx_chain_tail = chain_next;
282                 }
283         }
284         dma_cache_wback((u32) td, sizeof(*td));
285
286         netif_trans_update(dev);
287         spin_unlock_irqrestore(&lp->lock, flags);
288
289         return NETDEV_TX_OK;
290 }
291
292 static int mdio_read(struct net_device *dev, int mii_id, int reg)
293 {
294         struct korina_private *lp = netdev_priv(dev);
295         int ret;
296
297         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
298
299         writel(0, &lp->eth_regs->miimcfg);
300         writel(0, &lp->eth_regs->miimcmd);
301         writel(mii_id | reg, &lp->eth_regs->miimaddr);
302         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
303
304         ret = (int)(readl(&lp->eth_regs->miimrdd));
305         return ret;
306 }
307
308 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
309 {
310         struct korina_private *lp = netdev_priv(dev);
311
312         mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
313
314         writel(0, &lp->eth_regs->miimcfg);
315         writel(1, &lp->eth_regs->miimcmd);
316         writel(mii_id | reg, &lp->eth_regs->miimaddr);
317         writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
318         writel(val, &lp->eth_regs->miimwtd);
319 }
320
321 /* Ethernet Rx DMA interrupt */
322 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
323 {
324         struct net_device *dev = dev_id;
325         struct korina_private *lp = netdev_priv(dev);
326         u32 dmas, dmasm;
327         irqreturn_t retval;
328
329         dmas = readl(&lp->rx_dma_regs->dmas);
330         if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
331                 dmasm = readl(&lp->rx_dma_regs->dmasm);
332                 writel(dmasm | (DMA_STAT_DONE |
333                                 DMA_STAT_HALT | DMA_STAT_ERR),
334                                 &lp->rx_dma_regs->dmasm);
335
336                 napi_schedule(&lp->napi);
337
338                 if (dmas & DMA_STAT_ERR)
339                         printk(KERN_ERR "%s: DMA error\n", dev->name);
340
341                 retval = IRQ_HANDLED;
342         } else
343                 retval = IRQ_NONE;
344
345         return retval;
346 }
347
348 static int korina_rx(struct net_device *dev, int limit)
349 {
350         struct korina_private *lp = netdev_priv(dev);
351         struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
352         struct sk_buff *skb, *skb_new;
353         u8 *pkt_buf;
354         u32 devcs, pkt_len, dmas;
355         int count;
356
357         dma_cache_inv((u32)rd, sizeof(*rd));
358
359         for (count = 0; count < limit; count++) {
360                 skb = lp->rx_skb[lp->rx_next_done];
361                 skb_new = NULL;
362
363                 devcs = rd->devcs;
364
365                 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
366                         break;
367
368                 /* Update statistics counters */
369                 if (devcs & ETH_RX_CRC)
370                         dev->stats.rx_crc_errors++;
371                 if (devcs & ETH_RX_LOR)
372                         dev->stats.rx_length_errors++;
373                 if (devcs & ETH_RX_LE)
374                         dev->stats.rx_length_errors++;
375                 if (devcs & ETH_RX_OVR)
376                         dev->stats.rx_fifo_errors++;
377                 if (devcs & ETH_RX_CV)
378                         dev->stats.rx_frame_errors++;
379                 if (devcs & ETH_RX_CES)
380                         dev->stats.rx_length_errors++;
381                 if (devcs & ETH_RX_MP)
382                         dev->stats.multicast++;
383
384                 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
385                         /* check that this is a whole packet
386                          * WARNING: DMA_FD bit incorrectly set
387                          * in Rc32434 (errata ref #077) */
388                         dev->stats.rx_errors++;
389                         dev->stats.rx_dropped++;
390                 } else if ((devcs & ETH_RX_ROK)) {
391                         pkt_len = RCVPKT_LENGTH(devcs);
392
393                         /* must be the (first and) last
394                          * descriptor then */
395                         pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
396
397                         /* invalidate the cache */
398                         dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
399
400                         /* Malloc up new buffer. */
401                         skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
402
403                         if (!skb_new)
404                                 break;
405                         /* Do not count the CRC */
406                         skb_put(skb, pkt_len - 4);
407                         skb->protocol = eth_type_trans(skb, dev);
408
409                         /* Pass the packet to upper layers */
410                         netif_receive_skb(skb);
411                         dev->stats.rx_packets++;
412                         dev->stats.rx_bytes += pkt_len;
413
414                         /* Update the mcast stats */
415                         if (devcs & ETH_RX_MP)
416                                 dev->stats.multicast++;
417
418                         lp->rx_skb[lp->rx_next_done] = skb_new;
419                 }
420
421                 rd->devcs = 0;
422
423                 /* Restore descriptor's curr_addr */
424                 if (skb_new)
425                         rd->ca = CPHYSADDR(skb_new->data);
426                 else
427                         rd->ca = CPHYSADDR(skb->data);
428
429                 rd->control = DMA_COUNT(KORINA_RBSIZE) |
430                         DMA_DESC_COD | DMA_DESC_IOD;
431                 lp->rd_ring[(lp->rx_next_done - 1) &
432                         KORINA_RDS_MASK].control &=
433                         ~DMA_DESC_COD;
434
435                 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
436                 dma_cache_wback((u32)rd, sizeof(*rd));
437                 rd = &lp->rd_ring[lp->rx_next_done];
438                 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
439         }
440
441         dmas = readl(&lp->rx_dma_regs->dmas);
442
443         if (dmas & DMA_STAT_HALT) {
444                 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
445                                 &lp->rx_dma_regs->dmas);
446
447                 lp->dma_halt_cnt++;
448                 rd->devcs = 0;
449                 skb = lp->rx_skb[lp->rx_next_done];
450                 rd->ca = CPHYSADDR(skb->data);
451                 dma_cache_wback((u32)rd, sizeof(*rd));
452                 korina_chain_rx(lp, rd);
453         }
454
455         return count;
456 }
457
458 static int korina_poll(struct napi_struct *napi, int budget)
459 {
460         struct korina_private *lp =
461                 container_of(napi, struct korina_private, napi);
462         struct net_device *dev = lp->dev;
463         int work_done;
464
465         work_done = korina_rx(dev, budget);
466         if (work_done < budget) {
467                 napi_complete_done(napi, work_done);
468
469                 writel(readl(&lp->rx_dma_regs->dmasm) &
470                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
471                         &lp->rx_dma_regs->dmasm);
472         }
473         return work_done;
474 }
475
476 /*
477  * Set or clear the multicast filter for this adaptor.
478  */
479 static void korina_multicast_list(struct net_device *dev)
480 {
481         struct korina_private *lp = netdev_priv(dev);
482         unsigned long flags;
483         struct netdev_hw_addr *ha;
484         u32 recognise = ETH_ARC_AB;     /* always accept broadcasts */
485
486         /* Set promiscuous mode */
487         if (dev->flags & IFF_PROMISC)
488                 recognise |= ETH_ARC_PRO;
489
490         else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
491                 /* All multicast and broadcast */
492                 recognise |= ETH_ARC_AM;
493
494         /* Build the hash table */
495         if (netdev_mc_count(dev) > 4) {
496                 u16 hash_table[4] = { 0 };
497                 u32 crc;
498
499                 netdev_for_each_mc_addr(ha, dev) {
500                         crc = ether_crc_le(6, ha->addr);
501                         crc >>= 26;
502                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
503                 }
504                 /* Accept filtered multicast */
505                 recognise |= ETH_ARC_AFM;
506
507                 /* Fill the MAC hash tables with their values */
508                 writel((u32)(hash_table[1] << 16 | hash_table[0]),
509                                         &lp->eth_regs->ethhash0);
510                 writel((u32)(hash_table[3] << 16 | hash_table[2]),
511                                         &lp->eth_regs->ethhash1);
512         }
513
514         spin_lock_irqsave(&lp->lock, flags);
515         writel(recognise, &lp->eth_regs->etharc);
516         spin_unlock_irqrestore(&lp->lock, flags);
517 }
518
519 static void korina_tx(struct net_device *dev)
520 {
521         struct korina_private *lp = netdev_priv(dev);
522         struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
523         u32 devcs;
524         u32 dmas;
525
526         spin_lock(&lp->lock);
527
528         /* Process all desc that are done */
529         while (IS_DMA_FINISHED(td->control)) {
530                 if (lp->tx_full == 1) {
531                         netif_wake_queue(dev);
532                         lp->tx_full = 0;
533                 }
534
535                 devcs = lp->td_ring[lp->tx_next_done].devcs;
536                 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
537                                 (ETH_TX_FD | ETH_TX_LD)) {
538                         dev->stats.tx_errors++;
539                         dev->stats.tx_dropped++;
540
541                         /* Should never happen */
542                         printk(KERN_ERR "%s: split tx ignored\n",
543                                                         dev->name);
544                 } else if (devcs & ETH_TX_TOK) {
545                         dev->stats.tx_packets++;
546                         dev->stats.tx_bytes +=
547                                         lp->tx_skb[lp->tx_next_done]->len;
548                 } else {
549                         dev->stats.tx_errors++;
550                         dev->stats.tx_dropped++;
551
552                         /* Underflow */
553                         if (devcs & ETH_TX_UND)
554                                 dev->stats.tx_fifo_errors++;
555
556                         /* Oversized frame */
557                         if (devcs & ETH_TX_OF)
558                                 dev->stats.tx_aborted_errors++;
559
560                         /* Excessive deferrals */
561                         if (devcs & ETH_TX_ED)
562                                 dev->stats.tx_carrier_errors++;
563
564                         /* Collisions: medium busy */
565                         if (devcs & ETH_TX_EC)
566                                 dev->stats.collisions++;
567
568                         /* Late collision */
569                         if (devcs & ETH_TX_LC)
570                                 dev->stats.tx_window_errors++;
571                 }
572
573                 /* We must always free the original skb */
574                 if (lp->tx_skb[lp->tx_next_done]) {
575                         dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
576                         lp->tx_skb[lp->tx_next_done] = NULL;
577                 }
578
579                 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
580                 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
581                 lp->td_ring[lp->tx_next_done].link = 0;
582                 lp->td_ring[lp->tx_next_done].ca = 0;
583                 lp->tx_count--;
584
585                 /* Go on to next transmission */
586                 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
587                 td = &lp->td_ring[lp->tx_next_done];
588
589         }
590
591         /* Clear the DMA status register */
592         dmas = readl(&lp->tx_dma_regs->dmas);
593         writel(~dmas, &lp->tx_dma_regs->dmas);
594
595         writel(readl(&lp->tx_dma_regs->dmasm) &
596                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
597                         &lp->tx_dma_regs->dmasm);
598
599         spin_unlock(&lp->lock);
600 }
601
602 static irqreturn_t
603 korina_tx_dma_interrupt(int irq, void *dev_id)
604 {
605         struct net_device *dev = dev_id;
606         struct korina_private *lp = netdev_priv(dev);
607         u32 dmas, dmasm;
608         irqreturn_t retval;
609
610         dmas = readl(&lp->tx_dma_regs->dmas);
611
612         if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
613                 dmasm = readl(&lp->tx_dma_regs->dmasm);
614                 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
615                                 &lp->tx_dma_regs->dmasm);
616
617                 korina_tx(dev);
618
619                 if (lp->tx_chain_status == desc_filled &&
620                         (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
621                         writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
622                                 &(lp->tx_dma_regs->dmandptr));
623                         lp->tx_chain_status = desc_empty;
624                         lp->tx_chain_head = lp->tx_chain_tail;
625                         netif_trans_update(dev);
626                 }
627                 if (dmas & DMA_STAT_ERR)
628                         printk(KERN_ERR "%s: DMA error\n", dev->name);
629
630                 retval = IRQ_HANDLED;
631         } else
632                 retval = IRQ_NONE;
633
634         return retval;
635 }
636
637
638 static void korina_check_media(struct net_device *dev, unsigned int init_media)
639 {
640         struct korina_private *lp = netdev_priv(dev);
641
642         mii_check_media(&lp->mii_if, 0, init_media);
643
644         if (lp->mii_if.full_duplex)
645                 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
646                                                 &lp->eth_regs->ethmac2);
647         else
648                 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
649                                                 &lp->eth_regs->ethmac2);
650 }
651
652 static void korina_poll_media(unsigned long data)
653 {
654         struct net_device *dev = (struct net_device *) data;
655         struct korina_private *lp = netdev_priv(dev);
656
657         korina_check_media(dev, 0);
658         mod_timer(&lp->media_check_timer, jiffies + HZ);
659 }
660
661 static void korina_set_carrier(struct mii_if_info *mii)
662 {
663         if (mii->force_media) {
664                 /* autoneg is off: Link is always assumed to be up */
665                 if (!netif_carrier_ok(mii->dev))
666                         netif_carrier_on(mii->dev);
667         } else  /* Let MMI library update carrier status */
668                 korina_check_media(mii->dev, 0);
669 }
670
671 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
672 {
673         struct korina_private *lp = netdev_priv(dev);
674         struct mii_ioctl_data *data = if_mii(rq);
675         int rc;
676
677         if (!netif_running(dev))
678                 return -EINVAL;
679         spin_lock_irq(&lp->lock);
680         rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
681         spin_unlock_irq(&lp->lock);
682         korina_set_carrier(&lp->mii_if);
683
684         return rc;
685 }
686
687 /* ethtool helpers */
688 static void netdev_get_drvinfo(struct net_device *dev,
689                         struct ethtool_drvinfo *info)
690 {
691         struct korina_private *lp = netdev_priv(dev);
692
693         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
694         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
695         strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
696 }
697
698 static int netdev_get_link_ksettings(struct net_device *dev,
699                                      struct ethtool_link_ksettings *cmd)
700 {
701         struct korina_private *lp = netdev_priv(dev);
702         int rc;
703
704         spin_lock_irq(&lp->lock);
705         rc = mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
706         spin_unlock_irq(&lp->lock);
707
708         return rc;
709 }
710
711 static int netdev_set_link_ksettings(struct net_device *dev,
712                                      const struct ethtool_link_ksettings *cmd)
713 {
714         struct korina_private *lp = netdev_priv(dev);
715         int rc;
716
717         spin_lock_irq(&lp->lock);
718         rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
719         spin_unlock_irq(&lp->lock);
720         korina_set_carrier(&lp->mii_if);
721
722         return rc;
723 }
724
725 static u32 netdev_get_link(struct net_device *dev)
726 {
727         struct korina_private *lp = netdev_priv(dev);
728
729         return mii_link_ok(&lp->mii_if);
730 }
731
732 static const struct ethtool_ops netdev_ethtool_ops = {
733         .get_drvinfo            = netdev_get_drvinfo,
734         .get_link               = netdev_get_link,
735         .get_link_ksettings     = netdev_get_link_ksettings,
736         .set_link_ksettings     = netdev_set_link_ksettings,
737 };
738
739 static int korina_alloc_ring(struct net_device *dev)
740 {
741         struct korina_private *lp = netdev_priv(dev);
742         struct sk_buff *skb;
743         int i;
744
745         /* Initialize the transmit descriptors */
746         for (i = 0; i < KORINA_NUM_TDS; i++) {
747                 lp->td_ring[i].control = DMA_DESC_IOF;
748                 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
749                 lp->td_ring[i].ca = 0;
750                 lp->td_ring[i].link = 0;
751         }
752         lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
753                         lp->tx_full = lp->tx_count = 0;
754         lp->tx_chain_status = desc_empty;
755
756         /* Initialize the receive descriptors */
757         for (i = 0; i < KORINA_NUM_RDS; i++) {
758                 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
759                 if (!skb)
760                         return -ENOMEM;
761                 lp->rx_skb[i] = skb;
762                 lp->rd_ring[i].control = DMA_DESC_IOD |
763                                 DMA_COUNT(KORINA_RBSIZE);
764                 lp->rd_ring[i].devcs = 0;
765                 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
766                 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
767         }
768
769         /* loop back receive descriptors, so the last
770          * descriptor points to the first one */
771         lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
772         lp->rd_ring[i - 1].control |= DMA_DESC_COD;
773
774         lp->rx_next_done  = 0;
775         lp->rx_chain_head = 0;
776         lp->rx_chain_tail = 0;
777         lp->rx_chain_status = desc_empty;
778
779         return 0;
780 }
781
782 static void korina_free_ring(struct net_device *dev)
783 {
784         struct korina_private *lp = netdev_priv(dev);
785         int i;
786
787         for (i = 0; i < KORINA_NUM_RDS; i++) {
788                 lp->rd_ring[i].control = 0;
789                 if (lp->rx_skb[i])
790                         dev_kfree_skb_any(lp->rx_skb[i]);
791                 lp->rx_skb[i] = NULL;
792         }
793
794         for (i = 0; i < KORINA_NUM_TDS; i++) {
795                 lp->td_ring[i].control = 0;
796                 if (lp->tx_skb[i])
797                         dev_kfree_skb_any(lp->tx_skb[i]);
798                 lp->tx_skb[i] = NULL;
799         }
800 }
801
802 /*
803  * Initialize the RC32434 ethernet controller.
804  */
805 static int korina_init(struct net_device *dev)
806 {
807         struct korina_private *lp = netdev_priv(dev);
808
809         /* Disable DMA */
810         korina_abort_tx(dev);
811         korina_abort_rx(dev);
812
813         /* reset ethernet logic */
814         writel(0, &lp->eth_regs->ethintfc);
815         while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
816                 netif_trans_update(dev);
817
818         /* Enable Ethernet Interface */
819         writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
820
821         /* Allocate rings */
822         if (korina_alloc_ring(dev)) {
823                 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
824                 korina_free_ring(dev);
825                 return -ENOMEM;
826         }
827
828         writel(0, &lp->rx_dma_regs->dmas);
829         /* Start Rx DMA */
830         korina_start_rx(lp, &lp->rd_ring[0]);
831
832         writel(readl(&lp->tx_dma_regs->dmasm) &
833                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
834                         &lp->tx_dma_regs->dmasm);
835         writel(readl(&lp->rx_dma_regs->dmasm) &
836                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
837                         &lp->rx_dma_regs->dmasm);
838
839         /* Accept only packets destined for this Ethernet device address */
840         writel(ETH_ARC_AB, &lp->eth_regs->etharc);
841
842         /* Set all Ether station address registers to their initial values */
843         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
844         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
845
846         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
847         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
848
849         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
850         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
851
852         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
853         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
854
855
856         /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
857         writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
858                         &lp->eth_regs->ethmac2);
859
860         /* Back to back inter-packet-gap */
861         writel(0x15, &lp->eth_regs->ethipgt);
862         /* Non - Back to back inter-packet-gap */
863         writel(0x12, &lp->eth_regs->ethipgr);
864
865         /* Management Clock Prescaler Divisor
866          * Clock independent setting */
867         writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
868                        &lp->eth_regs->ethmcp);
869
870         /* don't transmit until fifo contains 48b */
871         writel(48, &lp->eth_regs->ethfifott);
872
873         writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
874
875         napi_enable(&lp->napi);
876         netif_start_queue(dev);
877
878         return 0;
879 }
880
881 /*
882  * Restart the RC32434 ethernet controller.
883  */
884 static void korina_restart_task(struct work_struct *work)
885 {
886         struct korina_private *lp = container_of(work,
887                         struct korina_private, restart_task);
888         struct net_device *dev = lp->dev;
889
890         /*
891          * Disable interrupts
892          */
893         disable_irq(lp->rx_irq);
894         disable_irq(lp->tx_irq);
895         disable_irq(lp->ovr_irq);
896         disable_irq(lp->und_irq);
897
898         writel(readl(&lp->tx_dma_regs->dmasm) |
899                                 DMA_STAT_FINI | DMA_STAT_ERR,
900                                 &lp->tx_dma_regs->dmasm);
901         writel(readl(&lp->rx_dma_regs->dmasm) |
902                                 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
903                                 &lp->rx_dma_regs->dmasm);
904
905         napi_disable(&lp->napi);
906
907         korina_free_ring(dev);
908
909         if (korina_init(dev) < 0) {
910                 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
911                 return;
912         }
913         korina_multicast_list(dev);
914
915         enable_irq(lp->und_irq);
916         enable_irq(lp->ovr_irq);
917         enable_irq(lp->tx_irq);
918         enable_irq(lp->rx_irq);
919 }
920
921 static void korina_clear_and_restart(struct net_device *dev, u32 value)
922 {
923         struct korina_private *lp = netdev_priv(dev);
924
925         netif_stop_queue(dev);
926         writel(value, &lp->eth_regs->ethintfc);
927         schedule_work(&lp->restart_task);
928 }
929
930 /* Ethernet Tx Underflow interrupt */
931 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
932 {
933         struct net_device *dev = dev_id;
934         struct korina_private *lp = netdev_priv(dev);
935         unsigned int und;
936
937         spin_lock(&lp->lock);
938
939         und = readl(&lp->eth_regs->ethintfc);
940
941         if (und & ETH_INT_FC_UND)
942                 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
943
944         spin_unlock(&lp->lock);
945
946         return IRQ_HANDLED;
947 }
948
949 static void korina_tx_timeout(struct net_device *dev)
950 {
951         struct korina_private *lp = netdev_priv(dev);
952
953         schedule_work(&lp->restart_task);
954 }
955
956 /* Ethernet Rx Overflow interrupt */
957 static irqreturn_t
958 korina_ovr_interrupt(int irq, void *dev_id)
959 {
960         struct net_device *dev = dev_id;
961         struct korina_private *lp = netdev_priv(dev);
962         unsigned int ovr;
963
964         spin_lock(&lp->lock);
965         ovr = readl(&lp->eth_regs->ethintfc);
966
967         if (ovr & ETH_INT_FC_OVR)
968                 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
969
970         spin_unlock(&lp->lock);
971
972         return IRQ_HANDLED;
973 }
974
975 #ifdef CONFIG_NET_POLL_CONTROLLER
976 static void korina_poll_controller(struct net_device *dev)
977 {
978         disable_irq(dev->irq);
979         korina_tx_dma_interrupt(dev->irq, dev);
980         enable_irq(dev->irq);
981 }
982 #endif
983
984 static int korina_open(struct net_device *dev)
985 {
986         struct korina_private *lp = netdev_priv(dev);
987         int ret;
988
989         /* Initialize */
990         ret = korina_init(dev);
991         if (ret < 0) {
992                 printk(KERN_ERR "%s: cannot open device\n", dev->name);
993                 goto out;
994         }
995
996         /* Install the interrupt handler
997          * that handles the Done Finished
998          * Ovr and Und Events */
999         ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1000                         0, "Korina ethernet Rx", dev);
1001         if (ret < 0) {
1002                 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1003                     dev->name, lp->rx_irq);
1004                 goto err_release;
1005         }
1006         ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1007                         0, "Korina ethernet Tx", dev);
1008         if (ret < 0) {
1009                 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1010                     dev->name, lp->tx_irq);
1011                 goto err_free_rx_irq;
1012         }
1013
1014         /* Install handler for overrun error. */
1015         ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1016                         0, "Ethernet Overflow", dev);
1017         if (ret < 0) {
1018                 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1019                     dev->name, lp->ovr_irq);
1020                 goto err_free_tx_irq;
1021         }
1022
1023         /* Install handler for underflow error. */
1024         ret = request_irq(lp->und_irq, korina_und_interrupt,
1025                         0, "Ethernet Underflow", dev);
1026         if (ret < 0) {
1027                 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1028                     dev->name, lp->und_irq);
1029                 goto err_free_ovr_irq;
1030         }
1031         mod_timer(&lp->media_check_timer, jiffies + 1);
1032 out:
1033         return ret;
1034
1035 err_free_ovr_irq:
1036         free_irq(lp->ovr_irq, dev);
1037 err_free_tx_irq:
1038         free_irq(lp->tx_irq, dev);
1039 err_free_rx_irq:
1040         free_irq(lp->rx_irq, dev);
1041 err_release:
1042         korina_free_ring(dev);
1043         goto out;
1044 }
1045
1046 static int korina_close(struct net_device *dev)
1047 {
1048         struct korina_private *lp = netdev_priv(dev);
1049         u32 tmp;
1050
1051         del_timer(&lp->media_check_timer);
1052
1053         /* Disable interrupts */
1054         disable_irq(lp->rx_irq);
1055         disable_irq(lp->tx_irq);
1056         disable_irq(lp->ovr_irq);
1057         disable_irq(lp->und_irq);
1058
1059         korina_abort_tx(dev);
1060         tmp = readl(&lp->tx_dma_regs->dmasm);
1061         tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1062         writel(tmp, &lp->tx_dma_regs->dmasm);
1063
1064         korina_abort_rx(dev);
1065         tmp = readl(&lp->rx_dma_regs->dmasm);
1066         tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1067         writel(tmp, &lp->rx_dma_regs->dmasm);
1068
1069         napi_disable(&lp->napi);
1070
1071         cancel_work_sync(&lp->restart_task);
1072
1073         korina_free_ring(dev);
1074
1075         free_irq(lp->rx_irq, dev);
1076         free_irq(lp->tx_irq, dev);
1077         free_irq(lp->ovr_irq, dev);
1078         free_irq(lp->und_irq, dev);
1079
1080         return 0;
1081 }
1082
1083 static const struct net_device_ops korina_netdev_ops = {
1084         .ndo_open               = korina_open,
1085         .ndo_stop               = korina_close,
1086         .ndo_start_xmit         = korina_send_packet,
1087         .ndo_set_rx_mode        = korina_multicast_list,
1088         .ndo_tx_timeout         = korina_tx_timeout,
1089         .ndo_do_ioctl           = korina_ioctl,
1090         .ndo_validate_addr      = eth_validate_addr,
1091         .ndo_set_mac_address    = eth_mac_addr,
1092 #ifdef CONFIG_NET_POLL_CONTROLLER
1093         .ndo_poll_controller    = korina_poll_controller,
1094 #endif
1095 };
1096
1097 static int korina_probe(struct platform_device *pdev)
1098 {
1099         struct korina_device *bif = platform_get_drvdata(pdev);
1100         struct korina_private *lp;
1101         struct net_device *dev;
1102         struct resource *r;
1103         int rc;
1104
1105         dev = alloc_etherdev(sizeof(struct korina_private));
1106         if (!dev)
1107                 return -ENOMEM;
1108
1109         SET_NETDEV_DEV(dev, &pdev->dev);
1110         lp = netdev_priv(dev);
1111
1112         bif->dev = dev;
1113         memcpy(dev->dev_addr, bif->mac, ETH_ALEN);
1114
1115         lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1116         lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1117         lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1118         lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1119
1120         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1121         dev->base_addr = r->start;
1122         lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1123         if (!lp->eth_regs) {
1124                 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1125                 rc = -ENXIO;
1126                 goto probe_err_out;
1127         }
1128
1129         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1130         lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1131         if (!lp->rx_dma_regs) {
1132                 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1133                 rc = -ENXIO;
1134                 goto probe_err_dma_rx;
1135         }
1136
1137         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1138         lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1139         if (!lp->tx_dma_regs) {
1140                 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1141                 rc = -ENXIO;
1142                 goto probe_err_dma_tx;
1143         }
1144
1145         lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1146         if (!lp->td_ring) {
1147                 rc = -ENXIO;
1148                 goto probe_err_td_ring;
1149         }
1150
1151         dma_cache_inv((unsigned long)(lp->td_ring),
1152                         TD_RING_SIZE + RD_RING_SIZE);
1153
1154         /* now convert TD_RING pointer to KSEG1 */
1155         lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1156         lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1157
1158         spin_lock_init(&lp->lock);
1159         /* just use the rx dma irq */
1160         dev->irq = lp->rx_irq;
1161         lp->dev = dev;
1162
1163         dev->netdev_ops = &korina_netdev_ops;
1164         dev->ethtool_ops = &netdev_ethtool_ops;
1165         dev->watchdog_timeo = TX_TIMEOUT;
1166         netif_napi_add(dev, &lp->napi, korina_poll, 64);
1167
1168         lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1169         lp->mii_if.dev = dev;
1170         lp->mii_if.mdio_read = mdio_read;
1171         lp->mii_if.mdio_write = mdio_write;
1172         lp->mii_if.phy_id = lp->phy_addr;
1173         lp->mii_if.phy_id_mask = 0x1f;
1174         lp->mii_if.reg_num_mask = 0x1f;
1175
1176         rc = register_netdev(dev);
1177         if (rc < 0) {
1178                 printk(KERN_ERR DRV_NAME
1179                         ": cannot register net device: %d\n", rc);
1180                 goto probe_err_register;
1181         }
1182         setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1183
1184         INIT_WORK(&lp->restart_task, korina_restart_task);
1185
1186         printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1187                         dev->name);
1188 out:
1189         return rc;
1190
1191 probe_err_register:
1192         kfree(lp->td_ring);
1193 probe_err_td_ring:
1194         iounmap(lp->tx_dma_regs);
1195 probe_err_dma_tx:
1196         iounmap(lp->rx_dma_regs);
1197 probe_err_dma_rx:
1198         iounmap(lp->eth_regs);
1199 probe_err_out:
1200         free_netdev(dev);
1201         goto out;
1202 }
1203
1204 static int korina_remove(struct platform_device *pdev)
1205 {
1206         struct korina_device *bif = platform_get_drvdata(pdev);
1207         struct korina_private *lp = netdev_priv(bif->dev);
1208
1209         iounmap(lp->eth_regs);
1210         iounmap(lp->rx_dma_regs);
1211         iounmap(lp->tx_dma_regs);
1212
1213         unregister_netdev(bif->dev);
1214         free_netdev(bif->dev);
1215
1216         return 0;
1217 }
1218
1219 static struct platform_driver korina_driver = {
1220         .driver.name = "korina",
1221         .probe = korina_probe,
1222         .remove = korina_remove,
1223 };
1224
1225 module_platform_driver(korina_driver);
1226
1227 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1228 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1229 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1230 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1231 MODULE_LICENSE("GPL");