1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
68 * @hw: pointer to hardware structure
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
76 bool supported = false;
77 ixgbe_link_speed speed;
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
90 case ixgbe_media_type_backplane:
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550T1:
101 case IXGBE_DEV_ID_X550EM_X_10G_T:
102 case IXGBE_DEV_ID_X550EM_A_10G_T:
103 case IXGBE_DEV_ID_X550EM_A_1G_T:
104 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
118 * ixgbe_setup_fc_generic - Set up flow control
119 * @hw: pointer to hardware structure
121 * Called at init time to set up flow control.
123 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
126 u32 reg = 0, reg_bp = 0;
131 * Validate the requested mode. Strict IEEE mode does not allow
132 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
134 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
135 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
136 return IXGBE_ERR_INVALID_LINK_SETTINGS;
140 * 10gig parts do not have a word in the EEPROM to determine the
141 * default flow control setting, so we explicitly set it to full.
143 if (hw->fc.requested_mode == ixgbe_fc_default)
144 hw->fc.requested_mode = ixgbe_fc_full;
147 * Set up the 1G and 10G flow control advertisement registers so the
148 * HW will be able to do fc autoneg once the cable is plugged in. If
149 * we link at 10G, the 1G advertisement is harmless and vice versa.
151 switch (hw->phy.media_type) {
152 case ixgbe_media_type_backplane:
153 /* some MAC's need RMW protection on AUTOC */
154 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
158 /* only backplane uses autoc so fall though */
159 case ixgbe_media_type_fiber:
160 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
163 case ixgbe_media_type_copper:
164 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
165 MDIO_MMD_AN, ®_cu);
172 * The possible values of fc.requested_mode are:
173 * 0: Flow control is completely disabled
174 * 1: Rx flow control is enabled (we can receive pause frames,
175 * but not send pause frames).
176 * 2: Tx flow control is enabled (we can send pause frames but
177 * we do not support receiving pause frames).
178 * 3: Both Rx and Tx flow control (symmetric) are enabled.
181 switch (hw->fc.requested_mode) {
183 /* Flow control completely disabled by software override. */
184 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
185 if (hw->phy.media_type == ixgbe_media_type_backplane)
186 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
187 IXGBE_AUTOC_ASM_PAUSE);
188 else if (hw->phy.media_type == ixgbe_media_type_copper)
189 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
191 case ixgbe_fc_tx_pause:
193 * Tx Flow control is enabled, and Rx Flow control is
194 * disabled by software override.
196 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
197 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
198 if (hw->phy.media_type == ixgbe_media_type_backplane) {
199 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
200 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
201 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
202 reg_cu |= IXGBE_TAF_ASM_PAUSE;
203 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
206 case ixgbe_fc_rx_pause:
208 * Rx Flow control is enabled and Tx Flow control is
209 * disabled by software override. Since there really
210 * isn't a way to advertise that we are capable of RX
211 * Pause ONLY, we will advertise that we support both
212 * symmetric and asymmetric Rx PAUSE, as such we fall
213 * through to the fc_full statement. Later, we will
214 * disable the adapter's ability to send PAUSE frames.
217 /* Flow control (both Rx and Tx) is enabled by SW override. */
218 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
219 if (hw->phy.media_type == ixgbe_media_type_backplane)
220 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
221 IXGBE_AUTOC_ASM_PAUSE;
222 else if (hw->phy.media_type == ixgbe_media_type_copper)
223 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
226 hw_dbg(hw, "Flow control param set incorrectly\n");
227 return IXGBE_ERR_CONFIG;
230 if (hw->mac.type != ixgbe_mac_X540) {
232 * Enable auto-negotiation between the MAC & PHY;
233 * the MAC will advertise clause 37 flow control.
235 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
236 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
238 /* Disable AN timeout */
239 if (hw->fc.strict_ieee)
240 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
242 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
243 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
247 * AUTOC restart handles negotiation of 1G and 10G on backplane
248 * and copper. There is no need to set the PCS1GCTL register.
251 if (hw->phy.media_type == ixgbe_media_type_backplane) {
252 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
253 * LESM is on, likewise reset_pipeline requries the lock as
254 * it also writes AUTOC.
256 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
260 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
261 ixgbe_device_supports_autoneg_fc(hw)) {
262 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
263 MDIO_MMD_AN, reg_cu);
266 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
271 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
272 * @hw: pointer to hardware structure
274 * Starts the hardware by filling the bus info structure and media type, clears
275 * all on chip counters, initializes receive address registers, multicast
276 * table, VLAN filter table, calls routine to set up link and flow control
277 * settings, and leaves transmit and receive units disabled and uninitialized
279 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
285 /* Set the media type */
286 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
288 /* Identify the PHY */
289 hw->phy.ops.identify(hw);
291 /* Clear the VLAN filter table */
292 hw->mac.ops.clear_vfta(hw);
294 /* Clear statistics registers */
295 hw->mac.ops.clear_hw_cntrs(hw);
297 /* Set No Snoop Disable */
298 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
299 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
300 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
301 IXGBE_WRITE_FLUSH(hw);
303 /* Setup flow control if method for doing so */
304 if (hw->mac.ops.setup_fc) {
305 ret_val = hw->mac.ops.setup_fc(hw);
310 /* Cashe bit indicating need for crosstalk fix */
311 switch (hw->mac.type) {
312 case ixgbe_mac_82599EB:
313 case ixgbe_mac_X550EM_x:
314 case ixgbe_mac_x550em_a:
315 hw->mac.ops.get_device_caps(hw, &device_caps);
316 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
317 hw->need_crosstalk_fix = false;
319 hw->need_crosstalk_fix = true;
322 hw->need_crosstalk_fix = false;
326 /* Clear adapter stopped flag */
327 hw->adapter_stopped = false;
333 * ixgbe_start_hw_gen2 - Init sequence for common device family
334 * @hw: pointer to hw structure
336 * Performs the init sequence common to the second generation
338 * Devices in the second generation:
342 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
346 /* Clear the rate limiters */
347 for (i = 0; i < hw->mac.max_tx_queues; i++) {
348 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
349 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
351 IXGBE_WRITE_FLUSH(hw);
353 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
354 /* Disable relaxed ordering */
355 for (i = 0; i < hw->mac.max_tx_queues; i++) {
358 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
359 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
360 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
363 for (i = 0; i < hw->mac.max_rx_queues; i++) {
366 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
367 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
368 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
369 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
376 * ixgbe_init_hw_generic - Generic hardware initialization
377 * @hw: pointer to hardware structure
379 * Initialize the hardware by resetting the hardware, filling the bus info
380 * structure and media type, clears all on chip counters, initializes receive
381 * address registers, multicast table, VLAN filter table, calls routine to set
382 * up link and flow control settings, and leaves transmit and receive units
383 * disabled and uninitialized
385 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
389 /* Reset the hardware */
390 status = hw->mac.ops.reset_hw(hw);
394 status = hw->mac.ops.start_hw(hw);
397 /* Initialize the LED link active for LED blink support */
398 hw->mac.ops.init_led_link_act(hw);
404 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
405 * @hw: pointer to hardware structure
407 * Clears all hardware statistics counters by reading them from the hardware
408 * Statistics counters are clear on read.
410 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
414 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
415 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
416 IXGBE_READ_REG(hw, IXGBE_ERRBC);
417 IXGBE_READ_REG(hw, IXGBE_MSPDC);
418 for (i = 0; i < 8; i++)
419 IXGBE_READ_REG(hw, IXGBE_MPC(i));
421 IXGBE_READ_REG(hw, IXGBE_MLFC);
422 IXGBE_READ_REG(hw, IXGBE_MRFC);
423 IXGBE_READ_REG(hw, IXGBE_RLEC);
424 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
425 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
426 if (hw->mac.type >= ixgbe_mac_82599EB) {
427 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
428 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
430 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
431 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
434 for (i = 0; i < 8; i++) {
435 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
436 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
437 if (hw->mac.type >= ixgbe_mac_82599EB) {
438 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
439 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
441 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
442 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
445 if (hw->mac.type >= ixgbe_mac_82599EB)
446 for (i = 0; i < 8; i++)
447 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
448 IXGBE_READ_REG(hw, IXGBE_PRC64);
449 IXGBE_READ_REG(hw, IXGBE_PRC127);
450 IXGBE_READ_REG(hw, IXGBE_PRC255);
451 IXGBE_READ_REG(hw, IXGBE_PRC511);
452 IXGBE_READ_REG(hw, IXGBE_PRC1023);
453 IXGBE_READ_REG(hw, IXGBE_PRC1522);
454 IXGBE_READ_REG(hw, IXGBE_GPRC);
455 IXGBE_READ_REG(hw, IXGBE_BPRC);
456 IXGBE_READ_REG(hw, IXGBE_MPRC);
457 IXGBE_READ_REG(hw, IXGBE_GPTC);
458 IXGBE_READ_REG(hw, IXGBE_GORCL);
459 IXGBE_READ_REG(hw, IXGBE_GORCH);
460 IXGBE_READ_REG(hw, IXGBE_GOTCL);
461 IXGBE_READ_REG(hw, IXGBE_GOTCH);
462 if (hw->mac.type == ixgbe_mac_82598EB)
463 for (i = 0; i < 8; i++)
464 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
465 IXGBE_READ_REG(hw, IXGBE_RUC);
466 IXGBE_READ_REG(hw, IXGBE_RFC);
467 IXGBE_READ_REG(hw, IXGBE_ROC);
468 IXGBE_READ_REG(hw, IXGBE_RJC);
469 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
470 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
471 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
472 IXGBE_READ_REG(hw, IXGBE_TORL);
473 IXGBE_READ_REG(hw, IXGBE_TORH);
474 IXGBE_READ_REG(hw, IXGBE_TPR);
475 IXGBE_READ_REG(hw, IXGBE_TPT);
476 IXGBE_READ_REG(hw, IXGBE_PTC64);
477 IXGBE_READ_REG(hw, IXGBE_PTC127);
478 IXGBE_READ_REG(hw, IXGBE_PTC255);
479 IXGBE_READ_REG(hw, IXGBE_PTC511);
480 IXGBE_READ_REG(hw, IXGBE_PTC1023);
481 IXGBE_READ_REG(hw, IXGBE_PTC1522);
482 IXGBE_READ_REG(hw, IXGBE_MPTC);
483 IXGBE_READ_REG(hw, IXGBE_BPTC);
484 for (i = 0; i < 16; i++) {
485 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
486 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
487 if (hw->mac.type >= ixgbe_mac_82599EB) {
488 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
489 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
490 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
491 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
492 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
494 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
495 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
499 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
501 hw->phy.ops.identify(hw);
502 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
503 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
504 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
505 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
512 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
513 * @hw: pointer to hardware structure
514 * @pba_num: stores the part number string from the EEPROM
515 * @pba_num_size: part number string buffer length
517 * Reads the part number string from the EEPROM.
519 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
528 if (pba_num == NULL) {
529 hw_dbg(hw, "PBA string buffer was null\n");
530 return IXGBE_ERR_INVALID_ARGUMENT;
533 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
535 hw_dbg(hw, "NVM Read Error\n");
539 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
541 hw_dbg(hw, "NVM Read Error\n");
546 * if data is not ptr guard the PBA must be in legacy format which
547 * means pba_ptr is actually our second data word for the PBA number
548 * and we can decode it into an ascii string
550 if (data != IXGBE_PBANUM_PTR_GUARD) {
551 hw_dbg(hw, "NVM PBA number is not stored as string\n");
553 /* we will need 11 characters to store the PBA */
554 if (pba_num_size < 11) {
555 hw_dbg(hw, "PBA string buffer too small\n");
556 return IXGBE_ERR_NO_SPACE;
559 /* extract hex string from data and pba_ptr */
560 pba_num[0] = (data >> 12) & 0xF;
561 pba_num[1] = (data >> 8) & 0xF;
562 pba_num[2] = (data >> 4) & 0xF;
563 pba_num[3] = data & 0xF;
564 pba_num[4] = (pba_ptr >> 12) & 0xF;
565 pba_num[5] = (pba_ptr >> 8) & 0xF;
568 pba_num[8] = (pba_ptr >> 4) & 0xF;
569 pba_num[9] = pba_ptr & 0xF;
571 /* put a null character on the end of our string */
574 /* switch all the data but the '-' to hex char */
575 for (offset = 0; offset < 10; offset++) {
576 if (pba_num[offset] < 0xA)
577 pba_num[offset] += '0';
578 else if (pba_num[offset] < 0x10)
579 pba_num[offset] += 'A' - 0xA;
585 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
587 hw_dbg(hw, "NVM Read Error\n");
591 if (length == 0xFFFF || length == 0) {
592 hw_dbg(hw, "NVM PBA number section invalid length\n");
593 return IXGBE_ERR_PBA_SECTION;
596 /* check if pba_num buffer is big enough */
597 if (pba_num_size < (((u32)length * 2) - 1)) {
598 hw_dbg(hw, "PBA string buffer too small\n");
599 return IXGBE_ERR_NO_SPACE;
602 /* trim pba length from start of string */
606 for (offset = 0; offset < length; offset++) {
607 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
609 hw_dbg(hw, "NVM Read Error\n");
612 pba_num[offset * 2] = (u8)(data >> 8);
613 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
615 pba_num[offset * 2] = '\0';
621 * ixgbe_get_mac_addr_generic - Generic get MAC address
622 * @hw: pointer to hardware structure
623 * @mac_addr: Adapter MAC address
625 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
626 * A reset of the adapter must be performed prior to calling this function
627 * in order for the MAC address to have been loaded from the EEPROM into RAR0
629 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
635 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
636 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
638 for (i = 0; i < 4; i++)
639 mac_addr[i] = (u8)(rar_low >> (i*8));
641 for (i = 0; i < 2; i++)
642 mac_addr[i+4] = (u8)(rar_high >> (i*8));
647 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
649 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
650 case IXGBE_PCI_LINK_WIDTH_1:
651 return ixgbe_bus_width_pcie_x1;
652 case IXGBE_PCI_LINK_WIDTH_2:
653 return ixgbe_bus_width_pcie_x2;
654 case IXGBE_PCI_LINK_WIDTH_4:
655 return ixgbe_bus_width_pcie_x4;
656 case IXGBE_PCI_LINK_WIDTH_8:
657 return ixgbe_bus_width_pcie_x8;
659 return ixgbe_bus_width_unknown;
663 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
665 switch (link_status & IXGBE_PCI_LINK_SPEED) {
666 case IXGBE_PCI_LINK_SPEED_2500:
667 return ixgbe_bus_speed_2500;
668 case IXGBE_PCI_LINK_SPEED_5000:
669 return ixgbe_bus_speed_5000;
670 case IXGBE_PCI_LINK_SPEED_8000:
671 return ixgbe_bus_speed_8000;
673 return ixgbe_bus_speed_unknown;
678 * ixgbe_get_bus_info_generic - Generic set PCI bus info
679 * @hw: pointer to hardware structure
681 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
683 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
687 hw->bus.type = ixgbe_bus_type_pci_express;
689 /* Get the negotiated link width and speed from PCI config space */
690 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
692 hw->bus.width = ixgbe_convert_bus_width(link_status);
693 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
695 hw->mac.ops.set_lan_id(hw);
701 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
702 * @hw: pointer to the HW structure
704 * Determines the LAN function id by reading memory-mapped registers
705 * and swaps the port value if requested.
707 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
709 struct ixgbe_bus_info *bus = &hw->bus;
713 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
714 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
715 bus->lan_id = bus->func;
717 /* check for a port swap */
718 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
719 if (reg & IXGBE_FACTPS_LFS)
722 /* Get MAC instance from EEPROM for configuring CS4227 */
723 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
724 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
725 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
726 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
731 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
732 * @hw: pointer to hardware structure
734 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
735 * disables transmit and receive units. The adapter_stopped flag is used by
736 * the shared code and drivers to determine if the adapter is in a stopped
737 * state and should not touch the hardware.
739 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
745 * Set the adapter_stopped flag so other driver functions stop touching
748 hw->adapter_stopped = true;
750 /* Disable the receive unit */
751 hw->mac.ops.disable_rx(hw);
753 /* Clear interrupt mask to stop interrupts from being generated */
754 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
756 /* Clear any pending interrupts, flush previous writes */
757 IXGBE_READ_REG(hw, IXGBE_EICR);
759 /* Disable the transmit unit. Each queue must be disabled. */
760 for (i = 0; i < hw->mac.max_tx_queues; i++)
761 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
763 /* Disable the receive unit by stopping each queue */
764 for (i = 0; i < hw->mac.max_rx_queues; i++) {
765 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
766 reg_val &= ~IXGBE_RXDCTL_ENABLE;
767 reg_val |= IXGBE_RXDCTL_SWFLSH;
768 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
771 /* flush all queues disables */
772 IXGBE_WRITE_FLUSH(hw);
773 usleep_range(1000, 2000);
776 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
777 * access and verify no pending requests
779 return ixgbe_disable_pcie_master(hw);
783 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
784 * @hw: pointer to hardware structure
786 * Store the index for the link active LED. This will be used to support
789 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
791 struct ixgbe_mac_info *mac = &hw->mac;
792 u32 led_reg, led_mode;
795 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
797 /* Get LED link active from the LEDCTL register */
798 for (i = 0; i < 4; i++) {
799 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
801 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
802 IXGBE_LED_LINK_ACTIVE) {
803 mac->led_link_act = i;
808 /* If LEDCTL register does not have the LED link active set, then use
809 * known MAC defaults.
811 switch (hw->mac.type) {
812 case ixgbe_mac_x550em_a:
813 mac->led_link_act = 0;
815 case ixgbe_mac_X550EM_x:
816 mac->led_link_act = 1;
819 mac->led_link_act = 2;
826 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
827 * @hw: pointer to hardware structure
828 * @index: led number to turn on
830 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
832 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
835 return IXGBE_ERR_PARAM;
837 /* To turn on the LED, set mode to ON. */
838 led_reg &= ~IXGBE_LED_MODE_MASK(index);
839 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
840 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
841 IXGBE_WRITE_FLUSH(hw);
847 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
848 * @hw: pointer to hardware structure
849 * @index: led number to turn off
851 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
853 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
856 return IXGBE_ERR_PARAM;
858 /* To turn off the LED, set mode to OFF. */
859 led_reg &= ~IXGBE_LED_MODE_MASK(index);
860 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
861 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
862 IXGBE_WRITE_FLUSH(hw);
868 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
869 * @hw: pointer to hardware structure
871 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
872 * ixgbe_hw struct in order to set up EEPROM access.
874 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
876 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
880 if (eeprom->type == ixgbe_eeprom_uninitialized) {
881 eeprom->type = ixgbe_eeprom_none;
882 /* Set default semaphore delay to 10ms which is a well
884 eeprom->semaphore_delay = 10;
885 /* Clear EEPROM page size, it will be initialized as needed */
886 eeprom->word_page_size = 0;
889 * Check for EEPROM present first.
890 * If not present leave as none
892 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
893 if (eec & IXGBE_EEC_PRES) {
894 eeprom->type = ixgbe_eeprom_spi;
897 * SPI EEPROM is assumed here. This code would need to
898 * change if a future EEPROM is not SPI.
900 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
901 IXGBE_EEC_SIZE_SHIFT);
902 eeprom->word_size = BIT(eeprom_size +
903 IXGBE_EEPROM_WORD_SIZE_SHIFT);
906 if (eec & IXGBE_EEC_ADDR_SIZE)
907 eeprom->address_bits = 16;
909 eeprom->address_bits = 8;
910 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
911 eeprom->type, eeprom->word_size, eeprom->address_bits);
918 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
919 * @hw: pointer to hardware structure
920 * @offset: offset within the EEPROM to write
921 * @words: number of words
922 * @data: 16 bit word(s) to write to EEPROM
924 * Reads 16 bit word(s) from EEPROM through bit-bang method
926 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
927 u16 words, u16 *data)
932 hw->eeprom.ops.init_params(hw);
935 return IXGBE_ERR_INVALID_ARGUMENT;
937 if (offset + words > hw->eeprom.word_size)
938 return IXGBE_ERR_EEPROM;
941 * The EEPROM page size cannot be queried from the chip. We do lazy
942 * initialization. It is worth to do that when we write large buffer.
944 if ((hw->eeprom.word_page_size == 0) &&
945 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
946 ixgbe_detect_eeprom_page_size_generic(hw, offset);
949 * We cannot hold synchronization semaphores for too long
950 * to avoid other entity starvation. However it is more efficient
951 * to read in bursts than synchronizing access for each word.
953 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
954 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
955 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
956 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
967 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
968 * @hw: pointer to hardware structure
969 * @offset: offset within the EEPROM to be written to
970 * @words: number of word(s)
971 * @data: 16 bit word(s) to be written to the EEPROM
973 * If ixgbe_eeprom_update_checksum is not called after this function, the
974 * EEPROM will most likely contain an invalid checksum.
976 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
977 u16 words, u16 *data)
983 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
985 /* Prepare the EEPROM for writing */
986 status = ixgbe_acquire_eeprom(hw);
990 if (ixgbe_ready_eeprom(hw) != 0) {
991 ixgbe_release_eeprom(hw);
992 return IXGBE_ERR_EEPROM;
995 for (i = 0; i < words; i++) {
996 ixgbe_standby_eeprom(hw);
998 /* Send the WRITE ENABLE command (8 bit opcode) */
999 ixgbe_shift_out_eeprom_bits(hw,
1000 IXGBE_EEPROM_WREN_OPCODE_SPI,
1001 IXGBE_EEPROM_OPCODE_BITS);
1003 ixgbe_standby_eeprom(hw);
1005 /* Some SPI eeproms use the 8th address bit embedded
1008 if ((hw->eeprom.address_bits == 8) &&
1009 ((offset + i) >= 128))
1010 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1012 /* Send the Write command (8-bit opcode + addr) */
1013 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1014 IXGBE_EEPROM_OPCODE_BITS);
1015 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1016 hw->eeprom.address_bits);
1018 page_size = hw->eeprom.word_page_size;
1020 /* Send the data in burst via SPI */
1023 word = (word >> 8) | (word << 8);
1024 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1029 /* do not wrap around page */
1030 if (((offset + i) & (page_size - 1)) ==
1033 } while (++i < words);
1035 ixgbe_standby_eeprom(hw);
1036 usleep_range(10000, 20000);
1038 /* Done with writing - release the EEPROM */
1039 ixgbe_release_eeprom(hw);
1045 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1046 * @hw: pointer to hardware structure
1047 * @offset: offset within the EEPROM to be written to
1048 * @data: 16 bit word to be written to the EEPROM
1050 * If ixgbe_eeprom_update_checksum is not called after this function, the
1051 * EEPROM will most likely contain an invalid checksum.
1053 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1055 hw->eeprom.ops.init_params(hw);
1057 if (offset >= hw->eeprom.word_size)
1058 return IXGBE_ERR_EEPROM;
1060 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1064 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1065 * @hw: pointer to hardware structure
1066 * @offset: offset within the EEPROM to be read
1067 * @words: number of word(s)
1068 * @data: read 16 bit words(s) from EEPROM
1070 * Reads 16 bit word(s) from EEPROM through bit-bang method
1072 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 u16 words, u16 *data)
1078 hw->eeprom.ops.init_params(hw);
1081 return IXGBE_ERR_INVALID_ARGUMENT;
1083 if (offset + words > hw->eeprom.word_size)
1084 return IXGBE_ERR_EEPROM;
1087 * We cannot hold synchronization semaphores for too long
1088 * to avoid other entity starvation. However it is more efficient
1089 * to read in bursts than synchronizing access for each word.
1091 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1092 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1093 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1095 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1106 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1107 * @hw: pointer to hardware structure
1108 * @offset: offset within the EEPROM to be read
1109 * @words: number of word(s)
1110 * @data: read 16 bit word(s) from EEPROM
1112 * Reads 16 bit word(s) from EEPROM through bit-bang method
1114 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1115 u16 words, u16 *data)
1119 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1122 /* Prepare the EEPROM for reading */
1123 status = ixgbe_acquire_eeprom(hw);
1127 if (ixgbe_ready_eeprom(hw) != 0) {
1128 ixgbe_release_eeprom(hw);
1129 return IXGBE_ERR_EEPROM;
1132 for (i = 0; i < words; i++) {
1133 ixgbe_standby_eeprom(hw);
1134 /* Some SPI eeproms use the 8th address bit embedded
1137 if ((hw->eeprom.address_bits == 8) &&
1138 ((offset + i) >= 128))
1139 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1141 /* Send the READ command (opcode + addr) */
1142 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1143 IXGBE_EEPROM_OPCODE_BITS);
1144 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1145 hw->eeprom.address_bits);
1147 /* Read the data. */
1148 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1149 data[i] = (word_in >> 8) | (word_in << 8);
1152 /* End this read operation */
1153 ixgbe_release_eeprom(hw);
1159 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1160 * @hw: pointer to hardware structure
1161 * @offset: offset within the EEPROM to be read
1162 * @data: read 16 bit value from EEPROM
1164 * Reads 16 bit value from EEPROM through bit-bang method
1166 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1169 hw->eeprom.ops.init_params(hw);
1171 if (offset >= hw->eeprom.word_size)
1172 return IXGBE_ERR_EEPROM;
1174 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1178 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1179 * @hw: pointer to hardware structure
1180 * @offset: offset of word in the EEPROM to read
1181 * @words: number of word(s)
1182 * @data: 16 bit word(s) from the EEPROM
1184 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1186 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1187 u16 words, u16 *data)
1193 hw->eeprom.ops.init_params(hw);
1196 return IXGBE_ERR_INVALID_ARGUMENT;
1198 if (offset >= hw->eeprom.word_size)
1199 return IXGBE_ERR_EEPROM;
1201 for (i = 0; i < words; i++) {
1202 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1203 IXGBE_EEPROM_RW_REG_START;
1205 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1206 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1209 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1210 IXGBE_EEPROM_RW_REG_DATA);
1212 hw_dbg(hw, "Eeprom read timed out\n");
1221 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1222 * @hw: pointer to hardware structure
1223 * @offset: offset within the EEPROM to be used as a scratch pad
1225 * Discover EEPROM page size by writing marching data at given offset.
1226 * This function is called only when we are writing a new large buffer
1227 * at given offset so the data would be overwritten anyway.
1229 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1232 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1236 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1239 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1240 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1241 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1242 hw->eeprom.word_page_size = 0;
1246 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1251 * When writing in burst more than the actual page size
1252 * EEPROM address wraps around current page.
1254 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1256 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1257 hw->eeprom.word_page_size);
1262 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1263 * @hw: pointer to hardware structure
1264 * @offset: offset of word in the EEPROM to read
1265 * @data: word read from the EEPROM
1267 * Reads a 16 bit word from the EEPROM using the EERD register.
1269 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1271 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1275 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1276 * @hw: pointer to hardware structure
1277 * @offset: offset of word in the EEPROM to write
1278 * @words: number of words
1279 * @data: word(s) write to the EEPROM
1281 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1283 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1284 u16 words, u16 *data)
1290 hw->eeprom.ops.init_params(hw);
1293 return IXGBE_ERR_INVALID_ARGUMENT;
1295 if (offset >= hw->eeprom.word_size)
1296 return IXGBE_ERR_EEPROM;
1298 for (i = 0; i < words; i++) {
1299 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1300 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1301 IXGBE_EEPROM_RW_REG_START;
1303 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1305 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1309 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1311 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1313 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1322 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1323 * @hw: pointer to hardware structure
1324 * @offset: offset of word in the EEPROM to write
1325 * @data: word write to the EEPROM
1327 * Write a 16 bit word to the EEPROM using the EEWR register.
1329 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1331 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1335 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1336 * @hw: pointer to hardware structure
1337 * @ee_reg: EEPROM flag for polling
1339 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1340 * read or write is done respectively.
1342 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1347 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1348 if (ee_reg == IXGBE_NVM_POLL_READ)
1349 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1351 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1353 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1358 return IXGBE_ERR_EEPROM;
1362 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1363 * @hw: pointer to hardware structure
1365 * Prepares EEPROM for access using bit-bang method. This function should
1366 * be called before issuing a command to the EEPROM.
1368 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1373 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1374 return IXGBE_ERR_SWFW_SYNC;
1376 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1378 /* Request EEPROM Access */
1379 eec |= IXGBE_EEC_REQ;
1380 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1382 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1383 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1384 if (eec & IXGBE_EEC_GNT)
1389 /* Release if grant not acquired */
1390 if (!(eec & IXGBE_EEC_GNT)) {
1391 eec &= ~IXGBE_EEC_REQ;
1392 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1393 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1395 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1396 return IXGBE_ERR_EEPROM;
1399 /* Setup EEPROM for Read/Write */
1400 /* Clear CS and SK */
1401 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1402 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1403 IXGBE_WRITE_FLUSH(hw);
1409 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1410 * @hw: pointer to hardware structure
1412 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1414 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1420 /* Get SMBI software semaphore between device drivers first */
1421 for (i = 0; i < timeout; i++) {
1423 * If the SMBI bit is 0 when we read it, then the bit will be
1424 * set and we have the semaphore
1426 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1427 if (!(swsm & IXGBE_SWSM_SMBI))
1429 usleep_range(50, 100);
1433 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1434 /* this release is particularly important because our attempts
1435 * above to get the semaphore may have succeeded, and if there
1436 * was a timeout, we should unconditionally clear the semaphore
1437 * bits to free the driver to make progress
1439 ixgbe_release_eeprom_semaphore(hw);
1441 usleep_range(50, 100);
1443 * If the SMBI bit is 0 when we read it, then the bit will be
1444 * set and we have the semaphore
1446 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1447 if (swsm & IXGBE_SWSM_SMBI) {
1448 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1449 return IXGBE_ERR_EEPROM;
1453 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1454 for (i = 0; i < timeout; i++) {
1455 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1457 /* Set the SW EEPROM semaphore bit to request access */
1458 swsm |= IXGBE_SWSM_SWESMBI;
1459 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1461 /* If we set the bit successfully then we got the
1464 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1465 if (swsm & IXGBE_SWSM_SWESMBI)
1468 usleep_range(50, 100);
1471 /* Release semaphores and return error if SW EEPROM semaphore
1472 * was not granted because we don't have access to the EEPROM
1475 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1476 ixgbe_release_eeprom_semaphore(hw);
1477 return IXGBE_ERR_EEPROM;
1484 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1485 * @hw: pointer to hardware structure
1487 * This function clears hardware semaphore bits.
1489 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1493 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1495 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1496 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1497 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1498 IXGBE_WRITE_FLUSH(hw);
1502 * ixgbe_ready_eeprom - Polls for EEPROM ready
1503 * @hw: pointer to hardware structure
1505 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1511 * Read "Status Register" repeatedly until the LSB is cleared. The
1512 * EEPROM will signal that the command has been completed by clearing
1513 * bit 0 of the internal status register. If it's not cleared within
1514 * 5 milliseconds, then error out.
1516 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1517 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1518 IXGBE_EEPROM_OPCODE_BITS);
1519 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1520 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1524 ixgbe_standby_eeprom(hw);
1528 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1529 * devices (and only 0-5mSec on 5V devices)
1531 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1532 hw_dbg(hw, "SPI EEPROM Status error\n");
1533 return IXGBE_ERR_EEPROM;
1540 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1541 * @hw: pointer to hardware structure
1543 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1547 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1549 /* Toggle CS to flush commands */
1550 eec |= IXGBE_EEC_CS;
1551 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1552 IXGBE_WRITE_FLUSH(hw);
1554 eec &= ~IXGBE_EEC_CS;
1555 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1556 IXGBE_WRITE_FLUSH(hw);
1561 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1562 * @hw: pointer to hardware structure
1563 * @data: data to send to the EEPROM
1564 * @count: number of bits to shift out
1566 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1573 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1576 * Mask is used to shift "count" bits of "data" out to the EEPROM
1577 * one bit at a time. Determine the starting bit based on count
1579 mask = BIT(count - 1);
1581 for (i = 0; i < count; i++) {
1583 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1584 * "1", and then raising and then lowering the clock (the SK
1585 * bit controls the clock input to the EEPROM). A "0" is
1586 * shifted out to the EEPROM by setting "DI" to "0" and then
1587 * raising and then lowering the clock.
1590 eec |= IXGBE_EEC_DI;
1592 eec &= ~IXGBE_EEC_DI;
1594 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1595 IXGBE_WRITE_FLUSH(hw);
1599 ixgbe_raise_eeprom_clk(hw, &eec);
1600 ixgbe_lower_eeprom_clk(hw, &eec);
1603 * Shift mask to signify next bit of data to shift in to the
1609 /* We leave the "DI" bit set to "0" when we leave this routine. */
1610 eec &= ~IXGBE_EEC_DI;
1611 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1612 IXGBE_WRITE_FLUSH(hw);
1616 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1617 * @hw: pointer to hardware structure
1619 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1626 * In order to read a register from the EEPROM, we need to shift
1627 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 * the value of the "DO" bit. During this "shifting in" process the
1630 * "DI" bit should always be clear.
1632 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1634 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1636 for (i = 0; i < count; i++) {
1638 ixgbe_raise_eeprom_clk(hw, &eec);
1640 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1642 eec &= ~(IXGBE_EEC_DI);
1643 if (eec & IXGBE_EEC_DO)
1646 ixgbe_lower_eeprom_clk(hw, &eec);
1653 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654 * @hw: pointer to hardware structure
1655 * @eec: EEC register's current value
1657 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1660 * Raise the clock input to the EEPROM
1661 * (setting the SK bit), then delay
1663 *eec = *eec | IXGBE_EEC_SK;
1664 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665 IXGBE_WRITE_FLUSH(hw);
1670 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671 * @hw: pointer to hardware structure
1672 * @eecd: EECD's current value
1674 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1677 * Lower the clock input to the EEPROM (clearing the SK bit), then
1680 *eec = *eec & ~IXGBE_EEC_SK;
1681 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 IXGBE_WRITE_FLUSH(hw);
1687 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1688 * @hw: pointer to hardware structure
1690 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1694 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1696 eec |= IXGBE_EEC_CS; /* Pull CS high */
1697 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1699 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700 IXGBE_WRITE_FLUSH(hw);
1704 /* Stop requesting EEPROM access */
1705 eec &= ~IXGBE_EEC_REQ;
1706 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1708 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1711 * Delay before attempt to obtain semaphore again to allow FW
1712 * access. semaphore_delay is in ms we need us for usleep_range
1714 usleep_range(hw->eeprom.semaphore_delay * 1000,
1715 hw->eeprom.semaphore_delay * 2000);
1719 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720 * @hw: pointer to hardware structure
1722 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1731 /* Include 0x0-0x3F in the checksum */
1732 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733 if (hw->eeprom.ops.read(hw, i, &word)) {
1734 hw_dbg(hw, "EEPROM read failed\n");
1740 /* Include all data from pointers except for the fw pointer */
1741 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743 hw_dbg(hw, "EEPROM read failed\n");
1744 return IXGBE_ERR_EEPROM;
1747 /* If the pointer seems invalid */
1748 if (pointer == 0xFFFF || pointer == 0)
1751 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752 hw_dbg(hw, "EEPROM read failed\n");
1753 return IXGBE_ERR_EEPROM;
1756 if (length == 0xFFFF || length == 0)
1759 for (j = pointer + 1; j <= pointer + length; j++) {
1760 if (hw->eeprom.ops.read(hw, j, &word)) {
1761 hw_dbg(hw, "EEPROM read failed\n");
1762 return IXGBE_ERR_EEPROM;
1768 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1770 return (s32)checksum;
1774 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775 * @hw: pointer to hardware structure
1776 * @checksum_val: calculated checksum
1778 * Performs checksum calculation and validates the EEPROM checksum. If the
1779 * caller does not need checksum_val, the value can be NULL.
1781 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1786 u16 read_checksum = 0;
1789 * Read the first word from the EEPROM. If this times out or fails, do
1790 * not continue or we could be in for a very long wait while every
1793 status = hw->eeprom.ops.read(hw, 0, &checksum);
1795 hw_dbg(hw, "EEPROM read failed\n");
1799 status = hw->eeprom.ops.calc_checksum(hw);
1803 checksum = (u16)(status & 0xffff);
1805 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1807 hw_dbg(hw, "EEPROM read failed\n");
1811 /* Verify read checksum from EEPROM is the same as
1812 * calculated checksum
1814 if (read_checksum != checksum)
1815 status = IXGBE_ERR_EEPROM_CHECKSUM;
1817 /* If the user cares, return the calculated checksum */
1819 *checksum_val = checksum;
1825 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826 * @hw: pointer to hardware structure
1828 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1834 * Read the first word from the EEPROM. If this times out or fails, do
1835 * not continue or we could be in for a very long wait while every
1838 status = hw->eeprom.ops.read(hw, 0, &checksum);
1840 hw_dbg(hw, "EEPROM read failed\n");
1844 status = hw->eeprom.ops.calc_checksum(hw);
1848 checksum = (u16)(status & 0xffff);
1850 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1856 * ixgbe_set_rar_generic - Set Rx address register
1857 * @hw: pointer to hardware structure
1858 * @index: Receive address register to write
1859 * @addr: Address to put into receive address register
1860 * @vmdq: VMDq "set" or "pool" index
1861 * @enable_addr: set flag that address is active
1863 * Puts an ethernet address into a receive address register.
1865 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1868 u32 rar_low, rar_high;
1869 u32 rar_entries = hw->mac.num_rar_entries;
1871 /* Make sure we are using a valid rar index range */
1872 if (index >= rar_entries) {
1873 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874 return IXGBE_ERR_INVALID_ARGUMENT;
1877 /* setup VMDq pool selection before this RAR gets enabled */
1878 hw->mac.ops.set_vmdq(hw, index, vmdq);
1881 * HW expects these in little endian so we reverse the byte
1882 * order from network order (big endian) to little endian
1884 rar_low = ((u32)addr[0] |
1885 ((u32)addr[1] << 8) |
1886 ((u32)addr[2] << 16) |
1887 ((u32)addr[3] << 24));
1889 * Some parts put the VMDq setting in the extra RAH bits,
1890 * so save everything except the lower 16 bits that hold part
1891 * of the address and the address valid bit.
1893 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1897 if (enable_addr != 0)
1898 rar_high |= IXGBE_RAH_AV;
1900 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1901 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1907 * ixgbe_clear_rar_generic - Remove Rx address register
1908 * @hw: pointer to hardware structure
1909 * @index: Receive address register to write
1911 * Clears an ethernet address from a receive address register.
1913 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1916 u32 rar_entries = hw->mac.num_rar_entries;
1918 /* Make sure we are using a valid rar index range */
1919 if (index >= rar_entries) {
1920 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921 return IXGBE_ERR_INVALID_ARGUMENT;
1925 * Some parts put the VMDq setting in the extra RAH bits,
1926 * so save everything except the lower 16 bits that hold part
1927 * of the address and the address valid bit.
1929 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1932 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1935 /* clear VMDq pool/queue selection for this RAR */
1936 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1942 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943 * @hw: pointer to hardware structure
1945 * Places the MAC address in receive address register 0 and clears the rest
1946 * of the receive address registers. Clears the multicast table. Assumes
1947 * the receiver is in reset when the routine is called.
1949 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1952 u32 rar_entries = hw->mac.num_rar_entries;
1955 * If the current mac address is valid, assume it is a software override
1956 * to the permanent address.
1957 * Otherwise, use the permanent address from the eeprom.
1959 if (!is_valid_ether_addr(hw->mac.addr)) {
1960 /* Get the MAC address from the RAR0 for later reference */
1961 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1963 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1965 /* Setup the receive address. */
1966 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1969 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1972 /* clear VMDq pool/queue selection for RAR 0 */
1973 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1975 hw->addr_ctrl.overflow_promisc = 0;
1977 hw->addr_ctrl.rar_used_count = 1;
1979 /* Zero out the other receive addresses. */
1980 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981 for (i = 1; i < rar_entries; i++) {
1982 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1987 hw->addr_ctrl.mta_in_use = 0;
1988 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1990 hw_dbg(hw, " Clearing MTA\n");
1991 for (i = 0; i < hw->mac.mcft_size; i++)
1992 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1994 if (hw->mac.ops.init_uta_tables)
1995 hw->mac.ops.init_uta_tables(hw);
2001 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002 * @hw: pointer to hardware structure
2003 * @mc_addr: the multicast address
2005 * Extracts the 12 bits, from a multicast address, to determine which
2006 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007 * incoming rx multicast addresses, to determine the bit-vector to check in
2008 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2010 * to mc_filter_type.
2012 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2016 switch (hw->mac.mc_filter_type) {
2017 case 0: /* use bits [47:36] of the address */
2018 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2020 case 1: /* use bits [46:35] of the address */
2021 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2023 case 2: /* use bits [45:34] of the address */
2024 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2026 case 3: /* use bits [43:32] of the address */
2027 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2029 default: /* Invalid mc_filter_type */
2030 hw_dbg(hw, "MC filter type param set incorrectly\n");
2034 /* vector can only be 12-bits or boundary will be exceeded */
2040 * ixgbe_set_mta - Set bit-vector in multicast table
2041 * @hw: pointer to hardware structure
2042 * @hash_value: Multicast address hash value
2044 * Sets the bit-vector in the multicast table.
2046 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2052 hw->addr_ctrl.mta_in_use++;
2054 vector = ixgbe_mta_vector(hw, mc_addr);
2055 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2058 * The MTA is a register array of 128 32-bit registers. It is treated
2059 * like an array of 4096 bits. We want to set bit
2060 * BitArray[vector_value]. So we figure out what register the bit is
2061 * in, read it, OR in the new bit, then write back the new value. The
2062 * register is determined by the upper 7 bits of the vector value and
2063 * the bit within that register are determined by the lower 5 bits of
2066 vector_reg = (vector >> 5) & 0x7F;
2067 vector_bit = vector & 0x1F;
2068 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2072 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073 * @hw: pointer to hardware structure
2074 * @netdev: pointer to net device structure
2076 * The given list replaces any existing list. Clears the MC addrs from receive
2077 * address registers and the multicast table. Uses unused receive address
2078 * registers for the first multicast addresses, and hashes the rest into the
2081 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082 struct net_device *netdev)
2084 struct netdev_hw_addr *ha;
2088 * Set the new number of MC addresses that we are being requested to
2091 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092 hw->addr_ctrl.mta_in_use = 0;
2094 /* Clear mta_shadow */
2095 hw_dbg(hw, " Clearing MTA\n");
2096 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2098 /* Update mta shadow */
2099 netdev_for_each_mc_addr(ha, netdev) {
2100 hw_dbg(hw, " Adding the multicast addresses:\n");
2101 ixgbe_set_mta(hw, ha->addr);
2105 for (i = 0; i < hw->mac.mcft_size; i++)
2106 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107 hw->mac.mta_shadow[i]);
2109 if (hw->addr_ctrl.mta_in_use > 0)
2110 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2113 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2118 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2119 * @hw: pointer to hardware structure
2121 * Enables multicast address in RAR and the use of the multicast hash table.
2123 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2125 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127 if (a->mta_in_use > 0)
2128 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129 hw->mac.mc_filter_type);
2135 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2136 * @hw: pointer to hardware structure
2138 * Disables multicast address in RAR and the use of the multicast hash table.
2140 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2142 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2144 if (a->mta_in_use > 0)
2145 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2151 * ixgbe_fc_enable_generic - Enable flow control
2152 * @hw: pointer to hardware structure
2154 * Enable flow control according to the current settings.
2156 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2158 u32 mflcn_reg, fccfg_reg;
2163 /* Validate the water mark configuration. */
2164 if (!hw->fc.pause_time)
2165 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2167 /* Low water mark of zero causes XOFF floods */
2168 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170 hw->fc.high_water[i]) {
2171 if (!hw->fc.low_water[i] ||
2172 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173 hw_dbg(hw, "Invalid water mark configuration\n");
2174 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2179 /* Negotiate the fc mode to use */
2180 hw->mac.ops.fc_autoneg(hw);
2182 /* Disable any previous flow control settings */
2183 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2186 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2190 * The possible values of fc.current_mode are:
2191 * 0: Flow control is completely disabled
2192 * 1: Rx flow control is enabled (we can receive pause frames,
2193 * but not send pause frames).
2194 * 2: Tx flow control is enabled (we can send pause frames but
2195 * we do not support receiving pause frames).
2196 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2199 switch (hw->fc.current_mode) {
2202 * Flow control is disabled by software override or autoneg.
2203 * The code below will actually disable it in the HW.
2206 case ixgbe_fc_rx_pause:
2208 * Rx Flow control is enabled and Tx Flow control is
2209 * disabled by software override. Since there really
2210 * isn't a way to advertise that we are capable of RX
2211 * Pause ONLY, we will advertise that we support both
2212 * symmetric and asymmetric Rx PAUSE. Later, we will
2213 * disable the adapter's ability to send PAUSE frames.
2215 mflcn_reg |= IXGBE_MFLCN_RFCE;
2217 case ixgbe_fc_tx_pause:
2219 * Tx Flow control is enabled, and Rx Flow control is
2220 * disabled by software override.
2222 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2225 /* Flow control (both Rx and Tx) is enabled by SW override. */
2226 mflcn_reg |= IXGBE_MFLCN_RFCE;
2227 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2230 hw_dbg(hw, "Flow control param set incorrectly\n");
2231 return IXGBE_ERR_CONFIG;
2234 /* Set 802.3x based flow control settings. */
2235 mflcn_reg |= IXGBE_MFLCN_DPF;
2236 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2239 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242 hw->fc.high_water[i]) {
2243 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2247 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2249 * In order to prevent Tx hangs when the internal Tx
2250 * switch is enabled we must set the high water mark
2251 * to the Rx packet buffer size - 24KB. This allows
2252 * the Tx switch to function even under heavy Rx
2255 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2258 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2261 /* Configure pause time (2 TCs per register) */
2262 reg = hw->fc.pause_time * 0x00010001;
2263 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2266 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2272 * ixgbe_negotiate_fc - Negotiate flow control
2273 * @hw: pointer to hardware structure
2274 * @adv_reg: flow control advertised settings
2275 * @lp_reg: link partner's flow control settings
2276 * @adv_sym: symmetric pause bit in advertisement
2277 * @adv_asm: asymmetric pause bit in advertisement
2278 * @lp_sym: symmetric pause bit in link partner advertisement
2279 * @lp_asm: asymmetric pause bit in link partner advertisement
2281 * Find the intersection between advertised settings and link partner's
2282 * advertised settings
2284 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2287 if ((!(adv_reg)) || (!(lp_reg)))
2288 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2292 * Now we need to check if the user selected Rx ONLY
2293 * of pause frames. In this case, we had to advertise
2294 * FULL flow control because we could not advertise RX
2295 * ONLY. Hence, we must now check to see if we need to
2296 * turn OFF the TRANSMISSION of PAUSE frames.
2298 if (hw->fc.requested_mode == ixgbe_fc_full) {
2299 hw->fc.current_mode = ixgbe_fc_full;
2300 hw_dbg(hw, "Flow Control = FULL.\n");
2302 hw->fc.current_mode = ixgbe_fc_rx_pause;
2303 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2305 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307 hw->fc.current_mode = ixgbe_fc_tx_pause;
2308 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311 hw->fc.current_mode = ixgbe_fc_rx_pause;
2312 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2314 hw->fc.current_mode = ixgbe_fc_none;
2315 hw_dbg(hw, "Flow Control = NONE.\n");
2321 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322 * @hw: pointer to hardware structure
2324 * Enable flow control according on 1 gig fiber.
2326 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2328 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2332 * On multispeed fiber at 1g, bail out if
2333 * - link is up but AN did not complete, or if
2334 * - link is up and AN completed but timed out
2337 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2342 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2345 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347 IXGBE_PCS1GANA_ASM_PAUSE,
2348 IXGBE_PCS1GANA_SYM_PAUSE,
2349 IXGBE_PCS1GANA_ASM_PAUSE);
2355 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356 * @hw: pointer to hardware structure
2358 * Enable flow control according to IEEE clause 37.
2360 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2362 u32 links2, anlp1_reg, autoc_reg, links;
2366 * On backplane, bail out if
2367 * - backplane autoneg was not completed, or if
2368 * - we are 82599 and link partner is not AN enabled
2370 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2374 if (hw->mac.type == ixgbe_mac_82599EB) {
2375 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2380 * Read the 10g AN autoc and LP ability registers and resolve
2381 * local flow control settings accordingly
2383 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2386 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2394 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395 * @hw: pointer to hardware structure
2397 * Enable flow control according to IEEE clause 37.
2399 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2401 u16 technology_ability_reg = 0;
2402 u16 lp_technology_ability_reg = 0;
2404 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2406 &technology_ability_reg);
2407 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2409 &lp_technology_ability_reg);
2411 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412 (u32)lp_technology_ability_reg,
2413 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2418 * ixgbe_fc_autoneg - Configure flow control
2419 * @hw: pointer to hardware structure
2421 * Compares our advertised flow control capabilities to those advertised by
2422 * our link partner, and determines the proper flow control mode to use.
2424 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2426 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427 ixgbe_link_speed speed;
2431 * AN should have completed when the cable was plugged in.
2432 * Look for reasons to bail out. Bail out if:
2433 * - FC autoneg is disabled, or if
2436 * Since we're being called from an LSC, link is already known to be up.
2437 * So use link_up_wait_to_complete=false.
2439 if (hw->fc.disable_fc_autoneg)
2442 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2446 switch (hw->phy.media_type) {
2447 /* Autoneg flow control on fiber adapters */
2448 case ixgbe_media_type_fiber:
2449 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450 ret_val = ixgbe_fc_autoneg_fiber(hw);
2453 /* Autoneg flow control on backplane adapters */
2454 case ixgbe_media_type_backplane:
2455 ret_val = ixgbe_fc_autoneg_backplane(hw);
2458 /* Autoneg flow control on copper adapters */
2459 case ixgbe_media_type_copper:
2460 if (ixgbe_device_supports_autoneg_fc(hw))
2461 ret_val = ixgbe_fc_autoneg_copper(hw);
2470 hw->fc.fc_was_autonegged = true;
2472 hw->fc.fc_was_autonegged = false;
2473 hw->fc.current_mode = hw->fc.requested_mode;
2478 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479 * @hw: pointer to hardware structure
2481 * System-wide timeout range is encoded in PCIe Device Control2 register.
2483 * Add 10% to specified maximum and return the number of times to poll for
2484 * completion timeout, in units of 100 microsec. Never return less than
2485 * 800 = 80 millisec.
2487 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2492 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2496 case IXGBE_PCIDEVCTRL2_65_130ms:
2497 pollcnt = 1300; /* 130 millisec */
2499 case IXGBE_PCIDEVCTRL2_260_520ms:
2500 pollcnt = 5200; /* 520 millisec */
2502 case IXGBE_PCIDEVCTRL2_1_2s:
2503 pollcnt = 20000; /* 2 sec */
2505 case IXGBE_PCIDEVCTRL2_4_8s:
2506 pollcnt = 80000; /* 8 sec */
2508 case IXGBE_PCIDEVCTRL2_17_34s:
2509 pollcnt = 34000; /* 34 sec */
2511 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2512 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2513 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2514 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2516 pollcnt = 800; /* 80 millisec minimum */
2520 /* add 10% to spec maximum */
2521 return (pollcnt * 11) / 10;
2525 * ixgbe_disable_pcie_master - Disable PCI-express master access
2526 * @hw: pointer to hardware structure
2528 * Disables PCI-Express master access and verifies there are no pending
2529 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530 * bit hasn't caused the master requests to be disabled, else 0
2531 * is returned signifying master requests disabled.
2533 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2538 /* Always set this bit to ensure any future transactions are blocked */
2539 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2541 /* Poll for bit to read as set */
2542 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2545 usleep_range(100, 120);
2547 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549 goto gio_disable_fail;
2552 /* Exit if master requests are blocked */
2553 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554 ixgbe_removed(hw->hw_addr))
2557 /* Poll for master request bit to clear */
2558 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2560 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2565 * Two consecutive resets are required via CTRL.RST per datasheet
2566 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2567 * of this need. The first reset prevents new master requests from
2568 * being issued by our device. We then must wait 1usec or more for any
2569 * remaining completions from the PCIe bus to trickle in, and then reset
2570 * again to clear out any effects they may have had on our device.
2572 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2574 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2576 if (hw->mac.type >= ixgbe_mac_X550)
2580 * Before proceeding, make sure that the PCIe block does not have
2581 * transactions pending.
2583 poll = ixgbe_pcie_timeout_poll(hw);
2584 for (i = 0; i < poll; i++) {
2586 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587 if (ixgbe_removed(hw->hw_addr))
2589 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2593 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2598 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599 * @hw: pointer to hardware structure
2600 * @mask: Mask to specify which semaphore to acquire
2602 * Acquires the SWFW semaphore through the GSSR register for the specified
2603 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2605 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2609 u32 fwmask = mask << 5;
2613 for (i = 0; i < timeout; i++) {
2615 * SW NVM semaphore bit is used for access to all
2616 * SW_FW_SYNC bits (not just NVM)
2618 if (ixgbe_get_eeprom_semaphore(hw))
2619 return IXGBE_ERR_SWFW_SYNC;
2621 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622 if (!(gssr & (fwmask | swmask))) {
2624 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625 ixgbe_release_eeprom_semaphore(hw);
2628 /* Resource is currently in use by FW or SW */
2629 ixgbe_release_eeprom_semaphore(hw);
2630 usleep_range(5000, 10000);
2634 /* If time expired clear the bits holding the lock and retry */
2635 if (gssr & (fwmask | swmask))
2636 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2638 usleep_range(5000, 10000);
2639 return IXGBE_ERR_SWFW_SYNC;
2643 * ixgbe_release_swfw_sync - Release SWFW semaphore
2644 * @hw: pointer to hardware structure
2645 * @mask: Mask to specify which semaphore to release
2647 * Releases the SWFW semaphore through the GSSR register for the specified
2648 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2650 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2655 ixgbe_get_eeprom_semaphore(hw);
2657 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2659 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2661 ixgbe_release_eeprom_semaphore(hw);
2665 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666 * @hw: pointer to hardware structure
2667 * @reg_val: Value we read from AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2669 * true in this the generic case.
2671 * The default case requires no protection so just to the register read.
2673 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2676 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2681 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682 * @hw: pointer to hardware structure
2683 * @reg_val: value to write to AUTOC
2684 * @locked: bool to indicate whether the SW/FW lock was already taken by
2687 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2689 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2694 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2695 * @hw: pointer to hardware structure
2697 * Stops the receive data path and waits for the HW to internally
2698 * empty the Rx security block.
2700 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2702 #define IXGBE_MAX_SECRX_POLL 40
2706 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2714 /* Use interrupt-safe sleep just in case */
2718 /* For informational purposes only */
2719 if (i >= IXGBE_MAX_SECRX_POLL)
2720 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2727 * ixgbe_enable_rx_buff - Enables the receive data path
2728 * @hw: pointer to hardware structure
2730 * Enables the receive data path
2732 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2736 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739 IXGBE_WRITE_FLUSH(hw);
2745 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746 * @hw: pointer to hardware structure
2747 * @regval: register value to write to RXCTRL
2749 * Enables the Rx DMA unit
2751 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2753 if (regval & IXGBE_RXCTRL_RXEN)
2754 hw->mac.ops.enable_rx(hw);
2756 hw->mac.ops.disable_rx(hw);
2762 * ixgbe_blink_led_start_generic - Blink LED based on index.
2763 * @hw: pointer to hardware structure
2764 * @index: led number to blink
2766 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2768 ixgbe_link_speed speed = 0;
2769 bool link_up = false;
2770 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772 bool locked = false;
2776 return IXGBE_ERR_PARAM;
2779 * Link must be up to auto-blink the LEDs;
2780 * Force it if link is down.
2782 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2785 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2789 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790 autoc_reg |= IXGBE_AUTOC_FLU;
2792 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2796 IXGBE_WRITE_FLUSH(hw);
2798 usleep_range(10000, 20000);
2801 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802 led_reg |= IXGBE_LED_BLINK(index);
2803 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804 IXGBE_WRITE_FLUSH(hw);
2810 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811 * @hw: pointer to hardware structure
2812 * @index: led number to stop blinking
2814 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2817 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818 bool locked = false;
2822 return IXGBE_ERR_PARAM;
2824 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2828 autoc_reg &= ~IXGBE_AUTOC_FLU;
2829 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2831 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2835 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836 led_reg &= ~IXGBE_LED_BLINK(index);
2837 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839 IXGBE_WRITE_FLUSH(hw);
2845 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846 * @hw: pointer to hardware structure
2847 * @san_mac_offset: SAN MAC address offset
2849 * This function will read the EEPROM location for the SAN MAC address
2850 * pointer, and returns the value at that location. This is used in both
2851 * get and set mac_addr routines.
2853 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854 u16 *san_mac_offset)
2859 * First read the EEPROM pointer to see if the MAC addresses are
2862 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2865 hw_err(hw, "eeprom read at offset %d failed\n",
2866 IXGBE_SAN_MAC_ADDR_PTR);
2872 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873 * @hw: pointer to hardware structure
2874 * @san_mac_addr: SAN MAC address
2876 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2877 * per-port, so set_lan_id() must be called before reading the addresses.
2878 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2879 * upon for non-SFP connections, so we must call it here.
2881 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2883 u16 san_mac_data, san_mac_offset;
2888 * First read the EEPROM pointer to see if the MAC addresses are
2889 * available. If they're not, no point in calling set_lan_id() here.
2891 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2894 goto san_mac_addr_clr;
2896 /* make sure we know which port we need to program */
2897 hw->mac.ops.set_lan_id(hw);
2898 /* apply the port offset to the address offset */
2899 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901 for (i = 0; i < 3; i++) {
2902 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2905 hw_err(hw, "eeprom read at offset %d failed\n",
2907 goto san_mac_addr_clr;
2909 san_mac_addr[i * 2] = (u8)(san_mac_data);
2910 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2916 /* No addresses available in this EEPROM. It's not necessarily an
2917 * error though, so just wipe the local address and return.
2919 for (i = 0; i < 6; i++)
2920 san_mac_addr[i] = 0xFF;
2925 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926 * @hw: pointer to hardware structure
2928 * Read PCIe configuration space, and get the MSI-X vector count from
2929 * the capabilities table.
2931 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2937 switch (hw->mac.type) {
2938 case ixgbe_mac_82598EB:
2939 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2942 case ixgbe_mac_82599EB:
2943 case ixgbe_mac_X540:
2944 case ixgbe_mac_X550:
2945 case ixgbe_mac_X550EM_x:
2946 case ixgbe_mac_x550em_a:
2947 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2954 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955 if (ixgbe_removed(hw->hw_addr))
2957 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2959 /* MSI-X count is zero-based in HW */
2962 if (msix_count > max_msix_count)
2963 msix_count = max_msix_count;
2969 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970 * @hw: pointer to hardware struct
2971 * @rar: receive address register index to disassociate
2972 * @vmdq: VMDq pool index to remove from the rar
2974 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2976 u32 mpsar_lo, mpsar_hi;
2977 u32 rar_entries = hw->mac.num_rar_entries;
2979 /* Make sure we are using a valid rar index range */
2980 if (rar >= rar_entries) {
2981 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982 return IXGBE_ERR_INVALID_ARGUMENT;
2985 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2988 if (ixgbe_removed(hw->hw_addr))
2991 if (!mpsar_lo && !mpsar_hi)
2994 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2996 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3000 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3003 } else if (vmdq < 32) {
3004 mpsar_lo &= ~BIT(vmdq);
3005 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3007 mpsar_hi &= ~BIT(vmdq - 32);
3008 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3011 /* was that the last pool using this rar? */
3012 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013 rar != 0 && rar != hw->mac.san_mac_rar_index)
3014 hw->mac.ops.clear_rar(hw, rar);
3020 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @rar: receive address register index to associate with a VMDq index
3023 * @vmdq: VMDq pool index
3025 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3028 u32 rar_entries = hw->mac.num_rar_entries;
3030 /* Make sure we are using a valid rar index range */
3031 if (rar >= rar_entries) {
3032 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033 return IXGBE_ERR_INVALID_ARGUMENT;
3037 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3039 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3041 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042 mpsar |= BIT(vmdq - 32);
3043 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);