Merge branch 'mlx5-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mellanox...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19                                         u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28                                              u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30                                              u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32                                                  u16 offset);
33 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
34
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37         IXGBE_MVALS_INIT(8259X)
38 };
39
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51         bool supported = false;
52         ixgbe_link_speed speed;
53         bool link_up;
54
55         switch (hw->phy.media_type) {
56         case ixgbe_media_type_fiber:
57                 /* flow control autoneg black list */
58                 switch (hw->device_id) {
59                 case IXGBE_DEV_ID_X550EM_A_SFP:
60                 case IXGBE_DEV_ID_X550EM_A_SFP_N:
61                         supported = false;
62                         break;
63                 default:
64                         hw->mac.ops.check_link(hw, &speed, &link_up, false);
65                         /* if link is down, assume supported */
66                         if (link_up)
67                                 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
68                                 true : false;
69                         else
70                                 supported = true;
71                 }
72
73                 break;
74         case ixgbe_media_type_backplane:
75                 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
76                         supported = false;
77                 else
78                         supported = true;
79                 break;
80         case ixgbe_media_type_copper:
81                 /* only some copper devices support flow control autoneg */
82                 switch (hw->device_id) {
83                 case IXGBE_DEV_ID_82599_T3_LOM:
84                 case IXGBE_DEV_ID_X540T:
85                 case IXGBE_DEV_ID_X540T1:
86                 case IXGBE_DEV_ID_X550T:
87                 case IXGBE_DEV_ID_X550T1:
88                 case IXGBE_DEV_ID_X550EM_X_10G_T:
89                 case IXGBE_DEV_ID_X550EM_A_10G_T:
90                 case IXGBE_DEV_ID_X550EM_A_1G_T:
91                 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
92                         supported = true;
93                         break;
94                 default:
95                         break;
96                 }
97         default:
98                 break;
99         }
100
101         if (!supported)
102                 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103                        hw->device_id);
104
105         return supported;
106 }
107
108 /**
109  *  ixgbe_setup_fc_generic - Set up flow control
110  *  @hw: pointer to hardware structure
111  *
112  *  Called at init time to set up flow control.
113  **/
114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115 {
116         s32 ret_val = 0;
117         u32 reg = 0, reg_bp = 0;
118         u16 reg_cu = 0;
119         bool locked = false;
120
121         /*
122          * Validate the requested mode.  Strict IEEE mode does not allow
123          * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124          */
125         if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126                 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127                 return IXGBE_ERR_INVALID_LINK_SETTINGS;
128         }
129
130         /*
131          * 10gig parts do not have a word in the EEPROM to determine the
132          * default flow control setting, so we explicitly set it to full.
133          */
134         if (hw->fc.requested_mode == ixgbe_fc_default)
135                 hw->fc.requested_mode = ixgbe_fc_full;
136
137         /*
138          * Set up the 1G and 10G flow control advertisement registers so the
139          * HW will be able to do fc autoneg once the cable is plugged in.  If
140          * we link at 10G, the 1G advertisement is harmless and vice versa.
141          */
142         switch (hw->phy.media_type) {
143         case ixgbe_media_type_backplane:
144                 /* some MAC's need RMW protection on AUTOC */
145                 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146                 if (ret_val)
147                         return ret_val;
148
149                 /* fall through - only backplane uses autoc */
150         case ixgbe_media_type_fiber:
151                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152
153                 break;
154         case ixgbe_media_type_copper:
155                 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156                                         MDIO_MMD_AN, &reg_cu);
157                 break;
158         default:
159                 break;
160         }
161
162         /*
163          * The possible values of fc.requested_mode are:
164          * 0: Flow control is completely disabled
165          * 1: Rx flow control is enabled (we can receive pause frames,
166          *    but not send pause frames).
167          * 2: Tx flow control is enabled (we can send pause frames but
168          *    we do not support receiving pause frames).
169          * 3: Both Rx and Tx flow control (symmetric) are enabled.
170          * other: Invalid.
171          */
172         switch (hw->fc.requested_mode) {
173         case ixgbe_fc_none:
174                 /* Flow control completely disabled by software override. */
175                 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176                 if (hw->phy.media_type == ixgbe_media_type_backplane)
177                         reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178                                     IXGBE_AUTOC_ASM_PAUSE);
179                 else if (hw->phy.media_type == ixgbe_media_type_copper)
180                         reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181                 break;
182         case ixgbe_fc_tx_pause:
183                 /*
184                  * Tx Flow control is enabled, and Rx Flow control is
185                  * disabled by software override.
186                  */
187                 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188                 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189                 if (hw->phy.media_type == ixgbe_media_type_backplane) {
190                         reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191                         reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192                 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
193                         reg_cu |= IXGBE_TAF_ASM_PAUSE;
194                         reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195                 }
196                 break;
197         case ixgbe_fc_rx_pause:
198                 /*
199                  * Rx Flow control is enabled and Tx Flow control is
200                  * disabled by software override. Since there really
201                  * isn't a way to advertise that we are capable of RX
202                  * Pause ONLY, we will advertise that we support both
203                  * symmetric and asymmetric Rx PAUSE, as such we fall
204                  * through to the fc_full statement.  Later, we will
205                  * disable the adapter's ability to send PAUSE frames.
206                  */
207         case ixgbe_fc_full:
208                 /* Flow control (both Rx and Tx) is enabled by SW override. */
209                 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210                 if (hw->phy.media_type == ixgbe_media_type_backplane)
211                         reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212                                   IXGBE_AUTOC_ASM_PAUSE;
213                 else if (hw->phy.media_type == ixgbe_media_type_copper)
214                         reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215                 break;
216         default:
217                 hw_dbg(hw, "Flow control param set incorrectly\n");
218                 return IXGBE_ERR_CONFIG;
219         }
220
221         if (hw->mac.type != ixgbe_mac_X540) {
222                 /*
223                  * Enable auto-negotiation between the MAC & PHY;
224                  * the MAC will advertise clause 37 flow control.
225                  */
226                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227                 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228
229                 /* Disable AN timeout */
230                 if (hw->fc.strict_ieee)
231                         reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232
233                 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234                 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235         }
236
237         /*
238          * AUTOC restart handles negotiation of 1G and 10G on backplane
239          * and copper. There is no need to set the PCS1GCTL register.
240          *
241          */
242         if (hw->phy.media_type == ixgbe_media_type_backplane) {
243                 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
244                  * LESM is on, likewise reset_pipeline requries the lock as
245                  * it also writes AUTOC.
246                  */
247                 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248                 if (ret_val)
249                         return ret_val;
250
251         } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252                    ixgbe_device_supports_autoneg_fc(hw)) {
253                 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254                                       MDIO_MMD_AN, reg_cu);
255         }
256
257         hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258         return ret_val;
259 }
260
261 /**
262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263  *  @hw: pointer to hardware structure
264  *
265  *  Starts the hardware by filling the bus info structure and media type, clears
266  *  all on chip counters, initializes receive address registers, multicast
267  *  table, VLAN filter table, calls routine to set up link and flow control
268  *  settings, and leaves transmit and receive units disabled and uninitialized
269  **/
270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271 {
272         s32 ret_val;
273         u32 ctrl_ext;
274         u16 device_caps;
275
276         /* Set the media type */
277         hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278
279         /* Identify the PHY */
280         hw->phy.ops.identify(hw);
281
282         /* Clear the VLAN filter table */
283         hw->mac.ops.clear_vfta(hw);
284
285         /* Clear statistics registers */
286         hw->mac.ops.clear_hw_cntrs(hw);
287
288         /* Set No Snoop Disable */
289         ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290         ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291         IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292         IXGBE_WRITE_FLUSH(hw);
293
294         /* Setup flow control if method for doing so */
295         if (hw->mac.ops.setup_fc) {
296                 ret_val = hw->mac.ops.setup_fc(hw);
297                 if (ret_val)
298                         return ret_val;
299         }
300
301         /* Cashe bit indicating need for crosstalk fix */
302         switch (hw->mac.type) {
303         case ixgbe_mac_82599EB:
304         case ixgbe_mac_X550EM_x:
305         case ixgbe_mac_x550em_a:
306                 hw->mac.ops.get_device_caps(hw, &device_caps);
307                 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308                         hw->need_crosstalk_fix = false;
309                 else
310                         hw->need_crosstalk_fix = true;
311                 break;
312         default:
313                 hw->need_crosstalk_fix = false;
314                 break;
315         }
316
317         /* Clear adapter stopped flag */
318         hw->adapter_stopped = false;
319
320         return 0;
321 }
322
323 /**
324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
325  *  @hw: pointer to hw structure
326  *
327  * Performs the init sequence common to the second generation
328  * of 10 GbE devices.
329  * Devices in the second generation:
330  *     82599
331  *     X540
332  **/
333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334 {
335         u32 i;
336
337         /* Clear the rate limiters */
338         for (i = 0; i < hw->mac.max_tx_queues; i++) {
339                 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340                 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341         }
342         IXGBE_WRITE_FLUSH(hw);
343
344         return 0;
345 }
346
347 /**
348  *  ixgbe_init_hw_generic - Generic hardware initialization
349  *  @hw: pointer to hardware structure
350  *
351  *  Initialize the hardware by resetting the hardware, filling the bus info
352  *  structure and media type, clears all on chip counters, initializes receive
353  *  address registers, multicast table, VLAN filter table, calls routine to set
354  *  up link and flow control settings, and leaves transmit and receive units
355  *  disabled and uninitialized
356  **/
357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358 {
359         s32 status;
360
361         /* Reset the hardware */
362         status = hw->mac.ops.reset_hw(hw);
363
364         if (status == 0) {
365                 /* Start the HW */
366                 status = hw->mac.ops.start_hw(hw);
367         }
368
369         /* Initialize the LED link active for LED blink support */
370         if (hw->mac.ops.init_led_link_act)
371                 hw->mac.ops.init_led_link_act(hw);
372
373         return status;
374 }
375
376 /**
377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378  *  @hw: pointer to hardware structure
379  *
380  *  Clears all hardware statistics counters by reading them from the hardware
381  *  Statistics counters are clear on read.
382  **/
383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384 {
385         u16 i = 0;
386
387         IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388         IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389         IXGBE_READ_REG(hw, IXGBE_ERRBC);
390         IXGBE_READ_REG(hw, IXGBE_MSPDC);
391         for (i = 0; i < 8; i++)
392                 IXGBE_READ_REG(hw, IXGBE_MPC(i));
393
394         IXGBE_READ_REG(hw, IXGBE_MLFC);
395         IXGBE_READ_REG(hw, IXGBE_MRFC);
396         IXGBE_READ_REG(hw, IXGBE_RLEC);
397         IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398         IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399         if (hw->mac.type >= ixgbe_mac_82599EB) {
400                 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401                 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402         } else {
403                 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404                 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405         }
406
407         for (i = 0; i < 8; i++) {
408                 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409                 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410                 if (hw->mac.type >= ixgbe_mac_82599EB) {
411                         IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412                         IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413                 } else {
414                         IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415                         IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416                 }
417         }
418         if (hw->mac.type >= ixgbe_mac_82599EB)
419                 for (i = 0; i < 8; i++)
420                         IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421         IXGBE_READ_REG(hw, IXGBE_PRC64);
422         IXGBE_READ_REG(hw, IXGBE_PRC127);
423         IXGBE_READ_REG(hw, IXGBE_PRC255);
424         IXGBE_READ_REG(hw, IXGBE_PRC511);
425         IXGBE_READ_REG(hw, IXGBE_PRC1023);
426         IXGBE_READ_REG(hw, IXGBE_PRC1522);
427         IXGBE_READ_REG(hw, IXGBE_GPRC);
428         IXGBE_READ_REG(hw, IXGBE_BPRC);
429         IXGBE_READ_REG(hw, IXGBE_MPRC);
430         IXGBE_READ_REG(hw, IXGBE_GPTC);
431         IXGBE_READ_REG(hw, IXGBE_GORCL);
432         IXGBE_READ_REG(hw, IXGBE_GORCH);
433         IXGBE_READ_REG(hw, IXGBE_GOTCL);
434         IXGBE_READ_REG(hw, IXGBE_GOTCH);
435         if (hw->mac.type == ixgbe_mac_82598EB)
436                 for (i = 0; i < 8; i++)
437                         IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438         IXGBE_READ_REG(hw, IXGBE_RUC);
439         IXGBE_READ_REG(hw, IXGBE_RFC);
440         IXGBE_READ_REG(hw, IXGBE_ROC);
441         IXGBE_READ_REG(hw, IXGBE_RJC);
442         IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443         IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444         IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445         IXGBE_READ_REG(hw, IXGBE_TORL);
446         IXGBE_READ_REG(hw, IXGBE_TORH);
447         IXGBE_READ_REG(hw, IXGBE_TPR);
448         IXGBE_READ_REG(hw, IXGBE_TPT);
449         IXGBE_READ_REG(hw, IXGBE_PTC64);
450         IXGBE_READ_REG(hw, IXGBE_PTC127);
451         IXGBE_READ_REG(hw, IXGBE_PTC255);
452         IXGBE_READ_REG(hw, IXGBE_PTC511);
453         IXGBE_READ_REG(hw, IXGBE_PTC1023);
454         IXGBE_READ_REG(hw, IXGBE_PTC1522);
455         IXGBE_READ_REG(hw, IXGBE_MPTC);
456         IXGBE_READ_REG(hw, IXGBE_BPTC);
457         for (i = 0; i < 16; i++) {
458                 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459                 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460                 if (hw->mac.type >= ixgbe_mac_82599EB) {
461                         IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462                         IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463                         IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464                         IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465                         IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466                 } else {
467                         IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468                         IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469                 }
470         }
471
472         if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473                 if (hw->phy.id == 0)
474                         hw->phy.ops.identify(hw);
475                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476                 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478                 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479         }
480
481         return 0;
482 }
483
484 /**
485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486  *  @hw: pointer to hardware structure
487  *  @pba_num: stores the part number string from the EEPROM
488  *  @pba_num_size: part number string buffer length
489  *
490  *  Reads the part number string from the EEPROM.
491  **/
492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493                                   u32 pba_num_size)
494 {
495         s32 ret_val;
496         u16 data;
497         u16 pba_ptr;
498         u16 offset;
499         u16 length;
500
501         if (pba_num == NULL) {
502                 hw_dbg(hw, "PBA string buffer was null\n");
503                 return IXGBE_ERR_INVALID_ARGUMENT;
504         }
505
506         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507         if (ret_val) {
508                 hw_dbg(hw, "NVM Read Error\n");
509                 return ret_val;
510         }
511
512         ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513         if (ret_val) {
514                 hw_dbg(hw, "NVM Read Error\n");
515                 return ret_val;
516         }
517
518         /*
519          * if data is not ptr guard the PBA must be in legacy format which
520          * means pba_ptr is actually our second data word for the PBA number
521          * and we can decode it into an ascii string
522          */
523         if (data != IXGBE_PBANUM_PTR_GUARD) {
524                 hw_dbg(hw, "NVM PBA number is not stored as string\n");
525
526                 /* we will need 11 characters to store the PBA */
527                 if (pba_num_size < 11) {
528                         hw_dbg(hw, "PBA string buffer too small\n");
529                         return IXGBE_ERR_NO_SPACE;
530                 }
531
532                 /* extract hex string from data and pba_ptr */
533                 pba_num[0] = (data >> 12) & 0xF;
534                 pba_num[1] = (data >> 8) & 0xF;
535                 pba_num[2] = (data >> 4) & 0xF;
536                 pba_num[3] = data & 0xF;
537                 pba_num[4] = (pba_ptr >> 12) & 0xF;
538                 pba_num[5] = (pba_ptr >> 8) & 0xF;
539                 pba_num[6] = '-';
540                 pba_num[7] = 0;
541                 pba_num[8] = (pba_ptr >> 4) & 0xF;
542                 pba_num[9] = pba_ptr & 0xF;
543
544                 /* put a null character on the end of our string */
545                 pba_num[10] = '\0';
546
547                 /* switch all the data but the '-' to hex char */
548                 for (offset = 0; offset < 10; offset++) {
549                         if (pba_num[offset] < 0xA)
550                                 pba_num[offset] += '0';
551                         else if (pba_num[offset] < 0x10)
552                                 pba_num[offset] += 'A' - 0xA;
553                 }
554
555                 return 0;
556         }
557
558         ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559         if (ret_val) {
560                 hw_dbg(hw, "NVM Read Error\n");
561                 return ret_val;
562         }
563
564         if (length == 0xFFFF || length == 0) {
565                 hw_dbg(hw, "NVM PBA number section invalid length\n");
566                 return IXGBE_ERR_PBA_SECTION;
567         }
568
569         /* check if pba_num buffer is big enough */
570         if (pba_num_size  < (((u32)length * 2) - 1)) {
571                 hw_dbg(hw, "PBA string buffer too small\n");
572                 return IXGBE_ERR_NO_SPACE;
573         }
574
575         /* trim pba length from start of string */
576         pba_ptr++;
577         length--;
578
579         for (offset = 0; offset < length; offset++) {
580                 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581                 if (ret_val) {
582                         hw_dbg(hw, "NVM Read Error\n");
583                         return ret_val;
584                 }
585                 pba_num[offset * 2] = (u8)(data >> 8);
586                 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587         }
588         pba_num[offset * 2] = '\0';
589
590         return 0;
591 }
592
593 /**
594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
595  *  @hw: pointer to hardware structure
596  *  @mac_addr: Adapter MAC address
597  *
598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599  *  A reset of the adapter must be performed prior to calling this function
600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601  **/
602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603 {
604         u32 rar_high;
605         u32 rar_low;
606         u16 i;
607
608         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609         rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610
611         for (i = 0; i < 4; i++)
612                 mac_addr[i] = (u8)(rar_low >> (i*8));
613
614         for (i = 0; i < 2; i++)
615                 mac_addr[i+4] = (u8)(rar_high >> (i*8));
616
617         return 0;
618 }
619
620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621 {
622         switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623         case IXGBE_PCI_LINK_WIDTH_1:
624                 return ixgbe_bus_width_pcie_x1;
625         case IXGBE_PCI_LINK_WIDTH_2:
626                 return ixgbe_bus_width_pcie_x2;
627         case IXGBE_PCI_LINK_WIDTH_4:
628                 return ixgbe_bus_width_pcie_x4;
629         case IXGBE_PCI_LINK_WIDTH_8:
630                 return ixgbe_bus_width_pcie_x8;
631         default:
632                 return ixgbe_bus_width_unknown;
633         }
634 }
635
636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637 {
638         switch (link_status & IXGBE_PCI_LINK_SPEED) {
639         case IXGBE_PCI_LINK_SPEED_2500:
640                 return ixgbe_bus_speed_2500;
641         case IXGBE_PCI_LINK_SPEED_5000:
642                 return ixgbe_bus_speed_5000;
643         case IXGBE_PCI_LINK_SPEED_8000:
644                 return ixgbe_bus_speed_8000;
645         default:
646                 return ixgbe_bus_speed_unknown;
647         }
648 }
649
650 /**
651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652  *  @hw: pointer to hardware structure
653  *
654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655  **/
656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657 {
658         u16 link_status;
659
660         hw->bus.type = ixgbe_bus_type_pci_express;
661
662         /* Get the negotiated link width and speed from PCI config space */
663         link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664
665         hw->bus.width = ixgbe_convert_bus_width(link_status);
666         hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667
668         hw->mac.ops.set_lan_id(hw);
669
670         return 0;
671 }
672
673 /**
674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675  *  @hw: pointer to the HW structure
676  *
677  *  Determines the LAN function id by reading memory-mapped registers
678  *  and swaps the port value if requested.
679  **/
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681 {
682         struct ixgbe_bus_info *bus = &hw->bus;
683         u16 ee_ctrl_4;
684         u32 reg;
685
686         reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687         bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688         bus->lan_id = bus->func;
689
690         /* check for a port swap */
691         reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692         if (reg & IXGBE_FACTPS_LFS)
693                 bus->func ^= 0x1;
694
695         /* Get MAC instance from EEPROM for configuring CS4227 */
696         if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697                 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698                 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699                                    IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700         }
701 }
702
703 /**
704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705  *  @hw: pointer to hardware structure
706  *
707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708  *  disables transmit and receive units. The adapter_stopped flag is used by
709  *  the shared code and drivers to determine if the adapter is in a stopped
710  *  state and should not touch the hardware.
711  **/
712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713 {
714         u32 reg_val;
715         u16 i;
716
717         /*
718          * Set the adapter_stopped flag so other driver functions stop touching
719          * the hardware
720          */
721         hw->adapter_stopped = true;
722
723         /* Disable the receive unit */
724         hw->mac.ops.disable_rx(hw);
725
726         /* Clear interrupt mask to stop interrupts from being generated */
727         IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728
729         /* Clear any pending interrupts, flush previous writes */
730         IXGBE_READ_REG(hw, IXGBE_EICR);
731
732         /* Disable the transmit unit.  Each queue must be disabled. */
733         for (i = 0; i < hw->mac.max_tx_queues; i++)
734                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735
736         /* Disable the receive unit by stopping each queue */
737         for (i = 0; i < hw->mac.max_rx_queues; i++) {
738                 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739                 reg_val &= ~IXGBE_RXDCTL_ENABLE;
740                 reg_val |= IXGBE_RXDCTL_SWFLSH;
741                 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742         }
743
744         /* flush all queues disables */
745         IXGBE_WRITE_FLUSH(hw);
746         usleep_range(1000, 2000);
747
748         /*
749          * Prevent the PCI-E bus from from hanging by disabling PCI-E master
750          * access and verify no pending requests
751          */
752         return ixgbe_disable_pcie_master(hw);
753 }
754
755 /**
756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757  *  @hw: pointer to hardware structure
758  *
759  *  Store the index for the link active LED. This will be used to support
760  *  blinking the LED.
761  **/
762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763 {
764         struct ixgbe_mac_info *mac = &hw->mac;
765         u32 led_reg, led_mode;
766         u16 i;
767
768         led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769
770         /* Get LED link active from the LEDCTL register */
771         for (i = 0; i < 4; i++) {
772                 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773
774                 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775                     IXGBE_LED_LINK_ACTIVE) {
776                         mac->led_link_act = i;
777                         return 0;
778                 }
779         }
780
781         /* If LEDCTL register does not have the LED link active set, then use
782          * known MAC defaults.
783          */
784         switch (hw->mac.type) {
785         case ixgbe_mac_x550em_a:
786                 mac->led_link_act = 0;
787                 break;
788         case ixgbe_mac_X550EM_x:
789                 mac->led_link_act = 1;
790                 break;
791         default:
792                 mac->led_link_act = 2;
793         }
794
795         return 0;
796 }
797
798 /**
799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800  *  @hw: pointer to hardware structure
801  *  @index: led number to turn on
802  **/
803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804 {
805         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806
807         if (index > 3)
808                 return IXGBE_ERR_PARAM;
809
810         /* To turn on the LED, set mode to ON. */
811         led_reg &= ~IXGBE_LED_MODE_MASK(index);
812         led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814         IXGBE_WRITE_FLUSH(hw);
815
816         return 0;
817 }
818
819 /**
820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821  *  @hw: pointer to hardware structure
822  *  @index: led number to turn off
823  **/
824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825 {
826         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827
828         if (index > 3)
829                 return IXGBE_ERR_PARAM;
830
831         /* To turn off the LED, set mode to OFF. */
832         led_reg &= ~IXGBE_LED_MODE_MASK(index);
833         led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835         IXGBE_WRITE_FLUSH(hw);
836
837         return 0;
838 }
839
840 /**
841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842  *  @hw: pointer to hardware structure
843  *
844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845  *  ixgbe_hw struct in order to set up EEPROM access.
846  **/
847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848 {
849         struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850         u32 eec;
851         u16 eeprom_size;
852
853         if (eeprom->type == ixgbe_eeprom_uninitialized) {
854                 eeprom->type = ixgbe_eeprom_none;
855                 /* Set default semaphore delay to 10ms which is a well
856                  * tested value */
857                 eeprom->semaphore_delay = 10;
858                 /* Clear EEPROM page size, it will be initialized as needed */
859                 eeprom->word_page_size = 0;
860
861                 /*
862                  * Check for EEPROM present first.
863                  * If not present leave as none
864                  */
865                 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866                 if (eec & IXGBE_EEC_PRES) {
867                         eeprom->type = ixgbe_eeprom_spi;
868
869                         /*
870                          * SPI EEPROM is assumed here.  This code would need to
871                          * change if a future EEPROM is not SPI.
872                          */
873                         eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874                                             IXGBE_EEC_SIZE_SHIFT);
875                         eeprom->word_size = BIT(eeprom_size +
876                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
877                 }
878
879                 if (eec & IXGBE_EEC_ADDR_SIZE)
880                         eeprom->address_bits = 16;
881                 else
882                         eeprom->address_bits = 8;
883                 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884                        eeprom->type, eeprom->word_size, eeprom->address_bits);
885         }
886
887         return 0;
888 }
889
890 /**
891  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892  *  @hw: pointer to hardware structure
893  *  @offset: offset within the EEPROM to write
894  *  @words: number of words
895  *  @data: 16 bit word(s) to write to EEPROM
896  *
897  *  Reads 16 bit word(s) from EEPROM through bit-bang method
898  **/
899 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900                                                u16 words, u16 *data)
901 {
902         s32 status;
903         u16 i, count;
904
905         hw->eeprom.ops.init_params(hw);
906
907         if (words == 0)
908                 return IXGBE_ERR_INVALID_ARGUMENT;
909
910         if (offset + words > hw->eeprom.word_size)
911                 return IXGBE_ERR_EEPROM;
912
913         /*
914          * The EEPROM page size cannot be queried from the chip. We do lazy
915          * initialization. It is worth to do that when we write large buffer.
916          */
917         if ((hw->eeprom.word_page_size == 0) &&
918             (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
919                 ixgbe_detect_eeprom_page_size_generic(hw, offset);
920
921         /*
922          * We cannot hold synchronization semaphores for too long
923          * to avoid other entity starvation. However it is more efficient
924          * to read in bursts than synchronizing access for each word.
925          */
926         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
927                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
928                          IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
929                 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
930                                                             count, &data[i]);
931
932                 if (status != 0)
933                         break;
934         }
935
936         return status;
937 }
938
939 /**
940  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
941  *  @hw: pointer to hardware structure
942  *  @offset: offset within the EEPROM to be written to
943  *  @words: number of word(s)
944  *  @data: 16 bit word(s) to be written to the EEPROM
945  *
946  *  If ixgbe_eeprom_update_checksum is not called after this function, the
947  *  EEPROM will most likely contain an invalid checksum.
948  **/
949 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
950                                               u16 words, u16 *data)
951 {
952         s32 status;
953         u16 word;
954         u16 page_size;
955         u16 i;
956         u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
957
958         /* Prepare the EEPROM for writing  */
959         status = ixgbe_acquire_eeprom(hw);
960         if (status)
961                 return status;
962
963         if (ixgbe_ready_eeprom(hw) != 0) {
964                 ixgbe_release_eeprom(hw);
965                 return IXGBE_ERR_EEPROM;
966         }
967
968         for (i = 0; i < words; i++) {
969                 ixgbe_standby_eeprom(hw);
970
971                 /* Send the WRITE ENABLE command (8 bit opcode) */
972                 ixgbe_shift_out_eeprom_bits(hw,
973                                             IXGBE_EEPROM_WREN_OPCODE_SPI,
974                                             IXGBE_EEPROM_OPCODE_BITS);
975
976                 ixgbe_standby_eeprom(hw);
977
978                 /* Some SPI eeproms use the 8th address bit embedded
979                  * in the opcode
980                  */
981                 if ((hw->eeprom.address_bits == 8) &&
982                     ((offset + i) >= 128))
983                         write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
984
985                 /* Send the Write command (8-bit opcode + addr) */
986                 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
987                                             IXGBE_EEPROM_OPCODE_BITS);
988                 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
989                                             hw->eeprom.address_bits);
990
991                 page_size = hw->eeprom.word_page_size;
992
993                 /* Send the data in burst via SPI */
994                 do {
995                         word = data[i];
996                         word = (word >> 8) | (word << 8);
997                         ixgbe_shift_out_eeprom_bits(hw, word, 16);
998
999                         if (page_size == 0)
1000                                 break;
1001
1002                         /* do not wrap around page */
1003                         if (((offset + i) & (page_size - 1)) ==
1004                             (page_size - 1))
1005                                 break;
1006                 } while (++i < words);
1007
1008                 ixgbe_standby_eeprom(hw);
1009                 usleep_range(10000, 20000);
1010         }
1011         /* Done with writing - release the EEPROM */
1012         ixgbe_release_eeprom(hw);
1013
1014         return 0;
1015 }
1016
1017 /**
1018  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019  *  @hw: pointer to hardware structure
1020  *  @offset: offset within the EEPROM to be written to
1021  *  @data: 16 bit word to be written to the EEPROM
1022  *
1023  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024  *  EEPROM will most likely contain an invalid checksum.
1025  **/
1026 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027 {
1028         hw->eeprom.ops.init_params(hw);
1029
1030         if (offset >= hw->eeprom.word_size)
1031                 return IXGBE_ERR_EEPROM;
1032
1033         return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034 }
1035
1036 /**
1037  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038  *  @hw: pointer to hardware structure
1039  *  @offset: offset within the EEPROM to be read
1040  *  @words: number of word(s)
1041  *  @data: read 16 bit words(s) from EEPROM
1042  *
1043  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044  **/
1045 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046                                               u16 words, u16 *data)
1047 {
1048         s32 status;
1049         u16 i, count;
1050
1051         hw->eeprom.ops.init_params(hw);
1052
1053         if (words == 0)
1054                 return IXGBE_ERR_INVALID_ARGUMENT;
1055
1056         if (offset + words > hw->eeprom.word_size)
1057                 return IXGBE_ERR_EEPROM;
1058
1059         /*
1060          * We cannot hold synchronization semaphores for too long
1061          * to avoid other entity starvation. However it is more efficient
1062          * to read in bursts than synchronizing access for each word.
1063          */
1064         for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065                 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066                          IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067
1068                 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069                                                            count, &data[i]);
1070
1071                 if (status)
1072                         return status;
1073         }
1074
1075         return 0;
1076 }
1077
1078 /**
1079  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be read
1082  *  @words: number of word(s)
1083  *  @data: read 16 bit word(s) from EEPROM
1084  *
1085  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086  **/
1087 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088                                              u16 words, u16 *data)
1089 {
1090         s32 status;
1091         u16 word_in;
1092         u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093         u16 i;
1094
1095         /* Prepare the EEPROM for reading  */
1096         status = ixgbe_acquire_eeprom(hw);
1097         if (status)
1098                 return status;
1099
1100         if (ixgbe_ready_eeprom(hw) != 0) {
1101                 ixgbe_release_eeprom(hw);
1102                 return IXGBE_ERR_EEPROM;
1103         }
1104
1105         for (i = 0; i < words; i++) {
1106                 ixgbe_standby_eeprom(hw);
1107                 /* Some SPI eeproms use the 8th address bit embedded
1108                  * in the opcode
1109                  */
1110                 if ((hw->eeprom.address_bits == 8) &&
1111                     ((offset + i) >= 128))
1112                         read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113
1114                 /* Send the READ command (opcode + addr) */
1115                 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116                                             IXGBE_EEPROM_OPCODE_BITS);
1117                 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118                                             hw->eeprom.address_bits);
1119
1120                 /* Read the data. */
1121                 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122                 data[i] = (word_in >> 8) | (word_in << 8);
1123         }
1124
1125         /* End this read operation */
1126         ixgbe_release_eeprom(hw);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133  *  @hw: pointer to hardware structure
1134  *  @offset: offset within the EEPROM to be read
1135  *  @data: read 16 bit value from EEPROM
1136  *
1137  *  Reads 16 bit value from EEPROM through bit-bang method
1138  **/
1139 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140                                        u16 *data)
1141 {
1142         hw->eeprom.ops.init_params(hw);
1143
1144         if (offset >= hw->eeprom.word_size)
1145                 return IXGBE_ERR_EEPROM;
1146
1147         return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148 }
1149
1150 /**
1151  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152  *  @hw: pointer to hardware structure
1153  *  @offset: offset of word in the EEPROM to read
1154  *  @words: number of word(s)
1155  *  @data: 16 bit word(s) from the EEPROM
1156  *
1157  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158  **/
1159 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160                                    u16 words, u16 *data)
1161 {
1162         u32 eerd;
1163         s32 status;
1164         u32 i;
1165
1166         hw->eeprom.ops.init_params(hw);
1167
1168         if (words == 0)
1169                 return IXGBE_ERR_INVALID_ARGUMENT;
1170
1171         if (offset >= hw->eeprom.word_size)
1172                 return IXGBE_ERR_EEPROM;
1173
1174         for (i = 0; i < words; i++) {
1175                 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176                        IXGBE_EEPROM_RW_REG_START;
1177
1178                 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180
1181                 if (status == 0) {
1182                         data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183                                    IXGBE_EEPROM_RW_REG_DATA);
1184                 } else {
1185                         hw_dbg(hw, "Eeprom read timed out\n");
1186                         return status;
1187                 }
1188         }
1189
1190         return 0;
1191 }
1192
1193 /**
1194  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195  *  @hw: pointer to hardware structure
1196  *  @offset: offset within the EEPROM to be used as a scratch pad
1197  *
1198  *  Discover EEPROM page size by writing marching data at given offset.
1199  *  This function is called only when we are writing a new large buffer
1200  *  at given offset so the data would be overwritten anyway.
1201  **/
1202 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203                                                  u16 offset)
1204 {
1205         u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206         s32 status;
1207         u16 i;
1208
1209         for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210                 data[i] = i;
1211
1212         hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213         status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214                                              IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215         hw->eeprom.word_page_size = 0;
1216         if (status)
1217                 return status;
1218
1219         status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220         if (status)
1221                 return status;
1222
1223         /*
1224          * When writing in burst more than the actual page size
1225          * EEPROM address wraps around current page.
1226          */
1227         hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228
1229         hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230                hw->eeprom.word_page_size);
1231         return 0;
1232 }
1233
1234 /**
1235  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236  *  @hw: pointer to hardware structure
1237  *  @offset: offset of  word in the EEPROM to read
1238  *  @data: word read from the EEPROM
1239  *
1240  *  Reads a 16 bit word from the EEPROM using the EERD register.
1241  **/
1242 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243 {
1244         return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245 }
1246
1247 /**
1248  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249  *  @hw: pointer to hardware structure
1250  *  @offset: offset of  word in the EEPROM to write
1251  *  @words: number of words
1252  *  @data: word(s) write to the EEPROM
1253  *
1254  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255  **/
1256 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257                                     u16 words, u16 *data)
1258 {
1259         u32 eewr;
1260         s32 status;
1261         u16 i;
1262
1263         hw->eeprom.ops.init_params(hw);
1264
1265         if (words == 0)
1266                 return IXGBE_ERR_INVALID_ARGUMENT;
1267
1268         if (offset >= hw->eeprom.word_size)
1269                 return IXGBE_ERR_EEPROM;
1270
1271         for (i = 0; i < words; i++) {
1272                 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273                        (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274                        IXGBE_EEPROM_RW_REG_START;
1275
1276                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277                 if (status) {
1278                         hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279                         return status;
1280                 }
1281
1282                 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283
1284                 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285                 if (status) {
1286                         hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287                         return status;
1288                 }
1289         }
1290
1291         return 0;
1292 }
1293
1294 /**
1295  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296  *  @hw: pointer to hardware structure
1297  *  @offset: offset of  word in the EEPROM to write
1298  *  @data: word write to the EEPROM
1299  *
1300  *  Write a 16 bit word to the EEPROM using the EEWR register.
1301  **/
1302 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303 {
1304         return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305 }
1306
1307 /**
1308  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309  *  @hw: pointer to hardware structure
1310  *  @ee_reg: EEPROM flag for polling
1311  *
1312  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313  *  read or write is done respectively.
1314  **/
1315 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316 {
1317         u32 i;
1318         u32 reg;
1319
1320         for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321                 if (ee_reg == IXGBE_NVM_POLL_READ)
1322                         reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323                 else
1324                         reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325
1326                 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327                         return 0;
1328                 }
1329                 udelay(5);
1330         }
1331         return IXGBE_ERR_EEPROM;
1332 }
1333
1334 /**
1335  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336  *  @hw: pointer to hardware structure
1337  *
1338  *  Prepares EEPROM for access using bit-bang method. This function should
1339  *  be called before issuing a command to the EEPROM.
1340  **/
1341 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342 {
1343         u32 eec;
1344         u32 i;
1345
1346         if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347                 return IXGBE_ERR_SWFW_SYNC;
1348
1349         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350
1351         /* Request EEPROM Access */
1352         eec |= IXGBE_EEC_REQ;
1353         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354
1355         for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356                 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357                 if (eec & IXGBE_EEC_GNT)
1358                         break;
1359                 udelay(5);
1360         }
1361
1362         /* Release if grant not acquired */
1363         if (!(eec & IXGBE_EEC_GNT)) {
1364                 eec &= ~IXGBE_EEC_REQ;
1365                 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366                 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367
1368                 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369                 return IXGBE_ERR_EEPROM;
1370         }
1371
1372         /* Setup EEPROM for Read/Write */
1373         /* Clear CS and SK */
1374         eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376         IXGBE_WRITE_FLUSH(hw);
1377         udelay(1);
1378         return 0;
1379 }
1380
1381 /**
1382  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383  *  @hw: pointer to hardware structure
1384  *
1385  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386  **/
1387 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388 {
1389         u32 timeout = 2000;
1390         u32 i;
1391         u32 swsm;
1392
1393         /* Get SMBI software semaphore between device drivers first */
1394         for (i = 0; i < timeout; i++) {
1395                 /*
1396                  * If the SMBI bit is 0 when we read it, then the bit will be
1397                  * set and we have the semaphore
1398                  */
1399                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400                 if (!(swsm & IXGBE_SWSM_SMBI))
1401                         break;
1402                 usleep_range(50, 100);
1403         }
1404
1405         if (i == timeout) {
1406                 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407                 /* this release is particularly important because our attempts
1408                  * above to get the semaphore may have succeeded, and if there
1409                  * was a timeout, we should unconditionally clear the semaphore
1410                  * bits to free the driver to make progress
1411                  */
1412                 ixgbe_release_eeprom_semaphore(hw);
1413
1414                 usleep_range(50, 100);
1415                 /* one last try
1416                  * If the SMBI bit is 0 when we read it, then the bit will be
1417                  * set and we have the semaphore
1418                  */
1419                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420                 if (swsm & IXGBE_SWSM_SMBI) {
1421                         hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422                         return IXGBE_ERR_EEPROM;
1423                 }
1424         }
1425
1426         /* Now get the semaphore between SW/FW through the SWESMBI bit */
1427         for (i = 0; i < timeout; i++) {
1428                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429
1430                 /* Set the SW EEPROM semaphore bit to request access */
1431                 swsm |= IXGBE_SWSM_SWESMBI;
1432                 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433
1434                 /* If we set the bit successfully then we got the
1435                  * semaphore.
1436                  */
1437                 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438                 if (swsm & IXGBE_SWSM_SWESMBI)
1439                         break;
1440
1441                 usleep_range(50, 100);
1442         }
1443
1444         /* Release semaphores and return error if SW EEPROM semaphore
1445          * was not granted because we don't have access to the EEPROM
1446          */
1447         if (i >= timeout) {
1448                 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449                 ixgbe_release_eeprom_semaphore(hw);
1450                 return IXGBE_ERR_EEPROM;
1451         }
1452
1453         return 0;
1454 }
1455
1456 /**
1457  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458  *  @hw: pointer to hardware structure
1459  *
1460  *  This function clears hardware semaphore bits.
1461  **/
1462 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463 {
1464         u32 swsm;
1465
1466         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467
1468         /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469         swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470         IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471         IXGBE_WRITE_FLUSH(hw);
1472 }
1473
1474 /**
1475  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476  *  @hw: pointer to hardware structure
1477  **/
1478 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479 {
1480         u16 i;
1481         u8 spi_stat_reg;
1482
1483         /*
1484          * Read "Status Register" repeatedly until the LSB is cleared.  The
1485          * EEPROM will signal that the command has been completed by clearing
1486          * bit 0 of the internal status register.  If it's not cleared within
1487          * 5 milliseconds, then error out.
1488          */
1489         for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490                 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491                                             IXGBE_EEPROM_OPCODE_BITS);
1492                 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493                 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494                         break;
1495
1496                 udelay(5);
1497                 ixgbe_standby_eeprom(hw);
1498         }
1499
1500         /*
1501          * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502          * devices (and only 0-5mSec on 5V devices)
1503          */
1504         if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505                 hw_dbg(hw, "SPI EEPROM Status error\n");
1506                 return IXGBE_ERR_EEPROM;
1507         }
1508
1509         return 0;
1510 }
1511
1512 /**
1513  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514  *  @hw: pointer to hardware structure
1515  **/
1516 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517 {
1518         u32 eec;
1519
1520         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521
1522         /* Toggle CS to flush commands */
1523         eec |= IXGBE_EEC_CS;
1524         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525         IXGBE_WRITE_FLUSH(hw);
1526         udelay(1);
1527         eec &= ~IXGBE_EEC_CS;
1528         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529         IXGBE_WRITE_FLUSH(hw);
1530         udelay(1);
1531 }
1532
1533 /**
1534  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535  *  @hw: pointer to hardware structure
1536  *  @data: data to send to the EEPROM
1537  *  @count: number of bits to shift out
1538  **/
1539 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540                                         u16 count)
1541 {
1542         u32 eec;
1543         u32 mask;
1544         u32 i;
1545
1546         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548         /*
1549          * Mask is used to shift "count" bits of "data" out to the EEPROM
1550          * one bit at a time.  Determine the starting bit based on count
1551          */
1552         mask = BIT(count - 1);
1553
1554         for (i = 0; i < count; i++) {
1555                 /*
1556                  * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557                  * "1", and then raising and then lowering the clock (the SK
1558                  * bit controls the clock input to the EEPROM).  A "0" is
1559                  * shifted out to the EEPROM by setting "DI" to "0" and then
1560                  * raising and then lowering the clock.
1561                  */
1562                 if (data & mask)
1563                         eec |= IXGBE_EEC_DI;
1564                 else
1565                         eec &= ~IXGBE_EEC_DI;
1566
1567                 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568                 IXGBE_WRITE_FLUSH(hw);
1569
1570                 udelay(1);
1571
1572                 ixgbe_raise_eeprom_clk(hw, &eec);
1573                 ixgbe_lower_eeprom_clk(hw, &eec);
1574
1575                 /*
1576                  * Shift mask to signify next bit of data to shift in to the
1577                  * EEPROM
1578                  */
1579                 mask = mask >> 1;
1580         }
1581
1582         /* We leave the "DI" bit set to "0" when we leave this routine. */
1583         eec &= ~IXGBE_EEC_DI;
1584         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585         IXGBE_WRITE_FLUSH(hw);
1586 }
1587
1588 /**
1589  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590  *  @hw: pointer to hardware structure
1591  *  @count: number of bits to shift
1592  **/
1593 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594 {
1595         u32 eec;
1596         u32 i;
1597         u16 data = 0;
1598
1599         /*
1600          * In order to read a register from the EEPROM, we need to shift
1601          * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602          * the clock input to the EEPROM (setting the SK bit), and then reading
1603          * the value of the "DO" bit.  During this "shifting in" process the
1604          * "DI" bit should always be clear.
1605          */
1606         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607
1608         eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609
1610         for (i = 0; i < count; i++) {
1611                 data = data << 1;
1612                 ixgbe_raise_eeprom_clk(hw, &eec);
1613
1614                 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615
1616                 eec &= ~(IXGBE_EEC_DI);
1617                 if (eec & IXGBE_EEC_DO)
1618                         data |= 1;
1619
1620                 ixgbe_lower_eeprom_clk(hw, &eec);
1621         }
1622
1623         return data;
1624 }
1625
1626 /**
1627  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628  *  @hw: pointer to hardware structure
1629  *  @eec: EEC register's current value
1630  **/
1631 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632 {
1633         /*
1634          * Raise the clock input to the EEPROM
1635          * (setting the SK bit), then delay
1636          */
1637         *eec = *eec | IXGBE_EEC_SK;
1638         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639         IXGBE_WRITE_FLUSH(hw);
1640         udelay(1);
1641 }
1642
1643 /**
1644  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645  *  @hw: pointer to hardware structure
1646  *  @eec: EEC's current value
1647  **/
1648 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649 {
1650         /*
1651          * Lower the clock input to the EEPROM (clearing the SK bit), then
1652          * delay
1653          */
1654         *eec = *eec & ~IXGBE_EEC_SK;
1655         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656         IXGBE_WRITE_FLUSH(hw);
1657         udelay(1);
1658 }
1659
1660 /**
1661  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662  *  @hw: pointer to hardware structure
1663  **/
1664 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665 {
1666         u32 eec;
1667
1668         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669
1670         eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671         eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672
1673         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674         IXGBE_WRITE_FLUSH(hw);
1675
1676         udelay(1);
1677
1678         /* Stop requesting EEPROM access */
1679         eec &= ~IXGBE_EEC_REQ;
1680         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681
1682         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683
1684         /*
1685          * Delay before attempt to obtain semaphore again to allow FW
1686          * access. semaphore_delay is in ms we need us for usleep_range
1687          */
1688         usleep_range(hw->eeprom.semaphore_delay * 1000,
1689                      hw->eeprom.semaphore_delay * 2000);
1690 }
1691
1692 /**
1693  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694  *  @hw: pointer to hardware structure
1695  **/
1696 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697 {
1698         u16 i;
1699         u16 j;
1700         u16 checksum = 0;
1701         u16 length = 0;
1702         u16 pointer = 0;
1703         u16 word = 0;
1704
1705         /* Include 0x0-0x3F in the checksum */
1706         for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707                 if (hw->eeprom.ops.read(hw, i, &word)) {
1708                         hw_dbg(hw, "EEPROM read failed\n");
1709                         break;
1710                 }
1711                 checksum += word;
1712         }
1713
1714         /* Include all data from pointers except for the fw pointer */
1715         for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716                 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717                         hw_dbg(hw, "EEPROM read failed\n");
1718                         return IXGBE_ERR_EEPROM;
1719                 }
1720
1721                 /* If the pointer seems invalid */
1722                 if (pointer == 0xFFFF || pointer == 0)
1723                         continue;
1724
1725                 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726                         hw_dbg(hw, "EEPROM read failed\n");
1727                         return IXGBE_ERR_EEPROM;
1728                 }
1729
1730                 if (length == 0xFFFF || length == 0)
1731                         continue;
1732
1733                 for (j = pointer + 1; j <= pointer + length; j++) {
1734                         if (hw->eeprom.ops.read(hw, j, &word)) {
1735                                 hw_dbg(hw, "EEPROM read failed\n");
1736                                 return IXGBE_ERR_EEPROM;
1737                         }
1738                         checksum += word;
1739                 }
1740         }
1741
1742         checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743
1744         return (s32)checksum;
1745 }
1746
1747 /**
1748  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749  *  @hw: pointer to hardware structure
1750  *  @checksum_val: calculated checksum
1751  *
1752  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753  *  caller does not need checksum_val, the value can be NULL.
1754  **/
1755 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756                                            u16 *checksum_val)
1757 {
1758         s32 status;
1759         u16 checksum;
1760         u16 read_checksum = 0;
1761
1762         /*
1763          * Read the first word from the EEPROM. If this times out or fails, do
1764          * not continue or we could be in for a very long wait while every
1765          * EEPROM read fails
1766          */
1767         status = hw->eeprom.ops.read(hw, 0, &checksum);
1768         if (status) {
1769                 hw_dbg(hw, "EEPROM read failed\n");
1770                 return status;
1771         }
1772
1773         status = hw->eeprom.ops.calc_checksum(hw);
1774         if (status < 0)
1775                 return status;
1776
1777         checksum = (u16)(status & 0xffff);
1778
1779         status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780         if (status) {
1781                 hw_dbg(hw, "EEPROM read failed\n");
1782                 return status;
1783         }
1784
1785         /* Verify read checksum from EEPROM is the same as
1786          * calculated checksum
1787          */
1788         if (read_checksum != checksum)
1789                 status = IXGBE_ERR_EEPROM_CHECKSUM;
1790
1791         /* If the user cares, return the calculated checksum */
1792         if (checksum_val)
1793                 *checksum_val = checksum;
1794
1795         return status;
1796 }
1797
1798 /**
1799  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800  *  @hw: pointer to hardware structure
1801  **/
1802 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803 {
1804         s32 status;
1805         u16 checksum;
1806
1807         /*
1808          * Read the first word from the EEPROM. If this times out or fails, do
1809          * not continue or we could be in for a very long wait while every
1810          * EEPROM read fails
1811          */
1812         status = hw->eeprom.ops.read(hw, 0, &checksum);
1813         if (status) {
1814                 hw_dbg(hw, "EEPROM read failed\n");
1815                 return status;
1816         }
1817
1818         status = hw->eeprom.ops.calc_checksum(hw);
1819         if (status < 0)
1820                 return status;
1821
1822         checksum = (u16)(status & 0xffff);
1823
1824         status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825
1826         return status;
1827 }
1828
1829 /**
1830  *  ixgbe_set_rar_generic - Set Rx address register
1831  *  @hw: pointer to hardware structure
1832  *  @index: Receive address register to write
1833  *  @addr: Address to put into receive address register
1834  *  @vmdq: VMDq "set" or "pool" index
1835  *  @enable_addr: set flag that address is active
1836  *
1837  *  Puts an ethernet address into a receive address register.
1838  **/
1839 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840                           u32 enable_addr)
1841 {
1842         u32 rar_low, rar_high;
1843         u32 rar_entries = hw->mac.num_rar_entries;
1844
1845         /* Make sure we are using a valid rar index range */
1846         if (index >= rar_entries) {
1847                 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848                 return IXGBE_ERR_INVALID_ARGUMENT;
1849         }
1850
1851         /* setup VMDq pool selection before this RAR gets enabled */
1852         hw->mac.ops.set_vmdq(hw, index, vmdq);
1853
1854         /*
1855          * HW expects these in little endian so we reverse the byte
1856          * order from network order (big endian) to little endian
1857          */
1858         rar_low = ((u32)addr[0] |
1859                    ((u32)addr[1] << 8) |
1860                    ((u32)addr[2] << 16) |
1861                    ((u32)addr[3] << 24));
1862         /*
1863          * Some parts put the VMDq setting in the extra RAH bits,
1864          * so save everything except the lower 16 bits that hold part
1865          * of the address and the address valid bit.
1866          */
1867         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869         rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870
1871         if (enable_addr != 0)
1872                 rar_high |= IXGBE_RAH_AV;
1873
1874         /* Record lower 32 bits of MAC address and then make
1875          * sure that write is flushed to hardware before writing
1876          * the upper 16 bits and setting the valid bit.
1877          */
1878         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1879         IXGBE_WRITE_FLUSH(hw);
1880         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1881
1882         return 0;
1883 }
1884
1885 /**
1886  *  ixgbe_clear_rar_generic - Remove Rx address register
1887  *  @hw: pointer to hardware structure
1888  *  @index: Receive address register to write
1889  *
1890  *  Clears an ethernet address from a receive address register.
1891  **/
1892 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1893 {
1894         u32 rar_high;
1895         u32 rar_entries = hw->mac.num_rar_entries;
1896
1897         /* Make sure we are using a valid rar index range */
1898         if (index >= rar_entries) {
1899                 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1900                 return IXGBE_ERR_INVALID_ARGUMENT;
1901         }
1902
1903         /*
1904          * Some parts put the VMDq setting in the extra RAH bits,
1905          * so save everything except the lower 16 bits that hold part
1906          * of the address and the address valid bit.
1907          */
1908         rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1909         rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1910
1911         /* Clear the address valid bit and upper 16 bits of the address
1912          * before clearing the lower bits. This way we aren't updating
1913          * a live filter.
1914          */
1915         IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1916         IXGBE_WRITE_FLUSH(hw);
1917         IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1918
1919         /* clear VMDq pool/queue selection for this RAR */
1920         hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1921
1922         return 0;
1923 }
1924
1925 /**
1926  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927  *  @hw: pointer to hardware structure
1928  *
1929  *  Places the MAC address in receive address register 0 and clears the rest
1930  *  of the receive address registers. Clears the multicast table. Assumes
1931  *  the receiver is in reset when the routine is called.
1932  **/
1933 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1934 {
1935         u32 i;
1936         u32 rar_entries = hw->mac.num_rar_entries;
1937
1938         /*
1939          * If the current mac address is valid, assume it is a software override
1940          * to the permanent address.
1941          * Otherwise, use the permanent address from the eeprom.
1942          */
1943         if (!is_valid_ether_addr(hw->mac.addr)) {
1944                 /* Get the MAC address from the RAR0 for later reference */
1945                 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1946
1947                 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1948         } else {
1949                 /* Setup the receive address. */
1950                 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1951                 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1952
1953                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1954         }
1955
1956         /*  clear VMDq pool/queue selection for RAR 0 */
1957         hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1958
1959         hw->addr_ctrl.overflow_promisc = 0;
1960
1961         hw->addr_ctrl.rar_used_count = 1;
1962
1963         /* Zero out the other receive addresses. */
1964         hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1965         for (i = 1; i < rar_entries; i++) {
1966                 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1967                 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1968         }
1969
1970         /* Clear the MTA */
1971         hw->addr_ctrl.mta_in_use = 0;
1972         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1973
1974         hw_dbg(hw, " Clearing MTA\n");
1975         for (i = 0; i < hw->mac.mcft_size; i++)
1976                 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1977
1978         if (hw->mac.ops.init_uta_tables)
1979                 hw->mac.ops.init_uta_tables(hw);
1980
1981         return 0;
1982 }
1983
1984 /**
1985  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986  *  @hw: pointer to hardware structure
1987  *  @mc_addr: the multicast address
1988  *
1989  *  Extracts the 12 bits, from a multicast address, to determine which
1990  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991  *  incoming rx multicast addresses, to determine the bit-vector to check in
1992  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1994  *  to mc_filter_type.
1995  **/
1996 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1997 {
1998         u32 vector = 0;
1999
2000         switch (hw->mac.mc_filter_type) {
2001         case 0:   /* use bits [47:36] of the address */
2002                 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2003                 break;
2004         case 1:   /* use bits [46:35] of the address */
2005                 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2006                 break;
2007         case 2:   /* use bits [45:34] of the address */
2008                 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2009                 break;
2010         case 3:   /* use bits [43:32] of the address */
2011                 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2012                 break;
2013         default:  /* Invalid mc_filter_type */
2014                 hw_dbg(hw, "MC filter type param set incorrectly\n");
2015                 break;
2016         }
2017
2018         /* vector can only be 12-bits or boundary will be exceeded */
2019         vector &= 0xFFF;
2020         return vector;
2021 }
2022
2023 /**
2024  *  ixgbe_set_mta - Set bit-vector in multicast table
2025  *  @hw: pointer to hardware structure
2026  *  @mc_addr: Multicast address
2027  *
2028  *  Sets the bit-vector in the multicast table.
2029  **/
2030 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2031 {
2032         u32 vector;
2033         u32 vector_bit;
2034         u32 vector_reg;
2035
2036         hw->addr_ctrl.mta_in_use++;
2037
2038         vector = ixgbe_mta_vector(hw, mc_addr);
2039         hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2040
2041         /*
2042          * The MTA is a register array of 128 32-bit registers. It is treated
2043          * like an array of 4096 bits.  We want to set bit
2044          * BitArray[vector_value]. So we figure out what register the bit is
2045          * in, read it, OR in the new bit, then write back the new value.  The
2046          * register is determined by the upper 7 bits of the vector value and
2047          * the bit within that register are determined by the lower 5 bits of
2048          * the value.
2049          */
2050         vector_reg = (vector >> 5) & 0x7F;
2051         vector_bit = vector & 0x1F;
2052         hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2053 }
2054
2055 /**
2056  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057  *  @hw: pointer to hardware structure
2058  *  @netdev: pointer to net device structure
2059  *
2060  *  The given list replaces any existing list. Clears the MC addrs from receive
2061  *  address registers and the multicast table. Uses unused receive address
2062  *  registers for the first multicast addresses, and hashes the rest into the
2063  *  multicast table.
2064  **/
2065 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2066                                       struct net_device *netdev)
2067 {
2068         struct netdev_hw_addr *ha;
2069         u32 i;
2070
2071         /*
2072          * Set the new number of MC addresses that we are being requested to
2073          * use.
2074          */
2075         hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2076         hw->addr_ctrl.mta_in_use = 0;
2077
2078         /* Clear mta_shadow */
2079         hw_dbg(hw, " Clearing MTA\n");
2080         memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2081
2082         /* Update mta shadow */
2083         netdev_for_each_mc_addr(ha, netdev) {
2084                 hw_dbg(hw, " Adding the multicast addresses:\n");
2085                 ixgbe_set_mta(hw, ha->addr);
2086         }
2087
2088         /* Enable mta */
2089         for (i = 0; i < hw->mac.mcft_size; i++)
2090                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2091                                       hw->mac.mta_shadow[i]);
2092
2093         if (hw->addr_ctrl.mta_in_use > 0)
2094                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2095                                 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2096
2097         hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2098         return 0;
2099 }
2100
2101 /**
2102  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2103  *  @hw: pointer to hardware structure
2104  *
2105  *  Enables multicast address in RAR and the use of the multicast hash table.
2106  **/
2107 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2108 {
2109         struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2110
2111         if (a->mta_in_use > 0)
2112                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2113                                 hw->mac.mc_filter_type);
2114
2115         return 0;
2116 }
2117
2118 /**
2119  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2120  *  @hw: pointer to hardware structure
2121  *
2122  *  Disables multicast address in RAR and the use of the multicast hash table.
2123  **/
2124 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2125 {
2126         struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127
2128         if (a->mta_in_use > 0)
2129                 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2130
2131         return 0;
2132 }
2133
2134 /**
2135  *  ixgbe_fc_enable_generic - Enable flow control
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Enable flow control according to the current settings.
2139  **/
2140 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2141 {
2142         u32 mflcn_reg, fccfg_reg;
2143         u32 reg;
2144         u32 fcrtl, fcrth;
2145         int i;
2146
2147         /* Validate the water mark configuration. */
2148         if (!hw->fc.pause_time)
2149                 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2150
2151         /* Low water mark of zero causes XOFF floods */
2152         for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2153                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2154                     hw->fc.high_water[i]) {
2155                         if (!hw->fc.low_water[i] ||
2156                             hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2157                                 hw_dbg(hw, "Invalid water mark configuration\n");
2158                                 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2159                         }
2160                 }
2161         }
2162
2163         /* Negotiate the fc mode to use */
2164         hw->mac.ops.fc_autoneg(hw);
2165
2166         /* Disable any previous flow control settings */
2167         mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2168         mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2169
2170         fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2171         fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2172
2173         /*
2174          * The possible values of fc.current_mode are:
2175          * 0: Flow control is completely disabled
2176          * 1: Rx flow control is enabled (we can receive pause frames,
2177          *    but not send pause frames).
2178          * 2: Tx flow control is enabled (we can send pause frames but
2179          *    we do not support receiving pause frames).
2180          * 3: Both Rx and Tx flow control (symmetric) are enabled.
2181          * other: Invalid.
2182          */
2183         switch (hw->fc.current_mode) {
2184         case ixgbe_fc_none:
2185                 /*
2186                  * Flow control is disabled by software override or autoneg.
2187                  * The code below will actually disable it in the HW.
2188                  */
2189                 break;
2190         case ixgbe_fc_rx_pause:
2191                 /*
2192                  * Rx Flow control is enabled and Tx Flow control is
2193                  * disabled by software override. Since there really
2194                  * isn't a way to advertise that we are capable of RX
2195                  * Pause ONLY, we will advertise that we support both
2196                  * symmetric and asymmetric Rx PAUSE.  Later, we will
2197                  * disable the adapter's ability to send PAUSE frames.
2198                  */
2199                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2200                 break;
2201         case ixgbe_fc_tx_pause:
2202                 /*
2203                  * Tx Flow control is enabled, and Rx Flow control is
2204                  * disabled by software override.
2205                  */
2206                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2207                 break;
2208         case ixgbe_fc_full:
2209                 /* Flow control (both Rx and Tx) is enabled by SW override. */
2210                 mflcn_reg |= IXGBE_MFLCN_RFCE;
2211                 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2212                 break;
2213         default:
2214                 hw_dbg(hw, "Flow control param set incorrectly\n");
2215                 return IXGBE_ERR_CONFIG;
2216         }
2217
2218         /* Set 802.3x based flow control settings. */
2219         mflcn_reg |= IXGBE_MFLCN_DPF;
2220         IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2221         IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2222
2223         /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224         for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2225                 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2226                     hw->fc.high_water[i]) {
2227                         fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2228                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2229                         fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2230                 } else {
2231                         IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2232                         /*
2233                          * In order to prevent Tx hangs when the internal Tx
2234                          * switch is enabled we must set the high water mark
2235                          * to the Rx packet buffer size - 24KB.  This allows
2236                          * the Tx switch to function even under heavy Rx
2237                          * workloads.
2238                          */
2239                         fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2240                 }
2241
2242                 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2243         }
2244
2245         /* Configure pause time (2 TCs per register) */
2246         reg = hw->fc.pause_time * 0x00010001;
2247         for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2248                 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2249
2250         IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2251
2252         return 0;
2253 }
2254
2255 /**
2256  *  ixgbe_negotiate_fc - Negotiate flow control
2257  *  @hw: pointer to hardware structure
2258  *  @adv_reg: flow control advertised settings
2259  *  @lp_reg: link partner's flow control settings
2260  *  @adv_sym: symmetric pause bit in advertisement
2261  *  @adv_asm: asymmetric pause bit in advertisement
2262  *  @lp_sym: symmetric pause bit in link partner advertisement
2263  *  @lp_asm: asymmetric pause bit in link partner advertisement
2264  *
2265  *  Find the intersection between advertised settings and link partner's
2266  *  advertised settings
2267  **/
2268 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2269                        u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2270 {
2271         if ((!(adv_reg)) ||  (!(lp_reg)))
2272                 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273
2274         if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2275                 /*
2276                  * Now we need to check if the user selected Rx ONLY
2277                  * of pause frames.  In this case, we had to advertise
2278                  * FULL flow control because we could not advertise RX
2279                  * ONLY. Hence, we must now check to see if we need to
2280                  * turn OFF the TRANSMISSION of PAUSE frames.
2281                  */
2282                 if (hw->fc.requested_mode == ixgbe_fc_full) {
2283                         hw->fc.current_mode = ixgbe_fc_full;
2284                         hw_dbg(hw, "Flow Control = FULL.\n");
2285                 } else {
2286                         hw->fc.current_mode = ixgbe_fc_rx_pause;
2287                         hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2288                 }
2289         } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2290                    (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2291                 hw->fc.current_mode = ixgbe_fc_tx_pause;
2292                 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2293         } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2294                    !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2295                 hw->fc.current_mode = ixgbe_fc_rx_pause;
2296                 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2297         } else {
2298                 hw->fc.current_mode = ixgbe_fc_none;
2299                 hw_dbg(hw, "Flow Control = NONE.\n");
2300         }
2301         return 0;
2302 }
2303
2304 /**
2305  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306  *  @hw: pointer to hardware structure
2307  *
2308  *  Enable flow control according on 1 gig fiber.
2309  **/
2310 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2311 {
2312         u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2313         s32 ret_val;
2314
2315         /*
2316          * On multispeed fiber at 1g, bail out if
2317          * - link is up but AN did not complete, or if
2318          * - link is up and AN completed but timed out
2319          */
2320
2321         linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2322         if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2323             (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2324                 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2325
2326         pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2327         pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2328
2329         ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2330                                pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2331                                IXGBE_PCS1GANA_ASM_PAUSE,
2332                                IXGBE_PCS1GANA_SYM_PAUSE,
2333                                IXGBE_PCS1GANA_ASM_PAUSE);
2334
2335         return ret_val;
2336 }
2337
2338 /**
2339  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340  *  @hw: pointer to hardware structure
2341  *
2342  *  Enable flow control according to IEEE clause 37.
2343  **/
2344 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2345 {
2346         u32 links2, anlp1_reg, autoc_reg, links;
2347         s32 ret_val;
2348
2349         /*
2350          * On backplane, bail out if
2351          * - backplane autoneg was not completed, or if
2352          * - we are 82599 and link partner is not AN enabled
2353          */
2354         links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2355         if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2356                 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2357
2358         if (hw->mac.type == ixgbe_mac_82599EB) {
2359                 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2360                 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2361                         return IXGBE_ERR_FC_NOT_NEGOTIATED;
2362         }
2363         /*
2364          * Read the 10g AN autoc and LP ability registers and resolve
2365          * local flow control settings accordingly
2366          */
2367         autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2368         anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2369
2370         ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2371                 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2372                 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2373
2374         return ret_val;
2375 }
2376
2377 /**
2378  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379  *  @hw: pointer to hardware structure
2380  *
2381  *  Enable flow control according to IEEE clause 37.
2382  **/
2383 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2384 {
2385         u16 technology_ability_reg = 0;
2386         u16 lp_technology_ability_reg = 0;
2387
2388         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2389                              MDIO_MMD_AN,
2390                              &technology_ability_reg);
2391         hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2392                              MDIO_MMD_AN,
2393                              &lp_technology_ability_reg);
2394
2395         return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2396                                   (u32)lp_technology_ability_reg,
2397                                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2398                                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2399 }
2400
2401 /**
2402  *  ixgbe_fc_autoneg - Configure flow control
2403  *  @hw: pointer to hardware structure
2404  *
2405  *  Compares our advertised flow control capabilities to those advertised by
2406  *  our link partner, and determines the proper flow control mode to use.
2407  **/
2408 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2409 {
2410         s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2411         ixgbe_link_speed speed;
2412         bool link_up;
2413
2414         /*
2415          * AN should have completed when the cable was plugged in.
2416          * Look for reasons to bail out.  Bail out if:
2417          * - FC autoneg is disabled, or if
2418          * - link is not up.
2419          *
2420          * Since we're being called from an LSC, link is already known to be up.
2421          * So use link_up_wait_to_complete=false.
2422          */
2423         if (hw->fc.disable_fc_autoneg)
2424                 goto out;
2425
2426         hw->mac.ops.check_link(hw, &speed, &link_up, false);
2427         if (!link_up)
2428                 goto out;
2429
2430         switch (hw->phy.media_type) {
2431         /* Autoneg flow control on fiber adapters */
2432         case ixgbe_media_type_fiber:
2433                 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2434                         ret_val = ixgbe_fc_autoneg_fiber(hw);
2435                 break;
2436
2437         /* Autoneg flow control on backplane adapters */
2438         case ixgbe_media_type_backplane:
2439                 ret_val = ixgbe_fc_autoneg_backplane(hw);
2440                 break;
2441
2442         /* Autoneg flow control on copper adapters */
2443         case ixgbe_media_type_copper:
2444                 if (ixgbe_device_supports_autoneg_fc(hw))
2445                         ret_val = ixgbe_fc_autoneg_copper(hw);
2446                 break;
2447
2448         default:
2449                 break;
2450         }
2451
2452 out:
2453         if (ret_val == 0) {
2454                 hw->fc.fc_was_autonegged = true;
2455         } else {
2456                 hw->fc.fc_was_autonegged = false;
2457                 hw->fc.current_mode = hw->fc.requested_mode;
2458         }
2459 }
2460
2461 /**
2462  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463  * @hw: pointer to hardware structure
2464  *
2465  * System-wide timeout range is encoded in PCIe Device Control2 register.
2466  *
2467  *  Add 10% to specified maximum and return the number of times to poll for
2468  *  completion timeout, in units of 100 microsec.  Never return less than
2469  *  800 = 80 millisec.
2470  **/
2471 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2472 {
2473         s16 devctl2;
2474         u32 pollcnt;
2475
2476         devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2477         devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2478
2479         switch (devctl2) {
2480         case IXGBE_PCIDEVCTRL2_65_130ms:
2481                  pollcnt = 1300;         /* 130 millisec */
2482                 break;
2483         case IXGBE_PCIDEVCTRL2_260_520ms:
2484                 pollcnt = 5200;         /* 520 millisec */
2485                 break;
2486         case IXGBE_PCIDEVCTRL2_1_2s:
2487                 pollcnt = 20000;        /* 2 sec */
2488                 break;
2489         case IXGBE_PCIDEVCTRL2_4_8s:
2490                 pollcnt = 80000;        /* 8 sec */
2491                 break;
2492         case IXGBE_PCIDEVCTRL2_17_34s:
2493                 pollcnt = 34000;        /* 34 sec */
2494                 break;
2495         case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2496         case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2497         case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2498         case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2499         default:
2500                 pollcnt = 800;          /* 80 millisec minimum */
2501                 break;
2502         }
2503
2504         /* add 10% to spec maximum */
2505         return (pollcnt * 11) / 10;
2506 }
2507
2508 /**
2509  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2510  *  @hw: pointer to hardware structure
2511  *
2512  *  Disables PCI-Express master access and verifies there are no pending
2513  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2514  *  bit hasn't caused the master requests to be disabled, else 0
2515  *  is returned signifying master requests disabled.
2516  **/
2517 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2518 {
2519         u32 i, poll;
2520         u16 value;
2521
2522         /* Always set this bit to ensure any future transactions are blocked */
2523         IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2524
2525         /* Poll for bit to read as set */
2526         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2527                 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2528                         break;
2529                 usleep_range(100, 120);
2530         }
2531         if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2532                 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2533                 goto gio_disable_fail;
2534         }
2535
2536         /* Exit if master requests are blocked */
2537         if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2538             ixgbe_removed(hw->hw_addr))
2539                 return 0;
2540
2541         /* Poll for master request bit to clear */
2542         for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543                 udelay(100);
2544                 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2545                         return 0;
2546         }
2547
2548         /*
2549          * Two consecutive resets are required via CTRL.RST per datasheet
2550          * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2551          * of this need.  The first reset prevents new master requests from
2552          * being issued by our device.  We then must wait 1usec or more for any
2553          * remaining completions from the PCIe bus to trickle in, and then reset
2554          * again to clear out any effects they may have had on our device.
2555          */
2556         hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2557 gio_disable_fail:
2558         hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2559
2560         if (hw->mac.type >= ixgbe_mac_X550)
2561                 return 0;
2562
2563         /*
2564          * Before proceeding, make sure that the PCIe block does not have
2565          * transactions pending.
2566          */
2567         poll = ixgbe_pcie_timeout_poll(hw);
2568         for (i = 0; i < poll; i++) {
2569                 udelay(100);
2570                 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2571                 if (ixgbe_removed(hw->hw_addr))
2572                         return 0;
2573                 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2574                         return 0;
2575         }
2576
2577         hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2578         return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2579 }
2580
2581 /**
2582  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583  *  @hw: pointer to hardware structure
2584  *  @mask: Mask to specify which semaphore to acquire
2585  *
2586  *  Acquires the SWFW semaphore through the GSSR register for the specified
2587  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2588  **/
2589 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2590 {
2591         u32 gssr = 0;
2592         u32 swmask = mask;
2593         u32 fwmask = mask << 5;
2594         u32 timeout = 200;
2595         u32 i;
2596
2597         for (i = 0; i < timeout; i++) {
2598                 /*
2599                  * SW NVM semaphore bit is used for access to all
2600                  * SW_FW_SYNC bits (not just NVM)
2601                  */
2602                 if (ixgbe_get_eeprom_semaphore(hw))
2603                         return IXGBE_ERR_SWFW_SYNC;
2604
2605                 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2606                 if (!(gssr & (fwmask | swmask))) {
2607                         gssr |= swmask;
2608                         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609                         ixgbe_release_eeprom_semaphore(hw);
2610                         return 0;
2611                 } else {
2612                         /* Resource is currently in use by FW or SW */
2613                         ixgbe_release_eeprom_semaphore(hw);
2614                         usleep_range(5000, 10000);
2615                 }
2616         }
2617
2618         /* If time expired clear the bits holding the lock and retry */
2619         if (gssr & (fwmask | swmask))
2620                 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2621
2622         usleep_range(5000, 10000);
2623         return IXGBE_ERR_SWFW_SYNC;
2624 }
2625
2626 /**
2627  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2628  *  @hw: pointer to hardware structure
2629  *  @mask: Mask to specify which semaphore to release
2630  *
2631  *  Releases the SWFW semaphore through the GSSR register for the specified
2632  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2633  **/
2634 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2635 {
2636         u32 gssr;
2637         u32 swmask = mask;
2638
2639         ixgbe_get_eeprom_semaphore(hw);
2640
2641         gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2642         gssr &= ~swmask;
2643         IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2644
2645         ixgbe_release_eeprom_semaphore(hw);
2646 }
2647
2648 /**
2649  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650  * @hw: pointer to hardware structure
2651  * @reg_val: Value we read from AUTOC
2652  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2653  *          true in this the generic case.
2654  *
2655  * The default case requires no protection so just to the register read.
2656  **/
2657 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2658 {
2659         *locked = false;
2660         *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2661         return 0;
2662 }
2663
2664 /**
2665  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666  * @hw: pointer to hardware structure
2667  * @reg_val: value to write to AUTOC
2668  * @locked: bool to indicate whether the SW/FW lock was already taken by
2669  *          previous read.
2670  **/
2671 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2672 {
2673         IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2674         return 0;
2675 }
2676
2677 /**
2678  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2679  *  @hw: pointer to hardware structure
2680  *
2681  *  Stops the receive data path and waits for the HW to internally
2682  *  empty the Rx security block.
2683  **/
2684 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2685 {
2686 #define IXGBE_MAX_SECRX_POLL 40
2687         int i;
2688         int secrxreg;
2689
2690         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2691         secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2692         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2693         for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2694                 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2695                 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2696                         break;
2697                 else
2698                         /* Use interrupt-safe sleep just in case */
2699                         udelay(1000);
2700         }
2701
2702         /* For informational purposes only */
2703         if (i >= IXGBE_MAX_SECRX_POLL)
2704                 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2705
2706         return 0;
2707
2708 }
2709
2710 /**
2711  *  ixgbe_enable_rx_buff - Enables the receive data path
2712  *  @hw: pointer to hardware structure
2713  *
2714  *  Enables the receive data path
2715  **/
2716 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2717 {
2718         u32 secrxreg;
2719
2720         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2721         secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2722         IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2723         IXGBE_WRITE_FLUSH(hw);
2724
2725         return 0;
2726 }
2727
2728 /**
2729  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730  *  @hw: pointer to hardware structure
2731  *  @regval: register value to write to RXCTRL
2732  *
2733  *  Enables the Rx DMA unit
2734  **/
2735 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2736 {
2737         if (regval & IXGBE_RXCTRL_RXEN)
2738                 hw->mac.ops.enable_rx(hw);
2739         else
2740                 hw->mac.ops.disable_rx(hw);
2741
2742         return 0;
2743 }
2744
2745 /**
2746  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2747  *  @hw: pointer to hardware structure
2748  *  @index: led number to blink
2749  **/
2750 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2751 {
2752         ixgbe_link_speed speed = 0;
2753         bool link_up = false;
2754         u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2755         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2756         bool locked = false;
2757         s32 ret_val;
2758
2759         if (index > 3)
2760                 return IXGBE_ERR_PARAM;
2761
2762         /*
2763          * Link must be up to auto-blink the LEDs;
2764          * Force it if link is down.
2765          */
2766         hw->mac.ops.check_link(hw, &speed, &link_up, false);
2767
2768         if (!link_up) {
2769                 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2770                 if (ret_val)
2771                         return ret_val;
2772
2773                 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2774                 autoc_reg |= IXGBE_AUTOC_FLU;
2775
2776                 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2777                 if (ret_val)
2778                         return ret_val;
2779
2780                 IXGBE_WRITE_FLUSH(hw);
2781
2782                 usleep_range(10000, 20000);
2783         }
2784
2785         led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786         led_reg |= IXGBE_LED_BLINK(index);
2787         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788         IXGBE_WRITE_FLUSH(hw);
2789
2790         return 0;
2791 }
2792
2793 /**
2794  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795  *  @hw: pointer to hardware structure
2796  *  @index: led number to stop blinking
2797  **/
2798 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2799 {
2800         u32 autoc_reg = 0;
2801         u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2802         bool locked = false;
2803         s32 ret_val;
2804
2805         if (index > 3)
2806                 return IXGBE_ERR_PARAM;
2807
2808         ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2809         if (ret_val)
2810                 return ret_val;
2811
2812         autoc_reg &= ~IXGBE_AUTOC_FLU;
2813         autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2814
2815         ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2816         if (ret_val)
2817                 return ret_val;
2818
2819         led_reg &= ~IXGBE_LED_MODE_MASK(index);
2820         led_reg &= ~IXGBE_LED_BLINK(index);
2821         led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2822         IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2823         IXGBE_WRITE_FLUSH(hw);
2824
2825         return 0;
2826 }
2827
2828 /**
2829  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830  *  @hw: pointer to hardware structure
2831  *  @san_mac_offset: SAN MAC address offset
2832  *
2833  *  This function will read the EEPROM location for the SAN MAC address
2834  *  pointer, and returns the value at that location.  This is used in both
2835  *  get and set mac_addr routines.
2836  **/
2837 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2838                                         u16 *san_mac_offset)
2839 {
2840         s32 ret_val;
2841
2842         /*
2843          * First read the EEPROM pointer to see if the MAC addresses are
2844          * available.
2845          */
2846         ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2847                                       san_mac_offset);
2848         if (ret_val)
2849                 hw_err(hw, "eeprom read at offset %d failed\n",
2850                        IXGBE_SAN_MAC_ADDR_PTR);
2851
2852         return ret_val;
2853 }
2854
2855 /**
2856  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857  *  @hw: pointer to hardware structure
2858  *  @san_mac_addr: SAN MAC address
2859  *
2860  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2861  *  per-port, so set_lan_id() must be called before reading the addresses.
2862  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2863  *  upon for non-SFP connections, so we must call it here.
2864  **/
2865 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2866 {
2867         u16 san_mac_data, san_mac_offset;
2868         u8 i;
2869         s32 ret_val;
2870
2871         /*
2872          * First read the EEPROM pointer to see if the MAC addresses are
2873          * available.  If they're not, no point in calling set_lan_id() here.
2874          */
2875         ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2876         if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2877
2878                 goto san_mac_addr_clr;
2879
2880         /* make sure we know which port we need to program */
2881         hw->mac.ops.set_lan_id(hw);
2882         /* apply the port offset to the address offset */
2883         (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2884                          (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2885         for (i = 0; i < 3; i++) {
2886                 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2887                                               &san_mac_data);
2888                 if (ret_val) {
2889                         hw_err(hw, "eeprom read at offset %d failed\n",
2890                                san_mac_offset);
2891                         goto san_mac_addr_clr;
2892                 }
2893                 san_mac_addr[i * 2] = (u8)(san_mac_data);
2894                 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2895                 san_mac_offset++;
2896         }
2897         return 0;
2898
2899 san_mac_addr_clr:
2900         /* No addresses available in this EEPROM.  It's not necessarily an
2901          * error though, so just wipe the local address and return.
2902          */
2903         for (i = 0; i < 6; i++)
2904                 san_mac_addr[i] = 0xFF;
2905         return ret_val;
2906 }
2907
2908 /**
2909  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910  *  @hw: pointer to hardware structure
2911  *
2912  *  Read PCIe configuration space, and get the MSI-X vector count from
2913  *  the capabilities table.
2914  **/
2915 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2916 {
2917         u16 msix_count;
2918         u16 max_msix_count;
2919         u16 pcie_offset;
2920
2921         switch (hw->mac.type) {
2922         case ixgbe_mac_82598EB:
2923                 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2924                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2925                 break;
2926         case ixgbe_mac_82599EB:
2927         case ixgbe_mac_X540:
2928         case ixgbe_mac_X550:
2929         case ixgbe_mac_X550EM_x:
2930         case ixgbe_mac_x550em_a:
2931                 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2932                 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2933                 break;
2934         default:
2935                 return 1;
2936         }
2937
2938         msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2939         if (ixgbe_removed(hw->hw_addr))
2940                 msix_count = 0;
2941         msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2942
2943         /* MSI-X count is zero-based in HW */
2944         msix_count++;
2945
2946         if (msix_count > max_msix_count)
2947                 msix_count = max_msix_count;
2948
2949         return msix_count;
2950 }
2951
2952 /**
2953  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954  *  @hw: pointer to hardware struct
2955  *  @rar: receive address register index to disassociate
2956  *  @vmdq: VMDq pool index to remove from the rar
2957  **/
2958 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2959 {
2960         u32 mpsar_lo, mpsar_hi;
2961         u32 rar_entries = hw->mac.num_rar_entries;
2962
2963         /* Make sure we are using a valid rar index range */
2964         if (rar >= rar_entries) {
2965                 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2966                 return IXGBE_ERR_INVALID_ARGUMENT;
2967         }
2968
2969         mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2970         mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2971
2972         if (ixgbe_removed(hw->hw_addr))
2973                 return 0;
2974
2975         if (!mpsar_lo && !mpsar_hi)
2976                 return 0;
2977
2978         if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2979                 if (mpsar_lo) {
2980                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2981                         mpsar_lo = 0;
2982                 }
2983                 if (mpsar_hi) {
2984                         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2985                         mpsar_hi = 0;
2986                 }
2987         } else if (vmdq < 32) {
2988                 mpsar_lo &= ~BIT(vmdq);
2989                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2990         } else {
2991                 mpsar_hi &= ~BIT(vmdq - 32);
2992                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2993         }
2994
2995         /* was that the last pool using this rar? */
2996         if (mpsar_lo == 0 && mpsar_hi == 0 &&
2997             rar != 0 && rar != hw->mac.san_mac_rar_index)
2998                 hw->mac.ops.clear_rar(hw, rar);
2999
3000         return 0;
3001 }
3002
3003 /**
3004  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005  *  @hw: pointer to hardware struct
3006  *  @rar: receive address register index to associate with a VMDq index
3007  *  @vmdq: VMDq pool index
3008  **/
3009 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3010 {
3011         u32 mpsar;
3012         u32 rar_entries = hw->mac.num_rar_entries;
3013
3014         /* Make sure we are using a valid rar index range */
3015         if (rar >= rar_entries) {
3016                 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3017                 return IXGBE_ERR_INVALID_ARGUMENT;
3018         }
3019
3020         if (vmdq < 32) {
3021                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3022                 mpsar |= BIT(vmdq);
3023                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3024         } else {
3025                 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3026                 mpsar |= BIT(vmdq - 32);
3027                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3028         }
3029         return 0;
3030 }
3031
3032 /**
3033  *  This function should only be involved in the IOV mode.
3034  *  In IOV mode, Default pool is next pool after the number of
3035  *  VFs advertized and not 0.
3036  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3037  *
3038  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3039  *  @hw: pointer to hardware struct
3040  *  @vmdq: VMDq pool index
3041  **/
3042 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3043 {
3044         u32 rar = hw->mac.san_mac_rar_index;
3045
3046         if (vmdq < 32) {
3047                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3048                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3049         } else {
3050                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3051                 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3052         }
3053
3054         return 0;
3055 }
3056
3057 /**
3058  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059  *  @hw: pointer to hardware structure
3060  **/
3061 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3062 {
3063         int i;
3064
3065         for (i = 0; i < 128; i++)
3066                 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3067
3068         return 0;
3069 }
3070
3071 /**
3072  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073  *  @hw: pointer to hardware structure
3074  *  @vlan: VLAN id to write to VLAN filter
3075  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3076  *                vlanid not found
3077  *
3078  *  return the VLVF index where this VLAN id should be placed
3079  *
3080  **/
3081 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3082 {
3083         s32 regindex, first_empty_slot;
3084         u32 bits;
3085
3086         /* short cut the special case */
3087         if (vlan == 0)
3088                 return 0;
3089
3090         /* if vlvf_bypass is set we don't want to use an empty slot, we
3091          * will simply bypass the VLVF if there are no entries present in the
3092          * VLVF that contain our VLAN
3093          */
3094         first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3095
3096         /* add VLAN enable bit for comparison */
3097         vlan |= IXGBE_VLVF_VIEN;
3098
3099         /* Search for the vlan id in the VLVF entries. Save off the first empty
3100          * slot found along the way.
3101          *
3102          * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3103          */
3104         for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3105                 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3106                 if (bits == vlan)
3107                         return regindex;
3108                 if (!first_empty_slot && !bits)
3109                         first_empty_slot = regindex;
3110         }
3111
3112         /* If we are here then we didn't find the VLAN.  Return first empty
3113          * slot we found during our search, else error.
3114          */
3115         if (!first_empty_slot)
3116                 hw_dbg(hw, "No space in VLVF.\n");
3117
3118         return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3119 }
3120
3121 /**
3122  *  ixgbe_set_vfta_generic - Set VLAN filter table
3123  *  @hw: pointer to hardware structure
3124  *  @vlan: VLAN id to write to VLAN filter
3125  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3128  *
3129  *  Turn on/off specified VLAN in the VLAN filter table.
3130  **/
3131 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3132                            bool vlan_on, bool vlvf_bypass)
3133 {
3134         u32 regidx, vfta_delta, vfta, bits;
3135         s32 vlvf_index;
3136
3137         if ((vlan > 4095) || (vind > 63))
3138                 return IXGBE_ERR_PARAM;
3139
3140         /*
3141          * this is a 2 part operation - first the VFTA, then the
3142          * VLVF and VLVFB if VT Mode is set
3143          * We don't write the VFTA until we know the VLVF part succeeded.
3144          */
3145
3146         /* Part 1
3147          * The VFTA is a bitstring made up of 128 32-bit registers
3148          * that enable the particular VLAN id, much like the MTA:
3149          *    bits[11-5]: which register
3150          *    bits[4-0]:  which bit in the register
3151          */
3152         regidx = vlan / 32;
3153         vfta_delta = BIT(vlan % 32);
3154         vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3155
3156         /* vfta_delta represents the difference between the current value
3157          * of vfta and the value we want in the register.  Since the diff
3158          * is an XOR mask we can just update vfta using an XOR.
3159          */
3160         vfta_delta &= vlan_on ? ~vfta : vfta;
3161         vfta ^= vfta_delta;
3162
3163         /* Part 2
3164          * If VT Mode is set
3165          *   Either vlan_on
3166          *     make sure the vlan is in VLVF
3167          *     set the vind bit in the matching VLVFB
3168          *   Or !vlan_on
3169          *     clear the pool bit and possibly the vind
3170          */
3171         if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3172                 goto vfta_update;
3173
3174         vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3175         if (vlvf_index < 0) {
3176                 if (vlvf_bypass)
3177                         goto vfta_update;
3178                 return vlvf_index;
3179         }
3180
3181         bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3182
3183         /* set the pool bit */
3184         bits |= BIT(vind % 32);
3185         if (vlan_on)
3186                 goto vlvf_update;
3187
3188         /* clear the pool bit */
3189         bits ^= BIT(vind % 32);
3190
3191         if (!bits &&
3192             !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3193                 /* Clear VFTA first, then disable VLVF.  Otherwise
3194                  * we run the risk of stray packets leaking into
3195                  * the PF via the default pool
3196                  */
3197                 if (vfta_delta)
3198                         IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3199
3200                 /* disable VLVF and clear remaining bit from pool */
3201                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3202                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3203
3204                 return 0;
3205         }
3206
3207         /* If there are still bits set in the VLVFB registers
3208          * for the VLAN ID indicated we need to see if the
3209          * caller is requesting that we clear the VFTA entry bit.
3210          * If the caller has requested that we clear the VFTA
3211          * entry bit but there are still pools/VFs using this VLAN
3212          * ID entry then ignore the request.  We're not worried
3213          * about the case where we're turning the VFTA VLAN ID
3214          * entry bit on, only when requested to turn it off as
3215          * there may be multiple pools and/or VFs using the
3216          * VLAN ID entry.  In that case we cannot clear the
3217          * VFTA bit until all pools/VFs using that VLAN ID have also
3218          * been cleared.  This will be indicated by "bits" being
3219          * zero.
3220          */
3221         vfta_delta = 0;
3222
3223 vlvf_update:
3224         /* record pool change and enable VLAN ID if not already enabled */
3225         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3226         IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3227
3228 vfta_update:
3229         /* Update VFTA now that we are ready for traffic */
3230         if (vfta_delta)
3231                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3232
3233         return 0;
3234 }
3235
3236 /**
3237  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3238  *  @hw: pointer to hardware structure
3239  *
3240  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3241  **/
3242 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3243 {
3244         u32 offset;
3245
3246         for (offset = 0; offset < hw->mac.vft_size; offset++)
3247                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3248
3249         for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3250                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3251                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3252                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3253         }
3254
3255         return 0;
3256 }
3257
3258 /**
3259  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260  *  @hw: pointer to hardware structure
3261  *
3262  *  Contains the logic to identify if we need to verify link for the
3263  *  crosstalk fix
3264  **/
3265 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3266 {
3267         /* Does FW say we need the fix */
3268         if (!hw->need_crosstalk_fix)
3269                 return false;
3270
3271         /* Only consider SFP+ PHYs i.e. media type fiber */
3272         switch (hw->mac.ops.get_media_type(hw)) {
3273         case ixgbe_media_type_fiber:
3274         case ixgbe_media_type_fiber_qsfp:
3275                 break;
3276         default:
3277                 return false;
3278         }
3279
3280         return true;
3281 }
3282
3283 /**
3284  *  ixgbe_check_mac_link_generic - Determine link and speed status
3285  *  @hw: pointer to hardware structure
3286  *  @speed: pointer to link speed
3287  *  @link_up: true when link is up
3288  *  @link_up_wait_to_complete: bool used to wait for link up or not
3289  *
3290  *  Reads the links register to determine if link is up and the current speed
3291  **/
3292 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3293                                  bool *link_up, bool link_up_wait_to_complete)
3294 {
3295         u32 links_reg, links_orig;
3296         u32 i;
3297
3298         /* If Crosstalk fix enabled do the sanity check of making sure
3299          * the SFP+ cage is full.
3300          */
3301         if (ixgbe_need_crosstalk_fix(hw)) {
3302                 u32 sfp_cage_full;
3303
3304                 switch (hw->mac.type) {
3305                 case ixgbe_mac_82599EB:
3306                         sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3307                                         IXGBE_ESDP_SDP2;
3308                         break;
3309                 case ixgbe_mac_X550EM_x:
3310                 case ixgbe_mac_x550em_a:
3311                         sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3312                                         IXGBE_ESDP_SDP0;
3313                         break;
3314                 default:
3315                         /* sanity check - No SFP+ devices here */
3316                         sfp_cage_full = false;
3317                         break;
3318                 }
3319
3320                 if (!sfp_cage_full) {
3321                         *link_up = false;
3322                         *speed = IXGBE_LINK_SPEED_UNKNOWN;
3323                         return 0;
3324                 }
3325         }
3326
3327         /* clear the old state */
3328         links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3329
3330         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3331
3332         if (links_orig != links_reg) {
3333                 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3334                        links_orig, links_reg);
3335         }
3336
3337         if (link_up_wait_to_complete) {
3338                 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3339                         if (links_reg & IXGBE_LINKS_UP) {
3340                                 *link_up = true;
3341                                 break;
3342                         } else {
3343                                 *link_up = false;
3344                         }
3345                         msleep(100);
3346                         links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347                 }
3348         } else {
3349                 if (links_reg & IXGBE_LINKS_UP)
3350                         *link_up = true;
3351                 else
3352                         *link_up = false;
3353         }
3354
3355         switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3356         case IXGBE_LINKS_SPEED_10G_82599:
3357                 if ((hw->mac.type >= ixgbe_mac_X550) &&
3358                     (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359                         *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3360                 else
3361                         *speed = IXGBE_LINK_SPEED_10GB_FULL;
3362                 break;
3363         case IXGBE_LINKS_SPEED_1G_82599:
3364                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3365                 break;
3366         case IXGBE_LINKS_SPEED_100_82599:
3367                 if ((hw->mac.type >= ixgbe_mac_X550) &&
3368                     (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3369                         *speed = IXGBE_LINK_SPEED_5GB_FULL;
3370                 else
3371                         *speed = IXGBE_LINK_SPEED_100_FULL;
3372                 break;
3373         case IXGBE_LINKS_SPEED_10_X550EM_A:
3374                 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3375                 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3376                     hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3377                         *speed = IXGBE_LINK_SPEED_10_FULL;
3378                 }
3379                 break;
3380         default:
3381                 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3382         }
3383
3384         return 0;
3385 }
3386
3387 /**
3388  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3389  *  the EEPROM
3390  *  @hw: pointer to hardware structure
3391  *  @wwnn_prefix: the alternative WWNN prefix
3392  *  @wwpn_prefix: the alternative WWPN prefix
3393  *
3394  *  This function will read the EEPROM from the alternative SAN MAC address
3395  *  block to check the support for the alternative WWNN/WWPN prefix support.
3396  **/
3397 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3398                                         u16 *wwpn_prefix)
3399 {
3400         u16 offset, caps;
3401         u16 alt_san_mac_blk_offset;
3402
3403         /* clear output first */
3404         *wwnn_prefix = 0xFFFF;
3405         *wwpn_prefix = 0xFFFF;
3406
3407         /* check if alternative SAN MAC is supported */
3408         offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3409         if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3410                 goto wwn_prefix_err;
3411
3412         if ((alt_san_mac_blk_offset == 0) ||
3413             (alt_san_mac_blk_offset == 0xFFFF))
3414                 return 0;
3415
3416         /* check capability in alternative san mac address block */
3417         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3418         if (hw->eeprom.ops.read(hw, offset, &caps))
3419                 goto wwn_prefix_err;
3420         if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3421                 return 0;
3422
3423         /* get the corresponding prefix for WWNN/WWPN */
3424         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3425         if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3426                 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3427
3428         offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3429         if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3430                 goto wwn_prefix_err;
3431
3432         return 0;
3433
3434 wwn_prefix_err:
3435         hw_err(hw, "eeprom read at offset %d failed\n", offset);
3436         return 0;
3437 }
3438
3439 /**
3440  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441  *  @hw: pointer to hardware structure
3442  *  @enable: enable or disable switch for MAC anti-spoofing
3443  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3444  *
3445  **/
3446 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3447 {
3448         int vf_target_reg = vf >> 3;
3449         int vf_target_shift = vf % 8;
3450         u32 pfvfspoof;
3451
3452         if (hw->mac.type == ixgbe_mac_82598EB)
3453                 return;
3454
3455         pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3456         if (enable)
3457                 pfvfspoof |= BIT(vf_target_shift);
3458         else
3459                 pfvfspoof &= ~BIT(vf_target_shift);
3460         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3461 }
3462
3463 /**
3464  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465  *  @hw: pointer to hardware structure
3466  *  @enable: enable or disable switch for VLAN anti-spoofing
3467  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3468  *
3469  **/
3470 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3471 {
3472         int vf_target_reg = vf >> 3;
3473         int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3474         u32 pfvfspoof;
3475
3476         if (hw->mac.type == ixgbe_mac_82598EB)
3477                 return;
3478
3479         pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3480         if (enable)
3481                 pfvfspoof |= BIT(vf_target_shift);
3482         else
3483                 pfvfspoof &= ~BIT(vf_target_shift);
3484         IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3485 }
3486
3487 /**
3488  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3489  *  @hw: pointer to hardware structure
3490  *  @device_caps: the EEPROM word with the extra device capabilities
3491  *
3492  *  This function will read the EEPROM location for the device capabilities,
3493  *  and return the word through device_caps.
3494  **/
3495 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3496 {
3497         hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3498
3499         return 0;
3500 }
3501
3502 /**
3503  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504  * @hw: pointer to hardware structure
3505  * @num_pb: number of packet buffers to allocate
3506  * @headroom: reserve n KB of headroom
3507  * @strategy: packet buffer allocation strategy
3508  **/
3509 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3510                              int num_pb,
3511                              u32 headroom,
3512                              int strategy)
3513 {
3514         u32 pbsize = hw->mac.rx_pb_size;
3515         int i = 0;
3516         u32 rxpktsize, txpktsize, txpbthresh;
3517
3518         /* Reserve headroom */
3519         pbsize -= headroom;
3520
3521         if (!num_pb)
3522                 num_pb = 1;
3523
3524         /* Divide remaining packet buffer space amongst the number
3525          * of packet buffers requested using supplied strategy.
3526          */
3527         switch (strategy) {
3528         case (PBA_STRATEGY_WEIGHTED):
3529                 /* pba_80_48 strategy weight first half of packet buffer with
3530                  * 5/8 of the packet buffer space.
3531                  */
3532                 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3533                 pbsize -= rxpktsize * (num_pb / 2);
3534                 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3535                 for (; i < (num_pb / 2); i++)
3536                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3537                 /* fall through - configure remaining packet buffers */
3538         case (PBA_STRATEGY_EQUAL):
3539                 /* Divide the remaining Rx packet buffer evenly among the TCs */
3540                 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3541                 for (; i < num_pb; i++)
3542                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3543                 break;
3544         default:
3545                 break;
3546         }
3547
3548         /*
3549          * Setup Tx packet buffer and threshold equally for all TCs
3550          * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551          * 10 since the largest packet we support is just over 9K.
3552          */
3553         txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3554         txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3555         for (i = 0; i < num_pb; i++) {
3556                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3557                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3558         }
3559
3560         /* Clear unused TCs, if any, to zero buffer size*/
3561         for (; i < IXGBE_MAX_PB; i++) {
3562                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3563                 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3564                 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3565         }
3566 }
3567
3568 /**
3569  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3570  *  @buffer: pointer to EEPROM
3571  *  @length: size of EEPROM to calculate a checksum for
3572  *
3573  *  Calculates the checksum for some buffer on a specified length.  The
3574  *  checksum calculated is returned.
3575  **/
3576 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3577 {
3578         u32 i;
3579         u8 sum = 0;
3580
3581         if (!buffer)
3582                 return 0;
3583
3584         for (i = 0; i < length; i++)
3585                 sum += buffer[i];
3586
3587         return (u8) (0 - sum);
3588 }
3589
3590 /**
3591  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592  *  @hw: pointer to the HW structure
3593  *  @buffer: command to write and where the return status will be placed
3594  *  @length: length of buffer, must be multiple of 4 bytes
3595  *  @timeout: time in ms to wait for command completion
3596  *
3597  *  Communicates with the manageability block. On success return 0
3598  *  else returns semaphore error when encountering an error acquiring
3599  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3600  *
3601  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3602  *  by the caller.
3603  **/
3604 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3605                        u32 timeout)
3606 {
3607         u32 hicr, i, fwsts;
3608         u16 dword_len;
3609
3610         if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3611                 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3612                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3613         }
3614
3615         /* Set bit 9 of FWSTS clearing FW reset indication */
3616         fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3617         IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3618
3619         /* Check that the host interface is enabled. */
3620         hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3621         if (!(hicr & IXGBE_HICR_EN)) {
3622                 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3623                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3624         }
3625
3626         /* Calculate length in DWORDs. We must be DWORD aligned */
3627         if (length % sizeof(u32)) {
3628                 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3629                 return IXGBE_ERR_INVALID_ARGUMENT;
3630         }
3631
3632         dword_len = length >> 2;
3633
3634         /* The device driver writes the relevant command block
3635          * into the ram area.
3636          */
3637         for (i = 0; i < dword_len; i++)
3638                 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3639                                       i, (__force u32)cpu_to_le32(buffer[i]));
3640
3641         /* Setting this bit tells the ARC that a new command is pending. */
3642         IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3643
3644         for (i = 0; i < timeout; i++) {
3645                 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3646                 if (!(hicr & IXGBE_HICR_C))
3647                         break;
3648                 usleep_range(1000, 2000);
3649         }
3650
3651         /* Check command successful completion. */
3652         if ((timeout && i == timeout) ||
3653             !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3654                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655
3656         return 0;
3657 }
3658
3659 /**
3660  *  ixgbe_host_interface_command - Issue command to manageability block
3661  *  @hw: pointer to the HW structure
3662  *  @buffer: contains the command to write and where the return status will
3663  *           be placed
3664  *  @length: length of buffer, must be multiple of 4 bytes
3665  *  @timeout: time in ms to wait for command completion
3666  *  @return_data: read and return data from the buffer (true) or not (false)
3667  *  Needed because FW structures are big endian and decoding of
3668  *  these fields can be 8 bit or 16 bit based on command. Decoding
3669  *  is not easily understood without making a table of commands.
3670  *  So we will leave this up to the caller to read back the data
3671  *  in these cases.
3672  *
3673  *  Communicates with the manageability block.  On success return 0
3674  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3675  **/
3676 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3677                                  u32 length, u32 timeout,
3678                                  bool return_data)
3679 {
3680         u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3681         union {
3682                 struct ixgbe_hic_hdr hdr;
3683                 u32 u32arr[1];
3684         } *bp = buffer;
3685         u16 buf_len, dword_len;
3686         s32 status;
3687         u32 bi;
3688
3689         if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3690                 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3691                 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3692         }
3693         /* Take management host interface semaphore */
3694         status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3695         if (status)
3696                 return status;
3697
3698         status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3699         if (status)
3700                 goto rel_out;
3701
3702         if (!return_data)
3703                 goto rel_out;
3704
3705         /* Calculate length in DWORDs */
3706         dword_len = hdr_size >> 2;
3707
3708         /* first pull in the header so we know the buffer length */
3709         for (bi = 0; bi < dword_len; bi++) {
3710                 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3711                 le32_to_cpus(&bp->u32arr[bi]);
3712         }
3713
3714         /* If there is any thing in data position pull it in */
3715         buf_len = bp->hdr.buf_len;
3716         if (!buf_len)
3717                 goto rel_out;
3718
3719         if (length < round_up(buf_len, 4) + hdr_size) {
3720                 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3721                 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3722                 goto rel_out;
3723         }
3724
3725         /* Calculate length in DWORDs, add 3 for odd lengths */
3726         dword_len = (buf_len + 3) >> 2;
3727
3728         /* Pull in the rest of the buffer (bi is where we left off) */
3729         for (; bi <= dword_len; bi++) {
3730                 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3731                 le32_to_cpus(&bp->u32arr[bi]);
3732         }
3733
3734 rel_out:
3735         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3736
3737         return status;
3738 }
3739
3740 /**
3741  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3742  *  @hw: pointer to the HW structure
3743  *  @maj: driver version major number
3744  *  @min: driver version minor number
3745  *  @build: driver version build number
3746  *  @sub: driver version sub build number
3747  *  @len: length of driver_ver string
3748  *  @driver_ver: driver string
3749  *
3750  *  Sends driver version number to firmware through the manageability
3751  *  block.  On success return 0
3752  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3753  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3754  **/
3755 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3756                                  u8 build, u8 sub, __always_unused u16 len,
3757                                  __always_unused const char *driver_ver)
3758 {
3759         struct ixgbe_hic_drv_info fw_cmd;
3760         int i;
3761         s32 ret_val;
3762
3763         fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3764         fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3765         fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3766         fw_cmd.port_num = hw->bus.func;
3767         fw_cmd.ver_maj = maj;
3768         fw_cmd.ver_min = min;
3769         fw_cmd.ver_build = build;
3770         fw_cmd.ver_sub = sub;
3771         fw_cmd.hdr.checksum = 0;
3772         fw_cmd.pad = 0;
3773         fw_cmd.pad2 = 0;
3774         fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3775                                 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3776
3777         for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3778                 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3779                                                        sizeof(fw_cmd),
3780                                                        IXGBE_HI_COMMAND_TIMEOUT,
3781                                                        true);
3782                 if (ret_val != 0)
3783                         continue;
3784
3785                 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3786                     FW_CEM_RESP_STATUS_SUCCESS)
3787                         ret_val = 0;
3788                 else
3789                         ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3790
3791                 break;
3792         }
3793
3794         return ret_val;
3795 }
3796
3797 /**
3798  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3799  * @hw: pointer to the hardware structure
3800  *
3801  * The 82599 and x540 MACs can experience issues if TX work is still pending
3802  * when a reset occurs.  This function prevents this by flushing the PCIe
3803  * buffers on the system.
3804  **/
3805 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3806 {
3807         u32 gcr_ext, hlreg0, i, poll;
3808         u16 value;
3809
3810         /*
3811          * If double reset is not requested then all transactions should
3812          * already be clear and as such there is no work to do
3813          */
3814         if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3815                 return;
3816
3817         /*
3818          * Set loopback enable to prevent any transmits from being sent
3819          * should the link come up.  This assumes that the RXCTRL.RXEN bit
3820          * has already been cleared.
3821          */
3822         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3823         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3824
3825         /* wait for a last completion before clearing buffers */
3826         IXGBE_WRITE_FLUSH(hw);
3827         usleep_range(3000, 6000);
3828
3829         /* Before proceeding, make sure that the PCIe block does not have
3830          * transactions pending.
3831          */
3832         poll = ixgbe_pcie_timeout_poll(hw);
3833         for (i = 0; i < poll; i++) {
3834                 usleep_range(100, 200);
3835                 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3836                 if (ixgbe_removed(hw->hw_addr))
3837                         break;
3838                 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3839                         break;
3840         }
3841
3842         /* initiate cleaning flow for buffers in the PCIe transaction layer */
3843         gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3844         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3845                         gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3846
3847         /* Flush all writes and allow 20usec for all transactions to clear */
3848         IXGBE_WRITE_FLUSH(hw);
3849         udelay(20);
3850
3851         /* restore previous register values */
3852         IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3853         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3854 }
3855
3856 static const u8 ixgbe_emc_temp_data[4] = {
3857         IXGBE_EMC_INTERNAL_DATA,
3858         IXGBE_EMC_DIODE1_DATA,
3859         IXGBE_EMC_DIODE2_DATA,
3860         IXGBE_EMC_DIODE3_DATA
3861 };
3862 static const u8 ixgbe_emc_therm_limit[4] = {
3863         IXGBE_EMC_INTERNAL_THERM_LIMIT,
3864         IXGBE_EMC_DIODE1_THERM_LIMIT,
3865         IXGBE_EMC_DIODE2_THERM_LIMIT,
3866         IXGBE_EMC_DIODE3_THERM_LIMIT
3867 };
3868
3869 /**
3870  *  ixgbe_get_ets_data - Extracts the ETS bit data
3871  *  @hw: pointer to hardware structure
3872  *  @ets_cfg: extected ETS data
3873  *  @ets_offset: offset of ETS data
3874  *
3875  *  Returns error code.
3876  **/
3877 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3878                               u16 *ets_offset)
3879 {
3880         s32 status;
3881
3882         status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3883         if (status)
3884                 return status;
3885
3886         if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3887                 return IXGBE_NOT_IMPLEMENTED;
3888
3889         status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3890         if (status)
3891                 return status;
3892
3893         if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3894                 return IXGBE_NOT_IMPLEMENTED;
3895
3896         return 0;
3897 }
3898
3899 /**
3900  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3901  *  @hw: pointer to hardware structure
3902  *
3903  *  Returns the thermal sensor data structure
3904  **/
3905 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3906 {
3907         s32 status;
3908         u16 ets_offset;
3909         u16 ets_cfg;
3910         u16 ets_sensor;
3911         u8  num_sensors;
3912         u8  i;
3913         struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3914
3915         /* Only support thermal sensors attached to physical port 0 */
3916         if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3917                 return IXGBE_NOT_IMPLEMENTED;
3918
3919         status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3920         if (status)
3921                 return status;
3922
3923         num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3924         if (num_sensors > IXGBE_MAX_SENSORS)
3925                 num_sensors = IXGBE_MAX_SENSORS;
3926
3927         for (i = 0; i < num_sensors; i++) {
3928                 u8  sensor_index;
3929                 u8  sensor_location;
3930
3931                 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3932                                              &ets_sensor);
3933                 if (status)
3934                         return status;
3935
3936                 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3937                                 IXGBE_ETS_DATA_INDEX_SHIFT);
3938                 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3939                                    IXGBE_ETS_DATA_LOC_SHIFT);
3940
3941                 if (sensor_location != 0) {
3942                         status = hw->phy.ops.read_i2c_byte(hw,
3943                                         ixgbe_emc_temp_data[sensor_index],
3944                                         IXGBE_I2C_THERMAL_SENSOR_ADDR,
3945                                         &data->sensor[i].temp);
3946                         if (status)
3947                                 return status;
3948                 }
3949         }
3950
3951         return 0;
3952 }
3953
3954 /**
3955  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3956  * @hw: pointer to hardware structure
3957  *
3958  * Inits the thermal sensor thresholds according to the NVM map
3959  * and save off the threshold and location values into mac.thermal_sensor_data
3960  **/
3961 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3962 {
3963         s32 status;
3964         u16 ets_offset;
3965         u16 ets_cfg;
3966         u16 ets_sensor;
3967         u8  low_thresh_delta;
3968         u8  num_sensors;
3969         u8  therm_limit;
3970         u8  i;
3971         struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3972
3973         memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3974
3975         /* Only support thermal sensors attached to physical port 0 */
3976         if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3977                 return IXGBE_NOT_IMPLEMENTED;
3978
3979         status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3980         if (status)
3981                 return status;
3982
3983         low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3984                              IXGBE_ETS_LTHRES_DELTA_SHIFT);
3985         num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986         if (num_sensors > IXGBE_MAX_SENSORS)
3987                 num_sensors = IXGBE_MAX_SENSORS;
3988
3989         for (i = 0; i < num_sensors; i++) {
3990                 u8  sensor_index;
3991                 u8  sensor_location;
3992
3993                 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994                         hw_err(hw, "eeprom read at offset %d failed\n",
3995                                ets_offset + 1 + i);
3996                         continue;
3997                 }
3998                 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3999                                 IXGBE_ETS_DATA_INDEX_SHIFT);
4000                 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4001                                    IXGBE_ETS_DATA_LOC_SHIFT);
4002                 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004                 hw->phy.ops.write_i2c_byte(hw,
4005                         ixgbe_emc_therm_limit[sensor_index],
4006                         IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008                 if (sensor_location == 0)
4009                         continue;
4010
4011                 data->sensor[i].location = sensor_location;
4012                 data->sensor[i].caution_thresh = therm_limit;
4013                 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014         }
4015
4016         return 0;
4017 }
4018
4019 /**
4020  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021  *
4022  *  @hw: pointer to hardware structure
4023  *  @nvm_ver: pointer to output structure
4024  *
4025  *  if valid option ROM version, nvm_ver->or_valid set to true
4026  *  else nvm_ver->or_valid is false.
4027  **/
4028 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029                             struct ixgbe_nvm_version *nvm_ver)
4030 {
4031         u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033         nvm_ver->or_valid = false;
4034         /* Option Rom may or may not be present.  Start with pointer */
4035         hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037         /* make sure offset is valid */
4038         if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039                 return;
4040
4041         hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042         hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044         /* option rom exists and is valid */
4045         if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046             eeprom_cfg_blkl == NVM_VER_INVALID ||
4047             eeprom_cfg_blkh == NVM_VER_INVALID)
4048                 return;
4049
4050         nvm_ver->or_valid = true;
4051         nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052         nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053                             (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054         nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055 }
4056
4057 /**
4058  *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4059  *
4060  *  @hw: pointer to hardware structure
4061  *  @nvm_ver: pointer to output structure
4062  *
4063  *  if valid OEM product version, nvm_ver->oem_valid set to true
4064  *  else nvm_ver->oem_valid is false.
4065  **/
4066 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4067                                 struct ixgbe_nvm_version *nvm_ver)
4068 {
4069         u16 rel_num, prod_ver, mod_len, cap, offset;
4070
4071         nvm_ver->oem_valid = false;
4072         hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4073
4074         /* Return is offset to OEM Product Version block is invalid */
4075         if (offset == 0x0 || offset == NVM_INVALID_PTR)
4076                 return;
4077
4078         /* Read product version block */
4079         hw->eeprom.ops.read(hw, offset, &mod_len);
4080         hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4081
4082         /* Return if OEM product version block is invalid */
4083         if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4084             (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4085                 return;
4086
4087         hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4088         hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4089
4090         /* Return if version is invalid */
4091         if ((rel_num | prod_ver) == 0x0 ||
4092             rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4093                 return;
4094
4095         nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4096         nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4097         nvm_ver->oem_release = rel_num;
4098         nvm_ver->oem_valid = true;
4099 }
4100
4101 /**
4102  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4103  *
4104  *  @hw: pointer to hardware structure
4105  *  @nvm_ver: pointer to output structure
4106  *
4107  *  word read errors will return 0xFFFF
4108  **/
4109 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4110                       struct ixgbe_nvm_version *nvm_ver)
4111 {
4112         u16 etk_id_l, etk_id_h;
4113
4114         if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4115                 etk_id_l = NVM_VER_INVALID;
4116         if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4117                 etk_id_h = NVM_VER_INVALID;
4118
4119         /* The word order for the version format is determined by high order
4120          * word bit 15.
4121          */
4122         if ((etk_id_h & NVM_ETK_VALID) == 0) {
4123                 nvm_ver->etk_id = etk_id_h;
4124                 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4125         } else {
4126                 nvm_ver->etk_id = etk_id_l;
4127                 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4128         }
4129 }
4130
4131 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4132 {
4133         u32 rxctrl;
4134
4135         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4136         if (rxctrl & IXGBE_RXCTRL_RXEN) {
4137                 if (hw->mac.type != ixgbe_mac_82598EB) {
4138                         u32 pfdtxgswc;
4139
4140                         pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4141                         if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4142                                 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4143                                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4144                                 hw->mac.set_lben = true;
4145                         } else {
4146                                 hw->mac.set_lben = false;
4147                         }
4148                 }
4149                 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4150                 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4151         }
4152 }
4153
4154 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4155 {
4156         u32 rxctrl;
4157
4158         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4159         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4160
4161         if (hw->mac.type != ixgbe_mac_82598EB) {
4162                 if (hw->mac.set_lben) {
4163                         u32 pfdtxgswc;
4164
4165                         pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4166                         pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4167                         IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4168                         hw->mac.set_lben = false;
4169                 }
4170         }
4171 }
4172
4173 /** ixgbe_mng_present - returns true when management capability is present
4174  * @hw: pointer to hardware structure
4175  **/
4176 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4177 {
4178         u32 fwsm;
4179
4180         if (hw->mac.type < ixgbe_mac_82599EB)
4181                 return false;
4182
4183         fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4184
4185         return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4186 }
4187
4188 /**
4189  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4190  *  @hw: pointer to hardware structure
4191  *  @speed: new link speed
4192  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4193  *
4194  *  Set the link speed in the MAC and/or PHY register and restarts link.
4195  */
4196 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4197                                           ixgbe_link_speed speed,
4198                                           bool autoneg_wait_to_complete)
4199 {
4200         ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201         ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4202         s32 status = 0;
4203         u32 speedcnt = 0;
4204         u32 i = 0;
4205         bool autoneg, link_up = false;
4206
4207         /* Mask off requested but non-supported speeds */
4208         status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4209         if (status)
4210                 return status;
4211
4212         speed &= link_speed;
4213
4214         /* Try each speed one by one, highest priority first.  We do this in
4215          * software because 10Gb fiber doesn't support speed autonegotiation.
4216          */
4217         if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4218                 speedcnt++;
4219                 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4220
4221                 /* Set the module link speed */
4222                 switch (hw->phy.media_type) {
4223                 case ixgbe_media_type_fiber:
4224                         hw->mac.ops.set_rate_select_speed(hw,
4225                                                     IXGBE_LINK_SPEED_10GB_FULL);
4226                         break;
4227                 case ixgbe_media_type_fiber_qsfp:
4228                         /* QSFP module automatically detects MAC link speed */
4229                         break;
4230                 default:
4231                         hw_dbg(hw, "Unexpected media type\n");
4232                         break;
4233                 }
4234
4235                 /* Allow module to change analog characteristics (1G->10G) */
4236                 msleep(40);
4237
4238                 status = hw->mac.ops.setup_mac_link(hw,
4239                                                     IXGBE_LINK_SPEED_10GB_FULL,
4240                                                     autoneg_wait_to_complete);
4241                 if (status)
4242                         return status;
4243
4244                 /* Flap the Tx laser if it has not already been done */
4245                 if (hw->mac.ops.flap_tx_laser)
4246                         hw->mac.ops.flap_tx_laser(hw);
4247
4248                 /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4249                  * Section 73.10.2, we may have to wait up to 500ms if KR is
4250                  * attempted.  82599 uses the same timing for 10g SFI.
4251                  */
4252                 for (i = 0; i < 5; i++) {
4253                         /* Wait for the link partner to also set speed */
4254                         msleep(100);
4255
4256                         /* If we have link, just jump out */
4257                         status = hw->mac.ops.check_link(hw, &link_speed,
4258                                                         &link_up, false);
4259                         if (status)
4260                                 return status;
4261
4262                         if (link_up)
4263                                 goto out;
4264                 }
4265         }
4266
4267         if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4268                 speedcnt++;
4269                 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4270                         highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4271
4272                 /* Set the module link speed */
4273                 switch (hw->phy.media_type) {
4274                 case ixgbe_media_type_fiber:
4275                         hw->mac.ops.set_rate_select_speed(hw,
4276                                                      IXGBE_LINK_SPEED_1GB_FULL);
4277                         break;
4278                 case ixgbe_media_type_fiber_qsfp:
4279                         /* QSFP module automatically detects link speed */
4280                         break;
4281                 default:
4282                         hw_dbg(hw, "Unexpected media type\n");
4283                         break;
4284                 }
4285
4286                 /* Allow module to change analog characteristics (10G->1G) */
4287                 msleep(40);
4288
4289                 status = hw->mac.ops.setup_mac_link(hw,
4290                                                     IXGBE_LINK_SPEED_1GB_FULL,
4291                                                     autoneg_wait_to_complete);
4292                 if (status)
4293                         return status;
4294
4295                 /* Flap the Tx laser if it has not already been done */
4296                 if (hw->mac.ops.flap_tx_laser)
4297                         hw->mac.ops.flap_tx_laser(hw);
4298
4299                 /* Wait for the link partner to also set speed */
4300                 msleep(100);
4301
4302                 /* If we have link, just jump out */
4303                 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4304                                                 false);
4305                 if (status)
4306                         return status;
4307
4308                 if (link_up)
4309                         goto out;
4310         }
4311
4312         /* We didn't get link.  Configure back to the highest speed we tried,
4313          * (if there was more than one).  We call ourselves back with just the
4314          * single highest speed that the user requested.
4315          */
4316         if (speedcnt > 1)
4317                 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4318                                                       highest_link_speed,
4319                                                       autoneg_wait_to_complete);
4320
4321 out:
4322         /* Set autoneg_advertised value based on input link speed */
4323         hw->phy.autoneg_advertised = 0;
4324
4325         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4326                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4327
4328         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4329                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4330
4331         return status;
4332 }
4333
4334 /**
4335  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4336  *  @hw: pointer to hardware structure
4337  *  @speed: link speed to set
4338  *
4339  *  Set module link speed via the soft rate select.
4340  */
4341 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4342                                       ixgbe_link_speed speed)
4343 {
4344         s32 status;
4345         u8 rs, eeprom_data;
4346
4347         switch (speed) {
4348         case IXGBE_LINK_SPEED_10GB_FULL:
4349                 /* one bit mask same as setting on */
4350                 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4351                 break;
4352         case IXGBE_LINK_SPEED_1GB_FULL:
4353                 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4354                 break;
4355         default:
4356                 hw_dbg(hw, "Invalid fixed module speed\n");
4357                 return;
4358         }
4359
4360         /* Set RS0 */
4361         status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4362                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4363                                            &eeprom_data);
4364         if (status) {
4365                 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4366                 return;
4367         }
4368
4369         eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4370
4371         status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4372                                             IXGBE_I2C_EEPROM_DEV_ADDR2,
4373                                             eeprom_data);
4374         if (status) {
4375                 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4376                 return;
4377         }
4378
4379         /* Set RS1 */
4380         status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4381                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4382                                            &eeprom_data);
4383         if (status) {
4384                 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4385                 return;
4386         }
4387
4388         eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4389
4390         status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4391                                             IXGBE_I2C_EEPROM_DEV_ADDR2,
4392                                             eeprom_data);
4393         if (status) {
4394                 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4395                 return;
4396         }
4397 }