Merge tag 'drm-misc-fixes-2018-11-21' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580                 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72
73 /* SYSTIM read access for the 82576 */
74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77         struct e1000_hw *hw = &igb->hw;
78         u64 val;
79         u32 lo, hi;
80
81         lo = rd32(E1000_SYSTIML);
82         hi = rd32(E1000_SYSTIMH);
83
84         val = ((u64) hi) << 32;
85         val |= lo;
86
87         return val;
88 }
89
90 /* SYSTIM read access for the 82580 */
91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94         struct e1000_hw *hw = &igb->hw;
95         u32 lo, hi;
96         u64 val;
97
98         /* The timestamp latches on lowest register read. For the 82580
99          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100          * need to provide nanosecond resolution, so we just ignore it.
101          */
102         rd32(E1000_SYSTIMR);
103         lo = rd32(E1000_SYSTIML);
104         hi = rd32(E1000_SYSTIMH);
105
106         val = ((u64) hi) << 32;
107         val |= lo;
108
109         return val;
110 }
111
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114                               struct timespec64 *ts)
115 {
116         struct e1000_hw *hw = &adapter->hw;
117         u32 sec, nsec;
118
119         /* The timestamp latches on lowest register read. For I210/I211, the
120          * lowest register is SYSTIMR. Since we only need to provide nanosecond
121          * resolution, we can ignore it.
122          */
123         rd32(E1000_SYSTIMR);
124         nsec = rd32(E1000_SYSTIML);
125         sec = rd32(E1000_SYSTIMH);
126
127         ts->tv_sec = sec;
128         ts->tv_nsec = nsec;
129 }
130
131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132                                const struct timespec64 *ts)
133 {
134         struct e1000_hw *hw = &adapter->hw;
135
136         /* Writing the SYSTIMR register is not necessary as it only provides
137          * sub-nanosecond resolution.
138          */
139         wr32(E1000_SYSTIML, ts->tv_nsec);
140         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142
143 /**
144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145  * @adapter: board private structure
146  * @hwtstamps: timestamp structure to update
147  * @systim: unsigned 64bit system time value.
148  *
149  * We need to convert the system time value stored in the RX/TXSTMP registers
150  * into a hwtstamp which can be used by the upper level timestamping functions.
151  *
152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
153  * system time value. This is needed because reading the 64 bit time
154  * value involves reading two (or three) 32 bit registers. The first
155  * read latches the value. Ditto for writing.
156  *
157  * In addition, here have extended the system time with an overflow
158  * counter in software.
159  **/
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161                                        struct skb_shared_hwtstamps *hwtstamps,
162                                        u64 systim)
163 {
164         unsigned long flags;
165         u64 ns;
166
167         switch (adapter->hw.mac.type) {
168         case e1000_82576:
169         case e1000_82580:
170         case e1000_i354:
171         case e1000_i350:
172                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
173
174                 ns = timecounter_cyc2time(&adapter->tc, systim);
175
176                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177
178                 memset(hwtstamps, 0, sizeof(*hwtstamps));
179                 hwtstamps->hwtstamp = ns_to_ktime(ns);
180                 break;
181         case e1000_i210:
182         case e1000_i211:
183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
184                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186                                                 systim & 0xFFFFFFFF);
187                 break;
188         default:
189                 break;
190         }
191 }
192
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197                                                ptp_caps);
198         struct e1000_hw *hw = &igb->hw;
199         int neg_adj = 0;
200         u64 rate;
201         u32 incvalue;
202
203         if (ppb < 0) {
204                 neg_adj = 1;
205                 ppb = -ppb;
206         }
207         rate = ppb;
208         rate <<= 14;
209         rate = div_u64(rate, 1953125);
210
211         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212
213         if (neg_adj)
214                 incvalue -= rate;
215         else
216                 incvalue += rate;
217
218         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219
220         return 0;
221 }
222
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226                                                ptp_caps);
227         struct e1000_hw *hw = &igb->hw;
228         int neg_adj = 0;
229         u64 rate;
230         u32 inca;
231
232         if (scaled_ppm < 0) {
233                 neg_adj = 1;
234                 scaled_ppm = -scaled_ppm;
235         }
236         rate = scaled_ppm;
237         rate <<= 13;
238         rate = div_u64(rate, 15625);
239
240         inca = rate & INCVALUE_MASK;
241         if (neg_adj)
242                 inca |= ISGN;
243
244         wr32(E1000_TIMINCA, inca);
245
246         return 0;
247 }
248
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252                                                ptp_caps);
253         unsigned long flags;
254
255         spin_lock_irqsave(&igb->tmreg_lock, flags);
256         timecounter_adjtime(&igb->tc, delta);
257         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258
259         return 0;
260 }
261
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265                                                ptp_caps);
266         unsigned long flags;
267         struct timespec64 now, then = ns_to_timespec64(delta);
268
269         spin_lock_irqsave(&igb->tmreg_lock, flags);
270
271         igb_ptp_read_i210(igb, &now);
272         now = timespec64_add(now, then);
273         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274
275         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276
277         return 0;
278 }
279
280 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
281                                  struct timespec64 *ts)
282 {
283         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
284                                                ptp_caps);
285         unsigned long flags;
286         u64 ns;
287
288         spin_lock_irqsave(&igb->tmreg_lock, flags);
289
290         ns = timecounter_read(&igb->tc);
291
292         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
293
294         *ts = ns_to_timespec64(ns);
295
296         return 0;
297 }
298
299 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
300                                 struct timespec64 *ts)
301 {
302         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
303                                                ptp_caps);
304         unsigned long flags;
305
306         spin_lock_irqsave(&igb->tmreg_lock, flags);
307
308         igb_ptp_read_i210(igb, ts);
309
310         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
311
312         return 0;
313 }
314
315 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
316                                  const struct timespec64 *ts)
317 {
318         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319                                                ptp_caps);
320         unsigned long flags;
321         u64 ns;
322
323         ns = timespec64_to_ns(ts);
324
325         spin_lock_irqsave(&igb->tmreg_lock, flags);
326
327         timecounter_init(&igb->tc, &igb->cc, ns);
328
329         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
330
331         return 0;
332 }
333
334 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
335                                 const struct timespec64 *ts)
336 {
337         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
338                                                ptp_caps);
339         unsigned long flags;
340
341         spin_lock_irqsave(&igb->tmreg_lock, flags);
342
343         igb_ptp_write_i210(igb, ts);
344
345         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
346
347         return 0;
348 }
349
350 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
351 {
352         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
353         static const u32 mask[IGB_N_SDP] = {
354                 E1000_CTRL_SDP0_DIR,
355                 E1000_CTRL_SDP1_DIR,
356                 E1000_CTRL_EXT_SDP2_DIR,
357                 E1000_CTRL_EXT_SDP3_DIR,
358         };
359
360         if (input)
361                 *ptr &= ~mask[pin];
362         else
363                 *ptr |= mask[pin];
364 }
365
366 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
367 {
368         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
369                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
370         };
371         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
372                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
373         };
374         static const u32 ts_sdp_en[IGB_N_SDP] = {
375                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
376         };
377         struct e1000_hw *hw = &igb->hw;
378         u32 ctrl, ctrl_ext, tssdp = 0;
379
380         ctrl = rd32(E1000_CTRL);
381         ctrl_ext = rd32(E1000_CTRL_EXT);
382         tssdp = rd32(E1000_TSSDP);
383
384         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
385
386         /* Make sure this pin is not enabled as an output. */
387         tssdp &= ~ts_sdp_en[pin];
388
389         if (chan == 1) {
390                 tssdp &= ~AUX1_SEL_SDP3;
391                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
392         } else {
393                 tssdp &= ~AUX0_SEL_SDP3;
394                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
395         }
396
397         wr32(E1000_TSSDP, tssdp);
398         wr32(E1000_CTRL, ctrl);
399         wr32(E1000_CTRL_EXT, ctrl_ext);
400 }
401
402 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
403 {
404         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
405                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
406         };
407         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
408                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
409         };
410         static const u32 ts_sdp_en[IGB_N_SDP] = {
411                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
412         };
413         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
414                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
415                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
416         };
417         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
418                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
419                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
420         };
421         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
422                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
423                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
424         };
425         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
426                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
427                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
428         };
429         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
430                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
431                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
432         };
433         struct e1000_hw *hw = &igb->hw;
434         u32 ctrl, ctrl_ext, tssdp = 0;
435
436         ctrl = rd32(E1000_CTRL);
437         ctrl_ext = rd32(E1000_CTRL_EXT);
438         tssdp = rd32(E1000_TSSDP);
439
440         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
441
442         /* Make sure this pin is not enabled as an input. */
443         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
444                 tssdp &= ~AUX0_TS_SDP_EN;
445
446         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
447                 tssdp &= ~AUX1_TS_SDP_EN;
448
449         tssdp &= ~ts_sdp_sel_clr[pin];
450         if (freq) {
451                 if (chan == 1)
452                         tssdp |= ts_sdp_sel_fc1[pin];
453                 else
454                         tssdp |= ts_sdp_sel_fc0[pin];
455         } else {
456                 if (chan == 1)
457                         tssdp |= ts_sdp_sel_tt1[pin];
458                 else
459                         tssdp |= ts_sdp_sel_tt0[pin];
460         }
461         tssdp |= ts_sdp_en[pin];
462
463         wr32(E1000_TSSDP, tssdp);
464         wr32(E1000_CTRL, ctrl);
465         wr32(E1000_CTRL_EXT, ctrl_ext);
466 }
467
468 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
469                                        struct ptp_clock_request *rq, int on)
470 {
471         struct igb_adapter *igb =
472                 container_of(ptp, struct igb_adapter, ptp_caps);
473         struct e1000_hw *hw = &igb->hw;
474         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
475         unsigned long flags;
476         struct timespec64 ts;
477         int use_freq = 0, pin = -1;
478         s64 ns;
479
480         switch (rq->type) {
481         case PTP_CLK_REQ_EXTTS:
482                 if (on) {
483                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
484                                            rq->extts.index);
485                         if (pin < 0)
486                                 return -EBUSY;
487                 }
488                 if (rq->extts.index == 1) {
489                         tsauxc_mask = TSAUXC_EN_TS1;
490                         tsim_mask = TSINTR_AUTT1;
491                 } else {
492                         tsauxc_mask = TSAUXC_EN_TS0;
493                         tsim_mask = TSINTR_AUTT0;
494                 }
495                 spin_lock_irqsave(&igb->tmreg_lock, flags);
496                 tsauxc = rd32(E1000_TSAUXC);
497                 tsim = rd32(E1000_TSIM);
498                 if (on) {
499                         igb_pin_extts(igb, rq->extts.index, pin);
500                         tsauxc |= tsauxc_mask;
501                         tsim |= tsim_mask;
502                 } else {
503                         tsauxc &= ~tsauxc_mask;
504                         tsim &= ~tsim_mask;
505                 }
506                 wr32(E1000_TSAUXC, tsauxc);
507                 wr32(E1000_TSIM, tsim);
508                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
509                 return 0;
510
511         case PTP_CLK_REQ_PEROUT:
512                 if (on) {
513                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
514                                            rq->perout.index);
515                         if (pin < 0)
516                                 return -EBUSY;
517                 }
518                 ts.tv_sec = rq->perout.period.sec;
519                 ts.tv_nsec = rq->perout.period.nsec;
520                 ns = timespec64_to_ns(&ts);
521                 ns = ns >> 1;
522                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
523                            (ns == 250000000LL) || (ns == 500000000LL))) {
524                         if (ns < 8LL)
525                                 return -EINVAL;
526                         use_freq = 1;
527                 }
528                 ts = ns_to_timespec64(ns);
529                 if (rq->perout.index == 1) {
530                         if (use_freq) {
531                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
532                                 tsim_mask = 0;
533                         } else {
534                                 tsauxc_mask = TSAUXC_EN_TT1;
535                                 tsim_mask = TSINTR_TT1;
536                         }
537                         trgttiml = E1000_TRGTTIML1;
538                         trgttimh = E1000_TRGTTIMH1;
539                         freqout = E1000_FREQOUT1;
540                 } else {
541                         if (use_freq) {
542                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
543                                 tsim_mask = 0;
544                         } else {
545                                 tsauxc_mask = TSAUXC_EN_TT0;
546                                 tsim_mask = TSINTR_TT0;
547                         }
548                         trgttiml = E1000_TRGTTIML0;
549                         trgttimh = E1000_TRGTTIMH0;
550                         freqout = E1000_FREQOUT0;
551                 }
552                 spin_lock_irqsave(&igb->tmreg_lock, flags);
553                 tsauxc = rd32(E1000_TSAUXC);
554                 tsim = rd32(E1000_TSIM);
555                 if (rq->perout.index == 1) {
556                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
557                         tsim &= ~TSINTR_TT1;
558                 } else {
559                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
560                         tsim &= ~TSINTR_TT0;
561                 }
562                 if (on) {
563                         int i = rq->perout.index;
564                         igb_pin_perout(igb, i, pin, use_freq);
565                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
566                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
567                         igb->perout[i].period.tv_sec = ts.tv_sec;
568                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
569                         wr32(trgttimh, rq->perout.start.sec);
570                         wr32(trgttiml, rq->perout.start.nsec);
571                         if (use_freq)
572                                 wr32(freqout, ns);
573                         tsauxc |= tsauxc_mask;
574                         tsim |= tsim_mask;
575                 }
576                 wr32(E1000_TSAUXC, tsauxc);
577                 wr32(E1000_TSIM, tsim);
578                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
579                 return 0;
580
581         case PTP_CLK_REQ_PPS:
582                 spin_lock_irqsave(&igb->tmreg_lock, flags);
583                 tsim = rd32(E1000_TSIM);
584                 if (on)
585                         tsim |= TSINTR_SYS_WRAP;
586                 else
587                         tsim &= ~TSINTR_SYS_WRAP;
588                 igb->pps_sys_wrap_on = !!on;
589                 wr32(E1000_TSIM, tsim);
590                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
591                 return 0;
592         }
593
594         return -EOPNOTSUPP;
595 }
596
597 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
598                                   struct ptp_clock_request *rq, int on)
599 {
600         return -EOPNOTSUPP;
601 }
602
603 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
604                               enum ptp_pin_function func, unsigned int chan)
605 {
606         switch (func) {
607         case PTP_PF_NONE:
608         case PTP_PF_EXTTS:
609         case PTP_PF_PEROUT:
610                 break;
611         case PTP_PF_PHYSYNC:
612                 return -1;
613         }
614         return 0;
615 }
616
617 /**
618  * igb_ptp_tx_work
619  * @work: pointer to work struct
620  *
621  * This work function polls the TSYNCTXCTL valid bit to determine when a
622  * timestamp has been taken for the current stored skb.
623  **/
624 static void igb_ptp_tx_work(struct work_struct *work)
625 {
626         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
627                                                    ptp_tx_work);
628         struct e1000_hw *hw = &adapter->hw;
629         u32 tsynctxctl;
630
631         if (!adapter->ptp_tx_skb)
632                 return;
633
634         if (time_is_before_jiffies(adapter->ptp_tx_start +
635                                    IGB_PTP_TX_TIMEOUT)) {
636                 dev_kfree_skb_any(adapter->ptp_tx_skb);
637                 adapter->ptp_tx_skb = NULL;
638                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
639                 adapter->tx_hwtstamp_timeouts++;
640                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
641                  * interrupt
642                  */
643                 rd32(E1000_TXSTMPH);
644                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
645                 return;
646         }
647
648         tsynctxctl = rd32(E1000_TSYNCTXCTL);
649         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
650                 igb_ptp_tx_hwtstamp(adapter);
651         else
652                 /* reschedule to check later */
653                 schedule_work(&adapter->ptp_tx_work);
654 }
655
656 static void igb_ptp_overflow_check(struct work_struct *work)
657 {
658         struct igb_adapter *igb =
659                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
660         struct timespec64 ts;
661
662         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
663
664         pr_debug("igb overflow check at %lld.%09lu\n",
665                  (long long) ts.tv_sec, ts.tv_nsec);
666
667         schedule_delayed_work(&igb->ptp_overflow_work,
668                               IGB_SYSTIM_OVERFLOW_PERIOD);
669 }
670
671 /**
672  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
673  * @adapter: private network adapter structure
674  *
675  * This watchdog task is scheduled to detect error case where hardware has
676  * dropped an Rx packet that was timestamped when the ring is full. The
677  * particular error is rare but leaves the device in a state unable to timestamp
678  * any future packets.
679  **/
680 void igb_ptp_rx_hang(struct igb_adapter *adapter)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
684         unsigned long rx_event;
685
686         /* Other hardware uses per-packet timestamps */
687         if (hw->mac.type != e1000_82576)
688                 return;
689
690         /* If we don't have a valid timestamp in the registers, just update the
691          * timeout counter and exit
692          */
693         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
694                 adapter->last_rx_ptp_check = jiffies;
695                 return;
696         }
697
698         /* Determine the most recent watchdog or rx_timestamp event */
699         rx_event = adapter->last_rx_ptp_check;
700         if (time_after(adapter->last_rx_timestamp, rx_event))
701                 rx_event = adapter->last_rx_timestamp;
702
703         /* Only need to read the high RXSTMP register to clear the lock */
704         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
705                 rd32(E1000_RXSTMPH);
706                 adapter->last_rx_ptp_check = jiffies;
707                 adapter->rx_hwtstamp_cleared++;
708                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
709         }
710 }
711
712 /**
713  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
714  * @adapter: private network adapter structure
715  */
716 void igb_ptp_tx_hang(struct igb_adapter *adapter)
717 {
718         struct e1000_hw *hw = &adapter->hw;
719         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
720                                               IGB_PTP_TX_TIMEOUT);
721
722         if (!adapter->ptp_tx_skb)
723                 return;
724
725         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
726                 return;
727
728         /* If we haven't received a timestamp within the timeout, it is
729          * reasonable to assume that it will never occur, so we can unlock the
730          * timestamp bit when this occurs.
731          */
732         if (timeout) {
733                 cancel_work_sync(&adapter->ptp_tx_work);
734                 dev_kfree_skb_any(adapter->ptp_tx_skb);
735                 adapter->ptp_tx_skb = NULL;
736                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
737                 adapter->tx_hwtstamp_timeouts++;
738                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
739                  * interrupt
740                  */
741                 rd32(E1000_TXSTMPH);
742                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
743         }
744 }
745
746 /**
747  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
748  * @adapter: Board private structure.
749  *
750  * If we were asked to do hardware stamping and such a time stamp is
751  * available, then it must have been for this skb here because we only
752  * allow only one such packet into the queue.
753  **/
754 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
755 {
756         struct sk_buff *skb = adapter->ptp_tx_skb;
757         struct e1000_hw *hw = &adapter->hw;
758         struct skb_shared_hwtstamps shhwtstamps;
759         u64 regval;
760         int adjust = 0;
761
762         regval = rd32(E1000_TXSTMPL);
763         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
764
765         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
766         /* adjust timestamp for the TX latency based on link speed */
767         if (adapter->hw.mac.type == e1000_i210) {
768                 switch (adapter->link_speed) {
769                 case SPEED_10:
770                         adjust = IGB_I210_TX_LATENCY_10;
771                         break;
772                 case SPEED_100:
773                         adjust = IGB_I210_TX_LATENCY_100;
774                         break;
775                 case SPEED_1000:
776                         adjust = IGB_I210_TX_LATENCY_1000;
777                         break;
778                 }
779         }
780
781         shhwtstamps.hwtstamp =
782                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
783
784         /* Clear the lock early before calling skb_tstamp_tx so that
785          * applications are not woken up before the lock bit is clear. We use
786          * a copy of the skb pointer to ensure other threads can't change it
787          * while we're notifying the stack.
788          */
789         adapter->ptp_tx_skb = NULL;
790         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
791
792         /* Notify the stack and free the skb after we've unlocked */
793         skb_tstamp_tx(skb, &shhwtstamps);
794         dev_kfree_skb_any(skb);
795 }
796
797 /**
798  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
799  * @q_vector: Pointer to interrupt specific structure
800  * @va: Pointer to address containing Rx buffer
801  * @skb: Buffer containing timestamp and packet
802  *
803  * This function is meant to retrieve a timestamp from the first buffer of an
804  * incoming frame.  The value is stored in little endian format starting on
805  * byte 8.
806  **/
807 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
808                          struct sk_buff *skb)
809 {
810         __le64 *regval = (__le64 *)va;
811         struct igb_adapter *adapter = q_vector->adapter;
812         int adjust = 0;
813
814         /* The timestamp is recorded in little endian format.
815          * DWORD: 0        1        2        3
816          * Field: Reserved Reserved SYSTIML  SYSTIMH
817          */
818         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
819                                    le64_to_cpu(regval[1]));
820
821         /* adjust timestamp for the RX latency based on link speed */
822         if (adapter->hw.mac.type == e1000_i210) {
823                 switch (adapter->link_speed) {
824                 case SPEED_10:
825                         adjust = IGB_I210_RX_LATENCY_10;
826                         break;
827                 case SPEED_100:
828                         adjust = IGB_I210_RX_LATENCY_100;
829                         break;
830                 case SPEED_1000:
831                         adjust = IGB_I210_RX_LATENCY_1000;
832                         break;
833                 }
834         }
835         skb_hwtstamps(skb)->hwtstamp =
836                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
837 }
838
839 /**
840  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
841  * @q_vector: Pointer to interrupt specific structure
842  * @skb: Buffer containing timestamp and packet
843  *
844  * This function is meant to retrieve a timestamp from the internal registers
845  * of the adapter and store it in the skb.
846  **/
847 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
848                          struct sk_buff *skb)
849 {
850         struct igb_adapter *adapter = q_vector->adapter;
851         struct e1000_hw *hw = &adapter->hw;
852         u64 regval;
853         int adjust = 0;
854
855         /* If this bit is set, then the RX registers contain the time stamp. No
856          * other packet will be time stamped until we read these registers, so
857          * read the registers to make them available again. Because only one
858          * packet can be time stamped at a time, we know that the register
859          * values must belong to this one here and therefore we don't need to
860          * compare any of the additional attributes stored for it.
861          *
862          * If nothing went wrong, then it should have a shared tx_flags that we
863          * can turn into a skb_shared_hwtstamps.
864          */
865         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
866                 return;
867
868         regval = rd32(E1000_RXSTMPL);
869         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
870
871         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
872
873         /* adjust timestamp for the RX latency based on link speed */
874         if (adapter->hw.mac.type == e1000_i210) {
875                 switch (adapter->link_speed) {
876                 case SPEED_10:
877                         adjust = IGB_I210_RX_LATENCY_10;
878                         break;
879                 case SPEED_100:
880                         adjust = IGB_I210_RX_LATENCY_100;
881                         break;
882                 case SPEED_1000:
883                         adjust = IGB_I210_RX_LATENCY_1000;
884                         break;
885                 }
886         }
887         skb_hwtstamps(skb)->hwtstamp =
888                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
889
890         /* Update the last_rx_timestamp timer in order to enable watchdog check
891          * for error case of latched timestamp on a dropped packet.
892          */
893         adapter->last_rx_timestamp = jiffies;
894 }
895
896 /**
897  * igb_ptp_get_ts_config - get hardware time stamping config
898  * @netdev:
899  * @ifreq:
900  *
901  * Get the hwtstamp_config settings to return to the user. Rather than attempt
902  * to deconstruct the settings from the registers, just return a shadow copy
903  * of the last known settings.
904  **/
905 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
906 {
907         struct igb_adapter *adapter = netdev_priv(netdev);
908         struct hwtstamp_config *config = &adapter->tstamp_config;
909
910         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
911                 -EFAULT : 0;
912 }
913
914 /**
915  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
916  * @adapter: networking device structure
917  * @config: hwtstamp configuration
918  *
919  * Outgoing time stamping can be enabled and disabled. Play nice and
920  * disable it when requested, although it shouldn't case any overhead
921  * when no packet needs it. At most one packet in the queue may be
922  * marked for time stamping, otherwise it would be impossible to tell
923  * for sure to which packet the hardware time stamp belongs.
924  *
925  * Incoming time stamping has to be configured via the hardware
926  * filters. Not all combinations are supported, in particular event
927  * type has to be specified. Matching the kind of event packet is
928  * not supported, with the exception of "all V2 events regardless of
929  * level 2 or 4".
930  */
931 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
932                                       struct hwtstamp_config *config)
933 {
934         struct e1000_hw *hw = &adapter->hw;
935         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
936         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
937         u32 tsync_rx_cfg = 0;
938         bool is_l4 = false;
939         bool is_l2 = false;
940         u32 regval;
941
942         /* reserved for future extensions */
943         if (config->flags)
944                 return -EINVAL;
945
946         switch (config->tx_type) {
947         case HWTSTAMP_TX_OFF:
948                 tsync_tx_ctl = 0;
949         case HWTSTAMP_TX_ON:
950                 break;
951         default:
952                 return -ERANGE;
953         }
954
955         switch (config->rx_filter) {
956         case HWTSTAMP_FILTER_NONE:
957                 tsync_rx_ctl = 0;
958                 break;
959         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
960                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
961                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
962                 is_l4 = true;
963                 break;
964         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
965                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
966                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
967                 is_l4 = true;
968                 break;
969         case HWTSTAMP_FILTER_PTP_V2_EVENT:
970         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
971         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
972         case HWTSTAMP_FILTER_PTP_V2_SYNC:
973         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
974         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
975         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
976         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
977         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
978                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
979                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
980                 is_l2 = true;
981                 is_l4 = true;
982                 break;
983         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
984         case HWTSTAMP_FILTER_NTP_ALL:
985         case HWTSTAMP_FILTER_ALL:
986                 /* 82576 cannot timestamp all packets, which it needs to do to
987                  * support both V1 Sync and Delay_Req messages
988                  */
989                 if (hw->mac.type != e1000_82576) {
990                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
991                         config->rx_filter = HWTSTAMP_FILTER_ALL;
992                         break;
993                 }
994                 /* fall through */
995         default:
996                 config->rx_filter = HWTSTAMP_FILTER_NONE;
997                 return -ERANGE;
998         }
999
1000         if (hw->mac.type == e1000_82575) {
1001                 if (tsync_rx_ctl | tsync_tx_ctl)
1002                         return -EINVAL;
1003                 return 0;
1004         }
1005
1006         /* Per-packet timestamping only works if all packets are
1007          * timestamped, so enable timestamping in all packets as
1008          * long as one Rx filter was configured.
1009          */
1010         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1011                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1012                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1013                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1014                 is_l2 = true;
1015                 is_l4 = true;
1016
1017                 if ((hw->mac.type == e1000_i210) ||
1018                     (hw->mac.type == e1000_i211)) {
1019                         regval = rd32(E1000_RXPBS);
1020                         regval |= E1000_RXPBS_CFG_TS_EN;
1021                         wr32(E1000_RXPBS, regval);
1022                 }
1023         }
1024
1025         /* enable/disable TX */
1026         regval = rd32(E1000_TSYNCTXCTL);
1027         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1028         regval |= tsync_tx_ctl;
1029         wr32(E1000_TSYNCTXCTL, regval);
1030
1031         /* enable/disable RX */
1032         regval = rd32(E1000_TSYNCRXCTL);
1033         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1034         regval |= tsync_rx_ctl;
1035         wr32(E1000_TSYNCRXCTL, regval);
1036
1037         /* define which PTP packets are time stamped */
1038         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1039
1040         /* define ethertype filter for timestamped packets */
1041         if (is_l2)
1042                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1043                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1044                       E1000_ETQF_1588 | /* enable timestamping */
1045                       ETH_P_1588));     /* 1588 eth protocol type */
1046         else
1047                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1048
1049         /* L4 Queue Filter[3]: filter by destination port and protocol */
1050         if (is_l4) {
1051                 u32 ftqf = (IPPROTO_UDP /* UDP */
1052                         | E1000_FTQF_VF_BP /* VF not compared */
1053                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1054                         | E1000_FTQF_MASK); /* mask all inputs */
1055                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1056
1057                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1058                 wr32(E1000_IMIREXT(3),
1059                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1060                 if (hw->mac.type == e1000_82576) {
1061                         /* enable source port check */
1062                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1063                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1064                 }
1065                 wr32(E1000_FTQF(3), ftqf);
1066         } else {
1067                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1068         }
1069         wrfl();
1070
1071         /* clear TX/RX time stamp registers, just to be sure */
1072         regval = rd32(E1000_TXSTMPL);
1073         regval = rd32(E1000_TXSTMPH);
1074         regval = rd32(E1000_RXSTMPL);
1075         regval = rd32(E1000_RXSTMPH);
1076
1077         return 0;
1078 }
1079
1080 /**
1081  * igb_ptp_set_ts_config - set hardware time stamping config
1082  * @netdev:
1083  * @ifreq:
1084  *
1085  **/
1086 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1087 {
1088         struct igb_adapter *adapter = netdev_priv(netdev);
1089         struct hwtstamp_config config;
1090         int err;
1091
1092         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1093                 return -EFAULT;
1094
1095         err = igb_ptp_set_timestamp_mode(adapter, &config);
1096         if (err)
1097                 return err;
1098
1099         /* save these settings for future reference */
1100         memcpy(&adapter->tstamp_config, &config,
1101                sizeof(adapter->tstamp_config));
1102
1103         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1104                 -EFAULT : 0;
1105 }
1106
1107 /**
1108  * igb_ptp_init - Initialize PTP functionality
1109  * @adapter: Board private structure
1110  *
1111  * This function is called at device probe to initialize the PTP
1112  * functionality.
1113  */
1114 void igb_ptp_init(struct igb_adapter *adapter)
1115 {
1116         struct e1000_hw *hw = &adapter->hw;
1117         struct net_device *netdev = adapter->netdev;
1118         int i;
1119
1120         switch (hw->mac.type) {
1121         case e1000_82576:
1122                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1123                 adapter->ptp_caps.owner = THIS_MODULE;
1124                 adapter->ptp_caps.max_adj = 999999881;
1125                 adapter->ptp_caps.n_ext_ts = 0;
1126                 adapter->ptp_caps.pps = 0;
1127                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1128                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1129                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1130                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1131                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1132                 adapter->cc.read = igb_ptp_read_82576;
1133                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1134                 adapter->cc.mult = 1;
1135                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1136                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1137                 break;
1138         case e1000_82580:
1139         case e1000_i354:
1140         case e1000_i350:
1141                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1142                 adapter->ptp_caps.owner = THIS_MODULE;
1143                 adapter->ptp_caps.max_adj = 62499999;
1144                 adapter->ptp_caps.n_ext_ts = 0;
1145                 adapter->ptp_caps.pps = 0;
1146                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1147                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1148                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1149                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1150                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1151                 adapter->cc.read = igb_ptp_read_82580;
1152                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1153                 adapter->cc.mult = 1;
1154                 adapter->cc.shift = 0;
1155                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1156                 break;
1157         case e1000_i210:
1158         case e1000_i211:
1159                 for (i = 0; i < IGB_N_SDP; i++) {
1160                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1161
1162                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1163                         ppd->index = i;
1164                         ppd->func = PTP_PF_NONE;
1165                 }
1166                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1167                 adapter->ptp_caps.owner = THIS_MODULE;
1168                 adapter->ptp_caps.max_adj = 62499999;
1169                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1170                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1171                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1172                 adapter->ptp_caps.pps = 1;
1173                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1174                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1175                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1176                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1177                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1178                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1179                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1180                 break;
1181         default:
1182                 adapter->ptp_clock = NULL;
1183                 return;
1184         }
1185
1186         spin_lock_init(&adapter->tmreg_lock);
1187         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1188
1189         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1190                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1191                                   igb_ptp_overflow_check);
1192
1193         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1194         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1195
1196         igb_ptp_reset(adapter);
1197
1198         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1199                                                 &adapter->pdev->dev);
1200         if (IS_ERR(adapter->ptp_clock)) {
1201                 adapter->ptp_clock = NULL;
1202                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1203         } else if (adapter->ptp_clock) {
1204                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1205                          adapter->netdev->name);
1206                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1207         }
1208 }
1209
1210 /**
1211  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1212  * @adapter: Board private structure
1213  *
1214  * This function stops the overflow check work and PTP Tx timestamp work, and
1215  * will prepare the device for OS suspend.
1216  */
1217 void igb_ptp_suspend(struct igb_adapter *adapter)
1218 {
1219         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1220                 return;
1221
1222         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1223                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1224
1225         cancel_work_sync(&adapter->ptp_tx_work);
1226         if (adapter->ptp_tx_skb) {
1227                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1228                 adapter->ptp_tx_skb = NULL;
1229                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1230         }
1231 }
1232
1233 /**
1234  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1235  * @adapter: Board private structure.
1236  *
1237  * This function stops the PTP support and cancels the delayed work.
1238  **/
1239 void igb_ptp_stop(struct igb_adapter *adapter)
1240 {
1241         igb_ptp_suspend(adapter);
1242
1243         if (adapter->ptp_clock) {
1244                 ptp_clock_unregister(adapter->ptp_clock);
1245                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1246                          adapter->netdev->name);
1247                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1248         }
1249 }
1250
1251 /**
1252  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1253  * @adapter: Board private structure.
1254  *
1255  * This function handles the reset work required to re-enable the PTP device.
1256  **/
1257 void igb_ptp_reset(struct igb_adapter *adapter)
1258 {
1259         struct e1000_hw *hw = &adapter->hw;
1260         unsigned long flags;
1261
1262         /* reset the tstamp_config */
1263         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1264
1265         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1266
1267         switch (adapter->hw.mac.type) {
1268         case e1000_82576:
1269                 /* Dial the nominal frequency. */
1270                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1271                 break;
1272         case e1000_82580:
1273         case e1000_i354:
1274         case e1000_i350:
1275         case e1000_i210:
1276         case e1000_i211:
1277                 wr32(E1000_TSAUXC, 0x0);
1278                 wr32(E1000_TSSDP, 0x0);
1279                 wr32(E1000_TSIM,
1280                      TSYNC_INTERRUPTS |
1281                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1282                 wr32(E1000_IMS, E1000_IMS_TS);
1283                 break;
1284         default:
1285                 /* No work to do. */
1286                 goto out;
1287         }
1288
1289         /* Re-initialize the timer. */
1290         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1291                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1292
1293                 igb_ptp_write_i210(adapter, &ts);
1294         } else {
1295                 timecounter_init(&adapter->tc, &adapter->cc,
1296                                  ktime_to_ns(ktime_get_real()));
1297         }
1298 out:
1299         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1300
1301         wrfl();
1302
1303         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1304                 schedule_delayed_work(&adapter->ptp_overflow_work,
1305                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1306 }