Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <net/pkt_sched.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pci.h>
44 #include <linux/pci-aspm.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/ip.h>
48 #include <linux/tcp.h>
49 #include <linux/sctp.h>
50 #include <linux/if_ether.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/etherdevice.h>
55 #ifdef CONFIG_IGB_DCA
56 #include <linux/dca.h>
57 #endif
58 #include <linux/i2c.h>
59 #include "igb.h"
60
61 #define MAJ 5
62 #define MIN 4
63 #define BUILD 0
64 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
65 __stringify(BUILD) "-k"
66
67 enum queue_mode {
68         QUEUE_MODE_STRICT_PRIORITY,
69         QUEUE_MODE_STREAM_RESERVATION,
70 };
71
72 enum tx_queue_prio {
73         TX_QUEUE_PRIO_HIGH,
74         TX_QUEUE_PRIO_LOW,
75 };
76
77 char igb_driver_name[] = "igb";
78 char igb_driver_version[] = DRV_VERSION;
79 static const char igb_driver_string[] =
80                                 "Intel(R) Gigabit Ethernet Network Driver";
81 static const char igb_copyright[] =
82                                 "Copyright (c) 2007-2014 Intel Corporation.";
83
84 static const struct e1000_info *igb_info_tbl[] = {
85         [board_82575] = &e1000_82575_info,
86 };
87
88 static const struct pci_device_id igb_pci_tbl[] = {
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
115         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
117         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
119         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
120         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
124         /* required last entry */
125         {0, }
126 };
127
128 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
129
130 static int igb_setup_all_tx_resources(struct igb_adapter *);
131 static int igb_setup_all_rx_resources(struct igb_adapter *);
132 static void igb_free_all_tx_resources(struct igb_adapter *);
133 static void igb_free_all_rx_resources(struct igb_adapter *);
134 static void igb_setup_mrqc(struct igb_adapter *);
135 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
136 static void igb_remove(struct pci_dev *pdev);
137 static int igb_sw_init(struct igb_adapter *);
138 int igb_open(struct net_device *);
139 int igb_close(struct net_device *);
140 static void igb_configure(struct igb_adapter *);
141 static void igb_configure_tx(struct igb_adapter *);
142 static void igb_configure_rx(struct igb_adapter *);
143 static void igb_clean_all_tx_rings(struct igb_adapter *);
144 static void igb_clean_all_rx_rings(struct igb_adapter *);
145 static void igb_clean_tx_ring(struct igb_ring *);
146 static void igb_clean_rx_ring(struct igb_ring *);
147 static void igb_set_rx_mode(struct net_device *);
148 static void igb_update_phy_info(struct timer_list *);
149 static void igb_watchdog(struct timer_list *);
150 static void igb_watchdog_task(struct work_struct *);
151 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
152 static void igb_get_stats64(struct net_device *dev,
153                             struct rtnl_link_stats64 *stats);
154 static int igb_change_mtu(struct net_device *, int);
155 static int igb_set_mac(struct net_device *, void *);
156 static void igb_set_uta(struct igb_adapter *adapter, bool set);
157 static irqreturn_t igb_intr(int irq, void *);
158 static irqreturn_t igb_intr_msi(int irq, void *);
159 static irqreturn_t igb_msix_other(int irq, void *);
160 static irqreturn_t igb_msix_ring(int irq, void *);
161 #ifdef CONFIG_IGB_DCA
162 static void igb_update_dca(struct igb_q_vector *);
163 static void igb_setup_dca(struct igb_adapter *);
164 #endif /* CONFIG_IGB_DCA */
165 static int igb_poll(struct napi_struct *, int);
166 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
167 static int igb_clean_rx_irq(struct igb_q_vector *, int);
168 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
169 static void igb_tx_timeout(struct net_device *);
170 static void igb_reset_task(struct work_struct *);
171 static void igb_vlan_mode(struct net_device *netdev,
172                           netdev_features_t features);
173 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
174 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
175 static void igb_restore_vlan(struct igb_adapter *);
176 static void igb_rar_set_index(struct igb_adapter *, u32);
177 static void igb_ping_all_vfs(struct igb_adapter *);
178 static void igb_msg_task(struct igb_adapter *);
179 static void igb_vmm_control(struct igb_adapter *);
180 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
181 static void igb_flush_mac_table(struct igb_adapter *);
182 static int igb_available_rars(struct igb_adapter *, u8);
183 static void igb_set_default_mac_filter(struct igb_adapter *);
184 static int igb_uc_sync(struct net_device *, const unsigned char *);
185 static int igb_uc_unsync(struct net_device *, const unsigned char *);
186 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
187 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
188 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
189                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
190 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
191 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
192                                    bool setting);
193 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
194                                  struct ifla_vf_info *ivi);
195 static void igb_check_vf_rate_limit(struct igb_adapter *);
196 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
197 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
198
199 #ifdef CONFIG_PCI_IOV
200 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
201 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
202 static int igb_disable_sriov(struct pci_dev *dev);
203 static int igb_pci_disable_sriov(struct pci_dev *dev);
204 #endif
205
206 static int igb_suspend(struct device *);
207 static int igb_resume(struct device *);
208 static int igb_runtime_suspend(struct device *dev);
209 static int igb_runtime_resume(struct device *dev);
210 static int igb_runtime_idle(struct device *dev);
211 static const struct dev_pm_ops igb_pm_ops = {
212         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
213         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
214                         igb_runtime_idle)
215 };
216 static void igb_shutdown(struct pci_dev *);
217 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
218 #ifdef CONFIG_IGB_DCA
219 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
220 static struct notifier_block dca_notifier = {
221         .notifier_call  = igb_notify_dca,
222         .next           = NULL,
223         .priority       = 0
224 };
225 #endif
226 #ifdef CONFIG_NET_POLL_CONTROLLER
227 /* for netdump / net console */
228 static void igb_netpoll(struct net_device *);
229 #endif
230 #ifdef CONFIG_PCI_IOV
231 static unsigned int max_vfs;
232 module_param(max_vfs, uint, 0);
233 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
234 #endif /* CONFIG_PCI_IOV */
235
236 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
237                      pci_channel_state_t);
238 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
239 static void igb_io_resume(struct pci_dev *);
240
241 static const struct pci_error_handlers igb_err_handler = {
242         .error_detected = igb_io_error_detected,
243         .slot_reset = igb_io_slot_reset,
244         .resume = igb_io_resume,
245 };
246
247 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
248
249 static struct pci_driver igb_driver = {
250         .name     = igb_driver_name,
251         .id_table = igb_pci_tbl,
252         .probe    = igb_probe,
253         .remove   = igb_remove,
254 #ifdef CONFIG_PM
255         .driver.pm = &igb_pm_ops,
256 #endif
257         .shutdown = igb_shutdown,
258         .sriov_configure = igb_pci_sriov_configure,
259         .err_handler = &igb_err_handler
260 };
261
262 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
263 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
264 MODULE_LICENSE("GPL");
265 MODULE_VERSION(DRV_VERSION);
266
267 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
268 static int debug = -1;
269 module_param(debug, int, 0);
270 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
271
272 struct igb_reg_info {
273         u32 ofs;
274         char *name;
275 };
276
277 static const struct igb_reg_info igb_reg_info_tbl[] = {
278
279         /* General Registers */
280         {E1000_CTRL, "CTRL"},
281         {E1000_STATUS, "STATUS"},
282         {E1000_CTRL_EXT, "CTRL_EXT"},
283
284         /* Interrupt Registers */
285         {E1000_ICR, "ICR"},
286
287         /* RX Registers */
288         {E1000_RCTL, "RCTL"},
289         {E1000_RDLEN(0), "RDLEN"},
290         {E1000_RDH(0), "RDH"},
291         {E1000_RDT(0), "RDT"},
292         {E1000_RXDCTL(0), "RXDCTL"},
293         {E1000_RDBAL(0), "RDBAL"},
294         {E1000_RDBAH(0), "RDBAH"},
295
296         /* TX Registers */
297         {E1000_TCTL, "TCTL"},
298         {E1000_TDBAL(0), "TDBAL"},
299         {E1000_TDBAH(0), "TDBAH"},
300         {E1000_TDLEN(0), "TDLEN"},
301         {E1000_TDH(0), "TDH"},
302         {E1000_TDT(0), "TDT"},
303         {E1000_TXDCTL(0), "TXDCTL"},
304         {E1000_TDFH, "TDFH"},
305         {E1000_TDFT, "TDFT"},
306         {E1000_TDFHS, "TDFHS"},
307         {E1000_TDFPC, "TDFPC"},
308
309         /* List Terminator */
310         {}
311 };
312
313 /* igb_regdump - register printout routine */
314 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
315 {
316         int n = 0;
317         char rname[16];
318         u32 regs[8];
319
320         switch (reginfo->ofs) {
321         case E1000_RDLEN(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RDLEN(n));
324                 break;
325         case E1000_RDH(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDH(n));
328                 break;
329         case E1000_RDT(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDT(n));
332                 break;
333         case E1000_RXDCTL(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_RXDCTL(n));
336                 break;
337         case E1000_RDBAL(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_RDBAL(n));
340                 break;
341         case E1000_RDBAH(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_RDBAH(n));
344                 break;
345         case E1000_TDBAL(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_RDBAL(n));
348                 break;
349         case E1000_TDBAH(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TDBAH(n));
352                 break;
353         case E1000_TDLEN(0):
354                 for (n = 0; n < 4; n++)
355                         regs[n] = rd32(E1000_TDLEN(n));
356                 break;
357         case E1000_TDH(0):
358                 for (n = 0; n < 4; n++)
359                         regs[n] = rd32(E1000_TDH(n));
360                 break;
361         case E1000_TDT(0):
362                 for (n = 0; n < 4; n++)
363                         regs[n] = rd32(E1000_TDT(n));
364                 break;
365         case E1000_TXDCTL(0):
366                 for (n = 0; n < 4; n++)
367                         regs[n] = rd32(E1000_TXDCTL(n));
368                 break;
369         default:
370                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
371                 return;
372         }
373
374         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
375         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
376                 regs[2], regs[3]);
377 }
378
379 /* igb_dump - Print registers, Tx-rings and Rx-rings */
380 static void igb_dump(struct igb_adapter *adapter)
381 {
382         struct net_device *netdev = adapter->netdev;
383         struct e1000_hw *hw = &adapter->hw;
384         struct igb_reg_info *reginfo;
385         struct igb_ring *tx_ring;
386         union e1000_adv_tx_desc *tx_desc;
387         struct my_u0 { u64 a; u64 b; } *u0;
388         struct igb_ring *rx_ring;
389         union e1000_adv_rx_desc *rx_desc;
390         u32 staterr;
391         u16 i, n;
392
393         if (!netif_msg_hw(adapter))
394                 return;
395
396         /* Print netdevice Info */
397         if (netdev) {
398                 dev_info(&adapter->pdev->dev, "Net device Info\n");
399                 pr_info("Device Name     state            trans_start\n");
400                 pr_info("%-15s %016lX %016lX\n", netdev->name,
401                         netdev->state, dev_trans_start(netdev));
402         }
403
404         /* Print Registers */
405         dev_info(&adapter->pdev->dev, "Register Dump\n");
406         pr_info(" Register Name   Value\n");
407         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
408              reginfo->name; reginfo++) {
409                 igb_regdump(hw, reginfo);
410         }
411
412         /* Print TX Ring Summary */
413         if (!netdev || !netif_running(netdev))
414                 goto exit;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
417         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
418         for (n = 0; n < adapter->num_tx_queues; n++) {
419                 struct igb_tx_buffer *buffer_info;
420                 tx_ring = adapter->tx_ring[n];
421                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
422                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
423                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
424                         (u64)dma_unmap_addr(buffer_info, dma),
425                         dma_unmap_len(buffer_info, len),
426                         buffer_info->next_to_watch,
427                         (u64)buffer_info->time_stamp);
428         }
429
430         /* Print TX Rings */
431         if (!netif_msg_tx_done(adapter))
432                 goto rx_ring_summary;
433
434         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
435
436         /* Transmit Descriptor Formats
437          *
438          * Advanced Transmit Descriptor
439          *   +--------------------------------------------------------------+
440          * 0 |         Buffer Address [63:0]                                |
441          *   +--------------------------------------------------------------+
442          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
443          *   +--------------------------------------------------------------+
444          *   63      46 45    40 39 38 36 35 32 31   24             15       0
445          */
446
447         for (n = 0; n < adapter->num_tx_queues; n++) {
448                 tx_ring = adapter->tx_ring[n];
449                 pr_info("------------------------------------\n");
450                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
451                 pr_info("------------------------------------\n");
452                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
453
454                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
455                         const char *next_desc;
456                         struct igb_tx_buffer *buffer_info;
457                         tx_desc = IGB_TX_DESC(tx_ring, i);
458                         buffer_info = &tx_ring->tx_buffer_info[i];
459                         u0 = (struct my_u0 *)tx_desc;
460                         if (i == tx_ring->next_to_use &&
461                             i == tx_ring->next_to_clean)
462                                 next_desc = " NTC/U";
463                         else if (i == tx_ring->next_to_use)
464                                 next_desc = " NTU";
465                         else if (i == tx_ring->next_to_clean)
466                                 next_desc = " NTC";
467                         else
468                                 next_desc = "";
469
470                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
471                                 i, le64_to_cpu(u0->a),
472                                 le64_to_cpu(u0->b),
473                                 (u64)dma_unmap_addr(buffer_info, dma),
474                                 dma_unmap_len(buffer_info, len),
475                                 buffer_info->next_to_watch,
476                                 (u64)buffer_info->time_stamp,
477                                 buffer_info->skb, next_desc);
478
479                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
480                                 print_hex_dump(KERN_INFO, "",
481                                         DUMP_PREFIX_ADDRESS,
482                                         16, 1, buffer_info->skb->data,
483                                         dma_unmap_len(buffer_info, len),
484                                         true);
485                 }
486         }
487
488         /* Print RX Rings Summary */
489 rx_ring_summary:
490         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
491         pr_info("Queue [NTU] [NTC]\n");
492         for (n = 0; n < adapter->num_rx_queues; n++) {
493                 rx_ring = adapter->rx_ring[n];
494                 pr_info(" %5d %5X %5X\n",
495                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
496         }
497
498         /* Print RX Rings */
499         if (!netif_msg_rx_status(adapter))
500                 goto exit;
501
502         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
503
504         /* Advanced Receive Descriptor (Read) Format
505          *    63                                           1        0
506          *    +-----------------------------------------------------+
507          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
508          *    +----------------------------------------------+------+
509          *  8 |       Header Buffer Address [63:1]           |  DD  |
510          *    +-----------------------------------------------------+
511          *
512          *
513          * Advanced Receive Descriptor (Write-Back) Format
514          *
515          *   63       48 47    32 31  30      21 20 17 16   4 3     0
516          *   +------------------------------------------------------+
517          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
518          *   | Checksum   Ident  |   |           |    | Type | Type |
519          *   +------------------------------------------------------+
520          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
521          *   +------------------------------------------------------+
522          *   63       48 47    32 31            20 19               0
523          */
524
525         for (n = 0; n < adapter->num_rx_queues; n++) {
526                 rx_ring = adapter->rx_ring[n];
527                 pr_info("------------------------------------\n");
528                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
529                 pr_info("------------------------------------\n");
530                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
531                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
532
533                 for (i = 0; i < rx_ring->count; i++) {
534                         const char *next_desc;
535                         struct igb_rx_buffer *buffer_info;
536                         buffer_info = &rx_ring->rx_buffer_info[i];
537                         rx_desc = IGB_RX_DESC(rx_ring, i);
538                         u0 = (struct my_u0 *)rx_desc;
539                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
540
541                         if (i == rx_ring->next_to_use)
542                                 next_desc = " NTU";
543                         else if (i == rx_ring->next_to_clean)
544                                 next_desc = " NTC";
545                         else
546                                 next_desc = "";
547
548                         if (staterr & E1000_RXD_STAT_DD) {
549                                 /* Descriptor Done */
550                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
551                                         "RWB", i,
552                                         le64_to_cpu(u0->a),
553                                         le64_to_cpu(u0->b),
554                                         next_desc);
555                         } else {
556                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
557                                         "R  ", i,
558                                         le64_to_cpu(u0->a),
559                                         le64_to_cpu(u0->b),
560                                         (u64)buffer_info->dma,
561                                         next_desc);
562
563                                 if (netif_msg_pktdata(adapter) &&
564                                     buffer_info->dma && buffer_info->page) {
565                                         print_hex_dump(KERN_INFO, "",
566                                           DUMP_PREFIX_ADDRESS,
567                                           16, 1,
568                                           page_address(buffer_info->page) +
569                                                       buffer_info->page_offset,
570                                           igb_rx_bufsz(rx_ring), true);
571                                 }
572                         }
573                 }
574         }
575
576 exit:
577         return;
578 }
579
580 /**
581  *  igb_get_i2c_data - Reads the I2C SDA data bit
582  *  @hw: pointer to hardware structure
583  *  @i2cctl: Current value of I2CCTL register
584  *
585  *  Returns the I2C data bit value
586  **/
587 static int igb_get_i2c_data(void *data)
588 {
589         struct igb_adapter *adapter = (struct igb_adapter *)data;
590         struct e1000_hw *hw = &adapter->hw;
591         s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593         return !!(i2cctl & E1000_I2C_DATA_IN);
594 }
595
596 /**
597  *  igb_set_i2c_data - Sets the I2C data bit
598  *  @data: pointer to hardware structure
599  *  @state: I2C data value (0 or 1) to set
600  *
601  *  Sets the I2C data bit
602  **/
603 static void igb_set_i2c_data(void *data, int state)
604 {
605         struct igb_adapter *adapter = (struct igb_adapter *)data;
606         struct e1000_hw *hw = &adapter->hw;
607         s32 i2cctl = rd32(E1000_I2CPARAMS);
608
609         if (state)
610                 i2cctl |= E1000_I2C_DATA_OUT;
611         else
612                 i2cctl &= ~E1000_I2C_DATA_OUT;
613
614         i2cctl &= ~E1000_I2C_DATA_OE_N;
615         i2cctl |= E1000_I2C_CLK_OE_N;
616         wr32(E1000_I2CPARAMS, i2cctl);
617         wrfl();
618
619 }
620
621 /**
622  *  igb_set_i2c_clk - Sets the I2C SCL clock
623  *  @data: pointer to hardware structure
624  *  @state: state to set clock
625  *
626  *  Sets the I2C clock line to state
627  **/
628 static void igb_set_i2c_clk(void *data, int state)
629 {
630         struct igb_adapter *adapter = (struct igb_adapter *)data;
631         struct e1000_hw *hw = &adapter->hw;
632         s32 i2cctl = rd32(E1000_I2CPARAMS);
633
634         if (state) {
635                 i2cctl |= E1000_I2C_CLK_OUT;
636                 i2cctl &= ~E1000_I2C_CLK_OE_N;
637         } else {
638                 i2cctl &= ~E1000_I2C_CLK_OUT;
639                 i2cctl &= ~E1000_I2C_CLK_OE_N;
640         }
641         wr32(E1000_I2CPARAMS, i2cctl);
642         wrfl();
643 }
644
645 /**
646  *  igb_get_i2c_clk - Gets the I2C SCL clock state
647  *  @data: pointer to hardware structure
648  *
649  *  Gets the I2C clock state
650  **/
651 static int igb_get_i2c_clk(void *data)
652 {
653         struct igb_adapter *adapter = (struct igb_adapter *)data;
654         struct e1000_hw *hw = &adapter->hw;
655         s32 i2cctl = rd32(E1000_I2CPARAMS);
656
657         return !!(i2cctl & E1000_I2C_CLK_IN);
658 }
659
660 static const struct i2c_algo_bit_data igb_i2c_algo = {
661         .setsda         = igb_set_i2c_data,
662         .setscl         = igb_set_i2c_clk,
663         .getsda         = igb_get_i2c_data,
664         .getscl         = igb_get_i2c_clk,
665         .udelay         = 5,
666         .timeout        = 20,
667 };
668
669 /**
670  *  igb_get_hw_dev - return device
671  *  @hw: pointer to hardware structure
672  *
673  *  used by hardware layer to print debugging information
674  **/
675 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
676 {
677         struct igb_adapter *adapter = hw->back;
678         return adapter->netdev;
679 }
680
681 /**
682  *  igb_init_module - Driver Registration Routine
683  *
684  *  igb_init_module is the first routine called when the driver is
685  *  loaded. All it does is register with the PCI subsystem.
686  **/
687 static int __init igb_init_module(void)
688 {
689         int ret;
690
691         pr_info("%s - version %s\n",
692                igb_driver_string, igb_driver_version);
693         pr_info("%s\n", igb_copyright);
694
695 #ifdef CONFIG_IGB_DCA
696         dca_register_notify(&dca_notifier);
697 #endif
698         ret = pci_register_driver(&igb_driver);
699         return ret;
700 }
701
702 module_init(igb_init_module);
703
704 /**
705  *  igb_exit_module - Driver Exit Cleanup Routine
706  *
707  *  igb_exit_module is called just before the driver is removed
708  *  from memory.
709  **/
710 static void __exit igb_exit_module(void)
711 {
712 #ifdef CONFIG_IGB_DCA
713         dca_unregister_notify(&dca_notifier);
714 #endif
715         pci_unregister_driver(&igb_driver);
716 }
717
718 module_exit(igb_exit_module);
719
720 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
721 /**
722  *  igb_cache_ring_register - Descriptor ring to register mapping
723  *  @adapter: board private structure to initialize
724  *
725  *  Once we know the feature-set enabled for the device, we'll cache
726  *  the register offset the descriptor ring is assigned to.
727  **/
728 static void igb_cache_ring_register(struct igb_adapter *adapter)
729 {
730         int i = 0, j = 0;
731         u32 rbase_offset = adapter->vfs_allocated_count;
732
733         switch (adapter->hw.mac.type) {
734         case e1000_82576:
735                 /* The queues are allocated for virtualization such that VF 0
736                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
737                  * In order to avoid collision we start at the first free queue
738                  * and continue consuming queues in the same sequence
739                  */
740                 if (adapter->vfs_allocated_count) {
741                         for (; i < adapter->rss_queues; i++)
742                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
743                                                                Q_IDX_82576(i);
744                 }
745                 /* Fall through */
746         case e1000_82575:
747         case e1000_82580:
748         case e1000_i350:
749         case e1000_i354:
750         case e1000_i210:
751         case e1000_i211:
752                 /* Fall through */
753         default:
754                 for (; i < adapter->num_rx_queues; i++)
755                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
756                 for (; j < adapter->num_tx_queues; j++)
757                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
758                 break;
759         }
760 }
761
762 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
763 {
764         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
765         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
766         u32 value = 0;
767
768         if (E1000_REMOVED(hw_addr))
769                 return ~value;
770
771         value = readl(&hw_addr[reg]);
772
773         /* reads should not return all F's */
774         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
775                 struct net_device *netdev = igb->netdev;
776                 hw->hw_addr = NULL;
777                 netif_device_detach(netdev);
778                 netdev_err(netdev, "PCIe link lost, device now detached\n");
779         }
780
781         return value;
782 }
783
784 /**
785  *  igb_write_ivar - configure ivar for given MSI-X vector
786  *  @hw: pointer to the HW structure
787  *  @msix_vector: vector number we are allocating to a given ring
788  *  @index: row index of IVAR register to write within IVAR table
789  *  @offset: column offset of in IVAR, should be multiple of 8
790  *
791  *  This function is intended to handle the writing of the IVAR register
792  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
793  *  each containing an cause allocation for an Rx and Tx ring, and a
794  *  variable number of rows depending on the number of queues supported.
795  **/
796 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
797                            int index, int offset)
798 {
799         u32 ivar = array_rd32(E1000_IVAR0, index);
800
801         /* clear any bits that are currently set */
802         ivar &= ~((u32)0xFF << offset);
803
804         /* write vector and valid bit */
805         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
806
807         array_wr32(E1000_IVAR0, index, ivar);
808 }
809
810 #define IGB_N0_QUEUE -1
811 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
812 {
813         struct igb_adapter *adapter = q_vector->adapter;
814         struct e1000_hw *hw = &adapter->hw;
815         int rx_queue = IGB_N0_QUEUE;
816         int tx_queue = IGB_N0_QUEUE;
817         u32 msixbm = 0;
818
819         if (q_vector->rx.ring)
820                 rx_queue = q_vector->rx.ring->reg_idx;
821         if (q_vector->tx.ring)
822                 tx_queue = q_vector->tx.ring->reg_idx;
823
824         switch (hw->mac.type) {
825         case e1000_82575:
826                 /* The 82575 assigns vectors using a bitmask, which matches the
827                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
828                  * or more queues to a vector, we write the appropriate bits
829                  * into the MSIXBM register for that vector.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
833                 if (tx_queue > IGB_N0_QUEUE)
834                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
835                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
836                         msixbm |= E1000_EIMS_OTHER;
837                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
838                 q_vector->eims_value = msixbm;
839                 break;
840         case e1000_82576:
841                 /* 82576 uses a table that essentially consists of 2 columns
842                  * with 8 rows.  The ordering is column-major so we use the
843                  * lower 3 bits as the row index, and the 4th bit as the
844                  * column offset.
845                  */
846                 if (rx_queue > IGB_N0_QUEUE)
847                         igb_write_ivar(hw, msix_vector,
848                                        rx_queue & 0x7,
849                                        (rx_queue & 0x8) << 1);
850                 if (tx_queue > IGB_N0_QUEUE)
851                         igb_write_ivar(hw, msix_vector,
852                                        tx_queue & 0x7,
853                                        ((tx_queue & 0x8) << 1) + 8);
854                 q_vector->eims_value = BIT(msix_vector);
855                 break;
856         case e1000_82580:
857         case e1000_i350:
858         case e1000_i354:
859         case e1000_i210:
860         case e1000_i211:
861                 /* On 82580 and newer adapters the scheme is similar to 82576
862                  * however instead of ordering column-major we have things
863                  * ordered row-major.  So we traverse the table by using
864                  * bit 0 as the column offset, and the remaining bits as the
865                  * row index.
866                  */
867                 if (rx_queue > IGB_N0_QUEUE)
868                         igb_write_ivar(hw, msix_vector,
869                                        rx_queue >> 1,
870                                        (rx_queue & 0x1) << 4);
871                 if (tx_queue > IGB_N0_QUEUE)
872                         igb_write_ivar(hw, msix_vector,
873                                        tx_queue >> 1,
874                                        ((tx_queue & 0x1) << 4) + 8);
875                 q_vector->eims_value = BIT(msix_vector);
876                 break;
877         default:
878                 BUG();
879                 break;
880         }
881
882         /* add q_vector eims value to global eims_enable_mask */
883         adapter->eims_enable_mask |= q_vector->eims_value;
884
885         /* configure q_vector to set itr on first interrupt */
886         q_vector->set_itr = 1;
887 }
888
889 /**
890  *  igb_configure_msix - Configure MSI-X hardware
891  *  @adapter: board private structure to initialize
892  *
893  *  igb_configure_msix sets up the hardware to properly
894  *  generate MSI-X interrupts.
895  **/
896 static void igb_configure_msix(struct igb_adapter *adapter)
897 {
898         u32 tmp;
899         int i, vector = 0;
900         struct e1000_hw *hw = &adapter->hw;
901
902         adapter->eims_enable_mask = 0;
903
904         /* set vector for other causes, i.e. link changes */
905         switch (hw->mac.type) {
906         case e1000_82575:
907                 tmp = rd32(E1000_CTRL_EXT);
908                 /* enable MSI-X PBA support*/
909                 tmp |= E1000_CTRL_EXT_PBA_CLR;
910
911                 /* Auto-Mask interrupts upon ICR read. */
912                 tmp |= E1000_CTRL_EXT_EIAME;
913                 tmp |= E1000_CTRL_EXT_IRCA;
914
915                 wr32(E1000_CTRL_EXT, tmp);
916
917                 /* enable msix_other interrupt */
918                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
919                 adapter->eims_other = E1000_EIMS_OTHER;
920
921                 break;
922
923         case e1000_82576:
924         case e1000_82580:
925         case e1000_i350:
926         case e1000_i354:
927         case e1000_i210:
928         case e1000_i211:
929                 /* Turn on MSI-X capability first, or our settings
930                  * won't stick.  And it will take days to debug.
931                  */
932                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
933                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
934                      E1000_GPIE_NSICR);
935
936                 /* enable msix_other interrupt */
937                 adapter->eims_other = BIT(vector);
938                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
939
940                 wr32(E1000_IVAR_MISC, tmp);
941                 break;
942         default:
943                 /* do nothing, since nothing else supports MSI-X */
944                 break;
945         } /* switch (hw->mac.type) */
946
947         adapter->eims_enable_mask |= adapter->eims_other;
948
949         for (i = 0; i < adapter->num_q_vectors; i++)
950                 igb_assign_vector(adapter->q_vector[i], vector++);
951
952         wrfl();
953 }
954
955 /**
956  *  igb_request_msix - Initialize MSI-X interrupts
957  *  @adapter: board private structure to initialize
958  *
959  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
960  *  kernel.
961  **/
962 static int igb_request_msix(struct igb_adapter *adapter)
963 {
964         struct net_device *netdev = adapter->netdev;
965         int i, err = 0, vector = 0, free_vector = 0;
966
967         err = request_irq(adapter->msix_entries[vector].vector,
968                           igb_msix_other, 0, netdev->name, adapter);
969         if (err)
970                 goto err_out;
971
972         for (i = 0; i < adapter->num_q_vectors; i++) {
973                 struct igb_q_vector *q_vector = adapter->q_vector[i];
974
975                 vector++;
976
977                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
978
979                 if (q_vector->rx.ring && q_vector->tx.ring)
980                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
981                                 q_vector->rx.ring->queue_index);
982                 else if (q_vector->tx.ring)
983                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
984                                 q_vector->tx.ring->queue_index);
985                 else if (q_vector->rx.ring)
986                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
987                                 q_vector->rx.ring->queue_index);
988                 else
989                         sprintf(q_vector->name, "%s-unused", netdev->name);
990
991                 err = request_irq(adapter->msix_entries[vector].vector,
992                                   igb_msix_ring, 0, q_vector->name,
993                                   q_vector);
994                 if (err)
995                         goto err_free;
996         }
997
998         igb_configure_msix(adapter);
999         return 0;
1000
1001 err_free:
1002         /* free already assigned IRQs */
1003         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1004
1005         vector--;
1006         for (i = 0; i < vector; i++) {
1007                 free_irq(adapter->msix_entries[free_vector++].vector,
1008                          adapter->q_vector[i]);
1009         }
1010 err_out:
1011         return err;
1012 }
1013
1014 /**
1015  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1016  *  @adapter: board private structure to initialize
1017  *  @v_idx: Index of vector to be freed
1018  *
1019  *  This function frees the memory allocated to the q_vector.
1020  **/
1021 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1022 {
1023         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025         adapter->q_vector[v_idx] = NULL;
1026
1027         /* igb_get_stats64() might access the rings on this vector,
1028          * we must wait a grace period before freeing it.
1029          */
1030         if (q_vector)
1031                 kfree_rcu(q_vector, rcu);
1032 }
1033
1034 /**
1035  *  igb_reset_q_vector - Reset config for interrupt vector
1036  *  @adapter: board private structure to initialize
1037  *  @v_idx: Index of vector to be reset
1038  *
1039  *  If NAPI is enabled it will delete any references to the
1040  *  NAPI struct. This is preparation for igb_free_q_vector.
1041  **/
1042 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1043 {
1044         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1045
1046         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1047          * allocated. So, q_vector is NULL so we should stop here.
1048          */
1049         if (!q_vector)
1050                 return;
1051
1052         if (q_vector->tx.ring)
1053                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1054
1055         if (q_vector->rx.ring)
1056                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1057
1058         netif_napi_del(&q_vector->napi);
1059
1060 }
1061
1062 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1063 {
1064         int v_idx = adapter->num_q_vectors;
1065
1066         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1067                 pci_disable_msix(adapter->pdev);
1068         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1069                 pci_disable_msi(adapter->pdev);
1070
1071         while (v_idx--)
1072                 igb_reset_q_vector(adapter, v_idx);
1073 }
1074
1075 /**
1076  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1077  *  @adapter: board private structure to initialize
1078  *
1079  *  This function frees the memory allocated to the q_vectors.  In addition if
1080  *  NAPI is enabled it will delete any references to the NAPI struct prior
1081  *  to freeing the q_vector.
1082  **/
1083 static void igb_free_q_vectors(struct igb_adapter *adapter)
1084 {
1085         int v_idx = adapter->num_q_vectors;
1086
1087         adapter->num_tx_queues = 0;
1088         adapter->num_rx_queues = 0;
1089         adapter->num_q_vectors = 0;
1090
1091         while (v_idx--) {
1092                 igb_reset_q_vector(adapter, v_idx);
1093                 igb_free_q_vector(adapter, v_idx);
1094         }
1095 }
1096
1097 /**
1098  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1099  *  @adapter: board private structure to initialize
1100  *
1101  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1102  *  MSI-X interrupts allocated.
1103  */
1104 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1105 {
1106         igb_free_q_vectors(adapter);
1107         igb_reset_interrupt_capability(adapter);
1108 }
1109
1110 /**
1111  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1112  *  @adapter: board private structure to initialize
1113  *  @msix: boolean value of MSIX capability
1114  *
1115  *  Attempt to configure interrupts using the best available
1116  *  capabilities of the hardware and kernel.
1117  **/
1118 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1119 {
1120         int err;
1121         int numvecs, i;
1122
1123         if (!msix)
1124                 goto msi_only;
1125         adapter->flags |= IGB_FLAG_HAS_MSIX;
1126
1127         /* Number of supported queues. */
1128         adapter->num_rx_queues = adapter->rss_queues;
1129         if (adapter->vfs_allocated_count)
1130                 adapter->num_tx_queues = 1;
1131         else
1132                 adapter->num_tx_queues = adapter->rss_queues;
1133
1134         /* start with one vector for every Rx queue */
1135         numvecs = adapter->num_rx_queues;
1136
1137         /* if Tx handler is separate add 1 for every Tx queue */
1138         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1139                 numvecs += adapter->num_tx_queues;
1140
1141         /* store the number of vectors reserved for queues */
1142         adapter->num_q_vectors = numvecs;
1143
1144         /* add 1 vector for link status interrupts */
1145         numvecs++;
1146         for (i = 0; i < numvecs; i++)
1147                 adapter->msix_entries[i].entry = i;
1148
1149         err = pci_enable_msix_range(adapter->pdev,
1150                                     adapter->msix_entries,
1151                                     numvecs,
1152                                     numvecs);
1153         if (err > 0)
1154                 return;
1155
1156         igb_reset_interrupt_capability(adapter);
1157
1158         /* If we can't do MSI-X, try MSI */
1159 msi_only:
1160         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1161 #ifdef CONFIG_PCI_IOV
1162         /* disable SR-IOV for non MSI-X configurations */
1163         if (adapter->vf_data) {
1164                 struct e1000_hw *hw = &adapter->hw;
1165                 /* disable iov and allow time for transactions to clear */
1166                 pci_disable_sriov(adapter->pdev);
1167                 msleep(500);
1168
1169                 kfree(adapter->vf_mac_list);
1170                 adapter->vf_mac_list = NULL;
1171                 kfree(adapter->vf_data);
1172                 adapter->vf_data = NULL;
1173                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1174                 wrfl();
1175                 msleep(100);
1176                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1177         }
1178 #endif
1179         adapter->vfs_allocated_count = 0;
1180         adapter->rss_queues = 1;
1181         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1182         adapter->num_rx_queues = 1;
1183         adapter->num_tx_queues = 1;
1184         adapter->num_q_vectors = 1;
1185         if (!pci_enable_msi(adapter->pdev))
1186                 adapter->flags |= IGB_FLAG_HAS_MSI;
1187 }
1188
1189 static void igb_add_ring(struct igb_ring *ring,
1190                          struct igb_ring_container *head)
1191 {
1192         head->ring = ring;
1193         head->count++;
1194 }
1195
1196 /**
1197  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1198  *  @adapter: board private structure to initialize
1199  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1200  *  @v_idx: index of vector in adapter struct
1201  *  @txr_count: total number of Tx rings to allocate
1202  *  @txr_idx: index of first Tx ring to allocate
1203  *  @rxr_count: total number of Rx rings to allocate
1204  *  @rxr_idx: index of first Rx ring to allocate
1205  *
1206  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1207  **/
1208 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1209                               int v_count, int v_idx,
1210                               int txr_count, int txr_idx,
1211                               int rxr_count, int rxr_idx)
1212 {
1213         struct igb_q_vector *q_vector;
1214         struct igb_ring *ring;
1215         int ring_count, size;
1216
1217         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1218         if (txr_count > 1 || rxr_count > 1)
1219                 return -ENOMEM;
1220
1221         ring_count = txr_count + rxr_count;
1222         size = sizeof(struct igb_q_vector) +
1223                (sizeof(struct igb_ring) * ring_count);
1224
1225         /* allocate q_vector and rings */
1226         q_vector = adapter->q_vector[v_idx];
1227         if (!q_vector) {
1228                 q_vector = kzalloc(size, GFP_KERNEL);
1229         } else if (size > ksize(q_vector)) {
1230                 kfree_rcu(q_vector, rcu);
1231                 q_vector = kzalloc(size, GFP_KERNEL);
1232         } else {
1233                 memset(q_vector, 0, size);
1234         }
1235         if (!q_vector)
1236                 return -ENOMEM;
1237
1238         /* initialize NAPI */
1239         netif_napi_add(adapter->netdev, &q_vector->napi,
1240                        igb_poll, 64);
1241
1242         /* tie q_vector and adapter together */
1243         adapter->q_vector[v_idx] = q_vector;
1244         q_vector->adapter = adapter;
1245
1246         /* initialize work limits */
1247         q_vector->tx.work_limit = adapter->tx_work_limit;
1248
1249         /* initialize ITR configuration */
1250         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1251         q_vector->itr_val = IGB_START_ITR;
1252
1253         /* initialize pointer to rings */
1254         ring = q_vector->ring;
1255
1256         /* intialize ITR */
1257         if (rxr_count) {
1258                 /* rx or rx/tx vector */
1259                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1260                         q_vector->itr_val = adapter->rx_itr_setting;
1261         } else {
1262                 /* tx only vector */
1263                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1264                         q_vector->itr_val = adapter->tx_itr_setting;
1265         }
1266
1267         if (txr_count) {
1268                 /* assign generic ring traits */
1269                 ring->dev = &adapter->pdev->dev;
1270                 ring->netdev = adapter->netdev;
1271
1272                 /* configure backlink on ring */
1273                 ring->q_vector = q_vector;
1274
1275                 /* update q_vector Tx values */
1276                 igb_add_ring(ring, &q_vector->tx);
1277
1278                 /* For 82575, context index must be unique per ring. */
1279                 if (adapter->hw.mac.type == e1000_82575)
1280                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1281
1282                 /* apply Tx specific ring traits */
1283                 ring->count = adapter->tx_ring_count;
1284                 ring->queue_index = txr_idx;
1285
1286                 ring->cbs_enable = false;
1287                 ring->idleslope = 0;
1288                 ring->sendslope = 0;
1289                 ring->hicredit = 0;
1290                 ring->locredit = 0;
1291
1292                 u64_stats_init(&ring->tx_syncp);
1293                 u64_stats_init(&ring->tx_syncp2);
1294
1295                 /* assign ring to adapter */
1296                 adapter->tx_ring[txr_idx] = ring;
1297
1298                 /* push pointer to next ring */
1299                 ring++;
1300         }
1301
1302         if (rxr_count) {
1303                 /* assign generic ring traits */
1304                 ring->dev = &adapter->pdev->dev;
1305                 ring->netdev = adapter->netdev;
1306
1307                 /* configure backlink on ring */
1308                 ring->q_vector = q_vector;
1309
1310                 /* update q_vector Rx values */
1311                 igb_add_ring(ring, &q_vector->rx);
1312
1313                 /* set flag indicating ring supports SCTP checksum offload */
1314                 if (adapter->hw.mac.type >= e1000_82576)
1315                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1316
1317                 /* On i350, i354, i210, and i211, loopback VLAN packets
1318                  * have the tag byte-swapped.
1319                  */
1320                 if (adapter->hw.mac.type >= e1000_i350)
1321                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1322
1323                 /* apply Rx specific ring traits */
1324                 ring->count = adapter->rx_ring_count;
1325                 ring->queue_index = rxr_idx;
1326
1327                 u64_stats_init(&ring->rx_syncp);
1328
1329                 /* assign ring to adapter */
1330                 adapter->rx_ring[rxr_idx] = ring;
1331         }
1332
1333         return 0;
1334 }
1335
1336
1337 /**
1338  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1339  *  @adapter: board private structure to initialize
1340  *
1341  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1342  *  return -ENOMEM.
1343  **/
1344 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1345 {
1346         int q_vectors = adapter->num_q_vectors;
1347         int rxr_remaining = adapter->num_rx_queues;
1348         int txr_remaining = adapter->num_tx_queues;
1349         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1350         int err;
1351
1352         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1353                 for (; rxr_remaining; v_idx++) {
1354                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1355                                                  0, 0, 1, rxr_idx);
1356
1357                         if (err)
1358                                 goto err_out;
1359
1360                         /* update counts and index */
1361                         rxr_remaining--;
1362                         rxr_idx++;
1363                 }
1364         }
1365
1366         for (; v_idx < q_vectors; v_idx++) {
1367                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1368                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1369
1370                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1371                                          tqpv, txr_idx, rqpv, rxr_idx);
1372
1373                 if (err)
1374                         goto err_out;
1375
1376                 /* update counts and index */
1377                 rxr_remaining -= rqpv;
1378                 txr_remaining -= tqpv;
1379                 rxr_idx++;
1380                 txr_idx++;
1381         }
1382
1383         return 0;
1384
1385 err_out:
1386         adapter->num_tx_queues = 0;
1387         adapter->num_rx_queues = 0;
1388         adapter->num_q_vectors = 0;
1389
1390         while (v_idx--)
1391                 igb_free_q_vector(adapter, v_idx);
1392
1393         return -ENOMEM;
1394 }
1395
1396 /**
1397  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1398  *  @adapter: board private structure to initialize
1399  *  @msix: boolean value of MSIX capability
1400  *
1401  *  This function initializes the interrupts and allocates all of the queues.
1402  **/
1403 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1404 {
1405         struct pci_dev *pdev = adapter->pdev;
1406         int err;
1407
1408         igb_set_interrupt_capability(adapter, msix);
1409
1410         err = igb_alloc_q_vectors(adapter);
1411         if (err) {
1412                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1413                 goto err_alloc_q_vectors;
1414         }
1415
1416         igb_cache_ring_register(adapter);
1417
1418         return 0;
1419
1420 err_alloc_q_vectors:
1421         igb_reset_interrupt_capability(adapter);
1422         return err;
1423 }
1424
1425 /**
1426  *  igb_request_irq - initialize interrupts
1427  *  @adapter: board private structure to initialize
1428  *
1429  *  Attempts to configure interrupts using the best available
1430  *  capabilities of the hardware and kernel.
1431  **/
1432 static int igb_request_irq(struct igb_adapter *adapter)
1433 {
1434         struct net_device *netdev = adapter->netdev;
1435         struct pci_dev *pdev = adapter->pdev;
1436         int err = 0;
1437
1438         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1439                 err = igb_request_msix(adapter);
1440                 if (!err)
1441                         goto request_done;
1442                 /* fall back to MSI */
1443                 igb_free_all_tx_resources(adapter);
1444                 igb_free_all_rx_resources(adapter);
1445
1446                 igb_clear_interrupt_scheme(adapter);
1447                 err = igb_init_interrupt_scheme(adapter, false);
1448                 if (err)
1449                         goto request_done;
1450
1451                 igb_setup_all_tx_resources(adapter);
1452                 igb_setup_all_rx_resources(adapter);
1453                 igb_configure(adapter);
1454         }
1455
1456         igb_assign_vector(adapter->q_vector[0], 0);
1457
1458         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1459                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1460                                   netdev->name, adapter);
1461                 if (!err)
1462                         goto request_done;
1463
1464                 /* fall back to legacy interrupts */
1465                 igb_reset_interrupt_capability(adapter);
1466                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1467         }
1468
1469         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1470                           netdev->name, adapter);
1471
1472         if (err)
1473                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1474                         err);
1475
1476 request_done:
1477         return err;
1478 }
1479
1480 static void igb_free_irq(struct igb_adapter *adapter)
1481 {
1482         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483                 int vector = 0, i;
1484
1485                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1486
1487                 for (i = 0; i < adapter->num_q_vectors; i++)
1488                         free_irq(adapter->msix_entries[vector++].vector,
1489                                  adapter->q_vector[i]);
1490         } else {
1491                 free_irq(adapter->pdev->irq, adapter);
1492         }
1493 }
1494
1495 /**
1496  *  igb_irq_disable - Mask off interrupt generation on the NIC
1497  *  @adapter: board private structure
1498  **/
1499 static void igb_irq_disable(struct igb_adapter *adapter)
1500 {
1501         struct e1000_hw *hw = &adapter->hw;
1502
1503         /* we need to be careful when disabling interrupts.  The VFs are also
1504          * mapped into these registers and so clearing the bits can cause
1505          * issues on the VF drivers so we only need to clear what we set
1506          */
1507         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508                 u32 regval = rd32(E1000_EIAM);
1509
1510                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1511                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1512                 regval = rd32(E1000_EIAC);
1513                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1514         }
1515
1516         wr32(E1000_IAM, 0);
1517         wr32(E1000_IMC, ~0);
1518         wrfl();
1519         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1520                 int i;
1521
1522                 for (i = 0; i < adapter->num_q_vectors; i++)
1523                         synchronize_irq(adapter->msix_entries[i].vector);
1524         } else {
1525                 synchronize_irq(adapter->pdev->irq);
1526         }
1527 }
1528
1529 /**
1530  *  igb_irq_enable - Enable default interrupt generation settings
1531  *  @adapter: board private structure
1532  **/
1533 static void igb_irq_enable(struct igb_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536
1537         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1538                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1539                 u32 regval = rd32(E1000_EIAC);
1540
1541                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1542                 regval = rd32(E1000_EIAM);
1543                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1544                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1545                 if (adapter->vfs_allocated_count) {
1546                         wr32(E1000_MBVFIMR, 0xFF);
1547                         ims |= E1000_IMS_VMMB;
1548                 }
1549                 wr32(E1000_IMS, ims);
1550         } else {
1551                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1552                                 E1000_IMS_DRSTA);
1553                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1554                                 E1000_IMS_DRSTA);
1555         }
1556 }
1557
1558 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1559 {
1560         struct e1000_hw *hw = &adapter->hw;
1561         u16 pf_id = adapter->vfs_allocated_count;
1562         u16 vid = adapter->hw.mng_cookie.vlan_id;
1563         u16 old_vid = adapter->mng_vlan_id;
1564
1565         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1566                 /* add VID to filter table */
1567                 igb_vfta_set(hw, vid, pf_id, true, true);
1568                 adapter->mng_vlan_id = vid;
1569         } else {
1570                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1571         }
1572
1573         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1574             (vid != old_vid) &&
1575             !test_bit(old_vid, adapter->active_vlans)) {
1576                 /* remove VID from filter table */
1577                 igb_vfta_set(hw, vid, pf_id, false, true);
1578         }
1579 }
1580
1581 /**
1582  *  igb_release_hw_control - release control of the h/w to f/w
1583  *  @adapter: address of board private structure
1584  *
1585  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1586  *  For ASF and Pass Through versions of f/w this means that the
1587  *  driver is no longer loaded.
1588  **/
1589 static void igb_release_hw_control(struct igb_adapter *adapter)
1590 {
1591         struct e1000_hw *hw = &adapter->hw;
1592         u32 ctrl_ext;
1593
1594         /* Let firmware take over control of h/w */
1595         ctrl_ext = rd32(E1000_CTRL_EXT);
1596         wr32(E1000_CTRL_EXT,
1597                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1598 }
1599
1600 /**
1601  *  igb_get_hw_control - get control of the h/w from f/w
1602  *  @adapter: address of board private structure
1603  *
1604  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1605  *  For ASF and Pass Through versions of f/w this means that
1606  *  the driver is loaded.
1607  **/
1608 static void igb_get_hw_control(struct igb_adapter *adapter)
1609 {
1610         struct e1000_hw *hw = &adapter->hw;
1611         u32 ctrl_ext;
1612
1613         /* Let firmware know the driver has taken over */
1614         ctrl_ext = rd32(E1000_CTRL_EXT);
1615         wr32(E1000_CTRL_EXT,
1616                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1617 }
1618
1619 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1620 {
1621         struct net_device *netdev = adapter->netdev;
1622         struct e1000_hw *hw = &adapter->hw;
1623
1624         WARN_ON(hw->mac.type != e1000_i210);
1625
1626         if (enable)
1627                 adapter->flags |= IGB_FLAG_FQTSS;
1628         else
1629                 adapter->flags &= ~IGB_FLAG_FQTSS;
1630
1631         if (netif_running(netdev))
1632                 schedule_work(&adapter->reset_task);
1633 }
1634
1635 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1636 {
1637         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1638 }
1639
1640 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1641                                    enum tx_queue_prio prio)
1642 {
1643         u32 val;
1644
1645         WARN_ON(hw->mac.type != e1000_i210);
1646         WARN_ON(queue < 0 || queue > 4);
1647
1648         val = rd32(E1000_I210_TXDCTL(queue));
1649
1650         if (prio == TX_QUEUE_PRIO_HIGH)
1651                 val |= E1000_TXDCTL_PRIORITY;
1652         else
1653                 val &= ~E1000_TXDCTL_PRIORITY;
1654
1655         wr32(E1000_I210_TXDCTL(queue), val);
1656 }
1657
1658 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1659 {
1660         u32 val;
1661
1662         WARN_ON(hw->mac.type != e1000_i210);
1663         WARN_ON(queue < 0 || queue > 1);
1664
1665         val = rd32(E1000_I210_TQAVCC(queue));
1666
1667         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1668                 val |= E1000_TQAVCC_QUEUEMODE;
1669         else
1670                 val &= ~E1000_TQAVCC_QUEUEMODE;
1671
1672         wr32(E1000_I210_TQAVCC(queue), val);
1673 }
1674
1675 /**
1676  *  igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1677  *  @adapter: pointer to adapter struct
1678  *  @queue: queue number
1679  *  @enable: true = enable CBS, false = disable CBS
1680  *  @idleslope: idleSlope in kbps
1681  *  @sendslope: sendSlope in kbps
1682  *  @hicredit: hiCredit in bytes
1683  *  @locredit: loCredit in bytes
1684  *
1685  *  Configure CBS for a given hardware queue. When disabling, idleslope,
1686  *  sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1687  *  success. Negative otherwise.
1688  **/
1689 static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1690                               bool enable, int idleslope, int sendslope,
1691                               int hicredit, int locredit)
1692 {
1693         struct net_device *netdev = adapter->netdev;
1694         struct e1000_hw *hw = &adapter->hw;
1695         u32 tqavcc;
1696         u16 value;
1697
1698         WARN_ON(hw->mac.type != e1000_i210);
1699         WARN_ON(queue < 0 || queue > 1);
1700
1701         if (enable) {
1702                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704
1705                 /* According to i210 datasheet section 7.2.7.7, we should set
1706                  * the 'idleSlope' field from TQAVCC register following the
1707                  * equation:
1708                  *
1709                  * For 100 Mbps link speed:
1710                  *
1711                  *     value = BW * 0x7735 * 0.2                          (E1)
1712                  *
1713                  * For 1000Mbps link speed:
1714                  *
1715                  *     value = BW * 0x7735 * 2                            (E2)
1716                  *
1717                  * E1 and E2 can be merged into one equation as shown below.
1718                  * Note that 'link-speed' is in Mbps.
1719                  *
1720                  *     value = BW * 0x7735 * 2 * link-speed
1721                  *                           --------------               (E3)
1722                  *                                1000
1723                  *
1724                  * 'BW' is the percentage bandwidth out of full link speed
1725                  * which can be found with the following equation. Note that
1726                  * idleSlope here is the parameter from this function which
1727                  * is in kbps.
1728                  *
1729                  *     BW =     idleSlope
1730                  *          -----------------                             (E4)
1731                  *          link-speed * 1000
1732                  *
1733                  * That said, we can come up with a generic equation to
1734                  * calculate the value we should set it TQAVCC register by
1735                  * replacing 'BW' in E3 by E4. The resulting equation is:
1736                  *
1737                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1738                  *         -----------------            --------------    (E5)
1739                  *         link-speed * 1000                 1000
1740                  *
1741                  * 'link-speed' is present in both sides of the fraction so
1742                  * it is canceled out. The final equation is the following:
1743                  *
1744                  *     value = idleSlope * 61034
1745                  *             -----------------                          (E6)
1746                  *                  1000000
1747                  */
1748                 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1749
1750                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1751                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1752                 tqavcc |= value;
1753                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1754
1755                 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1756         } else {
1757                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1758                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1759
1760                 /* Set idleSlope to zero. */
1761                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1762                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1763                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1764
1765                 /* Set hiCredit to zero. */
1766                 wr32(E1000_I210_TQAVHC(queue), 0);
1767         }
1768
1769         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1770          * CBS are not configurable by software so we don't do any 'controller
1771          * configuration' in respect to these parameters.
1772          */
1773
1774         netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1775                    (enable) ? "enabled" : "disabled", queue,
1776                    idleslope, sendslope, hicredit, locredit);
1777 }
1778
1779 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1780                                bool enable, int idleslope, int sendslope,
1781                                int hicredit, int locredit)
1782 {
1783         struct igb_ring *ring;
1784
1785         if (queue < 0 || queue > adapter->num_tx_queues)
1786                 return -EINVAL;
1787
1788         ring = adapter->tx_ring[queue];
1789
1790         ring->cbs_enable = enable;
1791         ring->idleslope = idleslope;
1792         ring->sendslope = sendslope;
1793         ring->hicredit = hicredit;
1794         ring->locredit = locredit;
1795
1796         return 0;
1797 }
1798
1799 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1800 {
1801         struct igb_ring *ring;
1802         int i;
1803
1804         for (i = 0; i < adapter->num_tx_queues; i++) {
1805                 ring = adapter->tx_ring[i];
1806
1807                 if (ring->cbs_enable)
1808                         return true;
1809         }
1810
1811         return false;
1812 }
1813
1814 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1815 {
1816         struct net_device *netdev = adapter->netdev;
1817         struct e1000_hw *hw = &adapter->hw;
1818         u32 val;
1819
1820         /* Only i210 controller supports changing the transmission mode. */
1821         if (hw->mac.type != e1000_i210)
1822                 return;
1823
1824         if (is_fqtss_enabled(adapter)) {
1825                 int i, max_queue;
1826
1827                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1828                  * set data fetch arbitration to 'round robin' and set data
1829                  * transfer arbitration to 'credit shaper algorithm.
1830                  */
1831                 val = rd32(E1000_I210_TQAVCTRL);
1832                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1833                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1834                 wr32(E1000_I210_TQAVCTRL, val);
1835
1836                 /* Configure Tx and Rx packet buffers sizes as described in
1837                  * i210 datasheet section 7.2.7.7.
1838                  */
1839                 val = rd32(E1000_TXPBS);
1840                 val &= ~I210_TXPBSIZE_MASK;
1841                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1842                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1843                 wr32(E1000_TXPBS, val);
1844
1845                 val = rd32(E1000_RXPBS);
1846                 val &= ~I210_RXPBSIZE_MASK;
1847                 val |= I210_RXPBSIZE_PB_32KB;
1848                 wr32(E1000_RXPBS, val);
1849
1850                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1851                  * register should not exceed the buffer size programmed in
1852                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1853                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1854                  * 4kB / 64.
1855                  *
1856                  * However, when we do so, no frame from queue 2 and 3 are
1857                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1858                  * or _equal_ to the buffer size programmed in TXPBS. For this
1859                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1860                  */
1861                 val = (4096 - 1) / 64;
1862                 wr32(E1000_I210_DTXMXPKTSZ, val);
1863
1864                 /* Since FQTSS mode is enabled, apply any CBS configuration
1865                  * previously set. If no previous CBS configuration has been
1866                  * done, then the initial configuration is applied, which means
1867                  * CBS is disabled.
1868                  */
1869                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1870                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1871
1872                 for (i = 0; i < max_queue; i++) {
1873                         struct igb_ring *ring = adapter->tx_ring[i];
1874
1875                         igb_configure_cbs(adapter, i, ring->cbs_enable,
1876                                           ring->idleslope, ring->sendslope,
1877                                           ring->hicredit, ring->locredit);
1878                 }
1879         } else {
1880                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1881                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1882                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1883
1884                 val = rd32(E1000_I210_TQAVCTRL);
1885                 /* According to Section 8.12.21, the other flags we've set when
1886                  * enabling FQTSS are not relevant when disabling FQTSS so we
1887                  * don't set they here.
1888                  */
1889                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1890                 wr32(E1000_I210_TQAVCTRL, val);
1891         }
1892
1893         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1894                    "enabled" : "disabled");
1895 }
1896
1897 /**
1898  *  igb_configure - configure the hardware for RX and TX
1899  *  @adapter: private board structure
1900  **/
1901 static void igb_configure(struct igb_adapter *adapter)
1902 {
1903         struct net_device *netdev = adapter->netdev;
1904         int i;
1905
1906         igb_get_hw_control(adapter);
1907         igb_set_rx_mode(netdev);
1908         igb_setup_tx_mode(adapter);
1909
1910         igb_restore_vlan(adapter);
1911
1912         igb_setup_tctl(adapter);
1913         igb_setup_mrqc(adapter);
1914         igb_setup_rctl(adapter);
1915
1916         igb_nfc_filter_restore(adapter);
1917         igb_configure_tx(adapter);
1918         igb_configure_rx(adapter);
1919
1920         igb_rx_fifo_flush_82575(&adapter->hw);
1921
1922         /* call igb_desc_unused which always leaves
1923          * at least 1 descriptor unused to make sure
1924          * next_to_use != next_to_clean
1925          */
1926         for (i = 0; i < adapter->num_rx_queues; i++) {
1927                 struct igb_ring *ring = adapter->rx_ring[i];
1928                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1929         }
1930 }
1931
1932 /**
1933  *  igb_power_up_link - Power up the phy/serdes link
1934  *  @adapter: address of board private structure
1935  **/
1936 void igb_power_up_link(struct igb_adapter *adapter)
1937 {
1938         igb_reset_phy(&adapter->hw);
1939
1940         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1941                 igb_power_up_phy_copper(&adapter->hw);
1942         else
1943                 igb_power_up_serdes_link_82575(&adapter->hw);
1944
1945         igb_setup_link(&adapter->hw);
1946 }
1947
1948 /**
1949  *  igb_power_down_link - Power down the phy/serdes link
1950  *  @adapter: address of board private structure
1951  */
1952 static void igb_power_down_link(struct igb_adapter *adapter)
1953 {
1954         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1955                 igb_power_down_phy_copper_82575(&adapter->hw);
1956         else
1957                 igb_shutdown_serdes_link_82575(&adapter->hw);
1958 }
1959
1960 /**
1961  * Detect and switch function for Media Auto Sense
1962  * @adapter: address of the board private structure
1963  **/
1964 static void igb_check_swap_media(struct igb_adapter *adapter)
1965 {
1966         struct e1000_hw *hw = &adapter->hw;
1967         u32 ctrl_ext, connsw;
1968         bool swap_now = false;
1969
1970         ctrl_ext = rd32(E1000_CTRL_EXT);
1971         connsw = rd32(E1000_CONNSW);
1972
1973         /* need to live swap if current media is copper and we have fiber/serdes
1974          * to go to.
1975          */
1976
1977         if ((hw->phy.media_type == e1000_media_type_copper) &&
1978             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1979                 swap_now = true;
1980         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1981                 /* copper signal takes time to appear */
1982                 if (adapter->copper_tries < 4) {
1983                         adapter->copper_tries++;
1984                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1985                         wr32(E1000_CONNSW, connsw);
1986                         return;
1987                 } else {
1988                         adapter->copper_tries = 0;
1989                         if ((connsw & E1000_CONNSW_PHYSD) &&
1990                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1991                                 swap_now = true;
1992                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1993                                 wr32(E1000_CONNSW, connsw);
1994                         }
1995                 }
1996         }
1997
1998         if (!swap_now)
1999                 return;
2000
2001         switch (hw->phy.media_type) {
2002         case e1000_media_type_copper:
2003                 netdev_info(adapter->netdev,
2004                         "MAS: changing media to fiber/serdes\n");
2005                 ctrl_ext |=
2006                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2007                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2008                 adapter->copper_tries = 0;
2009                 break;
2010         case e1000_media_type_internal_serdes:
2011         case e1000_media_type_fiber:
2012                 netdev_info(adapter->netdev,
2013                         "MAS: changing media to copper\n");
2014                 ctrl_ext &=
2015                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2016                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2017                 break;
2018         default:
2019                 /* shouldn't get here during regular operation */
2020                 netdev_err(adapter->netdev,
2021                         "AMS: Invalid media type found, returning\n");
2022                 break;
2023         }
2024         wr32(E1000_CTRL_EXT, ctrl_ext);
2025 }
2026
2027 /**
2028  *  igb_up - Open the interface and prepare it to handle traffic
2029  *  @adapter: board private structure
2030  **/
2031 int igb_up(struct igb_adapter *adapter)
2032 {
2033         struct e1000_hw *hw = &adapter->hw;
2034         int i;
2035
2036         /* hardware has been reset, we need to reload some things */
2037         igb_configure(adapter);
2038
2039         clear_bit(__IGB_DOWN, &adapter->state);
2040
2041         for (i = 0; i < adapter->num_q_vectors; i++)
2042                 napi_enable(&(adapter->q_vector[i]->napi));
2043
2044         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2045                 igb_configure_msix(adapter);
2046         else
2047                 igb_assign_vector(adapter->q_vector[0], 0);
2048
2049         /* Clear any pending interrupts. */
2050         rd32(E1000_ICR);
2051         igb_irq_enable(adapter);
2052
2053         /* notify VFs that reset has been completed */
2054         if (adapter->vfs_allocated_count) {
2055                 u32 reg_data = rd32(E1000_CTRL_EXT);
2056
2057                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2058                 wr32(E1000_CTRL_EXT, reg_data);
2059         }
2060
2061         netif_tx_start_all_queues(adapter->netdev);
2062
2063         /* start the watchdog. */
2064         hw->mac.get_link_status = 1;
2065         schedule_work(&adapter->watchdog_task);
2066
2067         if ((adapter->flags & IGB_FLAG_EEE) &&
2068             (!hw->dev_spec._82575.eee_disable))
2069                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2070
2071         return 0;
2072 }
2073
2074 void igb_down(struct igb_adapter *adapter)
2075 {
2076         struct net_device *netdev = adapter->netdev;
2077         struct e1000_hw *hw = &adapter->hw;
2078         u32 tctl, rctl;
2079         int i;
2080
2081         /* signal that we're down so the interrupt handler does not
2082          * reschedule our watchdog timer
2083          */
2084         set_bit(__IGB_DOWN, &adapter->state);
2085
2086         /* disable receives in the hardware */
2087         rctl = rd32(E1000_RCTL);
2088         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2089         /* flush and sleep below */
2090
2091         igb_nfc_filter_exit(adapter);
2092
2093         netif_carrier_off(netdev);
2094         netif_tx_stop_all_queues(netdev);
2095
2096         /* disable transmits in the hardware */
2097         tctl = rd32(E1000_TCTL);
2098         tctl &= ~E1000_TCTL_EN;
2099         wr32(E1000_TCTL, tctl);
2100         /* flush both disables and wait for them to finish */
2101         wrfl();
2102         usleep_range(10000, 11000);
2103
2104         igb_irq_disable(adapter);
2105
2106         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2107
2108         for (i = 0; i < adapter->num_q_vectors; i++) {
2109                 if (adapter->q_vector[i]) {
2110                         napi_synchronize(&adapter->q_vector[i]->napi);
2111                         napi_disable(&adapter->q_vector[i]->napi);
2112                 }
2113         }
2114
2115         del_timer_sync(&adapter->watchdog_timer);
2116         del_timer_sync(&adapter->phy_info_timer);
2117
2118         /* record the stats before reset*/
2119         spin_lock(&adapter->stats64_lock);
2120         igb_update_stats(adapter);
2121         spin_unlock(&adapter->stats64_lock);
2122
2123         adapter->link_speed = 0;
2124         adapter->link_duplex = 0;
2125
2126         if (!pci_channel_offline(adapter->pdev))
2127                 igb_reset(adapter);
2128
2129         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2130         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2131
2132         igb_clean_all_tx_rings(adapter);
2133         igb_clean_all_rx_rings(adapter);
2134 #ifdef CONFIG_IGB_DCA
2135
2136         /* since we reset the hardware DCA settings were cleared */
2137         igb_setup_dca(adapter);
2138 #endif
2139 }
2140
2141 void igb_reinit_locked(struct igb_adapter *adapter)
2142 {
2143         WARN_ON(in_interrupt());
2144         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2145                 usleep_range(1000, 2000);
2146         igb_down(adapter);
2147         igb_up(adapter);
2148         clear_bit(__IGB_RESETTING, &adapter->state);
2149 }
2150
2151 /** igb_enable_mas - Media Autosense re-enable after swap
2152  *
2153  * @adapter: adapter struct
2154  **/
2155 static void igb_enable_mas(struct igb_adapter *adapter)
2156 {
2157         struct e1000_hw *hw = &adapter->hw;
2158         u32 connsw = rd32(E1000_CONNSW);
2159
2160         /* configure for SerDes media detect */
2161         if ((hw->phy.media_type == e1000_media_type_copper) &&
2162             (!(connsw & E1000_CONNSW_SERDESD))) {
2163                 connsw |= E1000_CONNSW_ENRGSRC;
2164                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2165                 wr32(E1000_CONNSW, connsw);
2166                 wrfl();
2167         }
2168 }
2169
2170 void igb_reset(struct igb_adapter *adapter)
2171 {
2172         struct pci_dev *pdev = adapter->pdev;
2173         struct e1000_hw *hw = &adapter->hw;
2174         struct e1000_mac_info *mac = &hw->mac;
2175         struct e1000_fc_info *fc = &hw->fc;
2176         u32 pba, hwm;
2177
2178         /* Repartition Pba for greater than 9k mtu
2179          * To take effect CTRL.RST is required.
2180          */
2181         switch (mac->type) {
2182         case e1000_i350:
2183         case e1000_i354:
2184         case e1000_82580:
2185                 pba = rd32(E1000_RXPBS);
2186                 pba = igb_rxpbs_adjust_82580(pba);
2187                 break;
2188         case e1000_82576:
2189                 pba = rd32(E1000_RXPBS);
2190                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2191                 break;
2192         case e1000_82575:
2193         case e1000_i210:
2194         case e1000_i211:
2195         default:
2196                 pba = E1000_PBA_34K;
2197                 break;
2198         }
2199
2200         if (mac->type == e1000_82575) {
2201                 u32 min_rx_space, min_tx_space, needed_tx_space;
2202
2203                 /* write Rx PBA so that hardware can report correct Tx PBA */
2204                 wr32(E1000_PBA, pba);
2205
2206                 /* To maintain wire speed transmits, the Tx FIFO should be
2207                  * large enough to accommodate two full transmit packets,
2208                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2209                  * the Rx FIFO should be large enough to accommodate at least
2210                  * one full receive packet and is similarly rounded up and
2211                  * expressed in KB.
2212                  */
2213                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2214
2215                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2216                  * but don't include Ethernet FCS because hardware appends it.
2217                  * We only need to round down to the nearest 512 byte block
2218                  * count since the value we care about is 2 frames, not 1.
2219                  */
2220                 min_tx_space = adapter->max_frame_size;
2221                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2222                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2223
2224                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2225                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2226
2227                 /* If current Tx allocation is less than the min Tx FIFO size,
2228                  * and the min Tx FIFO size is less than the current Rx FIFO
2229                  * allocation, take space away from current Rx allocation.
2230                  */
2231                 if (needed_tx_space < pba) {
2232                         pba -= needed_tx_space;
2233
2234                         /* if short on Rx space, Rx wins and must trump Tx
2235                          * adjustment
2236                          */
2237                         if (pba < min_rx_space)
2238                                 pba = min_rx_space;
2239                 }
2240
2241                 /* adjust PBA for jumbo frames */
2242                 wr32(E1000_PBA, pba);
2243         }
2244
2245         /* flow control settings
2246          * The high water mark must be low enough to fit one full frame
2247          * after transmitting the pause frame.  As such we must have enough
2248          * space to allow for us to complete our current transmit and then
2249          * receive the frame that is in progress from the link partner.
2250          * Set it to:
2251          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2252          */
2253         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2254
2255         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2256         fc->low_water = fc->high_water - 16;
2257         fc->pause_time = 0xFFFF;
2258         fc->send_xon = 1;
2259         fc->current_mode = fc->requested_mode;
2260
2261         /* disable receive for all VFs and wait one second */
2262         if (adapter->vfs_allocated_count) {
2263                 int i;
2264
2265                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2266                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2267
2268                 /* ping all the active vfs to let them know we are going down */
2269                 igb_ping_all_vfs(adapter);
2270
2271                 /* disable transmits and receives */
2272                 wr32(E1000_VFRE, 0);
2273                 wr32(E1000_VFTE, 0);
2274         }
2275
2276         /* Allow time for pending master requests to run */
2277         hw->mac.ops.reset_hw(hw);
2278         wr32(E1000_WUC, 0);
2279
2280         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2281                 /* need to resetup here after media swap */
2282                 adapter->ei.get_invariants(hw);
2283                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2284         }
2285         if ((mac->type == e1000_82575) &&
2286             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2287                 igb_enable_mas(adapter);
2288         }
2289         if (hw->mac.ops.init_hw(hw))
2290                 dev_err(&pdev->dev, "Hardware Error\n");
2291
2292         /* RAR registers were cleared during init_hw, clear mac table */
2293         igb_flush_mac_table(adapter);
2294         __dev_uc_unsync(adapter->netdev, NULL);
2295
2296         /* Recover default RAR entry */
2297         igb_set_default_mac_filter(adapter);
2298
2299         /* Flow control settings reset on hardware reset, so guarantee flow
2300          * control is off when forcing speed.
2301          */
2302         if (!hw->mac.autoneg)
2303                 igb_force_mac_fc(hw);
2304
2305         igb_init_dmac(adapter, pba);
2306 #ifdef CONFIG_IGB_HWMON
2307         /* Re-initialize the thermal sensor on i350 devices. */
2308         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2309                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2310                         /* If present, re-initialize the external thermal sensor
2311                          * interface.
2312                          */
2313                         if (adapter->ets)
2314                                 mac->ops.init_thermal_sensor_thresh(hw);
2315                 }
2316         }
2317 #endif
2318         /* Re-establish EEE setting */
2319         if (hw->phy.media_type == e1000_media_type_copper) {
2320                 switch (mac->type) {
2321                 case e1000_i350:
2322                 case e1000_i210:
2323                 case e1000_i211:
2324                         igb_set_eee_i350(hw, true, true);
2325                         break;
2326                 case e1000_i354:
2327                         igb_set_eee_i354(hw, true, true);
2328                         break;
2329                 default:
2330                         break;
2331                 }
2332         }
2333         if (!netif_running(adapter->netdev))
2334                 igb_power_down_link(adapter);
2335
2336         igb_update_mng_vlan(adapter);
2337
2338         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2339         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2340
2341         /* Re-enable PTP, where applicable. */
2342         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2343                 igb_ptp_reset(adapter);
2344
2345         igb_get_phy_info(hw);
2346 }
2347
2348 static netdev_features_t igb_fix_features(struct net_device *netdev,
2349         netdev_features_t features)
2350 {
2351         /* Since there is no support for separate Rx/Tx vlan accel
2352          * enable/disable make sure Tx flag is always in same state as Rx.
2353          */
2354         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2355                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2356         else
2357                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2358
2359         return features;
2360 }
2361
2362 static int igb_set_features(struct net_device *netdev,
2363         netdev_features_t features)
2364 {
2365         netdev_features_t changed = netdev->features ^ features;
2366         struct igb_adapter *adapter = netdev_priv(netdev);
2367
2368         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2369                 igb_vlan_mode(netdev, features);
2370
2371         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2372                 return 0;
2373
2374         if (!(features & NETIF_F_NTUPLE)) {
2375                 struct hlist_node *node2;
2376                 struct igb_nfc_filter *rule;
2377
2378                 spin_lock(&adapter->nfc_lock);
2379                 hlist_for_each_entry_safe(rule, node2,
2380                                           &adapter->nfc_filter_list, nfc_node) {
2381                         igb_erase_filter(adapter, rule);
2382                         hlist_del(&rule->nfc_node);
2383                         kfree(rule);
2384                 }
2385                 spin_unlock(&adapter->nfc_lock);
2386                 adapter->nfc_filter_count = 0;
2387         }
2388
2389         netdev->features = features;
2390
2391         if (netif_running(netdev))
2392                 igb_reinit_locked(adapter);
2393         else
2394                 igb_reset(adapter);
2395
2396         return 0;
2397 }
2398
2399 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2400                            struct net_device *dev,
2401                            const unsigned char *addr, u16 vid,
2402                            u16 flags)
2403 {
2404         /* guarantee we can provide a unique filter for the unicast address */
2405         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2406                 struct igb_adapter *adapter = netdev_priv(dev);
2407                 int vfn = adapter->vfs_allocated_count;
2408
2409                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2410                         return -ENOMEM;
2411         }
2412
2413         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2414 }
2415
2416 #define IGB_MAX_MAC_HDR_LEN     127
2417 #define IGB_MAX_NETWORK_HDR_LEN 511
2418
2419 static netdev_features_t
2420 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2421                    netdev_features_t features)
2422 {
2423         unsigned int network_hdr_len, mac_hdr_len;
2424
2425         /* Make certain the headers can be described by a context descriptor */
2426         mac_hdr_len = skb_network_header(skb) - skb->data;
2427         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2428                 return features & ~(NETIF_F_HW_CSUM |
2429                                     NETIF_F_SCTP_CRC |
2430                                     NETIF_F_HW_VLAN_CTAG_TX |
2431                                     NETIF_F_TSO |
2432                                     NETIF_F_TSO6);
2433
2434         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2435         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2436                 return features & ~(NETIF_F_HW_CSUM |
2437                                     NETIF_F_SCTP_CRC |
2438                                     NETIF_F_TSO |
2439                                     NETIF_F_TSO6);
2440
2441         /* We can only support IPV4 TSO in tunnels if we can mangle the
2442          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2443          */
2444         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2445                 features &= ~NETIF_F_TSO;
2446
2447         return features;
2448 }
2449
2450 static int igb_offload_cbs(struct igb_adapter *adapter,
2451                            struct tc_cbs_qopt_offload *qopt)
2452 {
2453         struct e1000_hw *hw = &adapter->hw;
2454         int err;
2455
2456         /* CBS offloading is only supported by i210 controller. */
2457         if (hw->mac.type != e1000_i210)
2458                 return -EOPNOTSUPP;
2459
2460         /* CBS offloading is only supported by queue 0 and queue 1. */
2461         if (qopt->queue < 0 || qopt->queue > 1)
2462                 return -EINVAL;
2463
2464         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2465                                   qopt->idleslope, qopt->sendslope,
2466                                   qopt->hicredit, qopt->locredit);
2467         if (err)
2468                 return err;
2469
2470         if (is_fqtss_enabled(adapter)) {
2471                 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2472                                   qopt->idleslope, qopt->sendslope,
2473                                   qopt->hicredit, qopt->locredit);
2474
2475                 if (!is_any_cbs_enabled(adapter))
2476                         enable_fqtss(adapter, false);
2477
2478         } else {
2479                 enable_fqtss(adapter, true);
2480         }
2481
2482         return 0;
2483 }
2484
2485 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2486                         void *type_data)
2487 {
2488         struct igb_adapter *adapter = netdev_priv(dev);
2489
2490         switch (type) {
2491         case TC_SETUP_QDISC_CBS:
2492                 return igb_offload_cbs(adapter, type_data);
2493
2494         default:
2495                 return -EOPNOTSUPP;
2496         }
2497 }
2498
2499 static const struct net_device_ops igb_netdev_ops = {
2500         .ndo_open               = igb_open,
2501         .ndo_stop               = igb_close,
2502         .ndo_start_xmit         = igb_xmit_frame,
2503         .ndo_get_stats64        = igb_get_stats64,
2504         .ndo_set_rx_mode        = igb_set_rx_mode,
2505         .ndo_set_mac_address    = igb_set_mac,
2506         .ndo_change_mtu         = igb_change_mtu,
2507         .ndo_do_ioctl           = igb_ioctl,
2508         .ndo_tx_timeout         = igb_tx_timeout,
2509         .ndo_validate_addr      = eth_validate_addr,
2510         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2511         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2512         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2513         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2514         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2515         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2516         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2517 #ifdef CONFIG_NET_POLL_CONTROLLER
2518         .ndo_poll_controller    = igb_netpoll,
2519 #endif
2520         .ndo_fix_features       = igb_fix_features,
2521         .ndo_set_features       = igb_set_features,
2522         .ndo_fdb_add            = igb_ndo_fdb_add,
2523         .ndo_features_check     = igb_features_check,
2524         .ndo_setup_tc           = igb_setup_tc,
2525 };
2526
2527 /**
2528  * igb_set_fw_version - Configure version string for ethtool
2529  * @adapter: adapter struct
2530  **/
2531 void igb_set_fw_version(struct igb_adapter *adapter)
2532 {
2533         struct e1000_hw *hw = &adapter->hw;
2534         struct e1000_fw_version fw;
2535
2536         igb_get_fw_version(hw, &fw);
2537
2538         switch (hw->mac.type) {
2539         case e1000_i210:
2540         case e1000_i211:
2541                 if (!(igb_get_flash_presence_i210(hw))) {
2542                         snprintf(adapter->fw_version,
2543                                  sizeof(adapter->fw_version),
2544                                  "%2d.%2d-%d",
2545                                  fw.invm_major, fw.invm_minor,
2546                                  fw.invm_img_type);
2547                         break;
2548                 }
2549                 /* fall through */
2550         default:
2551                 /* if option is rom valid, display its version too */
2552                 if (fw.or_valid) {
2553                         snprintf(adapter->fw_version,
2554                                  sizeof(adapter->fw_version),
2555                                  "%d.%d, 0x%08x, %d.%d.%d",
2556                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2557                                  fw.or_major, fw.or_build, fw.or_patch);
2558                 /* no option rom */
2559                 } else if (fw.etrack_id != 0X0000) {
2560                         snprintf(adapter->fw_version,
2561                             sizeof(adapter->fw_version),
2562                             "%d.%d, 0x%08x",
2563                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2564                 } else {
2565                 snprintf(adapter->fw_version,
2566                     sizeof(adapter->fw_version),
2567                     "%d.%d.%d",
2568                     fw.eep_major, fw.eep_minor, fw.eep_build);
2569                 }
2570                 break;
2571         }
2572 }
2573
2574 /**
2575  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2576  *
2577  * @adapter: adapter struct
2578  **/
2579 static void igb_init_mas(struct igb_adapter *adapter)
2580 {
2581         struct e1000_hw *hw = &adapter->hw;
2582         u16 eeprom_data;
2583
2584         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2585         switch (hw->bus.func) {
2586         case E1000_FUNC_0:
2587                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2588                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2589                         netdev_info(adapter->netdev,
2590                                 "MAS: Enabling Media Autosense for port %d\n",
2591                                 hw->bus.func);
2592                 }
2593                 break;
2594         case E1000_FUNC_1:
2595                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2596                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2597                         netdev_info(adapter->netdev,
2598                                 "MAS: Enabling Media Autosense for port %d\n",
2599                                 hw->bus.func);
2600                 }
2601                 break;
2602         case E1000_FUNC_2:
2603                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2604                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2605                         netdev_info(adapter->netdev,
2606                                 "MAS: Enabling Media Autosense for port %d\n",
2607                                 hw->bus.func);
2608                 }
2609                 break;
2610         case E1000_FUNC_3:
2611                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2612                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2613                         netdev_info(adapter->netdev,
2614                                 "MAS: Enabling Media Autosense for port %d\n",
2615                                 hw->bus.func);
2616                 }
2617                 break;
2618         default:
2619                 /* Shouldn't get here */
2620                 netdev_err(adapter->netdev,
2621                         "MAS: Invalid port configuration, returning\n");
2622                 break;
2623         }
2624 }
2625
2626 /**
2627  *  igb_init_i2c - Init I2C interface
2628  *  @adapter: pointer to adapter structure
2629  **/
2630 static s32 igb_init_i2c(struct igb_adapter *adapter)
2631 {
2632         s32 status = 0;
2633
2634         /* I2C interface supported on i350 devices */
2635         if (adapter->hw.mac.type != e1000_i350)
2636                 return 0;
2637
2638         /* Initialize the i2c bus which is controlled by the registers.
2639          * This bus will use the i2c_algo_bit structue that implements
2640          * the protocol through toggling of the 4 bits in the register.
2641          */
2642         adapter->i2c_adap.owner = THIS_MODULE;
2643         adapter->i2c_algo = igb_i2c_algo;
2644         adapter->i2c_algo.data = adapter;
2645         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2646         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2647         strlcpy(adapter->i2c_adap.name, "igb BB",
2648                 sizeof(adapter->i2c_adap.name));
2649         status = i2c_bit_add_bus(&adapter->i2c_adap);
2650         return status;
2651 }
2652
2653 /**
2654  *  igb_probe - Device Initialization Routine
2655  *  @pdev: PCI device information struct
2656  *  @ent: entry in igb_pci_tbl
2657  *
2658  *  Returns 0 on success, negative on failure
2659  *
2660  *  igb_probe initializes an adapter identified by a pci_dev structure.
2661  *  The OS initialization, configuring of the adapter private structure,
2662  *  and a hardware reset occur.
2663  **/
2664 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2665 {
2666         struct net_device *netdev;
2667         struct igb_adapter *adapter;
2668         struct e1000_hw *hw;
2669         u16 eeprom_data = 0;
2670         s32 ret_val;
2671         static int global_quad_port_a; /* global quad port a indication */
2672         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2673         int err, pci_using_dac;
2674         u8 part_str[E1000_PBANUM_LENGTH];
2675
2676         /* Catch broken hardware that put the wrong VF device ID in
2677          * the PCIe SR-IOV capability.
2678          */
2679         if (pdev->is_virtfn) {
2680                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2681                         pci_name(pdev), pdev->vendor, pdev->device);
2682                 return -EINVAL;
2683         }
2684
2685         err = pci_enable_device_mem(pdev);
2686         if (err)
2687                 return err;
2688
2689         pci_using_dac = 0;
2690         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2691         if (!err) {
2692                 pci_using_dac = 1;
2693         } else {
2694                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2695                 if (err) {
2696                         dev_err(&pdev->dev,
2697                                 "No usable DMA configuration, aborting\n");
2698                         goto err_dma;
2699                 }
2700         }
2701
2702         err = pci_request_mem_regions(pdev, igb_driver_name);
2703         if (err)
2704                 goto err_pci_reg;
2705
2706         pci_enable_pcie_error_reporting(pdev);
2707
2708         pci_set_master(pdev);
2709         pci_save_state(pdev);
2710
2711         err = -ENOMEM;
2712         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2713                                    IGB_MAX_TX_QUEUES);
2714         if (!netdev)
2715                 goto err_alloc_etherdev;
2716
2717         SET_NETDEV_DEV(netdev, &pdev->dev);
2718
2719         pci_set_drvdata(pdev, netdev);
2720         adapter = netdev_priv(netdev);
2721         adapter->netdev = netdev;
2722         adapter->pdev = pdev;
2723         hw = &adapter->hw;
2724         hw->back = adapter;
2725         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2726
2727         err = -EIO;
2728         adapter->io_addr = pci_iomap(pdev, 0, 0);
2729         if (!adapter->io_addr)
2730                 goto err_ioremap;
2731         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2732         hw->hw_addr = adapter->io_addr;
2733
2734         netdev->netdev_ops = &igb_netdev_ops;
2735         igb_set_ethtool_ops(netdev);
2736         netdev->watchdog_timeo = 5 * HZ;
2737
2738         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2739
2740         netdev->mem_start = pci_resource_start(pdev, 0);
2741         netdev->mem_end = pci_resource_end(pdev, 0);
2742
2743         /* PCI config space info */
2744         hw->vendor_id = pdev->vendor;
2745         hw->device_id = pdev->device;
2746         hw->revision_id = pdev->revision;
2747         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2748         hw->subsystem_device_id = pdev->subsystem_device;
2749
2750         /* Copy the default MAC, PHY and NVM function pointers */
2751         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2752         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2753         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2754         /* Initialize skew-specific constants */
2755         err = ei->get_invariants(hw);
2756         if (err)
2757                 goto err_sw_init;
2758
2759         /* setup the private structure */
2760         err = igb_sw_init(adapter);
2761         if (err)
2762                 goto err_sw_init;
2763
2764         igb_get_bus_info_pcie(hw);
2765
2766         hw->phy.autoneg_wait_to_complete = false;
2767
2768         /* Copper options */
2769         if (hw->phy.media_type == e1000_media_type_copper) {
2770                 hw->phy.mdix = AUTO_ALL_MODES;
2771                 hw->phy.disable_polarity_correction = false;
2772                 hw->phy.ms_type = e1000_ms_hw_default;
2773         }
2774
2775         if (igb_check_reset_block(hw))
2776                 dev_info(&pdev->dev,
2777                         "PHY reset is blocked due to SOL/IDER session.\n");
2778
2779         /* features is initialized to 0 in allocation, it might have bits
2780          * set by igb_sw_init so we should use an or instead of an
2781          * assignment.
2782          */
2783         netdev->features |= NETIF_F_SG |
2784                             NETIF_F_TSO |
2785                             NETIF_F_TSO6 |
2786                             NETIF_F_RXHASH |
2787                             NETIF_F_RXCSUM |
2788                             NETIF_F_HW_CSUM;
2789
2790         if (hw->mac.type >= e1000_82576)
2791                 netdev->features |= NETIF_F_SCTP_CRC;
2792
2793 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2794                                   NETIF_F_GSO_GRE_CSUM | \
2795                                   NETIF_F_GSO_IPXIP4 | \
2796                                   NETIF_F_GSO_IPXIP6 | \
2797                                   NETIF_F_GSO_UDP_TUNNEL | \
2798                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2799
2800         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2801         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2802
2803         /* copy netdev features into list of user selectable features */
2804         netdev->hw_features |= netdev->features |
2805                                NETIF_F_HW_VLAN_CTAG_RX |
2806                                NETIF_F_HW_VLAN_CTAG_TX |
2807                                NETIF_F_RXALL;
2808
2809         if (hw->mac.type >= e1000_i350)
2810                 netdev->hw_features |= NETIF_F_NTUPLE;
2811
2812         if (pci_using_dac)
2813                 netdev->features |= NETIF_F_HIGHDMA;
2814
2815         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2816         netdev->mpls_features |= NETIF_F_HW_CSUM;
2817         netdev->hw_enc_features |= netdev->vlan_features;
2818
2819         /* set this bit last since it cannot be part of vlan_features */
2820         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2821                             NETIF_F_HW_VLAN_CTAG_RX |
2822                             NETIF_F_HW_VLAN_CTAG_TX;
2823
2824         netdev->priv_flags |= IFF_SUPP_NOFCS;
2825
2826         netdev->priv_flags |= IFF_UNICAST_FLT;
2827
2828         /* MTU range: 68 - 9216 */
2829         netdev->min_mtu = ETH_MIN_MTU;
2830         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2831
2832         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2833
2834         /* before reading the NVM, reset the controller to put the device in a
2835          * known good starting state
2836          */
2837         hw->mac.ops.reset_hw(hw);
2838
2839         /* make sure the NVM is good , i211/i210 parts can have special NVM
2840          * that doesn't contain a checksum
2841          */
2842         switch (hw->mac.type) {
2843         case e1000_i210:
2844         case e1000_i211:
2845                 if (igb_get_flash_presence_i210(hw)) {
2846                         if (hw->nvm.ops.validate(hw) < 0) {
2847                                 dev_err(&pdev->dev,
2848                                         "The NVM Checksum Is Not Valid\n");
2849                                 err = -EIO;
2850                                 goto err_eeprom;
2851                         }
2852                 }
2853                 break;
2854         default:
2855                 if (hw->nvm.ops.validate(hw) < 0) {
2856                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2857                         err = -EIO;
2858                         goto err_eeprom;
2859                 }
2860                 break;
2861         }
2862
2863         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2864                 /* copy the MAC address out of the NVM */
2865                 if (hw->mac.ops.read_mac_addr(hw))
2866                         dev_err(&pdev->dev, "NVM Read Error\n");
2867         }
2868
2869         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2870
2871         if (!is_valid_ether_addr(netdev->dev_addr)) {
2872                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2873                 err = -EIO;
2874                 goto err_eeprom;
2875         }
2876
2877         igb_set_default_mac_filter(adapter);
2878
2879         /* get firmware version for ethtool -i */
2880         igb_set_fw_version(adapter);
2881
2882         /* configure RXPBSIZE and TXPBSIZE */
2883         if (hw->mac.type == e1000_i210) {
2884                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2885                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2886         }
2887
2888         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2889         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2890
2891         INIT_WORK(&adapter->reset_task, igb_reset_task);
2892         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2893
2894         /* Initialize link properties that are user-changeable */
2895         adapter->fc_autoneg = true;
2896         hw->mac.autoneg = true;
2897         hw->phy.autoneg_advertised = 0x2f;
2898
2899         hw->fc.requested_mode = e1000_fc_default;
2900         hw->fc.current_mode = e1000_fc_default;
2901
2902         igb_validate_mdi_setting(hw);
2903
2904         /* By default, support wake on port A */
2905         if (hw->bus.func == 0)
2906                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2907
2908         /* Check the NVM for wake support on non-port A ports */
2909         if (hw->mac.type >= e1000_82580)
2910                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2911                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2912                                  &eeprom_data);
2913         else if (hw->bus.func == 1)
2914                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2915
2916         if (eeprom_data & IGB_EEPROM_APME)
2917                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2918
2919         /* now that we have the eeprom settings, apply the special cases where
2920          * the eeprom may be wrong or the board simply won't support wake on
2921          * lan on a particular port
2922          */
2923         switch (pdev->device) {
2924         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2925                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2926                 break;
2927         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2928         case E1000_DEV_ID_82576_FIBER:
2929         case E1000_DEV_ID_82576_SERDES:
2930                 /* Wake events only supported on port A for dual fiber
2931                  * regardless of eeprom setting
2932                  */
2933                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2934                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2935                 break;
2936         case E1000_DEV_ID_82576_QUAD_COPPER:
2937         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2938                 /* if quad port adapter, disable WoL on all but port A */
2939                 if (global_quad_port_a != 0)
2940                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2941                 else
2942                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2943                 /* Reset for multiple quad port adapters */
2944                 if (++global_quad_port_a == 4)
2945                         global_quad_port_a = 0;
2946                 break;
2947         default:
2948                 /* If the device can't wake, don't set software support */
2949                 if (!device_can_wakeup(&adapter->pdev->dev))
2950                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2951         }
2952
2953         /* initialize the wol settings based on the eeprom settings */
2954         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2955                 adapter->wol |= E1000_WUFC_MAG;
2956
2957         /* Some vendors want WoL disabled by default, but still supported */
2958         if ((hw->mac.type == e1000_i350) &&
2959             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2960                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2961                 adapter->wol = 0;
2962         }
2963
2964         /* Some vendors want the ability to Use the EEPROM setting as
2965          * enable/disable only, and not for capability
2966          */
2967         if (((hw->mac.type == e1000_i350) ||
2968              (hw->mac.type == e1000_i354)) &&
2969             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2970                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2971                 adapter->wol = 0;
2972         }
2973         if (hw->mac.type == e1000_i350) {
2974                 if (((pdev->subsystem_device == 0x5001) ||
2975                      (pdev->subsystem_device == 0x5002)) &&
2976                                 (hw->bus.func == 0)) {
2977                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2978                         adapter->wol = 0;
2979                 }
2980                 if (pdev->subsystem_device == 0x1F52)
2981                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2982         }
2983
2984         device_set_wakeup_enable(&adapter->pdev->dev,
2985                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2986
2987         /* reset the hardware with the new settings */
2988         igb_reset(adapter);
2989
2990         /* Init the I2C interface */
2991         err = igb_init_i2c(adapter);
2992         if (err) {
2993                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2994                 goto err_eeprom;
2995         }
2996
2997         /* let the f/w know that the h/w is now under the control of the
2998          * driver.
2999          */
3000         igb_get_hw_control(adapter);
3001
3002         strcpy(netdev->name, "eth%d");
3003         err = register_netdev(netdev);
3004         if (err)
3005                 goto err_register;
3006
3007         /* carrier off reporting is important to ethtool even BEFORE open */
3008         netif_carrier_off(netdev);
3009
3010 #ifdef CONFIG_IGB_DCA
3011         if (dca_add_requester(&pdev->dev) == 0) {
3012                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3013                 dev_info(&pdev->dev, "DCA enabled\n");
3014                 igb_setup_dca(adapter);
3015         }
3016
3017 #endif
3018 #ifdef CONFIG_IGB_HWMON
3019         /* Initialize the thermal sensor on i350 devices. */
3020         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3021                 u16 ets_word;
3022
3023                 /* Read the NVM to determine if this i350 device supports an
3024                  * external thermal sensor.
3025                  */
3026                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3027                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3028                         adapter->ets = true;
3029                 else
3030                         adapter->ets = false;
3031                 if (igb_sysfs_init(adapter))
3032                         dev_err(&pdev->dev,
3033                                 "failed to allocate sysfs resources\n");
3034         } else {
3035                 adapter->ets = false;
3036         }
3037 #endif
3038         /* Check if Media Autosense is enabled */
3039         adapter->ei = *ei;
3040         if (hw->dev_spec._82575.mas_capable)
3041                 igb_init_mas(adapter);
3042
3043         /* do hw tstamp init after resetting */
3044         igb_ptp_init(adapter);
3045
3046         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3047         /* print bus type/speed/width info, not applicable to i354 */
3048         if (hw->mac.type != e1000_i354) {
3049                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3050                          netdev->name,
3051                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3052                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3053                            "unknown"),
3054                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3055                           "Width x4" :
3056                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3057                           "Width x2" :
3058                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3059                           "Width x1" : "unknown"), netdev->dev_addr);
3060         }
3061
3062         if ((hw->mac.type >= e1000_i210 ||
3063              igb_get_flash_presence_i210(hw))) {
3064                 ret_val = igb_read_part_string(hw, part_str,
3065                                                E1000_PBANUM_LENGTH);
3066         } else {
3067                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3068         }
3069
3070         if (ret_val)
3071                 strcpy(part_str, "Unknown");
3072         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3073         dev_info(&pdev->dev,
3074                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3075                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3076                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3077                 adapter->num_rx_queues, adapter->num_tx_queues);
3078         if (hw->phy.media_type == e1000_media_type_copper) {
3079                 switch (hw->mac.type) {
3080                 case e1000_i350:
3081                 case e1000_i210:
3082                 case e1000_i211:
3083                         /* Enable EEE for internal copper PHY devices */
3084                         err = igb_set_eee_i350(hw, true, true);
3085                         if ((!err) &&
3086                             (!hw->dev_spec._82575.eee_disable)) {
3087                                 adapter->eee_advert =
3088                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3089                                 adapter->flags |= IGB_FLAG_EEE;
3090                         }
3091                         break;
3092                 case e1000_i354:
3093                         if ((rd32(E1000_CTRL_EXT) &
3094                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3095                                 err = igb_set_eee_i354(hw, true, true);
3096                                 if ((!err) &&
3097                                         (!hw->dev_spec._82575.eee_disable)) {
3098                                         adapter->eee_advert =
3099                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3100                                         adapter->flags |= IGB_FLAG_EEE;
3101                                 }
3102                         }
3103                         break;
3104                 default:
3105                         break;
3106                 }
3107         }
3108         pm_runtime_put_noidle(&pdev->dev);
3109         return 0;
3110
3111 err_register:
3112         igb_release_hw_control(adapter);
3113         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3114 err_eeprom:
3115         if (!igb_check_reset_block(hw))
3116                 igb_reset_phy(hw);
3117
3118         if (hw->flash_address)
3119                 iounmap(hw->flash_address);
3120 err_sw_init:
3121         kfree(adapter->mac_table);
3122         kfree(adapter->shadow_vfta);
3123         igb_clear_interrupt_scheme(adapter);
3124 #ifdef CONFIG_PCI_IOV
3125         igb_disable_sriov(pdev);
3126 #endif
3127         pci_iounmap(pdev, adapter->io_addr);
3128 err_ioremap:
3129         free_netdev(netdev);
3130 err_alloc_etherdev:
3131         pci_release_mem_regions(pdev);
3132 err_pci_reg:
3133 err_dma:
3134         pci_disable_device(pdev);
3135         return err;
3136 }
3137
3138 #ifdef CONFIG_PCI_IOV
3139 static int igb_disable_sriov(struct pci_dev *pdev)
3140 {
3141         struct net_device *netdev = pci_get_drvdata(pdev);
3142         struct igb_adapter *adapter = netdev_priv(netdev);
3143         struct e1000_hw *hw = &adapter->hw;
3144
3145         /* reclaim resources allocated to VFs */
3146         if (adapter->vf_data) {
3147                 /* disable iov and allow time for transactions to clear */
3148                 if (pci_vfs_assigned(pdev)) {
3149                         dev_warn(&pdev->dev,
3150                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3151                         return -EPERM;
3152                 } else {
3153                         pci_disable_sriov(pdev);
3154                         msleep(500);
3155                 }
3156
3157                 kfree(adapter->vf_mac_list);
3158                 adapter->vf_mac_list = NULL;
3159                 kfree(adapter->vf_data);
3160                 adapter->vf_data = NULL;
3161                 adapter->vfs_allocated_count = 0;
3162                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3163                 wrfl();
3164                 msleep(100);
3165                 dev_info(&pdev->dev, "IOV Disabled\n");
3166
3167                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3168                 adapter->flags |= IGB_FLAG_DMAC;
3169         }
3170
3171         return 0;
3172 }
3173
3174 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3175 {
3176         struct net_device *netdev = pci_get_drvdata(pdev);
3177         struct igb_adapter *adapter = netdev_priv(netdev);
3178         int old_vfs = pci_num_vf(pdev);
3179         struct vf_mac_filter *mac_list;
3180         int err = 0;
3181         int num_vf_mac_filters, i;
3182
3183         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3184                 err = -EPERM;
3185                 goto out;
3186         }
3187         if (!num_vfs)
3188                 goto out;
3189
3190         if (old_vfs) {
3191                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3192                          old_vfs, max_vfs);
3193                 adapter->vfs_allocated_count = old_vfs;
3194         } else
3195                 adapter->vfs_allocated_count = num_vfs;
3196
3197         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3198                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3199
3200         /* if allocation failed then we do not support SR-IOV */
3201         if (!adapter->vf_data) {
3202                 adapter->vfs_allocated_count = 0;
3203                 dev_err(&pdev->dev,
3204                         "Unable to allocate memory for VF Data Storage\n");
3205                 err = -ENOMEM;
3206                 goto out;
3207         }
3208
3209         /* Due to the limited number of RAR entries calculate potential
3210          * number of MAC filters available for the VFs. Reserve entries
3211          * for PF default MAC, PF MAC filters and at least one RAR entry
3212          * for each VF for VF MAC.
3213          */
3214         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3215                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3216                               adapter->vfs_allocated_count);
3217
3218         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3219                                        sizeof(struct vf_mac_filter),
3220                                        GFP_KERNEL);
3221
3222         mac_list = adapter->vf_mac_list;
3223         INIT_LIST_HEAD(&adapter->vf_macs.l);
3224
3225         if (adapter->vf_mac_list) {
3226                 /* Initialize list of VF MAC filters */
3227                 for (i = 0; i < num_vf_mac_filters; i++) {
3228                         mac_list->vf = -1;
3229                         mac_list->free = true;
3230                         list_add(&mac_list->l, &adapter->vf_macs.l);
3231                         mac_list++;
3232                 }
3233         } else {
3234                 /* If we could not allocate memory for the VF MAC filters
3235                  * we can continue without this feature but warn user.
3236                  */
3237                 dev_err(&pdev->dev,
3238                         "Unable to allocate memory for VF MAC filter list\n");
3239         }
3240
3241         /* only call pci_enable_sriov() if no VFs are allocated already */
3242         if (!old_vfs) {
3243                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3244                 if (err)
3245                         goto err_out;
3246         }
3247         dev_info(&pdev->dev, "%d VFs allocated\n",
3248                  adapter->vfs_allocated_count);
3249         for (i = 0; i < adapter->vfs_allocated_count; i++)
3250                 igb_vf_configure(adapter, i);
3251
3252         /* DMA Coalescing is not supported in IOV mode. */
3253         adapter->flags &= ~IGB_FLAG_DMAC;
3254         goto out;
3255
3256 err_out:
3257         kfree(adapter->vf_mac_list);
3258         adapter->vf_mac_list = NULL;
3259         kfree(adapter->vf_data);
3260         adapter->vf_data = NULL;
3261         adapter->vfs_allocated_count = 0;
3262 out:
3263         return err;
3264 }
3265
3266 #endif
3267 /**
3268  *  igb_remove_i2c - Cleanup  I2C interface
3269  *  @adapter: pointer to adapter structure
3270  **/
3271 static void igb_remove_i2c(struct igb_adapter *adapter)
3272 {
3273         /* free the adapter bus structure */
3274         i2c_del_adapter(&adapter->i2c_adap);
3275 }
3276
3277 /**
3278  *  igb_remove - Device Removal Routine
3279  *  @pdev: PCI device information struct
3280  *
3281  *  igb_remove is called by the PCI subsystem to alert the driver
3282  *  that it should release a PCI device.  The could be caused by a
3283  *  Hot-Plug event, or because the driver is going to be removed from
3284  *  memory.
3285  **/
3286 static void igb_remove(struct pci_dev *pdev)
3287 {
3288         struct net_device *netdev = pci_get_drvdata(pdev);
3289         struct igb_adapter *adapter = netdev_priv(netdev);
3290         struct e1000_hw *hw = &adapter->hw;
3291
3292         pm_runtime_get_noresume(&pdev->dev);
3293 #ifdef CONFIG_IGB_HWMON
3294         igb_sysfs_exit(adapter);
3295 #endif
3296         igb_remove_i2c(adapter);
3297         igb_ptp_stop(adapter);
3298         /* The watchdog timer may be rescheduled, so explicitly
3299          * disable watchdog from being rescheduled.
3300          */
3301         set_bit(__IGB_DOWN, &adapter->state);
3302         del_timer_sync(&adapter->watchdog_timer);
3303         del_timer_sync(&adapter->phy_info_timer);
3304
3305         cancel_work_sync(&adapter->reset_task);
3306         cancel_work_sync(&adapter->watchdog_task);
3307
3308 #ifdef CONFIG_IGB_DCA
3309         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3310                 dev_info(&pdev->dev, "DCA disabled\n");
3311                 dca_remove_requester(&pdev->dev);
3312                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3313                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3314         }
3315 #endif
3316
3317         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3318          * would have already happened in close and is redundant.
3319          */
3320         igb_release_hw_control(adapter);
3321
3322 #ifdef CONFIG_PCI_IOV
3323         igb_disable_sriov(pdev);
3324 #endif
3325
3326         unregister_netdev(netdev);
3327
3328         igb_clear_interrupt_scheme(adapter);
3329
3330         pci_iounmap(pdev, adapter->io_addr);
3331         if (hw->flash_address)
3332                 iounmap(hw->flash_address);
3333         pci_release_mem_regions(pdev);
3334
3335         kfree(adapter->mac_table);
3336         kfree(adapter->shadow_vfta);
3337         free_netdev(netdev);
3338
3339         pci_disable_pcie_error_reporting(pdev);
3340
3341         pci_disable_device(pdev);
3342 }
3343
3344 /**
3345  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3346  *  @adapter: board private structure to initialize
3347  *
3348  *  This function initializes the vf specific data storage and then attempts to
3349  *  allocate the VFs.  The reason for ordering it this way is because it is much
3350  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3351  *  the memory for the VFs.
3352  **/
3353 static void igb_probe_vfs(struct igb_adapter *adapter)
3354 {
3355 #ifdef CONFIG_PCI_IOV
3356         struct pci_dev *pdev = adapter->pdev;
3357         struct e1000_hw *hw = &adapter->hw;
3358
3359         /* Virtualization features not supported on i210 family. */
3360         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3361                 return;
3362
3363         /* Of the below we really only want the effect of getting
3364          * IGB_FLAG_HAS_MSIX set (if available), without which
3365          * igb_enable_sriov() has no effect.
3366          */
3367         igb_set_interrupt_capability(adapter, true);
3368         igb_reset_interrupt_capability(adapter);
3369
3370         pci_sriov_set_totalvfs(pdev, 7);
3371         igb_enable_sriov(pdev, max_vfs);
3372
3373 #endif /* CONFIG_PCI_IOV */
3374 }
3375
3376 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3377 {
3378         struct e1000_hw *hw = &adapter->hw;
3379         u32 max_rss_queues;
3380
3381         /* Determine the maximum number of RSS queues supported. */
3382         switch (hw->mac.type) {
3383         case e1000_i211:
3384                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3385                 break;
3386         case e1000_82575:
3387         case e1000_i210:
3388                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3389                 break;
3390         case e1000_i350:
3391                 /* I350 cannot do RSS and SR-IOV at the same time */
3392                 if (!!adapter->vfs_allocated_count) {
3393                         max_rss_queues = 1;
3394                         break;
3395                 }
3396                 /* fall through */
3397         case e1000_82576:
3398                 if (!!adapter->vfs_allocated_count) {
3399                         max_rss_queues = 2;
3400                         break;
3401                 }
3402                 /* fall through */
3403         case e1000_82580:
3404         case e1000_i354:
3405         default:
3406                 max_rss_queues = IGB_MAX_RX_QUEUES;
3407                 break;
3408         }
3409
3410         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3411
3412         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3413 }
3414
3415 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3416                               const u32 max_rss_queues)
3417 {
3418         struct e1000_hw *hw = &adapter->hw;
3419
3420         /* Determine if we need to pair queues. */
3421         switch (hw->mac.type) {
3422         case e1000_82575:
3423         case e1000_i211:
3424                 /* Device supports enough interrupts without queue pairing. */
3425                 break;
3426         case e1000_82576:
3427         case e1000_82580:
3428         case e1000_i350:
3429         case e1000_i354:
3430         case e1000_i210:
3431         default:
3432                 /* If rss_queues > half of max_rss_queues, pair the queues in
3433                  * order to conserve interrupts due to limited supply.
3434                  */
3435                 if (adapter->rss_queues > (max_rss_queues / 2))
3436                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3437                 else
3438                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3439                 break;
3440         }
3441 }
3442
3443 /**
3444  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3445  *  @adapter: board private structure to initialize
3446  *
3447  *  igb_sw_init initializes the Adapter private data structure.
3448  *  Fields are initialized based on PCI device information and
3449  *  OS network device settings (MTU size).
3450  **/
3451 static int igb_sw_init(struct igb_adapter *adapter)
3452 {
3453         struct e1000_hw *hw = &adapter->hw;
3454         struct net_device *netdev = adapter->netdev;
3455         struct pci_dev *pdev = adapter->pdev;
3456
3457         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3458
3459         /* set default ring sizes */
3460         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3461         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3462
3463         /* set default ITR values */
3464         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3465         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3466
3467         /* set default work limits */
3468         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3469
3470         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3471                                   VLAN_HLEN;
3472         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3473
3474         spin_lock_init(&adapter->nfc_lock);
3475         spin_lock_init(&adapter->stats64_lock);
3476 #ifdef CONFIG_PCI_IOV
3477         switch (hw->mac.type) {
3478         case e1000_82576:
3479         case e1000_i350:
3480                 if (max_vfs > 7) {
3481                         dev_warn(&pdev->dev,
3482                                  "Maximum of 7 VFs per PF, using max\n");
3483                         max_vfs = adapter->vfs_allocated_count = 7;
3484                 } else
3485                         adapter->vfs_allocated_count = max_vfs;
3486                 if (adapter->vfs_allocated_count)
3487                         dev_warn(&pdev->dev,
3488                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3489                 break;
3490         default:
3491                 break;
3492         }
3493 #endif /* CONFIG_PCI_IOV */
3494
3495         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3496         adapter->flags |= IGB_FLAG_HAS_MSIX;
3497
3498         adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3499                                      hw->mac.rar_entry_count, GFP_ATOMIC);
3500         if (!adapter->mac_table)
3501                 return -ENOMEM;
3502
3503         igb_probe_vfs(adapter);
3504
3505         igb_init_queue_configuration(adapter);
3506
3507         /* Setup and initialize a copy of the hw vlan table array */
3508         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3509                                        GFP_ATOMIC);
3510         if (!adapter->shadow_vfta)
3511                 return -ENOMEM;
3512
3513         /* This call may decrease the number of queues */
3514         if (igb_init_interrupt_scheme(adapter, true)) {
3515                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3516                 return -ENOMEM;
3517         }
3518
3519         /* Explicitly disable IRQ since the NIC can be in any state. */
3520         igb_irq_disable(adapter);
3521
3522         if (hw->mac.type >= e1000_i350)
3523                 adapter->flags &= ~IGB_FLAG_DMAC;
3524
3525         set_bit(__IGB_DOWN, &adapter->state);
3526         return 0;
3527 }
3528
3529 /**
3530  *  igb_open - Called when a network interface is made active
3531  *  @netdev: network interface device structure
3532  *
3533  *  Returns 0 on success, negative value on failure
3534  *
3535  *  The open entry point is called when a network interface is made
3536  *  active by the system (IFF_UP).  At this point all resources needed
3537  *  for transmit and receive operations are allocated, the interrupt
3538  *  handler is registered with the OS, the watchdog timer is started,
3539  *  and the stack is notified that the interface is ready.
3540  **/
3541 static int __igb_open(struct net_device *netdev, bool resuming)
3542 {
3543         struct igb_adapter *adapter = netdev_priv(netdev);
3544         struct e1000_hw *hw = &adapter->hw;
3545         struct pci_dev *pdev = adapter->pdev;
3546         int err;
3547         int i;
3548
3549         /* disallow open during test */
3550         if (test_bit(__IGB_TESTING, &adapter->state)) {
3551                 WARN_ON(resuming);
3552                 return -EBUSY;
3553         }
3554
3555         if (!resuming)
3556                 pm_runtime_get_sync(&pdev->dev);
3557
3558         netif_carrier_off(netdev);
3559
3560         /* allocate transmit descriptors */
3561         err = igb_setup_all_tx_resources(adapter);
3562         if (err)
3563                 goto err_setup_tx;
3564
3565         /* allocate receive descriptors */
3566         err = igb_setup_all_rx_resources(adapter);
3567         if (err)
3568                 goto err_setup_rx;
3569
3570         igb_power_up_link(adapter);
3571
3572         /* before we allocate an interrupt, we must be ready to handle it.
3573          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3574          * as soon as we call pci_request_irq, so we have to setup our
3575          * clean_rx handler before we do so.
3576          */
3577         igb_configure(adapter);
3578
3579         err = igb_request_irq(adapter);
3580         if (err)
3581                 goto err_req_irq;
3582
3583         /* Notify the stack of the actual queue counts. */
3584         err = netif_set_real_num_tx_queues(adapter->netdev,
3585                                            adapter->num_tx_queues);
3586         if (err)
3587                 goto err_set_queues;
3588
3589         err = netif_set_real_num_rx_queues(adapter->netdev,
3590                                            adapter->num_rx_queues);
3591         if (err)
3592                 goto err_set_queues;
3593
3594         /* From here on the code is the same as igb_up() */
3595         clear_bit(__IGB_DOWN, &adapter->state);
3596
3597         for (i = 0; i < adapter->num_q_vectors; i++)
3598                 napi_enable(&(adapter->q_vector[i]->napi));
3599
3600         /* Clear any pending interrupts. */
3601         rd32(E1000_ICR);
3602
3603         igb_irq_enable(adapter);
3604
3605         /* notify VFs that reset has been completed */
3606         if (adapter->vfs_allocated_count) {
3607                 u32 reg_data = rd32(E1000_CTRL_EXT);
3608
3609                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3610                 wr32(E1000_CTRL_EXT, reg_data);
3611         }
3612
3613         netif_tx_start_all_queues(netdev);
3614
3615         if (!resuming)
3616                 pm_runtime_put(&pdev->dev);
3617
3618         /* start the watchdog. */
3619         hw->mac.get_link_status = 1;
3620         schedule_work(&adapter->watchdog_task);
3621
3622         return 0;
3623
3624 err_set_queues:
3625         igb_free_irq(adapter);
3626 err_req_irq:
3627         igb_release_hw_control(adapter);
3628         igb_power_down_link(adapter);
3629         igb_free_all_rx_resources(adapter);
3630 err_setup_rx:
3631         igb_free_all_tx_resources(adapter);
3632 err_setup_tx:
3633         igb_reset(adapter);
3634         if (!resuming)
3635                 pm_runtime_put(&pdev->dev);
3636
3637         return err;
3638 }
3639
3640 int igb_open(struct net_device *netdev)
3641 {
3642         return __igb_open(netdev, false);
3643 }
3644
3645 /**
3646  *  igb_close - Disables a network interface
3647  *  @netdev: network interface device structure
3648  *
3649  *  Returns 0, this is not allowed to fail
3650  *
3651  *  The close entry point is called when an interface is de-activated
3652  *  by the OS.  The hardware is still under the driver's control, but
3653  *  needs to be disabled.  A global MAC reset is issued to stop the
3654  *  hardware, and all transmit and receive resources are freed.
3655  **/
3656 static int __igb_close(struct net_device *netdev, bool suspending)
3657 {
3658         struct igb_adapter *adapter = netdev_priv(netdev);
3659         struct pci_dev *pdev = adapter->pdev;
3660
3661         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3662
3663         if (!suspending)
3664                 pm_runtime_get_sync(&pdev->dev);
3665
3666         igb_down(adapter);
3667         igb_free_irq(adapter);
3668
3669         igb_free_all_tx_resources(adapter);
3670         igb_free_all_rx_resources(adapter);
3671
3672         if (!suspending)
3673                 pm_runtime_put_sync(&pdev->dev);
3674         return 0;
3675 }
3676
3677 int igb_close(struct net_device *netdev)
3678 {
3679         if (netif_device_present(netdev))
3680                 return __igb_close(netdev, false);
3681         return 0;
3682 }
3683
3684 /**
3685  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3686  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3687  *
3688  *  Return 0 on success, negative on failure
3689  **/
3690 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3691 {
3692         struct device *dev = tx_ring->dev;
3693         int size;
3694
3695         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3696
3697         tx_ring->tx_buffer_info = vmalloc(size);
3698         if (!tx_ring->tx_buffer_info)
3699                 goto err;
3700
3701         /* round up to nearest 4K */
3702         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3703         tx_ring->size = ALIGN(tx_ring->size, 4096);
3704
3705         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3706                                            &tx_ring->dma, GFP_KERNEL);
3707         if (!tx_ring->desc)
3708                 goto err;
3709
3710         tx_ring->next_to_use = 0;
3711         tx_ring->next_to_clean = 0;
3712
3713         return 0;
3714
3715 err:
3716         vfree(tx_ring->tx_buffer_info);
3717         tx_ring->tx_buffer_info = NULL;
3718         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3719         return -ENOMEM;
3720 }
3721
3722 /**
3723  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3724  *                               (Descriptors) for all queues
3725  *  @adapter: board private structure
3726  *
3727  *  Return 0 on success, negative on failure
3728  **/
3729 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3730 {
3731         struct pci_dev *pdev = adapter->pdev;
3732         int i, err = 0;
3733
3734         for (i = 0; i < adapter->num_tx_queues; i++) {
3735                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3736                 if (err) {
3737                         dev_err(&pdev->dev,
3738                                 "Allocation for Tx Queue %u failed\n", i);
3739                         for (i--; i >= 0; i--)
3740                                 igb_free_tx_resources(adapter->tx_ring[i]);
3741                         break;
3742                 }
3743         }
3744
3745         return err;
3746 }
3747
3748 /**
3749  *  igb_setup_tctl - configure the transmit control registers
3750  *  @adapter: Board private structure
3751  **/
3752 void igb_setup_tctl(struct igb_adapter *adapter)
3753 {
3754         struct e1000_hw *hw = &adapter->hw;
3755         u32 tctl;
3756
3757         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3758         wr32(E1000_TXDCTL(0), 0);
3759
3760         /* Program the Transmit Control Register */
3761         tctl = rd32(E1000_TCTL);
3762         tctl &= ~E1000_TCTL_CT;
3763         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3764                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3765
3766         igb_config_collision_dist(hw);
3767
3768         /* Enable transmits */
3769         tctl |= E1000_TCTL_EN;
3770
3771         wr32(E1000_TCTL, tctl);
3772 }
3773
3774 /**
3775  *  igb_configure_tx_ring - Configure transmit ring after Reset
3776  *  @adapter: board private structure
3777  *  @ring: tx ring to configure
3778  *
3779  *  Configure a transmit ring after a reset.
3780  **/
3781 void igb_configure_tx_ring(struct igb_adapter *adapter,
3782                            struct igb_ring *ring)
3783 {
3784         struct e1000_hw *hw = &adapter->hw;
3785         u32 txdctl = 0;
3786         u64 tdba = ring->dma;
3787         int reg_idx = ring->reg_idx;
3788
3789         /* disable the queue */
3790         wr32(E1000_TXDCTL(reg_idx), 0);
3791         wrfl();
3792         mdelay(10);
3793
3794         wr32(E1000_TDLEN(reg_idx),
3795              ring->count * sizeof(union e1000_adv_tx_desc));
3796         wr32(E1000_TDBAL(reg_idx),
3797              tdba & 0x00000000ffffffffULL);
3798         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3799
3800         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3801         wr32(E1000_TDH(reg_idx), 0);
3802         writel(0, ring->tail);
3803
3804         txdctl |= IGB_TX_PTHRESH;
3805         txdctl |= IGB_TX_HTHRESH << 8;
3806         txdctl |= IGB_TX_WTHRESH << 16;
3807
3808         /* reinitialize tx_buffer_info */
3809         memset(ring->tx_buffer_info, 0,
3810                sizeof(struct igb_tx_buffer) * ring->count);
3811
3812         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3813         wr32(E1000_TXDCTL(reg_idx), txdctl);
3814 }
3815
3816 /**
3817  *  igb_configure_tx - Configure transmit Unit after Reset
3818  *  @adapter: board private structure
3819  *
3820  *  Configure the Tx unit of the MAC after a reset.
3821  **/
3822 static void igb_configure_tx(struct igb_adapter *adapter)
3823 {
3824         int i;
3825
3826         for (i = 0; i < adapter->num_tx_queues; i++)
3827                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3828 }
3829
3830 /**
3831  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3832  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3833  *
3834  *  Returns 0 on success, negative on failure
3835  **/
3836 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3837 {
3838         struct device *dev = rx_ring->dev;
3839         int size;
3840
3841         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3842
3843         rx_ring->rx_buffer_info = vmalloc(size);
3844         if (!rx_ring->rx_buffer_info)
3845                 goto err;
3846
3847         /* Round up to nearest 4K */
3848         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3849         rx_ring->size = ALIGN(rx_ring->size, 4096);
3850
3851         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3852                                            &rx_ring->dma, GFP_KERNEL);
3853         if (!rx_ring->desc)
3854                 goto err;
3855
3856         rx_ring->next_to_alloc = 0;
3857         rx_ring->next_to_clean = 0;
3858         rx_ring->next_to_use = 0;
3859
3860         return 0;
3861
3862 err:
3863         vfree(rx_ring->rx_buffer_info);
3864         rx_ring->rx_buffer_info = NULL;
3865         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3866         return -ENOMEM;
3867 }
3868
3869 /**
3870  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3871  *                               (Descriptors) for all queues
3872  *  @adapter: board private structure
3873  *
3874  *  Return 0 on success, negative on failure
3875  **/
3876 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3877 {
3878         struct pci_dev *pdev = adapter->pdev;
3879         int i, err = 0;
3880
3881         for (i = 0; i < adapter->num_rx_queues; i++) {
3882                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3883                 if (err) {
3884                         dev_err(&pdev->dev,
3885                                 "Allocation for Rx Queue %u failed\n", i);
3886                         for (i--; i >= 0; i--)
3887                                 igb_free_rx_resources(adapter->rx_ring[i]);
3888                         break;
3889                 }
3890         }
3891
3892         return err;
3893 }
3894
3895 /**
3896  *  igb_setup_mrqc - configure the multiple receive queue control registers
3897  *  @adapter: Board private structure
3898  **/
3899 static void igb_setup_mrqc(struct igb_adapter *adapter)
3900 {
3901         struct e1000_hw *hw = &adapter->hw;
3902         u32 mrqc, rxcsum;
3903         u32 j, num_rx_queues;
3904         u32 rss_key[10];
3905
3906         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3907         for (j = 0; j < 10; j++)
3908                 wr32(E1000_RSSRK(j), rss_key[j]);
3909
3910         num_rx_queues = adapter->rss_queues;
3911
3912         switch (hw->mac.type) {
3913         case e1000_82576:
3914                 /* 82576 supports 2 RSS queues for SR-IOV */
3915                 if (adapter->vfs_allocated_count)
3916                         num_rx_queues = 2;
3917                 break;
3918         default:
3919                 break;
3920         }
3921
3922         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3923                 for (j = 0; j < IGB_RETA_SIZE; j++)
3924                         adapter->rss_indir_tbl[j] =
3925                         (j * num_rx_queues) / IGB_RETA_SIZE;
3926                 adapter->rss_indir_tbl_init = num_rx_queues;
3927         }
3928         igb_write_rss_indir_tbl(adapter);
3929
3930         /* Disable raw packet checksumming so that RSS hash is placed in
3931          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3932          * offloads as they are enabled by default
3933          */
3934         rxcsum = rd32(E1000_RXCSUM);
3935         rxcsum |= E1000_RXCSUM_PCSD;
3936
3937         if (adapter->hw.mac.type >= e1000_82576)
3938                 /* Enable Receive Checksum Offload for SCTP */
3939                 rxcsum |= E1000_RXCSUM_CRCOFL;
3940
3941         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3942         wr32(E1000_RXCSUM, rxcsum);
3943
3944         /* Generate RSS hash based on packet types, TCP/UDP
3945          * port numbers and/or IPv4/v6 src and dst addresses
3946          */
3947         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3948                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3949                E1000_MRQC_RSS_FIELD_IPV6 |
3950                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3951                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3952
3953         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3954                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3955         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3956                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3957
3958         /* If VMDq is enabled then we set the appropriate mode for that, else
3959          * we default to RSS so that an RSS hash is calculated per packet even
3960          * if we are only using one queue
3961          */
3962         if (adapter->vfs_allocated_count) {
3963                 if (hw->mac.type > e1000_82575) {
3964                         /* Set the default pool for the PF's first queue */
3965                         u32 vtctl = rd32(E1000_VT_CTL);
3966
3967                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3968                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3969                         vtctl |= adapter->vfs_allocated_count <<
3970                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3971                         wr32(E1000_VT_CTL, vtctl);
3972                 }
3973                 if (adapter->rss_queues > 1)
3974                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3975                 else
3976                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3977         } else {
3978                 if (hw->mac.type != e1000_i211)
3979                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3980         }
3981         igb_vmm_control(adapter);
3982
3983         wr32(E1000_MRQC, mrqc);
3984 }
3985
3986 /**
3987  *  igb_setup_rctl - configure the receive control registers
3988  *  @adapter: Board private structure
3989  **/
3990 void igb_setup_rctl(struct igb_adapter *adapter)
3991 {
3992         struct e1000_hw *hw = &adapter->hw;
3993         u32 rctl;
3994
3995         rctl = rd32(E1000_RCTL);
3996
3997         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3998         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3999
4000         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4001                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4002
4003         /* enable stripping of CRC. It's unlikely this will break BMC
4004          * redirection as it did with e1000. Newer features require
4005          * that the HW strips the CRC.
4006          */
4007         rctl |= E1000_RCTL_SECRC;
4008
4009         /* disable store bad packets and clear size bits. */
4010         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4011
4012         /* enable LPE to allow for reception of jumbo frames */
4013         rctl |= E1000_RCTL_LPE;
4014
4015         /* disable queue 0 to prevent tail write w/o re-config */
4016         wr32(E1000_RXDCTL(0), 0);
4017
4018         /* Attention!!!  For SR-IOV PF driver operations you must enable
4019          * queue drop for all VF and PF queues to prevent head of line blocking
4020          * if an un-trusted VF does not provide descriptors to hardware.
4021          */
4022         if (adapter->vfs_allocated_count) {
4023                 /* set all queue drop enable bits */
4024                 wr32(E1000_QDE, ALL_QUEUES);
4025         }
4026
4027         /* This is useful for sniffing bad packets. */
4028         if (adapter->netdev->features & NETIF_F_RXALL) {
4029                 /* UPE and MPE will be handled by normal PROMISC logic
4030                  * in e1000e_set_rx_mode
4031                  */
4032                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4033                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4034                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4035
4036                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4037                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4038                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4039                  * and that breaks VLANs.
4040                  */
4041         }
4042
4043         wr32(E1000_RCTL, rctl);
4044 }
4045
4046 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4047                                    int vfn)
4048 {
4049         struct e1000_hw *hw = &adapter->hw;
4050         u32 vmolr;
4051
4052         if (size > MAX_JUMBO_FRAME_SIZE)
4053                 size = MAX_JUMBO_FRAME_SIZE;
4054
4055         vmolr = rd32(E1000_VMOLR(vfn));
4056         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4057         vmolr |= size | E1000_VMOLR_LPE;
4058         wr32(E1000_VMOLR(vfn), vmolr);
4059
4060         return 0;
4061 }
4062
4063 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4064                                          int vfn, bool enable)
4065 {
4066         struct e1000_hw *hw = &adapter->hw;
4067         u32 val, reg;
4068
4069         if (hw->mac.type < e1000_82576)
4070                 return;
4071
4072         if (hw->mac.type == e1000_i350)
4073                 reg = E1000_DVMOLR(vfn);
4074         else
4075                 reg = E1000_VMOLR(vfn);
4076
4077         val = rd32(reg);
4078         if (enable)
4079                 val |= E1000_VMOLR_STRVLAN;
4080         else
4081                 val &= ~(E1000_VMOLR_STRVLAN);
4082         wr32(reg, val);
4083 }
4084
4085 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4086                                  int vfn, bool aupe)
4087 {
4088         struct e1000_hw *hw = &adapter->hw;
4089         u32 vmolr;
4090
4091         /* This register exists only on 82576 and newer so if we are older then
4092          * we should exit and do nothing
4093          */
4094         if (hw->mac.type < e1000_82576)
4095                 return;
4096
4097         vmolr = rd32(E1000_VMOLR(vfn));
4098         if (aupe)
4099                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4100         else
4101                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4102
4103         /* clear all bits that might not be set */
4104         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4105
4106         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4107                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4108         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4109          * multicast packets
4110          */
4111         if (vfn <= adapter->vfs_allocated_count)
4112                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4113
4114         wr32(E1000_VMOLR(vfn), vmolr);
4115 }
4116
4117 /**
4118  *  igb_configure_rx_ring - Configure a receive ring after Reset
4119  *  @adapter: board private structure
4120  *  @ring: receive ring to be configured
4121  *
4122  *  Configure the Rx unit of the MAC after a reset.
4123  **/
4124 void igb_configure_rx_ring(struct igb_adapter *adapter,
4125                            struct igb_ring *ring)
4126 {
4127         struct e1000_hw *hw = &adapter->hw;
4128         union e1000_adv_rx_desc *rx_desc;
4129         u64 rdba = ring->dma;
4130         int reg_idx = ring->reg_idx;
4131         u32 srrctl = 0, rxdctl = 0;
4132
4133         /* disable the queue */
4134         wr32(E1000_RXDCTL(reg_idx), 0);
4135
4136         /* Set DMA base address registers */
4137         wr32(E1000_RDBAL(reg_idx),
4138              rdba & 0x00000000ffffffffULL);
4139         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4140         wr32(E1000_RDLEN(reg_idx),
4141              ring->count * sizeof(union e1000_adv_rx_desc));
4142
4143         /* initialize head and tail */
4144         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4145         wr32(E1000_RDH(reg_idx), 0);
4146         writel(0, ring->tail);
4147
4148         /* set descriptor configuration */
4149         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4150         if (ring_uses_large_buffer(ring))
4151                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4152         else
4153                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4154         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4155         if (hw->mac.type >= e1000_82580)
4156                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4157         /* Only set Drop Enable if we are supporting multiple queues */
4158         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4159                 srrctl |= E1000_SRRCTL_DROP_EN;
4160
4161         wr32(E1000_SRRCTL(reg_idx), srrctl);
4162
4163         /* set filtering for VMDQ pools */
4164         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4165
4166         rxdctl |= IGB_RX_PTHRESH;
4167         rxdctl |= IGB_RX_HTHRESH << 8;
4168         rxdctl |= IGB_RX_WTHRESH << 16;
4169
4170         /* initialize rx_buffer_info */
4171         memset(ring->rx_buffer_info, 0,
4172                sizeof(struct igb_rx_buffer) * ring->count);
4173
4174         /* initialize Rx descriptor 0 */
4175         rx_desc = IGB_RX_DESC(ring, 0);
4176         rx_desc->wb.upper.length = 0;
4177
4178         /* enable receive descriptor fetching */
4179         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4180         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4181 }
4182
4183 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4184                                   struct igb_ring *rx_ring)
4185 {
4186         /* set build_skb and buffer size flags */
4187         clear_ring_build_skb_enabled(rx_ring);
4188         clear_ring_uses_large_buffer(rx_ring);
4189
4190         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4191                 return;
4192
4193         set_ring_build_skb_enabled(rx_ring);
4194
4195 #if (PAGE_SIZE < 8192)
4196         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4197                 return;
4198
4199         set_ring_uses_large_buffer(rx_ring);
4200 #endif
4201 }
4202
4203 /**
4204  *  igb_configure_rx - Configure receive Unit after Reset
4205  *  @adapter: board private structure
4206  *
4207  *  Configure the Rx unit of the MAC after a reset.
4208  **/
4209 static void igb_configure_rx(struct igb_adapter *adapter)
4210 {
4211         int i;
4212
4213         /* set the correct pool for the PF default MAC address in entry 0 */
4214         igb_set_default_mac_filter(adapter);
4215
4216         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4217          * the Base and Length of the Rx Descriptor Ring
4218          */
4219         for (i = 0; i < adapter->num_rx_queues; i++) {
4220                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4221
4222                 igb_set_rx_buffer_len(adapter, rx_ring);
4223                 igb_configure_rx_ring(adapter, rx_ring);
4224         }
4225 }
4226
4227 /**
4228  *  igb_free_tx_resources - Free Tx Resources per Queue
4229  *  @tx_ring: Tx descriptor ring for a specific queue
4230  *
4231  *  Free all transmit software resources
4232  **/
4233 void igb_free_tx_resources(struct igb_ring *tx_ring)
4234 {
4235         igb_clean_tx_ring(tx_ring);
4236
4237         vfree(tx_ring->tx_buffer_info);
4238         tx_ring->tx_buffer_info = NULL;
4239
4240         /* if not set, then don't free */
4241         if (!tx_ring->desc)
4242                 return;
4243
4244         dma_free_coherent(tx_ring->dev, tx_ring->size,
4245                           tx_ring->desc, tx_ring->dma);
4246
4247         tx_ring->desc = NULL;
4248 }
4249
4250 /**
4251  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4252  *  @adapter: board private structure
4253  *
4254  *  Free all transmit software resources
4255  **/
4256 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4257 {
4258         int i;
4259
4260         for (i = 0; i < adapter->num_tx_queues; i++)
4261                 if (adapter->tx_ring[i])
4262                         igb_free_tx_resources(adapter->tx_ring[i]);
4263 }
4264
4265 /**
4266  *  igb_clean_tx_ring - Free Tx Buffers
4267  *  @tx_ring: ring to be cleaned
4268  **/
4269 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4270 {
4271         u16 i = tx_ring->next_to_clean;
4272         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4273
4274         while (i != tx_ring->next_to_use) {
4275                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4276
4277                 /* Free all the Tx ring sk_buffs */
4278                 dev_kfree_skb_any(tx_buffer->skb);
4279
4280                 /* unmap skb header data */
4281                 dma_unmap_single(tx_ring->dev,
4282                                  dma_unmap_addr(tx_buffer, dma),
4283                                  dma_unmap_len(tx_buffer, len),
4284                                  DMA_TO_DEVICE);
4285
4286                 /* check for eop_desc to determine the end of the packet */
4287                 eop_desc = tx_buffer->next_to_watch;
4288                 tx_desc = IGB_TX_DESC(tx_ring, i);
4289
4290                 /* unmap remaining buffers */
4291                 while (tx_desc != eop_desc) {
4292                         tx_buffer++;
4293                         tx_desc++;
4294                         i++;
4295                         if (unlikely(i == tx_ring->count)) {
4296                                 i = 0;
4297                                 tx_buffer = tx_ring->tx_buffer_info;
4298                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4299                         }
4300
4301                         /* unmap any remaining paged data */
4302                         if (dma_unmap_len(tx_buffer, len))
4303                                 dma_unmap_page(tx_ring->dev,
4304                                                dma_unmap_addr(tx_buffer, dma),
4305                                                dma_unmap_len(tx_buffer, len),
4306                                                DMA_TO_DEVICE);
4307                 }
4308
4309                 /* move us one more past the eop_desc for start of next pkt */
4310                 tx_buffer++;
4311                 i++;
4312                 if (unlikely(i == tx_ring->count)) {
4313                         i = 0;
4314                         tx_buffer = tx_ring->tx_buffer_info;
4315                 }
4316         }
4317
4318         /* reset BQL for queue */
4319         netdev_tx_reset_queue(txring_txq(tx_ring));
4320
4321         /* reset next_to_use and next_to_clean */
4322         tx_ring->next_to_use = 0;
4323         tx_ring->next_to_clean = 0;
4324 }
4325
4326 /**
4327  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4328  *  @adapter: board private structure
4329  **/
4330 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4331 {
4332         int i;
4333
4334         for (i = 0; i < adapter->num_tx_queues; i++)
4335                 if (adapter->tx_ring[i])
4336                         igb_clean_tx_ring(adapter->tx_ring[i]);
4337 }
4338
4339 /**
4340  *  igb_free_rx_resources - Free Rx Resources
4341  *  @rx_ring: ring to clean the resources from
4342  *
4343  *  Free all receive software resources
4344  **/
4345 void igb_free_rx_resources(struct igb_ring *rx_ring)
4346 {
4347         igb_clean_rx_ring(rx_ring);
4348
4349         vfree(rx_ring->rx_buffer_info);
4350         rx_ring->rx_buffer_info = NULL;
4351
4352         /* if not set, then don't free */
4353         if (!rx_ring->desc)
4354                 return;
4355
4356         dma_free_coherent(rx_ring->dev, rx_ring->size,
4357                           rx_ring->desc, rx_ring->dma);
4358
4359         rx_ring->desc = NULL;
4360 }
4361
4362 /**
4363  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4364  *  @adapter: board private structure
4365  *
4366  *  Free all receive software resources
4367  **/
4368 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4369 {
4370         int i;
4371
4372         for (i = 0; i < adapter->num_rx_queues; i++)
4373                 if (adapter->rx_ring[i])
4374                         igb_free_rx_resources(adapter->rx_ring[i]);
4375 }
4376
4377 /**
4378  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4379  *  @rx_ring: ring to free buffers from
4380  **/
4381 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4382 {
4383         u16 i = rx_ring->next_to_clean;
4384
4385         if (rx_ring->skb)
4386                 dev_kfree_skb(rx_ring->skb);
4387         rx_ring->skb = NULL;
4388
4389         /* Free all the Rx ring sk_buffs */
4390         while (i != rx_ring->next_to_alloc) {
4391                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4392
4393                 /* Invalidate cache lines that may have been written to by
4394                  * device so that we avoid corrupting memory.
4395                  */
4396                 dma_sync_single_range_for_cpu(rx_ring->dev,
4397                                               buffer_info->dma,
4398                                               buffer_info->page_offset,
4399                                               igb_rx_bufsz(rx_ring),
4400                                               DMA_FROM_DEVICE);
4401
4402                 /* free resources associated with mapping */
4403                 dma_unmap_page_attrs(rx_ring->dev,
4404                                      buffer_info->dma,
4405                                      igb_rx_pg_size(rx_ring),
4406                                      DMA_FROM_DEVICE,
4407                                      IGB_RX_DMA_ATTR);
4408                 __page_frag_cache_drain(buffer_info->page,
4409                                         buffer_info->pagecnt_bias);
4410
4411                 i++;
4412                 if (i == rx_ring->count)
4413                         i = 0;
4414         }
4415
4416         rx_ring->next_to_alloc = 0;
4417         rx_ring->next_to_clean = 0;
4418         rx_ring->next_to_use = 0;
4419 }
4420
4421 /**
4422  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4423  *  @adapter: board private structure
4424  **/
4425 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4426 {
4427         int i;
4428
4429         for (i = 0; i < adapter->num_rx_queues; i++)
4430                 if (adapter->rx_ring[i])
4431                         igb_clean_rx_ring(adapter->rx_ring[i]);
4432 }
4433
4434 /**
4435  *  igb_set_mac - Change the Ethernet Address of the NIC
4436  *  @netdev: network interface device structure
4437  *  @p: pointer to an address structure
4438  *
4439  *  Returns 0 on success, negative on failure
4440  **/
4441 static int igb_set_mac(struct net_device *netdev, void *p)
4442 {
4443         struct igb_adapter *adapter = netdev_priv(netdev);
4444         struct e1000_hw *hw = &adapter->hw;
4445         struct sockaddr *addr = p;
4446
4447         if (!is_valid_ether_addr(addr->sa_data))
4448                 return -EADDRNOTAVAIL;
4449
4450         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4451         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4452
4453         /* set the correct pool for the new PF MAC address in entry 0 */
4454         igb_set_default_mac_filter(adapter);
4455
4456         return 0;
4457 }
4458
4459 /**
4460  *  igb_write_mc_addr_list - write multicast addresses to MTA
4461  *  @netdev: network interface device structure
4462  *
4463  *  Writes multicast address list to the MTA hash table.
4464  *  Returns: -ENOMEM on failure
4465  *           0 on no addresses written
4466  *           X on writing X addresses to MTA
4467  **/
4468 static int igb_write_mc_addr_list(struct net_device *netdev)
4469 {
4470         struct igb_adapter *adapter = netdev_priv(netdev);
4471         struct e1000_hw *hw = &adapter->hw;
4472         struct netdev_hw_addr *ha;
4473         u8  *mta_list;
4474         int i;
4475
4476         if (netdev_mc_empty(netdev)) {
4477                 /* nothing to program, so clear mc list */
4478                 igb_update_mc_addr_list(hw, NULL, 0);
4479                 igb_restore_vf_multicasts(adapter);
4480                 return 0;
4481         }
4482
4483         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4484         if (!mta_list)
4485                 return -ENOMEM;
4486
4487         /* The shared function expects a packed array of only addresses. */
4488         i = 0;
4489         netdev_for_each_mc_addr(ha, netdev)
4490                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4491
4492         igb_update_mc_addr_list(hw, mta_list, i);
4493         kfree(mta_list);
4494
4495         return netdev_mc_count(netdev);
4496 }
4497
4498 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4499 {
4500         struct e1000_hw *hw = &adapter->hw;
4501         u32 i, pf_id;
4502
4503         switch (hw->mac.type) {
4504         case e1000_i210:
4505         case e1000_i211:
4506         case e1000_i350:
4507                 /* VLAN filtering needed for VLAN prio filter */
4508                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4509                         break;
4510                 /* fall through */
4511         case e1000_82576:
4512         case e1000_82580:
4513         case e1000_i354:
4514                 /* VLAN filtering needed for pool filtering */
4515                 if (adapter->vfs_allocated_count)
4516                         break;
4517                 /* fall through */
4518         default:
4519                 return 1;
4520         }
4521
4522         /* We are already in VLAN promisc, nothing to do */
4523         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4524                 return 0;
4525
4526         if (!adapter->vfs_allocated_count)
4527                 goto set_vfta;
4528
4529         /* Add PF to all active pools */
4530         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4531
4532         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4533                 u32 vlvf = rd32(E1000_VLVF(i));
4534
4535                 vlvf |= BIT(pf_id);
4536                 wr32(E1000_VLVF(i), vlvf);
4537         }
4538
4539 set_vfta:
4540         /* Set all bits in the VLAN filter table array */
4541         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4542                 hw->mac.ops.write_vfta(hw, i, ~0U);
4543
4544         /* Set flag so we don't redo unnecessary work */
4545         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4546
4547         return 0;
4548 }
4549
4550 #define VFTA_BLOCK_SIZE 8
4551 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4552 {
4553         struct e1000_hw *hw = &adapter->hw;
4554         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4555         u32 vid_start = vfta_offset * 32;
4556         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4557         u32 i, vid, word, bits, pf_id;
4558
4559         /* guarantee that we don't scrub out management VLAN */
4560         vid = adapter->mng_vlan_id;
4561         if (vid >= vid_start && vid < vid_end)
4562                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4563
4564         if (!adapter->vfs_allocated_count)
4565                 goto set_vfta;
4566
4567         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4568
4569         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4570                 u32 vlvf = rd32(E1000_VLVF(i));
4571
4572                 /* pull VLAN ID from VLVF */
4573                 vid = vlvf & VLAN_VID_MASK;
4574
4575                 /* only concern ourselves with a certain range */
4576                 if (vid < vid_start || vid >= vid_end)
4577                         continue;
4578
4579                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4580                         /* record VLAN ID in VFTA */
4581                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4582
4583                         /* if PF is part of this then continue */
4584                         if (test_bit(vid, adapter->active_vlans))
4585                                 continue;
4586                 }
4587
4588                 /* remove PF from the pool */
4589                 bits = ~BIT(pf_id);
4590                 bits &= rd32(E1000_VLVF(i));
4591                 wr32(E1000_VLVF(i), bits);
4592         }
4593
4594 set_vfta:
4595         /* extract values from active_vlans and write back to VFTA */
4596         for (i = VFTA_BLOCK_SIZE; i--;) {
4597                 vid = (vfta_offset + i) * 32;
4598                 word = vid / BITS_PER_LONG;
4599                 bits = vid % BITS_PER_LONG;
4600
4601                 vfta[i] |= adapter->active_vlans[word] >> bits;
4602
4603                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4604         }
4605 }
4606
4607 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4608 {
4609         u32 i;
4610
4611         /* We are not in VLAN promisc, nothing to do */
4612         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4613                 return;
4614
4615         /* Set flag so we don't redo unnecessary work */
4616         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4617
4618         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4619                 igb_scrub_vfta(adapter, i);
4620 }
4621
4622 /**
4623  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4624  *  @netdev: network interface device structure
4625  *
4626  *  The set_rx_mode entry point is called whenever the unicast or multicast
4627  *  address lists or the network interface flags are updated.  This routine is
4628  *  responsible for configuring the hardware for proper unicast, multicast,
4629  *  promiscuous mode, and all-multi behavior.
4630  **/
4631 static void igb_set_rx_mode(struct net_device *netdev)
4632 {
4633         struct igb_adapter *adapter = netdev_priv(netdev);
4634         struct e1000_hw *hw = &adapter->hw;
4635         unsigned int vfn = adapter->vfs_allocated_count;
4636         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4637         int count;
4638
4639         /* Check for Promiscuous and All Multicast modes */
4640         if (netdev->flags & IFF_PROMISC) {
4641                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4642                 vmolr |= E1000_VMOLR_MPME;
4643
4644                 /* enable use of UTA filter to force packets to default pool */
4645                 if (hw->mac.type == e1000_82576)
4646                         vmolr |= E1000_VMOLR_ROPE;
4647         } else {
4648                 if (netdev->flags & IFF_ALLMULTI) {
4649                         rctl |= E1000_RCTL_MPE;
4650                         vmolr |= E1000_VMOLR_MPME;
4651                 } else {
4652                         /* Write addresses to the MTA, if the attempt fails
4653                          * then we should just turn on promiscuous mode so
4654                          * that we can at least receive multicast traffic
4655                          */
4656                         count = igb_write_mc_addr_list(netdev);
4657                         if (count < 0) {
4658                                 rctl |= E1000_RCTL_MPE;
4659                                 vmolr |= E1000_VMOLR_MPME;
4660                         } else if (count) {
4661                                 vmolr |= E1000_VMOLR_ROMPE;
4662                         }
4663                 }
4664         }
4665
4666         /* Write addresses to available RAR registers, if there is not
4667          * sufficient space to store all the addresses then enable
4668          * unicast promiscuous mode
4669          */
4670         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4671                 rctl |= E1000_RCTL_UPE;
4672                 vmolr |= E1000_VMOLR_ROPE;
4673         }
4674
4675         /* enable VLAN filtering by default */
4676         rctl |= E1000_RCTL_VFE;
4677
4678         /* disable VLAN filtering for modes that require it */
4679         if ((netdev->flags & IFF_PROMISC) ||
4680             (netdev->features & NETIF_F_RXALL)) {
4681                 /* if we fail to set all rules then just clear VFE */
4682                 if (igb_vlan_promisc_enable(adapter))
4683                         rctl &= ~E1000_RCTL_VFE;
4684         } else {
4685                 igb_vlan_promisc_disable(adapter);
4686         }
4687
4688         /* update state of unicast, multicast, and VLAN filtering modes */
4689         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4690                                      E1000_RCTL_VFE);
4691         wr32(E1000_RCTL, rctl);
4692
4693 #if (PAGE_SIZE < 8192)
4694         if (!adapter->vfs_allocated_count) {
4695                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4696                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
4697         }
4698 #endif
4699         wr32(E1000_RLPML, rlpml);
4700
4701         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4702          * the VMOLR to enable the appropriate modes.  Without this workaround
4703          * we will have issues with VLAN tag stripping not being done for frames
4704          * that are only arriving because we are the default pool
4705          */
4706         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4707                 return;
4708
4709         /* set UTA to appropriate mode */
4710         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4711
4712         vmolr |= rd32(E1000_VMOLR(vfn)) &
4713                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4714
4715         /* enable Rx jumbo frames, restrict as needed to support build_skb */
4716         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4717 #if (PAGE_SIZE < 8192)
4718         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4719                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4720         else
4721 #endif
4722                 vmolr |= MAX_JUMBO_FRAME_SIZE;
4723         vmolr |= E1000_VMOLR_LPE;
4724
4725         wr32(E1000_VMOLR(vfn), vmolr);
4726
4727         igb_restore_vf_multicasts(adapter);
4728 }
4729
4730 static void igb_check_wvbr(struct igb_adapter *adapter)
4731 {
4732         struct e1000_hw *hw = &adapter->hw;
4733         u32 wvbr = 0;
4734
4735         switch (hw->mac.type) {
4736         case e1000_82576:
4737         case e1000_i350:
4738                 wvbr = rd32(E1000_WVBR);
4739                 if (!wvbr)
4740                         return;
4741                 break;
4742         default:
4743                 break;
4744         }
4745
4746         adapter->wvbr |= wvbr;
4747 }
4748
4749 #define IGB_STAGGERED_QUEUE_OFFSET 8
4750
4751 static void igb_spoof_check(struct igb_adapter *adapter)
4752 {
4753         int j;
4754
4755         if (!adapter->wvbr)
4756                 return;
4757
4758         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4759                 if (adapter->wvbr & BIT(j) ||
4760                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4761                         dev_warn(&adapter->pdev->dev,
4762                                 "Spoof event(s) detected on VF %d\n", j);
4763                         adapter->wvbr &=
4764                                 ~(BIT(j) |
4765                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4766                 }
4767         }
4768 }
4769
4770 /* Need to wait a few seconds after link up to get diagnostic information from
4771  * the phy
4772  */
4773 static void igb_update_phy_info(struct timer_list *t)
4774 {
4775         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4776         igb_get_phy_info(&adapter->hw);
4777 }
4778
4779 /**
4780  *  igb_has_link - check shared code for link and determine up/down
4781  *  @adapter: pointer to driver private info
4782  **/
4783 bool igb_has_link(struct igb_adapter *adapter)
4784 {
4785         struct e1000_hw *hw = &adapter->hw;
4786         bool link_active = false;
4787
4788         /* get_link_status is set on LSC (link status) interrupt or
4789          * rx sequence error interrupt.  get_link_status will stay
4790          * false until the e1000_check_for_link establishes link
4791          * for copper adapters ONLY
4792          */
4793         switch (hw->phy.media_type) {
4794         case e1000_media_type_copper:
4795                 if (!hw->mac.get_link_status)
4796                         return true;
4797         case e1000_media_type_internal_serdes:
4798                 hw->mac.ops.check_for_link(hw);
4799                 link_active = !hw->mac.get_link_status;
4800                 break;
4801         default:
4802         case e1000_media_type_unknown:
4803                 break;
4804         }
4805
4806         if (((hw->mac.type == e1000_i210) ||
4807              (hw->mac.type == e1000_i211)) &&
4808              (hw->phy.id == I210_I_PHY_ID)) {
4809                 if (!netif_carrier_ok(adapter->netdev)) {
4810                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4811                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4812                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4813                         adapter->link_check_timeout = jiffies;
4814                 }
4815         }
4816
4817         return link_active;
4818 }
4819
4820 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4821 {
4822         bool ret = false;
4823         u32 ctrl_ext, thstat;
4824
4825         /* check for thermal sensor event on i350 copper only */
4826         if (hw->mac.type == e1000_i350) {
4827                 thstat = rd32(E1000_THSTAT);
4828                 ctrl_ext = rd32(E1000_CTRL_EXT);
4829
4830                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4831                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4832                         ret = !!(thstat & event);
4833         }
4834
4835         return ret;
4836 }
4837
4838 /**
4839  *  igb_check_lvmmc - check for malformed packets received
4840  *  and indicated in LVMMC register
4841  *  @adapter: pointer to adapter
4842  **/
4843 static void igb_check_lvmmc(struct igb_adapter *adapter)
4844 {
4845         struct e1000_hw *hw = &adapter->hw;
4846         u32 lvmmc;
4847
4848         lvmmc = rd32(E1000_LVMMC);
4849         if (lvmmc) {
4850                 if (unlikely(net_ratelimit())) {
4851                         netdev_warn(adapter->netdev,
4852                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4853                                     lvmmc);
4854                 }
4855         }
4856 }
4857
4858 /**
4859  *  igb_watchdog - Timer Call-back
4860  *  @data: pointer to adapter cast into an unsigned long
4861  **/
4862 static void igb_watchdog(struct timer_list *t)
4863 {
4864         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4865         /* Do the rest outside of interrupt context */
4866         schedule_work(&adapter->watchdog_task);
4867 }
4868
4869 static void igb_watchdog_task(struct work_struct *work)
4870 {
4871         struct igb_adapter *adapter = container_of(work,
4872                                                    struct igb_adapter,
4873                                                    watchdog_task);
4874         struct e1000_hw *hw = &adapter->hw;
4875         struct e1000_phy_info *phy = &hw->phy;
4876         struct net_device *netdev = adapter->netdev;
4877         u32 link;
4878         int i;
4879         u32 connsw;
4880         u16 phy_data, retry_count = 20;
4881
4882         link = igb_has_link(adapter);
4883
4884         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4885                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4886                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4887                 else
4888                         link = false;
4889         }
4890
4891         /* Force link down if we have fiber to swap to */
4892         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4893                 if (hw->phy.media_type == e1000_media_type_copper) {
4894                         connsw = rd32(E1000_CONNSW);
4895                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4896                                 link = 0;
4897                 }
4898         }
4899         if (link) {
4900                 /* Perform a reset if the media type changed. */
4901                 if (hw->dev_spec._82575.media_changed) {
4902                         hw->dev_spec._82575.media_changed = false;
4903                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4904                         igb_reset(adapter);
4905                 }
4906                 /* Cancel scheduled suspend requests. */
4907                 pm_runtime_resume(netdev->dev.parent);
4908
4909                 if (!netif_carrier_ok(netdev)) {
4910                         u32 ctrl;
4911
4912                         hw->mac.ops.get_speed_and_duplex(hw,
4913                                                          &adapter->link_speed,
4914                                                          &adapter->link_duplex);
4915
4916                         ctrl = rd32(E1000_CTRL);
4917                         /* Links status message must follow this format */
4918                         netdev_info(netdev,
4919                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4920                                netdev->name,
4921                                adapter->link_speed,
4922                                adapter->link_duplex == FULL_DUPLEX ?
4923                                "Full" : "Half",
4924                                (ctrl & E1000_CTRL_TFCE) &&
4925                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4926                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4927                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4928
4929                         /* disable EEE if enabled */
4930                         if ((adapter->flags & IGB_FLAG_EEE) &&
4931                                 (adapter->link_duplex == HALF_DUPLEX)) {
4932                                 dev_info(&adapter->pdev->dev,
4933                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4934                                 adapter->hw.dev_spec._82575.eee_disable = true;
4935                                 adapter->flags &= ~IGB_FLAG_EEE;
4936                         }
4937
4938                         /* check if SmartSpeed worked */
4939                         igb_check_downshift(hw);
4940                         if (phy->speed_downgraded)
4941                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4942
4943                         /* check for thermal sensor event */
4944                         if (igb_thermal_sensor_event(hw,
4945                             E1000_THSTAT_LINK_THROTTLE))
4946                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4947
4948                         /* adjust timeout factor according to speed/duplex */
4949                         adapter->tx_timeout_factor = 1;
4950                         switch (adapter->link_speed) {
4951                         case SPEED_10:
4952                                 adapter->tx_timeout_factor = 14;
4953                                 break;
4954                         case SPEED_100:
4955                                 /* maybe add some timeout factor ? */
4956                                 break;
4957                         }
4958
4959                         if (adapter->link_speed != SPEED_1000)
4960                                 goto no_wait;
4961
4962                         /* wait for Remote receiver status OK */
4963 retry_read_status:
4964                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4965                                               &phy_data)) {
4966                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4967                                     retry_count) {
4968                                         msleep(100);
4969                                         retry_count--;
4970                                         goto retry_read_status;
4971                                 } else if (!retry_count) {
4972                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4973                                 }
4974                         } else {
4975                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4976                         }
4977 no_wait:
4978                         netif_carrier_on(netdev);
4979
4980                         igb_ping_all_vfs(adapter);
4981                         igb_check_vf_rate_limit(adapter);
4982
4983                         /* link state has changed, schedule phy info update */
4984                         if (!test_bit(__IGB_DOWN, &adapter->state))
4985                                 mod_timer(&adapter->phy_info_timer,
4986                                           round_jiffies(jiffies + 2 * HZ));
4987                 }
4988         } else {
4989                 if (netif_carrier_ok(netdev)) {
4990                         adapter->link_speed = 0;
4991                         adapter->link_duplex = 0;
4992
4993                         /* check for thermal sensor event */
4994                         if (igb_thermal_sensor_event(hw,
4995                             E1000_THSTAT_PWR_DOWN)) {
4996                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4997                         }
4998
4999                         /* Links status message must follow this format */
5000                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5001                                netdev->name);
5002                         netif_carrier_off(netdev);
5003
5004                         igb_ping_all_vfs(adapter);
5005
5006                         /* link state has changed, schedule phy info update */
5007                         if (!test_bit(__IGB_DOWN, &adapter->state))
5008                                 mod_timer(&adapter->phy_info_timer,
5009                                           round_jiffies(jiffies + 2 * HZ));
5010
5011                         /* link is down, time to check for alternate media */
5012                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5013                                 igb_check_swap_media(adapter);
5014                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5015                                         schedule_work(&adapter->reset_task);
5016                                         /* return immediately */
5017                                         return;
5018                                 }
5019                         }
5020                         pm_schedule_suspend(netdev->dev.parent,
5021                                             MSEC_PER_SEC * 5);
5022
5023                 /* also check for alternate media here */
5024                 } else if (!netif_carrier_ok(netdev) &&
5025                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5026                         igb_check_swap_media(adapter);
5027                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5028                                 schedule_work(&adapter->reset_task);
5029                                 /* return immediately */
5030                                 return;
5031                         }
5032                 }
5033         }
5034
5035         spin_lock(&adapter->stats64_lock);
5036         igb_update_stats(adapter);
5037         spin_unlock(&adapter->stats64_lock);
5038
5039         for (i = 0; i < adapter->num_tx_queues; i++) {
5040                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5041                 if (!netif_carrier_ok(netdev)) {
5042                         /* We've lost link, so the controller stops DMA,
5043                          * but we've got queued Tx work that's never going
5044                          * to get done, so reset controller to flush Tx.
5045                          * (Do the reset outside of interrupt context).
5046                          */
5047                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5048                                 adapter->tx_timeout_count++;
5049                                 schedule_work(&adapter->reset_task);
5050                                 /* return immediately since reset is imminent */
5051                                 return;
5052                         }
5053                 }
5054
5055                 /* Force detection of hung controller every watchdog period */
5056                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5057         }
5058
5059         /* Cause software interrupt to ensure Rx ring is cleaned */
5060         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5061                 u32 eics = 0;
5062
5063                 for (i = 0; i < adapter->num_q_vectors; i++)
5064                         eics |= adapter->q_vector[i]->eims_value;
5065                 wr32(E1000_EICS, eics);
5066         } else {
5067                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5068         }
5069
5070         igb_spoof_check(adapter);
5071         igb_ptp_rx_hang(adapter);
5072         igb_ptp_tx_hang(adapter);
5073
5074         /* Check LVMMC register on i350/i354 only */
5075         if ((adapter->hw.mac.type == e1000_i350) ||
5076             (adapter->hw.mac.type == e1000_i354))
5077                 igb_check_lvmmc(adapter);
5078
5079         /* Reset the timer */
5080         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5081                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5082                         mod_timer(&adapter->watchdog_timer,
5083                                   round_jiffies(jiffies +  HZ));
5084                 else
5085                         mod_timer(&adapter->watchdog_timer,
5086                                   round_jiffies(jiffies + 2 * HZ));
5087         }
5088 }
5089
5090 enum latency_range {
5091         lowest_latency = 0,
5092         low_latency = 1,
5093         bulk_latency = 2,
5094         latency_invalid = 255
5095 };
5096
5097 /**
5098  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5099  *  @q_vector: pointer to q_vector
5100  *
5101  *  Stores a new ITR value based on strictly on packet size.  This
5102  *  algorithm is less sophisticated than that used in igb_update_itr,
5103  *  due to the difficulty of synchronizing statistics across multiple
5104  *  receive rings.  The divisors and thresholds used by this function
5105  *  were determined based on theoretical maximum wire speed and testing
5106  *  data, in order to minimize response time while increasing bulk
5107  *  throughput.
5108  *  This functionality is controlled by ethtool's coalescing settings.
5109  *  NOTE:  This function is called only when operating in a multiqueue
5110  *         receive environment.
5111  **/
5112 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5113 {
5114         int new_val = q_vector->itr_val;
5115         int avg_wire_size = 0;
5116         struct igb_adapter *adapter = q_vector->adapter;
5117         unsigned int packets;
5118
5119         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5120          * ints/sec - ITR timer value of 120 ticks.
5121          */
5122         if (adapter->link_speed != SPEED_1000) {
5123                 new_val = IGB_4K_ITR;
5124                 goto set_itr_val;
5125         }
5126
5127         packets = q_vector->rx.total_packets;
5128         if (packets)
5129                 avg_wire_size = q_vector->rx.total_bytes / packets;
5130
5131         packets = q_vector->tx.total_packets;
5132         if (packets)
5133                 avg_wire_size = max_t(u32, avg_wire_size,
5134                                       q_vector->tx.total_bytes / packets);
5135
5136         /* if avg_wire_size isn't set no work was done */
5137         if (!avg_wire_size)
5138                 goto clear_counts;
5139
5140         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5141         avg_wire_size += 24;
5142
5143         /* Don't starve jumbo frames */
5144         avg_wire_size = min(avg_wire_size, 3000);
5145
5146         /* Give a little boost to mid-size frames */
5147         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5148                 new_val = avg_wire_size / 3;
5149         else
5150                 new_val = avg_wire_size / 2;
5151
5152         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5153         if (new_val < IGB_20K_ITR &&
5154             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5155              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5156                 new_val = IGB_20K_ITR;
5157
5158 set_itr_val:
5159         if (new_val != q_vector->itr_val) {
5160                 q_vector->itr_val = new_val;
5161                 q_vector->set_itr = 1;
5162         }
5163 clear_counts:
5164         q_vector->rx.total_bytes = 0;
5165         q_vector->rx.total_packets = 0;
5166         q_vector->tx.total_bytes = 0;
5167         q_vector->tx.total_packets = 0;
5168 }
5169
5170 /**
5171  *  igb_update_itr - update the dynamic ITR value based on statistics
5172  *  @q_vector: pointer to q_vector
5173  *  @ring_container: ring info to update the itr for
5174  *
5175  *  Stores a new ITR value based on packets and byte
5176  *  counts during the last interrupt.  The advantage of per interrupt
5177  *  computation is faster updates and more accurate ITR for the current
5178  *  traffic pattern.  Constants in this function were computed
5179  *  based on theoretical maximum wire speed and thresholds were set based
5180  *  on testing data as well as attempting to minimize response time
5181  *  while increasing bulk throughput.
5182  *  This functionality is controlled by ethtool's coalescing settings.
5183  *  NOTE:  These calculations are only valid when operating in a single-
5184  *         queue environment.
5185  **/
5186 static void igb_update_itr(struct igb_q_vector *q_vector,
5187                            struct igb_ring_container *ring_container)
5188 {
5189         unsigned int packets = ring_container->total_packets;
5190         unsigned int bytes = ring_container->total_bytes;
5191         u8 itrval = ring_container->itr;
5192
5193         /* no packets, exit with status unchanged */
5194         if (packets == 0)
5195                 return;
5196
5197         switch (itrval) {
5198         case lowest_latency:
5199                 /* handle TSO and jumbo frames */
5200                 if (bytes/packets > 8000)
5201                         itrval = bulk_latency;
5202                 else if ((packets < 5) && (bytes > 512))
5203                         itrval = low_latency;
5204                 break;
5205         case low_latency:  /* 50 usec aka 20000 ints/s */
5206                 if (bytes > 10000) {
5207                         /* this if handles the TSO accounting */
5208                         if (bytes/packets > 8000)
5209                                 itrval = bulk_latency;
5210                         else if ((packets < 10) || ((bytes/packets) > 1200))
5211                                 itrval = bulk_latency;
5212                         else if ((packets > 35))
5213                                 itrval = lowest_latency;
5214                 } else if (bytes/packets > 2000) {
5215                         itrval = bulk_latency;
5216                 } else if (packets <= 2 && bytes < 512) {
5217                         itrval = lowest_latency;
5218                 }
5219                 break;
5220         case bulk_latency: /* 250 usec aka 4000 ints/s */
5221                 if (bytes > 25000) {
5222                         if (packets > 35)
5223                                 itrval = low_latency;
5224                 } else if (bytes < 1500) {
5225                         itrval = low_latency;
5226                 }
5227                 break;
5228         }
5229
5230         /* clear work counters since we have the values we need */
5231         ring_container->total_bytes = 0;
5232         ring_container->total_packets = 0;
5233
5234         /* write updated itr to ring container */
5235         ring_container->itr = itrval;
5236 }
5237
5238 static void igb_set_itr(struct igb_q_vector *q_vector)
5239 {
5240         struct igb_adapter *adapter = q_vector->adapter;
5241         u32 new_itr = q_vector->itr_val;
5242         u8 current_itr = 0;
5243
5244         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5245         if (adapter->link_speed != SPEED_1000) {
5246                 current_itr = 0;
5247                 new_itr = IGB_4K_ITR;
5248                 goto set_itr_now;
5249         }
5250
5251         igb_update_itr(q_vector, &q_vector->tx);
5252         igb_update_itr(q_vector, &q_vector->rx);
5253
5254         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5255
5256         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5257         if (current_itr == lowest_latency &&
5258             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5259              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5260                 current_itr = low_latency;
5261
5262         switch (current_itr) {
5263         /* counts and packets in update_itr are dependent on these numbers */
5264         case lowest_latency:
5265                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5266                 break;
5267         case low_latency:
5268                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5269                 break;
5270         case bulk_latency:
5271                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5272                 break;
5273         default:
5274                 break;
5275         }
5276
5277 set_itr_now:
5278         if (new_itr != q_vector->itr_val) {
5279                 /* this attempts to bias the interrupt rate towards Bulk
5280                  * by adding intermediate steps when interrupt rate is
5281                  * increasing
5282                  */
5283                 new_itr = new_itr > q_vector->itr_val ?
5284                           max((new_itr * q_vector->itr_val) /
5285                           (new_itr + (q_vector->itr_val >> 2)),
5286                           new_itr) : new_itr;
5287                 /* Don't write the value here; it resets the adapter's
5288                  * internal timer, and causes us to delay far longer than
5289                  * we should between interrupts.  Instead, we write the ITR
5290                  * value at the beginning of the next interrupt so the timing
5291                  * ends up being correct.
5292                  */
5293                 q_vector->itr_val = new_itr;
5294                 q_vector->set_itr = 1;
5295         }
5296 }
5297
5298 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5299                             u32 type_tucmd, u32 mss_l4len_idx)
5300 {
5301         struct e1000_adv_tx_context_desc *context_desc;
5302         u16 i = tx_ring->next_to_use;
5303
5304         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5305
5306         i++;
5307         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5308
5309         /* set bits to identify this as an advanced context descriptor */
5310         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5311
5312         /* For 82575, context index must be unique per ring. */
5313         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5314                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5315
5316         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5317         context_desc->seqnum_seed       = 0;
5318         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5319         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5320 }
5321
5322 static int igb_tso(struct igb_ring *tx_ring,
5323                    struct igb_tx_buffer *first,
5324                    u8 *hdr_len)
5325 {
5326         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5327         struct sk_buff *skb = first->skb;
5328         union {
5329                 struct iphdr *v4;
5330                 struct ipv6hdr *v6;
5331                 unsigned char *hdr;
5332         } ip;
5333         union {
5334                 struct tcphdr *tcp;
5335                 unsigned char *hdr;
5336         } l4;
5337         u32 paylen, l4_offset;
5338         int err;
5339
5340         if (skb->ip_summed != CHECKSUM_PARTIAL)
5341                 return 0;
5342
5343         if (!skb_is_gso(skb))
5344                 return 0;
5345
5346         err = skb_cow_head(skb, 0);
5347         if (err < 0)
5348                 return err;
5349
5350         ip.hdr = skb_network_header(skb);
5351         l4.hdr = skb_checksum_start(skb);
5352
5353         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5354         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5355
5356         /* initialize outer IP header fields */
5357         if (ip.v4->version == 4) {
5358                 unsigned char *csum_start = skb_checksum_start(skb);
5359                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5360
5361                 /* IP header will have to cancel out any data that
5362                  * is not a part of the outer IP header
5363                  */
5364                 ip.v4->check = csum_fold(csum_partial(trans_start,
5365                                                       csum_start - trans_start,
5366                                                       0));
5367                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5368
5369                 ip.v4->tot_len = 0;
5370                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5371                                    IGB_TX_FLAGS_CSUM |
5372                                    IGB_TX_FLAGS_IPV4;
5373         } else {
5374                 ip.v6->payload_len = 0;
5375                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5376                                    IGB_TX_FLAGS_CSUM;
5377         }
5378
5379         /* determine offset of inner transport header */
5380         l4_offset = l4.hdr - skb->data;
5381
5382         /* compute length of segmentation header */
5383         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5384
5385         /* remove payload length from inner checksum */
5386         paylen = skb->len - l4_offset;
5387         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5388
5389         /* update gso size and bytecount with header size */
5390         first->gso_segs = skb_shinfo(skb)->gso_segs;
5391         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5392
5393         /* MSS L4LEN IDX */
5394         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5395         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5396
5397         /* VLAN MACLEN IPLEN */
5398         vlan_macip_lens = l4.hdr - ip.hdr;
5399         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5400         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5401
5402         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5403
5404         return 1;
5405 }
5406
5407 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5408 {
5409         unsigned int offset = 0;
5410
5411         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5412
5413         return offset == skb_checksum_start_offset(skb);
5414 }
5415
5416 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5417 {
5418         struct sk_buff *skb = first->skb;
5419         u32 vlan_macip_lens = 0;
5420         u32 type_tucmd = 0;
5421
5422         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5423 csum_failed:
5424                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5425                         return;
5426                 goto no_csum;
5427         }
5428
5429         switch (skb->csum_offset) {
5430         case offsetof(struct tcphdr, check):
5431                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5432                 /* fall through */
5433         case offsetof(struct udphdr, check):
5434                 break;
5435         case offsetof(struct sctphdr, checksum):
5436                 /* validate that this is actually an SCTP request */
5437                 if (((first->protocol == htons(ETH_P_IP)) &&
5438                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5439                     ((first->protocol == htons(ETH_P_IPV6)) &&
5440                      igb_ipv6_csum_is_sctp(skb))) {
5441                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5442                         break;
5443                 }
5444         default:
5445                 skb_checksum_help(skb);
5446                 goto csum_failed;
5447         }
5448
5449         /* update TX checksum flag */
5450         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5451         vlan_macip_lens = skb_checksum_start_offset(skb) -
5452                           skb_network_offset(skb);
5453 no_csum:
5454         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5455         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5456
5457         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5458 }
5459
5460 #define IGB_SET_FLAG(_input, _flag, _result) \
5461         ((_flag <= _result) ? \
5462          ((u32)(_input & _flag) * (_result / _flag)) : \
5463          ((u32)(_input & _flag) / (_flag / _result)))
5464
5465 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5466 {
5467         /* set type for advanced descriptor with frame checksum insertion */
5468         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5469                        E1000_ADVTXD_DCMD_DEXT |
5470                        E1000_ADVTXD_DCMD_IFCS;
5471
5472         /* set HW vlan bit if vlan is present */
5473         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5474                                  (E1000_ADVTXD_DCMD_VLE));
5475
5476         /* set segmentation bits for TSO */
5477         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5478                                  (E1000_ADVTXD_DCMD_TSE));
5479
5480         /* set timestamp bit if present */
5481         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5482                                  (E1000_ADVTXD_MAC_TSTAMP));
5483
5484         /* insert frame checksum */
5485         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5486
5487         return cmd_type;
5488 }
5489
5490 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5491                                  union e1000_adv_tx_desc *tx_desc,
5492                                  u32 tx_flags, unsigned int paylen)
5493 {
5494         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5495
5496         /* 82575 requires a unique index per ring */
5497         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5498                 olinfo_status |= tx_ring->reg_idx << 4;
5499
5500         /* insert L4 checksum */
5501         olinfo_status |= IGB_SET_FLAG(tx_flags,
5502                                       IGB_TX_FLAGS_CSUM,
5503                                       (E1000_TXD_POPTS_TXSM << 8));
5504
5505         /* insert IPv4 checksum */
5506         olinfo_status |= IGB_SET_FLAG(tx_flags,
5507                                       IGB_TX_FLAGS_IPV4,
5508                                       (E1000_TXD_POPTS_IXSM << 8));
5509
5510         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5511 }
5512
5513 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5514 {
5515         struct net_device *netdev = tx_ring->netdev;
5516
5517         netif_stop_subqueue(netdev, tx_ring->queue_index);
5518
5519         /* Herbert's original patch had:
5520          *  smp_mb__after_netif_stop_queue();
5521          * but since that doesn't exist yet, just open code it.
5522          */
5523         smp_mb();
5524
5525         /* We need to check again in a case another CPU has just
5526          * made room available.
5527          */
5528         if (igb_desc_unused(tx_ring) < size)
5529                 return -EBUSY;
5530
5531         /* A reprieve! */
5532         netif_wake_subqueue(netdev, tx_ring->queue_index);
5533
5534         u64_stats_update_begin(&tx_ring->tx_syncp2);
5535         tx_ring->tx_stats.restart_queue2++;
5536         u64_stats_update_end(&tx_ring->tx_syncp2);
5537
5538         return 0;
5539 }
5540
5541 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5542 {
5543         if (igb_desc_unused(tx_ring) >= size)
5544                 return 0;
5545         return __igb_maybe_stop_tx(tx_ring, size);
5546 }
5547
5548 static int igb_tx_map(struct igb_ring *tx_ring,
5549                       struct igb_tx_buffer *first,
5550                       const u8 hdr_len)
5551 {
5552         struct sk_buff *skb = first->skb;
5553         struct igb_tx_buffer *tx_buffer;
5554         union e1000_adv_tx_desc *tx_desc;
5555         struct skb_frag_struct *frag;
5556         dma_addr_t dma;
5557         unsigned int data_len, size;
5558         u32 tx_flags = first->tx_flags;
5559         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5560         u16 i = tx_ring->next_to_use;
5561
5562         tx_desc = IGB_TX_DESC(tx_ring, i);
5563
5564         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5565
5566         size = skb_headlen(skb);
5567         data_len = skb->data_len;
5568
5569         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5570
5571         tx_buffer = first;
5572
5573         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5574                 if (dma_mapping_error(tx_ring->dev, dma))
5575                         goto dma_error;
5576
5577                 /* record length, and DMA address */
5578                 dma_unmap_len_set(tx_buffer, len, size);
5579                 dma_unmap_addr_set(tx_buffer, dma, dma);
5580
5581                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5582
5583                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5584                         tx_desc->read.cmd_type_len =
5585                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5586
5587                         i++;
5588                         tx_desc++;
5589                         if (i == tx_ring->count) {
5590                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5591                                 i = 0;
5592                         }
5593                         tx_desc->read.olinfo_status = 0;
5594
5595                         dma += IGB_MAX_DATA_PER_TXD;
5596                         size -= IGB_MAX_DATA_PER_TXD;
5597
5598                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5599                 }
5600
5601                 if (likely(!data_len))
5602                         break;
5603
5604                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5605
5606                 i++;
5607                 tx_desc++;
5608                 if (i == tx_ring->count) {
5609                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5610                         i = 0;
5611                 }
5612                 tx_desc->read.olinfo_status = 0;
5613
5614                 size = skb_frag_size(frag);
5615                 data_len -= size;
5616
5617                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5618                                        size, DMA_TO_DEVICE);
5619
5620                 tx_buffer = &tx_ring->tx_buffer_info[i];
5621         }
5622
5623         /* write last descriptor with RS and EOP bits */
5624         cmd_type |= size | IGB_TXD_DCMD;
5625         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5626
5627         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5628
5629         /* set the timestamp */
5630         first->time_stamp = jiffies;
5631
5632         /* Force memory writes to complete before letting h/w know there
5633          * are new descriptors to fetch.  (Only applicable for weak-ordered
5634          * memory model archs, such as IA-64).
5635          *
5636          * We also need this memory barrier to make certain all of the
5637          * status bits have been updated before next_to_watch is written.
5638          */
5639         wmb();
5640
5641         /* set next_to_watch value indicating a packet is present */
5642         first->next_to_watch = tx_desc;
5643
5644         i++;
5645         if (i == tx_ring->count)
5646                 i = 0;
5647
5648         tx_ring->next_to_use = i;
5649
5650         /* Make sure there is space in the ring for the next send. */
5651         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5652
5653         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5654                 writel(i, tx_ring->tail);
5655
5656                 /* we need this if more than one processor can write to our tail
5657                  * at a time, it synchronizes IO on IA64/Altix systems
5658                  */
5659                 mmiowb();
5660         }
5661         return 0;
5662
5663 dma_error:
5664         dev_err(tx_ring->dev, "TX DMA map failed\n");
5665         tx_buffer = &tx_ring->tx_buffer_info[i];
5666
5667         /* clear dma mappings for failed tx_buffer_info map */
5668         while (tx_buffer != first) {
5669                 if (dma_unmap_len(tx_buffer, len))
5670                         dma_unmap_page(tx_ring->dev,
5671                                        dma_unmap_addr(tx_buffer, dma),
5672                                        dma_unmap_len(tx_buffer, len),
5673                                        DMA_TO_DEVICE);
5674                 dma_unmap_len_set(tx_buffer, len, 0);
5675
5676                 if (i-- == 0)
5677                         i += tx_ring->count;
5678                 tx_buffer = &tx_ring->tx_buffer_info[i];
5679         }
5680
5681         if (dma_unmap_len(tx_buffer, len))
5682                 dma_unmap_single(tx_ring->dev,
5683                                  dma_unmap_addr(tx_buffer, dma),
5684                                  dma_unmap_len(tx_buffer, len),
5685                                  DMA_TO_DEVICE);
5686         dma_unmap_len_set(tx_buffer, len, 0);
5687
5688         dev_kfree_skb_any(tx_buffer->skb);
5689         tx_buffer->skb = NULL;
5690
5691         tx_ring->next_to_use = i;
5692
5693         return -1;
5694 }
5695
5696 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5697                                 struct igb_ring *tx_ring)
5698 {
5699         struct igb_tx_buffer *first;
5700         int tso;
5701         u32 tx_flags = 0;
5702         unsigned short f;
5703         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5704         __be16 protocol = vlan_get_protocol(skb);
5705         u8 hdr_len = 0;
5706
5707         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5708          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5709          *       + 2 desc gap to keep tail from touching head,
5710          *       + 1 desc for context descriptor,
5711          * otherwise try next time
5712          */
5713         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5714                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5715
5716         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5717                 /* this is a hard error */
5718                 return NETDEV_TX_BUSY;
5719         }
5720
5721         /* record the location of the first descriptor for this packet */
5722         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5723         first->skb = skb;
5724         first->bytecount = skb->len;
5725         first->gso_segs = 1;
5726
5727         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5728                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5729
5730                 if (adapter->tstamp_config.tx_type & HWTSTAMP_TX_ON &&
5731                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5732                                            &adapter->state)) {
5733                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5734                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5735
5736                         adapter->ptp_tx_skb = skb_get(skb);
5737                         adapter->ptp_tx_start = jiffies;
5738                         if (adapter->hw.mac.type == e1000_82576)
5739                                 schedule_work(&adapter->ptp_tx_work);
5740                 } else {
5741                         adapter->tx_hwtstamp_skipped++;
5742                 }
5743         }
5744
5745         skb_tx_timestamp(skb);
5746
5747         if (skb_vlan_tag_present(skb)) {
5748                 tx_flags |= IGB_TX_FLAGS_VLAN;
5749                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5750         }
5751
5752         /* record initial flags and protocol */
5753         first->tx_flags = tx_flags;
5754         first->protocol = protocol;
5755
5756         tso = igb_tso(tx_ring, first, &hdr_len);
5757         if (tso < 0)
5758                 goto out_drop;
5759         else if (!tso)
5760                 igb_tx_csum(tx_ring, first);
5761
5762         if (igb_tx_map(tx_ring, first, hdr_len))
5763                 goto cleanup_tx_tstamp;
5764
5765         return NETDEV_TX_OK;
5766
5767 out_drop:
5768         dev_kfree_skb_any(first->skb);
5769         first->skb = NULL;
5770 cleanup_tx_tstamp:
5771         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5772                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5773
5774                 dev_kfree_skb_any(adapter->ptp_tx_skb);
5775                 adapter->ptp_tx_skb = NULL;
5776                 if (adapter->hw.mac.type == e1000_82576)
5777                         cancel_work_sync(&adapter->ptp_tx_work);
5778                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5779         }
5780
5781         return NETDEV_TX_OK;
5782 }
5783
5784 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5785                                                     struct sk_buff *skb)
5786 {
5787         unsigned int r_idx = skb->queue_mapping;
5788
5789         if (r_idx >= adapter->num_tx_queues)
5790                 r_idx = r_idx % adapter->num_tx_queues;
5791
5792         return adapter->tx_ring[r_idx];
5793 }
5794
5795 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5796                                   struct net_device *netdev)
5797 {
5798         struct igb_adapter *adapter = netdev_priv(netdev);
5799
5800         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5801          * in order to meet this minimum size requirement.
5802          */
5803         if (skb_put_padto(skb, 17))
5804                 return NETDEV_TX_OK;
5805
5806         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5807 }
5808
5809 /**
5810  *  igb_tx_timeout - Respond to a Tx Hang
5811  *  @netdev: network interface device structure
5812  **/
5813 static void igb_tx_timeout(struct net_device *netdev)
5814 {
5815         struct igb_adapter *adapter = netdev_priv(netdev);
5816         struct e1000_hw *hw = &adapter->hw;
5817
5818         /* Do the reset outside of interrupt context */
5819         adapter->tx_timeout_count++;
5820
5821         if (hw->mac.type >= e1000_82580)
5822                 hw->dev_spec._82575.global_device_reset = true;
5823
5824         schedule_work(&adapter->reset_task);
5825         wr32(E1000_EICS,
5826              (adapter->eims_enable_mask & ~adapter->eims_other));
5827 }
5828
5829 static void igb_reset_task(struct work_struct *work)
5830 {
5831         struct igb_adapter *adapter;
5832         adapter = container_of(work, struct igb_adapter, reset_task);
5833
5834         igb_dump(adapter);
5835         netdev_err(adapter->netdev, "Reset adapter\n");
5836         igb_reinit_locked(adapter);
5837 }
5838
5839 /**
5840  *  igb_get_stats64 - Get System Network Statistics
5841  *  @netdev: network interface device structure
5842  *  @stats: rtnl_link_stats64 pointer
5843  **/
5844 static void igb_get_stats64(struct net_device *netdev,
5845                             struct rtnl_link_stats64 *stats)
5846 {
5847         struct igb_adapter *adapter = netdev_priv(netdev);
5848
5849         spin_lock(&adapter->stats64_lock);
5850         igb_update_stats(adapter);
5851         memcpy(stats, &adapter->stats64, sizeof(*stats));
5852         spin_unlock(&adapter->stats64_lock);
5853 }
5854
5855 /**
5856  *  igb_change_mtu - Change the Maximum Transfer Unit
5857  *  @netdev: network interface device structure
5858  *  @new_mtu: new value for maximum frame size
5859  *
5860  *  Returns 0 on success, negative on failure
5861  **/
5862 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5863 {
5864         struct igb_adapter *adapter = netdev_priv(netdev);
5865         struct pci_dev *pdev = adapter->pdev;
5866         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5867
5868         /* adjust max frame to be at least the size of a standard frame */
5869         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5870                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5871
5872         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5873                 usleep_range(1000, 2000);
5874
5875         /* igb_down has a dependency on max_frame_size */
5876         adapter->max_frame_size = max_frame;
5877
5878         if (netif_running(netdev))
5879                 igb_down(adapter);
5880
5881         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5882                  netdev->mtu, new_mtu);
5883         netdev->mtu = new_mtu;
5884
5885         if (netif_running(netdev))
5886                 igb_up(adapter);
5887         else
5888                 igb_reset(adapter);
5889
5890         clear_bit(__IGB_RESETTING, &adapter->state);
5891
5892         return 0;
5893 }
5894
5895 /**
5896  *  igb_update_stats - Update the board statistics counters
5897  *  @adapter: board private structure
5898  **/
5899 void igb_update_stats(struct igb_adapter *adapter)
5900 {
5901         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5902         struct e1000_hw *hw = &adapter->hw;
5903         struct pci_dev *pdev = adapter->pdev;
5904         u32 reg, mpc;
5905         int i;
5906         u64 bytes, packets;
5907         unsigned int start;
5908         u64 _bytes, _packets;
5909
5910         /* Prevent stats update while adapter is being reset, or if the pci
5911          * connection is down.
5912          */
5913         if (adapter->link_speed == 0)
5914                 return;
5915         if (pci_channel_offline(pdev))
5916                 return;
5917
5918         bytes = 0;
5919         packets = 0;
5920
5921         rcu_read_lock();
5922         for (i = 0; i < adapter->num_rx_queues; i++) {
5923                 struct igb_ring *ring = adapter->rx_ring[i];
5924                 u32 rqdpc = rd32(E1000_RQDPC(i));
5925                 if (hw->mac.type >= e1000_i210)
5926                         wr32(E1000_RQDPC(i), 0);
5927
5928                 if (rqdpc) {
5929                         ring->rx_stats.drops += rqdpc;
5930                         net_stats->rx_fifo_errors += rqdpc;
5931                 }
5932
5933                 do {
5934                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5935                         _bytes = ring->rx_stats.bytes;
5936                         _packets = ring->rx_stats.packets;
5937                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5938                 bytes += _bytes;
5939                 packets += _packets;
5940         }
5941
5942         net_stats->rx_bytes = bytes;
5943         net_stats->rx_packets = packets;
5944
5945         bytes = 0;
5946         packets = 0;
5947         for (i = 0; i < adapter->num_tx_queues; i++) {
5948                 struct igb_ring *ring = adapter->tx_ring[i];
5949                 do {
5950                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5951                         _bytes = ring->tx_stats.bytes;
5952                         _packets = ring->tx_stats.packets;
5953                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5954                 bytes += _bytes;
5955                 packets += _packets;
5956         }
5957         net_stats->tx_bytes = bytes;
5958         net_stats->tx_packets = packets;
5959         rcu_read_unlock();
5960
5961         /* read stats registers */
5962         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5963         adapter->stats.gprc += rd32(E1000_GPRC);
5964         adapter->stats.gorc += rd32(E1000_GORCL);
5965         rd32(E1000_GORCH); /* clear GORCL */
5966         adapter->stats.bprc += rd32(E1000_BPRC);
5967         adapter->stats.mprc += rd32(E1000_MPRC);
5968         adapter->stats.roc += rd32(E1000_ROC);
5969
5970         adapter->stats.prc64 += rd32(E1000_PRC64);
5971         adapter->stats.prc127 += rd32(E1000_PRC127);
5972         adapter->stats.prc255 += rd32(E1000_PRC255);
5973         adapter->stats.prc511 += rd32(E1000_PRC511);
5974         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5975         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5976         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5977         adapter->stats.sec += rd32(E1000_SEC);
5978
5979         mpc = rd32(E1000_MPC);
5980         adapter->stats.mpc += mpc;
5981         net_stats->rx_fifo_errors += mpc;
5982         adapter->stats.scc += rd32(E1000_SCC);
5983         adapter->stats.ecol += rd32(E1000_ECOL);
5984         adapter->stats.mcc += rd32(E1000_MCC);
5985         adapter->stats.latecol += rd32(E1000_LATECOL);
5986         adapter->stats.dc += rd32(E1000_DC);
5987         adapter->stats.rlec += rd32(E1000_RLEC);
5988         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5989         adapter->stats.xontxc += rd32(E1000_XONTXC);
5990         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5991         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5992         adapter->stats.fcruc += rd32(E1000_FCRUC);
5993         adapter->stats.gptc += rd32(E1000_GPTC);
5994         adapter->stats.gotc += rd32(E1000_GOTCL);
5995         rd32(E1000_GOTCH); /* clear GOTCL */
5996         adapter->stats.rnbc += rd32(E1000_RNBC);
5997         adapter->stats.ruc += rd32(E1000_RUC);
5998         adapter->stats.rfc += rd32(E1000_RFC);
5999         adapter->stats.rjc += rd32(E1000_RJC);
6000         adapter->stats.tor += rd32(E1000_TORH);
6001         adapter->stats.tot += rd32(E1000_TOTH);
6002         adapter->stats.tpr += rd32(E1000_TPR);
6003
6004         adapter->stats.ptc64 += rd32(E1000_PTC64);
6005         adapter->stats.ptc127 += rd32(E1000_PTC127);
6006         adapter->stats.ptc255 += rd32(E1000_PTC255);
6007         adapter->stats.ptc511 += rd32(E1000_PTC511);
6008         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6009         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6010
6011         adapter->stats.mptc += rd32(E1000_MPTC);
6012         adapter->stats.bptc += rd32(E1000_BPTC);
6013
6014         adapter->stats.tpt += rd32(E1000_TPT);
6015         adapter->stats.colc += rd32(E1000_COLC);
6016
6017         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6018         /* read internal phy specific stats */
6019         reg = rd32(E1000_CTRL_EXT);
6020         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6021                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6022
6023                 /* this stat has invalid values on i210/i211 */
6024                 if ((hw->mac.type != e1000_i210) &&
6025                     (hw->mac.type != e1000_i211))
6026                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6027         }
6028
6029         adapter->stats.tsctc += rd32(E1000_TSCTC);
6030         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6031
6032         adapter->stats.iac += rd32(E1000_IAC);
6033         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6034         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6035         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6036         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6037         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6038         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6039         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6040         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6041
6042         /* Fill out the OS statistics structure */
6043         net_stats->multicast = adapter->stats.mprc;
6044         net_stats->collisions = adapter->stats.colc;
6045
6046         /* Rx Errors */
6047
6048         /* RLEC on some newer hardware can be incorrect so build
6049          * our own version based on RUC and ROC
6050          */
6051         net_stats->rx_errors = adapter->stats.rxerrc +
6052                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6053                 adapter->stats.ruc + adapter->stats.roc +
6054                 adapter->stats.cexterr;
6055         net_stats->rx_length_errors = adapter->stats.ruc +
6056                                       adapter->stats.roc;
6057         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6058         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6059         net_stats->rx_missed_errors = adapter->stats.mpc;
6060
6061         /* Tx Errors */
6062         net_stats->tx_errors = adapter->stats.ecol +
6063                                adapter->stats.latecol;
6064         net_stats->tx_aborted_errors = adapter->stats.ecol;
6065         net_stats->tx_window_errors = adapter->stats.latecol;
6066         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6067
6068         /* Tx Dropped needs to be maintained elsewhere */
6069
6070         /* Management Stats */
6071         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6072         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6073         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6074
6075         /* OS2BMC Stats */
6076         reg = rd32(E1000_MANC);
6077         if (reg & E1000_MANC_EN_BMC2OS) {
6078                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6079                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6080                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6081                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6082         }
6083 }
6084
6085 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6086 {
6087         struct e1000_hw *hw = &adapter->hw;
6088         struct ptp_clock_event event;
6089         struct timespec64 ts;
6090         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6091
6092         if (tsicr & TSINTR_SYS_WRAP) {
6093                 event.type = PTP_CLOCK_PPS;
6094                 if (adapter->ptp_caps.pps)
6095                         ptp_clock_event(adapter->ptp_clock, &event);
6096                 ack |= TSINTR_SYS_WRAP;
6097         }
6098
6099         if (tsicr & E1000_TSICR_TXTS) {
6100                 /* retrieve hardware timestamp */
6101                 schedule_work(&adapter->ptp_tx_work);
6102                 ack |= E1000_TSICR_TXTS;
6103         }
6104
6105         if (tsicr & TSINTR_TT0) {
6106                 spin_lock(&adapter->tmreg_lock);
6107                 ts = timespec64_add(adapter->perout[0].start,
6108                                     adapter->perout[0].period);
6109                 /* u32 conversion of tv_sec is safe until y2106 */
6110                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6111                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6112                 tsauxc = rd32(E1000_TSAUXC);
6113                 tsauxc |= TSAUXC_EN_TT0;
6114                 wr32(E1000_TSAUXC, tsauxc);
6115                 adapter->perout[0].start = ts;
6116                 spin_unlock(&adapter->tmreg_lock);
6117                 ack |= TSINTR_TT0;
6118         }
6119
6120         if (tsicr & TSINTR_TT1) {
6121                 spin_lock(&adapter->tmreg_lock);
6122                 ts = timespec64_add(adapter->perout[1].start,
6123                                     adapter->perout[1].period);
6124                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6125                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6126                 tsauxc = rd32(E1000_TSAUXC);
6127                 tsauxc |= TSAUXC_EN_TT1;
6128                 wr32(E1000_TSAUXC, tsauxc);
6129                 adapter->perout[1].start = ts;
6130                 spin_unlock(&adapter->tmreg_lock);
6131                 ack |= TSINTR_TT1;
6132         }
6133
6134         if (tsicr & TSINTR_AUTT0) {
6135                 nsec = rd32(E1000_AUXSTMPL0);
6136                 sec  = rd32(E1000_AUXSTMPH0);
6137                 event.type = PTP_CLOCK_EXTTS;
6138                 event.index = 0;
6139                 event.timestamp = sec * 1000000000ULL + nsec;
6140                 ptp_clock_event(adapter->ptp_clock, &event);
6141                 ack |= TSINTR_AUTT0;
6142         }
6143
6144         if (tsicr & TSINTR_AUTT1) {
6145                 nsec = rd32(E1000_AUXSTMPL1);
6146                 sec  = rd32(E1000_AUXSTMPH1);
6147                 event.type = PTP_CLOCK_EXTTS;
6148                 event.index = 1;
6149                 event.timestamp = sec * 1000000000ULL + nsec;
6150                 ptp_clock_event(adapter->ptp_clock, &event);
6151                 ack |= TSINTR_AUTT1;
6152         }
6153
6154         /* acknowledge the interrupts */
6155         wr32(E1000_TSICR, ack);
6156 }
6157
6158 static irqreturn_t igb_msix_other(int irq, void *data)
6159 {
6160         struct igb_adapter *adapter = data;
6161         struct e1000_hw *hw = &adapter->hw;
6162         u32 icr = rd32(E1000_ICR);
6163         /* reading ICR causes bit 31 of EICR to be cleared */
6164
6165         if (icr & E1000_ICR_DRSTA)
6166                 schedule_work(&adapter->reset_task);
6167
6168         if (icr & E1000_ICR_DOUTSYNC) {
6169                 /* HW is reporting DMA is out of sync */
6170                 adapter->stats.doosync++;
6171                 /* The DMA Out of Sync is also indication of a spoof event
6172                  * in IOV mode. Check the Wrong VM Behavior register to
6173                  * see if it is really a spoof event.
6174                  */
6175                 igb_check_wvbr(adapter);
6176         }
6177
6178         /* Check for a mailbox event */
6179         if (icr & E1000_ICR_VMMB)
6180                 igb_msg_task(adapter);
6181
6182         if (icr & E1000_ICR_LSC) {
6183                 hw->mac.get_link_status = 1;
6184                 /* guard against interrupt when we're going down */
6185                 if (!test_bit(__IGB_DOWN, &adapter->state))
6186                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6187         }
6188
6189         if (icr & E1000_ICR_TS)
6190                 igb_tsync_interrupt(adapter);
6191
6192         wr32(E1000_EIMS, adapter->eims_other);
6193
6194         return IRQ_HANDLED;
6195 }
6196
6197 static void igb_write_itr(struct igb_q_vector *q_vector)
6198 {
6199         struct igb_adapter *adapter = q_vector->adapter;
6200         u32 itr_val = q_vector->itr_val & 0x7FFC;
6201
6202         if (!q_vector->set_itr)
6203                 return;
6204
6205         if (!itr_val)
6206                 itr_val = 0x4;
6207
6208         if (adapter->hw.mac.type == e1000_82575)
6209                 itr_val |= itr_val << 16;
6210         else
6211                 itr_val |= E1000_EITR_CNT_IGNR;
6212
6213         writel(itr_val, q_vector->itr_register);
6214         q_vector->set_itr = 0;
6215 }
6216
6217 static irqreturn_t igb_msix_ring(int irq, void *data)
6218 {
6219         struct igb_q_vector *q_vector = data;
6220
6221         /* Write the ITR value calculated from the previous interrupt. */
6222         igb_write_itr(q_vector);
6223
6224         napi_schedule(&q_vector->napi);
6225
6226         return IRQ_HANDLED;
6227 }
6228
6229 #ifdef CONFIG_IGB_DCA
6230 static void igb_update_tx_dca(struct igb_adapter *adapter,
6231                               struct igb_ring *tx_ring,
6232                               int cpu)
6233 {
6234         struct e1000_hw *hw = &adapter->hw;
6235         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6236
6237         if (hw->mac.type != e1000_82575)
6238                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6239
6240         /* We can enable relaxed ordering for reads, but not writes when
6241          * DCA is enabled.  This is due to a known issue in some chipsets
6242          * which will cause the DCA tag to be cleared.
6243          */
6244         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6245                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6246                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6247
6248         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6249 }
6250
6251 static void igb_update_rx_dca(struct igb_adapter *adapter,
6252                               struct igb_ring *rx_ring,
6253                               int cpu)
6254 {
6255         struct e1000_hw *hw = &adapter->hw;
6256         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6257
6258         if (hw->mac.type != e1000_82575)
6259                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6260
6261         /* We can enable relaxed ordering for reads, but not writes when
6262          * DCA is enabled.  This is due to a known issue in some chipsets
6263          * which will cause the DCA tag to be cleared.
6264          */
6265         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6266                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6267
6268         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6269 }
6270
6271 static void igb_update_dca(struct igb_q_vector *q_vector)
6272 {
6273         struct igb_adapter *adapter = q_vector->adapter;
6274         int cpu = get_cpu();
6275
6276         if (q_vector->cpu == cpu)
6277                 goto out_no_update;
6278
6279         if (q_vector->tx.ring)
6280                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6281
6282         if (q_vector->rx.ring)
6283                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6284
6285         q_vector->cpu = cpu;
6286 out_no_update:
6287         put_cpu();
6288 }
6289
6290 static void igb_setup_dca(struct igb_adapter *adapter)
6291 {
6292         struct e1000_hw *hw = &adapter->hw;
6293         int i;
6294
6295         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6296                 return;
6297
6298         /* Always use CB2 mode, difference is masked in the CB driver. */
6299         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6300
6301         for (i = 0; i < adapter->num_q_vectors; i++) {
6302                 adapter->q_vector[i]->cpu = -1;
6303                 igb_update_dca(adapter->q_vector[i]);
6304         }
6305 }
6306
6307 static int __igb_notify_dca(struct device *dev, void *data)
6308 {
6309         struct net_device *netdev = dev_get_drvdata(dev);
6310         struct igb_adapter *adapter = netdev_priv(netdev);
6311         struct pci_dev *pdev = adapter->pdev;
6312         struct e1000_hw *hw = &adapter->hw;
6313         unsigned long event = *(unsigned long *)data;
6314
6315         switch (event) {
6316         case DCA_PROVIDER_ADD:
6317                 /* if already enabled, don't do it again */
6318                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6319                         break;
6320                 if (dca_add_requester(dev) == 0) {
6321                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6322                         dev_info(&pdev->dev, "DCA enabled\n");
6323                         igb_setup_dca(adapter);
6324                         break;
6325                 }
6326                 /* Fall Through since DCA is disabled. */
6327         case DCA_PROVIDER_REMOVE:
6328                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6329                         /* without this a class_device is left
6330                          * hanging around in the sysfs model
6331                          */
6332                         dca_remove_requester(dev);
6333                         dev_info(&pdev->dev, "DCA disabled\n");
6334                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6335                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6336                 }
6337                 break;
6338         }
6339
6340         return 0;
6341 }
6342
6343 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6344                           void *p)
6345 {
6346         int ret_val;
6347
6348         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6349                                          __igb_notify_dca);
6350
6351         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6352 }
6353 #endif /* CONFIG_IGB_DCA */
6354
6355 #ifdef CONFIG_PCI_IOV
6356 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6357 {
6358         unsigned char mac_addr[ETH_ALEN];
6359
6360         eth_zero_addr(mac_addr);
6361         igb_set_vf_mac(adapter, vf, mac_addr);
6362
6363         /* By default spoof check is enabled for all VFs */
6364         adapter->vf_data[vf].spoofchk_enabled = true;
6365
6366         return 0;
6367 }
6368
6369 #endif
6370 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6371 {
6372         struct e1000_hw *hw = &adapter->hw;
6373         u32 ping;
6374         int i;
6375
6376         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6377                 ping = E1000_PF_CONTROL_MSG;
6378                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6379                         ping |= E1000_VT_MSGTYPE_CTS;
6380                 igb_write_mbx(hw, &ping, 1, i);
6381         }
6382 }
6383
6384 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6385 {
6386         struct e1000_hw *hw = &adapter->hw;
6387         u32 vmolr = rd32(E1000_VMOLR(vf));
6388         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6389
6390         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6391                             IGB_VF_FLAG_MULTI_PROMISC);
6392         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6393
6394         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6395                 vmolr |= E1000_VMOLR_MPME;
6396                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6397                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6398         } else {
6399                 /* if we have hashes and we are clearing a multicast promisc
6400                  * flag we need to write the hashes to the MTA as this step
6401                  * was previously skipped
6402                  */
6403                 if (vf_data->num_vf_mc_hashes > 30) {
6404                         vmolr |= E1000_VMOLR_MPME;
6405                 } else if (vf_data->num_vf_mc_hashes) {
6406                         int j;
6407
6408                         vmolr |= E1000_VMOLR_ROMPE;
6409                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6410                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6411                 }
6412         }
6413
6414         wr32(E1000_VMOLR(vf), vmolr);
6415
6416         /* there are flags left unprocessed, likely not supported */
6417         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6418                 return -EINVAL;
6419
6420         return 0;
6421 }
6422
6423 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6424                                   u32 *msgbuf, u32 vf)
6425 {
6426         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6427         u16 *hash_list = (u16 *)&msgbuf[1];
6428         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6429         int i;
6430
6431         /* salt away the number of multicast addresses assigned
6432          * to this VF for later use to restore when the PF multi cast
6433          * list changes
6434          */
6435         vf_data->num_vf_mc_hashes = n;
6436
6437         /* only up to 30 hash values supported */
6438         if (n > 30)
6439                 n = 30;
6440
6441         /* store the hashes for later use */
6442         for (i = 0; i < n; i++)
6443                 vf_data->vf_mc_hashes[i] = hash_list[i];
6444
6445         /* Flush and reset the mta with the new values */
6446         igb_set_rx_mode(adapter->netdev);
6447
6448         return 0;
6449 }
6450
6451 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6452 {
6453         struct e1000_hw *hw = &adapter->hw;
6454         struct vf_data_storage *vf_data;
6455         int i, j;
6456
6457         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6458                 u32 vmolr = rd32(E1000_VMOLR(i));
6459
6460                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6461
6462                 vf_data = &adapter->vf_data[i];
6463
6464                 if ((vf_data->num_vf_mc_hashes > 30) ||
6465                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6466                         vmolr |= E1000_VMOLR_MPME;
6467                 } else if (vf_data->num_vf_mc_hashes) {
6468                         vmolr |= E1000_VMOLR_ROMPE;
6469                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6470                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6471                 }
6472                 wr32(E1000_VMOLR(i), vmolr);
6473         }
6474 }
6475
6476 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6477 {
6478         struct e1000_hw *hw = &adapter->hw;
6479         u32 pool_mask, vlvf_mask, i;
6480
6481         /* create mask for VF and other pools */
6482         pool_mask = E1000_VLVF_POOLSEL_MASK;
6483         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6484
6485         /* drop PF from pool bits */
6486         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6487                              adapter->vfs_allocated_count);
6488
6489         /* Find the vlan filter for this id */
6490         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6491                 u32 vlvf = rd32(E1000_VLVF(i));
6492                 u32 vfta_mask, vid, vfta;
6493
6494                 /* remove the vf from the pool */
6495                 if (!(vlvf & vlvf_mask))
6496                         continue;
6497
6498                 /* clear out bit from VLVF */
6499                 vlvf ^= vlvf_mask;
6500
6501                 /* if other pools are present, just remove ourselves */
6502                 if (vlvf & pool_mask)
6503                         goto update_vlvfb;
6504
6505                 /* if PF is present, leave VFTA */
6506                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6507                         goto update_vlvf;
6508
6509                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6510                 vfta_mask = BIT(vid % 32);
6511
6512                 /* clear bit from VFTA */
6513                 vfta = adapter->shadow_vfta[vid / 32];
6514                 if (vfta & vfta_mask)
6515                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6516 update_vlvf:
6517                 /* clear pool selection enable */
6518                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6519                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6520                 else
6521                         vlvf = 0;
6522 update_vlvfb:
6523                 /* clear pool bits */
6524                 wr32(E1000_VLVF(i), vlvf);
6525         }
6526 }
6527
6528 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6529 {
6530         u32 vlvf;
6531         int idx;
6532
6533         /* short cut the special case */
6534         if (vlan == 0)
6535                 return 0;
6536
6537         /* Search for the VLAN id in the VLVF entries */
6538         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6539                 vlvf = rd32(E1000_VLVF(idx));
6540                 if ((vlvf & VLAN_VID_MASK) == vlan)
6541                         break;
6542         }
6543
6544         return idx;
6545 }
6546
6547 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6548 {
6549         struct e1000_hw *hw = &adapter->hw;
6550         u32 bits, pf_id;
6551         int idx;
6552
6553         idx = igb_find_vlvf_entry(hw, vid);
6554         if (!idx)
6555                 return;
6556
6557         /* See if any other pools are set for this VLAN filter
6558          * entry other than the PF.
6559          */
6560         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6561         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6562         bits &= rd32(E1000_VLVF(idx));
6563
6564         /* Disable the filter so this falls into the default pool. */
6565         if (!bits) {
6566                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6567                         wr32(E1000_VLVF(idx), BIT(pf_id));
6568                 else
6569                         wr32(E1000_VLVF(idx), 0);
6570         }
6571 }
6572
6573 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6574                            bool add, u32 vf)
6575 {
6576         int pf_id = adapter->vfs_allocated_count;
6577         struct e1000_hw *hw = &adapter->hw;
6578         int err;
6579
6580         /* If VLAN overlaps with one the PF is currently monitoring make
6581          * sure that we are able to allocate a VLVF entry.  This may be
6582          * redundant but it guarantees PF will maintain visibility to
6583          * the VLAN.
6584          */
6585         if (add && test_bit(vid, adapter->active_vlans)) {
6586                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6587                 if (err)
6588                         return err;
6589         }
6590
6591         err = igb_vfta_set(hw, vid, vf, add, false);
6592
6593         if (add && !err)
6594                 return err;
6595
6596         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6597          * we may need to drop the PF pool bit in order to allow us to free
6598          * up the VLVF resources.
6599          */
6600         if (test_bit(vid, adapter->active_vlans) ||
6601             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6602                 igb_update_pf_vlvf(adapter, vid);
6603
6604         return err;
6605 }
6606
6607 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6608 {
6609         struct e1000_hw *hw = &adapter->hw;
6610
6611         if (vid)
6612                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6613         else
6614                 wr32(E1000_VMVIR(vf), 0);
6615 }
6616
6617 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6618                                 u16 vlan, u8 qos)
6619 {
6620         int err;
6621
6622         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6623         if (err)
6624                 return err;
6625
6626         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6627         igb_set_vmolr(adapter, vf, !vlan);
6628
6629         /* revoke access to previous VLAN */
6630         if (vlan != adapter->vf_data[vf].pf_vlan)
6631                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6632                                 false, vf);
6633
6634         adapter->vf_data[vf].pf_vlan = vlan;
6635         adapter->vf_data[vf].pf_qos = qos;
6636         igb_set_vf_vlan_strip(adapter, vf, true);
6637         dev_info(&adapter->pdev->dev,
6638                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6639         if (test_bit(__IGB_DOWN, &adapter->state)) {
6640                 dev_warn(&adapter->pdev->dev,
6641                          "The VF VLAN has been set, but the PF device is not up.\n");
6642                 dev_warn(&adapter->pdev->dev,
6643                          "Bring the PF device up before attempting to use the VF device.\n");
6644         }
6645
6646         return err;
6647 }
6648
6649 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6650 {
6651         /* Restore tagless access via VLAN 0 */
6652         igb_set_vf_vlan(adapter, 0, true, vf);
6653
6654         igb_set_vmvir(adapter, 0, vf);
6655         igb_set_vmolr(adapter, vf, true);
6656
6657         /* Remove any PF assigned VLAN */
6658         if (adapter->vf_data[vf].pf_vlan)
6659                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6660                                 false, vf);
6661
6662         adapter->vf_data[vf].pf_vlan = 0;
6663         adapter->vf_data[vf].pf_qos = 0;
6664         igb_set_vf_vlan_strip(adapter, vf, false);
6665
6666         return 0;
6667 }
6668
6669 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6670                                u16 vlan, u8 qos, __be16 vlan_proto)
6671 {
6672         struct igb_adapter *adapter = netdev_priv(netdev);
6673
6674         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6675                 return -EINVAL;
6676
6677         if (vlan_proto != htons(ETH_P_8021Q))
6678                 return -EPROTONOSUPPORT;
6679
6680         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6681                                igb_disable_port_vlan(adapter, vf);
6682 }
6683
6684 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6685 {
6686         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6687         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6688         int ret;
6689
6690         if (adapter->vf_data[vf].pf_vlan)
6691                 return -1;
6692
6693         /* VLAN 0 is a special case, don't allow it to be removed */
6694         if (!vid && !add)
6695                 return 0;
6696
6697         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6698         if (!ret)
6699                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6700         return ret;
6701 }
6702
6703 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6704 {
6705         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6706
6707         /* clear flags - except flag that indicates PF has set the MAC */
6708         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6709         vf_data->last_nack = jiffies;
6710
6711         /* reset vlans for device */
6712         igb_clear_vf_vfta(adapter, vf);
6713         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6714         igb_set_vmvir(adapter, vf_data->pf_vlan |
6715                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6716         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6717         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6718
6719         /* reset multicast table array for vf */
6720         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6721
6722         /* Flush and reset the mta with the new values */
6723         igb_set_rx_mode(adapter->netdev);
6724 }
6725
6726 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6727 {
6728         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6729
6730         /* clear mac address as we were hotplug removed/added */
6731         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6732                 eth_zero_addr(vf_mac);
6733
6734         /* process remaining reset events */
6735         igb_vf_reset(adapter, vf);
6736 }
6737
6738 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6739 {
6740         struct e1000_hw *hw = &adapter->hw;
6741         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6742         u32 reg, msgbuf[3];
6743         u8 *addr = (u8 *)(&msgbuf[1]);
6744
6745         /* process all the same items cleared in a function level reset */
6746         igb_vf_reset(adapter, vf);
6747
6748         /* set vf mac address */
6749         igb_set_vf_mac(adapter, vf, vf_mac);
6750
6751         /* enable transmit and receive for vf */
6752         reg = rd32(E1000_VFTE);
6753         wr32(E1000_VFTE, reg | BIT(vf));
6754         reg = rd32(E1000_VFRE);
6755         wr32(E1000_VFRE, reg | BIT(vf));
6756
6757         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6758
6759         /* reply to reset with ack and vf mac address */
6760         if (!is_zero_ether_addr(vf_mac)) {
6761                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6762                 memcpy(addr, vf_mac, ETH_ALEN);
6763         } else {
6764                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6765         }
6766         igb_write_mbx(hw, msgbuf, 3, vf);
6767 }
6768
6769 static void igb_flush_mac_table(struct igb_adapter *adapter)
6770 {
6771         struct e1000_hw *hw = &adapter->hw;
6772         int i;
6773
6774         for (i = 0; i < hw->mac.rar_entry_count; i++) {
6775                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6776                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6777                 adapter->mac_table[i].queue = 0;
6778                 igb_rar_set_index(adapter, i);
6779         }
6780 }
6781
6782 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6783 {
6784         struct e1000_hw *hw = &adapter->hw;
6785         /* do not count rar entries reserved for VFs MAC addresses */
6786         int rar_entries = hw->mac.rar_entry_count -
6787                           adapter->vfs_allocated_count;
6788         int i, count = 0;
6789
6790         for (i = 0; i < rar_entries; i++) {
6791                 /* do not count default entries */
6792                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6793                         continue;
6794
6795                 /* do not count "in use" entries for different queues */
6796                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6797                     (adapter->mac_table[i].queue != queue))
6798                         continue;
6799
6800                 count++;
6801         }
6802
6803         return count;
6804 }
6805
6806 /* Set default MAC address for the PF in the first RAR entry */
6807 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6808 {
6809         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6810
6811         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6812         mac_table->queue = adapter->vfs_allocated_count;
6813         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6814
6815         igb_rar_set_index(adapter, 0);
6816 }
6817
6818 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6819                               const u8 queue)
6820 {
6821         struct e1000_hw *hw = &adapter->hw;
6822         int rar_entries = hw->mac.rar_entry_count -
6823                           adapter->vfs_allocated_count;
6824         int i;
6825
6826         if (is_zero_ether_addr(addr))
6827                 return -EINVAL;
6828
6829         /* Search for the first empty entry in the MAC table.
6830          * Do not touch entries at the end of the table reserved for the VF MAC
6831          * addresses.
6832          */
6833         for (i = 0; i < rar_entries; i++) {
6834                 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6835                         continue;
6836
6837                 ether_addr_copy(adapter->mac_table[i].addr, addr);
6838                 adapter->mac_table[i].queue = queue;
6839                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6840
6841                 igb_rar_set_index(adapter, i);
6842                 return i;
6843         }
6844
6845         return -ENOSPC;
6846 }
6847
6848 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6849                               const u8 queue)
6850 {
6851         struct e1000_hw *hw = &adapter->hw;
6852         int rar_entries = hw->mac.rar_entry_count -
6853                           adapter->vfs_allocated_count;
6854         int i;
6855
6856         if (is_zero_ether_addr(addr))
6857                 return -EINVAL;
6858
6859         /* Search for matching entry in the MAC table based on given address
6860          * and queue. Do not touch entries at the end of the table reserved
6861          * for the VF MAC addresses.
6862          */
6863         for (i = 0; i < rar_entries; i++) {
6864                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6865                         continue;
6866                 if (adapter->mac_table[i].queue != queue)
6867                         continue;
6868                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6869                         continue;
6870
6871                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6872                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6873                 adapter->mac_table[i].queue = 0;
6874
6875                 igb_rar_set_index(adapter, i);
6876                 return 0;
6877         }
6878
6879         return -ENOENT;
6880 }
6881
6882 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6883 {
6884         struct igb_adapter *adapter = netdev_priv(netdev);
6885         int ret;
6886
6887         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6888
6889         return min_t(int, ret, 0);
6890 }
6891
6892 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6893 {
6894         struct igb_adapter *adapter = netdev_priv(netdev);
6895
6896         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6897
6898         return 0;
6899 }
6900
6901 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6902                                  const u32 info, const u8 *addr)
6903 {
6904         struct pci_dev *pdev = adapter->pdev;
6905         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6906         struct list_head *pos;
6907         struct vf_mac_filter *entry = NULL;
6908         int ret = 0;
6909
6910         switch (info) {
6911         case E1000_VF_MAC_FILTER_CLR:
6912                 /* remove all unicast MAC filters related to the current VF */
6913                 list_for_each(pos, &adapter->vf_macs.l) {
6914                         entry = list_entry(pos, struct vf_mac_filter, l);
6915                         if (entry->vf == vf) {
6916                                 entry->vf = -1;
6917                                 entry->free = true;
6918                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6919                         }
6920                 }
6921                 break;
6922         case E1000_VF_MAC_FILTER_ADD:
6923                 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6924                         dev_warn(&pdev->dev,
6925                                  "VF %d requested MAC filter but is administratively denied\n",
6926                                  vf);
6927                         return -EINVAL;
6928                 }
6929
6930                 if (!is_valid_ether_addr(addr)) {
6931                         dev_warn(&pdev->dev,
6932                                  "VF %d attempted to set invalid MAC filter\n",
6933                                  vf);
6934                         return -EINVAL;
6935                 }
6936
6937                 /* try to find empty slot in the list */
6938                 list_for_each(pos, &adapter->vf_macs.l) {
6939                         entry = list_entry(pos, struct vf_mac_filter, l);
6940                         if (entry->free)
6941                                 break;
6942                 }
6943
6944                 if (entry && entry->free) {
6945                         entry->free = false;
6946                         entry->vf = vf;
6947                         ether_addr_copy(entry->vf_mac, addr);
6948
6949                         ret = igb_add_mac_filter(adapter, addr, vf);
6950                         ret = min_t(int, ret, 0);
6951                 } else {
6952                         ret = -ENOSPC;
6953                 }
6954
6955                 if (ret == -ENOSPC)
6956                         dev_warn(&pdev->dev,
6957                                  "VF %d has requested MAC filter but there is no space for it\n",
6958                                  vf);
6959                 break;
6960         default:
6961                 ret = -EINVAL;
6962                 break;
6963         }
6964
6965         return ret;
6966 }
6967
6968 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6969 {
6970         struct pci_dev *pdev = adapter->pdev;
6971         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6972         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
6973
6974         /* The VF MAC Address is stored in a packed array of bytes
6975          * starting at the second 32 bit word of the msg array
6976          */
6977         unsigned char *addr = (unsigned char *)&msg[1];
6978         int ret = 0;
6979
6980         if (!info) {
6981                 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6982                         dev_warn(&pdev->dev,
6983                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6984                                  vf);
6985                         return -EINVAL;
6986                 }
6987
6988                 if (!is_valid_ether_addr(addr)) {
6989                         dev_warn(&pdev->dev,
6990                                  "VF %d attempted to set invalid MAC\n",
6991                                  vf);
6992                         return -EINVAL;
6993                 }
6994
6995                 ret = igb_set_vf_mac(adapter, vf, addr);
6996         } else {
6997                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
6998         }
6999
7000         return ret;
7001 }
7002
7003 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7004 {
7005         struct e1000_hw *hw = &adapter->hw;
7006         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7007         u32 msg = E1000_VT_MSGTYPE_NACK;
7008
7009         /* if device isn't clear to send it shouldn't be reading either */
7010         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7011             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7012                 igb_write_mbx(hw, &msg, 1, vf);
7013                 vf_data->last_nack = jiffies;
7014         }
7015 }
7016
7017 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7018 {
7019         struct pci_dev *pdev = adapter->pdev;
7020         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7021         struct e1000_hw *hw = &adapter->hw;
7022         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7023         s32 retval;
7024
7025         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7026
7027         if (retval) {
7028                 /* if receive failed revoke VF CTS stats and restart init */
7029                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7030                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7031                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7032                         goto unlock;
7033                 goto out;
7034         }
7035
7036         /* this is a message we already processed, do nothing */
7037         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7038                 goto unlock;
7039
7040         /* until the vf completes a reset it should not be
7041          * allowed to start any configuration.
7042          */
7043         if (msgbuf[0] == E1000_VF_RESET) {
7044                 /* unlocks mailbox */
7045                 igb_vf_reset_msg(adapter, vf);
7046                 return;
7047         }
7048
7049         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7050                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7051                         goto unlock;
7052                 retval = -1;
7053                 goto out;
7054         }
7055
7056         switch ((msgbuf[0] & 0xFFFF)) {
7057         case E1000_VF_SET_MAC_ADDR:
7058                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7059                 break;
7060         case E1000_VF_SET_PROMISC:
7061                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7062                 break;
7063         case E1000_VF_SET_MULTICAST:
7064                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7065                 break;
7066         case E1000_VF_SET_LPE:
7067                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7068                 break;
7069         case E1000_VF_SET_VLAN:
7070                 retval = -1;
7071                 if (vf_data->pf_vlan)
7072                         dev_warn(&pdev->dev,
7073                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7074                                  vf);
7075                 else
7076                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7077                 break;
7078         default:
7079                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7080                 retval = -1;
7081                 break;
7082         }
7083
7084         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7085 out:
7086         /* notify the VF of the results of what it sent us */
7087         if (retval)
7088                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7089         else
7090                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7091
7092         /* unlocks mailbox */
7093         igb_write_mbx(hw, msgbuf, 1, vf);
7094         return;
7095
7096 unlock:
7097         igb_unlock_mbx(hw, vf);
7098 }
7099
7100 static void igb_msg_task(struct igb_adapter *adapter)
7101 {
7102         struct e1000_hw *hw = &adapter->hw;
7103         u32 vf;
7104
7105         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7106                 /* process any reset requests */
7107                 if (!igb_check_for_rst(hw, vf))
7108                         igb_vf_reset_event(adapter, vf);
7109
7110                 /* process any messages pending */
7111                 if (!igb_check_for_msg(hw, vf))
7112                         igb_rcv_msg_from_vf(adapter, vf);
7113
7114                 /* process any acks */
7115                 if (!igb_check_for_ack(hw, vf))
7116                         igb_rcv_ack_from_vf(adapter, vf);
7117         }
7118 }
7119
7120 /**
7121  *  igb_set_uta - Set unicast filter table address
7122  *  @adapter: board private structure
7123  *  @set: boolean indicating if we are setting or clearing bits
7124  *
7125  *  The unicast table address is a register array of 32-bit registers.
7126  *  The table is meant to be used in a way similar to how the MTA is used
7127  *  however due to certain limitations in the hardware it is necessary to
7128  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7129  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7130  **/
7131 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7132 {
7133         struct e1000_hw *hw = &adapter->hw;
7134         u32 uta = set ? ~0 : 0;
7135         int i;
7136
7137         /* we only need to do this if VMDq is enabled */
7138         if (!adapter->vfs_allocated_count)
7139                 return;
7140
7141         for (i = hw->mac.uta_reg_count; i--;)
7142                 array_wr32(E1000_UTA, i, uta);
7143 }
7144
7145 /**
7146  *  igb_intr_msi - Interrupt Handler
7147  *  @irq: interrupt number
7148  *  @data: pointer to a network interface device structure
7149  **/
7150 static irqreturn_t igb_intr_msi(int irq, void *data)
7151 {
7152         struct igb_adapter *adapter = data;
7153         struct igb_q_vector *q_vector = adapter->q_vector[0];
7154         struct e1000_hw *hw = &adapter->hw;
7155         /* read ICR disables interrupts using IAM */
7156         u32 icr = rd32(E1000_ICR);
7157
7158         igb_write_itr(q_vector);
7159
7160         if (icr & E1000_ICR_DRSTA)
7161                 schedule_work(&adapter->reset_task);
7162
7163         if (icr & E1000_ICR_DOUTSYNC) {
7164                 /* HW is reporting DMA is out of sync */
7165                 adapter->stats.doosync++;
7166         }
7167
7168         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7169                 hw->mac.get_link_status = 1;
7170                 if (!test_bit(__IGB_DOWN, &adapter->state))
7171                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7172         }
7173
7174         if (icr & E1000_ICR_TS)
7175                 igb_tsync_interrupt(adapter);
7176
7177         napi_schedule(&q_vector->napi);
7178
7179         return IRQ_HANDLED;
7180 }
7181
7182 /**
7183  *  igb_intr - Legacy Interrupt Handler
7184  *  @irq: interrupt number
7185  *  @data: pointer to a network interface device structure
7186  **/
7187 static irqreturn_t igb_intr(int irq, void *data)
7188 {
7189         struct igb_adapter *adapter = data;
7190         struct igb_q_vector *q_vector = adapter->q_vector[0];
7191         struct e1000_hw *hw = &adapter->hw;
7192         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7193          * need for the IMC write
7194          */
7195         u32 icr = rd32(E1000_ICR);
7196
7197         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7198          * not set, then the adapter didn't send an interrupt
7199          */
7200         if (!(icr & E1000_ICR_INT_ASSERTED))
7201                 return IRQ_NONE;
7202
7203         igb_write_itr(q_vector);
7204
7205         if (icr & E1000_ICR_DRSTA)
7206                 schedule_work(&adapter->reset_task);
7207
7208         if (icr & E1000_ICR_DOUTSYNC) {
7209                 /* HW is reporting DMA is out of sync */
7210                 adapter->stats.doosync++;
7211         }
7212
7213         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7214                 hw->mac.get_link_status = 1;
7215                 /* guard against interrupt when we're going down */
7216                 if (!test_bit(__IGB_DOWN, &adapter->state))
7217                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7218         }
7219
7220         if (icr & E1000_ICR_TS)
7221                 igb_tsync_interrupt(adapter);
7222
7223         napi_schedule(&q_vector->napi);
7224
7225         return IRQ_HANDLED;
7226 }
7227
7228 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7229 {
7230         struct igb_adapter *adapter = q_vector->adapter;
7231         struct e1000_hw *hw = &adapter->hw;
7232
7233         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7234             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7235                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7236                         igb_set_itr(q_vector);
7237                 else
7238                         igb_update_ring_itr(q_vector);
7239         }
7240
7241         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7242                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7243                         wr32(E1000_EIMS, q_vector->eims_value);
7244                 else
7245                         igb_irq_enable(adapter);
7246         }
7247 }
7248
7249 /**
7250  *  igb_poll - NAPI Rx polling callback
7251  *  @napi: napi polling structure
7252  *  @budget: count of how many packets we should handle
7253  **/
7254 static int igb_poll(struct napi_struct *napi, int budget)
7255 {
7256         struct igb_q_vector *q_vector = container_of(napi,
7257                                                      struct igb_q_vector,
7258                                                      napi);
7259         bool clean_complete = true;
7260         int work_done = 0;
7261
7262 #ifdef CONFIG_IGB_DCA
7263         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7264                 igb_update_dca(q_vector);
7265 #endif
7266         if (q_vector->tx.ring)
7267                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7268
7269         if (q_vector->rx.ring) {
7270                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7271
7272                 work_done += cleaned;
7273                 if (cleaned >= budget)
7274                         clean_complete = false;
7275         }
7276
7277         /* If all work not completed, return budget and keep polling */
7278         if (!clean_complete)
7279                 return budget;
7280
7281         /* If not enough Rx work done, exit the polling mode */
7282         napi_complete_done(napi, work_done);
7283         igb_ring_irq_enable(q_vector);
7284
7285         return 0;
7286 }
7287
7288 /**
7289  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7290  *  @q_vector: pointer to q_vector containing needed info
7291  *  @napi_budget: Used to determine if we are in netpoll
7292  *
7293  *  returns true if ring is completely cleaned
7294  **/
7295 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7296 {
7297         struct igb_adapter *adapter = q_vector->adapter;
7298         struct igb_ring *tx_ring = q_vector->tx.ring;
7299         struct igb_tx_buffer *tx_buffer;
7300         union e1000_adv_tx_desc *tx_desc;
7301         unsigned int total_bytes = 0, total_packets = 0;
7302         unsigned int budget = q_vector->tx.work_limit;
7303         unsigned int i = tx_ring->next_to_clean;
7304
7305         if (test_bit(__IGB_DOWN, &adapter->state))
7306                 return true;
7307
7308         tx_buffer = &tx_ring->tx_buffer_info[i];
7309         tx_desc = IGB_TX_DESC(tx_ring, i);
7310         i -= tx_ring->count;
7311
7312         do {
7313                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7314
7315                 /* if next_to_watch is not set then there is no work pending */
7316                 if (!eop_desc)
7317                         break;
7318
7319                 /* prevent any other reads prior to eop_desc */
7320                 smp_rmb();
7321
7322                 /* if DD is not set pending work has not been completed */
7323                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7324                         break;
7325
7326                 /* clear next_to_watch to prevent false hangs */
7327                 tx_buffer->next_to_watch = NULL;
7328
7329                 /* update the statistics for this packet */
7330                 total_bytes += tx_buffer->bytecount;
7331                 total_packets += tx_buffer->gso_segs;
7332
7333                 /* free the skb */
7334                 napi_consume_skb(tx_buffer->skb, napi_budget);
7335
7336                 /* unmap skb header data */
7337                 dma_unmap_single(tx_ring->dev,
7338                                  dma_unmap_addr(tx_buffer, dma),
7339                                  dma_unmap_len(tx_buffer, len),
7340                                  DMA_TO_DEVICE);
7341
7342                 /* clear tx_buffer data */
7343                 dma_unmap_len_set(tx_buffer, len, 0);
7344
7345                 /* clear last DMA location and unmap remaining buffers */
7346                 while (tx_desc != eop_desc) {
7347                         tx_buffer++;
7348                         tx_desc++;
7349                         i++;
7350                         if (unlikely(!i)) {
7351                                 i -= tx_ring->count;
7352                                 tx_buffer = tx_ring->tx_buffer_info;
7353                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7354                         }
7355
7356                         /* unmap any remaining paged data */
7357                         if (dma_unmap_len(tx_buffer, len)) {
7358                                 dma_unmap_page(tx_ring->dev,
7359                                                dma_unmap_addr(tx_buffer, dma),
7360                                                dma_unmap_len(tx_buffer, len),
7361                                                DMA_TO_DEVICE);
7362                                 dma_unmap_len_set(tx_buffer, len, 0);
7363                         }
7364                 }
7365
7366                 /* move us one more past the eop_desc for start of next pkt */
7367                 tx_buffer++;
7368                 tx_desc++;
7369                 i++;
7370                 if (unlikely(!i)) {
7371                         i -= tx_ring->count;
7372                         tx_buffer = tx_ring->tx_buffer_info;
7373                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7374                 }
7375
7376                 /* issue prefetch for next Tx descriptor */
7377                 prefetch(tx_desc);
7378
7379                 /* update budget accounting */
7380                 budget--;
7381         } while (likely(budget));
7382
7383         netdev_tx_completed_queue(txring_txq(tx_ring),
7384                                   total_packets, total_bytes);
7385         i += tx_ring->count;
7386         tx_ring->next_to_clean = i;
7387         u64_stats_update_begin(&tx_ring->tx_syncp);
7388         tx_ring->tx_stats.bytes += total_bytes;
7389         tx_ring->tx_stats.packets += total_packets;
7390         u64_stats_update_end(&tx_ring->tx_syncp);
7391         q_vector->tx.total_bytes += total_bytes;
7392         q_vector->tx.total_packets += total_packets;
7393
7394         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7395                 struct e1000_hw *hw = &adapter->hw;
7396
7397                 /* Detect a transmit hang in hardware, this serializes the
7398                  * check with the clearing of time_stamp and movement of i
7399                  */
7400                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7401                 if (tx_buffer->next_to_watch &&
7402                     time_after(jiffies, tx_buffer->time_stamp +
7403                                (adapter->tx_timeout_factor * HZ)) &&
7404                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7405
7406                         /* detected Tx unit hang */
7407                         dev_err(tx_ring->dev,
7408                                 "Detected Tx Unit Hang\n"
7409                                 "  Tx Queue             <%d>\n"
7410                                 "  TDH                  <%x>\n"
7411                                 "  TDT                  <%x>\n"
7412                                 "  next_to_use          <%x>\n"
7413                                 "  next_to_clean        <%x>\n"
7414                                 "buffer_info[next_to_clean]\n"
7415                                 "  time_stamp           <%lx>\n"
7416                                 "  next_to_watch        <%p>\n"
7417                                 "  jiffies              <%lx>\n"
7418                                 "  desc.status          <%x>\n",
7419                                 tx_ring->queue_index,
7420                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7421                                 readl(tx_ring->tail),
7422                                 tx_ring->next_to_use,
7423                                 tx_ring->next_to_clean,
7424                                 tx_buffer->time_stamp,
7425                                 tx_buffer->next_to_watch,
7426                                 jiffies,
7427                                 tx_buffer->next_to_watch->wb.status);
7428                         netif_stop_subqueue(tx_ring->netdev,
7429                                             tx_ring->queue_index);
7430
7431                         /* we are about to reset, no point in enabling stuff */
7432                         return true;
7433                 }
7434         }
7435
7436 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7437         if (unlikely(total_packets &&
7438             netif_carrier_ok(tx_ring->netdev) &&
7439             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7440                 /* Make sure that anybody stopping the queue after this
7441                  * sees the new next_to_clean.
7442                  */
7443                 smp_mb();
7444                 if (__netif_subqueue_stopped(tx_ring->netdev,
7445                                              tx_ring->queue_index) &&
7446                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7447                         netif_wake_subqueue(tx_ring->netdev,
7448                                             tx_ring->queue_index);
7449
7450                         u64_stats_update_begin(&tx_ring->tx_syncp);
7451                         tx_ring->tx_stats.restart_queue++;
7452                         u64_stats_update_end(&tx_ring->tx_syncp);
7453                 }
7454         }
7455
7456         return !!budget;
7457 }
7458
7459 /**
7460  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7461  *  @rx_ring: rx descriptor ring to store buffers on
7462  *  @old_buff: donor buffer to have page reused
7463  *
7464  *  Synchronizes page for reuse by the adapter
7465  **/
7466 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7467                               struct igb_rx_buffer *old_buff)
7468 {
7469         struct igb_rx_buffer *new_buff;
7470         u16 nta = rx_ring->next_to_alloc;
7471
7472         new_buff = &rx_ring->rx_buffer_info[nta];
7473
7474         /* update, and store next to alloc */
7475         nta++;
7476         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7477
7478         /* Transfer page from old buffer to new buffer.
7479          * Move each member individually to avoid possible store
7480          * forwarding stalls.
7481          */
7482         new_buff->dma           = old_buff->dma;
7483         new_buff->page          = old_buff->page;
7484         new_buff->page_offset   = old_buff->page_offset;
7485         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7486 }
7487
7488 static inline bool igb_page_is_reserved(struct page *page)
7489 {
7490         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7491 }
7492
7493 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7494 {
7495         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7496         struct page *page = rx_buffer->page;
7497
7498         /* avoid re-using remote pages */
7499         if (unlikely(igb_page_is_reserved(page)))
7500                 return false;
7501
7502 #if (PAGE_SIZE < 8192)
7503         /* if we are only owner of page we can reuse it */
7504         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7505                 return false;
7506 #else
7507 #define IGB_LAST_OFFSET \
7508         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7509
7510         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7511                 return false;
7512 #endif
7513
7514         /* If we have drained the page fragment pool we need to update
7515          * the pagecnt_bias and page count so that we fully restock the
7516          * number of references the driver holds.
7517          */
7518         if (unlikely(!pagecnt_bias)) {
7519                 page_ref_add(page, USHRT_MAX);
7520                 rx_buffer->pagecnt_bias = USHRT_MAX;
7521         }
7522
7523         return true;
7524 }
7525
7526 /**
7527  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7528  *  @rx_ring: rx descriptor ring to transact packets on
7529  *  @rx_buffer: buffer containing page to add
7530  *  @skb: sk_buff to place the data into
7531  *  @size: size of buffer to be added
7532  *
7533  *  This function will add the data contained in rx_buffer->page to the skb.
7534  **/
7535 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7536                             struct igb_rx_buffer *rx_buffer,
7537                             struct sk_buff *skb,
7538                             unsigned int size)
7539 {
7540 #if (PAGE_SIZE < 8192)
7541         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7542 #else
7543         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7544                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7545                                 SKB_DATA_ALIGN(size);
7546 #endif
7547         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7548                         rx_buffer->page_offset, size, truesize);
7549 #if (PAGE_SIZE < 8192)
7550         rx_buffer->page_offset ^= truesize;
7551 #else
7552         rx_buffer->page_offset += truesize;
7553 #endif
7554 }
7555
7556 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7557                                          struct igb_rx_buffer *rx_buffer,
7558                                          union e1000_adv_rx_desc *rx_desc,
7559                                          unsigned int size)
7560 {
7561         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7562 #if (PAGE_SIZE < 8192)
7563         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7564 #else
7565         unsigned int truesize = SKB_DATA_ALIGN(size);
7566 #endif
7567         unsigned int headlen;
7568         struct sk_buff *skb;
7569
7570         /* prefetch first cache line of first page */
7571         prefetch(va);
7572 #if L1_CACHE_BYTES < 128
7573         prefetch(va + L1_CACHE_BYTES);
7574 #endif
7575
7576         /* allocate a skb to store the frags */
7577         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7578         if (unlikely(!skb))
7579                 return NULL;
7580
7581         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7582                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7583                 va += IGB_TS_HDR_LEN;
7584                 size -= IGB_TS_HDR_LEN;
7585         }
7586
7587         /* Determine available headroom for copy */
7588         headlen = size;
7589         if (headlen > IGB_RX_HDR_LEN)
7590                 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7591
7592         /* align pull length to size of long to optimize memcpy performance */
7593         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7594
7595         /* update all of the pointers */
7596         size -= headlen;
7597         if (size) {
7598                 skb_add_rx_frag(skb, 0, rx_buffer->page,
7599                                 (va + headlen) - page_address(rx_buffer->page),
7600                                 size, truesize);
7601 #if (PAGE_SIZE < 8192)
7602                 rx_buffer->page_offset ^= truesize;
7603 #else
7604                 rx_buffer->page_offset += truesize;
7605 #endif
7606         } else {
7607                 rx_buffer->pagecnt_bias++;
7608         }
7609
7610         return skb;
7611 }
7612
7613 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7614                                      struct igb_rx_buffer *rx_buffer,
7615                                      union e1000_adv_rx_desc *rx_desc,
7616                                      unsigned int size)
7617 {
7618         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7619 #if (PAGE_SIZE < 8192)
7620         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7621 #else
7622         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7623                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7624 #endif
7625         struct sk_buff *skb;
7626
7627         /* prefetch first cache line of first page */
7628         prefetch(va);
7629 #if L1_CACHE_BYTES < 128
7630         prefetch(va + L1_CACHE_BYTES);
7631 #endif
7632
7633         /* build an skb around the page buffer */
7634         skb = build_skb(va - IGB_SKB_PAD, truesize);
7635         if (unlikely(!skb))
7636                 return NULL;
7637
7638         /* update pointers within the skb to store the data */
7639         skb_reserve(skb, IGB_SKB_PAD);
7640         __skb_put(skb, size);
7641
7642         /* pull timestamp out of packet data */
7643         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7644                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7645                 __skb_pull(skb, IGB_TS_HDR_LEN);
7646         }
7647
7648         /* update buffer offset */
7649 #if (PAGE_SIZE < 8192)
7650         rx_buffer->page_offset ^= truesize;
7651 #else
7652         rx_buffer->page_offset += truesize;
7653 #endif
7654
7655         return skb;
7656 }
7657
7658 static inline void igb_rx_checksum(struct igb_ring *ring,
7659                                    union e1000_adv_rx_desc *rx_desc,
7660                                    struct sk_buff *skb)
7661 {
7662         skb_checksum_none_assert(skb);
7663
7664         /* Ignore Checksum bit is set */
7665         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7666                 return;
7667
7668         /* Rx checksum disabled via ethtool */
7669         if (!(ring->netdev->features & NETIF_F_RXCSUM))
7670                 return;
7671
7672         /* TCP/UDP checksum error bit is set */
7673         if (igb_test_staterr(rx_desc,
7674                              E1000_RXDEXT_STATERR_TCPE |
7675                              E1000_RXDEXT_STATERR_IPE)) {
7676                 /* work around errata with sctp packets where the TCPE aka
7677                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7678                  * packets, (aka let the stack check the crc32c)
7679                  */
7680                 if (!((skb->len == 60) &&
7681                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7682                         u64_stats_update_begin(&ring->rx_syncp);
7683                         ring->rx_stats.csum_err++;
7684                         u64_stats_update_end(&ring->rx_syncp);
7685                 }
7686                 /* let the stack verify checksum errors */
7687                 return;
7688         }
7689         /* It must be a TCP or UDP packet with a valid checksum */
7690         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7691                                       E1000_RXD_STAT_UDPCS))
7692                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7693
7694         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7695                 le32_to_cpu(rx_desc->wb.upper.status_error));
7696 }
7697
7698 static inline void igb_rx_hash(struct igb_ring *ring,
7699                                union e1000_adv_rx_desc *rx_desc,
7700                                struct sk_buff *skb)
7701 {
7702         if (ring->netdev->features & NETIF_F_RXHASH)
7703                 skb_set_hash(skb,
7704                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7705                              PKT_HASH_TYPE_L3);
7706 }
7707
7708 /**
7709  *  igb_is_non_eop - process handling of non-EOP buffers
7710  *  @rx_ring: Rx ring being processed
7711  *  @rx_desc: Rx descriptor for current buffer
7712  *  @skb: current socket buffer containing buffer in progress
7713  *
7714  *  This function updates next to clean.  If the buffer is an EOP buffer
7715  *  this function exits returning false, otherwise it will place the
7716  *  sk_buff in the next buffer to be chained and return true indicating
7717  *  that this is in fact a non-EOP buffer.
7718  **/
7719 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7720                            union e1000_adv_rx_desc *rx_desc)
7721 {
7722         u32 ntc = rx_ring->next_to_clean + 1;
7723
7724         /* fetch, update, and store next to clean */
7725         ntc = (ntc < rx_ring->count) ? ntc : 0;
7726         rx_ring->next_to_clean = ntc;
7727
7728         prefetch(IGB_RX_DESC(rx_ring, ntc));
7729
7730         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7731                 return false;
7732
7733         return true;
7734 }
7735
7736 /**
7737  *  igb_cleanup_headers - Correct corrupted or empty headers
7738  *  @rx_ring: rx descriptor ring packet is being transacted on
7739  *  @rx_desc: pointer to the EOP Rx descriptor
7740  *  @skb: pointer to current skb being fixed
7741  *
7742  *  Address the case where we are pulling data in on pages only
7743  *  and as such no data is present in the skb header.
7744  *
7745  *  In addition if skb is not at least 60 bytes we need to pad it so that
7746  *  it is large enough to qualify as a valid Ethernet frame.
7747  *
7748  *  Returns true if an error was encountered and skb was freed.
7749  **/
7750 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7751                                 union e1000_adv_rx_desc *rx_desc,
7752                                 struct sk_buff *skb)
7753 {
7754         if (unlikely((igb_test_staterr(rx_desc,
7755                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7756                 struct net_device *netdev = rx_ring->netdev;
7757                 if (!(netdev->features & NETIF_F_RXALL)) {
7758                         dev_kfree_skb_any(skb);
7759                         return true;
7760                 }
7761         }
7762
7763         /* if eth_skb_pad returns an error the skb was freed */
7764         if (eth_skb_pad(skb))
7765                 return true;
7766
7767         return false;
7768 }
7769
7770 /**
7771  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7772  *  @rx_ring: rx descriptor ring packet is being transacted on
7773  *  @rx_desc: pointer to the EOP Rx descriptor
7774  *  @skb: pointer to current skb being populated
7775  *
7776  *  This function checks the ring, descriptor, and packet information in
7777  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7778  *  other fields within the skb.
7779  **/
7780 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7781                                    union e1000_adv_rx_desc *rx_desc,
7782                                    struct sk_buff *skb)
7783 {
7784         struct net_device *dev = rx_ring->netdev;
7785
7786         igb_rx_hash(rx_ring, rx_desc, skb);
7787
7788         igb_rx_checksum(rx_ring, rx_desc, skb);
7789
7790         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7791             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7792                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7793
7794         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7795             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7796                 u16 vid;
7797
7798                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7799                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7800                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7801                 else
7802                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7803
7804                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7805         }
7806
7807         skb_record_rx_queue(skb, rx_ring->queue_index);
7808
7809         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7810 }
7811
7812 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7813                                                const unsigned int size)
7814 {
7815         struct igb_rx_buffer *rx_buffer;
7816
7817         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7818         prefetchw(rx_buffer->page);
7819
7820         /* we are reusing so sync this buffer for CPU use */
7821         dma_sync_single_range_for_cpu(rx_ring->dev,
7822                                       rx_buffer->dma,
7823                                       rx_buffer->page_offset,
7824                                       size,
7825                                       DMA_FROM_DEVICE);
7826
7827         rx_buffer->pagecnt_bias--;
7828
7829         return rx_buffer;
7830 }
7831
7832 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7833                               struct igb_rx_buffer *rx_buffer)
7834 {
7835         if (igb_can_reuse_rx_page(rx_buffer)) {
7836                 /* hand second half of page back to the ring */
7837                 igb_reuse_rx_page(rx_ring, rx_buffer);
7838         } else {
7839                 /* We are not reusing the buffer so unmap it and free
7840                  * any references we are holding to it
7841                  */
7842                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7843                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7844                                      IGB_RX_DMA_ATTR);
7845                 __page_frag_cache_drain(rx_buffer->page,
7846                                         rx_buffer->pagecnt_bias);
7847         }
7848
7849         /* clear contents of rx_buffer */
7850         rx_buffer->page = NULL;
7851 }
7852
7853 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7854 {
7855         struct igb_ring *rx_ring = q_vector->rx.ring;
7856         struct sk_buff *skb = rx_ring->skb;
7857         unsigned int total_bytes = 0, total_packets = 0;
7858         u16 cleaned_count = igb_desc_unused(rx_ring);
7859
7860         while (likely(total_packets < budget)) {
7861                 union e1000_adv_rx_desc *rx_desc;
7862                 struct igb_rx_buffer *rx_buffer;
7863                 unsigned int size;
7864
7865                 /* return some buffers to hardware, one at a time is too slow */
7866                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7867                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7868                         cleaned_count = 0;
7869                 }
7870
7871                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7872                 size = le16_to_cpu(rx_desc->wb.upper.length);
7873                 if (!size)
7874                         break;
7875
7876                 /* This memory barrier is needed to keep us from reading
7877                  * any other fields out of the rx_desc until we know the
7878                  * descriptor has been written back
7879                  */
7880                 dma_rmb();
7881
7882                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7883
7884                 /* retrieve a buffer from the ring */
7885                 if (skb)
7886                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7887                 else if (ring_uses_build_skb(rx_ring))
7888                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7889                 else
7890                         skb = igb_construct_skb(rx_ring, rx_buffer,
7891                                                 rx_desc, size);
7892
7893                 /* exit if we failed to retrieve a buffer */
7894                 if (!skb) {
7895                         rx_ring->rx_stats.alloc_failed++;
7896                         rx_buffer->pagecnt_bias++;
7897                         break;
7898                 }
7899
7900                 igb_put_rx_buffer(rx_ring, rx_buffer);
7901                 cleaned_count++;
7902
7903                 /* fetch next buffer in frame if non-eop */
7904                 if (igb_is_non_eop(rx_ring, rx_desc))
7905                         continue;
7906
7907                 /* verify the packet layout is correct */
7908                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7909                         skb = NULL;
7910                         continue;
7911                 }
7912
7913                 /* probably a little skewed due to removing CRC */
7914                 total_bytes += skb->len;
7915
7916                 /* populate checksum, timestamp, VLAN, and protocol */
7917                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7918
7919                 napi_gro_receive(&q_vector->napi, skb);
7920
7921                 /* reset skb pointer */
7922                 skb = NULL;
7923
7924                 /* update budget accounting */
7925                 total_packets++;
7926         }
7927
7928         /* place incomplete frames back on ring for completion */
7929         rx_ring->skb = skb;
7930
7931         u64_stats_update_begin(&rx_ring->rx_syncp);
7932         rx_ring->rx_stats.packets += total_packets;
7933         rx_ring->rx_stats.bytes += total_bytes;
7934         u64_stats_update_end(&rx_ring->rx_syncp);
7935         q_vector->rx.total_packets += total_packets;
7936         q_vector->rx.total_bytes += total_bytes;
7937
7938         if (cleaned_count)
7939                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7940
7941         return total_packets;
7942 }
7943
7944 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7945 {
7946         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7947 }
7948
7949 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7950                                   struct igb_rx_buffer *bi)
7951 {
7952         struct page *page = bi->page;
7953         dma_addr_t dma;
7954
7955         /* since we are recycling buffers we should seldom need to alloc */
7956         if (likely(page))
7957                 return true;
7958
7959         /* alloc new page for storage */
7960         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7961         if (unlikely(!page)) {
7962                 rx_ring->rx_stats.alloc_failed++;
7963                 return false;
7964         }
7965
7966         /* map page for use */
7967         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7968                                  igb_rx_pg_size(rx_ring),
7969                                  DMA_FROM_DEVICE,
7970                                  IGB_RX_DMA_ATTR);
7971
7972         /* if mapping failed free memory back to system since
7973          * there isn't much point in holding memory we can't use
7974          */
7975         if (dma_mapping_error(rx_ring->dev, dma)) {
7976                 __free_pages(page, igb_rx_pg_order(rx_ring));
7977
7978                 rx_ring->rx_stats.alloc_failed++;
7979                 return false;
7980         }
7981
7982         bi->dma = dma;
7983         bi->page = page;
7984         bi->page_offset = igb_rx_offset(rx_ring);
7985         bi->pagecnt_bias = 1;
7986
7987         return true;
7988 }
7989
7990 /**
7991  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7992  *  @adapter: address of board private structure
7993  **/
7994 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7995 {
7996         union e1000_adv_rx_desc *rx_desc;
7997         struct igb_rx_buffer *bi;
7998         u16 i = rx_ring->next_to_use;
7999         u16 bufsz;
8000
8001         /* nothing to do */
8002         if (!cleaned_count)
8003                 return;
8004
8005         rx_desc = IGB_RX_DESC(rx_ring, i);
8006         bi = &rx_ring->rx_buffer_info[i];
8007         i -= rx_ring->count;
8008
8009         bufsz = igb_rx_bufsz(rx_ring);
8010
8011         do {
8012                 if (!igb_alloc_mapped_page(rx_ring, bi))
8013                         break;
8014
8015                 /* sync the buffer for use by the device */
8016                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8017                                                  bi->page_offset, bufsz,
8018                                                  DMA_FROM_DEVICE);
8019
8020                 /* Refresh the desc even if buffer_addrs didn't change
8021                  * because each write-back erases this info.
8022                  */
8023                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8024
8025                 rx_desc++;
8026                 bi++;
8027                 i++;
8028                 if (unlikely(!i)) {
8029                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8030                         bi = rx_ring->rx_buffer_info;
8031                         i -= rx_ring->count;
8032                 }
8033
8034                 /* clear the length for the next_to_use descriptor */
8035                 rx_desc->wb.upper.length = 0;
8036
8037                 cleaned_count--;
8038         } while (cleaned_count);
8039
8040         i += rx_ring->count;
8041
8042         if (rx_ring->next_to_use != i) {
8043                 /* record the next descriptor to use */
8044                 rx_ring->next_to_use = i;
8045
8046                 /* update next to alloc since we have filled the ring */
8047                 rx_ring->next_to_alloc = i;
8048
8049                 /* Force memory writes to complete before letting h/w
8050                  * know there are new descriptors to fetch.  (Only
8051                  * applicable for weak-ordered memory model archs,
8052                  * such as IA-64).
8053                  */
8054                 wmb();
8055                 writel(i, rx_ring->tail);
8056         }
8057 }
8058
8059 /**
8060  * igb_mii_ioctl -
8061  * @netdev:
8062  * @ifreq:
8063  * @cmd:
8064  **/
8065 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8066 {
8067         struct igb_adapter *adapter = netdev_priv(netdev);
8068         struct mii_ioctl_data *data = if_mii(ifr);
8069
8070         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8071                 return -EOPNOTSUPP;
8072
8073         switch (cmd) {
8074         case SIOCGMIIPHY:
8075                 data->phy_id = adapter->hw.phy.addr;
8076                 break;
8077         case SIOCGMIIREG:
8078                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8079                                      &data->val_out))
8080                         return -EIO;
8081                 break;
8082         case SIOCSMIIREG:
8083         default:
8084                 return -EOPNOTSUPP;
8085         }
8086         return 0;
8087 }
8088
8089 /**
8090  * igb_ioctl -
8091  * @netdev:
8092  * @ifreq:
8093  * @cmd:
8094  **/
8095 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8096 {
8097         switch (cmd) {
8098         case SIOCGMIIPHY:
8099         case SIOCGMIIREG:
8100         case SIOCSMIIREG:
8101                 return igb_mii_ioctl(netdev, ifr, cmd);
8102         case SIOCGHWTSTAMP:
8103                 return igb_ptp_get_ts_config(netdev, ifr);
8104         case SIOCSHWTSTAMP:
8105                 return igb_ptp_set_ts_config(netdev, ifr);
8106         default:
8107                 return -EOPNOTSUPP;
8108         }
8109 }
8110
8111 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8112 {
8113         struct igb_adapter *adapter = hw->back;
8114
8115         pci_read_config_word(adapter->pdev, reg, value);
8116 }
8117
8118 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8119 {
8120         struct igb_adapter *adapter = hw->back;
8121
8122         pci_write_config_word(adapter->pdev, reg, *value);
8123 }
8124
8125 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8126 {
8127         struct igb_adapter *adapter = hw->back;
8128
8129         if (pcie_capability_read_word(adapter->pdev, reg, value))
8130                 return -E1000_ERR_CONFIG;
8131
8132         return 0;
8133 }
8134
8135 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8136 {
8137         struct igb_adapter *adapter = hw->back;
8138
8139         if (pcie_capability_write_word(adapter->pdev, reg, *value))
8140                 return -E1000_ERR_CONFIG;
8141
8142         return 0;
8143 }
8144
8145 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8146 {
8147         struct igb_adapter *adapter = netdev_priv(netdev);
8148         struct e1000_hw *hw = &adapter->hw;
8149         u32 ctrl, rctl;
8150         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8151
8152         if (enable) {
8153                 /* enable VLAN tag insert/strip */
8154                 ctrl = rd32(E1000_CTRL);
8155                 ctrl |= E1000_CTRL_VME;
8156                 wr32(E1000_CTRL, ctrl);
8157
8158                 /* Disable CFI check */
8159                 rctl = rd32(E1000_RCTL);
8160                 rctl &= ~E1000_RCTL_CFIEN;
8161                 wr32(E1000_RCTL, rctl);
8162         } else {
8163                 /* disable VLAN tag insert/strip */
8164                 ctrl = rd32(E1000_CTRL);
8165                 ctrl &= ~E1000_CTRL_VME;
8166                 wr32(E1000_CTRL, ctrl);
8167         }
8168
8169         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8170 }
8171
8172 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8173                                __be16 proto, u16 vid)
8174 {
8175         struct igb_adapter *adapter = netdev_priv(netdev);
8176         struct e1000_hw *hw = &adapter->hw;
8177         int pf_id = adapter->vfs_allocated_count;
8178
8179         /* add the filter since PF can receive vlans w/o entry in vlvf */
8180         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8181                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8182
8183         set_bit(vid, adapter->active_vlans);
8184
8185         return 0;
8186 }
8187
8188 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8189                                 __be16 proto, u16 vid)
8190 {
8191         struct igb_adapter *adapter = netdev_priv(netdev);
8192         int pf_id = adapter->vfs_allocated_count;
8193         struct e1000_hw *hw = &adapter->hw;
8194
8195         /* remove VID from filter table */
8196         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8197                 igb_vfta_set(hw, vid, pf_id, false, true);
8198
8199         clear_bit(vid, adapter->active_vlans);
8200
8201         return 0;
8202 }
8203
8204 static void igb_restore_vlan(struct igb_adapter *adapter)
8205 {
8206         u16 vid = 1;
8207
8208         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8209         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8210
8211         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8212                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8213 }
8214
8215 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8216 {
8217         struct pci_dev *pdev = adapter->pdev;
8218         struct e1000_mac_info *mac = &adapter->hw.mac;
8219
8220         mac->autoneg = 0;
8221
8222         /* Make sure dplx is at most 1 bit and lsb of speed is not set
8223          * for the switch() below to work
8224          */
8225         if ((spd & 1) || (dplx & ~1))
8226                 goto err_inval;
8227
8228         /* Fiber NIC's only allow 1000 gbps Full duplex
8229          * and 100Mbps Full duplex for 100baseFx sfp
8230          */
8231         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8232                 switch (spd + dplx) {
8233                 case SPEED_10 + DUPLEX_HALF:
8234                 case SPEED_10 + DUPLEX_FULL:
8235                 case SPEED_100 + DUPLEX_HALF:
8236                         goto err_inval;
8237                 default:
8238                         break;
8239                 }
8240         }
8241
8242         switch (spd + dplx) {
8243         case SPEED_10 + DUPLEX_HALF:
8244                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8245                 break;
8246         case SPEED_10 + DUPLEX_FULL:
8247                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8248                 break;
8249         case SPEED_100 + DUPLEX_HALF:
8250                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8251                 break;
8252         case SPEED_100 + DUPLEX_FULL:
8253                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8254                 break;
8255         case SPEED_1000 + DUPLEX_FULL:
8256                 mac->autoneg = 1;
8257                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8258                 break;
8259         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8260         default:
8261                 goto err_inval;
8262         }
8263
8264         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8265         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8266
8267         return 0;
8268
8269 err_inval:
8270         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8271         return -EINVAL;
8272 }
8273
8274 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8275                           bool runtime)
8276 {
8277         struct net_device *netdev = pci_get_drvdata(pdev);
8278         struct igb_adapter *adapter = netdev_priv(netdev);
8279         struct e1000_hw *hw = &adapter->hw;
8280         u32 ctrl, rctl, status;
8281         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8282 #ifdef CONFIG_PM
8283         int retval = 0;
8284 #endif
8285
8286         rtnl_lock();
8287         netif_device_detach(netdev);
8288
8289         if (netif_running(netdev))
8290                 __igb_close(netdev, true);
8291
8292         igb_ptp_suspend(adapter);
8293
8294         igb_clear_interrupt_scheme(adapter);
8295         rtnl_unlock();
8296
8297 #ifdef CONFIG_PM
8298         retval = pci_save_state(pdev);
8299         if (retval)
8300                 return retval;
8301 #endif
8302
8303         status = rd32(E1000_STATUS);
8304         if (status & E1000_STATUS_LU)
8305                 wufc &= ~E1000_WUFC_LNKC;
8306
8307         if (wufc) {
8308                 igb_setup_rctl(adapter);
8309                 igb_set_rx_mode(netdev);
8310
8311                 /* turn on all-multi mode if wake on multicast is enabled */
8312                 if (wufc & E1000_WUFC_MC) {
8313                         rctl = rd32(E1000_RCTL);
8314                         rctl |= E1000_RCTL_MPE;
8315                         wr32(E1000_RCTL, rctl);
8316                 }
8317
8318                 ctrl = rd32(E1000_CTRL);
8319                 /* advertise wake from D3Cold */
8320                 #define E1000_CTRL_ADVD3WUC 0x00100000
8321                 /* phy power management enable */
8322                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8323                 ctrl |= E1000_CTRL_ADVD3WUC;
8324                 wr32(E1000_CTRL, ctrl);
8325
8326                 /* Allow time for pending master requests to run */
8327                 igb_disable_pcie_master(hw);
8328
8329                 wr32(E1000_WUC, E1000_WUC_PME_EN);
8330                 wr32(E1000_WUFC, wufc);
8331         } else {
8332                 wr32(E1000_WUC, 0);
8333                 wr32(E1000_WUFC, 0);
8334         }
8335
8336         *enable_wake = wufc || adapter->en_mng_pt;
8337         if (!*enable_wake)
8338                 igb_power_down_link(adapter);
8339         else
8340                 igb_power_up_link(adapter);
8341
8342         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8343          * would have already happened in close and is redundant.
8344          */
8345         igb_release_hw_control(adapter);
8346
8347         pci_disable_device(pdev);
8348
8349         return 0;
8350 }
8351
8352 static void igb_deliver_wake_packet(struct net_device *netdev)
8353 {
8354         struct igb_adapter *adapter = netdev_priv(netdev);
8355         struct e1000_hw *hw = &adapter->hw;
8356         struct sk_buff *skb;
8357         u32 wupl;
8358
8359         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8360
8361         /* WUPM stores only the first 128 bytes of the wake packet.
8362          * Read the packet only if we have the whole thing.
8363          */
8364         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8365                 return;
8366
8367         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8368         if (!skb)
8369                 return;
8370
8371         skb_put(skb, wupl);
8372
8373         /* Ensure reads are 32-bit aligned */
8374         wupl = roundup(wupl, 4);
8375
8376         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8377
8378         skb->protocol = eth_type_trans(skb, netdev);
8379         netif_rx(skb);
8380 }
8381
8382 static int __maybe_unused igb_suspend(struct device *dev)
8383 {
8384         int retval;
8385         bool wake;
8386         struct pci_dev *pdev = to_pci_dev(dev);
8387
8388         retval = __igb_shutdown(pdev, &wake, 0);
8389         if (retval)
8390                 return retval;
8391
8392         if (wake) {
8393                 pci_prepare_to_sleep(pdev);
8394         } else {
8395                 pci_wake_from_d3(pdev, false);
8396                 pci_set_power_state(pdev, PCI_D3hot);
8397         }
8398
8399         return 0;
8400 }
8401
8402 static int __maybe_unused igb_resume(struct device *dev)
8403 {
8404         struct pci_dev *pdev = to_pci_dev(dev);
8405         struct net_device *netdev = pci_get_drvdata(pdev);
8406         struct igb_adapter *adapter = netdev_priv(netdev);
8407         struct e1000_hw *hw = &adapter->hw;
8408         u32 err, val;
8409
8410         pci_set_power_state(pdev, PCI_D0);
8411         pci_restore_state(pdev);
8412         pci_save_state(pdev);
8413
8414         if (!pci_device_is_present(pdev))
8415                 return -ENODEV;
8416         err = pci_enable_device_mem(pdev);
8417         if (err) {
8418                 dev_err(&pdev->dev,
8419                         "igb: Cannot enable PCI device from suspend\n");
8420                 return err;
8421         }
8422         pci_set_master(pdev);
8423
8424         pci_enable_wake(pdev, PCI_D3hot, 0);
8425         pci_enable_wake(pdev, PCI_D3cold, 0);
8426
8427         if (igb_init_interrupt_scheme(adapter, true)) {
8428                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8429                 return -ENOMEM;
8430         }
8431
8432         igb_reset(adapter);
8433
8434         /* let the f/w know that the h/w is now under the control of the
8435          * driver.
8436          */
8437         igb_get_hw_control(adapter);
8438
8439         val = rd32(E1000_WUS);
8440         if (val & WAKE_PKT_WUS)
8441                 igb_deliver_wake_packet(netdev);
8442
8443         wr32(E1000_WUS, ~0);
8444
8445         rtnl_lock();
8446         if (!err && netif_running(netdev))
8447                 err = __igb_open(netdev, true);
8448
8449         if (!err)
8450                 netif_device_attach(netdev);
8451         rtnl_unlock();
8452
8453         return err;
8454 }
8455
8456 static int __maybe_unused igb_runtime_idle(struct device *dev)
8457 {
8458         struct pci_dev *pdev = to_pci_dev(dev);
8459         struct net_device *netdev = pci_get_drvdata(pdev);
8460         struct igb_adapter *adapter = netdev_priv(netdev);
8461
8462         if (!igb_has_link(adapter))
8463                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8464
8465         return -EBUSY;
8466 }
8467
8468 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8469 {
8470         struct pci_dev *pdev = to_pci_dev(dev);
8471         int retval;
8472         bool wake;
8473
8474         retval = __igb_shutdown(pdev, &wake, 1);
8475         if (retval)
8476                 return retval;
8477
8478         if (wake) {
8479                 pci_prepare_to_sleep(pdev);
8480         } else {
8481                 pci_wake_from_d3(pdev, false);
8482                 pci_set_power_state(pdev, PCI_D3hot);
8483         }
8484
8485         return 0;
8486 }
8487
8488 static int __maybe_unused igb_runtime_resume(struct device *dev)
8489 {
8490         return igb_resume(dev);
8491 }
8492
8493 static void igb_shutdown(struct pci_dev *pdev)
8494 {
8495         bool wake;
8496
8497         __igb_shutdown(pdev, &wake, 0);
8498
8499         if (system_state == SYSTEM_POWER_OFF) {
8500                 pci_wake_from_d3(pdev, wake);
8501                 pci_set_power_state(pdev, PCI_D3hot);
8502         }
8503 }
8504
8505 #ifdef CONFIG_PCI_IOV
8506 static int igb_sriov_reinit(struct pci_dev *dev)
8507 {
8508         struct net_device *netdev = pci_get_drvdata(dev);
8509         struct igb_adapter *adapter = netdev_priv(netdev);
8510         struct pci_dev *pdev = adapter->pdev;
8511
8512         rtnl_lock();
8513
8514         if (netif_running(netdev))
8515                 igb_close(netdev);
8516         else
8517                 igb_reset(adapter);
8518
8519         igb_clear_interrupt_scheme(adapter);
8520
8521         igb_init_queue_configuration(adapter);
8522
8523         if (igb_init_interrupt_scheme(adapter, true)) {
8524                 rtnl_unlock();
8525                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8526                 return -ENOMEM;
8527         }
8528
8529         if (netif_running(netdev))
8530                 igb_open(netdev);
8531
8532         rtnl_unlock();
8533
8534         return 0;
8535 }
8536
8537 static int igb_pci_disable_sriov(struct pci_dev *dev)
8538 {
8539         int err = igb_disable_sriov(dev);
8540
8541         if (!err)
8542                 err = igb_sriov_reinit(dev);
8543
8544         return err;
8545 }
8546
8547 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8548 {
8549         int err = igb_enable_sriov(dev, num_vfs);
8550
8551         if (err)
8552                 goto out;
8553
8554         err = igb_sriov_reinit(dev);
8555         if (!err)
8556                 return num_vfs;
8557
8558 out:
8559         return err;
8560 }
8561
8562 #endif
8563 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8564 {
8565 #ifdef CONFIG_PCI_IOV
8566         if (num_vfs == 0)
8567                 return igb_pci_disable_sriov(dev);
8568         else
8569                 return igb_pci_enable_sriov(dev, num_vfs);
8570 #endif
8571         return 0;
8572 }
8573
8574 #ifdef CONFIG_NET_POLL_CONTROLLER
8575 /* Polling 'interrupt' - used by things like netconsole to send skbs
8576  * without having to re-enable interrupts. It's not called while
8577  * the interrupt routine is executing.
8578  */
8579 static void igb_netpoll(struct net_device *netdev)
8580 {
8581         struct igb_adapter *adapter = netdev_priv(netdev);
8582         struct e1000_hw *hw = &adapter->hw;
8583         struct igb_q_vector *q_vector;
8584         int i;
8585
8586         for (i = 0; i < adapter->num_q_vectors; i++) {
8587                 q_vector = adapter->q_vector[i];
8588                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8589                         wr32(E1000_EIMC, q_vector->eims_value);
8590                 else
8591                         igb_irq_disable(adapter);
8592                 napi_schedule(&q_vector->napi);
8593         }
8594 }
8595 #endif /* CONFIG_NET_POLL_CONTROLLER */
8596
8597 /**
8598  *  igb_io_error_detected - called when PCI error is detected
8599  *  @pdev: Pointer to PCI device
8600  *  @state: The current pci connection state
8601  *
8602  *  This function is called after a PCI bus error affecting
8603  *  this device has been detected.
8604  **/
8605 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8606                                               pci_channel_state_t state)
8607 {
8608         struct net_device *netdev = pci_get_drvdata(pdev);
8609         struct igb_adapter *adapter = netdev_priv(netdev);
8610
8611         netif_device_detach(netdev);
8612
8613         if (state == pci_channel_io_perm_failure)
8614                 return PCI_ERS_RESULT_DISCONNECT;
8615
8616         if (netif_running(netdev))
8617                 igb_down(adapter);
8618         pci_disable_device(pdev);
8619
8620         /* Request a slot slot reset. */
8621         return PCI_ERS_RESULT_NEED_RESET;
8622 }
8623
8624 /**
8625  *  igb_io_slot_reset - called after the pci bus has been reset.
8626  *  @pdev: Pointer to PCI device
8627  *
8628  *  Restart the card from scratch, as if from a cold-boot. Implementation
8629  *  resembles the first-half of the igb_resume routine.
8630  **/
8631 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8632 {
8633         struct net_device *netdev = pci_get_drvdata(pdev);
8634         struct igb_adapter *adapter = netdev_priv(netdev);
8635         struct e1000_hw *hw = &adapter->hw;
8636         pci_ers_result_t result;
8637         int err;
8638
8639         if (pci_enable_device_mem(pdev)) {
8640                 dev_err(&pdev->dev,
8641                         "Cannot re-enable PCI device after reset.\n");
8642                 result = PCI_ERS_RESULT_DISCONNECT;
8643         } else {
8644                 pci_set_master(pdev);
8645                 pci_restore_state(pdev);
8646                 pci_save_state(pdev);
8647
8648                 pci_enable_wake(pdev, PCI_D3hot, 0);
8649                 pci_enable_wake(pdev, PCI_D3cold, 0);
8650
8651                 /* In case of PCI error, adapter lose its HW address
8652                  * so we should re-assign it here.
8653                  */
8654                 hw->hw_addr = adapter->io_addr;
8655
8656                 igb_reset(adapter);
8657                 wr32(E1000_WUS, ~0);
8658                 result = PCI_ERS_RESULT_RECOVERED;
8659         }
8660
8661         err = pci_cleanup_aer_uncorrect_error_status(pdev);
8662         if (err) {
8663                 dev_err(&pdev->dev,
8664                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8665                         err);
8666                 /* non-fatal, continue */
8667         }
8668
8669         return result;
8670 }
8671
8672 /**
8673  *  igb_io_resume - called when traffic can start flowing again.
8674  *  @pdev: Pointer to PCI device
8675  *
8676  *  This callback is called when the error recovery driver tells us that
8677  *  its OK to resume normal operation. Implementation resembles the
8678  *  second-half of the igb_resume routine.
8679  */
8680 static void igb_io_resume(struct pci_dev *pdev)
8681 {
8682         struct net_device *netdev = pci_get_drvdata(pdev);
8683         struct igb_adapter *adapter = netdev_priv(netdev);
8684
8685         if (netif_running(netdev)) {
8686                 if (igb_up(adapter)) {
8687                         dev_err(&pdev->dev, "igb_up failed after reset\n");
8688                         return;
8689                 }
8690         }
8691
8692         netif_device_attach(netdev);
8693
8694         /* let the f/w know that the h/w is now under the control of the
8695          * driver.
8696          */
8697         igb_get_hw_control(adapter);
8698 }
8699
8700 /**
8701  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8702  *  @adapter: Pointer to adapter structure
8703  *  @index: Index of the RAR entry which need to be synced with MAC table
8704  **/
8705 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8706 {
8707         struct e1000_hw *hw = &adapter->hw;
8708         u32 rar_low, rar_high;
8709         u8 *addr = adapter->mac_table[index].addr;
8710
8711         /* HW expects these to be in network order when they are plugged
8712          * into the registers which are little endian.  In order to guarantee
8713          * that ordering we need to do an leXX_to_cpup here in order to be
8714          * ready for the byteswap that occurs with writel
8715          */
8716         rar_low = le32_to_cpup((__le32 *)(addr));
8717         rar_high = le16_to_cpup((__le16 *)(addr + 4));
8718
8719         /* Indicate to hardware the Address is Valid. */
8720         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8721                 rar_high |= E1000_RAH_AV;
8722
8723                 if (hw->mac.type == e1000_82575)
8724                         rar_high |= E1000_RAH_POOL_1 *
8725                                     adapter->mac_table[index].queue;
8726                 else
8727                         rar_high |= E1000_RAH_POOL_1 <<
8728                                     adapter->mac_table[index].queue;
8729         }
8730
8731         wr32(E1000_RAL(index), rar_low);
8732         wrfl();
8733         wr32(E1000_RAH(index), rar_high);
8734         wrfl();
8735 }
8736
8737 static int igb_set_vf_mac(struct igb_adapter *adapter,
8738                           int vf, unsigned char *mac_addr)
8739 {
8740         struct e1000_hw *hw = &adapter->hw;
8741         /* VF MAC addresses start at end of receive addresses and moves
8742          * towards the first, as a result a collision should not be possible
8743          */
8744         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8745         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8746
8747         ether_addr_copy(vf_mac_addr, mac_addr);
8748         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8749         adapter->mac_table[rar_entry].queue = vf;
8750         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8751         igb_rar_set_index(adapter, rar_entry);
8752
8753         return 0;
8754 }
8755
8756 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8757 {
8758         struct igb_adapter *adapter = netdev_priv(netdev);
8759         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
8760                 return -EINVAL;
8761         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8762         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
8763         dev_info(&adapter->pdev->dev,
8764                  "Reload the VF driver to make this change effective.");
8765         if (test_bit(__IGB_DOWN, &adapter->state)) {
8766                 dev_warn(&adapter->pdev->dev,
8767                          "The VF MAC address has been set, but the PF device is not up.\n");
8768                 dev_warn(&adapter->pdev->dev,
8769                          "Bring the PF device up before attempting to use the VF device.\n");
8770         }
8771         return igb_set_vf_mac(adapter, vf, mac);
8772 }
8773
8774 static int igb_link_mbps(int internal_link_speed)
8775 {
8776         switch (internal_link_speed) {
8777         case SPEED_100:
8778                 return 100;
8779         case SPEED_1000:
8780                 return 1000;
8781         default:
8782                 return 0;
8783         }
8784 }
8785
8786 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8787                                   int link_speed)
8788 {
8789         int rf_dec, rf_int;
8790         u32 bcnrc_val;
8791
8792         if (tx_rate != 0) {
8793                 /* Calculate the rate factor values to set */
8794                 rf_int = link_speed / tx_rate;
8795                 rf_dec = (link_speed - (rf_int * tx_rate));
8796                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8797                          tx_rate;
8798
8799                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8800                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8801                               E1000_RTTBCNRC_RF_INT_MASK);
8802                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8803         } else {
8804                 bcnrc_val = 0;
8805         }
8806
8807         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8808         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8809          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8810          */
8811         wr32(E1000_RTTBCNRM, 0x14);
8812         wr32(E1000_RTTBCNRC, bcnrc_val);
8813 }
8814
8815 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8816 {
8817         int actual_link_speed, i;
8818         bool reset_rate = false;
8819
8820         /* VF TX rate limit was not set or not supported */
8821         if ((adapter->vf_rate_link_speed == 0) ||
8822             (adapter->hw.mac.type != e1000_82576))
8823                 return;
8824
8825         actual_link_speed = igb_link_mbps(adapter->link_speed);
8826         if (actual_link_speed != adapter->vf_rate_link_speed) {
8827                 reset_rate = true;
8828                 adapter->vf_rate_link_speed = 0;
8829                 dev_info(&adapter->pdev->dev,
8830                          "Link speed has been changed. VF Transmit rate is disabled\n");
8831         }
8832
8833         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8834                 if (reset_rate)
8835                         adapter->vf_data[i].tx_rate = 0;
8836
8837                 igb_set_vf_rate_limit(&adapter->hw, i,
8838                                       adapter->vf_data[i].tx_rate,
8839                                       actual_link_speed);
8840         }
8841 }
8842
8843 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8844                              int min_tx_rate, int max_tx_rate)
8845 {
8846         struct igb_adapter *adapter = netdev_priv(netdev);
8847         struct e1000_hw *hw = &adapter->hw;
8848         int actual_link_speed;
8849
8850         if (hw->mac.type != e1000_82576)
8851                 return -EOPNOTSUPP;
8852
8853         if (min_tx_rate)
8854                 return -EINVAL;
8855
8856         actual_link_speed = igb_link_mbps(adapter->link_speed);
8857         if ((vf >= adapter->vfs_allocated_count) ||
8858             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8859             (max_tx_rate < 0) ||
8860             (max_tx_rate > actual_link_speed))
8861                 return -EINVAL;
8862
8863         adapter->vf_rate_link_speed = actual_link_speed;
8864         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8865         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8866
8867         return 0;
8868 }
8869
8870 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8871                                    bool setting)
8872 {
8873         struct igb_adapter *adapter = netdev_priv(netdev);
8874         struct e1000_hw *hw = &adapter->hw;
8875         u32 reg_val, reg_offset;
8876
8877         if (!adapter->vfs_allocated_count)
8878                 return -EOPNOTSUPP;
8879
8880         if (vf >= adapter->vfs_allocated_count)
8881                 return -EINVAL;
8882
8883         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8884         reg_val = rd32(reg_offset);
8885         if (setting)
8886                 reg_val |= (BIT(vf) |
8887                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8888         else
8889                 reg_val &= ~(BIT(vf) |
8890                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8891         wr32(reg_offset, reg_val);
8892
8893         adapter->vf_data[vf].spoofchk_enabled = setting;
8894         return 0;
8895 }
8896
8897 static int igb_ndo_get_vf_config(struct net_device *netdev,
8898                                  int vf, struct ifla_vf_info *ivi)
8899 {
8900         struct igb_adapter *adapter = netdev_priv(netdev);
8901         if (vf >= adapter->vfs_allocated_count)
8902                 return -EINVAL;
8903         ivi->vf = vf;
8904         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8905         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8906         ivi->min_tx_rate = 0;
8907         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8908         ivi->qos = adapter->vf_data[vf].pf_qos;
8909         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8910         return 0;
8911 }
8912
8913 static void igb_vmm_control(struct igb_adapter *adapter)
8914 {
8915         struct e1000_hw *hw = &adapter->hw;
8916         u32 reg;
8917
8918         switch (hw->mac.type) {
8919         case e1000_82575:
8920         case e1000_i210:
8921         case e1000_i211:
8922         case e1000_i354:
8923         default:
8924                 /* replication is not supported for 82575 */
8925                 return;
8926         case e1000_82576:
8927                 /* notify HW that the MAC is adding vlan tags */
8928                 reg = rd32(E1000_DTXCTL);
8929                 reg |= E1000_DTXCTL_VLAN_ADDED;
8930                 wr32(E1000_DTXCTL, reg);
8931                 /* Fall through */
8932         case e1000_82580:
8933                 /* enable replication vlan tag stripping */
8934                 reg = rd32(E1000_RPLOLR);
8935                 reg |= E1000_RPLOLR_STRVLAN;
8936                 wr32(E1000_RPLOLR, reg);
8937                 /* Fall through */
8938         case e1000_i350:
8939                 /* none of the above registers are supported by i350 */
8940                 break;
8941         }
8942
8943         if (adapter->vfs_allocated_count) {
8944                 igb_vmdq_set_loopback_pf(hw, true);
8945                 igb_vmdq_set_replication_pf(hw, true);
8946                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8947                                               adapter->vfs_allocated_count);
8948         } else {
8949                 igb_vmdq_set_loopback_pf(hw, false);
8950                 igb_vmdq_set_replication_pf(hw, false);
8951         }
8952 }
8953
8954 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8955 {
8956         struct e1000_hw *hw = &adapter->hw;
8957         u32 dmac_thr;
8958         u16 hwm;
8959
8960         if (hw->mac.type > e1000_82580) {
8961                 if (adapter->flags & IGB_FLAG_DMAC) {
8962                         u32 reg;
8963
8964                         /* force threshold to 0. */
8965                         wr32(E1000_DMCTXTH, 0);
8966
8967                         /* DMA Coalescing high water mark needs to be greater
8968                          * than the Rx threshold. Set hwm to PBA - max frame
8969                          * size in 16B units, capping it at PBA - 6KB.
8970                          */
8971                         hwm = 64 * (pba - 6);
8972                         reg = rd32(E1000_FCRTC);
8973                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8974                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8975                                 & E1000_FCRTC_RTH_COAL_MASK);
8976                         wr32(E1000_FCRTC, reg);
8977
8978                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8979                          * frame size, capping it at PBA - 10KB.
8980                          */
8981                         dmac_thr = pba - 10;
8982                         reg = rd32(E1000_DMACR);
8983                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8984                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8985                                 & E1000_DMACR_DMACTHR_MASK);
8986
8987                         /* transition to L0x or L1 if available..*/
8988                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8989
8990                         /* watchdog timer= +-1000 usec in 32usec intervals */
8991                         reg |= (1000 >> 5);
8992
8993                         /* Disable BMC-to-OS Watchdog Enable */
8994                         if (hw->mac.type != e1000_i354)
8995                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8996
8997                         wr32(E1000_DMACR, reg);
8998
8999                         /* no lower threshold to disable
9000                          * coalescing(smart fifb)-UTRESH=0
9001                          */
9002                         wr32(E1000_DMCRTRH, 0);
9003
9004                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9005
9006                         wr32(E1000_DMCTLX, reg);
9007
9008                         /* free space in tx packet buffer to wake from
9009                          * DMA coal
9010                          */
9011                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9012                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9013
9014                         /* make low power state decision controlled
9015                          * by DMA coal
9016                          */
9017                         reg = rd32(E1000_PCIEMISC);
9018                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9019                         wr32(E1000_PCIEMISC, reg);
9020                 } /* endif adapter->dmac is not disabled */
9021         } else if (hw->mac.type == e1000_82580) {
9022                 u32 reg = rd32(E1000_PCIEMISC);
9023
9024                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9025                 wr32(E1000_DMACR, 0);
9026         }
9027 }
9028
9029 /**
9030  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9031  *  @hw: pointer to hardware structure
9032  *  @byte_offset: byte offset to read
9033  *  @dev_addr: device address
9034  *  @data: value read
9035  *
9036  *  Performs byte read operation over I2C interface at
9037  *  a specified device address.
9038  **/
9039 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9040                       u8 dev_addr, u8 *data)
9041 {
9042         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9043         struct i2c_client *this_client = adapter->i2c_client;
9044         s32 status;
9045         u16 swfw_mask = 0;
9046
9047         if (!this_client)
9048                 return E1000_ERR_I2C;
9049
9050         swfw_mask = E1000_SWFW_PHY0_SM;
9051
9052         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9053                 return E1000_ERR_SWFW_SYNC;
9054
9055         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9056         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9057
9058         if (status < 0)
9059                 return E1000_ERR_I2C;
9060         else {
9061                 *data = status;
9062                 return 0;
9063         }
9064 }
9065
9066 /**
9067  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9068  *  @hw: pointer to hardware structure
9069  *  @byte_offset: byte offset to write
9070  *  @dev_addr: device address
9071  *  @data: value to write
9072  *
9073  *  Performs byte write operation over I2C interface at
9074  *  a specified device address.
9075  **/
9076 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9077                        u8 dev_addr, u8 data)
9078 {
9079         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9080         struct i2c_client *this_client = adapter->i2c_client;
9081         s32 status;
9082         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9083
9084         if (!this_client)
9085                 return E1000_ERR_I2C;
9086
9087         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9088                 return E1000_ERR_SWFW_SYNC;
9089         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9090         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9091
9092         if (status)
9093                 return E1000_ERR_I2C;
9094         else
9095                 return 0;
9096
9097 }
9098
9099 int igb_reinit_queues(struct igb_adapter *adapter)
9100 {
9101         struct net_device *netdev = adapter->netdev;
9102         struct pci_dev *pdev = adapter->pdev;
9103         int err = 0;
9104
9105         if (netif_running(netdev))
9106                 igb_close(netdev);
9107
9108         igb_reset_interrupt_capability(adapter);
9109
9110         if (igb_init_interrupt_scheme(adapter, true)) {
9111                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9112                 return -ENOMEM;
9113         }
9114
9115         if (netif_running(netdev))
9116                 err = igb_open(netdev);
9117
9118         return err;
9119 }
9120
9121 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9122 {
9123         struct igb_nfc_filter *rule;
9124
9125         spin_lock(&adapter->nfc_lock);
9126
9127         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9128                 igb_erase_filter(adapter, rule);
9129
9130         spin_unlock(&adapter->nfc_lock);
9131 }
9132
9133 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9134 {
9135         struct igb_nfc_filter *rule;
9136
9137         spin_lock(&adapter->nfc_lock);
9138
9139         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9140                 igb_add_filter(adapter, rule);
9141
9142         spin_unlock(&adapter->nfc_lock);
9143 }
9144 /* igb_main.c */