Merge tag 'asoc-fix-v4.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broon...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141                                           struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175                                    bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177                                  struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200                         igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208         .notifier_call  = igb_notify_dca,
209         .next           = NULL,
210         .priority       = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224                      pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229         .error_detected = igb_io_error_detected,
230         .slot_reset = igb_io_slot_reset,
231         .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237         .name     = igb_driver_name,
238         .id_table = igb_pci_tbl,
239         .probe    = igb_probe,
240         .remove   = igb_remove,
241 #ifdef CONFIG_PM
242         .driver.pm = &igb_pm_ops,
243 #endif
244         .shutdown = igb_shutdown,
245         .sriov_configure = igb_pci_sriov_configure,
246         .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260         u32 ofs;
261         char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266         /* General Registers */
267         {E1000_CTRL, "CTRL"},
268         {E1000_STATUS, "STATUS"},
269         {E1000_CTRL_EXT, "CTRL_EXT"},
270
271         /* Interrupt Registers */
272         {E1000_ICR, "ICR"},
273
274         /* RX Registers */
275         {E1000_RCTL, "RCTL"},
276         {E1000_RDLEN(0), "RDLEN"},
277         {E1000_RDH(0), "RDH"},
278         {E1000_RDT(0), "RDT"},
279         {E1000_RXDCTL(0), "RXDCTL"},
280         {E1000_RDBAL(0), "RDBAL"},
281         {E1000_RDBAH(0), "RDBAH"},
282
283         /* TX Registers */
284         {E1000_TCTL, "TCTL"},
285         {E1000_TDBAL(0), "TDBAL"},
286         {E1000_TDBAH(0), "TDBAH"},
287         {E1000_TDLEN(0), "TDLEN"},
288         {E1000_TDH(0), "TDH"},
289         {E1000_TDT(0), "TDT"},
290         {E1000_TXDCTL(0), "TXDCTL"},
291         {E1000_TDFH, "TDFH"},
292         {E1000_TDFT, "TDFT"},
293         {E1000_TDFHS, "TDFHS"},
294         {E1000_TDFPC, "TDFPC"},
295
296         /* List Terminator */
297         {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303         int n = 0;
304         char rname[16];
305         u32 regs[8];
306
307         switch (reginfo->ofs) {
308         case E1000_RDLEN(0):
309                 for (n = 0; n < 4; n++)
310                         regs[n] = rd32(E1000_RDLEN(n));
311                 break;
312         case E1000_RDH(0):
313                 for (n = 0; n < 4; n++)
314                         regs[n] = rd32(E1000_RDH(n));
315                 break;
316         case E1000_RDT(0):
317                 for (n = 0; n < 4; n++)
318                         regs[n] = rd32(E1000_RDT(n));
319                 break;
320         case E1000_RXDCTL(0):
321                 for (n = 0; n < 4; n++)
322                         regs[n] = rd32(E1000_RXDCTL(n));
323                 break;
324         case E1000_RDBAL(0):
325                 for (n = 0; n < 4; n++)
326                         regs[n] = rd32(E1000_RDBAL(n));
327                 break;
328         case E1000_RDBAH(0):
329                 for (n = 0; n < 4; n++)
330                         regs[n] = rd32(E1000_RDBAH(n));
331                 break;
332         case E1000_TDBAL(0):
333                 for (n = 0; n < 4; n++)
334                         regs[n] = rd32(E1000_RDBAL(n));
335                 break;
336         case E1000_TDBAH(0):
337                 for (n = 0; n < 4; n++)
338                         regs[n] = rd32(E1000_TDBAH(n));
339                 break;
340         case E1000_TDLEN(0):
341                 for (n = 0; n < 4; n++)
342                         regs[n] = rd32(E1000_TDLEN(n));
343                 break;
344         case E1000_TDH(0):
345                 for (n = 0; n < 4; n++)
346                         regs[n] = rd32(E1000_TDH(n));
347                 break;
348         case E1000_TDT(0):
349                 for (n = 0; n < 4; n++)
350                         regs[n] = rd32(E1000_TDT(n));
351                 break;
352         case E1000_TXDCTL(0):
353                 for (n = 0; n < 4; n++)
354                         regs[n] = rd32(E1000_TXDCTL(n));
355                 break;
356         default:
357                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358                 return;
359         }
360
361         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363                 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369         struct net_device *netdev = adapter->netdev;
370         struct e1000_hw *hw = &adapter->hw;
371         struct igb_reg_info *reginfo;
372         struct igb_ring *tx_ring;
373         union e1000_adv_tx_desc *tx_desc;
374         struct my_u0 { u64 a; u64 b; } *u0;
375         struct igb_ring *rx_ring;
376         union e1000_adv_rx_desc *rx_desc;
377         u32 staterr;
378         u16 i, n;
379
380         if (!netif_msg_hw(adapter))
381                 return;
382
383         /* Print netdevice Info */
384         if (netdev) {
385                 dev_info(&adapter->pdev->dev, "Net device Info\n");
386                 pr_info("Device Name     state            trans_start      last_rx\n");
387                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
389         }
390
391         /* Print Registers */
392         dev_info(&adapter->pdev->dev, "Register Dump\n");
393         pr_info(" Register Name   Value\n");
394         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395              reginfo->name; reginfo++) {
396                 igb_regdump(hw, reginfo);
397         }
398
399         /* Print TX Ring Summary */
400         if (!netdev || !netif_running(netdev))
401                 goto exit;
402
403         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405         for (n = 0; n < adapter->num_tx_queues; n++) {
406                 struct igb_tx_buffer *buffer_info;
407                 tx_ring = adapter->tx_ring[n];
408                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
411                         (u64)dma_unmap_addr(buffer_info, dma),
412                         dma_unmap_len(buffer_info, len),
413                         buffer_info->next_to_watch,
414                         (u64)buffer_info->time_stamp);
415         }
416
417         /* Print TX Rings */
418         if (!netif_msg_tx_done(adapter))
419                 goto rx_ring_summary;
420
421         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423         /* Transmit Descriptor Formats
424          *
425          * Advanced Transmit Descriptor
426          *   +--------------------------------------------------------------+
427          * 0 |         Buffer Address [63:0]                                |
428          *   +--------------------------------------------------------------+
429          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
430          *   +--------------------------------------------------------------+
431          *   63      46 45    40 39 38 36 35 32 31   24             15       0
432          */
433
434         for (n = 0; n < adapter->num_tx_queues; n++) {
435                 tx_ring = adapter->tx_ring[n];
436                 pr_info("------------------------------------\n");
437                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438                 pr_info("------------------------------------\n");
439                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
440
441                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442                         const char *next_desc;
443                         struct igb_tx_buffer *buffer_info;
444                         tx_desc = IGB_TX_DESC(tx_ring, i);
445                         buffer_info = &tx_ring->tx_buffer_info[i];
446                         u0 = (struct my_u0 *)tx_desc;
447                         if (i == tx_ring->next_to_use &&
448                             i == tx_ring->next_to_clean)
449                                 next_desc = " NTC/U";
450                         else if (i == tx_ring->next_to_use)
451                                 next_desc = " NTU";
452                         else if (i == tx_ring->next_to_clean)
453                                 next_desc = " NTC";
454                         else
455                                 next_desc = "";
456
457                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
458                                 i, le64_to_cpu(u0->a),
459                                 le64_to_cpu(u0->b),
460                                 (u64)dma_unmap_addr(buffer_info, dma),
461                                 dma_unmap_len(buffer_info, len),
462                                 buffer_info->next_to_watch,
463                                 (u64)buffer_info->time_stamp,
464                                 buffer_info->skb, next_desc);
465
466                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
467                                 print_hex_dump(KERN_INFO, "",
468                                         DUMP_PREFIX_ADDRESS,
469                                         16, 1, buffer_info->skb->data,
470                                         dma_unmap_len(buffer_info, len),
471                                         true);
472                 }
473         }
474
475         /* Print RX Rings Summary */
476 rx_ring_summary:
477         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478         pr_info("Queue [NTU] [NTC]\n");
479         for (n = 0; n < adapter->num_rx_queues; n++) {
480                 rx_ring = adapter->rx_ring[n];
481                 pr_info(" %5d %5X %5X\n",
482                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
483         }
484
485         /* Print RX Rings */
486         if (!netif_msg_rx_status(adapter))
487                 goto exit;
488
489         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491         /* Advanced Receive Descriptor (Read) Format
492          *    63                                           1        0
493          *    +-----------------------------------------------------+
494          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
495          *    +----------------------------------------------+------+
496          *  8 |       Header Buffer Address [63:1]           |  DD  |
497          *    +-----------------------------------------------------+
498          *
499          *
500          * Advanced Receive Descriptor (Write-Back) Format
501          *
502          *   63       48 47    32 31  30      21 20 17 16   4 3     0
503          *   +------------------------------------------------------+
504          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
505          *   | Checksum   Ident  |   |           |    | Type | Type |
506          *   +------------------------------------------------------+
507          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508          *   +------------------------------------------------------+
509          *   63       48 47    32 31            20 19               0
510          */
511
512         for (n = 0; n < adapter->num_rx_queues; n++) {
513                 rx_ring = adapter->rx_ring[n];
514                 pr_info("------------------------------------\n");
515                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516                 pr_info("------------------------------------\n");
517                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
518                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520                 for (i = 0; i < rx_ring->count; i++) {
521                         const char *next_desc;
522                         struct igb_rx_buffer *buffer_info;
523                         buffer_info = &rx_ring->rx_buffer_info[i];
524                         rx_desc = IGB_RX_DESC(rx_ring, i);
525                         u0 = (struct my_u0 *)rx_desc;
526                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528                         if (i == rx_ring->next_to_use)
529                                 next_desc = " NTU";
530                         else if (i == rx_ring->next_to_clean)
531                                 next_desc = " NTC";
532                         else
533                                 next_desc = "";
534
535                         if (staterr & E1000_RXD_STAT_DD) {
536                                 /* Descriptor Done */
537                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
538                                         "RWB", i,
539                                         le64_to_cpu(u0->a),
540                                         le64_to_cpu(u0->b),
541                                         next_desc);
542                         } else {
543                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
544                                         "R  ", i,
545                                         le64_to_cpu(u0->a),
546                                         le64_to_cpu(u0->b),
547                                         (u64)buffer_info->dma,
548                                         next_desc);
549
550                                 if (netif_msg_pktdata(adapter) &&
551                                     buffer_info->dma && buffer_info->page) {
552                                         print_hex_dump(KERN_INFO, "",
553                                           DUMP_PREFIX_ADDRESS,
554                                           16, 1,
555                                           page_address(buffer_info->page) +
556                                                       buffer_info->page_offset,
557                                           IGB_RX_BUFSZ, true);
558                                 }
559                         }
560                 }
561         }
562
563 exit:
564         return;
565 }
566
567 /**
568  *  igb_get_i2c_data - Reads the I2C SDA data bit
569  *  @hw: pointer to hardware structure
570  *  @i2cctl: Current value of I2CCTL register
571  *
572  *  Returns the I2C data bit value
573  **/
574 static int igb_get_i2c_data(void *data)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582
583 /**
584  *  igb_set_i2c_data - Sets the I2C data bit
585  *  @data: pointer to hardware structure
586  *  @state: I2C data value (0 or 1) to set
587  *
588  *  Sets the I2C data bit
589  **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592         struct igb_adapter *adapter = (struct igb_adapter *)data;
593         struct e1000_hw *hw = &adapter->hw;
594         s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596         if (state)
597                 i2cctl |= E1000_I2C_DATA_OUT;
598         else
599                 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601         i2cctl &= ~E1000_I2C_DATA_OE_N;
602         i2cctl |= E1000_I2C_CLK_OE_N;
603         wr32(E1000_I2CPARAMS, i2cctl);
604         wrfl();
605
606 }
607
608 /**
609  *  igb_set_i2c_clk - Sets the I2C SCL clock
610  *  @data: pointer to hardware structure
611  *  @state: state to set clock
612  *
613  *  Sets the I2C clock line to state
614  **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617         struct igb_adapter *adapter = (struct igb_adapter *)data;
618         struct e1000_hw *hw = &adapter->hw;
619         s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621         if (state) {
622                 i2cctl |= E1000_I2C_CLK_OUT;
623                 i2cctl &= ~E1000_I2C_CLK_OE_N;
624         } else {
625                 i2cctl &= ~E1000_I2C_CLK_OUT;
626                 i2cctl &= ~E1000_I2C_CLK_OE_N;
627         }
628         wr32(E1000_I2CPARAMS, i2cctl);
629         wrfl();
630 }
631
632 /**
633  *  igb_get_i2c_clk - Gets the I2C SCL clock state
634  *  @data: pointer to hardware structure
635  *
636  *  Gets the I2C clock state
637  **/
638 static int igb_get_i2c_clk(void *data)
639 {
640         struct igb_adapter *adapter = (struct igb_adapter *)data;
641         struct e1000_hw *hw = &adapter->hw;
642         s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644         return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648         .setsda         = igb_set_i2c_data,
649         .setscl         = igb_set_i2c_clk,
650         .getsda         = igb_get_i2c_data,
651         .getscl         = igb_get_i2c_clk,
652         .udelay         = 5,
653         .timeout        = 20,
654 };
655
656 /**
657  *  igb_get_hw_dev - return device
658  *  @hw: pointer to hardware structure
659  *
660  *  used by hardware layer to print debugging information
661  **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664         struct igb_adapter *adapter = hw->back;
665         return adapter->netdev;
666 }
667
668 /**
669  *  igb_init_module - Driver Registration Routine
670  *
671  *  igb_init_module is the first routine called when the driver is
672  *  loaded. All it does is register with the PCI subsystem.
673  **/
674 static int __init igb_init_module(void)
675 {
676         int ret;
677
678         pr_info("%s - version %s\n",
679                igb_driver_string, igb_driver_version);
680         pr_info("%s\n", igb_copyright);
681
682 #ifdef CONFIG_IGB_DCA
683         dca_register_notify(&dca_notifier);
684 #endif
685         ret = pci_register_driver(&igb_driver);
686         return ret;
687 }
688
689 module_init(igb_init_module);
690
691 /**
692  *  igb_exit_module - Driver Exit Cleanup Routine
693  *
694  *  igb_exit_module is called just before the driver is removed
695  *  from memory.
696  **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700         dca_unregister_notify(&dca_notifier);
701 #endif
702         pci_unregister_driver(&igb_driver);
703 }
704
705 module_exit(igb_exit_module);
706
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709  *  igb_cache_ring_register - Descriptor ring to register mapping
710  *  @adapter: board private structure to initialize
711  *
712  *  Once we know the feature-set enabled for the device, we'll cache
713  *  the register offset the descriptor ring is assigned to.
714  **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717         int i = 0, j = 0;
718         u32 rbase_offset = adapter->vfs_allocated_count;
719
720         switch (adapter->hw.mac.type) {
721         case e1000_82576:
722                 /* The queues are allocated for virtualization such that VF 0
723                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724                  * In order to avoid collision we start at the first free queue
725                  * and continue consuming queues in the same sequence
726                  */
727                 if (adapter->vfs_allocated_count) {
728                         for (; i < adapter->rss_queues; i++)
729                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
730                                                                Q_IDX_82576(i);
731                 }
732                 /* Fall through */
733         case e1000_82575:
734         case e1000_82580:
735         case e1000_i350:
736         case e1000_i354:
737         case e1000_i210:
738         case e1000_i211:
739                 /* Fall through */
740         default:
741                 for (; i < adapter->num_rx_queues; i++)
742                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743                 for (; j < adapter->num_tx_queues; j++)
744                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745                 break;
746         }
747 }
748
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753         u32 value = 0;
754
755         if (E1000_REMOVED(hw_addr))
756                 return ~value;
757
758         value = readl(&hw_addr[reg]);
759
760         /* reads should not return all F's */
761         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762                 struct net_device *netdev = igb->netdev;
763                 hw->hw_addr = NULL;
764                 netif_device_detach(netdev);
765                 netdev_err(netdev, "PCIe link lost, device now detached\n");
766         }
767
768         return value;
769 }
770
771 /**
772  *  igb_write_ivar - configure ivar for given MSI-X vector
773  *  @hw: pointer to the HW structure
774  *  @msix_vector: vector number we are allocating to a given ring
775  *  @index: row index of IVAR register to write within IVAR table
776  *  @offset: column offset of in IVAR, should be multiple of 8
777  *
778  *  This function is intended to handle the writing of the IVAR register
779  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
780  *  each containing an cause allocation for an Rx and Tx ring, and a
781  *  variable number of rows depending on the number of queues supported.
782  **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784                            int index, int offset)
785 {
786         u32 ivar = array_rd32(E1000_IVAR0, index);
787
788         /* clear any bits that are currently set */
789         ivar &= ~((u32)0xFF << offset);
790
791         /* write vector and valid bit */
792         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793
794         array_wr32(E1000_IVAR0, index, ivar);
795 }
796
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800         struct igb_adapter *adapter = q_vector->adapter;
801         struct e1000_hw *hw = &adapter->hw;
802         int rx_queue = IGB_N0_QUEUE;
803         int tx_queue = IGB_N0_QUEUE;
804         u32 msixbm = 0;
805
806         if (q_vector->rx.ring)
807                 rx_queue = q_vector->rx.ring->reg_idx;
808         if (q_vector->tx.ring)
809                 tx_queue = q_vector->tx.ring->reg_idx;
810
811         switch (hw->mac.type) {
812         case e1000_82575:
813                 /* The 82575 assigns vectors using a bitmask, which matches the
814                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
815                  * or more queues to a vector, we write the appropriate bits
816                  * into the MSIXBM register for that vector.
817                  */
818                 if (rx_queue > IGB_N0_QUEUE)
819                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820                 if (tx_queue > IGB_N0_QUEUE)
821                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823                         msixbm |= E1000_EIMS_OTHER;
824                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825                 q_vector->eims_value = msixbm;
826                 break;
827         case e1000_82576:
828                 /* 82576 uses a table that essentially consists of 2 columns
829                  * with 8 rows.  The ordering is column-major so we use the
830                  * lower 3 bits as the row index, and the 4th bit as the
831                  * column offset.
832                  */
833                 if (rx_queue > IGB_N0_QUEUE)
834                         igb_write_ivar(hw, msix_vector,
835                                        rx_queue & 0x7,
836                                        (rx_queue & 0x8) << 1);
837                 if (tx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        tx_queue & 0x7,
840                                        ((tx_queue & 0x8) << 1) + 8);
841                 q_vector->eims_value = BIT(msix_vector);
842                 break;
843         case e1000_82580:
844         case e1000_i350:
845         case e1000_i354:
846         case e1000_i210:
847         case e1000_i211:
848                 /* On 82580 and newer adapters the scheme is similar to 82576
849                  * however instead of ordering column-major we have things
850                  * ordered row-major.  So we traverse the table by using
851                  * bit 0 as the column offset, and the remaining bits as the
852                  * row index.
853                  */
854                 if (rx_queue > IGB_N0_QUEUE)
855                         igb_write_ivar(hw, msix_vector,
856                                        rx_queue >> 1,
857                                        (rx_queue & 0x1) << 4);
858                 if (tx_queue > IGB_N0_QUEUE)
859                         igb_write_ivar(hw, msix_vector,
860                                        tx_queue >> 1,
861                                        ((tx_queue & 0x1) << 4) + 8);
862                 q_vector->eims_value = BIT(msix_vector);
863                 break;
864         default:
865                 BUG();
866                 break;
867         }
868
869         /* add q_vector eims value to global eims_enable_mask */
870         adapter->eims_enable_mask |= q_vector->eims_value;
871
872         /* configure q_vector to set itr on first interrupt */
873         q_vector->set_itr = 1;
874 }
875
876 /**
877  *  igb_configure_msix - Configure MSI-X hardware
878  *  @adapter: board private structure to initialize
879  *
880  *  igb_configure_msix sets up the hardware to properly
881  *  generate MSI-X interrupts.
882  **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885         u32 tmp;
886         int i, vector = 0;
887         struct e1000_hw *hw = &adapter->hw;
888
889         adapter->eims_enable_mask = 0;
890
891         /* set vector for other causes, i.e. link changes */
892         switch (hw->mac.type) {
893         case e1000_82575:
894                 tmp = rd32(E1000_CTRL_EXT);
895                 /* enable MSI-X PBA support*/
896                 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898                 /* Auto-Mask interrupts upon ICR read. */
899                 tmp |= E1000_CTRL_EXT_EIAME;
900                 tmp |= E1000_CTRL_EXT_IRCA;
901
902                 wr32(E1000_CTRL_EXT, tmp);
903
904                 /* enable msix_other interrupt */
905                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906                 adapter->eims_other = E1000_EIMS_OTHER;
907
908                 break;
909
910         case e1000_82576:
911         case e1000_82580:
912         case e1000_i350:
913         case e1000_i354:
914         case e1000_i210:
915         case e1000_i211:
916                 /* Turn on MSI-X capability first, or our settings
917                  * won't stick.  And it will take days to debug.
918                  */
919                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
921                      E1000_GPIE_NSICR);
922
923                 /* enable msix_other interrupt */
924                 adapter->eims_other = BIT(vector);
925                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
926
927                 wr32(E1000_IVAR_MISC, tmp);
928                 break;
929         default:
930                 /* do nothing, since nothing else supports MSI-X */
931                 break;
932         } /* switch (hw->mac.type) */
933
934         adapter->eims_enable_mask |= adapter->eims_other;
935
936         for (i = 0; i < adapter->num_q_vectors; i++)
937                 igb_assign_vector(adapter->q_vector[i], vector++);
938
939         wrfl();
940 }
941
942 /**
943  *  igb_request_msix - Initialize MSI-X interrupts
944  *  @adapter: board private structure to initialize
945  *
946  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
947  *  kernel.
948  **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951         struct net_device *netdev = adapter->netdev;
952         int i, err = 0, vector = 0, free_vector = 0;
953
954         err = request_irq(adapter->msix_entries[vector].vector,
955                           igb_msix_other, 0, netdev->name, adapter);
956         if (err)
957                 goto err_out;
958
959         for (i = 0; i < adapter->num_q_vectors; i++) {
960                 struct igb_q_vector *q_vector = adapter->q_vector[i];
961
962                 vector++;
963
964                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965
966                 if (q_vector->rx.ring && q_vector->tx.ring)
967                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968                                 q_vector->rx.ring->queue_index);
969                 else if (q_vector->tx.ring)
970                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971                                 q_vector->tx.ring->queue_index);
972                 else if (q_vector->rx.ring)
973                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974                                 q_vector->rx.ring->queue_index);
975                 else
976                         sprintf(q_vector->name, "%s-unused", netdev->name);
977
978                 err = request_irq(adapter->msix_entries[vector].vector,
979                                   igb_msix_ring, 0, q_vector->name,
980                                   q_vector);
981                 if (err)
982                         goto err_free;
983         }
984
985         igb_configure_msix(adapter);
986         return 0;
987
988 err_free:
989         /* free already assigned IRQs */
990         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991
992         vector--;
993         for (i = 0; i < vector; i++) {
994                 free_irq(adapter->msix_entries[free_vector++].vector,
995                          adapter->q_vector[i]);
996         }
997 err_out:
998         return err;
999 }
1000
1001 /**
1002  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1003  *  @adapter: board private structure to initialize
1004  *  @v_idx: Index of vector to be freed
1005  *
1006  *  This function frees the memory allocated to the q_vector.
1007  **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011
1012         adapter->q_vector[v_idx] = NULL;
1013
1014         /* igb_get_stats64() might access the rings on this vector,
1015          * we must wait a grace period before freeing it.
1016          */
1017         if (q_vector)
1018                 kfree_rcu(q_vector, rcu);
1019 }
1020
1021 /**
1022  *  igb_reset_q_vector - Reset config for interrupt vector
1023  *  @adapter: board private structure to initialize
1024  *  @v_idx: Index of vector to be reset
1025  *
1026  *  If NAPI is enabled it will delete any references to the
1027  *  NAPI struct. This is preparation for igb_free_q_vector.
1028  **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032
1033         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1034          * allocated. So, q_vector is NULL so we should stop here.
1035          */
1036         if (!q_vector)
1037                 return;
1038
1039         if (q_vector->tx.ring)
1040                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041
1042         if (q_vector->rx.ring)
1043                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044
1045         netif_napi_del(&q_vector->napi);
1046
1047 }
1048
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051         int v_idx = adapter->num_q_vectors;
1052
1053         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054                 pci_disable_msix(adapter->pdev);
1055         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056                 pci_disable_msi(adapter->pdev);
1057
1058         while (v_idx--)
1059                 igb_reset_q_vector(adapter, v_idx);
1060 }
1061
1062 /**
1063  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1064  *  @adapter: board private structure to initialize
1065  *
1066  *  This function frees the memory allocated to the q_vectors.  In addition if
1067  *  NAPI is enabled it will delete any references to the NAPI struct prior
1068  *  to freeing the q_vector.
1069  **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072         int v_idx = adapter->num_q_vectors;
1073
1074         adapter->num_tx_queues = 0;
1075         adapter->num_rx_queues = 0;
1076         adapter->num_q_vectors = 0;
1077
1078         while (v_idx--) {
1079                 igb_reset_q_vector(adapter, v_idx);
1080                 igb_free_q_vector(adapter, v_idx);
1081         }
1082 }
1083
1084 /**
1085  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086  *  @adapter: board private structure to initialize
1087  *
1088  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1089  *  MSI-X interrupts allocated.
1090  */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093         igb_free_q_vectors(adapter);
1094         igb_reset_interrupt_capability(adapter);
1095 }
1096
1097 /**
1098  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1099  *  @adapter: board private structure to initialize
1100  *  @msix: boolean value of MSIX capability
1101  *
1102  *  Attempt to configure interrupts using the best available
1103  *  capabilities of the hardware and kernel.
1104  **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107         int err;
1108         int numvecs, i;
1109
1110         if (!msix)
1111                 goto msi_only;
1112         adapter->flags |= IGB_FLAG_HAS_MSIX;
1113
1114         /* Number of supported queues. */
1115         adapter->num_rx_queues = adapter->rss_queues;
1116         if (adapter->vfs_allocated_count)
1117                 adapter->num_tx_queues = 1;
1118         else
1119                 adapter->num_tx_queues = adapter->rss_queues;
1120
1121         /* start with one vector for every Rx queue */
1122         numvecs = adapter->num_rx_queues;
1123
1124         /* if Tx handler is separate add 1 for every Tx queue */
1125         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126                 numvecs += adapter->num_tx_queues;
1127
1128         /* store the number of vectors reserved for queues */
1129         adapter->num_q_vectors = numvecs;
1130
1131         /* add 1 vector for link status interrupts */
1132         numvecs++;
1133         for (i = 0; i < numvecs; i++)
1134                 adapter->msix_entries[i].entry = i;
1135
1136         err = pci_enable_msix_range(adapter->pdev,
1137                                     adapter->msix_entries,
1138                                     numvecs,
1139                                     numvecs);
1140         if (err > 0)
1141                 return;
1142
1143         igb_reset_interrupt_capability(adapter);
1144
1145         /* If we can't do MSI-X, try MSI */
1146 msi_only:
1147         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149         /* disable SR-IOV for non MSI-X configurations */
1150         if (adapter->vf_data) {
1151                 struct e1000_hw *hw = &adapter->hw;
1152                 /* disable iov and allow time for transactions to clear */
1153                 pci_disable_sriov(adapter->pdev);
1154                 msleep(500);
1155
1156                 kfree(adapter->vf_data);
1157                 adapter->vf_data = NULL;
1158                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159                 wrfl();
1160                 msleep(100);
1161                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162         }
1163 #endif
1164         adapter->vfs_allocated_count = 0;
1165         adapter->rss_queues = 1;
1166         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167         adapter->num_rx_queues = 1;
1168         adapter->num_tx_queues = 1;
1169         adapter->num_q_vectors = 1;
1170         if (!pci_enable_msi(adapter->pdev))
1171                 adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173
1174 static void igb_add_ring(struct igb_ring *ring,
1175                          struct igb_ring_container *head)
1176 {
1177         head->ring = ring;
1178         head->count++;
1179 }
1180
1181 /**
1182  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183  *  @adapter: board private structure to initialize
1184  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1185  *  @v_idx: index of vector in adapter struct
1186  *  @txr_count: total number of Tx rings to allocate
1187  *  @txr_idx: index of first Tx ring to allocate
1188  *  @rxr_count: total number of Rx rings to allocate
1189  *  @rxr_idx: index of first Rx ring to allocate
1190  *
1191  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1192  **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194                               int v_count, int v_idx,
1195                               int txr_count, int txr_idx,
1196                               int rxr_count, int rxr_idx)
1197 {
1198         struct igb_q_vector *q_vector;
1199         struct igb_ring *ring;
1200         int ring_count, size;
1201
1202         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203         if (txr_count > 1 || rxr_count > 1)
1204                 return -ENOMEM;
1205
1206         ring_count = txr_count + rxr_count;
1207         size = sizeof(struct igb_q_vector) +
1208                (sizeof(struct igb_ring) * ring_count);
1209
1210         /* allocate q_vector and rings */
1211         q_vector = adapter->q_vector[v_idx];
1212         if (!q_vector) {
1213                 q_vector = kzalloc(size, GFP_KERNEL);
1214         } else if (size > ksize(q_vector)) {
1215                 kfree_rcu(q_vector, rcu);
1216                 q_vector = kzalloc(size, GFP_KERNEL);
1217         } else {
1218                 memset(q_vector, 0, size);
1219         }
1220         if (!q_vector)
1221                 return -ENOMEM;
1222
1223         /* initialize NAPI */
1224         netif_napi_add(adapter->netdev, &q_vector->napi,
1225                        igb_poll, 64);
1226
1227         /* tie q_vector and adapter together */
1228         adapter->q_vector[v_idx] = q_vector;
1229         q_vector->adapter = adapter;
1230
1231         /* initialize work limits */
1232         q_vector->tx.work_limit = adapter->tx_work_limit;
1233
1234         /* initialize ITR configuration */
1235         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236         q_vector->itr_val = IGB_START_ITR;
1237
1238         /* initialize pointer to rings */
1239         ring = q_vector->ring;
1240
1241         /* intialize ITR */
1242         if (rxr_count) {
1243                 /* rx or rx/tx vector */
1244                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245                         q_vector->itr_val = adapter->rx_itr_setting;
1246         } else {
1247                 /* tx only vector */
1248                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249                         q_vector->itr_val = adapter->tx_itr_setting;
1250         }
1251
1252         if (txr_count) {
1253                 /* assign generic ring traits */
1254                 ring->dev = &adapter->pdev->dev;
1255                 ring->netdev = adapter->netdev;
1256
1257                 /* configure backlink on ring */
1258                 ring->q_vector = q_vector;
1259
1260                 /* update q_vector Tx values */
1261                 igb_add_ring(ring, &q_vector->tx);
1262
1263                 /* For 82575, context index must be unique per ring. */
1264                 if (adapter->hw.mac.type == e1000_82575)
1265                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266
1267                 /* apply Tx specific ring traits */
1268                 ring->count = adapter->tx_ring_count;
1269                 ring->queue_index = txr_idx;
1270
1271                 u64_stats_init(&ring->tx_syncp);
1272                 u64_stats_init(&ring->tx_syncp2);
1273
1274                 /* assign ring to adapter */
1275                 adapter->tx_ring[txr_idx] = ring;
1276
1277                 /* push pointer to next ring */
1278                 ring++;
1279         }
1280
1281         if (rxr_count) {
1282                 /* assign generic ring traits */
1283                 ring->dev = &adapter->pdev->dev;
1284                 ring->netdev = adapter->netdev;
1285
1286                 /* configure backlink on ring */
1287                 ring->q_vector = q_vector;
1288
1289                 /* update q_vector Rx values */
1290                 igb_add_ring(ring, &q_vector->rx);
1291
1292                 /* set flag indicating ring supports SCTP checksum offload */
1293                 if (adapter->hw.mac.type >= e1000_82576)
1294                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296                 /* On i350, i354, i210, and i211, loopback VLAN packets
1297                  * have the tag byte-swapped.
1298                  */
1299                 if (adapter->hw.mac.type >= e1000_i350)
1300                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302                 /* apply Rx specific ring traits */
1303                 ring->count = adapter->rx_ring_count;
1304                 ring->queue_index = rxr_idx;
1305
1306                 u64_stats_init(&ring->rx_syncp);
1307
1308                 /* assign ring to adapter */
1309                 adapter->rx_ring[rxr_idx] = ring;
1310         }
1311
1312         return 0;
1313 }
1314
1315
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325         int q_vectors = adapter->num_q_vectors;
1326         int rxr_remaining = adapter->num_rx_queues;
1327         int txr_remaining = adapter->num_tx_queues;
1328         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329         int err;
1330
1331         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332                 for (; rxr_remaining; v_idx++) {
1333                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334                                                  0, 0, 1, rxr_idx);
1335
1336                         if (err)
1337                                 goto err_out;
1338
1339                         /* update counts and index */
1340                         rxr_remaining--;
1341                         rxr_idx++;
1342                 }
1343         }
1344
1345         for (; v_idx < q_vectors; v_idx++) {
1346                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350                                          tqpv, txr_idx, rqpv, rxr_idx);
1351
1352                 if (err)
1353                         goto err_out;
1354
1355                 /* update counts and index */
1356                 rxr_remaining -= rqpv;
1357                 txr_remaining -= tqpv;
1358                 rxr_idx++;
1359                 txr_idx++;
1360         }
1361
1362         return 0;
1363
1364 err_out:
1365         adapter->num_tx_queues = 0;
1366         adapter->num_rx_queues = 0;
1367         adapter->num_q_vectors = 0;
1368
1369         while (v_idx--)
1370                 igb_free_q_vector(adapter, v_idx);
1371
1372         return -ENOMEM;
1373 }
1374
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384         struct pci_dev *pdev = adapter->pdev;
1385         int err;
1386
1387         igb_set_interrupt_capability(adapter, msix);
1388
1389         err = igb_alloc_q_vectors(adapter);
1390         if (err) {
1391                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392                 goto err_alloc_q_vectors;
1393         }
1394
1395         igb_cache_ring_register(adapter);
1396
1397         return 0;
1398
1399 err_alloc_q_vectors:
1400         igb_reset_interrupt_capability(adapter);
1401         return err;
1402 }
1403
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413         struct net_device *netdev = adapter->netdev;
1414         struct pci_dev *pdev = adapter->pdev;
1415         int err = 0;
1416
1417         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418                 err = igb_request_msix(adapter);
1419                 if (!err)
1420                         goto request_done;
1421                 /* fall back to MSI */
1422                 igb_free_all_tx_resources(adapter);
1423                 igb_free_all_rx_resources(adapter);
1424
1425                 igb_clear_interrupt_scheme(adapter);
1426                 err = igb_init_interrupt_scheme(adapter, false);
1427                 if (err)
1428                         goto request_done;
1429
1430                 igb_setup_all_tx_resources(adapter);
1431                 igb_setup_all_rx_resources(adapter);
1432                 igb_configure(adapter);
1433         }
1434
1435         igb_assign_vector(adapter->q_vector[0], 0);
1436
1437         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439                                   netdev->name, adapter);
1440                 if (!err)
1441                         goto request_done;
1442
1443                 /* fall back to legacy interrupts */
1444                 igb_reset_interrupt_capability(adapter);
1445                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446         }
1447
1448         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449                           netdev->name, adapter);
1450
1451         if (err)
1452                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453                         err);
1454
1455 request_done:
1456         return err;
1457 }
1458
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462                 int vector = 0, i;
1463
1464                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466                 for (i = 0; i < adapter->num_q_vectors; i++)
1467                         free_irq(adapter->msix_entries[vector++].vector,
1468                                  adapter->q_vector[i]);
1469         } else {
1470                 free_irq(adapter->pdev->irq, adapter);
1471         }
1472 }
1473
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481
1482         /* we need to be careful when disabling interrupts.  The VFs are also
1483          * mapped into these registers and so clearing the bits can cause
1484          * issues on the VF drivers so we only need to clear what we set
1485          */
1486         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487                 u32 regval = rd32(E1000_EIAM);
1488
1489                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491                 regval = rd32(E1000_EIAC);
1492                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493         }
1494
1495         wr32(E1000_IAM, 0);
1496         wr32(E1000_IMC, ~0);
1497         wrfl();
1498         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499                 int i;
1500
1501                 for (i = 0; i < adapter->num_q_vectors; i++)
1502                         synchronize_irq(adapter->msix_entries[i].vector);
1503         } else {
1504                 synchronize_irq(adapter->pdev->irq);
1505         }
1506 }
1507
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514         struct e1000_hw *hw = &adapter->hw;
1515
1516         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518                 u32 regval = rd32(E1000_EIAC);
1519
1520                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521                 regval = rd32(E1000_EIAM);
1522                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524                 if (adapter->vfs_allocated_count) {
1525                         wr32(E1000_MBVFIMR, 0xFF);
1526                         ims |= E1000_IMS_VMMB;
1527                 }
1528                 wr32(E1000_IMS, ims);
1529         } else {
1530                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533                                 E1000_IMS_DRSTA);
1534         }
1535 }
1536
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539         struct e1000_hw *hw = &adapter->hw;
1540         u16 pf_id = adapter->vfs_allocated_count;
1541         u16 vid = adapter->hw.mng_cookie.vlan_id;
1542         u16 old_vid = adapter->mng_vlan_id;
1543
1544         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545                 /* add VID to filter table */
1546                 igb_vfta_set(hw, vid, pf_id, true, true);
1547                 adapter->mng_vlan_id = vid;
1548         } else {
1549                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550         }
1551
1552         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553             (vid != old_vid) &&
1554             !test_bit(old_vid, adapter->active_vlans)) {
1555                 /* remove VID from filter table */
1556                 igb_vfta_set(hw, vid, pf_id, false, true);
1557         }
1558 }
1559
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 ctrl_ext;
1572
1573         /* Let firmware take over control of h/w */
1574         ctrl_ext = rd32(E1000_CTRL_EXT);
1575         wr32(E1000_CTRL_EXT,
1576                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589         struct e1000_hw *hw = &adapter->hw;
1590         u32 ctrl_ext;
1591
1592         /* Let firmware know the driver has taken over */
1593         ctrl_ext = rd32(E1000_CTRL_EXT);
1594         wr32(E1000_CTRL_EXT,
1595                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597
1598 /**
1599  *  igb_configure - configure the hardware for RX and TX
1600  *  @adapter: private board structure
1601  **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604         struct net_device *netdev = adapter->netdev;
1605         int i;
1606
1607         igb_get_hw_control(adapter);
1608         igb_set_rx_mode(netdev);
1609
1610         igb_restore_vlan(adapter);
1611
1612         igb_setup_tctl(adapter);
1613         igb_setup_mrqc(adapter);
1614         igb_setup_rctl(adapter);
1615
1616         igb_nfc_filter_restore(adapter);
1617         igb_configure_tx(adapter);
1618         igb_configure_rx(adapter);
1619
1620         igb_rx_fifo_flush_82575(&adapter->hw);
1621
1622         /* call igb_desc_unused which always leaves
1623          * at least 1 descriptor unused to make sure
1624          * next_to_use != next_to_clean
1625          */
1626         for (i = 0; i < adapter->num_rx_queues; i++) {
1627                 struct igb_ring *ring = adapter->rx_ring[i];
1628                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629         }
1630 }
1631
1632 /**
1633  *  igb_power_up_link - Power up the phy/serdes link
1634  *  @adapter: address of board private structure
1635  **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638         igb_reset_phy(&adapter->hw);
1639
1640         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641                 igb_power_up_phy_copper(&adapter->hw);
1642         else
1643                 igb_power_up_serdes_link_82575(&adapter->hw);
1644
1645         igb_setup_link(&adapter->hw);
1646 }
1647
1648 /**
1649  *  igb_power_down_link - Power down the phy/serdes link
1650  *  @adapter: address of board private structure
1651  */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655                 igb_power_down_phy_copper_82575(&adapter->hw);
1656         else
1657                 igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659
1660 /**
1661  * Detect and switch function for Media Auto Sense
1662  * @adapter: address of the board private structure
1663  **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666         struct e1000_hw *hw = &adapter->hw;
1667         u32 ctrl_ext, connsw;
1668         bool swap_now = false;
1669
1670         ctrl_ext = rd32(E1000_CTRL_EXT);
1671         connsw = rd32(E1000_CONNSW);
1672
1673         /* need to live swap if current media is copper and we have fiber/serdes
1674          * to go to.
1675          */
1676
1677         if ((hw->phy.media_type == e1000_media_type_copper) &&
1678             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679                 swap_now = true;
1680         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681                 /* copper signal takes time to appear */
1682                 if (adapter->copper_tries < 4) {
1683                         adapter->copper_tries++;
1684                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685                         wr32(E1000_CONNSW, connsw);
1686                         return;
1687                 } else {
1688                         adapter->copper_tries = 0;
1689                         if ((connsw & E1000_CONNSW_PHYSD) &&
1690                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691                                 swap_now = true;
1692                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693                                 wr32(E1000_CONNSW, connsw);
1694                         }
1695                 }
1696         }
1697
1698         if (!swap_now)
1699                 return;
1700
1701         switch (hw->phy.media_type) {
1702         case e1000_media_type_copper:
1703                 netdev_info(adapter->netdev,
1704                         "MAS: changing media to fiber/serdes\n");
1705                 ctrl_ext |=
1706                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708                 adapter->copper_tries = 0;
1709                 break;
1710         case e1000_media_type_internal_serdes:
1711         case e1000_media_type_fiber:
1712                 netdev_info(adapter->netdev,
1713                         "MAS: changing media to copper\n");
1714                 ctrl_ext &=
1715                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717                 break;
1718         default:
1719                 /* shouldn't get here during regular operation */
1720                 netdev_err(adapter->netdev,
1721                         "AMS: Invalid media type found, returning\n");
1722                 break;
1723         }
1724         wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726
1727 /**
1728  *  igb_up - Open the interface and prepare it to handle traffic
1729  *  @adapter: board private structure
1730  **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733         struct e1000_hw *hw = &adapter->hw;
1734         int i;
1735
1736         /* hardware has been reset, we need to reload some things */
1737         igb_configure(adapter);
1738
1739         clear_bit(__IGB_DOWN, &adapter->state);
1740
1741         for (i = 0; i < adapter->num_q_vectors; i++)
1742                 napi_enable(&(adapter->q_vector[i]->napi));
1743
1744         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745                 igb_configure_msix(adapter);
1746         else
1747                 igb_assign_vector(adapter->q_vector[0], 0);
1748
1749         /* Clear any pending interrupts. */
1750         rd32(E1000_ICR);
1751         igb_irq_enable(adapter);
1752
1753         /* notify VFs that reset has been completed */
1754         if (adapter->vfs_allocated_count) {
1755                 u32 reg_data = rd32(E1000_CTRL_EXT);
1756
1757                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1758                 wr32(E1000_CTRL_EXT, reg_data);
1759         }
1760
1761         netif_tx_start_all_queues(adapter->netdev);
1762
1763         /* start the watchdog. */
1764         hw->mac.get_link_status = 1;
1765         schedule_work(&adapter->watchdog_task);
1766
1767         if ((adapter->flags & IGB_FLAG_EEE) &&
1768             (!hw->dev_spec._82575.eee_disable))
1769                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770
1771         return 0;
1772 }
1773
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776         struct net_device *netdev = adapter->netdev;
1777         struct e1000_hw *hw = &adapter->hw;
1778         u32 tctl, rctl;
1779         int i;
1780
1781         /* signal that we're down so the interrupt handler does not
1782          * reschedule our watchdog timer
1783          */
1784         set_bit(__IGB_DOWN, &adapter->state);
1785
1786         /* disable receives in the hardware */
1787         rctl = rd32(E1000_RCTL);
1788         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789         /* flush and sleep below */
1790
1791         netif_carrier_off(netdev);
1792         netif_tx_stop_all_queues(netdev);
1793
1794         /* disable transmits in the hardware */
1795         tctl = rd32(E1000_TCTL);
1796         tctl &= ~E1000_TCTL_EN;
1797         wr32(E1000_TCTL, tctl);
1798         /* flush both disables and wait for them to finish */
1799         wrfl();
1800         usleep_range(10000, 11000);
1801
1802         igb_irq_disable(adapter);
1803
1804         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805
1806         for (i = 0; i < adapter->num_q_vectors; i++) {
1807                 if (adapter->q_vector[i]) {
1808                         napi_synchronize(&adapter->q_vector[i]->napi);
1809                         napi_disable(&adapter->q_vector[i]->napi);
1810                 }
1811         }
1812
1813         del_timer_sync(&adapter->watchdog_timer);
1814         del_timer_sync(&adapter->phy_info_timer);
1815
1816         /* record the stats before reset*/
1817         spin_lock(&adapter->stats64_lock);
1818         igb_update_stats(adapter, &adapter->stats64);
1819         spin_unlock(&adapter->stats64_lock);
1820
1821         adapter->link_speed = 0;
1822         adapter->link_duplex = 0;
1823
1824         if (!pci_channel_offline(adapter->pdev))
1825                 igb_reset(adapter);
1826
1827         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1828         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829
1830         igb_clean_all_tx_rings(adapter);
1831         igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833
1834         /* since we reset the hardware DCA settings were cleared */
1835         igb_setup_dca(adapter);
1836 #endif
1837 }
1838
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841         WARN_ON(in_interrupt());
1842         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843                 usleep_range(1000, 2000);
1844         igb_down(adapter);
1845         igb_up(adapter);
1846         clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850  *
1851  * @adapter: adapter struct
1852  **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855         struct e1000_hw *hw = &adapter->hw;
1856         u32 connsw = rd32(E1000_CONNSW);
1857
1858         /* configure for SerDes media detect */
1859         if ((hw->phy.media_type == e1000_media_type_copper) &&
1860             (!(connsw & E1000_CONNSW_SERDESD))) {
1861                 connsw |= E1000_CONNSW_ENRGSRC;
1862                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863                 wr32(E1000_CONNSW, connsw);
1864                 wrfl();
1865         }
1866 }
1867
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870         struct pci_dev *pdev = adapter->pdev;
1871         struct e1000_hw *hw = &adapter->hw;
1872         struct e1000_mac_info *mac = &hw->mac;
1873         struct e1000_fc_info *fc = &hw->fc;
1874         u32 pba, hwm;
1875
1876         /* Repartition Pba for greater than 9k mtu
1877          * To take effect CTRL.RST is required.
1878          */
1879         switch (mac->type) {
1880         case e1000_i350:
1881         case e1000_i354:
1882         case e1000_82580:
1883                 pba = rd32(E1000_RXPBS);
1884                 pba = igb_rxpbs_adjust_82580(pba);
1885                 break;
1886         case e1000_82576:
1887                 pba = rd32(E1000_RXPBS);
1888                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889                 break;
1890         case e1000_82575:
1891         case e1000_i210:
1892         case e1000_i211:
1893         default:
1894                 pba = E1000_PBA_34K;
1895                 break;
1896         }
1897
1898         if (mac->type == e1000_82575) {
1899                 u32 min_rx_space, min_tx_space, needed_tx_space;
1900
1901                 /* write Rx PBA so that hardware can report correct Tx PBA */
1902                 wr32(E1000_PBA, pba);
1903
1904                 /* To maintain wire speed transmits, the Tx FIFO should be
1905                  * large enough to accommodate two full transmit packets,
1906                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1907                  * the Rx FIFO should be large enough to accommodate at least
1908                  * one full receive packet and is similarly rounded up and
1909                  * expressed in KB.
1910                  */
1911                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912
1913                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1914                  * but don't include Ethernet FCS because hardware appends it.
1915                  * We only need to round down to the nearest 512 byte block
1916                  * count since the value we care about is 2 frames, not 1.
1917                  */
1918                 min_tx_space = adapter->max_frame_size;
1919                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921
1922                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1923                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924
1925                 /* If current Tx allocation is less than the min Tx FIFO size,
1926                  * and the min Tx FIFO size is less than the current Rx FIFO
1927                  * allocation, take space away from current Rx allocation.
1928                  */
1929                 if (needed_tx_space < pba) {
1930                         pba -= needed_tx_space;
1931
1932                         /* if short on Rx space, Rx wins and must trump Tx
1933                          * adjustment
1934                          */
1935                         if (pba < min_rx_space)
1936                                 pba = min_rx_space;
1937                 }
1938
1939                 /* adjust PBA for jumbo frames */
1940                 wr32(E1000_PBA, pba);
1941         }
1942
1943         /* flow control settings
1944          * The high water mark must be low enough to fit one full frame
1945          * after transmitting the pause frame.  As such we must have enough
1946          * space to allow for us to complete our current transmit and then
1947          * receive the frame that is in progress from the link partner.
1948          * Set it to:
1949          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950          */
1951         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952
1953         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1954         fc->low_water = fc->high_water - 16;
1955         fc->pause_time = 0xFFFF;
1956         fc->send_xon = 1;
1957         fc->current_mode = fc->requested_mode;
1958
1959         /* disable receive for all VFs and wait one second */
1960         if (adapter->vfs_allocated_count) {
1961                 int i;
1962
1963                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966                 /* ping all the active vfs to let them know we are going down */
1967                 igb_ping_all_vfs(adapter);
1968
1969                 /* disable transmits and receives */
1970                 wr32(E1000_VFRE, 0);
1971                 wr32(E1000_VFTE, 0);
1972         }
1973
1974         /* Allow time for pending master requests to run */
1975         hw->mac.ops.reset_hw(hw);
1976         wr32(E1000_WUC, 0);
1977
1978         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979                 /* need to resetup here after media swap */
1980                 adapter->ei.get_invariants(hw);
1981                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982         }
1983         if ((mac->type == e1000_82575) &&
1984             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985                 igb_enable_mas(adapter);
1986         }
1987         if (hw->mac.ops.init_hw(hw))
1988                 dev_err(&pdev->dev, "Hardware Error\n");
1989
1990         /* Flow control settings reset on hardware reset, so guarantee flow
1991          * control is off when forcing speed.
1992          */
1993         if (!hw->mac.autoneg)
1994                 igb_force_mac_fc(hw);
1995
1996         igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998         /* Re-initialize the thermal sensor on i350 devices. */
1999         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001                         /* If present, re-initialize the external thermal sensor
2002                          * interface.
2003                          */
2004                         if (adapter->ets)
2005                                 mac->ops.init_thermal_sensor_thresh(hw);
2006                 }
2007         }
2008 #endif
2009         /* Re-establish EEE setting */
2010         if (hw->phy.media_type == e1000_media_type_copper) {
2011                 switch (mac->type) {
2012                 case e1000_i350:
2013                 case e1000_i210:
2014                 case e1000_i211:
2015                         igb_set_eee_i350(hw, true, true);
2016                         break;
2017                 case e1000_i354:
2018                         igb_set_eee_i354(hw, true, true);
2019                         break;
2020                 default:
2021                         break;
2022                 }
2023         }
2024         if (!netif_running(adapter->netdev))
2025                 igb_power_down_link(adapter);
2026
2027         igb_update_mng_vlan(adapter);
2028
2029         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032         /* Re-enable PTP, where applicable. */
2033         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034                 igb_ptp_reset(adapter);
2035
2036         igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040         netdev_features_t features)
2041 {
2042         /* Since there is no support for separate Rx/Tx vlan accel
2043          * enable/disable make sure Tx flag is always in same state as Rx.
2044          */
2045         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047         else
2048                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050         return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054         netdev_features_t features)
2055 {
2056         netdev_features_t changed = netdev->features ^ features;
2057         struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060                 igb_vlan_mode(netdev, features);
2061
2062         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063                 return 0;
2064
2065         if (!(features & NETIF_F_NTUPLE)) {
2066                 struct hlist_node *node2;
2067                 struct igb_nfc_filter *rule;
2068
2069                 spin_lock(&adapter->nfc_lock);
2070                 hlist_for_each_entry_safe(rule, node2,
2071                                           &adapter->nfc_filter_list, nfc_node) {
2072                         igb_erase_filter(adapter, rule);
2073                         hlist_del(&rule->nfc_node);
2074                         kfree(rule);
2075                 }
2076                 spin_unlock(&adapter->nfc_lock);
2077                 adapter->nfc_filter_count = 0;
2078         }
2079
2080         netdev->features = features;
2081
2082         if (netif_running(netdev))
2083                 igb_reinit_locked(adapter);
2084         else
2085                 igb_reset(adapter);
2086
2087         return 0;
2088 }
2089
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091                            struct net_device *dev,
2092                            const unsigned char *addr, u16 vid,
2093                            u16 flags)
2094 {
2095         /* guarantee we can provide a unique filter for the unicast address */
2096         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097                 struct igb_adapter *adapter = netdev_priv(dev);
2098                 struct e1000_hw *hw = &adapter->hw;
2099                 int vfn = adapter->vfs_allocated_count;
2100                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101
2102                 if (netdev_uc_count(dev) >= rar_entries)
2103                         return -ENOMEM;
2104         }
2105
2106         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108
2109 #define IGB_MAX_MAC_HDR_LEN     127
2110 #define IGB_MAX_NETWORK_HDR_LEN 511
2111
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114                    netdev_features_t features)
2115 {
2116         unsigned int network_hdr_len, mac_hdr_len;
2117
2118         /* Make certain the headers can be described by a context descriptor */
2119         mac_hdr_len = skb_network_header(skb) - skb->data;
2120         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121                 return features & ~(NETIF_F_HW_CSUM |
2122                                     NETIF_F_SCTP_CRC |
2123                                     NETIF_F_HW_VLAN_CTAG_TX |
2124                                     NETIF_F_TSO |
2125                                     NETIF_F_TSO6);
2126
2127         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2129                 return features & ~(NETIF_F_HW_CSUM |
2130                                     NETIF_F_SCTP_CRC |
2131                                     NETIF_F_TSO |
2132                                     NETIF_F_TSO6);
2133
2134         /* We can only support IPV4 TSO in tunnels if we can mangle the
2135          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136          */
2137         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138                 features &= ~NETIF_F_TSO;
2139
2140         return features;
2141 }
2142
2143 static const struct net_device_ops igb_netdev_ops = {
2144         .ndo_open               = igb_open,
2145         .ndo_stop               = igb_close,
2146         .ndo_start_xmit         = igb_xmit_frame,
2147         .ndo_get_stats64        = igb_get_stats64,
2148         .ndo_set_rx_mode        = igb_set_rx_mode,
2149         .ndo_set_mac_address    = igb_set_mac,
2150         .ndo_change_mtu         = igb_change_mtu,
2151         .ndo_do_ioctl           = igb_ioctl,
2152         .ndo_tx_timeout         = igb_tx_timeout,
2153         .ndo_validate_addr      = eth_validate_addr,
2154         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2155         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2156         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2157         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2158         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2159         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2160         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162         .ndo_poll_controller    = igb_netpoll,
2163 #endif
2164         .ndo_fix_features       = igb_fix_features,
2165         .ndo_set_features       = igb_set_features,
2166         .ndo_fdb_add            = igb_ndo_fdb_add,
2167         .ndo_features_check     = igb_features_check,
2168 };
2169
2170 /**
2171  * igb_set_fw_version - Configure version string for ethtool
2172  * @adapter: adapter struct
2173  **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176         struct e1000_hw *hw = &adapter->hw;
2177         struct e1000_fw_version fw;
2178
2179         igb_get_fw_version(hw, &fw);
2180
2181         switch (hw->mac.type) {
2182         case e1000_i210:
2183         case e1000_i211:
2184                 if (!(igb_get_flash_presence_i210(hw))) {
2185                         snprintf(adapter->fw_version,
2186                                  sizeof(adapter->fw_version),
2187                                  "%2d.%2d-%d",
2188                                  fw.invm_major, fw.invm_minor,
2189                                  fw.invm_img_type);
2190                         break;
2191                 }
2192                 /* fall through */
2193         default:
2194                 /* if option is rom valid, display its version too */
2195                 if (fw.or_valid) {
2196                         snprintf(adapter->fw_version,
2197                                  sizeof(adapter->fw_version),
2198                                  "%d.%d, 0x%08x, %d.%d.%d",
2199                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2200                                  fw.or_major, fw.or_build, fw.or_patch);
2201                 /* no option rom */
2202                 } else if (fw.etrack_id != 0X0000) {
2203                         snprintf(adapter->fw_version,
2204                             sizeof(adapter->fw_version),
2205                             "%d.%d, 0x%08x",
2206                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2207                 } else {
2208                 snprintf(adapter->fw_version,
2209                     sizeof(adapter->fw_version),
2210                     "%d.%d.%d",
2211                     fw.eep_major, fw.eep_minor, fw.eep_build);
2212                 }
2213                 break;
2214         }
2215 }
2216
2217 /**
2218  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219  *
2220  * @adapter: adapter struct
2221  **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224         struct e1000_hw *hw = &adapter->hw;
2225         u16 eeprom_data;
2226
2227         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228         switch (hw->bus.func) {
2229         case E1000_FUNC_0:
2230                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2231                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232                         netdev_info(adapter->netdev,
2233                                 "MAS: Enabling Media Autosense for port %d\n",
2234                                 hw->bus.func);
2235                 }
2236                 break;
2237         case E1000_FUNC_1:
2238                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2239                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240                         netdev_info(adapter->netdev,
2241                                 "MAS: Enabling Media Autosense for port %d\n",
2242                                 hw->bus.func);
2243                 }
2244                 break;
2245         case E1000_FUNC_2:
2246                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2247                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248                         netdev_info(adapter->netdev,
2249                                 "MAS: Enabling Media Autosense for port %d\n",
2250                                 hw->bus.func);
2251                 }
2252                 break;
2253         case E1000_FUNC_3:
2254                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2255                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256                         netdev_info(adapter->netdev,
2257                                 "MAS: Enabling Media Autosense for port %d\n",
2258                                 hw->bus.func);
2259                 }
2260                 break;
2261         default:
2262                 /* Shouldn't get here */
2263                 netdev_err(adapter->netdev,
2264                         "MAS: Invalid port configuration, returning\n");
2265                 break;
2266         }
2267 }
2268
2269 /**
2270  *  igb_init_i2c - Init I2C interface
2271  *  @adapter: pointer to adapter structure
2272  **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275         s32 status = 0;
2276
2277         /* I2C interface supported on i350 devices */
2278         if (adapter->hw.mac.type != e1000_i350)
2279                 return 0;
2280
2281         /* Initialize the i2c bus which is controlled by the registers.
2282          * This bus will use the i2c_algo_bit structue that implements
2283          * the protocol through toggling of the 4 bits in the register.
2284          */
2285         adapter->i2c_adap.owner = THIS_MODULE;
2286         adapter->i2c_algo = igb_i2c_algo;
2287         adapter->i2c_algo.data = adapter;
2288         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290         strlcpy(adapter->i2c_adap.name, "igb BB",
2291                 sizeof(adapter->i2c_adap.name));
2292         status = i2c_bit_add_bus(&adapter->i2c_adap);
2293         return status;
2294 }
2295
2296 /**
2297  *  igb_probe - Device Initialization Routine
2298  *  @pdev: PCI device information struct
2299  *  @ent: entry in igb_pci_tbl
2300  *
2301  *  Returns 0 on success, negative on failure
2302  *
2303  *  igb_probe initializes an adapter identified by a pci_dev structure.
2304  *  The OS initialization, configuring of the adapter private structure,
2305  *  and a hardware reset occur.
2306  **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309         struct net_device *netdev;
2310         struct igb_adapter *adapter;
2311         struct e1000_hw *hw;
2312         u16 eeprom_data = 0;
2313         s32 ret_val;
2314         static int global_quad_port_a; /* global quad port a indication */
2315         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316         int err, pci_using_dac;
2317         u8 part_str[E1000_PBANUM_LENGTH];
2318
2319         /* Catch broken hardware that put the wrong VF device ID in
2320          * the PCIe SR-IOV capability.
2321          */
2322         if (pdev->is_virtfn) {
2323                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324                         pci_name(pdev), pdev->vendor, pdev->device);
2325                 return -EINVAL;
2326         }
2327
2328         err = pci_enable_device_mem(pdev);
2329         if (err)
2330                 return err;
2331
2332         pci_using_dac = 0;
2333         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334         if (!err) {
2335                 pci_using_dac = 1;
2336         } else {
2337                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338                 if (err) {
2339                         dev_err(&pdev->dev,
2340                                 "No usable DMA configuration, aborting\n");
2341                         goto err_dma;
2342                 }
2343         }
2344
2345         err = pci_request_mem_regions(pdev, igb_driver_name);
2346         if (err)
2347                 goto err_pci_reg;
2348
2349         pci_enable_pcie_error_reporting(pdev);
2350
2351         pci_set_master(pdev);
2352         pci_save_state(pdev);
2353
2354         err = -ENOMEM;
2355         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356                                    IGB_MAX_TX_QUEUES);
2357         if (!netdev)
2358                 goto err_alloc_etherdev;
2359
2360         SET_NETDEV_DEV(netdev, &pdev->dev);
2361
2362         pci_set_drvdata(pdev, netdev);
2363         adapter = netdev_priv(netdev);
2364         adapter->netdev = netdev;
2365         adapter->pdev = pdev;
2366         hw = &adapter->hw;
2367         hw->back = adapter;
2368         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369
2370         err = -EIO;
2371         adapter->io_addr = pci_iomap(pdev, 0, 0);
2372         if (!adapter->io_addr)
2373                 goto err_ioremap;
2374         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375         hw->hw_addr = adapter->io_addr;
2376
2377         netdev->netdev_ops = &igb_netdev_ops;
2378         igb_set_ethtool_ops(netdev);
2379         netdev->watchdog_timeo = 5 * HZ;
2380
2381         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382
2383         netdev->mem_start = pci_resource_start(pdev, 0);
2384         netdev->mem_end = pci_resource_end(pdev, 0);
2385
2386         /* PCI config space info */
2387         hw->vendor_id = pdev->vendor;
2388         hw->device_id = pdev->device;
2389         hw->revision_id = pdev->revision;
2390         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391         hw->subsystem_device_id = pdev->subsystem_device;
2392
2393         /* Copy the default MAC, PHY and NVM function pointers */
2394         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397         /* Initialize skew-specific constants */
2398         err = ei->get_invariants(hw);
2399         if (err)
2400                 goto err_sw_init;
2401
2402         /* setup the private structure */
2403         err = igb_sw_init(adapter);
2404         if (err)
2405                 goto err_sw_init;
2406
2407         igb_get_bus_info_pcie(hw);
2408
2409         hw->phy.autoneg_wait_to_complete = false;
2410
2411         /* Copper options */
2412         if (hw->phy.media_type == e1000_media_type_copper) {
2413                 hw->phy.mdix = AUTO_ALL_MODES;
2414                 hw->phy.disable_polarity_correction = false;
2415                 hw->phy.ms_type = e1000_ms_hw_default;
2416         }
2417
2418         if (igb_check_reset_block(hw))
2419                 dev_info(&pdev->dev,
2420                         "PHY reset is blocked due to SOL/IDER session.\n");
2421
2422         /* features is initialized to 0 in allocation, it might have bits
2423          * set by igb_sw_init so we should use an or instead of an
2424          * assignment.
2425          */
2426         netdev->features |= NETIF_F_SG |
2427                             NETIF_F_TSO |
2428                             NETIF_F_TSO6 |
2429                             NETIF_F_RXHASH |
2430                             NETIF_F_RXCSUM |
2431                             NETIF_F_HW_CSUM;
2432
2433         if (hw->mac.type >= e1000_82576)
2434                 netdev->features |= NETIF_F_SCTP_CRC;
2435
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437                                   NETIF_F_GSO_GRE_CSUM | \
2438                                   NETIF_F_GSO_IPXIP4 | \
2439                                   NETIF_F_GSO_IPXIP6 | \
2440                                   NETIF_F_GSO_UDP_TUNNEL | \
2441                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442
2443         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445
2446         /* copy netdev features into list of user selectable features */
2447         netdev->hw_features |= netdev->features |
2448                                NETIF_F_HW_VLAN_CTAG_RX |
2449                                NETIF_F_HW_VLAN_CTAG_TX |
2450                                NETIF_F_RXALL;
2451
2452         if (hw->mac.type >= e1000_i350)
2453                 netdev->hw_features |= NETIF_F_NTUPLE;
2454
2455         if (pci_using_dac)
2456                 netdev->features |= NETIF_F_HIGHDMA;
2457
2458         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459         netdev->mpls_features |= NETIF_F_HW_CSUM;
2460         netdev->hw_enc_features |= netdev->vlan_features;
2461
2462         /* set this bit last since it cannot be part of vlan_features */
2463         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464                             NETIF_F_HW_VLAN_CTAG_RX |
2465                             NETIF_F_HW_VLAN_CTAG_TX;
2466
2467         netdev->priv_flags |= IFF_SUPP_NOFCS;
2468
2469         netdev->priv_flags |= IFF_UNICAST_FLT;
2470
2471         /* MTU range: 68 - 9216 */
2472         netdev->min_mtu = ETH_MIN_MTU;
2473         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2474
2475         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2476
2477         /* before reading the NVM, reset the controller to put the device in a
2478          * known good starting state
2479          */
2480         hw->mac.ops.reset_hw(hw);
2481
2482         /* make sure the NVM is good , i211/i210 parts can have special NVM
2483          * that doesn't contain a checksum
2484          */
2485         switch (hw->mac.type) {
2486         case e1000_i210:
2487         case e1000_i211:
2488                 if (igb_get_flash_presence_i210(hw)) {
2489                         if (hw->nvm.ops.validate(hw) < 0) {
2490                                 dev_err(&pdev->dev,
2491                                         "The NVM Checksum Is Not Valid\n");
2492                                 err = -EIO;
2493                                 goto err_eeprom;
2494                         }
2495                 }
2496                 break;
2497         default:
2498                 if (hw->nvm.ops.validate(hw) < 0) {
2499                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2500                         err = -EIO;
2501                         goto err_eeprom;
2502                 }
2503                 break;
2504         }
2505
2506         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2507                 /* copy the MAC address out of the NVM */
2508                 if (hw->mac.ops.read_mac_addr(hw))
2509                         dev_err(&pdev->dev, "NVM Read Error\n");
2510         }
2511
2512         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2513
2514         if (!is_valid_ether_addr(netdev->dev_addr)) {
2515                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2516                 err = -EIO;
2517                 goto err_eeprom;
2518         }
2519
2520         /* get firmware version for ethtool -i */
2521         igb_set_fw_version(adapter);
2522
2523         /* configure RXPBSIZE and TXPBSIZE */
2524         if (hw->mac.type == e1000_i210) {
2525                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2526                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2527         }
2528
2529         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2530                     (unsigned long) adapter);
2531         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2532                     (unsigned long) adapter);
2533
2534         INIT_WORK(&adapter->reset_task, igb_reset_task);
2535         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2536
2537         /* Initialize link properties that are user-changeable */
2538         adapter->fc_autoneg = true;
2539         hw->mac.autoneg = true;
2540         hw->phy.autoneg_advertised = 0x2f;
2541
2542         hw->fc.requested_mode = e1000_fc_default;
2543         hw->fc.current_mode = e1000_fc_default;
2544
2545         igb_validate_mdi_setting(hw);
2546
2547         /* By default, support wake on port A */
2548         if (hw->bus.func == 0)
2549                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2550
2551         /* Check the NVM for wake support on non-port A ports */
2552         if (hw->mac.type >= e1000_82580)
2553                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2554                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2555                                  &eeprom_data);
2556         else if (hw->bus.func == 1)
2557                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2558
2559         if (eeprom_data & IGB_EEPROM_APME)
2560                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2561
2562         /* now that we have the eeprom settings, apply the special cases where
2563          * the eeprom may be wrong or the board simply won't support wake on
2564          * lan on a particular port
2565          */
2566         switch (pdev->device) {
2567         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2568                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2569                 break;
2570         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2571         case E1000_DEV_ID_82576_FIBER:
2572         case E1000_DEV_ID_82576_SERDES:
2573                 /* Wake events only supported on port A for dual fiber
2574                  * regardless of eeprom setting
2575                  */
2576                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2577                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2578                 break;
2579         case E1000_DEV_ID_82576_QUAD_COPPER:
2580         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2581                 /* if quad port adapter, disable WoL on all but port A */
2582                 if (global_quad_port_a != 0)
2583                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2584                 else
2585                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2586                 /* Reset for multiple quad port adapters */
2587                 if (++global_quad_port_a == 4)
2588                         global_quad_port_a = 0;
2589                 break;
2590         default:
2591                 /* If the device can't wake, don't set software support */
2592                 if (!device_can_wakeup(&adapter->pdev->dev))
2593                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2594         }
2595
2596         /* initialize the wol settings based on the eeprom settings */
2597         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2598                 adapter->wol |= E1000_WUFC_MAG;
2599
2600         /* Some vendors want WoL disabled by default, but still supported */
2601         if ((hw->mac.type == e1000_i350) &&
2602             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2603                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2604                 adapter->wol = 0;
2605         }
2606
2607         /* Some vendors want the ability to Use the EEPROM setting as
2608          * enable/disable only, and not for capability
2609          */
2610         if (((hw->mac.type == e1000_i350) ||
2611              (hw->mac.type == e1000_i354)) &&
2612             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2613                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614                 adapter->wol = 0;
2615         }
2616         if (hw->mac.type == e1000_i350) {
2617                 if (((pdev->subsystem_device == 0x5001) ||
2618                      (pdev->subsystem_device == 0x5002)) &&
2619                                 (hw->bus.func == 0)) {
2620                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621                         adapter->wol = 0;
2622                 }
2623                 if (pdev->subsystem_device == 0x1F52)
2624                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2625         }
2626
2627         device_set_wakeup_enable(&adapter->pdev->dev,
2628                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2629
2630         /* reset the hardware with the new settings */
2631         igb_reset(adapter);
2632
2633         /* Init the I2C interface */
2634         err = igb_init_i2c(adapter);
2635         if (err) {
2636                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2637                 goto err_eeprom;
2638         }
2639
2640         /* let the f/w know that the h/w is now under the control of the
2641          * driver.
2642          */
2643         igb_get_hw_control(adapter);
2644
2645         strcpy(netdev->name, "eth%d");
2646         err = register_netdev(netdev);
2647         if (err)
2648                 goto err_register;
2649
2650         /* carrier off reporting is important to ethtool even BEFORE open */
2651         netif_carrier_off(netdev);
2652
2653 #ifdef CONFIG_IGB_DCA
2654         if (dca_add_requester(&pdev->dev) == 0) {
2655                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2656                 dev_info(&pdev->dev, "DCA enabled\n");
2657                 igb_setup_dca(adapter);
2658         }
2659
2660 #endif
2661 #ifdef CONFIG_IGB_HWMON
2662         /* Initialize the thermal sensor on i350 devices. */
2663         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2664                 u16 ets_word;
2665
2666                 /* Read the NVM to determine if this i350 device supports an
2667                  * external thermal sensor.
2668                  */
2669                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2670                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2671                         adapter->ets = true;
2672                 else
2673                         adapter->ets = false;
2674                 if (igb_sysfs_init(adapter))
2675                         dev_err(&pdev->dev,
2676                                 "failed to allocate sysfs resources\n");
2677         } else {
2678                 adapter->ets = false;
2679         }
2680 #endif
2681         /* Check if Media Autosense is enabled */
2682         adapter->ei = *ei;
2683         if (hw->dev_spec._82575.mas_capable)
2684                 igb_init_mas(adapter);
2685
2686         /* do hw tstamp init after resetting */
2687         igb_ptp_init(adapter);
2688
2689         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2690         /* print bus type/speed/width info, not applicable to i354 */
2691         if (hw->mac.type != e1000_i354) {
2692                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2693                          netdev->name,
2694                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2695                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2696                            "unknown"),
2697                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2698                           "Width x4" :
2699                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2700                           "Width x2" :
2701                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2702                           "Width x1" : "unknown"), netdev->dev_addr);
2703         }
2704
2705         if ((hw->mac.type >= e1000_i210 ||
2706              igb_get_flash_presence_i210(hw))) {
2707                 ret_val = igb_read_part_string(hw, part_str,
2708                                                E1000_PBANUM_LENGTH);
2709         } else {
2710                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2711         }
2712
2713         if (ret_val)
2714                 strcpy(part_str, "Unknown");
2715         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2716         dev_info(&pdev->dev,
2717                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2718                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2719                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2720                 adapter->num_rx_queues, adapter->num_tx_queues);
2721         if (hw->phy.media_type == e1000_media_type_copper) {
2722                 switch (hw->mac.type) {
2723                 case e1000_i350:
2724                 case e1000_i210:
2725                 case e1000_i211:
2726                         /* Enable EEE for internal copper PHY devices */
2727                         err = igb_set_eee_i350(hw, true, true);
2728                         if ((!err) &&
2729                             (!hw->dev_spec._82575.eee_disable)) {
2730                                 adapter->eee_advert =
2731                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2732                                 adapter->flags |= IGB_FLAG_EEE;
2733                         }
2734                         break;
2735                 case e1000_i354:
2736                         if ((rd32(E1000_CTRL_EXT) &
2737                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2738                                 err = igb_set_eee_i354(hw, true, true);
2739                                 if ((!err) &&
2740                                         (!hw->dev_spec._82575.eee_disable)) {
2741                                         adapter->eee_advert =
2742                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2743                                         adapter->flags |= IGB_FLAG_EEE;
2744                                 }
2745                         }
2746                         break;
2747                 default:
2748                         break;
2749                 }
2750         }
2751         pm_runtime_put_noidle(&pdev->dev);
2752         return 0;
2753
2754 err_register:
2755         igb_release_hw_control(adapter);
2756         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2757 err_eeprom:
2758         if (!igb_check_reset_block(hw))
2759                 igb_reset_phy(hw);
2760
2761         if (hw->flash_address)
2762                 iounmap(hw->flash_address);
2763 err_sw_init:
2764         kfree(adapter->shadow_vfta);
2765         igb_clear_interrupt_scheme(adapter);
2766 #ifdef CONFIG_PCI_IOV
2767         igb_disable_sriov(pdev);
2768 #endif
2769         pci_iounmap(pdev, adapter->io_addr);
2770 err_ioremap:
2771         free_netdev(netdev);
2772 err_alloc_etherdev:
2773         pci_release_mem_regions(pdev);
2774 err_pci_reg:
2775 err_dma:
2776         pci_disable_device(pdev);
2777         return err;
2778 }
2779
2780 #ifdef CONFIG_PCI_IOV
2781 static int igb_disable_sriov(struct pci_dev *pdev)
2782 {
2783         struct net_device *netdev = pci_get_drvdata(pdev);
2784         struct igb_adapter *adapter = netdev_priv(netdev);
2785         struct e1000_hw *hw = &adapter->hw;
2786
2787         /* reclaim resources allocated to VFs */
2788         if (adapter->vf_data) {
2789                 /* disable iov and allow time for transactions to clear */
2790                 if (pci_vfs_assigned(pdev)) {
2791                         dev_warn(&pdev->dev,
2792                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2793                         return -EPERM;
2794                 } else {
2795                         pci_disable_sriov(pdev);
2796                         msleep(500);
2797                 }
2798
2799                 kfree(adapter->vf_data);
2800                 adapter->vf_data = NULL;
2801                 adapter->vfs_allocated_count = 0;
2802                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2803                 wrfl();
2804                 msleep(100);
2805                 dev_info(&pdev->dev, "IOV Disabled\n");
2806
2807                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2808                 adapter->flags |= IGB_FLAG_DMAC;
2809         }
2810
2811         return 0;
2812 }
2813
2814 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2815 {
2816         struct net_device *netdev = pci_get_drvdata(pdev);
2817         struct igb_adapter *adapter = netdev_priv(netdev);
2818         int old_vfs = pci_num_vf(pdev);
2819         int err = 0;
2820         int i;
2821
2822         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2823                 err = -EPERM;
2824                 goto out;
2825         }
2826         if (!num_vfs)
2827                 goto out;
2828
2829         if (old_vfs) {
2830                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2831                          old_vfs, max_vfs);
2832                 adapter->vfs_allocated_count = old_vfs;
2833         } else
2834                 adapter->vfs_allocated_count = num_vfs;
2835
2836         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2837                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2838
2839         /* if allocation failed then we do not support SR-IOV */
2840         if (!adapter->vf_data) {
2841                 adapter->vfs_allocated_count = 0;
2842                 dev_err(&pdev->dev,
2843                         "Unable to allocate memory for VF Data Storage\n");
2844                 err = -ENOMEM;
2845                 goto out;
2846         }
2847
2848         /* only call pci_enable_sriov() if no VFs are allocated already */
2849         if (!old_vfs) {
2850                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2851                 if (err)
2852                         goto err_out;
2853         }
2854         dev_info(&pdev->dev, "%d VFs allocated\n",
2855                  adapter->vfs_allocated_count);
2856         for (i = 0; i < adapter->vfs_allocated_count; i++)
2857                 igb_vf_configure(adapter, i);
2858
2859         /* DMA Coalescing is not supported in IOV mode. */
2860         adapter->flags &= ~IGB_FLAG_DMAC;
2861         goto out;
2862
2863 err_out:
2864         kfree(adapter->vf_data);
2865         adapter->vf_data = NULL;
2866         adapter->vfs_allocated_count = 0;
2867 out:
2868         return err;
2869 }
2870
2871 #endif
2872 /**
2873  *  igb_remove_i2c - Cleanup  I2C interface
2874  *  @adapter: pointer to adapter structure
2875  **/
2876 static void igb_remove_i2c(struct igb_adapter *adapter)
2877 {
2878         /* free the adapter bus structure */
2879         i2c_del_adapter(&adapter->i2c_adap);
2880 }
2881
2882 /**
2883  *  igb_remove - Device Removal Routine
2884  *  @pdev: PCI device information struct
2885  *
2886  *  igb_remove is called by the PCI subsystem to alert the driver
2887  *  that it should release a PCI device.  The could be caused by a
2888  *  Hot-Plug event, or because the driver is going to be removed from
2889  *  memory.
2890  **/
2891 static void igb_remove(struct pci_dev *pdev)
2892 {
2893         struct net_device *netdev = pci_get_drvdata(pdev);
2894         struct igb_adapter *adapter = netdev_priv(netdev);
2895         struct e1000_hw *hw = &adapter->hw;
2896
2897         pm_runtime_get_noresume(&pdev->dev);
2898 #ifdef CONFIG_IGB_HWMON
2899         igb_sysfs_exit(adapter);
2900 #endif
2901         igb_remove_i2c(adapter);
2902         igb_ptp_stop(adapter);
2903         /* The watchdog timer may be rescheduled, so explicitly
2904          * disable watchdog from being rescheduled.
2905          */
2906         set_bit(__IGB_DOWN, &adapter->state);
2907         del_timer_sync(&adapter->watchdog_timer);
2908         del_timer_sync(&adapter->phy_info_timer);
2909
2910         cancel_work_sync(&adapter->reset_task);
2911         cancel_work_sync(&adapter->watchdog_task);
2912
2913 #ifdef CONFIG_IGB_DCA
2914         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2915                 dev_info(&pdev->dev, "DCA disabled\n");
2916                 dca_remove_requester(&pdev->dev);
2917                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2918                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2919         }
2920 #endif
2921
2922         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2923          * would have already happened in close and is redundant.
2924          */
2925         igb_release_hw_control(adapter);
2926
2927 #ifdef CONFIG_PCI_IOV
2928         igb_disable_sriov(pdev);
2929 #endif
2930
2931         unregister_netdev(netdev);
2932
2933         igb_clear_interrupt_scheme(adapter);
2934
2935         pci_iounmap(pdev, adapter->io_addr);
2936         if (hw->flash_address)
2937                 iounmap(hw->flash_address);
2938         pci_release_mem_regions(pdev);
2939
2940         kfree(adapter->shadow_vfta);
2941         free_netdev(netdev);
2942
2943         pci_disable_pcie_error_reporting(pdev);
2944
2945         pci_disable_device(pdev);
2946 }
2947
2948 /**
2949  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2950  *  @adapter: board private structure to initialize
2951  *
2952  *  This function initializes the vf specific data storage and then attempts to
2953  *  allocate the VFs.  The reason for ordering it this way is because it is much
2954  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2955  *  the memory for the VFs.
2956  **/
2957 static void igb_probe_vfs(struct igb_adapter *adapter)
2958 {
2959 #ifdef CONFIG_PCI_IOV
2960         struct pci_dev *pdev = adapter->pdev;
2961         struct e1000_hw *hw = &adapter->hw;
2962
2963         /* Virtualization features not supported on i210 family. */
2964         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2965                 return;
2966
2967         /* Of the below we really only want the effect of getting
2968          * IGB_FLAG_HAS_MSIX set (if available), without which
2969          * igb_enable_sriov() has no effect.
2970          */
2971         igb_set_interrupt_capability(adapter, true);
2972         igb_reset_interrupt_capability(adapter);
2973
2974         pci_sriov_set_totalvfs(pdev, 7);
2975         igb_enable_sriov(pdev, max_vfs);
2976
2977 #endif /* CONFIG_PCI_IOV */
2978 }
2979
2980 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2981 {
2982         struct e1000_hw *hw = &adapter->hw;
2983         u32 max_rss_queues;
2984
2985         /* Determine the maximum number of RSS queues supported. */
2986         switch (hw->mac.type) {
2987         case e1000_i211:
2988                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2989                 break;
2990         case e1000_82575:
2991         case e1000_i210:
2992                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2993                 break;
2994         case e1000_i350:
2995                 /* I350 cannot do RSS and SR-IOV at the same time */
2996                 if (!!adapter->vfs_allocated_count) {
2997                         max_rss_queues = 1;
2998                         break;
2999                 }
3000                 /* fall through */
3001         case e1000_82576:
3002                 if (!!adapter->vfs_allocated_count) {
3003                         max_rss_queues = 2;
3004                         break;
3005                 }
3006                 /* fall through */
3007         case e1000_82580:
3008         case e1000_i354:
3009         default:
3010                 max_rss_queues = IGB_MAX_RX_QUEUES;
3011                 break;
3012         }
3013
3014         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3015
3016         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3017 }
3018
3019 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3020                               const u32 max_rss_queues)
3021 {
3022         struct e1000_hw *hw = &adapter->hw;
3023
3024         /* Determine if we need to pair queues. */
3025         switch (hw->mac.type) {
3026         case e1000_82575:
3027         case e1000_i211:
3028                 /* Device supports enough interrupts without queue pairing. */
3029                 break;
3030         case e1000_82576:
3031         case e1000_82580:
3032         case e1000_i350:
3033         case e1000_i354:
3034         case e1000_i210:
3035         default:
3036                 /* If rss_queues > half of max_rss_queues, pair the queues in
3037                  * order to conserve interrupts due to limited supply.
3038                  */
3039                 if (adapter->rss_queues > (max_rss_queues / 2))
3040                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3041                 else
3042                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3043                 break;
3044         }
3045 }
3046
3047 /**
3048  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3049  *  @adapter: board private structure to initialize
3050  *
3051  *  igb_sw_init initializes the Adapter private data structure.
3052  *  Fields are initialized based on PCI device information and
3053  *  OS network device settings (MTU size).
3054  **/
3055 static int igb_sw_init(struct igb_adapter *adapter)
3056 {
3057         struct e1000_hw *hw = &adapter->hw;
3058         struct net_device *netdev = adapter->netdev;
3059         struct pci_dev *pdev = adapter->pdev;
3060
3061         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3062
3063         /* set default ring sizes */
3064         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3065         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3066
3067         /* set default ITR values */
3068         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3069         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3070
3071         /* set default work limits */
3072         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3073
3074         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3075                                   VLAN_HLEN;
3076         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3077
3078         spin_lock_init(&adapter->nfc_lock);
3079         spin_lock_init(&adapter->stats64_lock);
3080 #ifdef CONFIG_PCI_IOV
3081         switch (hw->mac.type) {
3082         case e1000_82576:
3083         case e1000_i350:
3084                 if (max_vfs > 7) {
3085                         dev_warn(&pdev->dev,
3086                                  "Maximum of 7 VFs per PF, using max\n");
3087                         max_vfs = adapter->vfs_allocated_count = 7;
3088                 } else
3089                         adapter->vfs_allocated_count = max_vfs;
3090                 if (adapter->vfs_allocated_count)
3091                         dev_warn(&pdev->dev,
3092                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3093                 break;
3094         default:
3095                 break;
3096         }
3097 #endif /* CONFIG_PCI_IOV */
3098
3099         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3100         adapter->flags |= IGB_FLAG_HAS_MSIX;
3101
3102         igb_probe_vfs(adapter);
3103
3104         igb_init_queue_configuration(adapter);
3105
3106         /* Setup and initialize a copy of the hw vlan table array */
3107         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3108                                        GFP_ATOMIC);
3109
3110         /* This call may decrease the number of queues */
3111         if (igb_init_interrupt_scheme(adapter, true)) {
3112                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3113                 return -ENOMEM;
3114         }
3115
3116         /* Explicitly disable IRQ since the NIC can be in any state. */
3117         igb_irq_disable(adapter);
3118
3119         if (hw->mac.type >= e1000_i350)
3120                 adapter->flags &= ~IGB_FLAG_DMAC;
3121
3122         set_bit(__IGB_DOWN, &adapter->state);
3123         return 0;
3124 }
3125
3126 /**
3127  *  igb_open - Called when a network interface is made active
3128  *  @netdev: network interface device structure
3129  *
3130  *  Returns 0 on success, negative value on failure
3131  *
3132  *  The open entry point is called when a network interface is made
3133  *  active by the system (IFF_UP).  At this point all resources needed
3134  *  for transmit and receive operations are allocated, the interrupt
3135  *  handler is registered with the OS, the watchdog timer is started,
3136  *  and the stack is notified that the interface is ready.
3137  **/
3138 static int __igb_open(struct net_device *netdev, bool resuming)
3139 {
3140         struct igb_adapter *adapter = netdev_priv(netdev);
3141         struct e1000_hw *hw = &adapter->hw;
3142         struct pci_dev *pdev = adapter->pdev;
3143         int err;
3144         int i;
3145
3146         /* disallow open during test */
3147         if (test_bit(__IGB_TESTING, &adapter->state)) {
3148                 WARN_ON(resuming);
3149                 return -EBUSY;
3150         }
3151
3152         if (!resuming)
3153                 pm_runtime_get_sync(&pdev->dev);
3154
3155         netif_carrier_off(netdev);
3156
3157         /* allocate transmit descriptors */
3158         err = igb_setup_all_tx_resources(adapter);
3159         if (err)
3160                 goto err_setup_tx;
3161
3162         /* allocate receive descriptors */
3163         err = igb_setup_all_rx_resources(adapter);
3164         if (err)
3165                 goto err_setup_rx;
3166
3167         igb_power_up_link(adapter);
3168
3169         /* before we allocate an interrupt, we must be ready to handle it.
3170          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3171          * as soon as we call pci_request_irq, so we have to setup our
3172          * clean_rx handler before we do so.
3173          */
3174         igb_configure(adapter);
3175
3176         err = igb_request_irq(adapter);
3177         if (err)
3178                 goto err_req_irq;
3179
3180         /* Notify the stack of the actual queue counts. */
3181         err = netif_set_real_num_tx_queues(adapter->netdev,
3182                                            adapter->num_tx_queues);
3183         if (err)
3184                 goto err_set_queues;
3185
3186         err = netif_set_real_num_rx_queues(adapter->netdev,
3187                                            adapter->num_rx_queues);
3188         if (err)
3189                 goto err_set_queues;
3190
3191         /* From here on the code is the same as igb_up() */
3192         clear_bit(__IGB_DOWN, &adapter->state);
3193
3194         for (i = 0; i < adapter->num_q_vectors; i++)
3195                 napi_enable(&(adapter->q_vector[i]->napi));
3196
3197         /* Clear any pending interrupts. */
3198         rd32(E1000_ICR);
3199
3200         igb_irq_enable(adapter);
3201
3202         /* notify VFs that reset has been completed */
3203         if (adapter->vfs_allocated_count) {
3204                 u32 reg_data = rd32(E1000_CTRL_EXT);
3205
3206                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3207                 wr32(E1000_CTRL_EXT, reg_data);
3208         }
3209
3210         netif_tx_start_all_queues(netdev);
3211
3212         if (!resuming)
3213                 pm_runtime_put(&pdev->dev);
3214
3215         /* start the watchdog. */
3216         hw->mac.get_link_status = 1;
3217         schedule_work(&adapter->watchdog_task);
3218
3219         return 0;
3220
3221 err_set_queues:
3222         igb_free_irq(adapter);
3223 err_req_irq:
3224         igb_release_hw_control(adapter);
3225         igb_power_down_link(adapter);
3226         igb_free_all_rx_resources(adapter);
3227 err_setup_rx:
3228         igb_free_all_tx_resources(adapter);
3229 err_setup_tx:
3230         igb_reset(adapter);
3231         if (!resuming)
3232                 pm_runtime_put(&pdev->dev);
3233
3234         return err;
3235 }
3236
3237 int igb_open(struct net_device *netdev)
3238 {
3239         return __igb_open(netdev, false);
3240 }
3241
3242 /**
3243  *  igb_close - Disables a network interface
3244  *  @netdev: network interface device structure
3245  *
3246  *  Returns 0, this is not allowed to fail
3247  *
3248  *  The close entry point is called when an interface is de-activated
3249  *  by the OS.  The hardware is still under the driver's control, but
3250  *  needs to be disabled.  A global MAC reset is issued to stop the
3251  *  hardware, and all transmit and receive resources are freed.
3252  **/
3253 static int __igb_close(struct net_device *netdev, bool suspending)
3254 {
3255         struct igb_adapter *adapter = netdev_priv(netdev);
3256         struct pci_dev *pdev = adapter->pdev;
3257
3258         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3259
3260         if (!suspending)
3261                 pm_runtime_get_sync(&pdev->dev);
3262
3263         igb_down(adapter);
3264         igb_free_irq(adapter);
3265
3266         igb_nfc_filter_exit(adapter);
3267
3268         igb_free_all_tx_resources(adapter);
3269         igb_free_all_rx_resources(adapter);
3270
3271         if (!suspending)
3272                 pm_runtime_put_sync(&pdev->dev);
3273         return 0;
3274 }
3275
3276 int igb_close(struct net_device *netdev)
3277 {
3278         return __igb_close(netdev, false);
3279 }
3280
3281 /**
3282  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3283  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3284  *
3285  *  Return 0 on success, negative on failure
3286  **/
3287 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3288 {
3289         struct device *dev = tx_ring->dev;
3290         int size;
3291
3292         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3293
3294         tx_ring->tx_buffer_info = vzalloc(size);
3295         if (!tx_ring->tx_buffer_info)
3296                 goto err;
3297
3298         /* round up to nearest 4K */
3299         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3300         tx_ring->size = ALIGN(tx_ring->size, 4096);
3301
3302         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3303                                            &tx_ring->dma, GFP_KERNEL);
3304         if (!tx_ring->desc)
3305                 goto err;
3306
3307         tx_ring->next_to_use = 0;
3308         tx_ring->next_to_clean = 0;
3309
3310         return 0;
3311
3312 err:
3313         vfree(tx_ring->tx_buffer_info);
3314         tx_ring->tx_buffer_info = NULL;
3315         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3316         return -ENOMEM;
3317 }
3318
3319 /**
3320  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3321  *                               (Descriptors) for all queues
3322  *  @adapter: board private structure
3323  *
3324  *  Return 0 on success, negative on failure
3325  **/
3326 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3327 {
3328         struct pci_dev *pdev = adapter->pdev;
3329         int i, err = 0;
3330
3331         for (i = 0; i < adapter->num_tx_queues; i++) {
3332                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3333                 if (err) {
3334                         dev_err(&pdev->dev,
3335                                 "Allocation for Tx Queue %u failed\n", i);
3336                         for (i--; i >= 0; i--)
3337                                 igb_free_tx_resources(adapter->tx_ring[i]);
3338                         break;
3339                 }
3340         }
3341
3342         return err;
3343 }
3344
3345 /**
3346  *  igb_setup_tctl - configure the transmit control registers
3347  *  @adapter: Board private structure
3348  **/
3349 void igb_setup_tctl(struct igb_adapter *adapter)
3350 {
3351         struct e1000_hw *hw = &adapter->hw;
3352         u32 tctl;
3353
3354         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3355         wr32(E1000_TXDCTL(0), 0);
3356
3357         /* Program the Transmit Control Register */
3358         tctl = rd32(E1000_TCTL);
3359         tctl &= ~E1000_TCTL_CT;
3360         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3361                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3362
3363         igb_config_collision_dist(hw);
3364
3365         /* Enable transmits */
3366         tctl |= E1000_TCTL_EN;
3367
3368         wr32(E1000_TCTL, tctl);
3369 }
3370
3371 /**
3372  *  igb_configure_tx_ring - Configure transmit ring after Reset
3373  *  @adapter: board private structure
3374  *  @ring: tx ring to configure
3375  *
3376  *  Configure a transmit ring after a reset.
3377  **/
3378 void igb_configure_tx_ring(struct igb_adapter *adapter,
3379                            struct igb_ring *ring)
3380 {
3381         struct e1000_hw *hw = &adapter->hw;
3382         u32 txdctl = 0;
3383         u64 tdba = ring->dma;
3384         int reg_idx = ring->reg_idx;
3385
3386         /* disable the queue */
3387         wr32(E1000_TXDCTL(reg_idx), 0);
3388         wrfl();
3389         mdelay(10);
3390
3391         wr32(E1000_TDLEN(reg_idx),
3392              ring->count * sizeof(union e1000_adv_tx_desc));
3393         wr32(E1000_TDBAL(reg_idx),
3394              tdba & 0x00000000ffffffffULL);
3395         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3396
3397         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3398         wr32(E1000_TDH(reg_idx), 0);
3399         writel(0, ring->tail);
3400
3401         txdctl |= IGB_TX_PTHRESH;
3402         txdctl |= IGB_TX_HTHRESH << 8;
3403         txdctl |= IGB_TX_WTHRESH << 16;
3404
3405         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3406         wr32(E1000_TXDCTL(reg_idx), txdctl);
3407 }
3408
3409 /**
3410  *  igb_configure_tx - Configure transmit Unit after Reset
3411  *  @adapter: board private structure
3412  *
3413  *  Configure the Tx unit of the MAC after a reset.
3414  **/
3415 static void igb_configure_tx(struct igb_adapter *adapter)
3416 {
3417         int i;
3418
3419         for (i = 0; i < adapter->num_tx_queues; i++)
3420                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3421 }
3422
3423 /**
3424  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3425  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3426  *
3427  *  Returns 0 on success, negative on failure
3428  **/
3429 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3430 {
3431         struct device *dev = rx_ring->dev;
3432         int size;
3433
3434         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3435
3436         rx_ring->rx_buffer_info = vzalloc(size);
3437         if (!rx_ring->rx_buffer_info)
3438                 goto err;
3439
3440         /* Round up to nearest 4K */
3441         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3442         rx_ring->size = ALIGN(rx_ring->size, 4096);
3443
3444         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3445                                            &rx_ring->dma, GFP_KERNEL);
3446         if (!rx_ring->desc)
3447                 goto err;
3448
3449         rx_ring->next_to_alloc = 0;
3450         rx_ring->next_to_clean = 0;
3451         rx_ring->next_to_use = 0;
3452
3453         return 0;
3454
3455 err:
3456         vfree(rx_ring->rx_buffer_info);
3457         rx_ring->rx_buffer_info = NULL;
3458         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3459         return -ENOMEM;
3460 }
3461
3462 /**
3463  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3464  *                               (Descriptors) for all queues
3465  *  @adapter: board private structure
3466  *
3467  *  Return 0 on success, negative on failure
3468  **/
3469 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3470 {
3471         struct pci_dev *pdev = adapter->pdev;
3472         int i, err = 0;
3473
3474         for (i = 0; i < adapter->num_rx_queues; i++) {
3475                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3476                 if (err) {
3477                         dev_err(&pdev->dev,
3478                                 "Allocation for Rx Queue %u failed\n", i);
3479                         for (i--; i >= 0; i--)
3480                                 igb_free_rx_resources(adapter->rx_ring[i]);
3481                         break;
3482                 }
3483         }
3484
3485         return err;
3486 }
3487
3488 /**
3489  *  igb_setup_mrqc - configure the multiple receive queue control registers
3490  *  @adapter: Board private structure
3491  **/
3492 static void igb_setup_mrqc(struct igb_adapter *adapter)
3493 {
3494         struct e1000_hw *hw = &adapter->hw;
3495         u32 mrqc, rxcsum;
3496         u32 j, num_rx_queues;
3497         u32 rss_key[10];
3498
3499         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3500         for (j = 0; j < 10; j++)
3501                 wr32(E1000_RSSRK(j), rss_key[j]);
3502
3503         num_rx_queues = adapter->rss_queues;
3504
3505         switch (hw->mac.type) {
3506         case e1000_82576:
3507                 /* 82576 supports 2 RSS queues for SR-IOV */
3508                 if (adapter->vfs_allocated_count)
3509                         num_rx_queues = 2;
3510                 break;
3511         default:
3512                 break;
3513         }
3514
3515         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3516                 for (j = 0; j < IGB_RETA_SIZE; j++)
3517                         adapter->rss_indir_tbl[j] =
3518                         (j * num_rx_queues) / IGB_RETA_SIZE;
3519                 adapter->rss_indir_tbl_init = num_rx_queues;
3520         }
3521         igb_write_rss_indir_tbl(adapter);
3522
3523         /* Disable raw packet checksumming so that RSS hash is placed in
3524          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3525          * offloads as they are enabled by default
3526          */
3527         rxcsum = rd32(E1000_RXCSUM);
3528         rxcsum |= E1000_RXCSUM_PCSD;
3529
3530         if (adapter->hw.mac.type >= e1000_82576)
3531                 /* Enable Receive Checksum Offload for SCTP */
3532                 rxcsum |= E1000_RXCSUM_CRCOFL;
3533
3534         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3535         wr32(E1000_RXCSUM, rxcsum);
3536
3537         /* Generate RSS hash based on packet types, TCP/UDP
3538          * port numbers and/or IPv4/v6 src and dst addresses
3539          */
3540         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3541                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3542                E1000_MRQC_RSS_FIELD_IPV6 |
3543                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3544                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3545
3546         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3547                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3548         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3549                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3550
3551         /* If VMDq is enabled then we set the appropriate mode for that, else
3552          * we default to RSS so that an RSS hash is calculated per packet even
3553          * if we are only using one queue
3554          */
3555         if (adapter->vfs_allocated_count) {
3556                 if (hw->mac.type > e1000_82575) {
3557                         /* Set the default pool for the PF's first queue */
3558                         u32 vtctl = rd32(E1000_VT_CTL);
3559
3560                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3561                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3562                         vtctl |= adapter->vfs_allocated_count <<
3563                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3564                         wr32(E1000_VT_CTL, vtctl);
3565                 }
3566                 if (adapter->rss_queues > 1)
3567                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3568                 else
3569                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3570         } else {
3571                 if (hw->mac.type != e1000_i211)
3572                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3573         }
3574         igb_vmm_control(adapter);
3575
3576         wr32(E1000_MRQC, mrqc);
3577 }
3578
3579 /**
3580  *  igb_setup_rctl - configure the receive control registers
3581  *  @adapter: Board private structure
3582  **/
3583 void igb_setup_rctl(struct igb_adapter *adapter)
3584 {
3585         struct e1000_hw *hw = &adapter->hw;
3586         u32 rctl;
3587
3588         rctl = rd32(E1000_RCTL);
3589
3590         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3591         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3592
3593         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3594                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3595
3596         /* enable stripping of CRC. It's unlikely this will break BMC
3597          * redirection as it did with e1000. Newer features require
3598          * that the HW strips the CRC.
3599          */
3600         rctl |= E1000_RCTL_SECRC;
3601
3602         /* disable store bad packets and clear size bits. */
3603         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3604
3605         /* enable LPE to allow for reception of jumbo frames */
3606         rctl |= E1000_RCTL_LPE;
3607
3608         /* disable queue 0 to prevent tail write w/o re-config */
3609         wr32(E1000_RXDCTL(0), 0);
3610
3611         /* Attention!!!  For SR-IOV PF driver operations you must enable
3612          * queue drop for all VF and PF queues to prevent head of line blocking
3613          * if an un-trusted VF does not provide descriptors to hardware.
3614          */
3615         if (adapter->vfs_allocated_count) {
3616                 /* set all queue drop enable bits */
3617                 wr32(E1000_QDE, ALL_QUEUES);
3618         }
3619
3620         /* This is useful for sniffing bad packets. */
3621         if (adapter->netdev->features & NETIF_F_RXALL) {
3622                 /* UPE and MPE will be handled by normal PROMISC logic
3623                  * in e1000e_set_rx_mode
3624                  */
3625                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3626                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3627                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3628
3629                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3630                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3631                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3632                  * and that breaks VLANs.
3633                  */
3634         }
3635
3636         wr32(E1000_RCTL, rctl);
3637 }
3638
3639 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3640                                    int vfn)
3641 {
3642         struct e1000_hw *hw = &adapter->hw;
3643         u32 vmolr;
3644
3645         if (size > MAX_JUMBO_FRAME_SIZE)
3646                 size = MAX_JUMBO_FRAME_SIZE;
3647
3648         vmolr = rd32(E1000_VMOLR(vfn));
3649         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3650         vmolr |= size | E1000_VMOLR_LPE;
3651         wr32(E1000_VMOLR(vfn), vmolr);
3652
3653         return 0;
3654 }
3655
3656 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3657                                          int vfn, bool enable)
3658 {
3659         struct e1000_hw *hw = &adapter->hw;
3660         u32 val, reg;
3661
3662         if (hw->mac.type < e1000_82576)
3663                 return;
3664
3665         if (hw->mac.type == e1000_i350)
3666                 reg = E1000_DVMOLR(vfn);
3667         else
3668                 reg = E1000_VMOLR(vfn);
3669
3670         val = rd32(reg);
3671         if (enable)
3672                 val |= E1000_VMOLR_STRVLAN;
3673         else
3674                 val &= ~(E1000_VMOLR_STRVLAN);
3675         wr32(reg, val);
3676 }
3677
3678 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3679                                  int vfn, bool aupe)
3680 {
3681         struct e1000_hw *hw = &adapter->hw;
3682         u32 vmolr;
3683
3684         /* This register exists only on 82576 and newer so if we are older then
3685          * we should exit and do nothing
3686          */
3687         if (hw->mac.type < e1000_82576)
3688                 return;
3689
3690         vmolr = rd32(E1000_VMOLR(vfn));
3691         if (aupe)
3692                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3693         else
3694                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3695
3696         /* clear all bits that might not be set */
3697         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3698
3699         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3700                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3701         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3702          * multicast packets
3703          */
3704         if (vfn <= adapter->vfs_allocated_count)
3705                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3706
3707         wr32(E1000_VMOLR(vfn), vmolr);
3708 }
3709
3710 /**
3711  *  igb_configure_rx_ring - Configure a receive ring after Reset
3712  *  @adapter: board private structure
3713  *  @ring: receive ring to be configured
3714  *
3715  *  Configure the Rx unit of the MAC after a reset.
3716  **/
3717 void igb_configure_rx_ring(struct igb_adapter *adapter,
3718                            struct igb_ring *ring)
3719 {
3720         struct e1000_hw *hw = &adapter->hw;
3721         u64 rdba = ring->dma;
3722         int reg_idx = ring->reg_idx;
3723         u32 srrctl = 0, rxdctl = 0;
3724
3725         /* disable the queue */
3726         wr32(E1000_RXDCTL(reg_idx), 0);
3727
3728         /* Set DMA base address registers */
3729         wr32(E1000_RDBAL(reg_idx),
3730              rdba & 0x00000000ffffffffULL);
3731         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3732         wr32(E1000_RDLEN(reg_idx),
3733              ring->count * sizeof(union e1000_adv_rx_desc));
3734
3735         /* initialize head and tail */
3736         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3737         wr32(E1000_RDH(reg_idx), 0);
3738         writel(0, ring->tail);
3739
3740         /* set descriptor configuration */
3741         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3742         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3743         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3744         if (hw->mac.type >= e1000_82580)
3745                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3746         /* Only set Drop Enable if we are supporting multiple queues */
3747         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3748                 srrctl |= E1000_SRRCTL_DROP_EN;
3749
3750         wr32(E1000_SRRCTL(reg_idx), srrctl);
3751
3752         /* set filtering for VMDQ pools */
3753         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3754
3755         rxdctl |= IGB_RX_PTHRESH;
3756         rxdctl |= IGB_RX_HTHRESH << 8;
3757         rxdctl |= IGB_RX_WTHRESH << 16;
3758
3759         /* enable receive descriptor fetching */
3760         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3761         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3762 }
3763
3764 /**
3765  *  igb_configure_rx - Configure receive Unit after Reset
3766  *  @adapter: board private structure
3767  *
3768  *  Configure the Rx unit of the MAC after a reset.
3769  **/
3770 static void igb_configure_rx(struct igb_adapter *adapter)
3771 {
3772         int i;
3773
3774         /* set the correct pool for the PF default MAC address in entry 0 */
3775         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3776                          adapter->vfs_allocated_count);
3777
3778         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3779          * the Base and Length of the Rx Descriptor Ring
3780          */
3781         for (i = 0; i < adapter->num_rx_queues; i++)
3782                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3783 }
3784
3785 /**
3786  *  igb_free_tx_resources - Free Tx Resources per Queue
3787  *  @tx_ring: Tx descriptor ring for a specific queue
3788  *
3789  *  Free all transmit software resources
3790  **/
3791 void igb_free_tx_resources(struct igb_ring *tx_ring)
3792 {
3793         igb_clean_tx_ring(tx_ring);
3794
3795         vfree(tx_ring->tx_buffer_info);
3796         tx_ring->tx_buffer_info = NULL;
3797
3798         /* if not set, then don't free */
3799         if (!tx_ring->desc)
3800                 return;
3801
3802         dma_free_coherent(tx_ring->dev, tx_ring->size,
3803                           tx_ring->desc, tx_ring->dma);
3804
3805         tx_ring->desc = NULL;
3806 }
3807
3808 /**
3809  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3810  *  @adapter: board private structure
3811  *
3812  *  Free all transmit software resources
3813  **/
3814 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3815 {
3816         int i;
3817
3818         for (i = 0; i < adapter->num_tx_queues; i++)
3819                 if (adapter->tx_ring[i])
3820                         igb_free_tx_resources(adapter->tx_ring[i]);
3821 }
3822
3823 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3824                                     struct igb_tx_buffer *tx_buffer)
3825 {
3826         if (tx_buffer->skb) {
3827                 dev_kfree_skb_any(tx_buffer->skb);
3828                 if (dma_unmap_len(tx_buffer, len))
3829                         dma_unmap_single(ring->dev,
3830                                          dma_unmap_addr(tx_buffer, dma),
3831                                          dma_unmap_len(tx_buffer, len),
3832                                          DMA_TO_DEVICE);
3833         } else if (dma_unmap_len(tx_buffer, len)) {
3834                 dma_unmap_page(ring->dev,
3835                                dma_unmap_addr(tx_buffer, dma),
3836                                dma_unmap_len(tx_buffer, len),
3837                                DMA_TO_DEVICE);
3838         }
3839         tx_buffer->next_to_watch = NULL;
3840         tx_buffer->skb = NULL;
3841         dma_unmap_len_set(tx_buffer, len, 0);
3842         /* buffer_info must be completely set up in the transmit path */
3843 }
3844
3845 /**
3846  *  igb_clean_tx_ring - Free Tx Buffers
3847  *  @tx_ring: ring to be cleaned
3848  **/
3849 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3850 {
3851         struct igb_tx_buffer *buffer_info;
3852         unsigned long size;
3853         u16 i;
3854
3855         if (!tx_ring->tx_buffer_info)
3856                 return;
3857         /* Free all the Tx ring sk_buffs */
3858
3859         for (i = 0; i < tx_ring->count; i++) {
3860                 buffer_info = &tx_ring->tx_buffer_info[i];
3861                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3862         }
3863
3864         netdev_tx_reset_queue(txring_txq(tx_ring));
3865
3866         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3867         memset(tx_ring->tx_buffer_info, 0, size);
3868
3869         /* Zero out the descriptor ring */
3870         memset(tx_ring->desc, 0, tx_ring->size);
3871
3872         tx_ring->next_to_use = 0;
3873         tx_ring->next_to_clean = 0;
3874 }
3875
3876 /**
3877  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3878  *  @adapter: board private structure
3879  **/
3880 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3881 {
3882         int i;
3883
3884         for (i = 0; i < adapter->num_tx_queues; i++)
3885                 if (adapter->tx_ring[i])
3886                         igb_clean_tx_ring(adapter->tx_ring[i]);
3887 }
3888
3889 /**
3890  *  igb_free_rx_resources - Free Rx Resources
3891  *  @rx_ring: ring to clean the resources from
3892  *
3893  *  Free all receive software resources
3894  **/
3895 void igb_free_rx_resources(struct igb_ring *rx_ring)
3896 {
3897         igb_clean_rx_ring(rx_ring);
3898
3899         vfree(rx_ring->rx_buffer_info);
3900         rx_ring->rx_buffer_info = NULL;
3901
3902         /* if not set, then don't free */
3903         if (!rx_ring->desc)
3904                 return;
3905
3906         dma_free_coherent(rx_ring->dev, rx_ring->size,
3907                           rx_ring->desc, rx_ring->dma);
3908
3909         rx_ring->desc = NULL;
3910 }
3911
3912 /**
3913  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3914  *  @adapter: board private structure
3915  *
3916  *  Free all receive software resources
3917  **/
3918 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3919 {
3920         int i;
3921
3922         for (i = 0; i < adapter->num_rx_queues; i++)
3923                 if (adapter->rx_ring[i])
3924                         igb_free_rx_resources(adapter->rx_ring[i]);
3925 }
3926
3927 /**
3928  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3929  *  @rx_ring: ring to free buffers from
3930  **/
3931 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3932 {
3933         unsigned long size;
3934         u16 i;
3935
3936         if (rx_ring->skb)
3937                 dev_kfree_skb(rx_ring->skb);
3938         rx_ring->skb = NULL;
3939
3940         if (!rx_ring->rx_buffer_info)
3941                 return;
3942
3943         /* Free all the Rx ring sk_buffs */
3944         for (i = 0; i < rx_ring->count; i++) {
3945                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3946
3947                 if (!buffer_info->page)
3948                         continue;
3949
3950                 /* Invalidate cache lines that may have been written to by
3951                  * device so that we avoid corrupting memory.
3952                  */
3953                 dma_sync_single_range_for_cpu(rx_ring->dev,
3954                                               buffer_info->dma,
3955                                               buffer_info->page_offset,
3956                                               IGB_RX_BUFSZ,
3957                                               DMA_FROM_DEVICE);
3958
3959                 /* free resources associated with mapping */
3960                 dma_unmap_page_attrs(rx_ring->dev,
3961                                      buffer_info->dma,
3962                                      PAGE_SIZE,
3963                                      DMA_FROM_DEVICE,
3964                                      DMA_ATTR_SKIP_CPU_SYNC);
3965                 __page_frag_drain(buffer_info->page, 0,
3966                                   buffer_info->pagecnt_bias);
3967
3968                 buffer_info->page = NULL;
3969         }
3970
3971         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3972         memset(rx_ring->rx_buffer_info, 0, size);
3973
3974         /* Zero out the descriptor ring */
3975         memset(rx_ring->desc, 0, rx_ring->size);
3976
3977         rx_ring->next_to_alloc = 0;
3978         rx_ring->next_to_clean = 0;
3979         rx_ring->next_to_use = 0;
3980 }
3981
3982 /**
3983  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3984  *  @adapter: board private structure
3985  **/
3986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3987 {
3988         int i;
3989
3990         for (i = 0; i < adapter->num_rx_queues; i++)
3991                 if (adapter->rx_ring[i])
3992                         igb_clean_rx_ring(adapter->rx_ring[i]);
3993 }
3994
3995 /**
3996  *  igb_set_mac - Change the Ethernet Address of the NIC
3997  *  @netdev: network interface device structure
3998  *  @p: pointer to an address structure
3999  *
4000  *  Returns 0 on success, negative on failure
4001  **/
4002 static int igb_set_mac(struct net_device *netdev, void *p)
4003 {
4004         struct igb_adapter *adapter = netdev_priv(netdev);
4005         struct e1000_hw *hw = &adapter->hw;
4006         struct sockaddr *addr = p;
4007
4008         if (!is_valid_ether_addr(addr->sa_data))
4009                 return -EADDRNOTAVAIL;
4010
4011         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4013
4014         /* set the correct pool for the new PF MAC address in entry 0 */
4015         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4016                          adapter->vfs_allocated_count);
4017
4018         return 0;
4019 }
4020
4021 /**
4022  *  igb_write_mc_addr_list - write multicast addresses to MTA
4023  *  @netdev: network interface device structure
4024  *
4025  *  Writes multicast address list to the MTA hash table.
4026  *  Returns: -ENOMEM on failure
4027  *           0 on no addresses written
4028  *           X on writing X addresses to MTA
4029  **/
4030 static int igb_write_mc_addr_list(struct net_device *netdev)
4031 {
4032         struct igb_adapter *adapter = netdev_priv(netdev);
4033         struct e1000_hw *hw = &adapter->hw;
4034         struct netdev_hw_addr *ha;
4035         u8  *mta_list;
4036         int i;
4037
4038         if (netdev_mc_empty(netdev)) {
4039                 /* nothing to program, so clear mc list */
4040                 igb_update_mc_addr_list(hw, NULL, 0);
4041                 igb_restore_vf_multicasts(adapter);
4042                 return 0;
4043         }
4044
4045         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4046         if (!mta_list)
4047                 return -ENOMEM;
4048
4049         /* The shared function expects a packed array of only addresses. */
4050         i = 0;
4051         netdev_for_each_mc_addr(ha, netdev)
4052                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4053
4054         igb_update_mc_addr_list(hw, mta_list, i);
4055         kfree(mta_list);
4056
4057         return netdev_mc_count(netdev);
4058 }
4059
4060 /**
4061  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4062  *  @netdev: network interface device structure
4063  *
4064  *  Writes unicast address list to the RAR table.
4065  *  Returns: -ENOMEM on failure/insufficient address space
4066  *           0 on no addresses written
4067  *           X on writing X addresses to the RAR table
4068  **/
4069 static int igb_write_uc_addr_list(struct net_device *netdev)
4070 {
4071         struct igb_adapter *adapter = netdev_priv(netdev);
4072         struct e1000_hw *hw = &adapter->hw;
4073         unsigned int vfn = adapter->vfs_allocated_count;
4074         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4075         int count = 0;
4076
4077         /* return ENOMEM indicating insufficient memory for addresses */
4078         if (netdev_uc_count(netdev) > rar_entries)
4079                 return -ENOMEM;
4080
4081         if (!netdev_uc_empty(netdev) && rar_entries) {
4082                 struct netdev_hw_addr *ha;
4083
4084                 netdev_for_each_uc_addr(ha, netdev) {
4085                         if (!rar_entries)
4086                                 break;
4087                         igb_rar_set_qsel(adapter, ha->addr,
4088                                          rar_entries--,
4089                                          vfn);
4090                         count++;
4091                 }
4092         }
4093         /* write the addresses in reverse order to avoid write combining */
4094         for (; rar_entries > 0 ; rar_entries--) {
4095                 wr32(E1000_RAH(rar_entries), 0);
4096                 wr32(E1000_RAL(rar_entries), 0);
4097         }
4098         wrfl();
4099
4100         return count;
4101 }
4102
4103 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4104 {
4105         struct e1000_hw *hw = &adapter->hw;
4106         u32 i, pf_id;
4107
4108         switch (hw->mac.type) {
4109         case e1000_i210:
4110         case e1000_i211:
4111         case e1000_i350:
4112                 /* VLAN filtering needed for VLAN prio filter */
4113                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4114                         break;
4115                 /* fall through */
4116         case e1000_82576:
4117         case e1000_82580:
4118         case e1000_i354:
4119                 /* VLAN filtering needed for pool filtering */
4120                 if (adapter->vfs_allocated_count)
4121                         break;
4122                 /* fall through */
4123         default:
4124                 return 1;
4125         }
4126
4127         /* We are already in VLAN promisc, nothing to do */
4128         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4129                 return 0;
4130
4131         if (!adapter->vfs_allocated_count)
4132                 goto set_vfta;
4133
4134         /* Add PF to all active pools */
4135         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4136
4137         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4138                 u32 vlvf = rd32(E1000_VLVF(i));
4139
4140                 vlvf |= BIT(pf_id);
4141                 wr32(E1000_VLVF(i), vlvf);
4142         }
4143
4144 set_vfta:
4145         /* Set all bits in the VLAN filter table array */
4146         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4147                 hw->mac.ops.write_vfta(hw, i, ~0U);
4148
4149         /* Set flag so we don't redo unnecessary work */
4150         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4151
4152         return 0;
4153 }
4154
4155 #define VFTA_BLOCK_SIZE 8
4156 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4157 {
4158         struct e1000_hw *hw = &adapter->hw;
4159         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4160         u32 vid_start = vfta_offset * 32;
4161         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4162         u32 i, vid, word, bits, pf_id;
4163
4164         /* guarantee that we don't scrub out management VLAN */
4165         vid = adapter->mng_vlan_id;
4166         if (vid >= vid_start && vid < vid_end)
4167                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4168
4169         if (!adapter->vfs_allocated_count)
4170                 goto set_vfta;
4171
4172         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4173
4174         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4175                 u32 vlvf = rd32(E1000_VLVF(i));
4176
4177                 /* pull VLAN ID from VLVF */
4178                 vid = vlvf & VLAN_VID_MASK;
4179
4180                 /* only concern ourselves with a certain range */
4181                 if (vid < vid_start || vid >= vid_end)
4182                         continue;
4183
4184                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4185                         /* record VLAN ID in VFTA */
4186                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4187
4188                         /* if PF is part of this then continue */
4189                         if (test_bit(vid, adapter->active_vlans))
4190                                 continue;
4191                 }
4192
4193                 /* remove PF from the pool */
4194                 bits = ~BIT(pf_id);
4195                 bits &= rd32(E1000_VLVF(i));
4196                 wr32(E1000_VLVF(i), bits);
4197         }
4198
4199 set_vfta:
4200         /* extract values from active_vlans and write back to VFTA */
4201         for (i = VFTA_BLOCK_SIZE; i--;) {
4202                 vid = (vfta_offset + i) * 32;
4203                 word = vid / BITS_PER_LONG;
4204                 bits = vid % BITS_PER_LONG;
4205
4206                 vfta[i] |= adapter->active_vlans[word] >> bits;
4207
4208                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4209         }
4210 }
4211
4212 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4213 {
4214         u32 i;
4215
4216         /* We are not in VLAN promisc, nothing to do */
4217         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4218                 return;
4219
4220         /* Set flag so we don't redo unnecessary work */
4221         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4222
4223         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4224                 igb_scrub_vfta(adapter, i);
4225 }
4226
4227 /**
4228  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4229  *  @netdev: network interface device structure
4230  *
4231  *  The set_rx_mode entry point is called whenever the unicast or multicast
4232  *  address lists or the network interface flags are updated.  This routine is
4233  *  responsible for configuring the hardware for proper unicast, multicast,
4234  *  promiscuous mode, and all-multi behavior.
4235  **/
4236 static void igb_set_rx_mode(struct net_device *netdev)
4237 {
4238         struct igb_adapter *adapter = netdev_priv(netdev);
4239         struct e1000_hw *hw = &adapter->hw;
4240         unsigned int vfn = adapter->vfs_allocated_count;
4241         u32 rctl = 0, vmolr = 0;
4242         int count;
4243
4244         /* Check for Promiscuous and All Multicast modes */
4245         if (netdev->flags & IFF_PROMISC) {
4246                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4247                 vmolr |= E1000_VMOLR_MPME;
4248
4249                 /* enable use of UTA filter to force packets to default pool */
4250                 if (hw->mac.type == e1000_82576)
4251                         vmolr |= E1000_VMOLR_ROPE;
4252         } else {
4253                 if (netdev->flags & IFF_ALLMULTI) {
4254                         rctl |= E1000_RCTL_MPE;
4255                         vmolr |= E1000_VMOLR_MPME;
4256                 } else {
4257                         /* Write addresses to the MTA, if the attempt fails
4258                          * then we should just turn on promiscuous mode so
4259                          * that we can at least receive multicast traffic
4260                          */
4261                         count = igb_write_mc_addr_list(netdev);
4262                         if (count < 0) {
4263                                 rctl |= E1000_RCTL_MPE;
4264                                 vmolr |= E1000_VMOLR_MPME;
4265                         } else if (count) {
4266                                 vmolr |= E1000_VMOLR_ROMPE;
4267                         }
4268                 }
4269         }
4270
4271         /* Write addresses to available RAR registers, if there is not
4272          * sufficient space to store all the addresses then enable
4273          * unicast promiscuous mode
4274          */
4275         count = igb_write_uc_addr_list(netdev);
4276         if (count < 0) {
4277                 rctl |= E1000_RCTL_UPE;
4278                 vmolr |= E1000_VMOLR_ROPE;
4279         }
4280
4281         /* enable VLAN filtering by default */
4282         rctl |= E1000_RCTL_VFE;
4283
4284         /* disable VLAN filtering for modes that require it */
4285         if ((netdev->flags & IFF_PROMISC) ||
4286             (netdev->features & NETIF_F_RXALL)) {
4287                 /* if we fail to set all rules then just clear VFE */
4288                 if (igb_vlan_promisc_enable(adapter))
4289                         rctl &= ~E1000_RCTL_VFE;
4290         } else {
4291                 igb_vlan_promisc_disable(adapter);
4292         }
4293
4294         /* update state of unicast, multicast, and VLAN filtering modes */
4295         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4296                                      E1000_RCTL_VFE);
4297         wr32(E1000_RCTL, rctl);
4298
4299         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4300          * the VMOLR to enable the appropriate modes.  Without this workaround
4301          * we will have issues with VLAN tag stripping not being done for frames
4302          * that are only arriving because we are the default pool
4303          */
4304         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4305                 return;
4306
4307         /* set UTA to appropriate mode */
4308         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4309
4310         vmolr |= rd32(E1000_VMOLR(vfn)) &
4311                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4312
4313         /* enable Rx jumbo frames, no need for restriction */
4314         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4315         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4316
4317         wr32(E1000_VMOLR(vfn), vmolr);
4318         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4319
4320         igb_restore_vf_multicasts(adapter);
4321 }
4322
4323 static void igb_check_wvbr(struct igb_adapter *adapter)
4324 {
4325         struct e1000_hw *hw = &adapter->hw;
4326         u32 wvbr = 0;
4327
4328         switch (hw->mac.type) {
4329         case e1000_82576:
4330         case e1000_i350:
4331                 wvbr = rd32(E1000_WVBR);
4332                 if (!wvbr)
4333                         return;
4334                 break;
4335         default:
4336                 break;
4337         }
4338
4339         adapter->wvbr |= wvbr;
4340 }
4341
4342 #define IGB_STAGGERED_QUEUE_OFFSET 8
4343
4344 static void igb_spoof_check(struct igb_adapter *adapter)
4345 {
4346         int j;
4347
4348         if (!adapter->wvbr)
4349                 return;
4350
4351         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4352                 if (adapter->wvbr & BIT(j) ||
4353                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4354                         dev_warn(&adapter->pdev->dev,
4355                                 "Spoof event(s) detected on VF %d\n", j);
4356                         adapter->wvbr &=
4357                                 ~(BIT(j) |
4358                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4359                 }
4360         }
4361 }
4362
4363 /* Need to wait a few seconds after link up to get diagnostic information from
4364  * the phy
4365  */
4366 static void igb_update_phy_info(unsigned long data)
4367 {
4368         struct igb_adapter *adapter = (struct igb_adapter *) data;
4369         igb_get_phy_info(&adapter->hw);
4370 }
4371
4372 /**
4373  *  igb_has_link - check shared code for link and determine up/down
4374  *  @adapter: pointer to driver private info
4375  **/
4376 bool igb_has_link(struct igb_adapter *adapter)
4377 {
4378         struct e1000_hw *hw = &adapter->hw;
4379         bool link_active = false;
4380
4381         /* get_link_status is set on LSC (link status) interrupt or
4382          * rx sequence error interrupt.  get_link_status will stay
4383          * false until the e1000_check_for_link establishes link
4384          * for copper adapters ONLY
4385          */
4386         switch (hw->phy.media_type) {
4387         case e1000_media_type_copper:
4388                 if (!hw->mac.get_link_status)
4389                         return true;
4390         case e1000_media_type_internal_serdes:
4391                 hw->mac.ops.check_for_link(hw);
4392                 link_active = !hw->mac.get_link_status;
4393                 break;
4394         default:
4395         case e1000_media_type_unknown:
4396                 break;
4397         }
4398
4399         if (((hw->mac.type == e1000_i210) ||
4400              (hw->mac.type == e1000_i211)) &&
4401              (hw->phy.id == I210_I_PHY_ID)) {
4402                 if (!netif_carrier_ok(adapter->netdev)) {
4403                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4405                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4406                         adapter->link_check_timeout = jiffies;
4407                 }
4408         }
4409
4410         return link_active;
4411 }
4412
4413 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4414 {
4415         bool ret = false;
4416         u32 ctrl_ext, thstat;
4417
4418         /* check for thermal sensor event on i350 copper only */
4419         if (hw->mac.type == e1000_i350) {
4420                 thstat = rd32(E1000_THSTAT);
4421                 ctrl_ext = rd32(E1000_CTRL_EXT);
4422
4423                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4424                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4425                         ret = !!(thstat & event);
4426         }
4427
4428         return ret;
4429 }
4430
4431 /**
4432  *  igb_check_lvmmc - check for malformed packets received
4433  *  and indicated in LVMMC register
4434  *  @adapter: pointer to adapter
4435  **/
4436 static void igb_check_lvmmc(struct igb_adapter *adapter)
4437 {
4438         struct e1000_hw *hw = &adapter->hw;
4439         u32 lvmmc;
4440
4441         lvmmc = rd32(E1000_LVMMC);
4442         if (lvmmc) {
4443                 if (unlikely(net_ratelimit())) {
4444                         netdev_warn(adapter->netdev,
4445                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4446                                     lvmmc);
4447                 }
4448         }
4449 }
4450
4451 /**
4452  *  igb_watchdog - Timer Call-back
4453  *  @data: pointer to adapter cast into an unsigned long
4454  **/
4455 static void igb_watchdog(unsigned long data)
4456 {
4457         struct igb_adapter *adapter = (struct igb_adapter *)data;
4458         /* Do the rest outside of interrupt context */
4459         schedule_work(&adapter->watchdog_task);
4460 }
4461
4462 static void igb_watchdog_task(struct work_struct *work)
4463 {
4464         struct igb_adapter *adapter = container_of(work,
4465                                                    struct igb_adapter,
4466                                                    watchdog_task);
4467         struct e1000_hw *hw = &adapter->hw;
4468         struct e1000_phy_info *phy = &hw->phy;
4469         struct net_device *netdev = adapter->netdev;
4470         u32 link;
4471         int i;
4472         u32 connsw;
4473         u16 phy_data, retry_count = 20;
4474
4475         link = igb_has_link(adapter);
4476
4477         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4478                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4479                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4480                 else
4481                         link = false;
4482         }
4483
4484         /* Force link down if we have fiber to swap to */
4485         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4486                 if (hw->phy.media_type == e1000_media_type_copper) {
4487                         connsw = rd32(E1000_CONNSW);
4488                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4489                                 link = 0;
4490                 }
4491         }
4492         if (link) {
4493                 /* Perform a reset if the media type changed. */
4494                 if (hw->dev_spec._82575.media_changed) {
4495                         hw->dev_spec._82575.media_changed = false;
4496                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4497                         igb_reset(adapter);
4498                 }
4499                 /* Cancel scheduled suspend requests. */
4500                 pm_runtime_resume(netdev->dev.parent);
4501
4502                 if (!netif_carrier_ok(netdev)) {
4503                         u32 ctrl;
4504
4505                         hw->mac.ops.get_speed_and_duplex(hw,
4506                                                          &adapter->link_speed,
4507                                                          &adapter->link_duplex);
4508
4509                         ctrl = rd32(E1000_CTRL);
4510                         /* Links status message must follow this format */
4511                         netdev_info(netdev,
4512                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4513                                netdev->name,
4514                                adapter->link_speed,
4515                                adapter->link_duplex == FULL_DUPLEX ?
4516                                "Full" : "Half",
4517                                (ctrl & E1000_CTRL_TFCE) &&
4518                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4519                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4520                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4521
4522                         /* disable EEE if enabled */
4523                         if ((adapter->flags & IGB_FLAG_EEE) &&
4524                                 (adapter->link_duplex == HALF_DUPLEX)) {
4525                                 dev_info(&adapter->pdev->dev,
4526                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4527                                 adapter->hw.dev_spec._82575.eee_disable = true;
4528                                 adapter->flags &= ~IGB_FLAG_EEE;
4529                         }
4530
4531                         /* check if SmartSpeed worked */
4532                         igb_check_downshift(hw);
4533                         if (phy->speed_downgraded)
4534                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4535
4536                         /* check for thermal sensor event */
4537                         if (igb_thermal_sensor_event(hw,
4538                             E1000_THSTAT_LINK_THROTTLE))
4539                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4540
4541                         /* adjust timeout factor according to speed/duplex */
4542                         adapter->tx_timeout_factor = 1;
4543                         switch (adapter->link_speed) {
4544                         case SPEED_10:
4545                                 adapter->tx_timeout_factor = 14;
4546                                 break;
4547                         case SPEED_100:
4548                                 /* maybe add some timeout factor ? */
4549                                 break;
4550                         }
4551
4552                         if (adapter->link_speed != SPEED_1000)
4553                                 goto no_wait;
4554
4555                         /* wait for Remote receiver status OK */
4556 retry_read_status:
4557                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4558                                               &phy_data)) {
4559                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4560                                     retry_count) {
4561                                         msleep(100);
4562                                         retry_count--;
4563                                         goto retry_read_status;
4564                                 } else if (!retry_count) {
4565                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4566                                 }
4567                         } else {
4568                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4569                         }
4570 no_wait:
4571                         netif_carrier_on(netdev);
4572
4573                         igb_ping_all_vfs(adapter);
4574                         igb_check_vf_rate_limit(adapter);
4575
4576                         /* link state has changed, schedule phy info update */
4577                         if (!test_bit(__IGB_DOWN, &adapter->state))
4578                                 mod_timer(&adapter->phy_info_timer,
4579                                           round_jiffies(jiffies + 2 * HZ));
4580                 }
4581         } else {
4582                 if (netif_carrier_ok(netdev)) {
4583                         adapter->link_speed = 0;
4584                         adapter->link_duplex = 0;
4585
4586                         /* check for thermal sensor event */
4587                         if (igb_thermal_sensor_event(hw,
4588                             E1000_THSTAT_PWR_DOWN)) {
4589                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4590                         }
4591
4592                         /* Links status message must follow this format */
4593                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4594                                netdev->name);
4595                         netif_carrier_off(netdev);
4596
4597                         igb_ping_all_vfs(adapter);
4598
4599                         /* link state has changed, schedule phy info update */
4600                         if (!test_bit(__IGB_DOWN, &adapter->state))
4601                                 mod_timer(&adapter->phy_info_timer,
4602                                           round_jiffies(jiffies + 2 * HZ));
4603
4604                         /* link is down, time to check for alternate media */
4605                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4606                                 igb_check_swap_media(adapter);
4607                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4608                                         schedule_work(&adapter->reset_task);
4609                                         /* return immediately */
4610                                         return;
4611                                 }
4612                         }
4613                         pm_schedule_suspend(netdev->dev.parent,
4614                                             MSEC_PER_SEC * 5);
4615
4616                 /* also check for alternate media here */
4617                 } else if (!netif_carrier_ok(netdev) &&
4618                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4619                         igb_check_swap_media(adapter);
4620                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4621                                 schedule_work(&adapter->reset_task);
4622                                 /* return immediately */
4623                                 return;
4624                         }
4625                 }
4626         }
4627
4628         spin_lock(&adapter->stats64_lock);
4629         igb_update_stats(adapter, &adapter->stats64);
4630         spin_unlock(&adapter->stats64_lock);
4631
4632         for (i = 0; i < adapter->num_tx_queues; i++) {
4633                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4634                 if (!netif_carrier_ok(netdev)) {
4635                         /* We've lost link, so the controller stops DMA,
4636                          * but we've got queued Tx work that's never going
4637                          * to get done, so reset controller to flush Tx.
4638                          * (Do the reset outside of interrupt context).
4639                          */
4640                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4641                                 adapter->tx_timeout_count++;
4642                                 schedule_work(&adapter->reset_task);
4643                                 /* return immediately since reset is imminent */
4644                                 return;
4645                         }
4646                 }
4647
4648                 /* Force detection of hung controller every watchdog period */
4649                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4650         }
4651
4652         /* Cause software interrupt to ensure Rx ring is cleaned */
4653         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4654                 u32 eics = 0;
4655
4656                 for (i = 0; i < adapter->num_q_vectors; i++)
4657                         eics |= adapter->q_vector[i]->eims_value;
4658                 wr32(E1000_EICS, eics);
4659         } else {
4660                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4661         }
4662
4663         igb_spoof_check(adapter);
4664         igb_ptp_rx_hang(adapter);
4665
4666         /* Check LVMMC register on i350/i354 only */
4667         if ((adapter->hw.mac.type == e1000_i350) ||
4668             (adapter->hw.mac.type == e1000_i354))
4669                 igb_check_lvmmc(adapter);
4670
4671         /* Reset the timer */
4672         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4673                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4674                         mod_timer(&adapter->watchdog_timer,
4675                                   round_jiffies(jiffies +  HZ));
4676                 else
4677                         mod_timer(&adapter->watchdog_timer,
4678                                   round_jiffies(jiffies + 2 * HZ));
4679         }
4680 }
4681
4682 enum latency_range {
4683         lowest_latency = 0,
4684         low_latency = 1,
4685         bulk_latency = 2,
4686         latency_invalid = 255
4687 };
4688
4689 /**
4690  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4691  *  @q_vector: pointer to q_vector
4692  *
4693  *  Stores a new ITR value based on strictly on packet size.  This
4694  *  algorithm is less sophisticated than that used in igb_update_itr,
4695  *  due to the difficulty of synchronizing statistics across multiple
4696  *  receive rings.  The divisors and thresholds used by this function
4697  *  were determined based on theoretical maximum wire speed and testing
4698  *  data, in order to minimize response time while increasing bulk
4699  *  throughput.
4700  *  This functionality is controlled by ethtool's coalescing settings.
4701  *  NOTE:  This function is called only when operating in a multiqueue
4702  *         receive environment.
4703  **/
4704 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4705 {
4706         int new_val = q_vector->itr_val;
4707         int avg_wire_size = 0;
4708         struct igb_adapter *adapter = q_vector->adapter;
4709         unsigned int packets;
4710
4711         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4712          * ints/sec - ITR timer value of 120 ticks.
4713          */
4714         if (adapter->link_speed != SPEED_1000) {
4715                 new_val = IGB_4K_ITR;
4716                 goto set_itr_val;
4717         }
4718
4719         packets = q_vector->rx.total_packets;
4720         if (packets)
4721                 avg_wire_size = q_vector->rx.total_bytes / packets;
4722
4723         packets = q_vector->tx.total_packets;
4724         if (packets)
4725                 avg_wire_size = max_t(u32, avg_wire_size,
4726                                       q_vector->tx.total_bytes / packets);
4727
4728         /* if avg_wire_size isn't set no work was done */
4729         if (!avg_wire_size)
4730                 goto clear_counts;
4731
4732         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4733         avg_wire_size += 24;
4734
4735         /* Don't starve jumbo frames */
4736         avg_wire_size = min(avg_wire_size, 3000);
4737
4738         /* Give a little boost to mid-size frames */
4739         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4740                 new_val = avg_wire_size / 3;
4741         else
4742                 new_val = avg_wire_size / 2;
4743
4744         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4745         if (new_val < IGB_20K_ITR &&
4746             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4747              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4748                 new_val = IGB_20K_ITR;
4749
4750 set_itr_val:
4751         if (new_val != q_vector->itr_val) {
4752                 q_vector->itr_val = new_val;
4753                 q_vector->set_itr = 1;
4754         }
4755 clear_counts:
4756         q_vector->rx.total_bytes = 0;
4757         q_vector->rx.total_packets = 0;
4758         q_vector->tx.total_bytes = 0;
4759         q_vector->tx.total_packets = 0;
4760 }
4761
4762 /**
4763  *  igb_update_itr - update the dynamic ITR value based on statistics
4764  *  @q_vector: pointer to q_vector
4765  *  @ring_container: ring info to update the itr for
4766  *
4767  *  Stores a new ITR value based on packets and byte
4768  *  counts during the last interrupt.  The advantage of per interrupt
4769  *  computation is faster updates and more accurate ITR for the current
4770  *  traffic pattern.  Constants in this function were computed
4771  *  based on theoretical maximum wire speed and thresholds were set based
4772  *  on testing data as well as attempting to minimize response time
4773  *  while increasing bulk throughput.
4774  *  This functionality is controlled by ethtool's coalescing settings.
4775  *  NOTE:  These calculations are only valid when operating in a single-
4776  *         queue environment.
4777  **/
4778 static void igb_update_itr(struct igb_q_vector *q_vector,
4779                            struct igb_ring_container *ring_container)
4780 {
4781         unsigned int packets = ring_container->total_packets;
4782         unsigned int bytes = ring_container->total_bytes;
4783         u8 itrval = ring_container->itr;
4784
4785         /* no packets, exit with status unchanged */
4786         if (packets == 0)
4787                 return;
4788
4789         switch (itrval) {
4790         case lowest_latency:
4791                 /* handle TSO and jumbo frames */
4792                 if (bytes/packets > 8000)
4793                         itrval = bulk_latency;
4794                 else if ((packets < 5) && (bytes > 512))
4795                         itrval = low_latency;
4796                 break;
4797         case low_latency:  /* 50 usec aka 20000 ints/s */
4798                 if (bytes > 10000) {
4799                         /* this if handles the TSO accounting */
4800                         if (bytes/packets > 8000)
4801                                 itrval = bulk_latency;
4802                         else if ((packets < 10) || ((bytes/packets) > 1200))
4803                                 itrval = bulk_latency;
4804                         else if ((packets > 35))
4805                                 itrval = lowest_latency;
4806                 } else if (bytes/packets > 2000) {
4807                         itrval = bulk_latency;
4808                 } else if (packets <= 2 && bytes < 512) {
4809                         itrval = lowest_latency;
4810                 }
4811                 break;
4812         case bulk_latency: /* 250 usec aka 4000 ints/s */
4813                 if (bytes > 25000) {
4814                         if (packets > 35)
4815                                 itrval = low_latency;
4816                 } else if (bytes < 1500) {
4817                         itrval = low_latency;
4818                 }
4819                 break;
4820         }
4821
4822         /* clear work counters since we have the values we need */
4823         ring_container->total_bytes = 0;
4824         ring_container->total_packets = 0;
4825
4826         /* write updated itr to ring container */
4827         ring_container->itr = itrval;
4828 }
4829
4830 static void igb_set_itr(struct igb_q_vector *q_vector)
4831 {
4832         struct igb_adapter *adapter = q_vector->adapter;
4833         u32 new_itr = q_vector->itr_val;
4834         u8 current_itr = 0;
4835
4836         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4837         if (adapter->link_speed != SPEED_1000) {
4838                 current_itr = 0;
4839                 new_itr = IGB_4K_ITR;
4840                 goto set_itr_now;
4841         }
4842
4843         igb_update_itr(q_vector, &q_vector->tx);
4844         igb_update_itr(q_vector, &q_vector->rx);
4845
4846         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4847
4848         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4849         if (current_itr == lowest_latency &&
4850             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4851              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4852                 current_itr = low_latency;
4853
4854         switch (current_itr) {
4855         /* counts and packets in update_itr are dependent on these numbers */
4856         case lowest_latency:
4857                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4858                 break;
4859         case low_latency:
4860                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4861                 break;
4862         case bulk_latency:
4863                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4864                 break;
4865         default:
4866                 break;
4867         }
4868
4869 set_itr_now:
4870         if (new_itr != q_vector->itr_val) {
4871                 /* this attempts to bias the interrupt rate towards Bulk
4872                  * by adding intermediate steps when interrupt rate is
4873                  * increasing
4874                  */
4875                 new_itr = new_itr > q_vector->itr_val ?
4876                           max((new_itr * q_vector->itr_val) /
4877                           (new_itr + (q_vector->itr_val >> 2)),
4878                           new_itr) : new_itr;
4879                 /* Don't write the value here; it resets the adapter's
4880                  * internal timer, and causes us to delay far longer than
4881                  * we should between interrupts.  Instead, we write the ITR
4882                  * value at the beginning of the next interrupt so the timing
4883                  * ends up being correct.
4884                  */
4885                 q_vector->itr_val = new_itr;
4886                 q_vector->set_itr = 1;
4887         }
4888 }
4889
4890 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4891                             u32 type_tucmd, u32 mss_l4len_idx)
4892 {
4893         struct e1000_adv_tx_context_desc *context_desc;
4894         u16 i = tx_ring->next_to_use;
4895
4896         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4897
4898         i++;
4899         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4900
4901         /* set bits to identify this as an advanced context descriptor */
4902         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4903
4904         /* For 82575, context index must be unique per ring. */
4905         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4906                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4907
4908         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4909         context_desc->seqnum_seed       = 0;
4910         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4911         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4912 }
4913
4914 static int igb_tso(struct igb_ring *tx_ring,
4915                    struct igb_tx_buffer *first,
4916                    u8 *hdr_len)
4917 {
4918         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4919         struct sk_buff *skb = first->skb;
4920         union {
4921                 struct iphdr *v4;
4922                 struct ipv6hdr *v6;
4923                 unsigned char *hdr;
4924         } ip;
4925         union {
4926                 struct tcphdr *tcp;
4927                 unsigned char *hdr;
4928         } l4;
4929         u32 paylen, l4_offset;
4930         int err;
4931
4932         if (skb->ip_summed != CHECKSUM_PARTIAL)
4933                 return 0;
4934
4935         if (!skb_is_gso(skb))
4936                 return 0;
4937
4938         err = skb_cow_head(skb, 0);
4939         if (err < 0)
4940                 return err;
4941
4942         ip.hdr = skb_network_header(skb);
4943         l4.hdr = skb_checksum_start(skb);
4944
4945         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4946         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4947
4948         /* initialize outer IP header fields */
4949         if (ip.v4->version == 4) {
4950                 unsigned char *csum_start = skb_checksum_start(skb);
4951                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
4952
4953                 /* IP header will have to cancel out any data that
4954                  * is not a part of the outer IP header
4955                  */
4956                 ip.v4->check = csum_fold(csum_partial(trans_start,
4957                                                       csum_start - trans_start,
4958                                                       0));
4959                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4960
4961                 ip.v4->tot_len = 0;
4962                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4963                                    IGB_TX_FLAGS_CSUM |
4964                                    IGB_TX_FLAGS_IPV4;
4965         } else {
4966                 ip.v6->payload_len = 0;
4967                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4968                                    IGB_TX_FLAGS_CSUM;
4969         }
4970
4971         /* determine offset of inner transport header */
4972         l4_offset = l4.hdr - skb->data;
4973
4974         /* compute length of segmentation header */
4975         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4976
4977         /* remove payload length from inner checksum */
4978         paylen = skb->len - l4_offset;
4979         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4980
4981         /* update gso size and bytecount with header size */
4982         first->gso_segs = skb_shinfo(skb)->gso_segs;
4983         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4984
4985         /* MSS L4LEN IDX */
4986         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4987         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4988
4989         /* VLAN MACLEN IPLEN */
4990         vlan_macip_lens = l4.hdr - ip.hdr;
4991         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4992         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4993
4994         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4995
4996         return 1;
4997 }
4998
4999 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5000 {
5001         unsigned int offset = 0;
5002
5003         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5004
5005         return offset == skb_checksum_start_offset(skb);
5006 }
5007
5008 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5009 {
5010         struct sk_buff *skb = first->skb;
5011         u32 vlan_macip_lens = 0;
5012         u32 type_tucmd = 0;
5013
5014         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5015 csum_failed:
5016                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5017                         return;
5018                 goto no_csum;
5019         }
5020
5021         switch (skb->csum_offset) {
5022         case offsetof(struct tcphdr, check):
5023                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5024                 /* fall through */
5025         case offsetof(struct udphdr, check):
5026                 break;
5027         case offsetof(struct sctphdr, checksum):
5028                 /* validate that this is actually an SCTP request */
5029                 if (((first->protocol == htons(ETH_P_IP)) &&
5030                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5031                     ((first->protocol == htons(ETH_P_IPV6)) &&
5032                      igb_ipv6_csum_is_sctp(skb))) {
5033                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5034                         break;
5035                 }
5036         default:
5037                 skb_checksum_help(skb);
5038                 goto csum_failed;
5039         }
5040
5041         /* update TX checksum flag */
5042         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5043         vlan_macip_lens = skb_checksum_start_offset(skb) -
5044                           skb_network_offset(skb);
5045 no_csum:
5046         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5047         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5048
5049         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5050 }
5051
5052 #define IGB_SET_FLAG(_input, _flag, _result) \
5053         ((_flag <= _result) ? \
5054          ((u32)(_input & _flag) * (_result / _flag)) : \
5055          ((u32)(_input & _flag) / (_flag / _result)))
5056
5057 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5058 {
5059         /* set type for advanced descriptor with frame checksum insertion */
5060         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5061                        E1000_ADVTXD_DCMD_DEXT |
5062                        E1000_ADVTXD_DCMD_IFCS;
5063
5064         /* set HW vlan bit if vlan is present */
5065         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5066                                  (E1000_ADVTXD_DCMD_VLE));
5067
5068         /* set segmentation bits for TSO */
5069         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5070                                  (E1000_ADVTXD_DCMD_TSE));
5071
5072         /* set timestamp bit if present */
5073         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5074                                  (E1000_ADVTXD_MAC_TSTAMP));
5075
5076         /* insert frame checksum */
5077         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5078
5079         return cmd_type;
5080 }
5081
5082 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5083                                  union e1000_adv_tx_desc *tx_desc,
5084                                  u32 tx_flags, unsigned int paylen)
5085 {
5086         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5087
5088         /* 82575 requires a unique index per ring */
5089         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5090                 olinfo_status |= tx_ring->reg_idx << 4;
5091
5092         /* insert L4 checksum */
5093         olinfo_status |= IGB_SET_FLAG(tx_flags,
5094                                       IGB_TX_FLAGS_CSUM,
5095                                       (E1000_TXD_POPTS_TXSM << 8));
5096
5097         /* insert IPv4 checksum */
5098         olinfo_status |= IGB_SET_FLAG(tx_flags,
5099                                       IGB_TX_FLAGS_IPV4,
5100                                       (E1000_TXD_POPTS_IXSM << 8));
5101
5102         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5103 }
5104
5105 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5106 {
5107         struct net_device *netdev = tx_ring->netdev;
5108
5109         netif_stop_subqueue(netdev, tx_ring->queue_index);
5110
5111         /* Herbert's original patch had:
5112          *  smp_mb__after_netif_stop_queue();
5113          * but since that doesn't exist yet, just open code it.
5114          */
5115         smp_mb();
5116
5117         /* We need to check again in a case another CPU has just
5118          * made room available.
5119          */
5120         if (igb_desc_unused(tx_ring) < size)
5121                 return -EBUSY;
5122
5123         /* A reprieve! */
5124         netif_wake_subqueue(netdev, tx_ring->queue_index);
5125
5126         u64_stats_update_begin(&tx_ring->tx_syncp2);
5127         tx_ring->tx_stats.restart_queue2++;
5128         u64_stats_update_end(&tx_ring->tx_syncp2);
5129
5130         return 0;
5131 }
5132
5133 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5134 {
5135         if (igb_desc_unused(tx_ring) >= size)
5136                 return 0;
5137         return __igb_maybe_stop_tx(tx_ring, size);
5138 }
5139
5140 static void igb_tx_map(struct igb_ring *tx_ring,
5141                        struct igb_tx_buffer *first,
5142                        const u8 hdr_len)
5143 {
5144         struct sk_buff *skb = first->skb;
5145         struct igb_tx_buffer *tx_buffer;
5146         union e1000_adv_tx_desc *tx_desc;
5147         struct skb_frag_struct *frag;
5148         dma_addr_t dma;
5149         unsigned int data_len, size;
5150         u32 tx_flags = first->tx_flags;
5151         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5152         u16 i = tx_ring->next_to_use;
5153
5154         tx_desc = IGB_TX_DESC(tx_ring, i);
5155
5156         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5157
5158         size = skb_headlen(skb);
5159         data_len = skb->data_len;
5160
5161         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5162
5163         tx_buffer = first;
5164
5165         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5166                 if (dma_mapping_error(tx_ring->dev, dma))
5167                         goto dma_error;
5168
5169                 /* record length, and DMA address */
5170                 dma_unmap_len_set(tx_buffer, len, size);
5171                 dma_unmap_addr_set(tx_buffer, dma, dma);
5172
5173                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5174
5175                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5176                         tx_desc->read.cmd_type_len =
5177                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5178
5179                         i++;
5180                         tx_desc++;
5181                         if (i == tx_ring->count) {
5182                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5183                                 i = 0;
5184                         }
5185                         tx_desc->read.olinfo_status = 0;
5186
5187                         dma += IGB_MAX_DATA_PER_TXD;
5188                         size -= IGB_MAX_DATA_PER_TXD;
5189
5190                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5191                 }
5192
5193                 if (likely(!data_len))
5194                         break;
5195
5196                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5197
5198                 i++;
5199                 tx_desc++;
5200                 if (i == tx_ring->count) {
5201                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5202                         i = 0;
5203                 }
5204                 tx_desc->read.olinfo_status = 0;
5205
5206                 size = skb_frag_size(frag);
5207                 data_len -= size;
5208
5209                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5210                                        size, DMA_TO_DEVICE);
5211
5212                 tx_buffer = &tx_ring->tx_buffer_info[i];
5213         }
5214
5215         /* write last descriptor with RS and EOP bits */
5216         cmd_type |= size | IGB_TXD_DCMD;
5217         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5218
5219         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5220
5221         /* set the timestamp */
5222         first->time_stamp = jiffies;
5223
5224         /* Force memory writes to complete before letting h/w know there
5225          * are new descriptors to fetch.  (Only applicable for weak-ordered
5226          * memory model archs, such as IA-64).
5227          *
5228          * We also need this memory barrier to make certain all of the
5229          * status bits have been updated before next_to_watch is written.
5230          */
5231         wmb();
5232
5233         /* set next_to_watch value indicating a packet is present */
5234         first->next_to_watch = tx_desc;
5235
5236         i++;
5237         if (i == tx_ring->count)
5238                 i = 0;
5239
5240         tx_ring->next_to_use = i;
5241
5242         /* Make sure there is space in the ring for the next send. */
5243         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5244
5245         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5246                 writel(i, tx_ring->tail);
5247
5248                 /* we need this if more than one processor can write to our tail
5249                  * at a time, it synchronizes IO on IA64/Altix systems
5250                  */
5251                 mmiowb();
5252         }
5253         return;
5254
5255 dma_error:
5256         dev_err(tx_ring->dev, "TX DMA map failed\n");
5257
5258         /* clear dma mappings for failed tx_buffer_info map */
5259         for (;;) {
5260                 tx_buffer = &tx_ring->tx_buffer_info[i];
5261                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5262                 if (tx_buffer == first)
5263                         break;
5264                 if (i == 0)
5265                         i = tx_ring->count;
5266                 i--;
5267         }
5268
5269         tx_ring->next_to_use = i;
5270 }
5271
5272 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5273                                 struct igb_ring *tx_ring)
5274 {
5275         struct igb_tx_buffer *first;
5276         int tso;
5277         u32 tx_flags = 0;
5278         unsigned short f;
5279         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5280         __be16 protocol = vlan_get_protocol(skb);
5281         u8 hdr_len = 0;
5282
5283         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5284          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5285          *       + 2 desc gap to keep tail from touching head,
5286          *       + 1 desc for context descriptor,
5287          * otherwise try next time
5288          */
5289         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5290                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5291
5292         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5293                 /* this is a hard error */
5294                 return NETDEV_TX_BUSY;
5295         }
5296
5297         /* record the location of the first descriptor for this packet */
5298         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5299         first->skb = skb;
5300         first->bytecount = skb->len;
5301         first->gso_segs = 1;
5302
5303         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5304                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5305
5306                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5307                                            &adapter->state)) {
5308                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5309                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5310
5311                         adapter->ptp_tx_skb = skb_get(skb);
5312                         adapter->ptp_tx_start = jiffies;
5313                         if (adapter->hw.mac.type == e1000_82576)
5314                                 schedule_work(&adapter->ptp_tx_work);
5315                 }
5316         }
5317
5318         skb_tx_timestamp(skb);
5319
5320         if (skb_vlan_tag_present(skb)) {
5321                 tx_flags |= IGB_TX_FLAGS_VLAN;
5322                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5323         }
5324
5325         /* record initial flags and protocol */
5326         first->tx_flags = tx_flags;
5327         first->protocol = protocol;
5328
5329         tso = igb_tso(tx_ring, first, &hdr_len);
5330         if (tso < 0)
5331                 goto out_drop;
5332         else if (!tso)
5333                 igb_tx_csum(tx_ring, first);
5334
5335         igb_tx_map(tx_ring, first, hdr_len);
5336
5337         return NETDEV_TX_OK;
5338
5339 out_drop:
5340         igb_unmap_and_free_tx_resource(tx_ring, first);
5341
5342         return NETDEV_TX_OK;
5343 }
5344
5345 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5346                                                     struct sk_buff *skb)
5347 {
5348         unsigned int r_idx = skb->queue_mapping;
5349
5350         if (r_idx >= adapter->num_tx_queues)
5351                 r_idx = r_idx % adapter->num_tx_queues;
5352
5353         return adapter->tx_ring[r_idx];
5354 }
5355
5356 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5357                                   struct net_device *netdev)
5358 {
5359         struct igb_adapter *adapter = netdev_priv(netdev);
5360
5361         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5362          * in order to meet this minimum size requirement.
5363          */
5364         if (skb_put_padto(skb, 17))
5365                 return NETDEV_TX_OK;
5366
5367         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5368 }
5369
5370 /**
5371  *  igb_tx_timeout - Respond to a Tx Hang
5372  *  @netdev: network interface device structure
5373  **/
5374 static void igb_tx_timeout(struct net_device *netdev)
5375 {
5376         struct igb_adapter *adapter = netdev_priv(netdev);
5377         struct e1000_hw *hw = &adapter->hw;
5378
5379         /* Do the reset outside of interrupt context */
5380         adapter->tx_timeout_count++;
5381
5382         if (hw->mac.type >= e1000_82580)
5383                 hw->dev_spec._82575.global_device_reset = true;
5384
5385         schedule_work(&adapter->reset_task);
5386         wr32(E1000_EICS,
5387              (adapter->eims_enable_mask & ~adapter->eims_other));
5388 }
5389
5390 static void igb_reset_task(struct work_struct *work)
5391 {
5392         struct igb_adapter *adapter;
5393         adapter = container_of(work, struct igb_adapter, reset_task);
5394
5395         igb_dump(adapter);
5396         netdev_err(adapter->netdev, "Reset adapter\n");
5397         igb_reinit_locked(adapter);
5398 }
5399
5400 /**
5401  *  igb_get_stats64 - Get System Network Statistics
5402  *  @netdev: network interface device structure
5403  *  @stats: rtnl_link_stats64 pointer
5404  **/
5405 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5406                                                 struct rtnl_link_stats64 *stats)
5407 {
5408         struct igb_adapter *adapter = netdev_priv(netdev);
5409
5410         spin_lock(&adapter->stats64_lock);
5411         igb_update_stats(adapter, &adapter->stats64);
5412         memcpy(stats, &adapter->stats64, sizeof(*stats));
5413         spin_unlock(&adapter->stats64_lock);
5414
5415         return stats;
5416 }
5417
5418 /**
5419  *  igb_change_mtu - Change the Maximum Transfer Unit
5420  *  @netdev: network interface device structure
5421  *  @new_mtu: new value for maximum frame size
5422  *
5423  *  Returns 0 on success, negative on failure
5424  **/
5425 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5426 {
5427         struct igb_adapter *adapter = netdev_priv(netdev);
5428         struct pci_dev *pdev = adapter->pdev;
5429         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5430
5431         /* adjust max frame to be at least the size of a standard frame */
5432         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5433                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5434
5435         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5436                 usleep_range(1000, 2000);
5437
5438         /* igb_down has a dependency on max_frame_size */
5439         adapter->max_frame_size = max_frame;
5440
5441         if (netif_running(netdev))
5442                 igb_down(adapter);
5443
5444         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5445                  netdev->mtu, new_mtu);
5446         netdev->mtu = new_mtu;
5447
5448         if (netif_running(netdev))
5449                 igb_up(adapter);
5450         else
5451                 igb_reset(adapter);
5452
5453         clear_bit(__IGB_RESETTING, &adapter->state);
5454
5455         return 0;
5456 }
5457
5458 /**
5459  *  igb_update_stats - Update the board statistics counters
5460  *  @adapter: board private structure
5461  **/
5462 void igb_update_stats(struct igb_adapter *adapter,
5463                       struct rtnl_link_stats64 *net_stats)
5464 {
5465         struct e1000_hw *hw = &adapter->hw;
5466         struct pci_dev *pdev = adapter->pdev;
5467         u32 reg, mpc;
5468         int i;
5469         u64 bytes, packets;
5470         unsigned int start;
5471         u64 _bytes, _packets;
5472
5473         /* Prevent stats update while adapter is being reset, or if the pci
5474          * connection is down.
5475          */
5476         if (adapter->link_speed == 0)
5477                 return;
5478         if (pci_channel_offline(pdev))
5479                 return;
5480
5481         bytes = 0;
5482         packets = 0;
5483
5484         rcu_read_lock();
5485         for (i = 0; i < adapter->num_rx_queues; i++) {
5486                 struct igb_ring *ring = adapter->rx_ring[i];
5487                 u32 rqdpc = rd32(E1000_RQDPC(i));
5488                 if (hw->mac.type >= e1000_i210)
5489                         wr32(E1000_RQDPC(i), 0);
5490
5491                 if (rqdpc) {
5492                         ring->rx_stats.drops += rqdpc;
5493                         net_stats->rx_fifo_errors += rqdpc;
5494                 }
5495
5496                 do {
5497                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5498                         _bytes = ring->rx_stats.bytes;
5499                         _packets = ring->rx_stats.packets;
5500                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5501                 bytes += _bytes;
5502                 packets += _packets;
5503         }
5504
5505         net_stats->rx_bytes = bytes;
5506         net_stats->rx_packets = packets;
5507
5508         bytes = 0;
5509         packets = 0;
5510         for (i = 0; i < adapter->num_tx_queues; i++) {
5511                 struct igb_ring *ring = adapter->tx_ring[i];
5512                 do {
5513                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5514                         _bytes = ring->tx_stats.bytes;
5515                         _packets = ring->tx_stats.packets;
5516                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5517                 bytes += _bytes;
5518                 packets += _packets;
5519         }
5520         net_stats->tx_bytes = bytes;
5521         net_stats->tx_packets = packets;
5522         rcu_read_unlock();
5523
5524         /* read stats registers */
5525         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5526         adapter->stats.gprc += rd32(E1000_GPRC);
5527         adapter->stats.gorc += rd32(E1000_GORCL);
5528         rd32(E1000_GORCH); /* clear GORCL */
5529         adapter->stats.bprc += rd32(E1000_BPRC);
5530         adapter->stats.mprc += rd32(E1000_MPRC);
5531         adapter->stats.roc += rd32(E1000_ROC);
5532
5533         adapter->stats.prc64 += rd32(E1000_PRC64);
5534         adapter->stats.prc127 += rd32(E1000_PRC127);
5535         adapter->stats.prc255 += rd32(E1000_PRC255);
5536         adapter->stats.prc511 += rd32(E1000_PRC511);
5537         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5538         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5539         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5540         adapter->stats.sec += rd32(E1000_SEC);
5541
5542         mpc = rd32(E1000_MPC);
5543         adapter->stats.mpc += mpc;
5544         net_stats->rx_fifo_errors += mpc;
5545         adapter->stats.scc += rd32(E1000_SCC);
5546         adapter->stats.ecol += rd32(E1000_ECOL);
5547         adapter->stats.mcc += rd32(E1000_MCC);
5548         adapter->stats.latecol += rd32(E1000_LATECOL);
5549         adapter->stats.dc += rd32(E1000_DC);
5550         adapter->stats.rlec += rd32(E1000_RLEC);
5551         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5552         adapter->stats.xontxc += rd32(E1000_XONTXC);
5553         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5554         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5555         adapter->stats.fcruc += rd32(E1000_FCRUC);
5556         adapter->stats.gptc += rd32(E1000_GPTC);
5557         adapter->stats.gotc += rd32(E1000_GOTCL);
5558         rd32(E1000_GOTCH); /* clear GOTCL */
5559         adapter->stats.rnbc += rd32(E1000_RNBC);
5560         adapter->stats.ruc += rd32(E1000_RUC);
5561         adapter->stats.rfc += rd32(E1000_RFC);
5562         adapter->stats.rjc += rd32(E1000_RJC);
5563         adapter->stats.tor += rd32(E1000_TORH);
5564         adapter->stats.tot += rd32(E1000_TOTH);
5565         adapter->stats.tpr += rd32(E1000_TPR);
5566
5567         adapter->stats.ptc64 += rd32(E1000_PTC64);
5568         adapter->stats.ptc127 += rd32(E1000_PTC127);
5569         adapter->stats.ptc255 += rd32(E1000_PTC255);
5570         adapter->stats.ptc511 += rd32(E1000_PTC511);
5571         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5572         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5573
5574         adapter->stats.mptc += rd32(E1000_MPTC);
5575         adapter->stats.bptc += rd32(E1000_BPTC);
5576
5577         adapter->stats.tpt += rd32(E1000_TPT);
5578         adapter->stats.colc += rd32(E1000_COLC);
5579
5580         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5581         /* read internal phy specific stats */
5582         reg = rd32(E1000_CTRL_EXT);
5583         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5584                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5585
5586                 /* this stat has invalid values on i210/i211 */
5587                 if ((hw->mac.type != e1000_i210) &&
5588                     (hw->mac.type != e1000_i211))
5589                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5590         }
5591
5592         adapter->stats.tsctc += rd32(E1000_TSCTC);
5593         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5594
5595         adapter->stats.iac += rd32(E1000_IAC);
5596         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5597         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5598         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5599         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5600         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5601         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5602         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5603         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5604
5605         /* Fill out the OS statistics structure */
5606         net_stats->multicast = adapter->stats.mprc;
5607         net_stats->collisions = adapter->stats.colc;
5608
5609         /* Rx Errors */
5610
5611         /* RLEC on some newer hardware can be incorrect so build
5612          * our own version based on RUC and ROC
5613          */
5614         net_stats->rx_errors = adapter->stats.rxerrc +
5615                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5616                 adapter->stats.ruc + adapter->stats.roc +
5617                 adapter->stats.cexterr;
5618         net_stats->rx_length_errors = adapter->stats.ruc +
5619                                       adapter->stats.roc;
5620         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5621         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5622         net_stats->rx_missed_errors = adapter->stats.mpc;
5623
5624         /* Tx Errors */
5625         net_stats->tx_errors = adapter->stats.ecol +
5626                                adapter->stats.latecol;
5627         net_stats->tx_aborted_errors = adapter->stats.ecol;
5628         net_stats->tx_window_errors = adapter->stats.latecol;
5629         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5630
5631         /* Tx Dropped needs to be maintained elsewhere */
5632
5633         /* Management Stats */
5634         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5635         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5636         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5637
5638         /* OS2BMC Stats */
5639         reg = rd32(E1000_MANC);
5640         if (reg & E1000_MANC_EN_BMC2OS) {
5641                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5642                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5643                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5644                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5645         }
5646 }
5647
5648 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5649 {
5650         struct e1000_hw *hw = &adapter->hw;
5651         struct ptp_clock_event event;
5652         struct timespec64 ts;
5653         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5654
5655         if (tsicr & TSINTR_SYS_WRAP) {
5656                 event.type = PTP_CLOCK_PPS;
5657                 if (adapter->ptp_caps.pps)
5658                         ptp_clock_event(adapter->ptp_clock, &event);
5659                 else
5660                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5661                 ack |= TSINTR_SYS_WRAP;
5662         }
5663
5664         if (tsicr & E1000_TSICR_TXTS) {
5665                 /* retrieve hardware timestamp */
5666                 schedule_work(&adapter->ptp_tx_work);
5667                 ack |= E1000_TSICR_TXTS;
5668         }
5669
5670         if (tsicr & TSINTR_TT0) {
5671                 spin_lock(&adapter->tmreg_lock);
5672                 ts = timespec64_add(adapter->perout[0].start,
5673                                     adapter->perout[0].period);
5674                 /* u32 conversion of tv_sec is safe until y2106 */
5675                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5676                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5677                 tsauxc = rd32(E1000_TSAUXC);
5678                 tsauxc |= TSAUXC_EN_TT0;
5679                 wr32(E1000_TSAUXC, tsauxc);
5680                 adapter->perout[0].start = ts;
5681                 spin_unlock(&adapter->tmreg_lock);
5682                 ack |= TSINTR_TT0;
5683         }
5684
5685         if (tsicr & TSINTR_TT1) {
5686                 spin_lock(&adapter->tmreg_lock);
5687                 ts = timespec64_add(adapter->perout[1].start,
5688                                     adapter->perout[1].period);
5689                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5690                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5691                 tsauxc = rd32(E1000_TSAUXC);
5692                 tsauxc |= TSAUXC_EN_TT1;
5693                 wr32(E1000_TSAUXC, tsauxc);
5694                 adapter->perout[1].start = ts;
5695                 spin_unlock(&adapter->tmreg_lock);
5696                 ack |= TSINTR_TT1;
5697         }
5698
5699         if (tsicr & TSINTR_AUTT0) {
5700                 nsec = rd32(E1000_AUXSTMPL0);
5701                 sec  = rd32(E1000_AUXSTMPH0);
5702                 event.type = PTP_CLOCK_EXTTS;
5703                 event.index = 0;
5704                 event.timestamp = sec * 1000000000ULL + nsec;
5705                 ptp_clock_event(adapter->ptp_clock, &event);
5706                 ack |= TSINTR_AUTT0;
5707         }
5708
5709         if (tsicr & TSINTR_AUTT1) {
5710                 nsec = rd32(E1000_AUXSTMPL1);
5711                 sec  = rd32(E1000_AUXSTMPH1);
5712                 event.type = PTP_CLOCK_EXTTS;
5713                 event.index = 1;
5714                 event.timestamp = sec * 1000000000ULL + nsec;
5715                 ptp_clock_event(adapter->ptp_clock, &event);
5716                 ack |= TSINTR_AUTT1;
5717         }
5718
5719         /* acknowledge the interrupts */
5720         wr32(E1000_TSICR, ack);
5721 }
5722
5723 static irqreturn_t igb_msix_other(int irq, void *data)
5724 {
5725         struct igb_adapter *adapter = data;
5726         struct e1000_hw *hw = &adapter->hw;
5727         u32 icr = rd32(E1000_ICR);
5728         /* reading ICR causes bit 31 of EICR to be cleared */
5729
5730         if (icr & E1000_ICR_DRSTA)
5731                 schedule_work(&adapter->reset_task);
5732
5733         if (icr & E1000_ICR_DOUTSYNC) {
5734                 /* HW is reporting DMA is out of sync */
5735                 adapter->stats.doosync++;
5736                 /* The DMA Out of Sync is also indication of a spoof event
5737                  * in IOV mode. Check the Wrong VM Behavior register to
5738                  * see if it is really a spoof event.
5739                  */
5740                 igb_check_wvbr(adapter);
5741         }
5742
5743         /* Check for a mailbox event */
5744         if (icr & E1000_ICR_VMMB)
5745                 igb_msg_task(adapter);
5746
5747         if (icr & E1000_ICR_LSC) {
5748                 hw->mac.get_link_status = 1;
5749                 /* guard against interrupt when we're going down */
5750                 if (!test_bit(__IGB_DOWN, &adapter->state))
5751                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5752         }
5753
5754         if (icr & E1000_ICR_TS)
5755                 igb_tsync_interrupt(adapter);
5756
5757         wr32(E1000_EIMS, adapter->eims_other);
5758
5759         return IRQ_HANDLED;
5760 }
5761
5762 static void igb_write_itr(struct igb_q_vector *q_vector)
5763 {
5764         struct igb_adapter *adapter = q_vector->adapter;
5765         u32 itr_val = q_vector->itr_val & 0x7FFC;
5766
5767         if (!q_vector->set_itr)
5768                 return;
5769
5770         if (!itr_val)
5771                 itr_val = 0x4;
5772
5773         if (adapter->hw.mac.type == e1000_82575)
5774                 itr_val |= itr_val << 16;
5775         else
5776                 itr_val |= E1000_EITR_CNT_IGNR;
5777
5778         writel(itr_val, q_vector->itr_register);
5779         q_vector->set_itr = 0;
5780 }
5781
5782 static irqreturn_t igb_msix_ring(int irq, void *data)
5783 {
5784         struct igb_q_vector *q_vector = data;
5785
5786         /* Write the ITR value calculated from the previous interrupt. */
5787         igb_write_itr(q_vector);
5788
5789         napi_schedule(&q_vector->napi);
5790
5791         return IRQ_HANDLED;
5792 }
5793
5794 #ifdef CONFIG_IGB_DCA
5795 static void igb_update_tx_dca(struct igb_adapter *adapter,
5796                               struct igb_ring *tx_ring,
5797                               int cpu)
5798 {
5799         struct e1000_hw *hw = &adapter->hw;
5800         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5801
5802         if (hw->mac.type != e1000_82575)
5803                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5804
5805         /* We can enable relaxed ordering for reads, but not writes when
5806          * DCA is enabled.  This is due to a known issue in some chipsets
5807          * which will cause the DCA tag to be cleared.
5808          */
5809         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5810                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5811                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5812
5813         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5814 }
5815
5816 static void igb_update_rx_dca(struct igb_adapter *adapter,
5817                               struct igb_ring *rx_ring,
5818                               int cpu)
5819 {
5820         struct e1000_hw *hw = &adapter->hw;
5821         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5822
5823         if (hw->mac.type != e1000_82575)
5824                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5825
5826         /* We can enable relaxed ordering for reads, but not writes when
5827          * DCA is enabled.  This is due to a known issue in some chipsets
5828          * which will cause the DCA tag to be cleared.
5829          */
5830         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5831                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5832
5833         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5834 }
5835
5836 static void igb_update_dca(struct igb_q_vector *q_vector)
5837 {
5838         struct igb_adapter *adapter = q_vector->adapter;
5839         int cpu = get_cpu();
5840
5841         if (q_vector->cpu == cpu)
5842                 goto out_no_update;
5843
5844         if (q_vector->tx.ring)
5845                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5846
5847         if (q_vector->rx.ring)
5848                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5849
5850         q_vector->cpu = cpu;
5851 out_no_update:
5852         put_cpu();
5853 }
5854
5855 static void igb_setup_dca(struct igb_adapter *adapter)
5856 {
5857         struct e1000_hw *hw = &adapter->hw;
5858         int i;
5859
5860         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5861                 return;
5862
5863         /* Always use CB2 mode, difference is masked in the CB driver. */
5864         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5865
5866         for (i = 0; i < adapter->num_q_vectors; i++) {
5867                 adapter->q_vector[i]->cpu = -1;
5868                 igb_update_dca(adapter->q_vector[i]);
5869         }
5870 }
5871
5872 static int __igb_notify_dca(struct device *dev, void *data)
5873 {
5874         struct net_device *netdev = dev_get_drvdata(dev);
5875         struct igb_adapter *adapter = netdev_priv(netdev);
5876         struct pci_dev *pdev = adapter->pdev;
5877         struct e1000_hw *hw = &adapter->hw;
5878         unsigned long event = *(unsigned long *)data;
5879
5880         switch (event) {
5881         case DCA_PROVIDER_ADD:
5882                 /* if already enabled, don't do it again */
5883                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5884                         break;
5885                 if (dca_add_requester(dev) == 0) {
5886                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5887                         dev_info(&pdev->dev, "DCA enabled\n");
5888                         igb_setup_dca(adapter);
5889                         break;
5890                 }
5891                 /* Fall Through since DCA is disabled. */
5892         case DCA_PROVIDER_REMOVE:
5893                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5894                         /* without this a class_device is left
5895                          * hanging around in the sysfs model
5896                          */
5897                         dca_remove_requester(dev);
5898                         dev_info(&pdev->dev, "DCA disabled\n");
5899                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5900                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5901                 }
5902                 break;
5903         }
5904
5905         return 0;
5906 }
5907
5908 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5909                           void *p)
5910 {
5911         int ret_val;
5912
5913         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5914                                          __igb_notify_dca);
5915
5916         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5917 }
5918 #endif /* CONFIG_IGB_DCA */
5919
5920 #ifdef CONFIG_PCI_IOV
5921 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5922 {
5923         unsigned char mac_addr[ETH_ALEN];
5924
5925         eth_zero_addr(mac_addr);
5926         igb_set_vf_mac(adapter, vf, mac_addr);
5927
5928         /* By default spoof check is enabled for all VFs */
5929         adapter->vf_data[vf].spoofchk_enabled = true;
5930
5931         return 0;
5932 }
5933
5934 #endif
5935 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5936 {
5937         struct e1000_hw *hw = &adapter->hw;
5938         u32 ping;
5939         int i;
5940
5941         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5942                 ping = E1000_PF_CONTROL_MSG;
5943                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5944                         ping |= E1000_VT_MSGTYPE_CTS;
5945                 igb_write_mbx(hw, &ping, 1, i);
5946         }
5947 }
5948
5949 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5950 {
5951         struct e1000_hw *hw = &adapter->hw;
5952         u32 vmolr = rd32(E1000_VMOLR(vf));
5953         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5954
5955         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5956                             IGB_VF_FLAG_MULTI_PROMISC);
5957         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5958
5959         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5960                 vmolr |= E1000_VMOLR_MPME;
5961                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5962                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5963         } else {
5964                 /* if we have hashes and we are clearing a multicast promisc
5965                  * flag we need to write the hashes to the MTA as this step
5966                  * was previously skipped
5967                  */
5968                 if (vf_data->num_vf_mc_hashes > 30) {
5969                         vmolr |= E1000_VMOLR_MPME;
5970                 } else if (vf_data->num_vf_mc_hashes) {
5971                         int j;
5972
5973                         vmolr |= E1000_VMOLR_ROMPE;
5974                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5975                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5976                 }
5977         }
5978
5979         wr32(E1000_VMOLR(vf), vmolr);
5980
5981         /* there are flags left unprocessed, likely not supported */
5982         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5983                 return -EINVAL;
5984
5985         return 0;
5986 }
5987
5988 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5989                                   u32 *msgbuf, u32 vf)
5990 {
5991         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5992         u16 *hash_list = (u16 *)&msgbuf[1];
5993         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5994         int i;
5995
5996         /* salt away the number of multicast addresses assigned
5997          * to this VF for later use to restore when the PF multi cast
5998          * list changes
5999          */
6000         vf_data->num_vf_mc_hashes = n;
6001
6002         /* only up to 30 hash values supported */
6003         if (n > 30)
6004                 n = 30;
6005
6006         /* store the hashes for later use */
6007         for (i = 0; i < n; i++)
6008                 vf_data->vf_mc_hashes[i] = hash_list[i];
6009
6010         /* Flush and reset the mta with the new values */
6011         igb_set_rx_mode(adapter->netdev);
6012
6013         return 0;
6014 }
6015
6016 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6017 {
6018         struct e1000_hw *hw = &adapter->hw;
6019         struct vf_data_storage *vf_data;
6020         int i, j;
6021
6022         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6023                 u32 vmolr = rd32(E1000_VMOLR(i));
6024
6025                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6026
6027                 vf_data = &adapter->vf_data[i];
6028
6029                 if ((vf_data->num_vf_mc_hashes > 30) ||
6030                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6031                         vmolr |= E1000_VMOLR_MPME;
6032                 } else if (vf_data->num_vf_mc_hashes) {
6033                         vmolr |= E1000_VMOLR_ROMPE;
6034                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6035                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6036                 }
6037                 wr32(E1000_VMOLR(i), vmolr);
6038         }
6039 }
6040
6041 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6042 {
6043         struct e1000_hw *hw = &adapter->hw;
6044         u32 pool_mask, vlvf_mask, i;
6045
6046         /* create mask for VF and other pools */
6047         pool_mask = E1000_VLVF_POOLSEL_MASK;
6048         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6049
6050         /* drop PF from pool bits */
6051         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6052                              adapter->vfs_allocated_count);
6053
6054         /* Find the vlan filter for this id */
6055         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6056                 u32 vlvf = rd32(E1000_VLVF(i));
6057                 u32 vfta_mask, vid, vfta;
6058
6059                 /* remove the vf from the pool */
6060                 if (!(vlvf & vlvf_mask))
6061                         continue;
6062
6063                 /* clear out bit from VLVF */
6064                 vlvf ^= vlvf_mask;
6065
6066                 /* if other pools are present, just remove ourselves */
6067                 if (vlvf & pool_mask)
6068                         goto update_vlvfb;
6069
6070                 /* if PF is present, leave VFTA */
6071                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6072                         goto update_vlvf;
6073
6074                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6075                 vfta_mask = BIT(vid % 32);
6076
6077                 /* clear bit from VFTA */
6078                 vfta = adapter->shadow_vfta[vid / 32];
6079                 if (vfta & vfta_mask)
6080                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6081 update_vlvf:
6082                 /* clear pool selection enable */
6083                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6084                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6085                 else
6086                         vlvf = 0;
6087 update_vlvfb:
6088                 /* clear pool bits */
6089                 wr32(E1000_VLVF(i), vlvf);
6090         }
6091 }
6092
6093 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6094 {
6095         u32 vlvf;
6096         int idx;
6097
6098         /* short cut the special case */
6099         if (vlan == 0)
6100                 return 0;
6101
6102         /* Search for the VLAN id in the VLVF entries */
6103         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6104                 vlvf = rd32(E1000_VLVF(idx));
6105                 if ((vlvf & VLAN_VID_MASK) == vlan)
6106                         break;
6107         }
6108
6109         return idx;
6110 }
6111
6112 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6113 {
6114         struct e1000_hw *hw = &adapter->hw;
6115         u32 bits, pf_id;
6116         int idx;
6117
6118         idx = igb_find_vlvf_entry(hw, vid);
6119         if (!idx)
6120                 return;
6121
6122         /* See if any other pools are set for this VLAN filter
6123          * entry other than the PF.
6124          */
6125         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6126         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6127         bits &= rd32(E1000_VLVF(idx));
6128
6129         /* Disable the filter so this falls into the default pool. */
6130         if (!bits) {
6131                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6132                         wr32(E1000_VLVF(idx), BIT(pf_id));
6133                 else
6134                         wr32(E1000_VLVF(idx), 0);
6135         }
6136 }
6137
6138 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6139                            bool add, u32 vf)
6140 {
6141         int pf_id = adapter->vfs_allocated_count;
6142         struct e1000_hw *hw = &adapter->hw;
6143         int err;
6144
6145         /* If VLAN overlaps with one the PF is currently monitoring make
6146          * sure that we are able to allocate a VLVF entry.  This may be
6147          * redundant but it guarantees PF will maintain visibility to
6148          * the VLAN.
6149          */
6150         if (add && test_bit(vid, adapter->active_vlans)) {
6151                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6152                 if (err)
6153                         return err;
6154         }
6155
6156         err = igb_vfta_set(hw, vid, vf, add, false);
6157
6158         if (add && !err)
6159                 return err;
6160
6161         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6162          * we may need to drop the PF pool bit in order to allow us to free
6163          * up the VLVF resources.
6164          */
6165         if (test_bit(vid, adapter->active_vlans) ||
6166             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6167                 igb_update_pf_vlvf(adapter, vid);
6168
6169         return err;
6170 }
6171
6172 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6173 {
6174         struct e1000_hw *hw = &adapter->hw;
6175
6176         if (vid)
6177                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6178         else
6179                 wr32(E1000_VMVIR(vf), 0);
6180 }
6181
6182 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6183                                 u16 vlan, u8 qos)
6184 {
6185         int err;
6186
6187         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6188         if (err)
6189                 return err;
6190
6191         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6192         igb_set_vmolr(adapter, vf, !vlan);
6193
6194         /* revoke access to previous VLAN */
6195         if (vlan != adapter->vf_data[vf].pf_vlan)
6196                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6197                                 false, vf);
6198
6199         adapter->vf_data[vf].pf_vlan = vlan;
6200         adapter->vf_data[vf].pf_qos = qos;
6201         igb_set_vf_vlan_strip(adapter, vf, true);
6202         dev_info(&adapter->pdev->dev,
6203                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6204         if (test_bit(__IGB_DOWN, &adapter->state)) {
6205                 dev_warn(&adapter->pdev->dev,
6206                          "The VF VLAN has been set, but the PF device is not up.\n");
6207                 dev_warn(&adapter->pdev->dev,
6208                          "Bring the PF device up before attempting to use the VF device.\n");
6209         }
6210
6211         return err;
6212 }
6213
6214 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6215 {
6216         /* Restore tagless access via VLAN 0 */
6217         igb_set_vf_vlan(adapter, 0, true, vf);
6218
6219         igb_set_vmvir(adapter, 0, vf);
6220         igb_set_vmolr(adapter, vf, true);
6221
6222         /* Remove any PF assigned VLAN */
6223         if (adapter->vf_data[vf].pf_vlan)
6224                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6225                                 false, vf);
6226
6227         adapter->vf_data[vf].pf_vlan = 0;
6228         adapter->vf_data[vf].pf_qos = 0;
6229         igb_set_vf_vlan_strip(adapter, vf, false);
6230
6231         return 0;
6232 }
6233
6234 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6235                                u16 vlan, u8 qos, __be16 vlan_proto)
6236 {
6237         struct igb_adapter *adapter = netdev_priv(netdev);
6238
6239         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6240                 return -EINVAL;
6241
6242         if (vlan_proto != htons(ETH_P_8021Q))
6243                 return -EPROTONOSUPPORT;
6244
6245         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6246                                igb_disable_port_vlan(adapter, vf);
6247 }
6248
6249 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6250 {
6251         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6252         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6253         int ret;
6254
6255         if (adapter->vf_data[vf].pf_vlan)
6256                 return -1;
6257
6258         /* VLAN 0 is a special case, don't allow it to be removed */
6259         if (!vid && !add)
6260                 return 0;
6261
6262         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6263         if (!ret)
6264                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6265         return ret;
6266 }
6267
6268 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6269 {
6270         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6271
6272         /* clear flags - except flag that indicates PF has set the MAC */
6273         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6274         vf_data->last_nack = jiffies;
6275
6276         /* reset vlans for device */
6277         igb_clear_vf_vfta(adapter, vf);
6278         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6279         igb_set_vmvir(adapter, vf_data->pf_vlan |
6280                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6281         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6282         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6283
6284         /* reset multicast table array for vf */
6285         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6286
6287         /* Flush and reset the mta with the new values */
6288         igb_set_rx_mode(adapter->netdev);
6289 }
6290
6291 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6292 {
6293         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6294
6295         /* clear mac address as we were hotplug removed/added */
6296         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6297                 eth_zero_addr(vf_mac);
6298
6299         /* process remaining reset events */
6300         igb_vf_reset(adapter, vf);
6301 }
6302
6303 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6304 {
6305         struct e1000_hw *hw = &adapter->hw;
6306         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6307         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6308         u32 reg, msgbuf[3];
6309         u8 *addr = (u8 *)(&msgbuf[1]);
6310
6311         /* process all the same items cleared in a function level reset */
6312         igb_vf_reset(adapter, vf);
6313
6314         /* set vf mac address */
6315         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6316
6317         /* enable transmit and receive for vf */
6318         reg = rd32(E1000_VFTE);
6319         wr32(E1000_VFTE, reg | BIT(vf));
6320         reg = rd32(E1000_VFRE);
6321         wr32(E1000_VFRE, reg | BIT(vf));
6322
6323         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6324
6325         /* reply to reset with ack and vf mac address */
6326         if (!is_zero_ether_addr(vf_mac)) {
6327                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6328                 memcpy(addr, vf_mac, ETH_ALEN);
6329         } else {
6330                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6331         }
6332         igb_write_mbx(hw, msgbuf, 3, vf);
6333 }
6334
6335 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6336 {
6337         /* The VF MAC Address is stored in a packed array of bytes
6338          * starting at the second 32 bit word of the msg array
6339          */
6340         unsigned char *addr = (char *)&msg[1];
6341         int err = -1;
6342
6343         if (is_valid_ether_addr(addr))
6344                 err = igb_set_vf_mac(adapter, vf, addr);
6345
6346         return err;
6347 }
6348
6349 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6350 {
6351         struct e1000_hw *hw = &adapter->hw;
6352         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6353         u32 msg = E1000_VT_MSGTYPE_NACK;
6354
6355         /* if device isn't clear to send it shouldn't be reading either */
6356         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6357             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6358                 igb_write_mbx(hw, &msg, 1, vf);
6359                 vf_data->last_nack = jiffies;
6360         }
6361 }
6362
6363 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6364 {
6365         struct pci_dev *pdev = adapter->pdev;
6366         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6367         struct e1000_hw *hw = &adapter->hw;
6368         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6369         s32 retval;
6370
6371         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6372
6373         if (retval) {
6374                 /* if receive failed revoke VF CTS stats and restart init */
6375                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6376                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6377                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6378                         return;
6379                 goto out;
6380         }
6381
6382         /* this is a message we already processed, do nothing */
6383         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6384                 return;
6385
6386         /* until the vf completes a reset it should not be
6387          * allowed to start any configuration.
6388          */
6389         if (msgbuf[0] == E1000_VF_RESET) {
6390                 igb_vf_reset_msg(adapter, vf);
6391                 return;
6392         }
6393
6394         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6395                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6396                         return;
6397                 retval = -1;
6398                 goto out;
6399         }
6400
6401         switch ((msgbuf[0] & 0xFFFF)) {
6402         case E1000_VF_SET_MAC_ADDR:
6403                 retval = -EINVAL;
6404                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6405                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6406                 else
6407                         dev_warn(&pdev->dev,
6408                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6409                                  vf);
6410                 break;
6411         case E1000_VF_SET_PROMISC:
6412                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6413                 break;
6414         case E1000_VF_SET_MULTICAST:
6415                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6416                 break;
6417         case E1000_VF_SET_LPE:
6418                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6419                 break;
6420         case E1000_VF_SET_VLAN:
6421                 retval = -1;
6422                 if (vf_data->pf_vlan)
6423                         dev_warn(&pdev->dev,
6424                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6425                                  vf);
6426                 else
6427                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6428                 break;
6429         default:
6430                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6431                 retval = -1;
6432                 break;
6433         }
6434
6435         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6436 out:
6437         /* notify the VF of the results of what it sent us */
6438         if (retval)
6439                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6440         else
6441                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6442
6443         igb_write_mbx(hw, msgbuf, 1, vf);
6444 }
6445
6446 static void igb_msg_task(struct igb_adapter *adapter)
6447 {
6448         struct e1000_hw *hw = &adapter->hw;
6449         u32 vf;
6450
6451         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6452                 /* process any reset requests */
6453                 if (!igb_check_for_rst(hw, vf))
6454                         igb_vf_reset_event(adapter, vf);
6455
6456                 /* process any messages pending */
6457                 if (!igb_check_for_msg(hw, vf))
6458                         igb_rcv_msg_from_vf(adapter, vf);
6459
6460                 /* process any acks */
6461                 if (!igb_check_for_ack(hw, vf))
6462                         igb_rcv_ack_from_vf(adapter, vf);
6463         }
6464 }
6465
6466 /**
6467  *  igb_set_uta - Set unicast filter table address
6468  *  @adapter: board private structure
6469  *  @set: boolean indicating if we are setting or clearing bits
6470  *
6471  *  The unicast table address is a register array of 32-bit registers.
6472  *  The table is meant to be used in a way similar to how the MTA is used
6473  *  however due to certain limitations in the hardware it is necessary to
6474  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6475  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6476  **/
6477 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6478 {
6479         struct e1000_hw *hw = &adapter->hw;
6480         u32 uta = set ? ~0 : 0;
6481         int i;
6482
6483         /* we only need to do this if VMDq is enabled */
6484         if (!adapter->vfs_allocated_count)
6485                 return;
6486
6487         for (i = hw->mac.uta_reg_count; i--;)
6488                 array_wr32(E1000_UTA, i, uta);
6489 }
6490
6491 /**
6492  *  igb_intr_msi - Interrupt Handler
6493  *  @irq: interrupt number
6494  *  @data: pointer to a network interface device structure
6495  **/
6496 static irqreturn_t igb_intr_msi(int irq, void *data)
6497 {
6498         struct igb_adapter *adapter = data;
6499         struct igb_q_vector *q_vector = adapter->q_vector[0];
6500         struct e1000_hw *hw = &adapter->hw;
6501         /* read ICR disables interrupts using IAM */
6502         u32 icr = rd32(E1000_ICR);
6503
6504         igb_write_itr(q_vector);
6505
6506         if (icr & E1000_ICR_DRSTA)
6507                 schedule_work(&adapter->reset_task);
6508
6509         if (icr & E1000_ICR_DOUTSYNC) {
6510                 /* HW is reporting DMA is out of sync */
6511                 adapter->stats.doosync++;
6512         }
6513
6514         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6515                 hw->mac.get_link_status = 1;
6516                 if (!test_bit(__IGB_DOWN, &adapter->state))
6517                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6518         }
6519
6520         if (icr & E1000_ICR_TS)
6521                 igb_tsync_interrupt(adapter);
6522
6523         napi_schedule(&q_vector->napi);
6524
6525         return IRQ_HANDLED;
6526 }
6527
6528 /**
6529  *  igb_intr - Legacy Interrupt Handler
6530  *  @irq: interrupt number
6531  *  @data: pointer to a network interface device structure
6532  **/
6533 static irqreturn_t igb_intr(int irq, void *data)
6534 {
6535         struct igb_adapter *adapter = data;
6536         struct igb_q_vector *q_vector = adapter->q_vector[0];
6537         struct e1000_hw *hw = &adapter->hw;
6538         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6539          * need for the IMC write
6540          */
6541         u32 icr = rd32(E1000_ICR);
6542
6543         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6544          * not set, then the adapter didn't send an interrupt
6545          */
6546         if (!(icr & E1000_ICR_INT_ASSERTED))
6547                 return IRQ_NONE;
6548
6549         igb_write_itr(q_vector);
6550
6551         if (icr & E1000_ICR_DRSTA)
6552                 schedule_work(&adapter->reset_task);
6553
6554         if (icr & E1000_ICR_DOUTSYNC) {
6555                 /* HW is reporting DMA is out of sync */
6556                 adapter->stats.doosync++;
6557         }
6558
6559         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6560                 hw->mac.get_link_status = 1;
6561                 /* guard against interrupt when we're going down */
6562                 if (!test_bit(__IGB_DOWN, &adapter->state))
6563                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6564         }
6565
6566         if (icr & E1000_ICR_TS)
6567                 igb_tsync_interrupt(adapter);
6568
6569         napi_schedule(&q_vector->napi);
6570
6571         return IRQ_HANDLED;
6572 }
6573
6574 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6575 {
6576         struct igb_adapter *adapter = q_vector->adapter;
6577         struct e1000_hw *hw = &adapter->hw;
6578
6579         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6580             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6581                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6582                         igb_set_itr(q_vector);
6583                 else
6584                         igb_update_ring_itr(q_vector);
6585         }
6586
6587         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6588                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6589                         wr32(E1000_EIMS, q_vector->eims_value);
6590                 else
6591                         igb_irq_enable(adapter);
6592         }
6593 }
6594
6595 /**
6596  *  igb_poll - NAPI Rx polling callback
6597  *  @napi: napi polling structure
6598  *  @budget: count of how many packets we should handle
6599  **/
6600 static int igb_poll(struct napi_struct *napi, int budget)
6601 {
6602         struct igb_q_vector *q_vector = container_of(napi,
6603                                                      struct igb_q_vector,
6604                                                      napi);
6605         bool clean_complete = true;
6606         int work_done = 0;
6607
6608 #ifdef CONFIG_IGB_DCA
6609         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6610                 igb_update_dca(q_vector);
6611 #endif
6612         if (q_vector->tx.ring)
6613                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6614
6615         if (q_vector->rx.ring) {
6616                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6617
6618                 work_done += cleaned;
6619                 if (cleaned >= budget)
6620                         clean_complete = false;
6621         }
6622
6623         /* If all work not completed, return budget and keep polling */
6624         if (!clean_complete)
6625                 return budget;
6626
6627         /* If not enough Rx work done, exit the polling mode */
6628         napi_complete_done(napi, work_done);
6629         igb_ring_irq_enable(q_vector);
6630
6631         return 0;
6632 }
6633
6634 /**
6635  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6636  *  @q_vector: pointer to q_vector containing needed info
6637  *  @napi_budget: Used to determine if we are in netpoll
6638  *
6639  *  returns true if ring is completely cleaned
6640  **/
6641 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6642 {
6643         struct igb_adapter *adapter = q_vector->adapter;
6644         struct igb_ring *tx_ring = q_vector->tx.ring;
6645         struct igb_tx_buffer *tx_buffer;
6646         union e1000_adv_tx_desc *tx_desc;
6647         unsigned int total_bytes = 0, total_packets = 0;
6648         unsigned int budget = q_vector->tx.work_limit;
6649         unsigned int i = tx_ring->next_to_clean;
6650
6651         if (test_bit(__IGB_DOWN, &adapter->state))
6652                 return true;
6653
6654         tx_buffer = &tx_ring->tx_buffer_info[i];
6655         tx_desc = IGB_TX_DESC(tx_ring, i);
6656         i -= tx_ring->count;
6657
6658         do {
6659                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6660
6661                 /* if next_to_watch is not set then there is no work pending */
6662                 if (!eop_desc)
6663                         break;
6664
6665                 /* prevent any other reads prior to eop_desc */
6666                 read_barrier_depends();
6667
6668                 /* if DD is not set pending work has not been completed */
6669                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6670                         break;
6671
6672                 /* clear next_to_watch to prevent false hangs */
6673                 tx_buffer->next_to_watch = NULL;
6674
6675                 /* update the statistics for this packet */
6676                 total_bytes += tx_buffer->bytecount;
6677                 total_packets += tx_buffer->gso_segs;
6678
6679                 /* free the skb */
6680                 napi_consume_skb(tx_buffer->skb, napi_budget);
6681
6682                 /* unmap skb header data */
6683                 dma_unmap_single(tx_ring->dev,
6684                                  dma_unmap_addr(tx_buffer, dma),
6685                                  dma_unmap_len(tx_buffer, len),
6686                                  DMA_TO_DEVICE);
6687
6688                 /* clear tx_buffer data */
6689                 tx_buffer->skb = NULL;
6690                 dma_unmap_len_set(tx_buffer, len, 0);
6691
6692                 /* clear last DMA location and unmap remaining buffers */
6693                 while (tx_desc != eop_desc) {
6694                         tx_buffer++;
6695                         tx_desc++;
6696                         i++;
6697                         if (unlikely(!i)) {
6698                                 i -= tx_ring->count;
6699                                 tx_buffer = tx_ring->tx_buffer_info;
6700                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6701                         }
6702
6703                         /* unmap any remaining paged data */
6704                         if (dma_unmap_len(tx_buffer, len)) {
6705                                 dma_unmap_page(tx_ring->dev,
6706                                                dma_unmap_addr(tx_buffer, dma),
6707                                                dma_unmap_len(tx_buffer, len),
6708                                                DMA_TO_DEVICE);
6709                                 dma_unmap_len_set(tx_buffer, len, 0);
6710                         }
6711                 }
6712
6713                 /* move us one more past the eop_desc for start of next pkt */
6714                 tx_buffer++;
6715                 tx_desc++;
6716                 i++;
6717                 if (unlikely(!i)) {
6718                         i -= tx_ring->count;
6719                         tx_buffer = tx_ring->tx_buffer_info;
6720                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6721                 }
6722
6723                 /* issue prefetch for next Tx descriptor */
6724                 prefetch(tx_desc);
6725
6726                 /* update budget accounting */
6727                 budget--;
6728         } while (likely(budget));
6729
6730         netdev_tx_completed_queue(txring_txq(tx_ring),
6731                                   total_packets, total_bytes);
6732         i += tx_ring->count;
6733         tx_ring->next_to_clean = i;
6734         u64_stats_update_begin(&tx_ring->tx_syncp);
6735         tx_ring->tx_stats.bytes += total_bytes;
6736         tx_ring->tx_stats.packets += total_packets;
6737         u64_stats_update_end(&tx_ring->tx_syncp);
6738         q_vector->tx.total_bytes += total_bytes;
6739         q_vector->tx.total_packets += total_packets;
6740
6741         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6742                 struct e1000_hw *hw = &adapter->hw;
6743
6744                 /* Detect a transmit hang in hardware, this serializes the
6745                  * check with the clearing of time_stamp and movement of i
6746                  */
6747                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6748                 if (tx_buffer->next_to_watch &&
6749                     time_after(jiffies, tx_buffer->time_stamp +
6750                                (adapter->tx_timeout_factor * HZ)) &&
6751                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6752
6753                         /* detected Tx unit hang */
6754                         dev_err(tx_ring->dev,
6755                                 "Detected Tx Unit Hang\n"
6756                                 "  Tx Queue             <%d>\n"
6757                                 "  TDH                  <%x>\n"
6758                                 "  TDT                  <%x>\n"
6759                                 "  next_to_use          <%x>\n"
6760                                 "  next_to_clean        <%x>\n"
6761                                 "buffer_info[next_to_clean]\n"
6762                                 "  time_stamp           <%lx>\n"
6763                                 "  next_to_watch        <%p>\n"
6764                                 "  jiffies              <%lx>\n"
6765                                 "  desc.status          <%x>\n",
6766                                 tx_ring->queue_index,
6767                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6768                                 readl(tx_ring->tail),
6769                                 tx_ring->next_to_use,
6770                                 tx_ring->next_to_clean,
6771                                 tx_buffer->time_stamp,
6772                                 tx_buffer->next_to_watch,
6773                                 jiffies,
6774                                 tx_buffer->next_to_watch->wb.status);
6775                         netif_stop_subqueue(tx_ring->netdev,
6776                                             tx_ring->queue_index);
6777
6778                         /* we are about to reset, no point in enabling stuff */
6779                         return true;
6780                 }
6781         }
6782
6783 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6784         if (unlikely(total_packets &&
6785             netif_carrier_ok(tx_ring->netdev) &&
6786             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6787                 /* Make sure that anybody stopping the queue after this
6788                  * sees the new next_to_clean.
6789                  */
6790                 smp_mb();
6791                 if (__netif_subqueue_stopped(tx_ring->netdev,
6792                                              tx_ring->queue_index) &&
6793                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6794                         netif_wake_subqueue(tx_ring->netdev,
6795                                             tx_ring->queue_index);
6796
6797                         u64_stats_update_begin(&tx_ring->tx_syncp);
6798                         tx_ring->tx_stats.restart_queue++;
6799                         u64_stats_update_end(&tx_ring->tx_syncp);
6800                 }
6801         }
6802
6803         return !!budget;
6804 }
6805
6806 /**
6807  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6808  *  @rx_ring: rx descriptor ring to store buffers on
6809  *  @old_buff: donor buffer to have page reused
6810  *
6811  *  Synchronizes page for reuse by the adapter
6812  **/
6813 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6814                               struct igb_rx_buffer *old_buff)
6815 {
6816         struct igb_rx_buffer *new_buff;
6817         u16 nta = rx_ring->next_to_alloc;
6818
6819         new_buff = &rx_ring->rx_buffer_info[nta];
6820
6821         /* update, and store next to alloc */
6822         nta++;
6823         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6824
6825         /* transfer page from old buffer to new buffer */
6826         *new_buff = *old_buff;
6827 }
6828
6829 static inline bool igb_page_is_reserved(struct page *page)
6830 {
6831         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6832 }
6833
6834 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6835                                   struct page *page,
6836                                   unsigned int truesize)
6837 {
6838         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
6839
6840         /* avoid re-using remote pages */
6841         if (unlikely(igb_page_is_reserved(page)))
6842                 return false;
6843
6844 #if (PAGE_SIZE < 8192)
6845         /* if we are only owner of page we can reuse it */
6846         if (unlikely(page_ref_count(page) != pagecnt_bias))
6847                 return false;
6848
6849         /* flip page offset to other buffer */
6850         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6851 #else
6852         /* move offset up to the next cache line */
6853         rx_buffer->page_offset += truesize;
6854
6855         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6856                 return false;
6857 #endif
6858
6859         /* If we have drained the page fragment pool we need to update
6860          * the pagecnt_bias and page count so that we fully restock the
6861          * number of references the driver holds.
6862          */
6863         if (unlikely(pagecnt_bias == 1)) {
6864                 page_ref_add(page, USHRT_MAX);
6865                 rx_buffer->pagecnt_bias = USHRT_MAX;
6866         }
6867
6868         return true;
6869 }
6870
6871 /**
6872  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6873  *  @rx_ring: rx descriptor ring to transact packets on
6874  *  @rx_buffer: buffer containing page to add
6875  *  @rx_desc: descriptor containing length of buffer written by hardware
6876  *  @skb: sk_buff to place the data into
6877  *
6878  *  This function will add the data contained in rx_buffer->page to the skb.
6879  *  This is done either through a direct copy if the data in the buffer is
6880  *  less than the skb header size, otherwise it will just attach the page as
6881  *  a frag to the skb.
6882  *
6883  *  The function will then update the page offset if necessary and return
6884  *  true if the buffer can be reused by the adapter.
6885  **/
6886 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6887                             struct igb_rx_buffer *rx_buffer,
6888                             unsigned int size,
6889                             union e1000_adv_rx_desc *rx_desc,
6890                             struct sk_buff *skb)
6891 {
6892         struct page *page = rx_buffer->page;
6893         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6894 #if (PAGE_SIZE < 8192)
6895         unsigned int truesize = IGB_RX_BUFSZ;
6896 #else
6897         unsigned int truesize = SKB_DATA_ALIGN(size);
6898 #endif
6899         unsigned int pull_len;
6900
6901         if (unlikely(skb_is_nonlinear(skb)))
6902                 goto add_tail_frag;
6903
6904         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6905                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6906                 va += IGB_TS_HDR_LEN;
6907                 size -= IGB_TS_HDR_LEN;
6908         }
6909
6910         if (likely(size <= IGB_RX_HDR_LEN)) {
6911                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6912
6913                 /* page is not reserved, we can reuse buffer as-is */
6914                 if (likely(!igb_page_is_reserved(page)))
6915                         return true;
6916
6917                 /* this page cannot be reused so discard it */
6918                 return false;
6919         }
6920
6921         /* we need the header to contain the greater of either ETH_HLEN or
6922          * 60 bytes if the skb->len is less than 60 for skb_pad.
6923          */
6924         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6925
6926         /* align pull length to size of long to optimize memcpy performance */
6927         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6928
6929         /* update all of the pointers */
6930         va += pull_len;
6931         size -= pull_len;
6932
6933 add_tail_frag:
6934         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6935                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6936
6937         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6938 }
6939
6940 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6941                                            union e1000_adv_rx_desc *rx_desc,
6942                                            struct sk_buff *skb)
6943 {
6944         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6945         struct igb_rx_buffer *rx_buffer;
6946         struct page *page;
6947
6948         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6949         page = rx_buffer->page;
6950         prefetchw(page);
6951
6952         /* we are reusing so sync this buffer for CPU use */
6953         dma_sync_single_range_for_cpu(rx_ring->dev,
6954                                       rx_buffer->dma,
6955                                       rx_buffer->page_offset,
6956                                       size,
6957                                       DMA_FROM_DEVICE);
6958
6959         if (likely(!skb)) {
6960                 void *page_addr = page_address(page) +
6961                                   rx_buffer->page_offset;
6962
6963                 /* prefetch first cache line of first page */
6964                 prefetch(page_addr);
6965 #if L1_CACHE_BYTES < 128
6966                 prefetch(page_addr + L1_CACHE_BYTES);
6967 #endif
6968
6969                 /* allocate a skb to store the frags */
6970                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6971                 if (unlikely(!skb)) {
6972                         rx_ring->rx_stats.alloc_failed++;
6973                         return NULL;
6974                 }
6975
6976                 /* we will be copying header into skb->data in
6977                  * pskb_may_pull so it is in our interest to prefetch
6978                  * it now to avoid a possible cache miss
6979                  */
6980                 prefetchw(skb->data);
6981         }
6982
6983         /* pull page into skb */
6984         if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6985                 /* hand second half of page back to the ring */
6986                 igb_reuse_rx_page(rx_ring, rx_buffer);
6987         } else {
6988                 /* We are not reusing the buffer so unmap it and free
6989                  * any references we are holding to it
6990                  */
6991                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
6992                                      PAGE_SIZE, DMA_FROM_DEVICE,
6993                                      DMA_ATTR_SKIP_CPU_SYNC);
6994                 __page_frag_drain(page, 0, rx_buffer->pagecnt_bias);
6995         }
6996
6997         /* clear contents of rx_buffer */
6998         rx_buffer->page = NULL;
6999
7000         return skb;
7001 }
7002
7003 static inline void igb_rx_checksum(struct igb_ring *ring,
7004                                    union e1000_adv_rx_desc *rx_desc,
7005                                    struct sk_buff *skb)
7006 {
7007         skb_checksum_none_assert(skb);
7008
7009         /* Ignore Checksum bit is set */
7010         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7011                 return;
7012
7013         /* Rx checksum disabled via ethtool */
7014         if (!(ring->netdev->features & NETIF_F_RXCSUM))
7015                 return;
7016
7017         /* TCP/UDP checksum error bit is set */
7018         if (igb_test_staterr(rx_desc,
7019                              E1000_RXDEXT_STATERR_TCPE |
7020                              E1000_RXDEXT_STATERR_IPE)) {
7021                 /* work around errata with sctp packets where the TCPE aka
7022                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7023                  * packets, (aka let the stack check the crc32c)
7024                  */
7025                 if (!((skb->len == 60) &&
7026                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7027                         u64_stats_update_begin(&ring->rx_syncp);
7028                         ring->rx_stats.csum_err++;
7029                         u64_stats_update_end(&ring->rx_syncp);
7030                 }
7031                 /* let the stack verify checksum errors */
7032                 return;
7033         }
7034         /* It must be a TCP or UDP packet with a valid checksum */
7035         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7036                                       E1000_RXD_STAT_UDPCS))
7037                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7038
7039         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7040                 le32_to_cpu(rx_desc->wb.upper.status_error));
7041 }
7042
7043 static inline void igb_rx_hash(struct igb_ring *ring,
7044                                union e1000_adv_rx_desc *rx_desc,
7045                                struct sk_buff *skb)
7046 {
7047         if (ring->netdev->features & NETIF_F_RXHASH)
7048                 skb_set_hash(skb,
7049                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7050                              PKT_HASH_TYPE_L3);
7051 }
7052
7053 /**
7054  *  igb_is_non_eop - process handling of non-EOP buffers
7055  *  @rx_ring: Rx ring being processed
7056  *  @rx_desc: Rx descriptor for current buffer
7057  *  @skb: current socket buffer containing buffer in progress
7058  *
7059  *  This function updates next to clean.  If the buffer is an EOP buffer
7060  *  this function exits returning false, otherwise it will place the
7061  *  sk_buff in the next buffer to be chained and return true indicating
7062  *  that this is in fact a non-EOP buffer.
7063  **/
7064 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7065                            union e1000_adv_rx_desc *rx_desc)
7066 {
7067         u32 ntc = rx_ring->next_to_clean + 1;
7068
7069         /* fetch, update, and store next to clean */
7070         ntc = (ntc < rx_ring->count) ? ntc : 0;
7071         rx_ring->next_to_clean = ntc;
7072
7073         prefetch(IGB_RX_DESC(rx_ring, ntc));
7074
7075         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7076                 return false;
7077
7078         return true;
7079 }
7080
7081 /**
7082  *  igb_cleanup_headers - Correct corrupted or empty headers
7083  *  @rx_ring: rx descriptor ring packet is being transacted on
7084  *  @rx_desc: pointer to the EOP Rx descriptor
7085  *  @skb: pointer to current skb being fixed
7086  *
7087  *  Address the case where we are pulling data in on pages only
7088  *  and as such no data is present in the skb header.
7089  *
7090  *  In addition if skb is not at least 60 bytes we need to pad it so that
7091  *  it is large enough to qualify as a valid Ethernet frame.
7092  *
7093  *  Returns true if an error was encountered and skb was freed.
7094  **/
7095 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7096                                 union e1000_adv_rx_desc *rx_desc,
7097                                 struct sk_buff *skb)
7098 {
7099         if (unlikely((igb_test_staterr(rx_desc,
7100                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7101                 struct net_device *netdev = rx_ring->netdev;
7102                 if (!(netdev->features & NETIF_F_RXALL)) {
7103                         dev_kfree_skb_any(skb);
7104                         return true;
7105                 }
7106         }
7107
7108         /* if eth_skb_pad returns an error the skb was freed */
7109         if (eth_skb_pad(skb))
7110                 return true;
7111
7112         return false;
7113 }
7114
7115 /**
7116  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7117  *  @rx_ring: rx descriptor ring packet is being transacted on
7118  *  @rx_desc: pointer to the EOP Rx descriptor
7119  *  @skb: pointer to current skb being populated
7120  *
7121  *  This function checks the ring, descriptor, and packet information in
7122  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7123  *  other fields within the skb.
7124  **/
7125 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7126                                    union e1000_adv_rx_desc *rx_desc,
7127                                    struct sk_buff *skb)
7128 {
7129         struct net_device *dev = rx_ring->netdev;
7130
7131         igb_rx_hash(rx_ring, rx_desc, skb);
7132
7133         igb_rx_checksum(rx_ring, rx_desc, skb);
7134
7135         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7136             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7137                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7138
7139         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7140             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7141                 u16 vid;
7142
7143                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7144                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7145                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7146                 else
7147                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7148
7149                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7150         }
7151
7152         skb_record_rx_queue(skb, rx_ring->queue_index);
7153
7154         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7155 }
7156
7157 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7158 {
7159         struct igb_ring *rx_ring = q_vector->rx.ring;
7160         struct sk_buff *skb = rx_ring->skb;
7161         unsigned int total_bytes = 0, total_packets = 0;
7162         u16 cleaned_count = igb_desc_unused(rx_ring);
7163
7164         while (likely(total_packets < budget)) {
7165                 union e1000_adv_rx_desc *rx_desc;
7166
7167                 /* return some buffers to hardware, one at a time is too slow */
7168                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7169                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7170                         cleaned_count = 0;
7171                 }
7172
7173                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7174
7175                 if (!rx_desc->wb.upper.status_error)
7176                         break;
7177
7178                 /* This memory barrier is needed to keep us from reading
7179                  * any other fields out of the rx_desc until we know the
7180                  * descriptor has been written back
7181                  */
7182                 dma_rmb();
7183
7184                 /* retrieve a buffer from the ring */
7185                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7186
7187                 /* exit if we failed to retrieve a buffer */
7188                 if (!skb)
7189                         break;
7190
7191                 cleaned_count++;
7192
7193                 /* fetch next buffer in frame if non-eop */
7194                 if (igb_is_non_eop(rx_ring, rx_desc))
7195                         continue;
7196
7197                 /* verify the packet layout is correct */
7198                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7199                         skb = NULL;
7200                         continue;
7201                 }
7202
7203                 /* probably a little skewed due to removing CRC */
7204                 total_bytes += skb->len;
7205
7206                 /* populate checksum, timestamp, VLAN, and protocol */
7207                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7208
7209                 napi_gro_receive(&q_vector->napi, skb);
7210
7211                 /* reset skb pointer */
7212                 skb = NULL;
7213
7214                 /* update budget accounting */
7215                 total_packets++;
7216         }
7217
7218         /* place incomplete frames back on ring for completion */
7219         rx_ring->skb = skb;
7220
7221         u64_stats_update_begin(&rx_ring->rx_syncp);
7222         rx_ring->rx_stats.packets += total_packets;
7223         rx_ring->rx_stats.bytes += total_bytes;
7224         u64_stats_update_end(&rx_ring->rx_syncp);
7225         q_vector->rx.total_packets += total_packets;
7226         q_vector->rx.total_bytes += total_bytes;
7227
7228         if (cleaned_count)
7229                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7230
7231         return total_packets;
7232 }
7233
7234 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7235                                   struct igb_rx_buffer *bi)
7236 {
7237         struct page *page = bi->page;
7238         dma_addr_t dma;
7239
7240         /* since we are recycling buffers we should seldom need to alloc */
7241         if (likely(page))
7242                 return true;
7243
7244         /* alloc new page for storage */
7245         page = dev_alloc_page();
7246         if (unlikely(!page)) {
7247                 rx_ring->rx_stats.alloc_failed++;
7248                 return false;
7249         }
7250
7251         /* map page for use */
7252         dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE,
7253                                  DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
7254
7255         /* if mapping failed free memory back to system since
7256          * there isn't much point in holding memory we can't use
7257          */
7258         if (dma_mapping_error(rx_ring->dev, dma)) {
7259                 __free_page(page);
7260
7261                 rx_ring->rx_stats.alloc_failed++;
7262                 return false;
7263         }
7264
7265         bi->dma = dma;
7266         bi->page = page;
7267         bi->page_offset = 0;
7268         bi->pagecnt_bias = 1;
7269
7270         return true;
7271 }
7272
7273 /**
7274  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7275  *  @adapter: address of board private structure
7276  **/
7277 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7278 {
7279         union e1000_adv_rx_desc *rx_desc;
7280         struct igb_rx_buffer *bi;
7281         u16 i = rx_ring->next_to_use;
7282
7283         /* nothing to do */
7284         if (!cleaned_count)
7285                 return;
7286
7287         rx_desc = IGB_RX_DESC(rx_ring, i);
7288         bi = &rx_ring->rx_buffer_info[i];
7289         i -= rx_ring->count;
7290
7291         do {
7292                 if (!igb_alloc_mapped_page(rx_ring, bi))
7293                         break;
7294
7295                 /* sync the buffer for use by the device */
7296                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7297                                                  bi->page_offset,
7298                                                  IGB_RX_BUFSZ,
7299                                                  DMA_FROM_DEVICE);
7300
7301                 /* Refresh the desc even if buffer_addrs didn't change
7302                  * because each write-back erases this info.
7303                  */
7304                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7305
7306                 rx_desc++;
7307                 bi++;
7308                 i++;
7309                 if (unlikely(!i)) {
7310                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7311                         bi = rx_ring->rx_buffer_info;
7312                         i -= rx_ring->count;
7313                 }
7314
7315                 /* clear the status bits for the next_to_use descriptor */
7316                 rx_desc->wb.upper.status_error = 0;
7317
7318                 cleaned_count--;
7319         } while (cleaned_count);
7320
7321         i += rx_ring->count;
7322
7323         if (rx_ring->next_to_use != i) {
7324                 /* record the next descriptor to use */
7325                 rx_ring->next_to_use = i;
7326
7327                 /* update next to alloc since we have filled the ring */
7328                 rx_ring->next_to_alloc = i;
7329
7330                 /* Force memory writes to complete before letting h/w
7331                  * know there are new descriptors to fetch.  (Only
7332                  * applicable for weak-ordered memory model archs,
7333                  * such as IA-64).
7334                  */
7335                 wmb();
7336                 writel(i, rx_ring->tail);
7337         }
7338 }
7339
7340 /**
7341  * igb_mii_ioctl -
7342  * @netdev:
7343  * @ifreq:
7344  * @cmd:
7345  **/
7346 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7347 {
7348         struct igb_adapter *adapter = netdev_priv(netdev);
7349         struct mii_ioctl_data *data = if_mii(ifr);
7350
7351         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7352                 return -EOPNOTSUPP;
7353
7354         switch (cmd) {
7355         case SIOCGMIIPHY:
7356                 data->phy_id = adapter->hw.phy.addr;
7357                 break;
7358         case SIOCGMIIREG:
7359                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7360                                      &data->val_out))
7361                         return -EIO;
7362                 break;
7363         case SIOCSMIIREG:
7364         default:
7365                 return -EOPNOTSUPP;
7366         }
7367         return 0;
7368 }
7369
7370 /**
7371  * igb_ioctl -
7372  * @netdev:
7373  * @ifreq:
7374  * @cmd:
7375  **/
7376 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7377 {
7378         switch (cmd) {
7379         case SIOCGMIIPHY:
7380         case SIOCGMIIREG:
7381         case SIOCSMIIREG:
7382                 return igb_mii_ioctl(netdev, ifr, cmd);
7383         case SIOCGHWTSTAMP:
7384                 return igb_ptp_get_ts_config(netdev, ifr);
7385         case SIOCSHWTSTAMP:
7386                 return igb_ptp_set_ts_config(netdev, ifr);
7387         default:
7388                 return -EOPNOTSUPP;
7389         }
7390 }
7391
7392 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7393 {
7394         struct igb_adapter *adapter = hw->back;
7395
7396         pci_read_config_word(adapter->pdev, reg, value);
7397 }
7398
7399 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7400 {
7401         struct igb_adapter *adapter = hw->back;
7402
7403         pci_write_config_word(adapter->pdev, reg, *value);
7404 }
7405
7406 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7407 {
7408         struct igb_adapter *adapter = hw->back;
7409
7410         if (pcie_capability_read_word(adapter->pdev, reg, value))
7411                 return -E1000_ERR_CONFIG;
7412
7413         return 0;
7414 }
7415
7416 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7417 {
7418         struct igb_adapter *adapter = hw->back;
7419
7420         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7421                 return -E1000_ERR_CONFIG;
7422
7423         return 0;
7424 }
7425
7426 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7427 {
7428         struct igb_adapter *adapter = netdev_priv(netdev);
7429         struct e1000_hw *hw = &adapter->hw;
7430         u32 ctrl, rctl;
7431         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7432
7433         if (enable) {
7434                 /* enable VLAN tag insert/strip */
7435                 ctrl = rd32(E1000_CTRL);
7436                 ctrl |= E1000_CTRL_VME;
7437                 wr32(E1000_CTRL, ctrl);
7438
7439                 /* Disable CFI check */
7440                 rctl = rd32(E1000_RCTL);
7441                 rctl &= ~E1000_RCTL_CFIEN;
7442                 wr32(E1000_RCTL, rctl);
7443         } else {
7444                 /* disable VLAN tag insert/strip */
7445                 ctrl = rd32(E1000_CTRL);
7446                 ctrl &= ~E1000_CTRL_VME;
7447                 wr32(E1000_CTRL, ctrl);
7448         }
7449
7450         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7451 }
7452
7453 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7454                                __be16 proto, u16 vid)
7455 {
7456         struct igb_adapter *adapter = netdev_priv(netdev);
7457         struct e1000_hw *hw = &adapter->hw;
7458         int pf_id = adapter->vfs_allocated_count;
7459
7460         /* add the filter since PF can receive vlans w/o entry in vlvf */
7461         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7463
7464         set_bit(vid, adapter->active_vlans);
7465
7466         return 0;
7467 }
7468
7469 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7470                                 __be16 proto, u16 vid)
7471 {
7472         struct igb_adapter *adapter = netdev_priv(netdev);
7473         int pf_id = adapter->vfs_allocated_count;
7474         struct e1000_hw *hw = &adapter->hw;
7475
7476         /* remove VID from filter table */
7477         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7478                 igb_vfta_set(hw, vid, pf_id, false, true);
7479
7480         clear_bit(vid, adapter->active_vlans);
7481
7482         return 0;
7483 }
7484
7485 static void igb_restore_vlan(struct igb_adapter *adapter)
7486 {
7487         u16 vid = 1;
7488
7489         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7490         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7491
7492         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7493                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7494 }
7495
7496 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7497 {
7498         struct pci_dev *pdev = adapter->pdev;
7499         struct e1000_mac_info *mac = &adapter->hw.mac;
7500
7501         mac->autoneg = 0;
7502
7503         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7504          * for the switch() below to work
7505          */
7506         if ((spd & 1) || (dplx & ~1))
7507                 goto err_inval;
7508
7509         /* Fiber NIC's only allow 1000 gbps Full duplex
7510          * and 100Mbps Full duplex for 100baseFx sfp
7511          */
7512         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7513                 switch (spd + dplx) {
7514                 case SPEED_10 + DUPLEX_HALF:
7515                 case SPEED_10 + DUPLEX_FULL:
7516                 case SPEED_100 + DUPLEX_HALF:
7517                         goto err_inval;
7518                 default:
7519                         break;
7520                 }
7521         }
7522
7523         switch (spd + dplx) {
7524         case SPEED_10 + DUPLEX_HALF:
7525                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7526                 break;
7527         case SPEED_10 + DUPLEX_FULL:
7528                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7529                 break;
7530         case SPEED_100 + DUPLEX_HALF:
7531                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7532                 break;
7533         case SPEED_100 + DUPLEX_FULL:
7534                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7535                 break;
7536         case SPEED_1000 + DUPLEX_FULL:
7537                 mac->autoneg = 1;
7538                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7539                 break;
7540         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7541         default:
7542                 goto err_inval;
7543         }
7544
7545         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7546         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7547
7548         return 0;
7549
7550 err_inval:
7551         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7552         return -EINVAL;
7553 }
7554
7555 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7556                           bool runtime)
7557 {
7558         struct net_device *netdev = pci_get_drvdata(pdev);
7559         struct igb_adapter *adapter = netdev_priv(netdev);
7560         struct e1000_hw *hw = &adapter->hw;
7561         u32 ctrl, rctl, status;
7562         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7563 #ifdef CONFIG_PM
7564         int retval = 0;
7565 #endif
7566
7567         netif_device_detach(netdev);
7568
7569         if (netif_running(netdev))
7570                 __igb_close(netdev, true);
7571
7572         igb_ptp_suspend(adapter);
7573
7574         igb_clear_interrupt_scheme(adapter);
7575
7576 #ifdef CONFIG_PM
7577         retval = pci_save_state(pdev);
7578         if (retval)
7579                 return retval;
7580 #endif
7581
7582         status = rd32(E1000_STATUS);
7583         if (status & E1000_STATUS_LU)
7584                 wufc &= ~E1000_WUFC_LNKC;
7585
7586         if (wufc) {
7587                 igb_setup_rctl(adapter);
7588                 igb_set_rx_mode(netdev);
7589
7590                 /* turn on all-multi mode if wake on multicast is enabled */
7591                 if (wufc & E1000_WUFC_MC) {
7592                         rctl = rd32(E1000_RCTL);
7593                         rctl |= E1000_RCTL_MPE;
7594                         wr32(E1000_RCTL, rctl);
7595                 }
7596
7597                 ctrl = rd32(E1000_CTRL);
7598                 /* advertise wake from D3Cold */
7599                 #define E1000_CTRL_ADVD3WUC 0x00100000
7600                 /* phy power management enable */
7601                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7602                 ctrl |= E1000_CTRL_ADVD3WUC;
7603                 wr32(E1000_CTRL, ctrl);
7604
7605                 /* Allow time for pending master requests to run */
7606                 igb_disable_pcie_master(hw);
7607
7608                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7609                 wr32(E1000_WUFC, wufc);
7610         } else {
7611                 wr32(E1000_WUC, 0);
7612                 wr32(E1000_WUFC, 0);
7613         }
7614
7615         *enable_wake = wufc || adapter->en_mng_pt;
7616         if (!*enable_wake)
7617                 igb_power_down_link(adapter);
7618         else
7619                 igb_power_up_link(adapter);
7620
7621         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7622          * would have already happened in close and is redundant.
7623          */
7624         igb_release_hw_control(adapter);
7625
7626         pci_disable_device(pdev);
7627
7628         return 0;
7629 }
7630
7631 #ifdef CONFIG_PM
7632 #ifdef CONFIG_PM_SLEEP
7633 static int igb_suspend(struct device *dev)
7634 {
7635         int retval;
7636         bool wake;
7637         struct pci_dev *pdev = to_pci_dev(dev);
7638
7639         retval = __igb_shutdown(pdev, &wake, 0);
7640         if (retval)
7641                 return retval;
7642
7643         if (wake) {
7644                 pci_prepare_to_sleep(pdev);
7645         } else {
7646                 pci_wake_from_d3(pdev, false);
7647                 pci_set_power_state(pdev, PCI_D3hot);
7648         }
7649
7650         return 0;
7651 }
7652 #endif /* CONFIG_PM_SLEEP */
7653
7654 static int igb_resume(struct device *dev)
7655 {
7656         struct pci_dev *pdev = to_pci_dev(dev);
7657         struct net_device *netdev = pci_get_drvdata(pdev);
7658         struct igb_adapter *adapter = netdev_priv(netdev);
7659         struct e1000_hw *hw = &adapter->hw;
7660         u32 err;
7661
7662         pci_set_power_state(pdev, PCI_D0);
7663         pci_restore_state(pdev);
7664         pci_save_state(pdev);
7665
7666         if (!pci_device_is_present(pdev))
7667                 return -ENODEV;
7668         err = pci_enable_device_mem(pdev);
7669         if (err) {
7670                 dev_err(&pdev->dev,
7671                         "igb: Cannot enable PCI device from suspend\n");
7672                 return err;
7673         }
7674         pci_set_master(pdev);
7675
7676         pci_enable_wake(pdev, PCI_D3hot, 0);
7677         pci_enable_wake(pdev, PCI_D3cold, 0);
7678
7679         if (igb_init_interrupt_scheme(adapter, true)) {
7680                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7681                 return -ENOMEM;
7682         }
7683
7684         igb_reset(adapter);
7685
7686         /* let the f/w know that the h/w is now under the control of the
7687          * driver.
7688          */
7689         igb_get_hw_control(adapter);
7690
7691         wr32(E1000_WUS, ~0);
7692
7693         if (netdev->flags & IFF_UP) {
7694                 rtnl_lock();
7695                 err = __igb_open(netdev, true);
7696                 rtnl_unlock();
7697                 if (err)
7698                         return err;
7699         }
7700
7701         netif_device_attach(netdev);
7702         return 0;
7703 }
7704
7705 static int igb_runtime_idle(struct device *dev)
7706 {
7707         struct pci_dev *pdev = to_pci_dev(dev);
7708         struct net_device *netdev = pci_get_drvdata(pdev);
7709         struct igb_adapter *adapter = netdev_priv(netdev);
7710
7711         if (!igb_has_link(adapter))
7712                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7713
7714         return -EBUSY;
7715 }
7716
7717 static int igb_runtime_suspend(struct device *dev)
7718 {
7719         struct pci_dev *pdev = to_pci_dev(dev);
7720         int retval;
7721         bool wake;
7722
7723         retval = __igb_shutdown(pdev, &wake, 1);
7724         if (retval)
7725                 return retval;
7726
7727         if (wake) {
7728                 pci_prepare_to_sleep(pdev);
7729         } else {
7730                 pci_wake_from_d3(pdev, false);
7731                 pci_set_power_state(pdev, PCI_D3hot);
7732         }
7733
7734         return 0;
7735 }
7736
7737 static int igb_runtime_resume(struct device *dev)
7738 {
7739         return igb_resume(dev);
7740 }
7741 #endif /* CONFIG_PM */
7742
7743 static void igb_shutdown(struct pci_dev *pdev)
7744 {
7745         bool wake;
7746
7747         __igb_shutdown(pdev, &wake, 0);
7748
7749         if (system_state == SYSTEM_POWER_OFF) {
7750                 pci_wake_from_d3(pdev, wake);
7751                 pci_set_power_state(pdev, PCI_D3hot);
7752         }
7753 }
7754
7755 #ifdef CONFIG_PCI_IOV
7756 static int igb_sriov_reinit(struct pci_dev *dev)
7757 {
7758         struct net_device *netdev = pci_get_drvdata(dev);
7759         struct igb_adapter *adapter = netdev_priv(netdev);
7760         struct pci_dev *pdev = adapter->pdev;
7761
7762         rtnl_lock();
7763
7764         if (netif_running(netdev))
7765                 igb_close(netdev);
7766         else
7767                 igb_reset(adapter);
7768
7769         igb_clear_interrupt_scheme(adapter);
7770
7771         igb_init_queue_configuration(adapter);
7772
7773         if (igb_init_interrupt_scheme(adapter, true)) {
7774                 rtnl_unlock();
7775                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7776                 return -ENOMEM;
7777         }
7778
7779         if (netif_running(netdev))
7780                 igb_open(netdev);
7781
7782         rtnl_unlock();
7783
7784         return 0;
7785 }
7786
7787 static int igb_pci_disable_sriov(struct pci_dev *dev)
7788 {
7789         int err = igb_disable_sriov(dev);
7790
7791         if (!err)
7792                 err = igb_sriov_reinit(dev);
7793
7794         return err;
7795 }
7796
7797 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7798 {
7799         int err = igb_enable_sriov(dev, num_vfs);
7800
7801         if (err)
7802                 goto out;
7803
7804         err = igb_sriov_reinit(dev);
7805         if (!err)
7806                 return num_vfs;
7807
7808 out:
7809         return err;
7810 }
7811
7812 #endif
7813 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7814 {
7815 #ifdef CONFIG_PCI_IOV
7816         if (num_vfs == 0)
7817                 return igb_pci_disable_sriov(dev);
7818         else
7819                 return igb_pci_enable_sriov(dev, num_vfs);
7820 #endif
7821         return 0;
7822 }
7823
7824 #ifdef CONFIG_NET_POLL_CONTROLLER
7825 /* Polling 'interrupt' - used by things like netconsole to send skbs
7826  * without having to re-enable interrupts. It's not called while
7827  * the interrupt routine is executing.
7828  */
7829 static void igb_netpoll(struct net_device *netdev)
7830 {
7831         struct igb_adapter *adapter = netdev_priv(netdev);
7832         struct e1000_hw *hw = &adapter->hw;
7833         struct igb_q_vector *q_vector;
7834         int i;
7835
7836         for (i = 0; i < adapter->num_q_vectors; i++) {
7837                 q_vector = adapter->q_vector[i];
7838                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7839                         wr32(E1000_EIMC, q_vector->eims_value);
7840                 else
7841                         igb_irq_disable(adapter);
7842                 napi_schedule(&q_vector->napi);
7843         }
7844 }
7845 #endif /* CONFIG_NET_POLL_CONTROLLER */
7846
7847 /**
7848  *  igb_io_error_detected - called when PCI error is detected
7849  *  @pdev: Pointer to PCI device
7850  *  @state: The current pci connection state
7851  *
7852  *  This function is called after a PCI bus error affecting
7853  *  this device has been detected.
7854  **/
7855 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7856                                               pci_channel_state_t state)
7857 {
7858         struct net_device *netdev = pci_get_drvdata(pdev);
7859         struct igb_adapter *adapter = netdev_priv(netdev);
7860
7861         netif_device_detach(netdev);
7862
7863         if (state == pci_channel_io_perm_failure)
7864                 return PCI_ERS_RESULT_DISCONNECT;
7865
7866         if (netif_running(netdev))
7867                 igb_down(adapter);
7868         pci_disable_device(pdev);
7869
7870         /* Request a slot slot reset. */
7871         return PCI_ERS_RESULT_NEED_RESET;
7872 }
7873
7874 /**
7875  *  igb_io_slot_reset - called after the pci bus has been reset.
7876  *  @pdev: Pointer to PCI device
7877  *
7878  *  Restart the card from scratch, as if from a cold-boot. Implementation
7879  *  resembles the first-half of the igb_resume routine.
7880  **/
7881 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7882 {
7883         struct net_device *netdev = pci_get_drvdata(pdev);
7884         struct igb_adapter *adapter = netdev_priv(netdev);
7885         struct e1000_hw *hw = &adapter->hw;
7886         pci_ers_result_t result;
7887         int err;
7888
7889         if (pci_enable_device_mem(pdev)) {
7890                 dev_err(&pdev->dev,
7891                         "Cannot re-enable PCI device after reset.\n");
7892                 result = PCI_ERS_RESULT_DISCONNECT;
7893         } else {
7894                 pci_set_master(pdev);
7895                 pci_restore_state(pdev);
7896                 pci_save_state(pdev);
7897
7898                 pci_enable_wake(pdev, PCI_D3hot, 0);
7899                 pci_enable_wake(pdev, PCI_D3cold, 0);
7900
7901                 igb_reset(adapter);
7902                 wr32(E1000_WUS, ~0);
7903                 result = PCI_ERS_RESULT_RECOVERED;
7904         }
7905
7906         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7907         if (err) {
7908                 dev_err(&pdev->dev,
7909                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7910                         err);
7911                 /* non-fatal, continue */
7912         }
7913
7914         return result;
7915 }
7916
7917 /**
7918  *  igb_io_resume - called when traffic can start flowing again.
7919  *  @pdev: Pointer to PCI device
7920  *
7921  *  This callback is called when the error recovery driver tells us that
7922  *  its OK to resume normal operation. Implementation resembles the
7923  *  second-half of the igb_resume routine.
7924  */
7925 static void igb_io_resume(struct pci_dev *pdev)
7926 {
7927         struct net_device *netdev = pci_get_drvdata(pdev);
7928         struct igb_adapter *adapter = netdev_priv(netdev);
7929
7930         if (netif_running(netdev)) {
7931                 if (igb_up(adapter)) {
7932                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7933                         return;
7934                 }
7935         }
7936
7937         netif_device_attach(netdev);
7938
7939         /* let the f/w know that the h/w is now under the control of the
7940          * driver.
7941          */
7942         igb_get_hw_control(adapter);
7943 }
7944
7945 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7946                              u8 qsel)
7947 {
7948         struct e1000_hw *hw = &adapter->hw;
7949         u32 rar_low, rar_high;
7950
7951         /* HW expects these to be in network order when they are plugged
7952          * into the registers which are little endian.  In order to guarantee
7953          * that ordering we need to do an leXX_to_cpup here in order to be
7954          * ready for the byteswap that occurs with writel
7955          */
7956         rar_low = le32_to_cpup((__le32 *)(addr));
7957         rar_high = le16_to_cpup((__le16 *)(addr + 4));
7958
7959         /* Indicate to hardware the Address is Valid. */
7960         rar_high |= E1000_RAH_AV;
7961
7962         if (hw->mac.type == e1000_82575)
7963                 rar_high |= E1000_RAH_POOL_1 * qsel;
7964         else
7965                 rar_high |= E1000_RAH_POOL_1 << qsel;
7966
7967         wr32(E1000_RAL(index), rar_low);
7968         wrfl();
7969         wr32(E1000_RAH(index), rar_high);
7970         wrfl();
7971 }
7972
7973 static int igb_set_vf_mac(struct igb_adapter *adapter,
7974                           int vf, unsigned char *mac_addr)
7975 {
7976         struct e1000_hw *hw = &adapter->hw;
7977         /* VF MAC addresses start at end of receive addresses and moves
7978          * towards the first, as a result a collision should not be possible
7979          */
7980         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7981
7982         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7983
7984         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7985
7986         return 0;
7987 }
7988
7989 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7990 {
7991         struct igb_adapter *adapter = netdev_priv(netdev);
7992         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7993                 return -EINVAL;
7994         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7995         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7996         dev_info(&adapter->pdev->dev,
7997                  "Reload the VF driver to make this change effective.");
7998         if (test_bit(__IGB_DOWN, &adapter->state)) {
7999                 dev_warn(&adapter->pdev->dev,
8000                          "The VF MAC address has been set, but the PF device is not up.\n");
8001                 dev_warn(&adapter->pdev->dev,
8002                          "Bring the PF device up before attempting to use the VF device.\n");
8003         }
8004         return igb_set_vf_mac(adapter, vf, mac);
8005 }
8006
8007 static int igb_link_mbps(int internal_link_speed)
8008 {
8009         switch (internal_link_speed) {
8010         case SPEED_100:
8011                 return 100;
8012         case SPEED_1000:
8013                 return 1000;
8014         default:
8015                 return 0;
8016         }
8017 }
8018
8019 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8020                                   int link_speed)
8021 {
8022         int rf_dec, rf_int;
8023         u32 bcnrc_val;
8024
8025         if (tx_rate != 0) {
8026                 /* Calculate the rate factor values to set */
8027                 rf_int = link_speed / tx_rate;
8028                 rf_dec = (link_speed - (rf_int * tx_rate));
8029                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8030                          tx_rate;
8031
8032                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8033                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8034                               E1000_RTTBCNRC_RF_INT_MASK);
8035                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8036         } else {
8037                 bcnrc_val = 0;
8038         }
8039
8040         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8041         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8042          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8043          */
8044         wr32(E1000_RTTBCNRM, 0x14);
8045         wr32(E1000_RTTBCNRC, bcnrc_val);
8046 }
8047
8048 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8049 {
8050         int actual_link_speed, i;
8051         bool reset_rate = false;
8052
8053         /* VF TX rate limit was not set or not supported */
8054         if ((adapter->vf_rate_link_speed == 0) ||
8055             (adapter->hw.mac.type != e1000_82576))
8056                 return;
8057
8058         actual_link_speed = igb_link_mbps(adapter->link_speed);
8059         if (actual_link_speed != adapter->vf_rate_link_speed) {
8060                 reset_rate = true;
8061                 adapter->vf_rate_link_speed = 0;
8062                 dev_info(&adapter->pdev->dev,
8063                          "Link speed has been changed. VF Transmit rate is disabled\n");
8064         }
8065
8066         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8067                 if (reset_rate)
8068                         adapter->vf_data[i].tx_rate = 0;
8069
8070                 igb_set_vf_rate_limit(&adapter->hw, i,
8071                                       adapter->vf_data[i].tx_rate,
8072                                       actual_link_speed);
8073         }
8074 }
8075
8076 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8077                              int min_tx_rate, int max_tx_rate)
8078 {
8079         struct igb_adapter *adapter = netdev_priv(netdev);
8080         struct e1000_hw *hw = &adapter->hw;
8081         int actual_link_speed;
8082
8083         if (hw->mac.type != e1000_82576)
8084                 return -EOPNOTSUPP;
8085
8086         if (min_tx_rate)
8087                 return -EINVAL;
8088
8089         actual_link_speed = igb_link_mbps(adapter->link_speed);
8090         if ((vf >= adapter->vfs_allocated_count) ||
8091             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8092             (max_tx_rate < 0) ||
8093             (max_tx_rate > actual_link_speed))
8094                 return -EINVAL;
8095
8096         adapter->vf_rate_link_speed = actual_link_speed;
8097         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8098         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8099
8100         return 0;
8101 }
8102
8103 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8104                                    bool setting)
8105 {
8106         struct igb_adapter *adapter = netdev_priv(netdev);
8107         struct e1000_hw *hw = &adapter->hw;
8108         u32 reg_val, reg_offset;
8109
8110         if (!adapter->vfs_allocated_count)
8111                 return -EOPNOTSUPP;
8112
8113         if (vf >= adapter->vfs_allocated_count)
8114                 return -EINVAL;
8115
8116         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8117         reg_val = rd32(reg_offset);
8118         if (setting)
8119                 reg_val |= (BIT(vf) |
8120                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8121         else
8122                 reg_val &= ~(BIT(vf) |
8123                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8124         wr32(reg_offset, reg_val);
8125
8126         adapter->vf_data[vf].spoofchk_enabled = setting;
8127         return 0;
8128 }
8129
8130 static int igb_ndo_get_vf_config(struct net_device *netdev,
8131                                  int vf, struct ifla_vf_info *ivi)
8132 {
8133         struct igb_adapter *adapter = netdev_priv(netdev);
8134         if (vf >= adapter->vfs_allocated_count)
8135                 return -EINVAL;
8136         ivi->vf = vf;
8137         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8138         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8139         ivi->min_tx_rate = 0;
8140         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8141         ivi->qos = adapter->vf_data[vf].pf_qos;
8142         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8143         return 0;
8144 }
8145
8146 static void igb_vmm_control(struct igb_adapter *adapter)
8147 {
8148         struct e1000_hw *hw = &adapter->hw;
8149         u32 reg;
8150
8151         switch (hw->mac.type) {
8152         case e1000_82575:
8153         case e1000_i210:
8154         case e1000_i211:
8155         case e1000_i354:
8156         default:
8157                 /* replication is not supported for 82575 */
8158                 return;
8159         case e1000_82576:
8160                 /* notify HW that the MAC is adding vlan tags */
8161                 reg = rd32(E1000_DTXCTL);
8162                 reg |= E1000_DTXCTL_VLAN_ADDED;
8163                 wr32(E1000_DTXCTL, reg);
8164                 /* Fall through */
8165         case e1000_82580:
8166                 /* enable replication vlan tag stripping */
8167                 reg = rd32(E1000_RPLOLR);
8168                 reg |= E1000_RPLOLR_STRVLAN;
8169                 wr32(E1000_RPLOLR, reg);
8170                 /* Fall through */
8171         case e1000_i350:
8172                 /* none of the above registers are supported by i350 */
8173                 break;
8174         }
8175
8176         if (adapter->vfs_allocated_count) {
8177                 igb_vmdq_set_loopback_pf(hw, true);
8178                 igb_vmdq_set_replication_pf(hw, true);
8179                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8180                                               adapter->vfs_allocated_count);
8181         } else {
8182                 igb_vmdq_set_loopback_pf(hw, false);
8183                 igb_vmdq_set_replication_pf(hw, false);
8184         }
8185 }
8186
8187 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8188 {
8189         struct e1000_hw *hw = &adapter->hw;
8190         u32 dmac_thr;
8191         u16 hwm;
8192
8193         if (hw->mac.type > e1000_82580) {
8194                 if (adapter->flags & IGB_FLAG_DMAC) {
8195                         u32 reg;
8196
8197                         /* force threshold to 0. */
8198                         wr32(E1000_DMCTXTH, 0);
8199
8200                         /* DMA Coalescing high water mark needs to be greater
8201                          * than the Rx threshold. Set hwm to PBA - max frame
8202                          * size in 16B units, capping it at PBA - 6KB.
8203                          */
8204                         hwm = 64 * (pba - 6);
8205                         reg = rd32(E1000_FCRTC);
8206                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8207                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8208                                 & E1000_FCRTC_RTH_COAL_MASK);
8209                         wr32(E1000_FCRTC, reg);
8210
8211                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8212                          * frame size, capping it at PBA - 10KB.
8213                          */
8214                         dmac_thr = pba - 10;
8215                         reg = rd32(E1000_DMACR);
8216                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8217                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8218                                 & E1000_DMACR_DMACTHR_MASK);
8219
8220                         /* transition to L0x or L1 if available..*/
8221                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8222
8223                         /* watchdog timer= +-1000 usec in 32usec intervals */
8224                         reg |= (1000 >> 5);
8225
8226                         /* Disable BMC-to-OS Watchdog Enable */
8227                         if (hw->mac.type != e1000_i354)
8228                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8229
8230                         wr32(E1000_DMACR, reg);
8231
8232                         /* no lower threshold to disable
8233                          * coalescing(smart fifb)-UTRESH=0
8234                          */
8235                         wr32(E1000_DMCRTRH, 0);
8236
8237                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8238
8239                         wr32(E1000_DMCTLX, reg);
8240
8241                         /* free space in tx packet buffer to wake from
8242                          * DMA coal
8243                          */
8244                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8245                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8246
8247                         /* make low power state decision controlled
8248                          * by DMA coal
8249                          */
8250                         reg = rd32(E1000_PCIEMISC);
8251                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8252                         wr32(E1000_PCIEMISC, reg);
8253                 } /* endif adapter->dmac is not disabled */
8254         } else if (hw->mac.type == e1000_82580) {
8255                 u32 reg = rd32(E1000_PCIEMISC);
8256
8257                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8258                 wr32(E1000_DMACR, 0);
8259         }
8260 }
8261
8262 /**
8263  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8264  *  @hw: pointer to hardware structure
8265  *  @byte_offset: byte offset to read
8266  *  @dev_addr: device address
8267  *  @data: value read
8268  *
8269  *  Performs byte read operation over I2C interface at
8270  *  a specified device address.
8271  **/
8272 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8273                       u8 dev_addr, u8 *data)
8274 {
8275         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8276         struct i2c_client *this_client = adapter->i2c_client;
8277         s32 status;
8278         u16 swfw_mask = 0;
8279
8280         if (!this_client)
8281                 return E1000_ERR_I2C;
8282
8283         swfw_mask = E1000_SWFW_PHY0_SM;
8284
8285         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8286                 return E1000_ERR_SWFW_SYNC;
8287
8288         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8289         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8290
8291         if (status < 0)
8292                 return E1000_ERR_I2C;
8293         else {
8294                 *data = status;
8295                 return 0;
8296         }
8297 }
8298
8299 /**
8300  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8301  *  @hw: pointer to hardware structure
8302  *  @byte_offset: byte offset to write
8303  *  @dev_addr: device address
8304  *  @data: value to write
8305  *
8306  *  Performs byte write operation over I2C interface at
8307  *  a specified device address.
8308  **/
8309 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8310                        u8 dev_addr, u8 data)
8311 {
8312         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8313         struct i2c_client *this_client = adapter->i2c_client;
8314         s32 status;
8315         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8316
8317         if (!this_client)
8318                 return E1000_ERR_I2C;
8319
8320         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8321                 return E1000_ERR_SWFW_SYNC;
8322         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8323         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8324
8325         if (status)
8326                 return E1000_ERR_I2C;
8327         else
8328                 return 0;
8329
8330 }
8331
8332 int igb_reinit_queues(struct igb_adapter *adapter)
8333 {
8334         struct net_device *netdev = adapter->netdev;
8335         struct pci_dev *pdev = adapter->pdev;
8336         int err = 0;
8337
8338         if (netif_running(netdev))
8339                 igb_close(netdev);
8340
8341         igb_reset_interrupt_capability(adapter);
8342
8343         if (igb_init_interrupt_scheme(adapter, true)) {
8344                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8345                 return -ENOMEM;
8346         }
8347
8348         if (netif_running(netdev))
8349                 err = igb_open(netdev);
8350
8351         return err;
8352 }
8353
8354 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8355 {
8356         struct igb_nfc_filter *rule;
8357
8358         spin_lock(&adapter->nfc_lock);
8359
8360         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8361                 igb_erase_filter(adapter, rule);
8362
8363         spin_unlock(&adapter->nfc_lock);
8364 }
8365
8366 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8367 {
8368         struct igb_nfc_filter *rule;
8369
8370         spin_lock(&adapter->nfc_lock);
8371
8372         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8373                 igb_add_filter(adapter, rule);
8374
8375         spin_unlock(&adapter->nfc_lock);
8376 }
8377 /* igb_main.c */