Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48         QUEUE_MODE_STRICT_PRIORITY,
49         QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53         TX_QUEUE_PRIO_HIGH,
54         TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60                                 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62                                 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65         [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104         /* required last entry */
105         {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133                             struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152                           netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172                                    bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174                                 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196                         igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215                      pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220         .error_detected = igb_io_error_detected,
221         .slot_reset = igb_io_slot_reset,
222         .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228         .name     = igb_driver_name,
229         .id_table = igb_pci_tbl,
230         .probe    = igb_probe,
231         .remove   = igb_remove,
232 #ifdef CONFIG_PM
233         .driver.pm = &igb_pm_ops,
234 #endif
235         .shutdown = igb_shutdown,
236         .sriov_configure = igb_pci_sriov_configure,
237         .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251         u32 ofs;
252         char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257         /* General Registers */
258         {E1000_CTRL, "CTRL"},
259         {E1000_STATUS, "STATUS"},
260         {E1000_CTRL_EXT, "CTRL_EXT"},
261
262         /* Interrupt Registers */
263         {E1000_ICR, "ICR"},
264
265         /* RX Registers */
266         {E1000_RCTL, "RCTL"},
267         {E1000_RDLEN(0), "RDLEN"},
268         {E1000_RDH(0), "RDH"},
269         {E1000_RDT(0), "RDT"},
270         {E1000_RXDCTL(0), "RXDCTL"},
271         {E1000_RDBAL(0), "RDBAL"},
272         {E1000_RDBAH(0), "RDBAH"},
273
274         /* TX Registers */
275         {E1000_TCTL, "TCTL"},
276         {E1000_TDBAL(0), "TDBAL"},
277         {E1000_TDBAH(0), "TDBAH"},
278         {E1000_TDLEN(0), "TDLEN"},
279         {E1000_TDH(0), "TDH"},
280         {E1000_TDT(0), "TDT"},
281         {E1000_TXDCTL(0), "TXDCTL"},
282         {E1000_TDFH, "TDFH"},
283         {E1000_TDFT, "TDFT"},
284         {E1000_TDFHS, "TDFHS"},
285         {E1000_TDFPC, "TDFPC"},
286
287         /* List Terminator */
288         {}
289 };
290
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294         int n = 0;
295         char rname[16];
296         u32 regs[8];
297
298         switch (reginfo->ofs) {
299         case E1000_RDLEN(0):
300                 for (n = 0; n < 4; n++)
301                         regs[n] = rd32(E1000_RDLEN(n));
302                 break;
303         case E1000_RDH(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDH(n));
306                 break;
307         case E1000_RDT(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDT(n));
310                 break;
311         case E1000_RXDCTL(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RXDCTL(n));
314                 break;
315         case E1000_RDBAL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDBAL(n));
318                 break;
319         case E1000_RDBAH(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAH(n));
322                 break;
323         case E1000_TDBAL(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAL(n));
326                 break;
327         case E1000_TDBAH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_TDBAH(n));
330                 break;
331         case E1000_TDLEN(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDLEN(n));
334                 break;
335         case E1000_TDH(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDH(n));
338                 break;
339         case E1000_TDT(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDT(n));
342                 break;
343         case E1000_TXDCTL(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TXDCTL(n));
346                 break;
347         default:
348                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349                 return;
350         }
351
352         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354                 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360         struct net_device *netdev = adapter->netdev;
361         struct e1000_hw *hw = &adapter->hw;
362         struct igb_reg_info *reginfo;
363         struct igb_ring *tx_ring;
364         union e1000_adv_tx_desc *tx_desc;
365         struct my_u0 { u64 a; u64 b; } *u0;
366         struct igb_ring *rx_ring;
367         union e1000_adv_rx_desc *rx_desc;
368         u32 staterr;
369         u16 i, n;
370
371         if (!netif_msg_hw(adapter))
372                 return;
373
374         /* Print netdevice Info */
375         if (netdev) {
376                 dev_info(&adapter->pdev->dev, "Net device Info\n");
377                 pr_info("Device Name     state            trans_start\n");
378                 pr_info("%-15s %016lX %016lX\n", netdev->name,
379                         netdev->state, dev_trans_start(netdev));
380         }
381
382         /* Print Registers */
383         dev_info(&adapter->pdev->dev, "Register Dump\n");
384         pr_info(" Register Name   Value\n");
385         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386              reginfo->name; reginfo++) {
387                 igb_regdump(hw, reginfo);
388         }
389
390         /* Print TX Ring Summary */
391         if (!netdev || !netif_running(netdev))
392                 goto exit;
393
394         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396         for (n = 0; n < adapter->num_tx_queues; n++) {
397                 struct igb_tx_buffer *buffer_info;
398                 tx_ring = adapter->tx_ring[n];
399                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
402                         (u64)dma_unmap_addr(buffer_info, dma),
403                         dma_unmap_len(buffer_info, len),
404                         buffer_info->next_to_watch,
405                         (u64)buffer_info->time_stamp);
406         }
407
408         /* Print TX Rings */
409         if (!netif_msg_tx_done(adapter))
410                 goto rx_ring_summary;
411
412         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414         /* Transmit Descriptor Formats
415          *
416          * Advanced Transmit Descriptor
417          *   +--------------------------------------------------------------+
418          * 0 |         Buffer Address [63:0]                                |
419          *   +--------------------------------------------------------------+
420          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421          *   +--------------------------------------------------------------+
422          *   63      46 45    40 39 38 36 35 32 31   24             15       0
423          */
424
425         for (n = 0; n < adapter->num_tx_queues; n++) {
426                 tx_ring = adapter->tx_ring[n];
427                 pr_info("------------------------------------\n");
428                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429                 pr_info("------------------------------------\n");
430                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431
432                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433                         const char *next_desc;
434                         struct igb_tx_buffer *buffer_info;
435                         tx_desc = IGB_TX_DESC(tx_ring, i);
436                         buffer_info = &tx_ring->tx_buffer_info[i];
437                         u0 = (struct my_u0 *)tx_desc;
438                         if (i == tx_ring->next_to_use &&
439                             i == tx_ring->next_to_clean)
440                                 next_desc = " NTC/U";
441                         else if (i == tx_ring->next_to_use)
442                                 next_desc = " NTU";
443                         else if (i == tx_ring->next_to_clean)
444                                 next_desc = " NTC";
445                         else
446                                 next_desc = "";
447
448                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449                                 i, le64_to_cpu(u0->a),
450                                 le64_to_cpu(u0->b),
451                                 (u64)dma_unmap_addr(buffer_info, dma),
452                                 dma_unmap_len(buffer_info, len),
453                                 buffer_info->next_to_watch,
454                                 (u64)buffer_info->time_stamp,
455                                 buffer_info->skb, next_desc);
456
457                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
458                                 print_hex_dump(KERN_INFO, "",
459                                         DUMP_PREFIX_ADDRESS,
460                                         16, 1, buffer_info->skb->data,
461                                         dma_unmap_len(buffer_info, len),
462                                         true);
463                 }
464         }
465
466         /* Print RX Rings Summary */
467 rx_ring_summary:
468         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469         pr_info("Queue [NTU] [NTC]\n");
470         for (n = 0; n < adapter->num_rx_queues; n++) {
471                 rx_ring = adapter->rx_ring[n];
472                 pr_info(" %5d %5X %5X\n",
473                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
474         }
475
476         /* Print RX Rings */
477         if (!netif_msg_rx_status(adapter))
478                 goto exit;
479
480         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482         /* Advanced Receive Descriptor (Read) Format
483          *    63                                           1        0
484          *    +-----------------------------------------------------+
485          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486          *    +----------------------------------------------+------+
487          *  8 |       Header Buffer Address [63:1]           |  DD  |
488          *    +-----------------------------------------------------+
489          *
490          *
491          * Advanced Receive Descriptor (Write-Back) Format
492          *
493          *   63       48 47    32 31  30      21 20 17 16   4 3     0
494          *   +------------------------------------------------------+
495          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496          *   | Checksum   Ident  |   |           |    | Type | Type |
497          *   +------------------------------------------------------+
498          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499          *   +------------------------------------------------------+
500          *   63       48 47    32 31            20 19               0
501          */
502
503         for (n = 0; n < adapter->num_rx_queues; n++) {
504                 rx_ring = adapter->rx_ring[n];
505                 pr_info("------------------------------------\n");
506                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507                 pr_info("------------------------------------\n");
508                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511                 for (i = 0; i < rx_ring->count; i++) {
512                         const char *next_desc;
513                         struct igb_rx_buffer *buffer_info;
514                         buffer_info = &rx_ring->rx_buffer_info[i];
515                         rx_desc = IGB_RX_DESC(rx_ring, i);
516                         u0 = (struct my_u0 *)rx_desc;
517                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519                         if (i == rx_ring->next_to_use)
520                                 next_desc = " NTU";
521                         else if (i == rx_ring->next_to_clean)
522                                 next_desc = " NTC";
523                         else
524                                 next_desc = "";
525
526                         if (staterr & E1000_RXD_STAT_DD) {
527                                 /* Descriptor Done */
528                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529                                         "RWB", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         next_desc);
533                         } else {
534                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535                                         "R  ", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         (u64)buffer_info->dma,
539                                         next_desc);
540
541                                 if (netif_msg_pktdata(adapter) &&
542                                     buffer_info->dma && buffer_info->page) {
543                                         print_hex_dump(KERN_INFO, "",
544                                           DUMP_PREFIX_ADDRESS,
545                                           16, 1,
546                                           page_address(buffer_info->page) +
547                                                       buffer_info->page_offset,
548                                           igb_rx_bufsz(rx_ring), true);
549                                 }
550                         }
551                 }
552         }
553
554 exit:
555         return;
556 }
557
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567         struct igb_adapter *adapter = (struct igb_adapter *)data;
568         struct e1000_hw *hw = &adapter->hw;
569         s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571         return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583         struct igb_adapter *adapter = (struct igb_adapter *)data;
584         struct e1000_hw *hw = &adapter->hw;
585         s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587         if (state)
588                 i2cctl |= E1000_I2C_DATA_OUT;
589         else
590                 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592         i2cctl &= ~E1000_I2C_DATA_OE_N;
593         i2cctl |= E1000_I2C_CLK_OE_N;
594         wr32(E1000_I2CPARAMS, i2cctl);
595         wrfl();
596
597 }
598
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608         struct igb_adapter *adapter = (struct igb_adapter *)data;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612         if (state) {
613                 i2cctl |= E1000_I2C_CLK_OUT;
614                 i2cctl &= ~E1000_I2C_CLK_OE_N;
615         } else {
616                 i2cctl &= ~E1000_I2C_CLK_OUT;
617                 i2cctl &= ~E1000_I2C_CLK_OE_N;
618         }
619         wr32(E1000_I2CPARAMS, i2cctl);
620         wrfl();
621 }
622
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631         struct igb_adapter *adapter = (struct igb_adapter *)data;
632         struct e1000_hw *hw = &adapter->hw;
633         s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635         return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639         .setsda         = igb_set_i2c_data,
640         .setscl         = igb_set_i2c_clk,
641         .getsda         = igb_get_i2c_data,
642         .getscl         = igb_get_i2c_clk,
643         .udelay         = 5,
644         .timeout        = 20,
645 };
646
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655         struct igb_adapter *adapter = hw->back;
656         return adapter->netdev;
657 }
658
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667         int ret;
668
669         pr_info("%s - version %s\n",
670                igb_driver_string, igb_driver_version);
671         pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674         dca_register_notify(&dca_notifier);
675 #endif
676         ret = pci_register_driver(&igb_driver);
677         return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691         dca_unregister_notify(&dca_notifier);
692 #endif
693         pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708         int i = 0, j = 0;
709         u32 rbase_offset = adapter->vfs_allocated_count;
710
711         switch (adapter->hw.mac.type) {
712         case e1000_82576:
713                 /* The queues are allocated for virtualization such that VF 0
714                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715                  * In order to avoid collision we start at the first free queue
716                  * and continue consuming queues in the same sequence
717                  */
718                 if (adapter->vfs_allocated_count) {
719                         for (; i < adapter->rss_queues; i++)
720                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
721                                                                Q_IDX_82576(i);
722                 }
723                 /* Fall through */
724         case e1000_82575:
725         case e1000_82580:
726         case e1000_i350:
727         case e1000_i354:
728         case e1000_i210:
729         case e1000_i211:
730                 /* Fall through */
731         default:
732                 for (; i < adapter->num_rx_queues; i++)
733                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734                 for (; j < adapter->num_tx_queues; j++)
735                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736                 break;
737         }
738 }
739
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744         u32 value = 0;
745
746         if (E1000_REMOVED(hw_addr))
747                 return ~value;
748
749         value = readl(&hw_addr[reg]);
750
751         /* reads should not return all F's */
752         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753                 struct net_device *netdev = igb->netdev;
754                 hw->hw_addr = NULL;
755                 netdev_err(netdev, "PCIe link lost\n");
756         }
757
758         return value;
759 }
760
761 /**
762  *  igb_write_ivar - configure ivar for given MSI-X vector
763  *  @hw: pointer to the HW structure
764  *  @msix_vector: vector number we are allocating to a given ring
765  *  @index: row index of IVAR register to write within IVAR table
766  *  @offset: column offset of in IVAR, should be multiple of 8
767  *
768  *  This function is intended to handle the writing of the IVAR register
769  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
770  *  each containing an cause allocation for an Rx and Tx ring, and a
771  *  variable number of rows depending on the number of queues supported.
772  **/
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774                            int index, int offset)
775 {
776         u32 ivar = array_rd32(E1000_IVAR0, index);
777
778         /* clear any bits that are currently set */
779         ivar &= ~((u32)0xFF << offset);
780
781         /* write vector and valid bit */
782         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783
784         array_wr32(E1000_IVAR0, index, ivar);
785 }
786
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790         struct igb_adapter *adapter = q_vector->adapter;
791         struct e1000_hw *hw = &adapter->hw;
792         int rx_queue = IGB_N0_QUEUE;
793         int tx_queue = IGB_N0_QUEUE;
794         u32 msixbm = 0;
795
796         if (q_vector->rx.ring)
797                 rx_queue = q_vector->rx.ring->reg_idx;
798         if (q_vector->tx.ring)
799                 tx_queue = q_vector->tx.ring->reg_idx;
800
801         switch (hw->mac.type) {
802         case e1000_82575:
803                 /* The 82575 assigns vectors using a bitmask, which matches the
804                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
805                  * or more queues to a vector, we write the appropriate bits
806                  * into the MSIXBM register for that vector.
807                  */
808                 if (rx_queue > IGB_N0_QUEUE)
809                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810                 if (tx_queue > IGB_N0_QUEUE)
811                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813                         msixbm |= E1000_EIMS_OTHER;
814                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815                 q_vector->eims_value = msixbm;
816                 break;
817         case e1000_82576:
818                 /* 82576 uses a table that essentially consists of 2 columns
819                  * with 8 rows.  The ordering is column-major so we use the
820                  * lower 3 bits as the row index, and the 4th bit as the
821                  * column offset.
822                  */
823                 if (rx_queue > IGB_N0_QUEUE)
824                         igb_write_ivar(hw, msix_vector,
825                                        rx_queue & 0x7,
826                                        (rx_queue & 0x8) << 1);
827                 if (tx_queue > IGB_N0_QUEUE)
828                         igb_write_ivar(hw, msix_vector,
829                                        tx_queue & 0x7,
830                                        ((tx_queue & 0x8) << 1) + 8);
831                 q_vector->eims_value = BIT(msix_vector);
832                 break;
833         case e1000_82580:
834         case e1000_i350:
835         case e1000_i354:
836         case e1000_i210:
837         case e1000_i211:
838                 /* On 82580 and newer adapters the scheme is similar to 82576
839                  * however instead of ordering column-major we have things
840                  * ordered row-major.  So we traverse the table by using
841                  * bit 0 as the column offset, and the remaining bits as the
842                  * row index.
843                  */
844                 if (rx_queue > IGB_N0_QUEUE)
845                         igb_write_ivar(hw, msix_vector,
846                                        rx_queue >> 1,
847                                        (rx_queue & 0x1) << 4);
848                 if (tx_queue > IGB_N0_QUEUE)
849                         igb_write_ivar(hw, msix_vector,
850                                        tx_queue >> 1,
851                                        ((tx_queue & 0x1) << 4) + 8);
852                 q_vector->eims_value = BIT(msix_vector);
853                 break;
854         default:
855                 BUG();
856                 break;
857         }
858
859         /* add q_vector eims value to global eims_enable_mask */
860         adapter->eims_enable_mask |= q_vector->eims_value;
861
862         /* configure q_vector to set itr on first interrupt */
863         q_vector->set_itr = 1;
864 }
865
866 /**
867  *  igb_configure_msix - Configure MSI-X hardware
868  *  @adapter: board private structure to initialize
869  *
870  *  igb_configure_msix sets up the hardware to properly
871  *  generate MSI-X interrupts.
872  **/
873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875         u32 tmp;
876         int i, vector = 0;
877         struct e1000_hw *hw = &adapter->hw;
878
879         adapter->eims_enable_mask = 0;
880
881         /* set vector for other causes, i.e. link changes */
882         switch (hw->mac.type) {
883         case e1000_82575:
884                 tmp = rd32(E1000_CTRL_EXT);
885                 /* enable MSI-X PBA support*/
886                 tmp |= E1000_CTRL_EXT_PBA_CLR;
887
888                 /* Auto-Mask interrupts upon ICR read. */
889                 tmp |= E1000_CTRL_EXT_EIAME;
890                 tmp |= E1000_CTRL_EXT_IRCA;
891
892                 wr32(E1000_CTRL_EXT, tmp);
893
894                 /* enable msix_other interrupt */
895                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896                 adapter->eims_other = E1000_EIMS_OTHER;
897
898                 break;
899
900         case e1000_82576:
901         case e1000_82580:
902         case e1000_i350:
903         case e1000_i354:
904         case e1000_i210:
905         case e1000_i211:
906                 /* Turn on MSI-X capability first, or our settings
907                  * won't stick.  And it will take days to debug.
908                  */
909                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
911                      E1000_GPIE_NSICR);
912
913                 /* enable msix_other interrupt */
914                 adapter->eims_other = BIT(vector);
915                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
916
917                 wr32(E1000_IVAR_MISC, tmp);
918                 break;
919         default:
920                 /* do nothing, since nothing else supports MSI-X */
921                 break;
922         } /* switch (hw->mac.type) */
923
924         adapter->eims_enable_mask |= adapter->eims_other;
925
926         for (i = 0; i < adapter->num_q_vectors; i++)
927                 igb_assign_vector(adapter->q_vector[i], vector++);
928
929         wrfl();
930 }
931
932 /**
933  *  igb_request_msix - Initialize MSI-X interrupts
934  *  @adapter: board private structure to initialize
935  *
936  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
937  *  kernel.
938  **/
939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941         struct net_device *netdev = adapter->netdev;
942         int i, err = 0, vector = 0, free_vector = 0;
943
944         err = request_irq(adapter->msix_entries[vector].vector,
945                           igb_msix_other, 0, netdev->name, adapter);
946         if (err)
947                 goto err_out;
948
949         for (i = 0; i < adapter->num_q_vectors; i++) {
950                 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952                 vector++;
953
954                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956                 if (q_vector->rx.ring && q_vector->tx.ring)
957                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958                                 q_vector->rx.ring->queue_index);
959                 else if (q_vector->tx.ring)
960                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961                                 q_vector->tx.ring->queue_index);
962                 else if (q_vector->rx.ring)
963                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else
966                         sprintf(q_vector->name, "%s-unused", netdev->name);
967
968                 err = request_irq(adapter->msix_entries[vector].vector,
969                                   igb_msix_ring, 0, q_vector->name,
970                                   q_vector);
971                 if (err)
972                         goto err_free;
973         }
974
975         igb_configure_msix(adapter);
976         return 0;
977
978 err_free:
979         /* free already assigned IRQs */
980         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982         vector--;
983         for (i = 0; i < vector; i++) {
984                 free_irq(adapter->msix_entries[free_vector++].vector,
985                          adapter->q_vector[i]);
986         }
987 err_out:
988         return err;
989 }
990
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002         adapter->q_vector[v_idx] = NULL;
1003
1004         /* igb_get_stats64() might access the rings on this vector,
1005          * we must wait a grace period before freeing it.
1006          */
1007         if (q_vector)
1008                 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024          * allocated. So, q_vector is NULL so we should stop here.
1025          */
1026         if (!q_vector)
1027                 return;
1028
1029         if (q_vector->tx.ring)
1030                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032         if (q_vector->rx.ring)
1033                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035         netif_napi_del(&q_vector->napi);
1036
1037 }
1038
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041         int v_idx = adapter->num_q_vectors;
1042
1043         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044                 pci_disable_msix(adapter->pdev);
1045         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046                 pci_disable_msi(adapter->pdev);
1047
1048         while (v_idx--)
1049                 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062         int v_idx = adapter->num_q_vectors;
1063
1064         adapter->num_tx_queues = 0;
1065         adapter->num_rx_queues = 0;
1066         adapter->num_q_vectors = 0;
1067
1068         while (v_idx--) {
1069                 igb_reset_q_vector(adapter, v_idx);
1070                 igb_free_q_vector(adapter, v_idx);
1071         }
1072 }
1073
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083         igb_free_q_vectors(adapter);
1084         igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097         int err;
1098         int numvecs, i;
1099
1100         if (!msix)
1101                 goto msi_only;
1102         adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104         /* Number of supported queues. */
1105         adapter->num_rx_queues = adapter->rss_queues;
1106         if (adapter->vfs_allocated_count)
1107                 adapter->num_tx_queues = 1;
1108         else
1109                 adapter->num_tx_queues = adapter->rss_queues;
1110
1111         /* start with one vector for every Rx queue */
1112         numvecs = adapter->num_rx_queues;
1113
1114         /* if Tx handler is separate add 1 for every Tx queue */
1115         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116                 numvecs += adapter->num_tx_queues;
1117
1118         /* store the number of vectors reserved for queues */
1119         adapter->num_q_vectors = numvecs;
1120
1121         /* add 1 vector for link status interrupts */
1122         numvecs++;
1123         for (i = 0; i < numvecs; i++)
1124                 adapter->msix_entries[i].entry = i;
1125
1126         err = pci_enable_msix_range(adapter->pdev,
1127                                     adapter->msix_entries,
1128                                     numvecs,
1129                                     numvecs);
1130         if (err > 0)
1131                 return;
1132
1133         igb_reset_interrupt_capability(adapter);
1134
1135         /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139         /* disable SR-IOV for non MSI-X configurations */
1140         if (adapter->vf_data) {
1141                 struct e1000_hw *hw = &adapter->hw;
1142                 /* disable iov and allow time for transactions to clear */
1143                 pci_disable_sriov(adapter->pdev);
1144                 msleep(500);
1145
1146                 kfree(adapter->vf_mac_list);
1147                 adapter->vf_mac_list = NULL;
1148                 kfree(adapter->vf_data);
1149                 adapter->vf_data = NULL;
1150                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151                 wrfl();
1152                 msleep(100);
1153                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154         }
1155 #endif
1156         adapter->vfs_allocated_count = 0;
1157         adapter->rss_queues = 1;
1158         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159         adapter->num_rx_queues = 1;
1160         adapter->num_tx_queues = 1;
1161         adapter->num_q_vectors = 1;
1162         if (!pci_enable_msi(adapter->pdev))
1163                 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
1166 static void igb_add_ring(struct igb_ring *ring,
1167                          struct igb_ring_container *head)
1168 {
1169         head->ring = ring;
1170         head->count++;
1171 }
1172
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186                               int v_count, int v_idx,
1187                               int txr_count, int txr_idx,
1188                               int rxr_count, int rxr_idx)
1189 {
1190         struct igb_q_vector *q_vector;
1191         struct igb_ring *ring;
1192         int ring_count, size;
1193
1194         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195         if (txr_count > 1 || rxr_count > 1)
1196                 return -ENOMEM;
1197
1198         ring_count = txr_count + rxr_count;
1199         size = sizeof(struct igb_q_vector) +
1200                (sizeof(struct igb_ring) * ring_count);
1201
1202         /* allocate q_vector and rings */
1203         q_vector = adapter->q_vector[v_idx];
1204         if (!q_vector) {
1205                 q_vector = kzalloc(size, GFP_KERNEL);
1206         } else if (size > ksize(q_vector)) {
1207                 kfree_rcu(q_vector, rcu);
1208                 q_vector = kzalloc(size, GFP_KERNEL);
1209         } else {
1210                 memset(q_vector, 0, size);
1211         }
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi,
1217                        igb_poll, 64);
1218
1219         /* tie q_vector and adapter together */
1220         adapter->q_vector[v_idx] = q_vector;
1221         q_vector->adapter = adapter;
1222
1223         /* initialize work limits */
1224         q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226         /* initialize ITR configuration */
1227         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228         q_vector->itr_val = IGB_START_ITR;
1229
1230         /* initialize pointer to rings */
1231         ring = q_vector->ring;
1232
1233         /* intialize ITR */
1234         if (rxr_count) {
1235                 /* rx or rx/tx vector */
1236                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                         q_vector->itr_val = adapter->rx_itr_setting;
1238         } else {
1239                 /* tx only vector */
1240                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->tx_itr_setting;
1242         }
1243
1244         if (txr_count) {
1245                 /* assign generic ring traits */
1246                 ring->dev = &adapter->pdev->dev;
1247                 ring->netdev = adapter->netdev;
1248
1249                 /* configure backlink on ring */
1250                 ring->q_vector = q_vector;
1251
1252                 /* update q_vector Tx values */
1253                 igb_add_ring(ring, &q_vector->tx);
1254
1255                 /* For 82575, context index must be unique per ring. */
1256                 if (adapter->hw.mac.type == e1000_82575)
1257                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                 /* apply Tx specific ring traits */
1260                 ring->count = adapter->tx_ring_count;
1261                 ring->queue_index = txr_idx;
1262
1263                 ring->cbs_enable = false;
1264                 ring->idleslope = 0;
1265                 ring->sendslope = 0;
1266                 ring->hicredit = 0;
1267                 ring->locredit = 0;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 pf_id = adapter->vfs_allocated_count;
1539         u16 vid = adapter->hw.mng_cookie.vlan_id;
1540         u16 old_vid = adapter->mng_vlan_id;
1541
1542         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                 /* add VID to filter table */
1544                 igb_vfta_set(hw, vid, pf_id, true, true);
1545                 adapter->mng_vlan_id = vid;
1546         } else {
1547                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548         }
1549
1550         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551             (vid != old_vid) &&
1552             !test_bit(old_vid, adapter->active_vlans)) {
1553                 /* remove VID from filter table */
1554                 igb_vfta_set(hw, vid, pf_id, false, true);
1555         }
1556 }
1557
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         u32 ctrl_ext;
1570
1571         /* Let firmware take over control of h/w */
1572         ctrl_ext = rd32(E1000_CTRL_EXT);
1573         wr32(E1000_CTRL_EXT,
1574                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 ctrl_ext;
1589
1590         /* Let firmware know the driver has taken over */
1591         ctrl_ext = rd32(E1000_CTRL_EXT);
1592         wr32(E1000_CTRL_EXT,
1593                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598         struct net_device *netdev = adapter->netdev;
1599         struct e1000_hw *hw = &adapter->hw;
1600
1601         WARN_ON(hw->mac.type != e1000_i210);
1602
1603         if (enable)
1604                 adapter->flags |= IGB_FLAG_FQTSS;
1605         else
1606                 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608         if (netif_running(netdev))
1609                 schedule_work(&adapter->reset_task);
1610 }
1611
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618                                    enum tx_queue_prio prio)
1619 {
1620         u32 val;
1621
1622         WARN_ON(hw->mac.type != e1000_i210);
1623         WARN_ON(queue < 0 || queue > 4);
1624
1625         val = rd32(E1000_I210_TXDCTL(queue));
1626
1627         if (prio == TX_QUEUE_PRIO_HIGH)
1628                 val |= E1000_TXDCTL_PRIORITY;
1629         else
1630                 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632         wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637         u32 val;
1638
1639         WARN_ON(hw->mac.type != e1000_i210);
1640         WARN_ON(queue < 0 || queue > 1);
1641
1642         val = rd32(E1000_I210_TQAVCC(queue));
1643
1644         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645                 val |= E1000_TQAVCC_QUEUEMODE;
1646         else
1647                 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649         wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654         int i;
1655
1656         for (i = 0; i < adapter->num_tx_queues; i++) {
1657                 if (adapter->tx_ring[i]->cbs_enable)
1658                         return true;
1659         }
1660
1661         return false;
1662 }
1663
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666         int i;
1667
1668         for (i = 0; i < adapter->num_tx_queues; i++) {
1669                 if (adapter->tx_ring[i]->launchtime_enable)
1670                         return true;
1671         }
1672
1673         return false;
1674 }
1675
1676 /**
1677  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678  *  @adapter: pointer to adapter struct
1679  *  @queue: queue number
1680  *
1681  *  Configure CBS and Launchtime for a given hardware queue.
1682  *  Parameters are retrieved from the correct Tx ring, so
1683  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1684  *  for setting those correctly prior to this function being called.
1685  **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688         struct igb_ring *ring = adapter->tx_ring[queue];
1689         struct net_device *netdev = adapter->netdev;
1690         struct e1000_hw *hw = &adapter->hw;
1691         u32 tqavcc, tqavctrl;
1692         u16 value;
1693
1694         WARN_ON(hw->mac.type != e1000_i210);
1695         WARN_ON(queue < 0 || queue > 1);
1696
1697         /* If any of the Qav features is enabled, configure queues as SR and
1698          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699          * as SP.
1700          */
1701         if (ring->cbs_enable || ring->launchtime_enable) {
1702                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704         } else {
1705                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707         }
1708
1709         /* If CBS is enabled, set DataTranARB and config its parameters. */
1710         if (ring->cbs_enable || queue == 0) {
1711                 /* i210 does not allow the queue 0 to be in the Strict
1712                  * Priority mode while the Qav mode is enabled, so,
1713                  * instead of disabling strict priority mode, we give
1714                  * queue 0 the maximum of credits possible.
1715                  *
1716                  * See section 8.12.19 of the i210 datasheet, "Note:
1717                  * Queue0 QueueMode must be set to 1b when
1718                  * TransmitMode is set to Qav."
1719                  */
1720                 if (queue == 0 && !ring->cbs_enable) {
1721                         /* max "linkspeed" idleslope in kbps */
1722                         ring->idleslope = 1000000;
1723                         ring->hicredit = ETH_FRAME_LEN;
1724                 }
1725
1726                 /* Always set data transfer arbitration to credit-based
1727                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728                  * the queues.
1729                  */
1730                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734                 /* According to i210 datasheet section 7.2.7.7, we should set
1735                  * the 'idleSlope' field from TQAVCC register following the
1736                  * equation:
1737                  *
1738                  * For 100 Mbps link speed:
1739                  *
1740                  *     value = BW * 0x7735 * 0.2                          (E1)
1741                  *
1742                  * For 1000Mbps link speed:
1743                  *
1744                  *     value = BW * 0x7735 * 2                            (E2)
1745                  *
1746                  * E1 and E2 can be merged into one equation as shown below.
1747                  * Note that 'link-speed' is in Mbps.
1748                  *
1749                  *     value = BW * 0x7735 * 2 * link-speed
1750                  *                           --------------               (E3)
1751                  *                                1000
1752                  *
1753                  * 'BW' is the percentage bandwidth out of full link speed
1754                  * which can be found with the following equation. Note that
1755                  * idleSlope here is the parameter from this function which
1756                  * is in kbps.
1757                  *
1758                  *     BW =     idleSlope
1759                  *          -----------------                             (E4)
1760                  *          link-speed * 1000
1761                  *
1762                  * That said, we can come up with a generic equation to
1763                  * calculate the value we should set it TQAVCC register by
1764                  * replacing 'BW' in E3 by E4. The resulting equation is:
1765                  *
1766                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1767                  *         -----------------            --------------    (E5)
1768                  *         link-speed * 1000                 1000
1769                  *
1770                  * 'link-speed' is present in both sides of the fraction so
1771                  * it is canceled out. The final equation is the following:
1772                  *
1773                  *     value = idleSlope * 61034
1774                  *             -----------------                          (E6)
1775                  *                  1000000
1776                  *
1777                  * NOTE: For i210, given the above, we can see that idleslope
1778                  *       is represented in 16.38431 kbps units by the value at
1779                  *       the TQAVCC register (1Gbps / 61034), which reduces
1780                  *       the granularity for idleslope increments.
1781                  *       For instance, if you want to configure a 2576kbps
1782                  *       idleslope, the value to be written on the register
1783                  *       would have to be 157.23. If rounded down, you end
1784                  *       up with less bandwidth available than originally
1785                  *       required (~2572 kbps). If rounded up, you end up
1786                  *       with a higher bandwidth (~2589 kbps). Below the
1787                  *       approach we take is to always round up the
1788                  *       calculated value, so the resulting bandwidth might
1789                  *       be slightly higher for some configurations.
1790                  */
1791                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795                 tqavcc |= value;
1796                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798                 wr32(E1000_I210_TQAVHC(queue),
1799                      0x80000000 + ring->hicredit * 0x7735);
1800         } else {
1801
1802                 /* Set idleSlope to zero. */
1803                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807                 /* Set hiCredit to zero. */
1808                 wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810                 /* If CBS is not enabled for any queues anymore, then return to
1811                  * the default state of Data Transmission Arbitration on
1812                  * TQAVCTRL.
1813                  */
1814                 if (!is_any_cbs_enabled(adapter)) {
1815                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818                 }
1819         }
1820
1821         /* If LaunchTime is enabled, set DataTranTIM. */
1822         if (ring->launchtime_enable) {
1823                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824                  * for any of the SR queues, and configure fetchtime delta.
1825                  * XXX NOTE:
1826                  *     - LaunchTime will be enabled for all SR queues.
1827                  *     - A fixed offset can be added relative to the launch
1828                  *       time of all packets if configured at reg LAUNCH_OS0.
1829                  *       We are keeping it as 0 for now (default value).
1830                  */
1831                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1834                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835         } else {
1836                 /* If Launchtime is not enabled for any SR queues anymore,
1837                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838                  * effectively disabling Launchtime.
1839                  */
1840                 if (!is_any_txtime_enabled(adapter)) {
1841                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845                 }
1846         }
1847
1848         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849          * CBS are not configurable by software so we don't do any 'controller
1850          * configuration' in respect to these parameters.
1851          */
1852
1853         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854                    ring->cbs_enable ? "enabled" : "disabled",
1855                    ring->launchtime_enable ? "enabled" : "disabled",
1856                    queue,
1857                    ring->idleslope, ring->sendslope,
1858                    ring->hicredit, ring->locredit);
1859 }
1860
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862                                   bool enable)
1863 {
1864         struct igb_ring *ring;
1865
1866         if (queue < 0 || queue > adapter->num_tx_queues)
1867                 return -EINVAL;
1868
1869         ring = adapter->tx_ring[queue];
1870         ring->launchtime_enable = enable;
1871
1872         return 0;
1873 }
1874
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876                                bool enable, int idleslope, int sendslope,
1877                                int hicredit, int locredit)
1878 {
1879         struct igb_ring *ring;
1880
1881         if (queue < 0 || queue > adapter->num_tx_queues)
1882                 return -EINVAL;
1883
1884         ring = adapter->tx_ring[queue];
1885
1886         ring->cbs_enable = enable;
1887         ring->idleslope = idleslope;
1888         ring->sendslope = sendslope;
1889         ring->hicredit = hicredit;
1890         ring->locredit = locredit;
1891
1892         return 0;
1893 }
1894
1895 /**
1896  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897  *  @adapter: pointer to adapter struct
1898  *
1899  *  Configure TQAVCTRL register switching the controller's Tx mode
1900  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901  *  a call to igb_config_tx_modes() per queue so any previously saved
1902  *  Tx parameters are applied.
1903  **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906         struct net_device *netdev = adapter->netdev;
1907         struct e1000_hw *hw = &adapter->hw;
1908         u32 val;
1909
1910         /* Only i210 controller supports changing the transmission mode. */
1911         if (hw->mac.type != e1000_i210)
1912                 return;
1913
1914         if (is_fqtss_enabled(adapter)) {
1915                 int i, max_queue;
1916
1917                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919                  * so SP queues wait for SR ones.
1920                  */
1921                 val = rd32(E1000_I210_TQAVCTRL);
1922                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924                 wr32(E1000_I210_TQAVCTRL, val);
1925
1926                 /* Configure Tx and Rx packet buffers sizes as described in
1927                  * i210 datasheet section 7.2.7.7.
1928                  */
1929                 val = rd32(E1000_TXPBS);
1930                 val &= ~I210_TXPBSIZE_MASK;
1931                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933                 wr32(E1000_TXPBS, val);
1934
1935                 val = rd32(E1000_RXPBS);
1936                 val &= ~I210_RXPBSIZE_MASK;
1937                 val |= I210_RXPBSIZE_PB_30KB;
1938                 wr32(E1000_RXPBS, val);
1939
1940                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941                  * register should not exceed the buffer size programmed in
1942                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1944                  * 4kB / 64.
1945                  *
1946                  * However, when we do so, no frame from queue 2 and 3 are
1947                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948                  * or _equal_ to the buffer size programmed in TXPBS. For this
1949                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950                  */
1951                 val = (4096 - 1) / 64;
1952                 wr32(E1000_I210_DTXMXPKTSZ, val);
1953
1954                 /* Since FQTSS mode is enabled, apply any CBS configuration
1955                  * previously set. If no previous CBS configuration has been
1956                  * done, then the initial configuration is applied, which means
1957                  * CBS is disabled.
1958                  */
1959                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961
1962                 for (i = 0; i < max_queue; i++) {
1963                         igb_config_tx_modes(adapter, i);
1964                 }
1965         } else {
1966                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969
1970                 val = rd32(E1000_I210_TQAVCTRL);
1971                 /* According to Section 8.12.21, the other flags we've set when
1972                  * enabling FQTSS are not relevant when disabling FQTSS so we
1973                  * don't set they here.
1974                  */
1975                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976                 wr32(E1000_I210_TQAVCTRL, val);
1977         }
1978
1979         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980                    "enabled" : "disabled");
1981 }
1982
1983 /**
1984  *  igb_configure - configure the hardware for RX and TX
1985  *  @adapter: private board structure
1986  **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989         struct net_device *netdev = adapter->netdev;
1990         int i;
1991
1992         igb_get_hw_control(adapter);
1993         igb_set_rx_mode(netdev);
1994         igb_setup_tx_mode(adapter);
1995
1996         igb_restore_vlan(adapter);
1997
1998         igb_setup_tctl(adapter);
1999         igb_setup_mrqc(adapter);
2000         igb_setup_rctl(adapter);
2001
2002         igb_nfc_filter_restore(adapter);
2003         igb_configure_tx(adapter);
2004         igb_configure_rx(adapter);
2005
2006         igb_rx_fifo_flush_82575(&adapter->hw);
2007
2008         /* call igb_desc_unused which always leaves
2009          * at least 1 descriptor unused to make sure
2010          * next_to_use != next_to_clean
2011          */
2012         for (i = 0; i < adapter->num_rx_queues; i++) {
2013                 struct igb_ring *ring = adapter->rx_ring[i];
2014                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015         }
2016 }
2017
2018 /**
2019  *  igb_power_up_link - Power up the phy/serdes link
2020  *  @adapter: address of board private structure
2021  **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024         igb_reset_phy(&adapter->hw);
2025
2026         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027                 igb_power_up_phy_copper(&adapter->hw);
2028         else
2029                 igb_power_up_serdes_link_82575(&adapter->hw);
2030
2031         igb_setup_link(&adapter->hw);
2032 }
2033
2034 /**
2035  *  igb_power_down_link - Power down the phy/serdes link
2036  *  @adapter: address of board private structure
2037  */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041                 igb_power_down_phy_copper_82575(&adapter->hw);
2042         else
2043                 igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045
2046 /**
2047  * Detect and switch function for Media Auto Sense
2048  * @adapter: address of the board private structure
2049  **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052         struct e1000_hw *hw = &adapter->hw;
2053         u32 ctrl_ext, connsw;
2054         bool swap_now = false;
2055
2056         ctrl_ext = rd32(E1000_CTRL_EXT);
2057         connsw = rd32(E1000_CONNSW);
2058
2059         /* need to live swap if current media is copper and we have fiber/serdes
2060          * to go to.
2061          */
2062
2063         if ((hw->phy.media_type == e1000_media_type_copper) &&
2064             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065                 swap_now = true;
2066         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067                 /* copper signal takes time to appear */
2068                 if (adapter->copper_tries < 4) {
2069                         adapter->copper_tries++;
2070                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071                         wr32(E1000_CONNSW, connsw);
2072                         return;
2073                 } else {
2074                         adapter->copper_tries = 0;
2075                         if ((connsw & E1000_CONNSW_PHYSD) &&
2076                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077                                 swap_now = true;
2078                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079                                 wr32(E1000_CONNSW, connsw);
2080                         }
2081                 }
2082         }
2083
2084         if (!swap_now)
2085                 return;
2086
2087         switch (hw->phy.media_type) {
2088         case e1000_media_type_copper:
2089                 netdev_info(adapter->netdev,
2090                         "MAS: changing media to fiber/serdes\n");
2091                 ctrl_ext |=
2092                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094                 adapter->copper_tries = 0;
2095                 break;
2096         case e1000_media_type_internal_serdes:
2097         case e1000_media_type_fiber:
2098                 netdev_info(adapter->netdev,
2099                         "MAS: changing media to copper\n");
2100                 ctrl_ext &=
2101                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103                 break;
2104         default:
2105                 /* shouldn't get here during regular operation */
2106                 netdev_err(adapter->netdev,
2107                         "AMS: Invalid media type found, returning\n");
2108                 break;
2109         }
2110         wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112
2113 /**
2114  *  igb_up - Open the interface and prepare it to handle traffic
2115  *  @adapter: board private structure
2116  **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119         struct e1000_hw *hw = &adapter->hw;
2120         int i;
2121
2122         /* hardware has been reset, we need to reload some things */
2123         igb_configure(adapter);
2124
2125         clear_bit(__IGB_DOWN, &adapter->state);
2126
2127         for (i = 0; i < adapter->num_q_vectors; i++)
2128                 napi_enable(&(adapter->q_vector[i]->napi));
2129
2130         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131                 igb_configure_msix(adapter);
2132         else
2133                 igb_assign_vector(adapter->q_vector[0], 0);
2134
2135         /* Clear any pending interrupts. */
2136         rd32(E1000_TSICR);
2137         rd32(E1000_ICR);
2138         igb_irq_enable(adapter);
2139
2140         /* notify VFs that reset has been completed */
2141         if (adapter->vfs_allocated_count) {
2142                 u32 reg_data = rd32(E1000_CTRL_EXT);
2143
2144                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2145                 wr32(E1000_CTRL_EXT, reg_data);
2146         }
2147
2148         netif_tx_start_all_queues(adapter->netdev);
2149
2150         /* start the watchdog. */
2151         hw->mac.get_link_status = 1;
2152         schedule_work(&adapter->watchdog_task);
2153
2154         if ((adapter->flags & IGB_FLAG_EEE) &&
2155             (!hw->dev_spec._82575.eee_disable))
2156                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157
2158         return 0;
2159 }
2160
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163         struct net_device *netdev = adapter->netdev;
2164         struct e1000_hw *hw = &adapter->hw;
2165         u32 tctl, rctl;
2166         int i;
2167
2168         /* signal that we're down so the interrupt handler does not
2169          * reschedule our watchdog timer
2170          */
2171         set_bit(__IGB_DOWN, &adapter->state);
2172
2173         /* disable receives in the hardware */
2174         rctl = rd32(E1000_RCTL);
2175         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176         /* flush and sleep below */
2177
2178         igb_nfc_filter_exit(adapter);
2179
2180         netif_carrier_off(netdev);
2181         netif_tx_stop_all_queues(netdev);
2182
2183         /* disable transmits in the hardware */
2184         tctl = rd32(E1000_TCTL);
2185         tctl &= ~E1000_TCTL_EN;
2186         wr32(E1000_TCTL, tctl);
2187         /* flush both disables and wait for them to finish */
2188         wrfl();
2189         usleep_range(10000, 11000);
2190
2191         igb_irq_disable(adapter);
2192
2193         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194
2195         for (i = 0; i < adapter->num_q_vectors; i++) {
2196                 if (adapter->q_vector[i]) {
2197                         napi_synchronize(&adapter->q_vector[i]->napi);
2198                         napi_disable(&adapter->q_vector[i]->napi);
2199                 }
2200         }
2201
2202         del_timer_sync(&adapter->watchdog_timer);
2203         del_timer_sync(&adapter->phy_info_timer);
2204
2205         /* record the stats before reset*/
2206         spin_lock(&adapter->stats64_lock);
2207         igb_update_stats(adapter);
2208         spin_unlock(&adapter->stats64_lock);
2209
2210         adapter->link_speed = 0;
2211         adapter->link_duplex = 0;
2212
2213         if (!pci_channel_offline(adapter->pdev))
2214                 igb_reset(adapter);
2215
2216         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218
2219         igb_clean_all_tx_rings(adapter);
2220         igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222
2223         /* since we reset the hardware DCA settings were cleared */
2224         igb_setup_dca(adapter);
2225 #endif
2226 }
2227
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230         WARN_ON(in_interrupt());
2231         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232                 usleep_range(1000, 2000);
2233         igb_down(adapter);
2234         igb_up(adapter);
2235         clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239  *
2240  * @adapter: adapter struct
2241  **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244         struct e1000_hw *hw = &adapter->hw;
2245         u32 connsw = rd32(E1000_CONNSW);
2246
2247         /* configure for SerDes media detect */
2248         if ((hw->phy.media_type == e1000_media_type_copper) &&
2249             (!(connsw & E1000_CONNSW_SERDESD))) {
2250                 connsw |= E1000_CONNSW_ENRGSRC;
2251                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252                 wr32(E1000_CONNSW, connsw);
2253                 wrfl();
2254         }
2255 }
2256
2257 void igb_reset(struct igb_adapter *adapter)
2258 {
2259         struct pci_dev *pdev = adapter->pdev;
2260         struct e1000_hw *hw = &adapter->hw;
2261         struct e1000_mac_info *mac = &hw->mac;
2262         struct e1000_fc_info *fc = &hw->fc;
2263         u32 pba, hwm;
2264
2265         /* Repartition Pba for greater than 9k mtu
2266          * To take effect CTRL.RST is required.
2267          */
2268         switch (mac->type) {
2269         case e1000_i350:
2270         case e1000_i354:
2271         case e1000_82580:
2272                 pba = rd32(E1000_RXPBS);
2273                 pba = igb_rxpbs_adjust_82580(pba);
2274                 break;
2275         case e1000_82576:
2276                 pba = rd32(E1000_RXPBS);
2277                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2278                 break;
2279         case e1000_82575:
2280         case e1000_i210:
2281         case e1000_i211:
2282         default:
2283                 pba = E1000_PBA_34K;
2284                 break;
2285         }
2286
2287         if (mac->type == e1000_82575) {
2288                 u32 min_rx_space, min_tx_space, needed_tx_space;
2289
2290                 /* write Rx PBA so that hardware can report correct Tx PBA */
2291                 wr32(E1000_PBA, pba);
2292
2293                 /* To maintain wire speed transmits, the Tx FIFO should be
2294                  * large enough to accommodate two full transmit packets,
2295                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2296                  * the Rx FIFO should be large enough to accommodate at least
2297                  * one full receive packet and is similarly rounded up and
2298                  * expressed in KB.
2299                  */
2300                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2301
2302                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2303                  * but don't include Ethernet FCS because hardware appends it.
2304                  * We only need to round down to the nearest 512 byte block
2305                  * count since the value we care about is 2 frames, not 1.
2306                  */
2307                 min_tx_space = adapter->max_frame_size;
2308                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2310
2311                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2312                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2313
2314                 /* If current Tx allocation is less than the min Tx FIFO size,
2315                  * and the min Tx FIFO size is less than the current Rx FIFO
2316                  * allocation, take space away from current Rx allocation.
2317                  */
2318                 if (needed_tx_space < pba) {
2319                         pba -= needed_tx_space;
2320
2321                         /* if short on Rx space, Rx wins and must trump Tx
2322                          * adjustment
2323                          */
2324                         if (pba < min_rx_space)
2325                                 pba = min_rx_space;
2326                 }
2327
2328                 /* adjust PBA for jumbo frames */
2329                 wr32(E1000_PBA, pba);
2330         }
2331
2332         /* flow control settings
2333          * The high water mark must be low enough to fit one full frame
2334          * after transmitting the pause frame.  As such we must have enough
2335          * space to allow for us to complete our current transmit and then
2336          * receive the frame that is in progress from the link partner.
2337          * Set it to:
2338          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2339          */
2340         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2341
2342         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2343         fc->low_water = fc->high_water - 16;
2344         fc->pause_time = 0xFFFF;
2345         fc->send_xon = 1;
2346         fc->current_mode = fc->requested_mode;
2347
2348         /* disable receive for all VFs and wait one second */
2349         if (adapter->vfs_allocated_count) {
2350                 int i;
2351
2352                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2354
2355                 /* ping all the active vfs to let them know we are going down */
2356                 igb_ping_all_vfs(adapter);
2357
2358                 /* disable transmits and receives */
2359                 wr32(E1000_VFRE, 0);
2360                 wr32(E1000_VFTE, 0);
2361         }
2362
2363         /* Allow time for pending master requests to run */
2364         hw->mac.ops.reset_hw(hw);
2365         wr32(E1000_WUC, 0);
2366
2367         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368                 /* need to resetup here after media swap */
2369                 adapter->ei.get_invariants(hw);
2370                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2371         }
2372         if ((mac->type == e1000_82575) &&
2373             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374                 igb_enable_mas(adapter);
2375         }
2376         if (hw->mac.ops.init_hw(hw))
2377                 dev_err(&pdev->dev, "Hardware Error\n");
2378
2379         /* RAR registers were cleared during init_hw, clear mac table */
2380         igb_flush_mac_table(adapter);
2381         __dev_uc_unsync(adapter->netdev, NULL);
2382
2383         /* Recover default RAR entry */
2384         igb_set_default_mac_filter(adapter);
2385
2386         /* Flow control settings reset on hardware reset, so guarantee flow
2387          * control is off when forcing speed.
2388          */
2389         if (!hw->mac.autoneg)
2390                 igb_force_mac_fc(hw);
2391
2392         igb_init_dmac(adapter, pba);
2393 #ifdef CONFIG_IGB_HWMON
2394         /* Re-initialize the thermal sensor on i350 devices. */
2395         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397                         /* If present, re-initialize the external thermal sensor
2398                          * interface.
2399                          */
2400                         if (adapter->ets)
2401                                 mac->ops.init_thermal_sensor_thresh(hw);
2402                 }
2403         }
2404 #endif
2405         /* Re-establish EEE setting */
2406         if (hw->phy.media_type == e1000_media_type_copper) {
2407                 switch (mac->type) {
2408                 case e1000_i350:
2409                 case e1000_i210:
2410                 case e1000_i211:
2411                         igb_set_eee_i350(hw, true, true);
2412                         break;
2413                 case e1000_i354:
2414                         igb_set_eee_i354(hw, true, true);
2415                         break;
2416                 default:
2417                         break;
2418                 }
2419         }
2420         if (!netif_running(adapter->netdev))
2421                 igb_power_down_link(adapter);
2422
2423         igb_update_mng_vlan(adapter);
2424
2425         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427
2428         /* Re-enable PTP, where applicable. */
2429         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430                 igb_ptp_reset(adapter);
2431
2432         igb_get_phy_info(hw);
2433 }
2434
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436         netdev_features_t features)
2437 {
2438         /* Since there is no support for separate Rx/Tx vlan accel
2439          * enable/disable make sure Tx flag is always in same state as Rx.
2440          */
2441         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2443         else
2444                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445
2446         return features;
2447 }
2448
2449 static int igb_set_features(struct net_device *netdev,
2450         netdev_features_t features)
2451 {
2452         netdev_features_t changed = netdev->features ^ features;
2453         struct igb_adapter *adapter = netdev_priv(netdev);
2454
2455         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456                 igb_vlan_mode(netdev, features);
2457
2458         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459                 return 0;
2460
2461         if (!(features & NETIF_F_NTUPLE)) {
2462                 struct hlist_node *node2;
2463                 struct igb_nfc_filter *rule;
2464
2465                 spin_lock(&adapter->nfc_lock);
2466                 hlist_for_each_entry_safe(rule, node2,
2467                                           &adapter->nfc_filter_list, nfc_node) {
2468                         igb_erase_filter(adapter, rule);
2469                         hlist_del(&rule->nfc_node);
2470                         kfree(rule);
2471                 }
2472                 spin_unlock(&adapter->nfc_lock);
2473                 adapter->nfc_filter_count = 0;
2474         }
2475
2476         netdev->features = features;
2477
2478         if (netif_running(netdev))
2479                 igb_reinit_locked(adapter);
2480         else
2481                 igb_reset(adapter);
2482
2483         return 0;
2484 }
2485
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487                            struct net_device *dev,
2488                            const unsigned char *addr, u16 vid,
2489                            u16 flags)
2490 {
2491         /* guarantee we can provide a unique filter for the unicast address */
2492         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493                 struct igb_adapter *adapter = netdev_priv(dev);
2494                 int vfn = adapter->vfs_allocated_count;
2495
2496                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497                         return -ENOMEM;
2498         }
2499
2500         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502
2503 #define IGB_MAX_MAC_HDR_LEN     127
2504 #define IGB_MAX_NETWORK_HDR_LEN 511
2505
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508                    netdev_features_t features)
2509 {
2510         unsigned int network_hdr_len, mac_hdr_len;
2511
2512         /* Make certain the headers can be described by a context descriptor */
2513         mac_hdr_len = skb_network_header(skb) - skb->data;
2514         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515                 return features & ~(NETIF_F_HW_CSUM |
2516                                     NETIF_F_SCTP_CRC |
2517                                     NETIF_F_HW_VLAN_CTAG_TX |
2518                                     NETIF_F_TSO |
2519                                     NETIF_F_TSO6);
2520
2521         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2522         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2523                 return features & ~(NETIF_F_HW_CSUM |
2524                                     NETIF_F_SCTP_CRC |
2525                                     NETIF_F_TSO |
2526                                     NETIF_F_TSO6);
2527
2528         /* We can only support IPV4 TSO in tunnels if we can mangle the
2529          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2530          */
2531         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2532                 features &= ~NETIF_F_TSO;
2533
2534         return features;
2535 }
2536
2537 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2538 {
2539         if (!is_fqtss_enabled(adapter)) {
2540                 enable_fqtss(adapter, true);
2541                 return;
2542         }
2543
2544         igb_config_tx_modes(adapter, queue);
2545
2546         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2547                 enable_fqtss(adapter, false);
2548 }
2549
2550 static int igb_offload_cbs(struct igb_adapter *adapter,
2551                            struct tc_cbs_qopt_offload *qopt)
2552 {
2553         struct e1000_hw *hw = &adapter->hw;
2554         int err;
2555
2556         /* CBS offloading is only supported by i210 controller. */
2557         if (hw->mac.type != e1000_i210)
2558                 return -EOPNOTSUPP;
2559
2560         /* CBS offloading is only supported by queue 0 and queue 1. */
2561         if (qopt->queue < 0 || qopt->queue > 1)
2562                 return -EINVAL;
2563
2564         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2565                                   qopt->idleslope, qopt->sendslope,
2566                                   qopt->hicredit, qopt->locredit);
2567         if (err)
2568                 return err;
2569
2570         igb_offload_apply(adapter, qopt->queue);
2571
2572         return 0;
2573 }
2574
2575 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2576 #define VLAN_PRIO_FULL_MASK (0x07)
2577
2578 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2579                                 struct tc_cls_flower_offload *f,
2580                                 int traffic_class,
2581                                 struct igb_nfc_filter *input)
2582 {
2583         struct netlink_ext_ack *extack = f->common.extack;
2584
2585         if (f->dissector->used_keys &
2586             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2587               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2588               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2589               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2590                 NL_SET_ERR_MSG_MOD(extack,
2591                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2592                 return -EOPNOTSUPP;
2593         }
2594
2595         if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2596                 struct flow_dissector_key_eth_addrs *key, *mask;
2597
2598                 key = skb_flow_dissector_target(f->dissector,
2599                                                 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2600                                                 f->key);
2601                 mask = skb_flow_dissector_target(f->dissector,
2602                                                  FLOW_DISSECTOR_KEY_ETH_ADDRS,
2603                                                  f->mask);
2604
2605                 if (!is_zero_ether_addr(mask->dst)) {
2606                         if (!is_broadcast_ether_addr(mask->dst)) {
2607                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608                                 return -EINVAL;
2609                         }
2610
2611                         input->filter.match_flags |=
2612                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2613                         ether_addr_copy(input->filter.dst_addr, key->dst);
2614                 }
2615
2616                 if (!is_zero_ether_addr(mask->src)) {
2617                         if (!is_broadcast_ether_addr(mask->src)) {
2618                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619                                 return -EINVAL;
2620                         }
2621
2622                         input->filter.match_flags |=
2623                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624                         ether_addr_copy(input->filter.src_addr, key->src);
2625                 }
2626         }
2627
2628         if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2629                 struct flow_dissector_key_basic *key, *mask;
2630
2631                 key = skb_flow_dissector_target(f->dissector,
2632                                                 FLOW_DISSECTOR_KEY_BASIC,
2633                                                 f->key);
2634                 mask = skb_flow_dissector_target(f->dissector,
2635                                                  FLOW_DISSECTOR_KEY_BASIC,
2636                                                  f->mask);
2637
2638                 if (mask->n_proto) {
2639                         if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2640                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2641                                 return -EINVAL;
2642                         }
2643
2644                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2645                         input->filter.etype = key->n_proto;
2646                 }
2647         }
2648
2649         if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2650                 struct flow_dissector_key_vlan *key, *mask;
2651
2652                 key = skb_flow_dissector_target(f->dissector,
2653                                                 FLOW_DISSECTOR_KEY_VLAN,
2654                                                 f->key);
2655                 mask = skb_flow_dissector_target(f->dissector,
2656                                                  FLOW_DISSECTOR_KEY_VLAN,
2657                                                  f->mask);
2658
2659                 if (mask->vlan_priority) {
2660                         if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2662                                 return -EINVAL;
2663                         }
2664
2665                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666                         input->filter.vlan_tci = key->vlan_priority;
2667                 }
2668         }
2669
2670         input->action = traffic_class;
2671         input->cookie = f->cookie;
2672
2673         return 0;
2674 }
2675
2676 static int igb_configure_clsflower(struct igb_adapter *adapter,
2677                                    struct tc_cls_flower_offload *cls_flower)
2678 {
2679         struct netlink_ext_ack *extack = cls_flower->common.extack;
2680         struct igb_nfc_filter *filter, *f;
2681         int err, tc;
2682
2683         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2684         if (tc < 0) {
2685                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2686                 return -EINVAL;
2687         }
2688
2689         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2690         if (!filter)
2691                 return -ENOMEM;
2692
2693         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2694         if (err < 0)
2695                 goto err_parse;
2696
2697         spin_lock(&adapter->nfc_lock);
2698
2699         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2700                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701                         err = -EEXIST;
2702                         NL_SET_ERR_MSG_MOD(extack,
2703                                            "This filter is already set in ethtool");
2704                         goto err_locked;
2705                 }
2706         }
2707
2708         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2709                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2710                         err = -EEXIST;
2711                         NL_SET_ERR_MSG_MOD(extack,
2712                                            "This filter is already set in cls_flower");
2713                         goto err_locked;
2714                 }
2715         }
2716
2717         err = igb_add_filter(adapter, filter);
2718         if (err < 0) {
2719                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2720                 goto err_locked;
2721         }
2722
2723         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2724
2725         spin_unlock(&adapter->nfc_lock);
2726
2727         return 0;
2728
2729 err_locked:
2730         spin_unlock(&adapter->nfc_lock);
2731
2732 err_parse:
2733         kfree(filter);
2734
2735         return err;
2736 }
2737
2738 static int igb_delete_clsflower(struct igb_adapter *adapter,
2739                                 struct tc_cls_flower_offload *cls_flower)
2740 {
2741         struct igb_nfc_filter *filter;
2742         int err;
2743
2744         spin_lock(&adapter->nfc_lock);
2745
2746         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2747                 if (filter->cookie == cls_flower->cookie)
2748                         break;
2749
2750         if (!filter) {
2751                 err = -ENOENT;
2752                 goto out;
2753         }
2754
2755         err = igb_erase_filter(adapter, filter);
2756         if (err < 0)
2757                 goto out;
2758
2759         hlist_del(&filter->nfc_node);
2760         kfree(filter);
2761
2762 out:
2763         spin_unlock(&adapter->nfc_lock);
2764
2765         return err;
2766 }
2767
2768 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2769                                    struct tc_cls_flower_offload *cls_flower)
2770 {
2771         switch (cls_flower->command) {
2772         case TC_CLSFLOWER_REPLACE:
2773                 return igb_configure_clsflower(adapter, cls_flower);
2774         case TC_CLSFLOWER_DESTROY:
2775                 return igb_delete_clsflower(adapter, cls_flower);
2776         case TC_CLSFLOWER_STATS:
2777                 return -EOPNOTSUPP;
2778         default:
2779                 return -EOPNOTSUPP;
2780         }
2781 }
2782
2783 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2784                                  void *cb_priv)
2785 {
2786         struct igb_adapter *adapter = cb_priv;
2787
2788         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2789                 return -EOPNOTSUPP;
2790
2791         switch (type) {
2792         case TC_SETUP_CLSFLOWER:
2793                 return igb_setup_tc_cls_flower(adapter, type_data);
2794
2795         default:
2796                 return -EOPNOTSUPP;
2797         }
2798 }
2799
2800 static int igb_setup_tc_block(struct igb_adapter *adapter,
2801                               struct tc_block_offload *f)
2802 {
2803         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2804                 return -EOPNOTSUPP;
2805
2806         switch (f->command) {
2807         case TC_BLOCK_BIND:
2808                 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2809                                              adapter, adapter, f->extack);
2810         case TC_BLOCK_UNBIND:
2811                 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2812                                         adapter);
2813                 return 0;
2814         default:
2815                 return -EOPNOTSUPP;
2816         }
2817 }
2818
2819 static int igb_offload_txtime(struct igb_adapter *adapter,
2820                               struct tc_etf_qopt_offload *qopt)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         int err;
2824
2825         /* Launchtime offloading is only supported by i210 controller. */
2826         if (hw->mac.type != e1000_i210)
2827                 return -EOPNOTSUPP;
2828
2829         /* Launchtime offloading is only supported by queues 0 and 1. */
2830         if (qopt->queue < 0 || qopt->queue > 1)
2831                 return -EINVAL;
2832
2833         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2834         if (err)
2835                 return err;
2836
2837         igb_offload_apply(adapter, qopt->queue);
2838
2839         return 0;
2840 }
2841
2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2843                         void *type_data)
2844 {
2845         struct igb_adapter *adapter = netdev_priv(dev);
2846
2847         switch (type) {
2848         case TC_SETUP_QDISC_CBS:
2849                 return igb_offload_cbs(adapter, type_data);
2850         case TC_SETUP_BLOCK:
2851                 return igb_setup_tc_block(adapter, type_data);
2852         case TC_SETUP_QDISC_ETF:
2853                 return igb_offload_txtime(adapter, type_data);
2854
2855         default:
2856                 return -EOPNOTSUPP;
2857         }
2858 }
2859
2860 static const struct net_device_ops igb_netdev_ops = {
2861         .ndo_open               = igb_open,
2862         .ndo_stop               = igb_close,
2863         .ndo_start_xmit         = igb_xmit_frame,
2864         .ndo_get_stats64        = igb_get_stats64,
2865         .ndo_set_rx_mode        = igb_set_rx_mode,
2866         .ndo_set_mac_address    = igb_set_mac,
2867         .ndo_change_mtu         = igb_change_mtu,
2868         .ndo_do_ioctl           = igb_ioctl,
2869         .ndo_tx_timeout         = igb_tx_timeout,
2870         .ndo_validate_addr      = eth_validate_addr,
2871         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2872         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2873         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2874         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2875         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2876         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2877         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2878         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2879         .ndo_fix_features       = igb_fix_features,
2880         .ndo_set_features       = igb_set_features,
2881         .ndo_fdb_add            = igb_ndo_fdb_add,
2882         .ndo_features_check     = igb_features_check,
2883         .ndo_setup_tc           = igb_setup_tc,
2884 };
2885
2886 /**
2887  * igb_set_fw_version - Configure version string for ethtool
2888  * @adapter: adapter struct
2889  **/
2890 void igb_set_fw_version(struct igb_adapter *adapter)
2891 {
2892         struct e1000_hw *hw = &adapter->hw;
2893         struct e1000_fw_version fw;
2894
2895         igb_get_fw_version(hw, &fw);
2896
2897         switch (hw->mac.type) {
2898         case e1000_i210:
2899         case e1000_i211:
2900                 if (!(igb_get_flash_presence_i210(hw))) {
2901                         snprintf(adapter->fw_version,
2902                                  sizeof(adapter->fw_version),
2903                                  "%2d.%2d-%d",
2904                                  fw.invm_major, fw.invm_minor,
2905                                  fw.invm_img_type);
2906                         break;
2907                 }
2908                 /* fall through */
2909         default:
2910                 /* if option is rom valid, display its version too */
2911                 if (fw.or_valid) {
2912                         snprintf(adapter->fw_version,
2913                                  sizeof(adapter->fw_version),
2914                                  "%d.%d, 0x%08x, %d.%d.%d",
2915                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2916                                  fw.or_major, fw.or_build, fw.or_patch);
2917                 /* no option rom */
2918                 } else if (fw.etrack_id != 0X0000) {
2919                         snprintf(adapter->fw_version,
2920                             sizeof(adapter->fw_version),
2921                             "%d.%d, 0x%08x",
2922                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2923                 } else {
2924                 snprintf(adapter->fw_version,
2925                     sizeof(adapter->fw_version),
2926                     "%d.%d.%d",
2927                     fw.eep_major, fw.eep_minor, fw.eep_build);
2928                 }
2929                 break;
2930         }
2931 }
2932
2933 /**
2934  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2935  *
2936  * @adapter: adapter struct
2937  **/
2938 static void igb_init_mas(struct igb_adapter *adapter)
2939 {
2940         struct e1000_hw *hw = &adapter->hw;
2941         u16 eeprom_data;
2942
2943         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2944         switch (hw->bus.func) {
2945         case E1000_FUNC_0:
2946                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2947                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2948                         netdev_info(adapter->netdev,
2949                                 "MAS: Enabling Media Autosense for port %d\n",
2950                                 hw->bus.func);
2951                 }
2952                 break;
2953         case E1000_FUNC_1:
2954                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2955                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2956                         netdev_info(adapter->netdev,
2957                                 "MAS: Enabling Media Autosense for port %d\n",
2958                                 hw->bus.func);
2959                 }
2960                 break;
2961         case E1000_FUNC_2:
2962                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2963                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2964                         netdev_info(adapter->netdev,
2965                                 "MAS: Enabling Media Autosense for port %d\n",
2966                                 hw->bus.func);
2967                 }
2968                 break;
2969         case E1000_FUNC_3:
2970                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2971                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2972                         netdev_info(adapter->netdev,
2973                                 "MAS: Enabling Media Autosense for port %d\n",
2974                                 hw->bus.func);
2975                 }
2976                 break;
2977         default:
2978                 /* Shouldn't get here */
2979                 netdev_err(adapter->netdev,
2980                         "MAS: Invalid port configuration, returning\n");
2981                 break;
2982         }
2983 }
2984
2985 /**
2986  *  igb_init_i2c - Init I2C interface
2987  *  @adapter: pointer to adapter structure
2988  **/
2989 static s32 igb_init_i2c(struct igb_adapter *adapter)
2990 {
2991         s32 status = 0;
2992
2993         /* I2C interface supported on i350 devices */
2994         if (adapter->hw.mac.type != e1000_i350)
2995                 return 0;
2996
2997         /* Initialize the i2c bus which is controlled by the registers.
2998          * This bus will use the i2c_algo_bit structue that implements
2999          * the protocol through toggling of the 4 bits in the register.
3000          */
3001         adapter->i2c_adap.owner = THIS_MODULE;
3002         adapter->i2c_algo = igb_i2c_algo;
3003         adapter->i2c_algo.data = adapter;
3004         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3005         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3006         strlcpy(adapter->i2c_adap.name, "igb BB",
3007                 sizeof(adapter->i2c_adap.name));
3008         status = i2c_bit_add_bus(&adapter->i2c_adap);
3009         return status;
3010 }
3011
3012 /**
3013  *  igb_probe - Device Initialization Routine
3014  *  @pdev: PCI device information struct
3015  *  @ent: entry in igb_pci_tbl
3016  *
3017  *  Returns 0 on success, negative on failure
3018  *
3019  *  igb_probe initializes an adapter identified by a pci_dev structure.
3020  *  The OS initialization, configuring of the adapter private structure,
3021  *  and a hardware reset occur.
3022  **/
3023 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3024 {
3025         struct net_device *netdev;
3026         struct igb_adapter *adapter;
3027         struct e1000_hw *hw;
3028         u16 eeprom_data = 0;
3029         s32 ret_val;
3030         static int global_quad_port_a; /* global quad port a indication */
3031         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3032         int err, pci_using_dac;
3033         u8 part_str[E1000_PBANUM_LENGTH];
3034
3035         /* Catch broken hardware that put the wrong VF device ID in
3036          * the PCIe SR-IOV capability.
3037          */
3038         if (pdev->is_virtfn) {
3039                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3040                         pci_name(pdev), pdev->vendor, pdev->device);
3041                 return -EINVAL;
3042         }
3043
3044         err = pci_enable_device_mem(pdev);
3045         if (err)
3046                 return err;
3047
3048         pci_using_dac = 0;
3049         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3050         if (!err) {
3051                 pci_using_dac = 1;
3052         } else {
3053                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3054                 if (err) {
3055                         dev_err(&pdev->dev,
3056                                 "No usable DMA configuration, aborting\n");
3057                         goto err_dma;
3058                 }
3059         }
3060
3061         err = pci_request_mem_regions(pdev, igb_driver_name);
3062         if (err)
3063                 goto err_pci_reg;
3064
3065         pci_enable_pcie_error_reporting(pdev);
3066
3067         pci_set_master(pdev);
3068         pci_save_state(pdev);
3069
3070         err = -ENOMEM;
3071         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3072                                    IGB_MAX_TX_QUEUES);
3073         if (!netdev)
3074                 goto err_alloc_etherdev;
3075
3076         SET_NETDEV_DEV(netdev, &pdev->dev);
3077
3078         pci_set_drvdata(pdev, netdev);
3079         adapter = netdev_priv(netdev);
3080         adapter->netdev = netdev;
3081         adapter->pdev = pdev;
3082         hw = &adapter->hw;
3083         hw->back = adapter;
3084         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3085
3086         err = -EIO;
3087         adapter->io_addr = pci_iomap(pdev, 0, 0);
3088         if (!adapter->io_addr)
3089                 goto err_ioremap;
3090         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3091         hw->hw_addr = adapter->io_addr;
3092
3093         netdev->netdev_ops = &igb_netdev_ops;
3094         igb_set_ethtool_ops(netdev);
3095         netdev->watchdog_timeo = 5 * HZ;
3096
3097         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3098
3099         netdev->mem_start = pci_resource_start(pdev, 0);
3100         netdev->mem_end = pci_resource_end(pdev, 0);
3101
3102         /* PCI config space info */
3103         hw->vendor_id = pdev->vendor;
3104         hw->device_id = pdev->device;
3105         hw->revision_id = pdev->revision;
3106         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3107         hw->subsystem_device_id = pdev->subsystem_device;
3108
3109         /* Copy the default MAC, PHY and NVM function pointers */
3110         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3111         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3112         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3113         /* Initialize skew-specific constants */
3114         err = ei->get_invariants(hw);
3115         if (err)
3116                 goto err_sw_init;
3117
3118         /* setup the private structure */
3119         err = igb_sw_init(adapter);
3120         if (err)
3121                 goto err_sw_init;
3122
3123         igb_get_bus_info_pcie(hw);
3124
3125         hw->phy.autoneg_wait_to_complete = false;
3126
3127         /* Copper options */
3128         if (hw->phy.media_type == e1000_media_type_copper) {
3129                 hw->phy.mdix = AUTO_ALL_MODES;
3130                 hw->phy.disable_polarity_correction = false;
3131                 hw->phy.ms_type = e1000_ms_hw_default;
3132         }
3133
3134         if (igb_check_reset_block(hw))
3135                 dev_info(&pdev->dev,
3136                         "PHY reset is blocked due to SOL/IDER session.\n");
3137
3138         /* features is initialized to 0 in allocation, it might have bits
3139          * set by igb_sw_init so we should use an or instead of an
3140          * assignment.
3141          */
3142         netdev->features |= NETIF_F_SG |
3143                             NETIF_F_TSO |
3144                             NETIF_F_TSO6 |
3145                             NETIF_F_RXHASH |
3146                             NETIF_F_RXCSUM |
3147                             NETIF_F_HW_CSUM;
3148
3149         if (hw->mac.type >= e1000_82576)
3150                 netdev->features |= NETIF_F_SCTP_CRC;
3151
3152         if (hw->mac.type >= e1000_i350)
3153                 netdev->features |= NETIF_F_HW_TC;
3154
3155 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3156                                   NETIF_F_GSO_GRE_CSUM | \
3157                                   NETIF_F_GSO_IPXIP4 | \
3158                                   NETIF_F_GSO_IPXIP6 | \
3159                                   NETIF_F_GSO_UDP_TUNNEL | \
3160                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3161
3162         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3163         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3164
3165         /* copy netdev features into list of user selectable features */
3166         netdev->hw_features |= netdev->features |
3167                                NETIF_F_HW_VLAN_CTAG_RX |
3168                                NETIF_F_HW_VLAN_CTAG_TX |
3169                                NETIF_F_RXALL;
3170
3171         if (hw->mac.type >= e1000_i350)
3172                 netdev->hw_features |= NETIF_F_NTUPLE;
3173
3174         if (pci_using_dac)
3175                 netdev->features |= NETIF_F_HIGHDMA;
3176
3177         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3178         netdev->mpls_features |= NETIF_F_HW_CSUM;
3179         netdev->hw_enc_features |= netdev->vlan_features;
3180
3181         /* set this bit last since it cannot be part of vlan_features */
3182         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3183                             NETIF_F_HW_VLAN_CTAG_RX |
3184                             NETIF_F_HW_VLAN_CTAG_TX;
3185
3186         netdev->priv_flags |= IFF_SUPP_NOFCS;
3187
3188         netdev->priv_flags |= IFF_UNICAST_FLT;
3189
3190         /* MTU range: 68 - 9216 */
3191         netdev->min_mtu = ETH_MIN_MTU;
3192         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3193
3194         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3195
3196         /* before reading the NVM, reset the controller to put the device in a
3197          * known good starting state
3198          */
3199         hw->mac.ops.reset_hw(hw);
3200
3201         /* make sure the NVM is good , i211/i210 parts can have special NVM
3202          * that doesn't contain a checksum
3203          */
3204         switch (hw->mac.type) {
3205         case e1000_i210:
3206         case e1000_i211:
3207                 if (igb_get_flash_presence_i210(hw)) {
3208                         if (hw->nvm.ops.validate(hw) < 0) {
3209                                 dev_err(&pdev->dev,
3210                                         "The NVM Checksum Is Not Valid\n");
3211                                 err = -EIO;
3212                                 goto err_eeprom;
3213                         }
3214                 }
3215                 break;
3216         default:
3217                 if (hw->nvm.ops.validate(hw) < 0) {
3218                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3219                         err = -EIO;
3220                         goto err_eeprom;
3221                 }
3222                 break;
3223         }
3224
3225         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3226                 /* copy the MAC address out of the NVM */
3227                 if (hw->mac.ops.read_mac_addr(hw))
3228                         dev_err(&pdev->dev, "NVM Read Error\n");
3229         }
3230
3231         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3232
3233         if (!is_valid_ether_addr(netdev->dev_addr)) {
3234                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3235                 err = -EIO;
3236                 goto err_eeprom;
3237         }
3238
3239         igb_set_default_mac_filter(adapter);
3240
3241         /* get firmware version for ethtool -i */
3242         igb_set_fw_version(adapter);
3243
3244         /* configure RXPBSIZE and TXPBSIZE */
3245         if (hw->mac.type == e1000_i210) {
3246                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3247                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3248         }
3249
3250         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3251         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3252
3253         INIT_WORK(&adapter->reset_task, igb_reset_task);
3254         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3255
3256         /* Initialize link properties that are user-changeable */
3257         adapter->fc_autoneg = true;
3258         hw->mac.autoneg = true;
3259         hw->phy.autoneg_advertised = 0x2f;
3260
3261         hw->fc.requested_mode = e1000_fc_default;
3262         hw->fc.current_mode = e1000_fc_default;
3263
3264         igb_validate_mdi_setting(hw);
3265
3266         /* By default, support wake on port A */
3267         if (hw->bus.func == 0)
3268                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3269
3270         /* Check the NVM for wake support on non-port A ports */
3271         if (hw->mac.type >= e1000_82580)
3272                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3273                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3274                                  &eeprom_data);
3275         else if (hw->bus.func == 1)
3276                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3277
3278         if (eeprom_data & IGB_EEPROM_APME)
3279                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3280
3281         /* now that we have the eeprom settings, apply the special cases where
3282          * the eeprom may be wrong or the board simply won't support wake on
3283          * lan on a particular port
3284          */
3285         switch (pdev->device) {
3286         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3287                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288                 break;
3289         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3290         case E1000_DEV_ID_82576_FIBER:
3291         case E1000_DEV_ID_82576_SERDES:
3292                 /* Wake events only supported on port A for dual fiber
3293                  * regardless of eeprom setting
3294                  */
3295                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3296                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3297                 break;
3298         case E1000_DEV_ID_82576_QUAD_COPPER:
3299         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3300                 /* if quad port adapter, disable WoL on all but port A */
3301                 if (global_quad_port_a != 0)
3302                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3303                 else
3304                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3305                 /* Reset for multiple quad port adapters */
3306                 if (++global_quad_port_a == 4)
3307                         global_quad_port_a = 0;
3308                 break;
3309         default:
3310                 /* If the device can't wake, don't set software support */
3311                 if (!device_can_wakeup(&adapter->pdev->dev))
3312                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3313         }
3314
3315         /* initialize the wol settings based on the eeprom settings */
3316         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3317                 adapter->wol |= E1000_WUFC_MAG;
3318
3319         /* Some vendors want WoL disabled by default, but still supported */
3320         if ((hw->mac.type == e1000_i350) &&
3321             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3322                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3323                 adapter->wol = 0;
3324         }
3325
3326         /* Some vendors want the ability to Use the EEPROM setting as
3327          * enable/disable only, and not for capability
3328          */
3329         if (((hw->mac.type == e1000_i350) ||
3330              (hw->mac.type == e1000_i354)) &&
3331             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3332                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3333                 adapter->wol = 0;
3334         }
3335         if (hw->mac.type == e1000_i350) {
3336                 if (((pdev->subsystem_device == 0x5001) ||
3337                      (pdev->subsystem_device == 0x5002)) &&
3338                                 (hw->bus.func == 0)) {
3339                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3340                         adapter->wol = 0;
3341                 }
3342                 if (pdev->subsystem_device == 0x1F52)
3343                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3344         }
3345
3346         device_set_wakeup_enable(&adapter->pdev->dev,
3347                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3348
3349         /* reset the hardware with the new settings */
3350         igb_reset(adapter);
3351
3352         /* Init the I2C interface */
3353         err = igb_init_i2c(adapter);
3354         if (err) {
3355                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3356                 goto err_eeprom;
3357         }
3358
3359         /* let the f/w know that the h/w is now under the control of the
3360          * driver.
3361          */
3362         igb_get_hw_control(adapter);
3363
3364         strcpy(netdev->name, "eth%d");
3365         err = register_netdev(netdev);
3366         if (err)
3367                 goto err_register;
3368
3369         /* carrier off reporting is important to ethtool even BEFORE open */
3370         netif_carrier_off(netdev);
3371
3372 #ifdef CONFIG_IGB_DCA
3373         if (dca_add_requester(&pdev->dev) == 0) {
3374                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3375                 dev_info(&pdev->dev, "DCA enabled\n");
3376                 igb_setup_dca(adapter);
3377         }
3378
3379 #endif
3380 #ifdef CONFIG_IGB_HWMON
3381         /* Initialize the thermal sensor on i350 devices. */
3382         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3383                 u16 ets_word;
3384
3385                 /* Read the NVM to determine if this i350 device supports an
3386                  * external thermal sensor.
3387                  */
3388                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3389                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3390                         adapter->ets = true;
3391                 else
3392                         adapter->ets = false;
3393                 if (igb_sysfs_init(adapter))
3394                         dev_err(&pdev->dev,
3395                                 "failed to allocate sysfs resources\n");
3396         } else {
3397                 adapter->ets = false;
3398         }
3399 #endif
3400         /* Check if Media Autosense is enabled */
3401         adapter->ei = *ei;
3402         if (hw->dev_spec._82575.mas_capable)
3403                 igb_init_mas(adapter);
3404
3405         /* do hw tstamp init after resetting */
3406         igb_ptp_init(adapter);
3407
3408         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3409         /* print bus type/speed/width info, not applicable to i354 */
3410         if (hw->mac.type != e1000_i354) {
3411                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3412                          netdev->name,
3413                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3414                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3415                            "unknown"),
3416                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3417                           "Width x4" :
3418                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3419                           "Width x2" :
3420                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3421                           "Width x1" : "unknown"), netdev->dev_addr);
3422         }
3423
3424         if ((hw->mac.type >= e1000_i210 ||
3425              igb_get_flash_presence_i210(hw))) {
3426                 ret_val = igb_read_part_string(hw, part_str,
3427                                                E1000_PBANUM_LENGTH);
3428         } else {
3429                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3430         }
3431
3432         if (ret_val)
3433                 strcpy(part_str, "Unknown");
3434         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3435         dev_info(&pdev->dev,
3436                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3437                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3438                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3439                 adapter->num_rx_queues, adapter->num_tx_queues);
3440         if (hw->phy.media_type == e1000_media_type_copper) {
3441                 switch (hw->mac.type) {
3442                 case e1000_i350:
3443                 case e1000_i210:
3444                 case e1000_i211:
3445                         /* Enable EEE for internal copper PHY devices */
3446                         err = igb_set_eee_i350(hw, true, true);
3447                         if ((!err) &&
3448                             (!hw->dev_spec._82575.eee_disable)) {
3449                                 adapter->eee_advert =
3450                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3451                                 adapter->flags |= IGB_FLAG_EEE;
3452                         }
3453                         break;
3454                 case e1000_i354:
3455                         if ((rd32(E1000_CTRL_EXT) &
3456                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3457                                 err = igb_set_eee_i354(hw, true, true);
3458                                 if ((!err) &&
3459                                         (!hw->dev_spec._82575.eee_disable)) {
3460                                         adapter->eee_advert =
3461                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3462                                         adapter->flags |= IGB_FLAG_EEE;
3463                                 }
3464                         }
3465                         break;
3466                 default:
3467                         break;
3468                 }
3469         }
3470         pm_runtime_put_noidle(&pdev->dev);
3471         return 0;
3472
3473 err_register:
3474         igb_release_hw_control(adapter);
3475         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3476 err_eeprom:
3477         if (!igb_check_reset_block(hw))
3478                 igb_reset_phy(hw);
3479
3480         if (hw->flash_address)
3481                 iounmap(hw->flash_address);
3482 err_sw_init:
3483         kfree(adapter->mac_table);
3484         kfree(adapter->shadow_vfta);
3485         igb_clear_interrupt_scheme(adapter);
3486 #ifdef CONFIG_PCI_IOV
3487         igb_disable_sriov(pdev);
3488 #endif
3489         pci_iounmap(pdev, adapter->io_addr);
3490 err_ioremap:
3491         free_netdev(netdev);
3492 err_alloc_etherdev:
3493         pci_release_mem_regions(pdev);
3494 err_pci_reg:
3495 err_dma:
3496         pci_disable_device(pdev);
3497         return err;
3498 }
3499
3500 #ifdef CONFIG_PCI_IOV
3501 static int igb_disable_sriov(struct pci_dev *pdev)
3502 {
3503         struct net_device *netdev = pci_get_drvdata(pdev);
3504         struct igb_adapter *adapter = netdev_priv(netdev);
3505         struct e1000_hw *hw = &adapter->hw;
3506
3507         /* reclaim resources allocated to VFs */
3508         if (adapter->vf_data) {
3509                 /* disable iov and allow time for transactions to clear */
3510                 if (pci_vfs_assigned(pdev)) {
3511                         dev_warn(&pdev->dev,
3512                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3513                         return -EPERM;
3514                 } else {
3515                         pci_disable_sriov(pdev);
3516                         msleep(500);
3517                 }
3518
3519                 kfree(adapter->vf_mac_list);
3520                 adapter->vf_mac_list = NULL;
3521                 kfree(adapter->vf_data);
3522                 adapter->vf_data = NULL;
3523                 adapter->vfs_allocated_count = 0;
3524                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3525                 wrfl();
3526                 msleep(100);
3527                 dev_info(&pdev->dev, "IOV Disabled\n");
3528
3529                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3530                 adapter->flags |= IGB_FLAG_DMAC;
3531         }
3532
3533         return 0;
3534 }
3535
3536 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3537 {
3538         struct net_device *netdev = pci_get_drvdata(pdev);
3539         struct igb_adapter *adapter = netdev_priv(netdev);
3540         int old_vfs = pci_num_vf(pdev);
3541         struct vf_mac_filter *mac_list;
3542         int err = 0;
3543         int num_vf_mac_filters, i;
3544
3545         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3546                 err = -EPERM;
3547                 goto out;
3548         }
3549         if (!num_vfs)
3550                 goto out;
3551
3552         if (old_vfs) {
3553                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3554                          old_vfs, max_vfs);
3555                 adapter->vfs_allocated_count = old_vfs;
3556         } else
3557                 adapter->vfs_allocated_count = num_vfs;
3558
3559         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3560                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3561
3562         /* if allocation failed then we do not support SR-IOV */
3563         if (!adapter->vf_data) {
3564                 adapter->vfs_allocated_count = 0;
3565                 err = -ENOMEM;
3566                 goto out;
3567         }
3568
3569         /* Due to the limited number of RAR entries calculate potential
3570          * number of MAC filters available for the VFs. Reserve entries
3571          * for PF default MAC, PF MAC filters and at least one RAR entry
3572          * for each VF for VF MAC.
3573          */
3574         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3575                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3576                               adapter->vfs_allocated_count);
3577
3578         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3579                                        sizeof(struct vf_mac_filter),
3580                                        GFP_KERNEL);
3581
3582         mac_list = adapter->vf_mac_list;
3583         INIT_LIST_HEAD(&adapter->vf_macs.l);
3584
3585         if (adapter->vf_mac_list) {
3586                 /* Initialize list of VF MAC filters */
3587                 for (i = 0; i < num_vf_mac_filters; i++) {
3588                         mac_list->vf = -1;
3589                         mac_list->free = true;
3590                         list_add(&mac_list->l, &adapter->vf_macs.l);
3591                         mac_list++;
3592                 }
3593         } else {
3594                 /* If we could not allocate memory for the VF MAC filters
3595                  * we can continue without this feature but warn user.
3596                  */
3597                 dev_err(&pdev->dev,
3598                         "Unable to allocate memory for VF MAC filter list\n");
3599         }
3600
3601         /* only call pci_enable_sriov() if no VFs are allocated already */
3602         if (!old_vfs) {
3603                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3604                 if (err)
3605                         goto err_out;
3606         }
3607         dev_info(&pdev->dev, "%d VFs allocated\n",
3608                  adapter->vfs_allocated_count);
3609         for (i = 0; i < adapter->vfs_allocated_count; i++)
3610                 igb_vf_configure(adapter, i);
3611
3612         /* DMA Coalescing is not supported in IOV mode. */
3613         adapter->flags &= ~IGB_FLAG_DMAC;
3614         goto out;
3615
3616 err_out:
3617         kfree(adapter->vf_mac_list);
3618         adapter->vf_mac_list = NULL;
3619         kfree(adapter->vf_data);
3620         adapter->vf_data = NULL;
3621         adapter->vfs_allocated_count = 0;
3622 out:
3623         return err;
3624 }
3625
3626 #endif
3627 /**
3628  *  igb_remove_i2c - Cleanup  I2C interface
3629  *  @adapter: pointer to adapter structure
3630  **/
3631 static void igb_remove_i2c(struct igb_adapter *adapter)
3632 {
3633         /* free the adapter bus structure */
3634         i2c_del_adapter(&adapter->i2c_adap);
3635 }
3636
3637 /**
3638  *  igb_remove - Device Removal Routine
3639  *  @pdev: PCI device information struct
3640  *
3641  *  igb_remove is called by the PCI subsystem to alert the driver
3642  *  that it should release a PCI device.  The could be caused by a
3643  *  Hot-Plug event, or because the driver is going to be removed from
3644  *  memory.
3645  **/
3646 static void igb_remove(struct pci_dev *pdev)
3647 {
3648         struct net_device *netdev = pci_get_drvdata(pdev);
3649         struct igb_adapter *adapter = netdev_priv(netdev);
3650         struct e1000_hw *hw = &adapter->hw;
3651
3652         pm_runtime_get_noresume(&pdev->dev);
3653 #ifdef CONFIG_IGB_HWMON
3654         igb_sysfs_exit(adapter);
3655 #endif
3656         igb_remove_i2c(adapter);
3657         igb_ptp_stop(adapter);
3658         /* The watchdog timer may be rescheduled, so explicitly
3659          * disable watchdog from being rescheduled.
3660          */
3661         set_bit(__IGB_DOWN, &adapter->state);
3662         del_timer_sync(&adapter->watchdog_timer);
3663         del_timer_sync(&adapter->phy_info_timer);
3664
3665         cancel_work_sync(&adapter->reset_task);
3666         cancel_work_sync(&adapter->watchdog_task);
3667
3668 #ifdef CONFIG_IGB_DCA
3669         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3670                 dev_info(&pdev->dev, "DCA disabled\n");
3671                 dca_remove_requester(&pdev->dev);
3672                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3673                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3674         }
3675 #endif
3676
3677         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3678          * would have already happened in close and is redundant.
3679          */
3680         igb_release_hw_control(adapter);
3681
3682 #ifdef CONFIG_PCI_IOV
3683         igb_disable_sriov(pdev);
3684 #endif
3685
3686         unregister_netdev(netdev);
3687
3688         igb_clear_interrupt_scheme(adapter);
3689
3690         pci_iounmap(pdev, adapter->io_addr);
3691         if (hw->flash_address)
3692                 iounmap(hw->flash_address);
3693         pci_release_mem_regions(pdev);
3694
3695         kfree(adapter->mac_table);
3696         kfree(adapter->shadow_vfta);
3697         free_netdev(netdev);
3698
3699         pci_disable_pcie_error_reporting(pdev);
3700
3701         pci_disable_device(pdev);
3702 }
3703
3704 /**
3705  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3706  *  @adapter: board private structure to initialize
3707  *
3708  *  This function initializes the vf specific data storage and then attempts to
3709  *  allocate the VFs.  The reason for ordering it this way is because it is much
3710  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3711  *  the memory for the VFs.
3712  **/
3713 static void igb_probe_vfs(struct igb_adapter *adapter)
3714 {
3715 #ifdef CONFIG_PCI_IOV
3716         struct pci_dev *pdev = adapter->pdev;
3717         struct e1000_hw *hw = &adapter->hw;
3718
3719         /* Virtualization features not supported on i210 family. */
3720         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3721                 return;
3722
3723         /* Of the below we really only want the effect of getting
3724          * IGB_FLAG_HAS_MSIX set (if available), without which
3725          * igb_enable_sriov() has no effect.
3726          */
3727         igb_set_interrupt_capability(adapter, true);
3728         igb_reset_interrupt_capability(adapter);
3729
3730         pci_sriov_set_totalvfs(pdev, 7);
3731         igb_enable_sriov(pdev, max_vfs);
3732
3733 #endif /* CONFIG_PCI_IOV */
3734 }
3735
3736 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3737 {
3738         struct e1000_hw *hw = &adapter->hw;
3739         unsigned int max_rss_queues;
3740
3741         /* Determine the maximum number of RSS queues supported. */
3742         switch (hw->mac.type) {
3743         case e1000_i211:
3744                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3745                 break;
3746         case e1000_82575:
3747         case e1000_i210:
3748                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3749                 break;
3750         case e1000_i350:
3751                 /* I350 cannot do RSS and SR-IOV at the same time */
3752                 if (!!adapter->vfs_allocated_count) {
3753                         max_rss_queues = 1;
3754                         break;
3755                 }
3756                 /* fall through */
3757         case e1000_82576:
3758                 if (!!adapter->vfs_allocated_count) {
3759                         max_rss_queues = 2;
3760                         break;
3761                 }
3762                 /* fall through */
3763         case e1000_82580:
3764         case e1000_i354:
3765         default:
3766                 max_rss_queues = IGB_MAX_RX_QUEUES;
3767                 break;
3768         }
3769
3770         return max_rss_queues;
3771 }
3772
3773 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3774 {
3775         u32 max_rss_queues;
3776
3777         max_rss_queues = igb_get_max_rss_queues(adapter);
3778         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3779
3780         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3781 }
3782
3783 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3784                               const u32 max_rss_queues)
3785 {
3786         struct e1000_hw *hw = &adapter->hw;
3787
3788         /* Determine if we need to pair queues. */
3789         switch (hw->mac.type) {
3790         case e1000_82575:
3791         case e1000_i211:
3792                 /* Device supports enough interrupts without queue pairing. */
3793                 break;
3794         case e1000_82576:
3795         case e1000_82580:
3796         case e1000_i350:
3797         case e1000_i354:
3798         case e1000_i210:
3799         default:
3800                 /* If rss_queues > half of max_rss_queues, pair the queues in
3801                  * order to conserve interrupts due to limited supply.
3802                  */
3803                 if (adapter->rss_queues > (max_rss_queues / 2))
3804                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3805                 else
3806                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3807                 break;
3808         }
3809 }
3810
3811 /**
3812  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3813  *  @adapter: board private structure to initialize
3814  *
3815  *  igb_sw_init initializes the Adapter private data structure.
3816  *  Fields are initialized based on PCI device information and
3817  *  OS network device settings (MTU size).
3818  **/
3819 static int igb_sw_init(struct igb_adapter *adapter)
3820 {
3821         struct e1000_hw *hw = &adapter->hw;
3822         struct net_device *netdev = adapter->netdev;
3823         struct pci_dev *pdev = adapter->pdev;
3824
3825         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3826
3827         /* set default ring sizes */
3828         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3829         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3830
3831         /* set default ITR values */
3832         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3833         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3834
3835         /* set default work limits */
3836         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3837
3838         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3839                                   VLAN_HLEN;
3840         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3841
3842         spin_lock_init(&adapter->nfc_lock);
3843         spin_lock_init(&adapter->stats64_lock);
3844 #ifdef CONFIG_PCI_IOV
3845         switch (hw->mac.type) {
3846         case e1000_82576:
3847         case e1000_i350:
3848                 if (max_vfs > 7) {
3849                         dev_warn(&pdev->dev,
3850                                  "Maximum of 7 VFs per PF, using max\n");
3851                         max_vfs = adapter->vfs_allocated_count = 7;
3852                 } else
3853                         adapter->vfs_allocated_count = max_vfs;
3854                 if (adapter->vfs_allocated_count)
3855                         dev_warn(&pdev->dev,
3856                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3857                 break;
3858         default:
3859                 break;
3860         }
3861 #endif /* CONFIG_PCI_IOV */
3862
3863         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3864         adapter->flags |= IGB_FLAG_HAS_MSIX;
3865
3866         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3867                                      sizeof(struct igb_mac_addr),
3868                                      GFP_KERNEL);
3869         if (!adapter->mac_table)
3870                 return -ENOMEM;
3871
3872         igb_probe_vfs(adapter);
3873
3874         igb_init_queue_configuration(adapter);
3875
3876         /* Setup and initialize a copy of the hw vlan table array */
3877         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3878                                        GFP_KERNEL);
3879         if (!adapter->shadow_vfta)
3880                 return -ENOMEM;
3881
3882         /* This call may decrease the number of queues */
3883         if (igb_init_interrupt_scheme(adapter, true)) {
3884                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3885                 return -ENOMEM;
3886         }
3887
3888         /* Explicitly disable IRQ since the NIC can be in any state. */
3889         igb_irq_disable(adapter);
3890
3891         if (hw->mac.type >= e1000_i350)
3892                 adapter->flags &= ~IGB_FLAG_DMAC;
3893
3894         set_bit(__IGB_DOWN, &adapter->state);
3895         return 0;
3896 }
3897
3898 /**
3899  *  igb_open - Called when a network interface is made active
3900  *  @netdev: network interface device structure
3901  *
3902  *  Returns 0 on success, negative value on failure
3903  *
3904  *  The open entry point is called when a network interface is made
3905  *  active by the system (IFF_UP).  At this point all resources needed
3906  *  for transmit and receive operations are allocated, the interrupt
3907  *  handler is registered with the OS, the watchdog timer is started,
3908  *  and the stack is notified that the interface is ready.
3909  **/
3910 static int __igb_open(struct net_device *netdev, bool resuming)
3911 {
3912         struct igb_adapter *adapter = netdev_priv(netdev);
3913         struct e1000_hw *hw = &adapter->hw;
3914         struct pci_dev *pdev = adapter->pdev;
3915         int err;
3916         int i;
3917
3918         /* disallow open during test */
3919         if (test_bit(__IGB_TESTING, &adapter->state)) {
3920                 WARN_ON(resuming);
3921                 return -EBUSY;
3922         }
3923
3924         if (!resuming)
3925                 pm_runtime_get_sync(&pdev->dev);
3926
3927         netif_carrier_off(netdev);
3928
3929         /* allocate transmit descriptors */
3930         err = igb_setup_all_tx_resources(adapter);
3931         if (err)
3932                 goto err_setup_tx;
3933
3934         /* allocate receive descriptors */
3935         err = igb_setup_all_rx_resources(adapter);
3936         if (err)
3937                 goto err_setup_rx;
3938
3939         igb_power_up_link(adapter);
3940
3941         /* before we allocate an interrupt, we must be ready to handle it.
3942          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3943          * as soon as we call pci_request_irq, so we have to setup our
3944          * clean_rx handler before we do so.
3945          */
3946         igb_configure(adapter);
3947
3948         err = igb_request_irq(adapter);
3949         if (err)
3950                 goto err_req_irq;
3951
3952         /* Notify the stack of the actual queue counts. */
3953         err = netif_set_real_num_tx_queues(adapter->netdev,
3954                                            adapter->num_tx_queues);
3955         if (err)
3956                 goto err_set_queues;
3957
3958         err = netif_set_real_num_rx_queues(adapter->netdev,
3959                                            adapter->num_rx_queues);
3960         if (err)
3961                 goto err_set_queues;
3962
3963         /* From here on the code is the same as igb_up() */
3964         clear_bit(__IGB_DOWN, &adapter->state);
3965
3966         for (i = 0; i < adapter->num_q_vectors; i++)
3967                 napi_enable(&(adapter->q_vector[i]->napi));
3968
3969         /* Clear any pending interrupts. */
3970         rd32(E1000_TSICR);
3971         rd32(E1000_ICR);
3972
3973         igb_irq_enable(adapter);
3974
3975         /* notify VFs that reset has been completed */
3976         if (adapter->vfs_allocated_count) {
3977                 u32 reg_data = rd32(E1000_CTRL_EXT);
3978
3979                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3980                 wr32(E1000_CTRL_EXT, reg_data);
3981         }
3982
3983         netif_tx_start_all_queues(netdev);
3984
3985         if (!resuming)
3986                 pm_runtime_put(&pdev->dev);
3987
3988         /* start the watchdog. */
3989         hw->mac.get_link_status = 1;
3990         schedule_work(&adapter->watchdog_task);
3991
3992         return 0;
3993
3994 err_set_queues:
3995         igb_free_irq(adapter);
3996 err_req_irq:
3997         igb_release_hw_control(adapter);
3998         igb_power_down_link(adapter);
3999         igb_free_all_rx_resources(adapter);
4000 err_setup_rx:
4001         igb_free_all_tx_resources(adapter);
4002 err_setup_tx:
4003         igb_reset(adapter);
4004         if (!resuming)
4005                 pm_runtime_put(&pdev->dev);
4006
4007         return err;
4008 }
4009
4010 int igb_open(struct net_device *netdev)
4011 {
4012         return __igb_open(netdev, false);
4013 }
4014
4015 /**
4016  *  igb_close - Disables a network interface
4017  *  @netdev: network interface device structure
4018  *
4019  *  Returns 0, this is not allowed to fail
4020  *
4021  *  The close entry point is called when an interface is de-activated
4022  *  by the OS.  The hardware is still under the driver's control, but
4023  *  needs to be disabled.  A global MAC reset is issued to stop the
4024  *  hardware, and all transmit and receive resources are freed.
4025  **/
4026 static int __igb_close(struct net_device *netdev, bool suspending)
4027 {
4028         struct igb_adapter *adapter = netdev_priv(netdev);
4029         struct pci_dev *pdev = adapter->pdev;
4030
4031         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4032
4033         if (!suspending)
4034                 pm_runtime_get_sync(&pdev->dev);
4035
4036         igb_down(adapter);
4037         igb_free_irq(adapter);
4038
4039         igb_free_all_tx_resources(adapter);
4040         igb_free_all_rx_resources(adapter);
4041
4042         if (!suspending)
4043                 pm_runtime_put_sync(&pdev->dev);
4044         return 0;
4045 }
4046
4047 int igb_close(struct net_device *netdev)
4048 {
4049         if (netif_device_present(netdev) || netdev->dismantle)
4050                 return __igb_close(netdev, false);
4051         return 0;
4052 }
4053
4054 /**
4055  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4056  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4057  *
4058  *  Return 0 on success, negative on failure
4059  **/
4060 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4061 {
4062         struct device *dev = tx_ring->dev;
4063         int size;
4064
4065         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4066
4067         tx_ring->tx_buffer_info = vmalloc(size);
4068         if (!tx_ring->tx_buffer_info)
4069                 goto err;
4070
4071         /* round up to nearest 4K */
4072         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4073         tx_ring->size = ALIGN(tx_ring->size, 4096);
4074
4075         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4076                                            &tx_ring->dma, GFP_KERNEL);
4077         if (!tx_ring->desc)
4078                 goto err;
4079
4080         tx_ring->next_to_use = 0;
4081         tx_ring->next_to_clean = 0;
4082
4083         return 0;
4084
4085 err:
4086         vfree(tx_ring->tx_buffer_info);
4087         tx_ring->tx_buffer_info = NULL;
4088         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4089         return -ENOMEM;
4090 }
4091
4092 /**
4093  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4094  *                               (Descriptors) for all queues
4095  *  @adapter: board private structure
4096  *
4097  *  Return 0 on success, negative on failure
4098  **/
4099 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4100 {
4101         struct pci_dev *pdev = adapter->pdev;
4102         int i, err = 0;
4103
4104         for (i = 0; i < adapter->num_tx_queues; i++) {
4105                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4106                 if (err) {
4107                         dev_err(&pdev->dev,
4108                                 "Allocation for Tx Queue %u failed\n", i);
4109                         for (i--; i >= 0; i--)
4110                                 igb_free_tx_resources(adapter->tx_ring[i]);
4111                         break;
4112                 }
4113         }
4114
4115         return err;
4116 }
4117
4118 /**
4119  *  igb_setup_tctl - configure the transmit control registers
4120  *  @adapter: Board private structure
4121  **/
4122 void igb_setup_tctl(struct igb_adapter *adapter)
4123 {
4124         struct e1000_hw *hw = &adapter->hw;
4125         u32 tctl;
4126
4127         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4128         wr32(E1000_TXDCTL(0), 0);
4129
4130         /* Program the Transmit Control Register */
4131         tctl = rd32(E1000_TCTL);
4132         tctl &= ~E1000_TCTL_CT;
4133         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4134                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4135
4136         igb_config_collision_dist(hw);
4137
4138         /* Enable transmits */
4139         tctl |= E1000_TCTL_EN;
4140
4141         wr32(E1000_TCTL, tctl);
4142 }
4143
4144 /**
4145  *  igb_configure_tx_ring - Configure transmit ring after Reset
4146  *  @adapter: board private structure
4147  *  @ring: tx ring to configure
4148  *
4149  *  Configure a transmit ring after a reset.
4150  **/
4151 void igb_configure_tx_ring(struct igb_adapter *adapter,
4152                            struct igb_ring *ring)
4153 {
4154         struct e1000_hw *hw = &adapter->hw;
4155         u32 txdctl = 0;
4156         u64 tdba = ring->dma;
4157         int reg_idx = ring->reg_idx;
4158
4159         wr32(E1000_TDLEN(reg_idx),
4160              ring->count * sizeof(union e1000_adv_tx_desc));
4161         wr32(E1000_TDBAL(reg_idx),
4162              tdba & 0x00000000ffffffffULL);
4163         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4164
4165         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4166         wr32(E1000_TDH(reg_idx), 0);
4167         writel(0, ring->tail);
4168
4169         txdctl |= IGB_TX_PTHRESH;
4170         txdctl |= IGB_TX_HTHRESH << 8;
4171         txdctl |= IGB_TX_WTHRESH << 16;
4172
4173         /* reinitialize tx_buffer_info */
4174         memset(ring->tx_buffer_info, 0,
4175                sizeof(struct igb_tx_buffer) * ring->count);
4176
4177         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4178         wr32(E1000_TXDCTL(reg_idx), txdctl);
4179 }
4180
4181 /**
4182  *  igb_configure_tx - Configure transmit Unit after Reset
4183  *  @adapter: board private structure
4184  *
4185  *  Configure the Tx unit of the MAC after a reset.
4186  **/
4187 static void igb_configure_tx(struct igb_adapter *adapter)
4188 {
4189         struct e1000_hw *hw = &adapter->hw;
4190         int i;
4191
4192         /* disable the queues */
4193         for (i = 0; i < adapter->num_tx_queues; i++)
4194                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4195
4196         wrfl();
4197         usleep_range(10000, 20000);
4198
4199         for (i = 0; i < adapter->num_tx_queues; i++)
4200                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4201 }
4202
4203 /**
4204  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4205  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4206  *
4207  *  Returns 0 on success, negative on failure
4208  **/
4209 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4210 {
4211         struct device *dev = rx_ring->dev;
4212         int size;
4213
4214         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4215
4216         rx_ring->rx_buffer_info = vmalloc(size);
4217         if (!rx_ring->rx_buffer_info)
4218                 goto err;
4219
4220         /* Round up to nearest 4K */
4221         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4222         rx_ring->size = ALIGN(rx_ring->size, 4096);
4223
4224         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4225                                            &rx_ring->dma, GFP_KERNEL);
4226         if (!rx_ring->desc)
4227                 goto err;
4228
4229         rx_ring->next_to_alloc = 0;
4230         rx_ring->next_to_clean = 0;
4231         rx_ring->next_to_use = 0;
4232
4233         return 0;
4234
4235 err:
4236         vfree(rx_ring->rx_buffer_info);
4237         rx_ring->rx_buffer_info = NULL;
4238         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4239         return -ENOMEM;
4240 }
4241
4242 /**
4243  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4244  *                               (Descriptors) for all queues
4245  *  @adapter: board private structure
4246  *
4247  *  Return 0 on success, negative on failure
4248  **/
4249 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4250 {
4251         struct pci_dev *pdev = adapter->pdev;
4252         int i, err = 0;
4253
4254         for (i = 0; i < adapter->num_rx_queues; i++) {
4255                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4256                 if (err) {
4257                         dev_err(&pdev->dev,
4258                                 "Allocation for Rx Queue %u failed\n", i);
4259                         for (i--; i >= 0; i--)
4260                                 igb_free_rx_resources(adapter->rx_ring[i]);
4261                         break;
4262                 }
4263         }
4264
4265         return err;
4266 }
4267
4268 /**
4269  *  igb_setup_mrqc - configure the multiple receive queue control registers
4270  *  @adapter: Board private structure
4271  **/
4272 static void igb_setup_mrqc(struct igb_adapter *adapter)
4273 {
4274         struct e1000_hw *hw = &adapter->hw;
4275         u32 mrqc, rxcsum;
4276         u32 j, num_rx_queues;
4277         u32 rss_key[10];
4278
4279         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4280         for (j = 0; j < 10; j++)
4281                 wr32(E1000_RSSRK(j), rss_key[j]);
4282
4283         num_rx_queues = adapter->rss_queues;
4284
4285         switch (hw->mac.type) {
4286         case e1000_82576:
4287                 /* 82576 supports 2 RSS queues for SR-IOV */
4288                 if (adapter->vfs_allocated_count)
4289                         num_rx_queues = 2;
4290                 break;
4291         default:
4292                 break;
4293         }
4294
4295         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4296                 for (j = 0; j < IGB_RETA_SIZE; j++)
4297                         adapter->rss_indir_tbl[j] =
4298                         (j * num_rx_queues) / IGB_RETA_SIZE;
4299                 adapter->rss_indir_tbl_init = num_rx_queues;
4300         }
4301         igb_write_rss_indir_tbl(adapter);
4302
4303         /* Disable raw packet checksumming so that RSS hash is placed in
4304          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4305          * offloads as they are enabled by default
4306          */
4307         rxcsum = rd32(E1000_RXCSUM);
4308         rxcsum |= E1000_RXCSUM_PCSD;
4309
4310         if (adapter->hw.mac.type >= e1000_82576)
4311                 /* Enable Receive Checksum Offload for SCTP */
4312                 rxcsum |= E1000_RXCSUM_CRCOFL;
4313
4314         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4315         wr32(E1000_RXCSUM, rxcsum);
4316
4317         /* Generate RSS hash based on packet types, TCP/UDP
4318          * port numbers and/or IPv4/v6 src and dst addresses
4319          */
4320         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4321                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4322                E1000_MRQC_RSS_FIELD_IPV6 |
4323                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4324                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4325
4326         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4327                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4328         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4329                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4330
4331         /* If VMDq is enabled then we set the appropriate mode for that, else
4332          * we default to RSS so that an RSS hash is calculated per packet even
4333          * if we are only using one queue
4334          */
4335         if (adapter->vfs_allocated_count) {
4336                 if (hw->mac.type > e1000_82575) {
4337                         /* Set the default pool for the PF's first queue */
4338                         u32 vtctl = rd32(E1000_VT_CTL);
4339
4340                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4341                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4342                         vtctl |= adapter->vfs_allocated_count <<
4343                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4344                         wr32(E1000_VT_CTL, vtctl);
4345                 }
4346                 if (adapter->rss_queues > 1)
4347                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4348                 else
4349                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4350         } else {
4351                 if (hw->mac.type != e1000_i211)
4352                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4353         }
4354         igb_vmm_control(adapter);
4355
4356         wr32(E1000_MRQC, mrqc);
4357 }
4358
4359 /**
4360  *  igb_setup_rctl - configure the receive control registers
4361  *  @adapter: Board private structure
4362  **/
4363 void igb_setup_rctl(struct igb_adapter *adapter)
4364 {
4365         struct e1000_hw *hw = &adapter->hw;
4366         u32 rctl;
4367
4368         rctl = rd32(E1000_RCTL);
4369
4370         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4371         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4372
4373         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4374                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4375
4376         /* enable stripping of CRC. It's unlikely this will break BMC
4377          * redirection as it did with e1000. Newer features require
4378          * that the HW strips the CRC.
4379          */
4380         rctl |= E1000_RCTL_SECRC;
4381
4382         /* disable store bad packets and clear size bits. */
4383         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4384
4385         /* enable LPE to allow for reception of jumbo frames */
4386         rctl |= E1000_RCTL_LPE;
4387
4388         /* disable queue 0 to prevent tail write w/o re-config */
4389         wr32(E1000_RXDCTL(0), 0);
4390
4391         /* Attention!!!  For SR-IOV PF driver operations you must enable
4392          * queue drop for all VF and PF queues to prevent head of line blocking
4393          * if an un-trusted VF does not provide descriptors to hardware.
4394          */
4395         if (adapter->vfs_allocated_count) {
4396                 /* set all queue drop enable bits */
4397                 wr32(E1000_QDE, ALL_QUEUES);
4398         }
4399
4400         /* This is useful for sniffing bad packets. */
4401         if (adapter->netdev->features & NETIF_F_RXALL) {
4402                 /* UPE and MPE will be handled by normal PROMISC logic
4403                  * in e1000e_set_rx_mode
4404                  */
4405                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4406                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4407                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4408
4409                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4410                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4411                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4412                  * and that breaks VLANs.
4413                  */
4414         }
4415
4416         wr32(E1000_RCTL, rctl);
4417 }
4418
4419 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4420                                    int vfn)
4421 {
4422         struct e1000_hw *hw = &adapter->hw;
4423         u32 vmolr;
4424
4425         if (size > MAX_JUMBO_FRAME_SIZE)
4426                 size = MAX_JUMBO_FRAME_SIZE;
4427
4428         vmolr = rd32(E1000_VMOLR(vfn));
4429         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4430         vmolr |= size | E1000_VMOLR_LPE;
4431         wr32(E1000_VMOLR(vfn), vmolr);
4432
4433         return 0;
4434 }
4435
4436 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4437                                          int vfn, bool enable)
4438 {
4439         struct e1000_hw *hw = &adapter->hw;
4440         u32 val, reg;
4441
4442         if (hw->mac.type < e1000_82576)
4443                 return;
4444
4445         if (hw->mac.type == e1000_i350)
4446                 reg = E1000_DVMOLR(vfn);
4447         else
4448                 reg = E1000_VMOLR(vfn);
4449
4450         val = rd32(reg);
4451         if (enable)
4452                 val |= E1000_VMOLR_STRVLAN;
4453         else
4454                 val &= ~(E1000_VMOLR_STRVLAN);
4455         wr32(reg, val);
4456 }
4457
4458 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4459                                  int vfn, bool aupe)
4460 {
4461         struct e1000_hw *hw = &adapter->hw;
4462         u32 vmolr;
4463
4464         /* This register exists only on 82576 and newer so if we are older then
4465          * we should exit and do nothing
4466          */
4467         if (hw->mac.type < e1000_82576)
4468                 return;
4469
4470         vmolr = rd32(E1000_VMOLR(vfn));
4471         if (aupe)
4472                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4473         else
4474                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4475
4476         /* clear all bits that might not be set */
4477         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4478
4479         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4480                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4481         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4482          * multicast packets
4483          */
4484         if (vfn <= adapter->vfs_allocated_count)
4485                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4486
4487         wr32(E1000_VMOLR(vfn), vmolr);
4488 }
4489
4490 /**
4491  *  igb_configure_rx_ring - Configure a receive ring after Reset
4492  *  @adapter: board private structure
4493  *  @ring: receive ring to be configured
4494  *
4495  *  Configure the Rx unit of the MAC after a reset.
4496  **/
4497 void igb_configure_rx_ring(struct igb_adapter *adapter,
4498                            struct igb_ring *ring)
4499 {
4500         struct e1000_hw *hw = &adapter->hw;
4501         union e1000_adv_rx_desc *rx_desc;
4502         u64 rdba = ring->dma;
4503         int reg_idx = ring->reg_idx;
4504         u32 srrctl = 0, rxdctl = 0;
4505
4506         /* disable the queue */
4507         wr32(E1000_RXDCTL(reg_idx), 0);
4508
4509         /* Set DMA base address registers */
4510         wr32(E1000_RDBAL(reg_idx),
4511              rdba & 0x00000000ffffffffULL);
4512         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4513         wr32(E1000_RDLEN(reg_idx),
4514              ring->count * sizeof(union e1000_adv_rx_desc));
4515
4516         /* initialize head and tail */
4517         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4518         wr32(E1000_RDH(reg_idx), 0);
4519         writel(0, ring->tail);
4520
4521         /* set descriptor configuration */
4522         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4523         if (ring_uses_large_buffer(ring))
4524                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4525         else
4526                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4527         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4528         if (hw->mac.type >= e1000_82580)
4529                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4530         /* Only set Drop Enable if we are supporting multiple queues */
4531         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4532                 srrctl |= E1000_SRRCTL_DROP_EN;
4533
4534         wr32(E1000_SRRCTL(reg_idx), srrctl);
4535
4536         /* set filtering for VMDQ pools */
4537         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4538
4539         rxdctl |= IGB_RX_PTHRESH;
4540         rxdctl |= IGB_RX_HTHRESH << 8;
4541         rxdctl |= IGB_RX_WTHRESH << 16;
4542
4543         /* initialize rx_buffer_info */
4544         memset(ring->rx_buffer_info, 0,
4545                sizeof(struct igb_rx_buffer) * ring->count);
4546
4547         /* initialize Rx descriptor 0 */
4548         rx_desc = IGB_RX_DESC(ring, 0);
4549         rx_desc->wb.upper.length = 0;
4550
4551         /* enable receive descriptor fetching */
4552         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4553         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4554 }
4555
4556 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4557                                   struct igb_ring *rx_ring)
4558 {
4559         /* set build_skb and buffer size flags */
4560         clear_ring_build_skb_enabled(rx_ring);
4561         clear_ring_uses_large_buffer(rx_ring);
4562
4563         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4564                 return;
4565
4566         set_ring_build_skb_enabled(rx_ring);
4567
4568 #if (PAGE_SIZE < 8192)
4569         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4570                 return;
4571
4572         set_ring_uses_large_buffer(rx_ring);
4573 #endif
4574 }
4575
4576 /**
4577  *  igb_configure_rx - Configure receive Unit after Reset
4578  *  @adapter: board private structure
4579  *
4580  *  Configure the Rx unit of the MAC after a reset.
4581  **/
4582 static void igb_configure_rx(struct igb_adapter *adapter)
4583 {
4584         int i;
4585
4586         /* set the correct pool for the PF default MAC address in entry 0 */
4587         igb_set_default_mac_filter(adapter);
4588
4589         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4590          * the Base and Length of the Rx Descriptor Ring
4591          */
4592         for (i = 0; i < adapter->num_rx_queues; i++) {
4593                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4594
4595                 igb_set_rx_buffer_len(adapter, rx_ring);
4596                 igb_configure_rx_ring(adapter, rx_ring);
4597         }
4598 }
4599
4600 /**
4601  *  igb_free_tx_resources - Free Tx Resources per Queue
4602  *  @tx_ring: Tx descriptor ring for a specific queue
4603  *
4604  *  Free all transmit software resources
4605  **/
4606 void igb_free_tx_resources(struct igb_ring *tx_ring)
4607 {
4608         igb_clean_tx_ring(tx_ring);
4609
4610         vfree(tx_ring->tx_buffer_info);
4611         tx_ring->tx_buffer_info = NULL;
4612
4613         /* if not set, then don't free */
4614         if (!tx_ring->desc)
4615                 return;
4616
4617         dma_free_coherent(tx_ring->dev, tx_ring->size,
4618                           tx_ring->desc, tx_ring->dma);
4619
4620         tx_ring->desc = NULL;
4621 }
4622
4623 /**
4624  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4625  *  @adapter: board private structure
4626  *
4627  *  Free all transmit software resources
4628  **/
4629 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4630 {
4631         int i;
4632
4633         for (i = 0; i < adapter->num_tx_queues; i++)
4634                 if (adapter->tx_ring[i])
4635                         igb_free_tx_resources(adapter->tx_ring[i]);
4636 }
4637
4638 /**
4639  *  igb_clean_tx_ring - Free Tx Buffers
4640  *  @tx_ring: ring to be cleaned
4641  **/
4642 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4643 {
4644         u16 i = tx_ring->next_to_clean;
4645         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4646
4647         while (i != tx_ring->next_to_use) {
4648                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4649
4650                 /* Free all the Tx ring sk_buffs */
4651                 dev_kfree_skb_any(tx_buffer->skb);
4652
4653                 /* unmap skb header data */
4654                 dma_unmap_single(tx_ring->dev,
4655                                  dma_unmap_addr(tx_buffer, dma),
4656                                  dma_unmap_len(tx_buffer, len),
4657                                  DMA_TO_DEVICE);
4658
4659                 /* check for eop_desc to determine the end of the packet */
4660                 eop_desc = tx_buffer->next_to_watch;
4661                 tx_desc = IGB_TX_DESC(tx_ring, i);
4662
4663                 /* unmap remaining buffers */
4664                 while (tx_desc != eop_desc) {
4665                         tx_buffer++;
4666                         tx_desc++;
4667                         i++;
4668                         if (unlikely(i == tx_ring->count)) {
4669                                 i = 0;
4670                                 tx_buffer = tx_ring->tx_buffer_info;
4671                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4672                         }
4673
4674                         /* unmap any remaining paged data */
4675                         if (dma_unmap_len(tx_buffer, len))
4676                                 dma_unmap_page(tx_ring->dev,
4677                                                dma_unmap_addr(tx_buffer, dma),
4678                                                dma_unmap_len(tx_buffer, len),
4679                                                DMA_TO_DEVICE);
4680                 }
4681
4682                 /* move us one more past the eop_desc for start of next pkt */
4683                 tx_buffer++;
4684                 i++;
4685                 if (unlikely(i == tx_ring->count)) {
4686                         i = 0;
4687                         tx_buffer = tx_ring->tx_buffer_info;
4688                 }
4689         }
4690
4691         /* reset BQL for queue */
4692         netdev_tx_reset_queue(txring_txq(tx_ring));
4693
4694         /* reset next_to_use and next_to_clean */
4695         tx_ring->next_to_use = 0;
4696         tx_ring->next_to_clean = 0;
4697 }
4698
4699 /**
4700  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4701  *  @adapter: board private structure
4702  **/
4703 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4704 {
4705         int i;
4706
4707         for (i = 0; i < adapter->num_tx_queues; i++)
4708                 if (adapter->tx_ring[i])
4709                         igb_clean_tx_ring(adapter->tx_ring[i]);
4710 }
4711
4712 /**
4713  *  igb_free_rx_resources - Free Rx Resources
4714  *  @rx_ring: ring to clean the resources from
4715  *
4716  *  Free all receive software resources
4717  **/
4718 void igb_free_rx_resources(struct igb_ring *rx_ring)
4719 {
4720         igb_clean_rx_ring(rx_ring);
4721
4722         vfree(rx_ring->rx_buffer_info);
4723         rx_ring->rx_buffer_info = NULL;
4724
4725         /* if not set, then don't free */
4726         if (!rx_ring->desc)
4727                 return;
4728
4729         dma_free_coherent(rx_ring->dev, rx_ring->size,
4730                           rx_ring->desc, rx_ring->dma);
4731
4732         rx_ring->desc = NULL;
4733 }
4734
4735 /**
4736  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4737  *  @adapter: board private structure
4738  *
4739  *  Free all receive software resources
4740  **/
4741 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4742 {
4743         int i;
4744
4745         for (i = 0; i < adapter->num_rx_queues; i++)
4746                 if (adapter->rx_ring[i])
4747                         igb_free_rx_resources(adapter->rx_ring[i]);
4748 }
4749
4750 /**
4751  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4752  *  @rx_ring: ring to free buffers from
4753  **/
4754 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4755 {
4756         u16 i = rx_ring->next_to_clean;
4757
4758         if (rx_ring->skb)
4759                 dev_kfree_skb(rx_ring->skb);
4760         rx_ring->skb = NULL;
4761
4762         /* Free all the Rx ring sk_buffs */
4763         while (i != rx_ring->next_to_alloc) {
4764                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4765
4766                 /* Invalidate cache lines that may have been written to by
4767                  * device so that we avoid corrupting memory.
4768                  */
4769                 dma_sync_single_range_for_cpu(rx_ring->dev,
4770                                               buffer_info->dma,
4771                                               buffer_info->page_offset,
4772                                               igb_rx_bufsz(rx_ring),
4773                                               DMA_FROM_DEVICE);
4774
4775                 /* free resources associated with mapping */
4776                 dma_unmap_page_attrs(rx_ring->dev,
4777                                      buffer_info->dma,
4778                                      igb_rx_pg_size(rx_ring),
4779                                      DMA_FROM_DEVICE,
4780                                      IGB_RX_DMA_ATTR);
4781                 __page_frag_cache_drain(buffer_info->page,
4782                                         buffer_info->pagecnt_bias);
4783
4784                 i++;
4785                 if (i == rx_ring->count)
4786                         i = 0;
4787         }
4788
4789         rx_ring->next_to_alloc = 0;
4790         rx_ring->next_to_clean = 0;
4791         rx_ring->next_to_use = 0;
4792 }
4793
4794 /**
4795  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4796  *  @adapter: board private structure
4797  **/
4798 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4799 {
4800         int i;
4801
4802         for (i = 0; i < adapter->num_rx_queues; i++)
4803                 if (adapter->rx_ring[i])
4804                         igb_clean_rx_ring(adapter->rx_ring[i]);
4805 }
4806
4807 /**
4808  *  igb_set_mac - Change the Ethernet Address of the NIC
4809  *  @netdev: network interface device structure
4810  *  @p: pointer to an address structure
4811  *
4812  *  Returns 0 on success, negative on failure
4813  **/
4814 static int igb_set_mac(struct net_device *netdev, void *p)
4815 {
4816         struct igb_adapter *adapter = netdev_priv(netdev);
4817         struct e1000_hw *hw = &adapter->hw;
4818         struct sockaddr *addr = p;
4819
4820         if (!is_valid_ether_addr(addr->sa_data))
4821                 return -EADDRNOTAVAIL;
4822
4823         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4824         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4825
4826         /* set the correct pool for the new PF MAC address in entry 0 */
4827         igb_set_default_mac_filter(adapter);
4828
4829         return 0;
4830 }
4831
4832 /**
4833  *  igb_write_mc_addr_list - write multicast addresses to MTA
4834  *  @netdev: network interface device structure
4835  *
4836  *  Writes multicast address list to the MTA hash table.
4837  *  Returns: -ENOMEM on failure
4838  *           0 on no addresses written
4839  *           X on writing X addresses to MTA
4840  **/
4841 static int igb_write_mc_addr_list(struct net_device *netdev)
4842 {
4843         struct igb_adapter *adapter = netdev_priv(netdev);
4844         struct e1000_hw *hw = &adapter->hw;
4845         struct netdev_hw_addr *ha;
4846         u8  *mta_list;
4847         int i;
4848
4849         if (netdev_mc_empty(netdev)) {
4850                 /* nothing to program, so clear mc list */
4851                 igb_update_mc_addr_list(hw, NULL, 0);
4852                 igb_restore_vf_multicasts(adapter);
4853                 return 0;
4854         }
4855
4856         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4857         if (!mta_list)
4858                 return -ENOMEM;
4859
4860         /* The shared function expects a packed array of only addresses. */
4861         i = 0;
4862         netdev_for_each_mc_addr(ha, netdev)
4863                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4864
4865         igb_update_mc_addr_list(hw, mta_list, i);
4866         kfree(mta_list);
4867
4868         return netdev_mc_count(netdev);
4869 }
4870
4871 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4872 {
4873         struct e1000_hw *hw = &adapter->hw;
4874         u32 i, pf_id;
4875
4876         switch (hw->mac.type) {
4877         case e1000_i210:
4878         case e1000_i211:
4879         case e1000_i350:
4880                 /* VLAN filtering needed for VLAN prio filter */
4881                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4882                         break;
4883                 /* fall through */
4884         case e1000_82576:
4885         case e1000_82580:
4886         case e1000_i354:
4887                 /* VLAN filtering needed for pool filtering */
4888                 if (adapter->vfs_allocated_count)
4889                         break;
4890                 /* fall through */
4891         default:
4892                 return 1;
4893         }
4894
4895         /* We are already in VLAN promisc, nothing to do */
4896         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4897                 return 0;
4898
4899         if (!adapter->vfs_allocated_count)
4900                 goto set_vfta;
4901
4902         /* Add PF to all active pools */
4903         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4904
4905         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4906                 u32 vlvf = rd32(E1000_VLVF(i));
4907
4908                 vlvf |= BIT(pf_id);
4909                 wr32(E1000_VLVF(i), vlvf);
4910         }
4911
4912 set_vfta:
4913         /* Set all bits in the VLAN filter table array */
4914         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4915                 hw->mac.ops.write_vfta(hw, i, ~0U);
4916
4917         /* Set flag so we don't redo unnecessary work */
4918         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4919
4920         return 0;
4921 }
4922
4923 #define VFTA_BLOCK_SIZE 8
4924 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4925 {
4926         struct e1000_hw *hw = &adapter->hw;
4927         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4928         u32 vid_start = vfta_offset * 32;
4929         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4930         u32 i, vid, word, bits, pf_id;
4931
4932         /* guarantee that we don't scrub out management VLAN */
4933         vid = adapter->mng_vlan_id;
4934         if (vid >= vid_start && vid < vid_end)
4935                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4936
4937         if (!adapter->vfs_allocated_count)
4938                 goto set_vfta;
4939
4940         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4941
4942         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4943                 u32 vlvf = rd32(E1000_VLVF(i));
4944
4945                 /* pull VLAN ID from VLVF */
4946                 vid = vlvf & VLAN_VID_MASK;
4947
4948                 /* only concern ourselves with a certain range */
4949                 if (vid < vid_start || vid >= vid_end)
4950                         continue;
4951
4952                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4953                         /* record VLAN ID in VFTA */
4954                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4955
4956                         /* if PF is part of this then continue */
4957                         if (test_bit(vid, adapter->active_vlans))
4958                                 continue;
4959                 }
4960
4961                 /* remove PF from the pool */
4962                 bits = ~BIT(pf_id);
4963                 bits &= rd32(E1000_VLVF(i));
4964                 wr32(E1000_VLVF(i), bits);
4965         }
4966
4967 set_vfta:
4968         /* extract values from active_vlans and write back to VFTA */
4969         for (i = VFTA_BLOCK_SIZE; i--;) {
4970                 vid = (vfta_offset + i) * 32;
4971                 word = vid / BITS_PER_LONG;
4972                 bits = vid % BITS_PER_LONG;
4973
4974                 vfta[i] |= adapter->active_vlans[word] >> bits;
4975
4976                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4977         }
4978 }
4979
4980 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4981 {
4982         u32 i;
4983
4984         /* We are not in VLAN promisc, nothing to do */
4985         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4986                 return;
4987
4988         /* Set flag so we don't redo unnecessary work */
4989         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4990
4991         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4992                 igb_scrub_vfta(adapter, i);
4993 }
4994
4995 /**
4996  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4997  *  @netdev: network interface device structure
4998  *
4999  *  The set_rx_mode entry point is called whenever the unicast or multicast
5000  *  address lists or the network interface flags are updated.  This routine is
5001  *  responsible for configuring the hardware for proper unicast, multicast,
5002  *  promiscuous mode, and all-multi behavior.
5003  **/
5004 static void igb_set_rx_mode(struct net_device *netdev)
5005 {
5006         struct igb_adapter *adapter = netdev_priv(netdev);
5007         struct e1000_hw *hw = &adapter->hw;
5008         unsigned int vfn = adapter->vfs_allocated_count;
5009         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5010         int count;
5011
5012         /* Check for Promiscuous and All Multicast modes */
5013         if (netdev->flags & IFF_PROMISC) {
5014                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5015                 vmolr |= E1000_VMOLR_MPME;
5016
5017                 /* enable use of UTA filter to force packets to default pool */
5018                 if (hw->mac.type == e1000_82576)
5019                         vmolr |= E1000_VMOLR_ROPE;
5020         } else {
5021                 if (netdev->flags & IFF_ALLMULTI) {
5022                         rctl |= E1000_RCTL_MPE;
5023                         vmolr |= E1000_VMOLR_MPME;
5024                 } else {
5025                         /* Write addresses to the MTA, if the attempt fails
5026                          * then we should just turn on promiscuous mode so
5027                          * that we can at least receive multicast traffic
5028                          */
5029                         count = igb_write_mc_addr_list(netdev);
5030                         if (count < 0) {
5031                                 rctl |= E1000_RCTL_MPE;
5032                                 vmolr |= E1000_VMOLR_MPME;
5033                         } else if (count) {
5034                                 vmolr |= E1000_VMOLR_ROMPE;
5035                         }
5036                 }
5037         }
5038
5039         /* Write addresses to available RAR registers, if there is not
5040          * sufficient space to store all the addresses then enable
5041          * unicast promiscuous mode
5042          */
5043         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5044                 rctl |= E1000_RCTL_UPE;
5045                 vmolr |= E1000_VMOLR_ROPE;
5046         }
5047
5048         /* enable VLAN filtering by default */
5049         rctl |= E1000_RCTL_VFE;
5050
5051         /* disable VLAN filtering for modes that require it */
5052         if ((netdev->flags & IFF_PROMISC) ||
5053             (netdev->features & NETIF_F_RXALL)) {
5054                 /* if we fail to set all rules then just clear VFE */
5055                 if (igb_vlan_promisc_enable(adapter))
5056                         rctl &= ~E1000_RCTL_VFE;
5057         } else {
5058                 igb_vlan_promisc_disable(adapter);
5059         }
5060
5061         /* update state of unicast, multicast, and VLAN filtering modes */
5062         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5063                                      E1000_RCTL_VFE);
5064         wr32(E1000_RCTL, rctl);
5065
5066 #if (PAGE_SIZE < 8192)
5067         if (!adapter->vfs_allocated_count) {
5068                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5070         }
5071 #endif
5072         wr32(E1000_RLPML, rlpml);
5073
5074         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5075          * the VMOLR to enable the appropriate modes.  Without this workaround
5076          * we will have issues with VLAN tag stripping not being done for frames
5077          * that are only arriving because we are the default pool
5078          */
5079         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5080                 return;
5081
5082         /* set UTA to appropriate mode */
5083         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5084
5085         vmolr |= rd32(E1000_VMOLR(vfn)) &
5086                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5087
5088         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5089         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5090 #if (PAGE_SIZE < 8192)
5091         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5092                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5093         else
5094 #endif
5095                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5096         vmolr |= E1000_VMOLR_LPE;
5097
5098         wr32(E1000_VMOLR(vfn), vmolr);
5099
5100         igb_restore_vf_multicasts(adapter);
5101 }
5102
5103 static void igb_check_wvbr(struct igb_adapter *adapter)
5104 {
5105         struct e1000_hw *hw = &adapter->hw;
5106         u32 wvbr = 0;
5107
5108         switch (hw->mac.type) {
5109         case e1000_82576:
5110         case e1000_i350:
5111                 wvbr = rd32(E1000_WVBR);
5112                 if (!wvbr)
5113                         return;
5114                 break;
5115         default:
5116                 break;
5117         }
5118
5119         adapter->wvbr |= wvbr;
5120 }
5121
5122 #define IGB_STAGGERED_QUEUE_OFFSET 8
5123
5124 static void igb_spoof_check(struct igb_adapter *adapter)
5125 {
5126         int j;
5127
5128         if (!adapter->wvbr)
5129                 return;
5130
5131         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5132                 if (adapter->wvbr & BIT(j) ||
5133                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5134                         dev_warn(&adapter->pdev->dev,
5135                                 "Spoof event(s) detected on VF %d\n", j);
5136                         adapter->wvbr &=
5137                                 ~(BIT(j) |
5138                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5139                 }
5140         }
5141 }
5142
5143 /* Need to wait a few seconds after link up to get diagnostic information from
5144  * the phy
5145  */
5146 static void igb_update_phy_info(struct timer_list *t)
5147 {
5148         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5149         igb_get_phy_info(&adapter->hw);
5150 }
5151
5152 /**
5153  *  igb_has_link - check shared code for link and determine up/down
5154  *  @adapter: pointer to driver private info
5155  **/
5156 bool igb_has_link(struct igb_adapter *adapter)
5157 {
5158         struct e1000_hw *hw = &adapter->hw;
5159         bool link_active = false;
5160
5161         /* get_link_status is set on LSC (link status) interrupt or
5162          * rx sequence error interrupt.  get_link_status will stay
5163          * false until the e1000_check_for_link establishes link
5164          * for copper adapters ONLY
5165          */
5166         switch (hw->phy.media_type) {
5167         case e1000_media_type_copper:
5168                 if (!hw->mac.get_link_status)
5169                         return true;
5170                 /* fall through */
5171         case e1000_media_type_internal_serdes:
5172                 hw->mac.ops.check_for_link(hw);
5173                 link_active = !hw->mac.get_link_status;
5174                 break;
5175         default:
5176         case e1000_media_type_unknown:
5177                 break;
5178         }
5179
5180         if (((hw->mac.type == e1000_i210) ||
5181              (hw->mac.type == e1000_i211)) &&
5182              (hw->phy.id == I210_I_PHY_ID)) {
5183                 if (!netif_carrier_ok(adapter->netdev)) {
5184                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5185                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5186                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5187                         adapter->link_check_timeout = jiffies;
5188                 }
5189         }
5190
5191         return link_active;
5192 }
5193
5194 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5195 {
5196         bool ret = false;
5197         u32 ctrl_ext, thstat;
5198
5199         /* check for thermal sensor event on i350 copper only */
5200         if (hw->mac.type == e1000_i350) {
5201                 thstat = rd32(E1000_THSTAT);
5202                 ctrl_ext = rd32(E1000_CTRL_EXT);
5203
5204                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5205                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5206                         ret = !!(thstat & event);
5207         }
5208
5209         return ret;
5210 }
5211
5212 /**
5213  *  igb_check_lvmmc - check for malformed packets received
5214  *  and indicated in LVMMC register
5215  *  @adapter: pointer to adapter
5216  **/
5217 static void igb_check_lvmmc(struct igb_adapter *adapter)
5218 {
5219         struct e1000_hw *hw = &adapter->hw;
5220         u32 lvmmc;
5221
5222         lvmmc = rd32(E1000_LVMMC);
5223         if (lvmmc) {
5224                 if (unlikely(net_ratelimit())) {
5225                         netdev_warn(adapter->netdev,
5226                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5227                                     lvmmc);
5228                 }
5229         }
5230 }
5231
5232 /**
5233  *  igb_watchdog - Timer Call-back
5234  *  @data: pointer to adapter cast into an unsigned long
5235  **/
5236 static void igb_watchdog(struct timer_list *t)
5237 {
5238         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5239         /* Do the rest outside of interrupt context */
5240         schedule_work(&adapter->watchdog_task);
5241 }
5242
5243 static void igb_watchdog_task(struct work_struct *work)
5244 {
5245         struct igb_adapter *adapter = container_of(work,
5246                                                    struct igb_adapter,
5247                                                    watchdog_task);
5248         struct e1000_hw *hw = &adapter->hw;
5249         struct e1000_phy_info *phy = &hw->phy;
5250         struct net_device *netdev = adapter->netdev;
5251         u32 link;
5252         int i;
5253         u32 connsw;
5254         u16 phy_data, retry_count = 20;
5255
5256         link = igb_has_link(adapter);
5257
5258         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5259                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5260                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5261                 else
5262                         link = false;
5263         }
5264
5265         /* Force link down if we have fiber to swap to */
5266         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5267                 if (hw->phy.media_type == e1000_media_type_copper) {
5268                         connsw = rd32(E1000_CONNSW);
5269                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5270                                 link = 0;
5271                 }
5272         }
5273         if (link) {
5274                 /* Perform a reset if the media type changed. */
5275                 if (hw->dev_spec._82575.media_changed) {
5276                         hw->dev_spec._82575.media_changed = false;
5277                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5278                         igb_reset(adapter);
5279                 }
5280                 /* Cancel scheduled suspend requests. */
5281                 pm_runtime_resume(netdev->dev.parent);
5282
5283                 if (!netif_carrier_ok(netdev)) {
5284                         u32 ctrl;
5285
5286                         hw->mac.ops.get_speed_and_duplex(hw,
5287                                                          &adapter->link_speed,
5288                                                          &adapter->link_duplex);
5289
5290                         ctrl = rd32(E1000_CTRL);
5291                         /* Links status message must follow this format */
5292                         netdev_info(netdev,
5293                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5294                                netdev->name,
5295                                adapter->link_speed,
5296                                adapter->link_duplex == FULL_DUPLEX ?
5297                                "Full" : "Half",
5298                                (ctrl & E1000_CTRL_TFCE) &&
5299                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5300                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5301                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5302
5303                         /* disable EEE if enabled */
5304                         if ((adapter->flags & IGB_FLAG_EEE) &&
5305                                 (adapter->link_duplex == HALF_DUPLEX)) {
5306                                 dev_info(&adapter->pdev->dev,
5307                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5308                                 adapter->hw.dev_spec._82575.eee_disable = true;
5309                                 adapter->flags &= ~IGB_FLAG_EEE;
5310                         }
5311
5312                         /* check if SmartSpeed worked */
5313                         igb_check_downshift(hw);
5314                         if (phy->speed_downgraded)
5315                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5316
5317                         /* check for thermal sensor event */
5318                         if (igb_thermal_sensor_event(hw,
5319                             E1000_THSTAT_LINK_THROTTLE))
5320                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5321
5322                         /* adjust timeout factor according to speed/duplex */
5323                         adapter->tx_timeout_factor = 1;
5324                         switch (adapter->link_speed) {
5325                         case SPEED_10:
5326                                 adapter->tx_timeout_factor = 14;
5327                                 break;
5328                         case SPEED_100:
5329                                 /* maybe add some timeout factor ? */
5330                                 break;
5331                         }
5332
5333                         if (adapter->link_speed != SPEED_1000)
5334                                 goto no_wait;
5335
5336                         /* wait for Remote receiver status OK */
5337 retry_read_status:
5338                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5339                                               &phy_data)) {
5340                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5341                                     retry_count) {
5342                                         msleep(100);
5343                                         retry_count--;
5344                                         goto retry_read_status;
5345                                 } else if (!retry_count) {
5346                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5347                                 }
5348                         } else {
5349                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5350                         }
5351 no_wait:
5352                         netif_carrier_on(netdev);
5353
5354                         igb_ping_all_vfs(adapter);
5355                         igb_check_vf_rate_limit(adapter);
5356
5357                         /* link state has changed, schedule phy info update */
5358                         if (!test_bit(__IGB_DOWN, &adapter->state))
5359                                 mod_timer(&adapter->phy_info_timer,
5360                                           round_jiffies(jiffies + 2 * HZ));
5361                 }
5362         } else {
5363                 if (netif_carrier_ok(netdev)) {
5364                         adapter->link_speed = 0;
5365                         adapter->link_duplex = 0;
5366
5367                         /* check for thermal sensor event */
5368                         if (igb_thermal_sensor_event(hw,
5369                             E1000_THSTAT_PWR_DOWN)) {
5370                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5371                         }
5372
5373                         /* Links status message must follow this format */
5374                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5375                                netdev->name);
5376                         netif_carrier_off(netdev);
5377
5378                         igb_ping_all_vfs(adapter);
5379
5380                         /* link state has changed, schedule phy info update */
5381                         if (!test_bit(__IGB_DOWN, &adapter->state))
5382                                 mod_timer(&adapter->phy_info_timer,
5383                                           round_jiffies(jiffies + 2 * HZ));
5384
5385                         /* link is down, time to check for alternate media */
5386                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5387                                 igb_check_swap_media(adapter);
5388                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5389                                         schedule_work(&adapter->reset_task);
5390                                         /* return immediately */
5391                                         return;
5392                                 }
5393                         }
5394                         pm_schedule_suspend(netdev->dev.parent,
5395                                             MSEC_PER_SEC * 5);
5396
5397                 /* also check for alternate media here */
5398                 } else if (!netif_carrier_ok(netdev) &&
5399                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5400                         igb_check_swap_media(adapter);
5401                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5402                                 schedule_work(&adapter->reset_task);
5403                                 /* return immediately */
5404                                 return;
5405                         }
5406                 }
5407         }
5408
5409         spin_lock(&adapter->stats64_lock);
5410         igb_update_stats(adapter);
5411         spin_unlock(&adapter->stats64_lock);
5412
5413         for (i = 0; i < adapter->num_tx_queues; i++) {
5414                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5415                 if (!netif_carrier_ok(netdev)) {
5416                         /* We've lost link, so the controller stops DMA,
5417                          * but we've got queued Tx work that's never going
5418                          * to get done, so reset controller to flush Tx.
5419                          * (Do the reset outside of interrupt context).
5420                          */
5421                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5422                                 adapter->tx_timeout_count++;
5423                                 schedule_work(&adapter->reset_task);
5424                                 /* return immediately since reset is imminent */
5425                                 return;
5426                         }
5427                 }
5428
5429                 /* Force detection of hung controller every watchdog period */
5430                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5431         }
5432
5433         /* Cause software interrupt to ensure Rx ring is cleaned */
5434         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5435                 u32 eics = 0;
5436
5437                 for (i = 0; i < adapter->num_q_vectors; i++)
5438                         eics |= adapter->q_vector[i]->eims_value;
5439                 wr32(E1000_EICS, eics);
5440         } else {
5441                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5442         }
5443
5444         igb_spoof_check(adapter);
5445         igb_ptp_rx_hang(adapter);
5446         igb_ptp_tx_hang(adapter);
5447
5448         /* Check LVMMC register on i350/i354 only */
5449         if ((adapter->hw.mac.type == e1000_i350) ||
5450             (adapter->hw.mac.type == e1000_i354))
5451                 igb_check_lvmmc(adapter);
5452
5453         /* Reset the timer */
5454         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5455                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5456                         mod_timer(&adapter->watchdog_timer,
5457                                   round_jiffies(jiffies +  HZ));
5458                 else
5459                         mod_timer(&adapter->watchdog_timer,
5460                                   round_jiffies(jiffies + 2 * HZ));
5461         }
5462 }
5463
5464 enum latency_range {
5465         lowest_latency = 0,
5466         low_latency = 1,
5467         bulk_latency = 2,
5468         latency_invalid = 255
5469 };
5470
5471 /**
5472  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5473  *  @q_vector: pointer to q_vector
5474  *
5475  *  Stores a new ITR value based on strictly on packet size.  This
5476  *  algorithm is less sophisticated than that used in igb_update_itr,
5477  *  due to the difficulty of synchronizing statistics across multiple
5478  *  receive rings.  The divisors and thresholds used by this function
5479  *  were determined based on theoretical maximum wire speed and testing
5480  *  data, in order to minimize response time while increasing bulk
5481  *  throughput.
5482  *  This functionality is controlled by ethtool's coalescing settings.
5483  *  NOTE:  This function is called only when operating in a multiqueue
5484  *         receive environment.
5485  **/
5486 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5487 {
5488         int new_val = q_vector->itr_val;
5489         int avg_wire_size = 0;
5490         struct igb_adapter *adapter = q_vector->adapter;
5491         unsigned int packets;
5492
5493         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5494          * ints/sec - ITR timer value of 120 ticks.
5495          */
5496         if (adapter->link_speed != SPEED_1000) {
5497                 new_val = IGB_4K_ITR;
5498                 goto set_itr_val;
5499         }
5500
5501         packets = q_vector->rx.total_packets;
5502         if (packets)
5503                 avg_wire_size = q_vector->rx.total_bytes / packets;
5504
5505         packets = q_vector->tx.total_packets;
5506         if (packets)
5507                 avg_wire_size = max_t(u32, avg_wire_size,
5508                                       q_vector->tx.total_bytes / packets);
5509
5510         /* if avg_wire_size isn't set no work was done */
5511         if (!avg_wire_size)
5512                 goto clear_counts;
5513
5514         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5515         avg_wire_size += 24;
5516
5517         /* Don't starve jumbo frames */
5518         avg_wire_size = min(avg_wire_size, 3000);
5519
5520         /* Give a little boost to mid-size frames */
5521         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5522                 new_val = avg_wire_size / 3;
5523         else
5524                 new_val = avg_wire_size / 2;
5525
5526         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5527         if (new_val < IGB_20K_ITR &&
5528             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5529              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5530                 new_val = IGB_20K_ITR;
5531
5532 set_itr_val:
5533         if (new_val != q_vector->itr_val) {
5534                 q_vector->itr_val = new_val;
5535                 q_vector->set_itr = 1;
5536         }
5537 clear_counts:
5538         q_vector->rx.total_bytes = 0;
5539         q_vector->rx.total_packets = 0;
5540         q_vector->tx.total_bytes = 0;
5541         q_vector->tx.total_packets = 0;
5542 }
5543
5544 /**
5545  *  igb_update_itr - update the dynamic ITR value based on statistics
5546  *  @q_vector: pointer to q_vector
5547  *  @ring_container: ring info to update the itr for
5548  *
5549  *  Stores a new ITR value based on packets and byte
5550  *  counts during the last interrupt.  The advantage of per interrupt
5551  *  computation is faster updates and more accurate ITR for the current
5552  *  traffic pattern.  Constants in this function were computed
5553  *  based on theoretical maximum wire speed and thresholds were set based
5554  *  on testing data as well as attempting to minimize response time
5555  *  while increasing bulk throughput.
5556  *  This functionality is controlled by ethtool's coalescing settings.
5557  *  NOTE:  These calculations are only valid when operating in a single-
5558  *         queue environment.
5559  **/
5560 static void igb_update_itr(struct igb_q_vector *q_vector,
5561                            struct igb_ring_container *ring_container)
5562 {
5563         unsigned int packets = ring_container->total_packets;
5564         unsigned int bytes = ring_container->total_bytes;
5565         u8 itrval = ring_container->itr;
5566
5567         /* no packets, exit with status unchanged */
5568         if (packets == 0)
5569                 return;
5570
5571         switch (itrval) {
5572         case lowest_latency:
5573                 /* handle TSO and jumbo frames */
5574                 if (bytes/packets > 8000)
5575                         itrval = bulk_latency;
5576                 else if ((packets < 5) && (bytes > 512))
5577                         itrval = low_latency;
5578                 break;
5579         case low_latency:  /* 50 usec aka 20000 ints/s */
5580                 if (bytes > 10000) {
5581                         /* this if handles the TSO accounting */
5582                         if (bytes/packets > 8000)
5583                                 itrval = bulk_latency;
5584                         else if ((packets < 10) || ((bytes/packets) > 1200))
5585                                 itrval = bulk_latency;
5586                         else if ((packets > 35))
5587                                 itrval = lowest_latency;
5588                 } else if (bytes/packets > 2000) {
5589                         itrval = bulk_latency;
5590                 } else if (packets <= 2 && bytes < 512) {
5591                         itrval = lowest_latency;
5592                 }
5593                 break;
5594         case bulk_latency: /* 250 usec aka 4000 ints/s */
5595                 if (bytes > 25000) {
5596                         if (packets > 35)
5597                                 itrval = low_latency;
5598                 } else if (bytes < 1500) {
5599                         itrval = low_latency;
5600                 }
5601                 break;
5602         }
5603
5604         /* clear work counters since we have the values we need */
5605         ring_container->total_bytes = 0;
5606         ring_container->total_packets = 0;
5607
5608         /* write updated itr to ring container */
5609         ring_container->itr = itrval;
5610 }
5611
5612 static void igb_set_itr(struct igb_q_vector *q_vector)
5613 {
5614         struct igb_adapter *adapter = q_vector->adapter;
5615         u32 new_itr = q_vector->itr_val;
5616         u8 current_itr = 0;
5617
5618         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5619         if (adapter->link_speed != SPEED_1000) {
5620                 current_itr = 0;
5621                 new_itr = IGB_4K_ITR;
5622                 goto set_itr_now;
5623         }
5624
5625         igb_update_itr(q_vector, &q_vector->tx);
5626         igb_update_itr(q_vector, &q_vector->rx);
5627
5628         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5629
5630         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5631         if (current_itr == lowest_latency &&
5632             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5633              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5634                 current_itr = low_latency;
5635
5636         switch (current_itr) {
5637         /* counts and packets in update_itr are dependent on these numbers */
5638         case lowest_latency:
5639                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5640                 break;
5641         case low_latency:
5642                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5643                 break;
5644         case bulk_latency:
5645                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5646                 break;
5647         default:
5648                 break;
5649         }
5650
5651 set_itr_now:
5652         if (new_itr != q_vector->itr_val) {
5653                 /* this attempts to bias the interrupt rate towards Bulk
5654                  * by adding intermediate steps when interrupt rate is
5655                  * increasing
5656                  */
5657                 new_itr = new_itr > q_vector->itr_val ?
5658                           max((new_itr * q_vector->itr_val) /
5659                           (new_itr + (q_vector->itr_val >> 2)),
5660                           new_itr) : new_itr;
5661                 /* Don't write the value here; it resets the adapter's
5662                  * internal timer, and causes us to delay far longer than
5663                  * we should between interrupts.  Instead, we write the ITR
5664                  * value at the beginning of the next interrupt so the timing
5665                  * ends up being correct.
5666                  */
5667                 q_vector->itr_val = new_itr;
5668                 q_vector->set_itr = 1;
5669         }
5670 }
5671
5672 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5673                             struct igb_tx_buffer *first,
5674                             u32 vlan_macip_lens, u32 type_tucmd,
5675                             u32 mss_l4len_idx)
5676 {
5677         struct e1000_adv_tx_context_desc *context_desc;
5678         u16 i = tx_ring->next_to_use;
5679         struct timespec64 ts;
5680
5681         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5682
5683         i++;
5684         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5685
5686         /* set bits to identify this as an advanced context descriptor */
5687         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5688
5689         /* For 82575, context index must be unique per ring. */
5690         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5691                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5692
5693         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5694         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5695         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5696
5697         /* We assume there is always a valid tx time available. Invalid times
5698          * should have been handled by the upper layers.
5699          */
5700         if (tx_ring->launchtime_enable) {
5701                 ts = ns_to_timespec64(first->skb->tstamp);
5702                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5703         } else {
5704                 context_desc->seqnum_seed = 0;
5705         }
5706 }
5707
5708 static int igb_tso(struct igb_ring *tx_ring,
5709                    struct igb_tx_buffer *first,
5710                    u8 *hdr_len)
5711 {
5712         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5713         struct sk_buff *skb = first->skb;
5714         union {
5715                 struct iphdr *v4;
5716                 struct ipv6hdr *v6;
5717                 unsigned char *hdr;
5718         } ip;
5719         union {
5720                 struct tcphdr *tcp;
5721                 unsigned char *hdr;
5722         } l4;
5723         u32 paylen, l4_offset;
5724         int err;
5725
5726         if (skb->ip_summed != CHECKSUM_PARTIAL)
5727                 return 0;
5728
5729         if (!skb_is_gso(skb))
5730                 return 0;
5731
5732         err = skb_cow_head(skb, 0);
5733         if (err < 0)
5734                 return err;
5735
5736         ip.hdr = skb_network_header(skb);
5737         l4.hdr = skb_checksum_start(skb);
5738
5739         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5740         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5741
5742         /* initialize outer IP header fields */
5743         if (ip.v4->version == 4) {
5744                 unsigned char *csum_start = skb_checksum_start(skb);
5745                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5746
5747                 /* IP header will have to cancel out any data that
5748                  * is not a part of the outer IP header
5749                  */
5750                 ip.v4->check = csum_fold(csum_partial(trans_start,
5751                                                       csum_start - trans_start,
5752                                                       0));
5753                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5754
5755                 ip.v4->tot_len = 0;
5756                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5757                                    IGB_TX_FLAGS_CSUM |
5758                                    IGB_TX_FLAGS_IPV4;
5759         } else {
5760                 ip.v6->payload_len = 0;
5761                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5762                                    IGB_TX_FLAGS_CSUM;
5763         }
5764
5765         /* determine offset of inner transport header */
5766         l4_offset = l4.hdr - skb->data;
5767
5768         /* compute length of segmentation header */
5769         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5770
5771         /* remove payload length from inner checksum */
5772         paylen = skb->len - l4_offset;
5773         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5774
5775         /* update gso size and bytecount with header size */
5776         first->gso_segs = skb_shinfo(skb)->gso_segs;
5777         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5778
5779         /* MSS L4LEN IDX */
5780         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5781         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5782
5783         /* VLAN MACLEN IPLEN */
5784         vlan_macip_lens = l4.hdr - ip.hdr;
5785         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5786         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5787
5788         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5789                         type_tucmd, mss_l4len_idx);
5790
5791         return 1;
5792 }
5793
5794 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5795 {
5796         unsigned int offset = 0;
5797
5798         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5799
5800         return offset == skb_checksum_start_offset(skb);
5801 }
5802
5803 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5804 {
5805         struct sk_buff *skb = first->skb;
5806         u32 vlan_macip_lens = 0;
5807         u32 type_tucmd = 0;
5808
5809         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5810 csum_failed:
5811                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5812                     !tx_ring->launchtime_enable)
5813                         return;
5814                 goto no_csum;
5815         }
5816
5817         switch (skb->csum_offset) {
5818         case offsetof(struct tcphdr, check):
5819                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5820                 /* fall through */
5821         case offsetof(struct udphdr, check):
5822                 break;
5823         case offsetof(struct sctphdr, checksum):
5824                 /* validate that this is actually an SCTP request */
5825                 if (((first->protocol == htons(ETH_P_IP)) &&
5826                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5827                     ((first->protocol == htons(ETH_P_IPV6)) &&
5828                      igb_ipv6_csum_is_sctp(skb))) {
5829                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5830                         break;
5831                 }
5832                 /* fall through */
5833         default:
5834                 skb_checksum_help(skb);
5835                 goto csum_failed;
5836         }
5837
5838         /* update TX checksum flag */
5839         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5840         vlan_macip_lens = skb_checksum_start_offset(skb) -
5841                           skb_network_offset(skb);
5842 no_csum:
5843         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5844         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5845
5846         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5847 }
5848
5849 #define IGB_SET_FLAG(_input, _flag, _result) \
5850         ((_flag <= _result) ? \
5851          ((u32)(_input & _flag) * (_result / _flag)) : \
5852          ((u32)(_input & _flag) / (_flag / _result)))
5853
5854 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5855 {
5856         /* set type for advanced descriptor with frame checksum insertion */
5857         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5858                        E1000_ADVTXD_DCMD_DEXT |
5859                        E1000_ADVTXD_DCMD_IFCS;
5860
5861         /* set HW vlan bit if vlan is present */
5862         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5863                                  (E1000_ADVTXD_DCMD_VLE));
5864
5865         /* set segmentation bits for TSO */
5866         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5867                                  (E1000_ADVTXD_DCMD_TSE));
5868
5869         /* set timestamp bit if present */
5870         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5871                                  (E1000_ADVTXD_MAC_TSTAMP));
5872
5873         /* insert frame checksum */
5874         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5875
5876         return cmd_type;
5877 }
5878
5879 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5880                                  union e1000_adv_tx_desc *tx_desc,
5881                                  u32 tx_flags, unsigned int paylen)
5882 {
5883         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5884
5885         /* 82575 requires a unique index per ring */
5886         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5887                 olinfo_status |= tx_ring->reg_idx << 4;
5888
5889         /* insert L4 checksum */
5890         olinfo_status |= IGB_SET_FLAG(tx_flags,
5891                                       IGB_TX_FLAGS_CSUM,
5892                                       (E1000_TXD_POPTS_TXSM << 8));
5893
5894         /* insert IPv4 checksum */
5895         olinfo_status |= IGB_SET_FLAG(tx_flags,
5896                                       IGB_TX_FLAGS_IPV4,
5897                                       (E1000_TXD_POPTS_IXSM << 8));
5898
5899         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5900 }
5901
5902 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5903 {
5904         struct net_device *netdev = tx_ring->netdev;
5905
5906         netif_stop_subqueue(netdev, tx_ring->queue_index);
5907
5908         /* Herbert's original patch had:
5909          *  smp_mb__after_netif_stop_queue();
5910          * but since that doesn't exist yet, just open code it.
5911          */
5912         smp_mb();
5913
5914         /* We need to check again in a case another CPU has just
5915          * made room available.
5916          */
5917         if (igb_desc_unused(tx_ring) < size)
5918                 return -EBUSY;
5919
5920         /* A reprieve! */
5921         netif_wake_subqueue(netdev, tx_ring->queue_index);
5922
5923         u64_stats_update_begin(&tx_ring->tx_syncp2);
5924         tx_ring->tx_stats.restart_queue2++;
5925         u64_stats_update_end(&tx_ring->tx_syncp2);
5926
5927         return 0;
5928 }
5929
5930 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5931 {
5932         if (igb_desc_unused(tx_ring) >= size)
5933                 return 0;
5934         return __igb_maybe_stop_tx(tx_ring, size);
5935 }
5936
5937 static int igb_tx_map(struct igb_ring *tx_ring,
5938                       struct igb_tx_buffer *first,
5939                       const u8 hdr_len)
5940 {
5941         struct sk_buff *skb = first->skb;
5942         struct igb_tx_buffer *tx_buffer;
5943         union e1000_adv_tx_desc *tx_desc;
5944         struct skb_frag_struct *frag;
5945         dma_addr_t dma;
5946         unsigned int data_len, size;
5947         u32 tx_flags = first->tx_flags;
5948         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5949         u16 i = tx_ring->next_to_use;
5950
5951         tx_desc = IGB_TX_DESC(tx_ring, i);
5952
5953         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5954
5955         size = skb_headlen(skb);
5956         data_len = skb->data_len;
5957
5958         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5959
5960         tx_buffer = first;
5961
5962         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5963                 if (dma_mapping_error(tx_ring->dev, dma))
5964                         goto dma_error;
5965
5966                 /* record length, and DMA address */
5967                 dma_unmap_len_set(tx_buffer, len, size);
5968                 dma_unmap_addr_set(tx_buffer, dma, dma);
5969
5970                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5971
5972                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5973                         tx_desc->read.cmd_type_len =
5974                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5975
5976                         i++;
5977                         tx_desc++;
5978                         if (i == tx_ring->count) {
5979                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5980                                 i = 0;
5981                         }
5982                         tx_desc->read.olinfo_status = 0;
5983
5984                         dma += IGB_MAX_DATA_PER_TXD;
5985                         size -= IGB_MAX_DATA_PER_TXD;
5986
5987                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5988                 }
5989
5990                 if (likely(!data_len))
5991                         break;
5992
5993                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5994
5995                 i++;
5996                 tx_desc++;
5997                 if (i == tx_ring->count) {
5998                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5999                         i = 0;
6000                 }
6001                 tx_desc->read.olinfo_status = 0;
6002
6003                 size = skb_frag_size(frag);
6004                 data_len -= size;
6005
6006                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6007                                        size, DMA_TO_DEVICE);
6008
6009                 tx_buffer = &tx_ring->tx_buffer_info[i];
6010         }
6011
6012         /* write last descriptor with RS and EOP bits */
6013         cmd_type |= size | IGB_TXD_DCMD;
6014         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6015
6016         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6017
6018         /* set the timestamp */
6019         first->time_stamp = jiffies;
6020
6021         skb_tx_timestamp(skb);
6022
6023         /* Force memory writes to complete before letting h/w know there
6024          * are new descriptors to fetch.  (Only applicable for weak-ordered
6025          * memory model archs, such as IA-64).
6026          *
6027          * We also need this memory barrier to make certain all of the
6028          * status bits have been updated before next_to_watch is written.
6029          */
6030         dma_wmb();
6031
6032         /* set next_to_watch value indicating a packet is present */
6033         first->next_to_watch = tx_desc;
6034
6035         i++;
6036         if (i == tx_ring->count)
6037                 i = 0;
6038
6039         tx_ring->next_to_use = i;
6040
6041         /* Make sure there is space in the ring for the next send. */
6042         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6043
6044         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6045                 writel(i, tx_ring->tail);
6046
6047                 /* we need this if more than one processor can write to our tail
6048                  * at a time, it synchronizes IO on IA64/Altix systems
6049                  */
6050                 mmiowb();
6051         }
6052         return 0;
6053
6054 dma_error:
6055         dev_err(tx_ring->dev, "TX DMA map failed\n");
6056         tx_buffer = &tx_ring->tx_buffer_info[i];
6057
6058         /* clear dma mappings for failed tx_buffer_info map */
6059         while (tx_buffer != first) {
6060                 if (dma_unmap_len(tx_buffer, len))
6061                         dma_unmap_page(tx_ring->dev,
6062                                        dma_unmap_addr(tx_buffer, dma),
6063                                        dma_unmap_len(tx_buffer, len),
6064                                        DMA_TO_DEVICE);
6065                 dma_unmap_len_set(tx_buffer, len, 0);
6066
6067                 if (i-- == 0)
6068                         i += tx_ring->count;
6069                 tx_buffer = &tx_ring->tx_buffer_info[i];
6070         }
6071
6072         if (dma_unmap_len(tx_buffer, len))
6073                 dma_unmap_single(tx_ring->dev,
6074                                  dma_unmap_addr(tx_buffer, dma),
6075                                  dma_unmap_len(tx_buffer, len),
6076                                  DMA_TO_DEVICE);
6077         dma_unmap_len_set(tx_buffer, len, 0);
6078
6079         dev_kfree_skb_any(tx_buffer->skb);
6080         tx_buffer->skb = NULL;
6081
6082         tx_ring->next_to_use = i;
6083
6084         return -1;
6085 }
6086
6087 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6088                                 struct igb_ring *tx_ring)
6089 {
6090         struct igb_tx_buffer *first;
6091         int tso;
6092         u32 tx_flags = 0;
6093         unsigned short f;
6094         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6095         __be16 protocol = vlan_get_protocol(skb);
6096         u8 hdr_len = 0;
6097
6098         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6099          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6100          *       + 2 desc gap to keep tail from touching head,
6101          *       + 1 desc for context descriptor,
6102          * otherwise try next time
6103          */
6104         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6105                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6106
6107         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6108                 /* this is a hard error */
6109                 return NETDEV_TX_BUSY;
6110         }
6111
6112         /* record the location of the first descriptor for this packet */
6113         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6114         first->skb = skb;
6115         first->bytecount = skb->len;
6116         first->gso_segs = 1;
6117
6118         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6119                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6120
6121                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6122                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6123                                            &adapter->state)) {
6124                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6125                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6126
6127                         adapter->ptp_tx_skb = skb_get(skb);
6128                         adapter->ptp_tx_start = jiffies;
6129                         if (adapter->hw.mac.type == e1000_82576)
6130                                 schedule_work(&adapter->ptp_tx_work);
6131                 } else {
6132                         adapter->tx_hwtstamp_skipped++;
6133                 }
6134         }
6135
6136         if (skb_vlan_tag_present(skb)) {
6137                 tx_flags |= IGB_TX_FLAGS_VLAN;
6138                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6139         }
6140
6141         /* record initial flags and protocol */
6142         first->tx_flags = tx_flags;
6143         first->protocol = protocol;
6144
6145         tso = igb_tso(tx_ring, first, &hdr_len);
6146         if (tso < 0)
6147                 goto out_drop;
6148         else if (!tso)
6149                 igb_tx_csum(tx_ring, first);
6150
6151         if (igb_tx_map(tx_ring, first, hdr_len))
6152                 goto cleanup_tx_tstamp;
6153
6154         return NETDEV_TX_OK;
6155
6156 out_drop:
6157         dev_kfree_skb_any(first->skb);
6158         first->skb = NULL;
6159 cleanup_tx_tstamp:
6160         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6161                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6162
6163                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6164                 adapter->ptp_tx_skb = NULL;
6165                 if (adapter->hw.mac.type == e1000_82576)
6166                         cancel_work_sync(&adapter->ptp_tx_work);
6167                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6168         }
6169
6170         return NETDEV_TX_OK;
6171 }
6172
6173 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6174                                                     struct sk_buff *skb)
6175 {
6176         unsigned int r_idx = skb->queue_mapping;
6177
6178         if (r_idx >= adapter->num_tx_queues)
6179                 r_idx = r_idx % adapter->num_tx_queues;
6180
6181         return adapter->tx_ring[r_idx];
6182 }
6183
6184 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6185                                   struct net_device *netdev)
6186 {
6187         struct igb_adapter *adapter = netdev_priv(netdev);
6188
6189         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6190          * in order to meet this minimum size requirement.
6191          */
6192         if (skb_put_padto(skb, 17))
6193                 return NETDEV_TX_OK;
6194
6195         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6196 }
6197
6198 /**
6199  *  igb_tx_timeout - Respond to a Tx Hang
6200  *  @netdev: network interface device structure
6201  **/
6202 static void igb_tx_timeout(struct net_device *netdev)
6203 {
6204         struct igb_adapter *adapter = netdev_priv(netdev);
6205         struct e1000_hw *hw = &adapter->hw;
6206
6207         /* Do the reset outside of interrupt context */
6208         adapter->tx_timeout_count++;
6209
6210         if (hw->mac.type >= e1000_82580)
6211                 hw->dev_spec._82575.global_device_reset = true;
6212
6213         schedule_work(&adapter->reset_task);
6214         wr32(E1000_EICS,
6215              (adapter->eims_enable_mask & ~adapter->eims_other));
6216 }
6217
6218 static void igb_reset_task(struct work_struct *work)
6219 {
6220         struct igb_adapter *adapter;
6221         adapter = container_of(work, struct igb_adapter, reset_task);
6222
6223         igb_dump(adapter);
6224         netdev_err(adapter->netdev, "Reset adapter\n");
6225         igb_reinit_locked(adapter);
6226 }
6227
6228 /**
6229  *  igb_get_stats64 - Get System Network Statistics
6230  *  @netdev: network interface device structure
6231  *  @stats: rtnl_link_stats64 pointer
6232  **/
6233 static void igb_get_stats64(struct net_device *netdev,
6234                             struct rtnl_link_stats64 *stats)
6235 {
6236         struct igb_adapter *adapter = netdev_priv(netdev);
6237
6238         spin_lock(&adapter->stats64_lock);
6239         igb_update_stats(adapter);
6240         memcpy(stats, &adapter->stats64, sizeof(*stats));
6241         spin_unlock(&adapter->stats64_lock);
6242 }
6243
6244 /**
6245  *  igb_change_mtu - Change the Maximum Transfer Unit
6246  *  @netdev: network interface device structure
6247  *  @new_mtu: new value for maximum frame size
6248  *
6249  *  Returns 0 on success, negative on failure
6250  **/
6251 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6252 {
6253         struct igb_adapter *adapter = netdev_priv(netdev);
6254         struct pci_dev *pdev = adapter->pdev;
6255         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6256
6257         /* adjust max frame to be at least the size of a standard frame */
6258         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6259                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6260
6261         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6262                 usleep_range(1000, 2000);
6263
6264         /* igb_down has a dependency on max_frame_size */
6265         adapter->max_frame_size = max_frame;
6266
6267         if (netif_running(netdev))
6268                 igb_down(adapter);
6269
6270         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6271                  netdev->mtu, new_mtu);
6272         netdev->mtu = new_mtu;
6273
6274         if (netif_running(netdev))
6275                 igb_up(adapter);
6276         else
6277                 igb_reset(adapter);
6278
6279         clear_bit(__IGB_RESETTING, &adapter->state);
6280
6281         return 0;
6282 }
6283
6284 /**
6285  *  igb_update_stats - Update the board statistics counters
6286  *  @adapter: board private structure
6287  **/
6288 void igb_update_stats(struct igb_adapter *adapter)
6289 {
6290         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6291         struct e1000_hw *hw = &adapter->hw;
6292         struct pci_dev *pdev = adapter->pdev;
6293         u32 reg, mpc;
6294         int i;
6295         u64 bytes, packets;
6296         unsigned int start;
6297         u64 _bytes, _packets;
6298
6299         /* Prevent stats update while adapter is being reset, or if the pci
6300          * connection is down.
6301          */
6302         if (adapter->link_speed == 0)
6303                 return;
6304         if (pci_channel_offline(pdev))
6305                 return;
6306
6307         bytes = 0;
6308         packets = 0;
6309
6310         rcu_read_lock();
6311         for (i = 0; i < adapter->num_rx_queues; i++) {
6312                 struct igb_ring *ring = adapter->rx_ring[i];
6313                 u32 rqdpc = rd32(E1000_RQDPC(i));
6314                 if (hw->mac.type >= e1000_i210)
6315                         wr32(E1000_RQDPC(i), 0);
6316
6317                 if (rqdpc) {
6318                         ring->rx_stats.drops += rqdpc;
6319                         net_stats->rx_fifo_errors += rqdpc;
6320                 }
6321
6322                 do {
6323                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6324                         _bytes = ring->rx_stats.bytes;
6325                         _packets = ring->rx_stats.packets;
6326                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6327                 bytes += _bytes;
6328                 packets += _packets;
6329         }
6330
6331         net_stats->rx_bytes = bytes;
6332         net_stats->rx_packets = packets;
6333
6334         bytes = 0;
6335         packets = 0;
6336         for (i = 0; i < adapter->num_tx_queues; i++) {
6337                 struct igb_ring *ring = adapter->tx_ring[i];
6338                 do {
6339                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6340                         _bytes = ring->tx_stats.bytes;
6341                         _packets = ring->tx_stats.packets;
6342                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6343                 bytes += _bytes;
6344                 packets += _packets;
6345         }
6346         net_stats->tx_bytes = bytes;
6347         net_stats->tx_packets = packets;
6348         rcu_read_unlock();
6349
6350         /* read stats registers */
6351         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6352         adapter->stats.gprc += rd32(E1000_GPRC);
6353         adapter->stats.gorc += rd32(E1000_GORCL);
6354         rd32(E1000_GORCH); /* clear GORCL */
6355         adapter->stats.bprc += rd32(E1000_BPRC);
6356         adapter->stats.mprc += rd32(E1000_MPRC);
6357         adapter->stats.roc += rd32(E1000_ROC);
6358
6359         adapter->stats.prc64 += rd32(E1000_PRC64);
6360         adapter->stats.prc127 += rd32(E1000_PRC127);
6361         adapter->stats.prc255 += rd32(E1000_PRC255);
6362         adapter->stats.prc511 += rd32(E1000_PRC511);
6363         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6364         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6365         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6366         adapter->stats.sec += rd32(E1000_SEC);
6367
6368         mpc = rd32(E1000_MPC);
6369         adapter->stats.mpc += mpc;
6370         net_stats->rx_fifo_errors += mpc;
6371         adapter->stats.scc += rd32(E1000_SCC);
6372         adapter->stats.ecol += rd32(E1000_ECOL);
6373         adapter->stats.mcc += rd32(E1000_MCC);
6374         adapter->stats.latecol += rd32(E1000_LATECOL);
6375         adapter->stats.dc += rd32(E1000_DC);
6376         adapter->stats.rlec += rd32(E1000_RLEC);
6377         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6378         adapter->stats.xontxc += rd32(E1000_XONTXC);
6379         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6380         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6381         adapter->stats.fcruc += rd32(E1000_FCRUC);
6382         adapter->stats.gptc += rd32(E1000_GPTC);
6383         adapter->stats.gotc += rd32(E1000_GOTCL);
6384         rd32(E1000_GOTCH); /* clear GOTCL */
6385         adapter->stats.rnbc += rd32(E1000_RNBC);
6386         adapter->stats.ruc += rd32(E1000_RUC);
6387         adapter->stats.rfc += rd32(E1000_RFC);
6388         adapter->stats.rjc += rd32(E1000_RJC);
6389         adapter->stats.tor += rd32(E1000_TORH);
6390         adapter->stats.tot += rd32(E1000_TOTH);
6391         adapter->stats.tpr += rd32(E1000_TPR);
6392
6393         adapter->stats.ptc64 += rd32(E1000_PTC64);
6394         adapter->stats.ptc127 += rd32(E1000_PTC127);
6395         adapter->stats.ptc255 += rd32(E1000_PTC255);
6396         adapter->stats.ptc511 += rd32(E1000_PTC511);
6397         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6398         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6399
6400         adapter->stats.mptc += rd32(E1000_MPTC);
6401         adapter->stats.bptc += rd32(E1000_BPTC);
6402
6403         adapter->stats.tpt += rd32(E1000_TPT);
6404         adapter->stats.colc += rd32(E1000_COLC);
6405
6406         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6407         /* read internal phy specific stats */
6408         reg = rd32(E1000_CTRL_EXT);
6409         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6410                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6411
6412                 /* this stat has invalid values on i210/i211 */
6413                 if ((hw->mac.type != e1000_i210) &&
6414                     (hw->mac.type != e1000_i211))
6415                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6416         }
6417
6418         adapter->stats.tsctc += rd32(E1000_TSCTC);
6419         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6420
6421         adapter->stats.iac += rd32(E1000_IAC);
6422         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6423         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6424         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6425         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6426         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6427         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6428         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6429         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6430
6431         /* Fill out the OS statistics structure */
6432         net_stats->multicast = adapter->stats.mprc;
6433         net_stats->collisions = adapter->stats.colc;
6434
6435         /* Rx Errors */
6436
6437         /* RLEC on some newer hardware can be incorrect so build
6438          * our own version based on RUC and ROC
6439          */
6440         net_stats->rx_errors = adapter->stats.rxerrc +
6441                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6442                 adapter->stats.ruc + adapter->stats.roc +
6443                 adapter->stats.cexterr;
6444         net_stats->rx_length_errors = adapter->stats.ruc +
6445                                       adapter->stats.roc;
6446         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6447         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6448         net_stats->rx_missed_errors = adapter->stats.mpc;
6449
6450         /* Tx Errors */
6451         net_stats->tx_errors = adapter->stats.ecol +
6452                                adapter->stats.latecol;
6453         net_stats->tx_aborted_errors = adapter->stats.ecol;
6454         net_stats->tx_window_errors = adapter->stats.latecol;
6455         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6456
6457         /* Tx Dropped needs to be maintained elsewhere */
6458
6459         /* Management Stats */
6460         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6461         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6462         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6463
6464         /* OS2BMC Stats */
6465         reg = rd32(E1000_MANC);
6466         if (reg & E1000_MANC_EN_BMC2OS) {
6467                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6468                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6469                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6470                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6471         }
6472 }
6473
6474 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6475 {
6476         struct e1000_hw *hw = &adapter->hw;
6477         struct ptp_clock_event event;
6478         struct timespec64 ts;
6479         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6480
6481         if (tsicr & TSINTR_SYS_WRAP) {
6482                 event.type = PTP_CLOCK_PPS;
6483                 if (adapter->ptp_caps.pps)
6484                         ptp_clock_event(adapter->ptp_clock, &event);
6485                 ack |= TSINTR_SYS_WRAP;
6486         }
6487
6488         if (tsicr & E1000_TSICR_TXTS) {
6489                 /* retrieve hardware timestamp */
6490                 schedule_work(&adapter->ptp_tx_work);
6491                 ack |= E1000_TSICR_TXTS;
6492         }
6493
6494         if (tsicr & TSINTR_TT0) {
6495                 spin_lock(&adapter->tmreg_lock);
6496                 ts = timespec64_add(adapter->perout[0].start,
6497                                     adapter->perout[0].period);
6498                 /* u32 conversion of tv_sec is safe until y2106 */
6499                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6500                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6501                 tsauxc = rd32(E1000_TSAUXC);
6502                 tsauxc |= TSAUXC_EN_TT0;
6503                 wr32(E1000_TSAUXC, tsauxc);
6504                 adapter->perout[0].start = ts;
6505                 spin_unlock(&adapter->tmreg_lock);
6506                 ack |= TSINTR_TT0;
6507         }
6508
6509         if (tsicr & TSINTR_TT1) {
6510                 spin_lock(&adapter->tmreg_lock);
6511                 ts = timespec64_add(adapter->perout[1].start,
6512                                     adapter->perout[1].period);
6513                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6514                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6515                 tsauxc = rd32(E1000_TSAUXC);
6516                 tsauxc |= TSAUXC_EN_TT1;
6517                 wr32(E1000_TSAUXC, tsauxc);
6518                 adapter->perout[1].start = ts;
6519                 spin_unlock(&adapter->tmreg_lock);
6520                 ack |= TSINTR_TT1;
6521         }
6522
6523         if (tsicr & TSINTR_AUTT0) {
6524                 nsec = rd32(E1000_AUXSTMPL0);
6525                 sec  = rd32(E1000_AUXSTMPH0);
6526                 event.type = PTP_CLOCK_EXTTS;
6527                 event.index = 0;
6528                 event.timestamp = sec * 1000000000ULL + nsec;
6529                 ptp_clock_event(adapter->ptp_clock, &event);
6530                 ack |= TSINTR_AUTT0;
6531         }
6532
6533         if (tsicr & TSINTR_AUTT1) {
6534                 nsec = rd32(E1000_AUXSTMPL1);
6535                 sec  = rd32(E1000_AUXSTMPH1);
6536                 event.type = PTP_CLOCK_EXTTS;
6537                 event.index = 1;
6538                 event.timestamp = sec * 1000000000ULL + nsec;
6539                 ptp_clock_event(adapter->ptp_clock, &event);
6540                 ack |= TSINTR_AUTT1;
6541         }
6542
6543         /* acknowledge the interrupts */
6544         wr32(E1000_TSICR, ack);
6545 }
6546
6547 static irqreturn_t igb_msix_other(int irq, void *data)
6548 {
6549         struct igb_adapter *adapter = data;
6550         struct e1000_hw *hw = &adapter->hw;
6551         u32 icr = rd32(E1000_ICR);
6552         /* reading ICR causes bit 31 of EICR to be cleared */
6553
6554         if (icr & E1000_ICR_DRSTA)
6555                 schedule_work(&adapter->reset_task);
6556
6557         if (icr & E1000_ICR_DOUTSYNC) {
6558                 /* HW is reporting DMA is out of sync */
6559                 adapter->stats.doosync++;
6560                 /* The DMA Out of Sync is also indication of a spoof event
6561                  * in IOV mode. Check the Wrong VM Behavior register to
6562                  * see if it is really a spoof event.
6563                  */
6564                 igb_check_wvbr(adapter);
6565         }
6566
6567         /* Check for a mailbox event */
6568         if (icr & E1000_ICR_VMMB)
6569                 igb_msg_task(adapter);
6570
6571         if (icr & E1000_ICR_LSC) {
6572                 hw->mac.get_link_status = 1;
6573                 /* guard against interrupt when we're going down */
6574                 if (!test_bit(__IGB_DOWN, &adapter->state))
6575                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6576         }
6577
6578         if (icr & E1000_ICR_TS)
6579                 igb_tsync_interrupt(adapter);
6580
6581         wr32(E1000_EIMS, adapter->eims_other);
6582
6583         return IRQ_HANDLED;
6584 }
6585
6586 static void igb_write_itr(struct igb_q_vector *q_vector)
6587 {
6588         struct igb_adapter *adapter = q_vector->adapter;
6589         u32 itr_val = q_vector->itr_val & 0x7FFC;
6590
6591         if (!q_vector->set_itr)
6592                 return;
6593
6594         if (!itr_val)
6595                 itr_val = 0x4;
6596
6597         if (adapter->hw.mac.type == e1000_82575)
6598                 itr_val |= itr_val << 16;
6599         else
6600                 itr_val |= E1000_EITR_CNT_IGNR;
6601
6602         writel(itr_val, q_vector->itr_register);
6603         q_vector->set_itr = 0;
6604 }
6605
6606 static irqreturn_t igb_msix_ring(int irq, void *data)
6607 {
6608         struct igb_q_vector *q_vector = data;
6609
6610         /* Write the ITR value calculated from the previous interrupt. */
6611         igb_write_itr(q_vector);
6612
6613         napi_schedule(&q_vector->napi);
6614
6615         return IRQ_HANDLED;
6616 }
6617
6618 #ifdef CONFIG_IGB_DCA
6619 static void igb_update_tx_dca(struct igb_adapter *adapter,
6620                               struct igb_ring *tx_ring,
6621                               int cpu)
6622 {
6623         struct e1000_hw *hw = &adapter->hw;
6624         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6625
6626         if (hw->mac.type != e1000_82575)
6627                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6628
6629         /* We can enable relaxed ordering for reads, but not writes when
6630          * DCA is enabled.  This is due to a known issue in some chipsets
6631          * which will cause the DCA tag to be cleared.
6632          */
6633         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6634                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6635                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6636
6637         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6638 }
6639
6640 static void igb_update_rx_dca(struct igb_adapter *adapter,
6641                               struct igb_ring *rx_ring,
6642                               int cpu)
6643 {
6644         struct e1000_hw *hw = &adapter->hw;
6645         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6646
6647         if (hw->mac.type != e1000_82575)
6648                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6649
6650         /* We can enable relaxed ordering for reads, but not writes when
6651          * DCA is enabled.  This is due to a known issue in some chipsets
6652          * which will cause the DCA tag to be cleared.
6653          */
6654         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6655                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6656
6657         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6658 }
6659
6660 static void igb_update_dca(struct igb_q_vector *q_vector)
6661 {
6662         struct igb_adapter *adapter = q_vector->adapter;
6663         int cpu = get_cpu();
6664
6665         if (q_vector->cpu == cpu)
6666                 goto out_no_update;
6667
6668         if (q_vector->tx.ring)
6669                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6670
6671         if (q_vector->rx.ring)
6672                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6673
6674         q_vector->cpu = cpu;
6675 out_no_update:
6676         put_cpu();
6677 }
6678
6679 static void igb_setup_dca(struct igb_adapter *adapter)
6680 {
6681         struct e1000_hw *hw = &adapter->hw;
6682         int i;
6683
6684         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6685                 return;
6686
6687         /* Always use CB2 mode, difference is masked in the CB driver. */
6688         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6689
6690         for (i = 0; i < adapter->num_q_vectors; i++) {
6691                 adapter->q_vector[i]->cpu = -1;
6692                 igb_update_dca(adapter->q_vector[i]);
6693         }
6694 }
6695
6696 static int __igb_notify_dca(struct device *dev, void *data)
6697 {
6698         struct net_device *netdev = dev_get_drvdata(dev);
6699         struct igb_adapter *adapter = netdev_priv(netdev);
6700         struct pci_dev *pdev = adapter->pdev;
6701         struct e1000_hw *hw = &adapter->hw;
6702         unsigned long event = *(unsigned long *)data;
6703
6704         switch (event) {
6705         case DCA_PROVIDER_ADD:
6706                 /* if already enabled, don't do it again */
6707                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6708                         break;
6709                 if (dca_add_requester(dev) == 0) {
6710                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6711                         dev_info(&pdev->dev, "DCA enabled\n");
6712                         igb_setup_dca(adapter);
6713                         break;
6714                 }
6715                 /* Fall Through since DCA is disabled. */
6716         case DCA_PROVIDER_REMOVE:
6717                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6718                         /* without this a class_device is left
6719                          * hanging around in the sysfs model
6720                          */
6721                         dca_remove_requester(dev);
6722                         dev_info(&pdev->dev, "DCA disabled\n");
6723                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6724                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6725                 }
6726                 break;
6727         }
6728
6729         return 0;
6730 }
6731
6732 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6733                           void *p)
6734 {
6735         int ret_val;
6736
6737         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6738                                          __igb_notify_dca);
6739
6740         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6741 }
6742 #endif /* CONFIG_IGB_DCA */
6743
6744 #ifdef CONFIG_PCI_IOV
6745 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6746 {
6747         unsigned char mac_addr[ETH_ALEN];
6748
6749         eth_zero_addr(mac_addr);
6750         igb_set_vf_mac(adapter, vf, mac_addr);
6751
6752         /* By default spoof check is enabled for all VFs */
6753         adapter->vf_data[vf].spoofchk_enabled = true;
6754
6755         /* By default VFs are not trusted */
6756         adapter->vf_data[vf].trusted = false;
6757
6758         return 0;
6759 }
6760
6761 #endif
6762 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6763 {
6764         struct e1000_hw *hw = &adapter->hw;
6765         u32 ping;
6766         int i;
6767
6768         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6769                 ping = E1000_PF_CONTROL_MSG;
6770                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6771                         ping |= E1000_VT_MSGTYPE_CTS;
6772                 igb_write_mbx(hw, &ping, 1, i);
6773         }
6774 }
6775
6776 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6777 {
6778         struct e1000_hw *hw = &adapter->hw;
6779         u32 vmolr = rd32(E1000_VMOLR(vf));
6780         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6781
6782         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6783                             IGB_VF_FLAG_MULTI_PROMISC);
6784         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6785
6786         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6787                 vmolr |= E1000_VMOLR_MPME;
6788                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6789                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6790         } else {
6791                 /* if we have hashes and we are clearing a multicast promisc
6792                  * flag we need to write the hashes to the MTA as this step
6793                  * was previously skipped
6794                  */
6795                 if (vf_data->num_vf_mc_hashes > 30) {
6796                         vmolr |= E1000_VMOLR_MPME;
6797                 } else if (vf_data->num_vf_mc_hashes) {
6798                         int j;
6799
6800                         vmolr |= E1000_VMOLR_ROMPE;
6801                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6802                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6803                 }
6804         }
6805
6806         wr32(E1000_VMOLR(vf), vmolr);
6807
6808         /* there are flags left unprocessed, likely not supported */
6809         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6810                 return -EINVAL;
6811
6812         return 0;
6813 }
6814
6815 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6816                                   u32 *msgbuf, u32 vf)
6817 {
6818         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6819         u16 *hash_list = (u16 *)&msgbuf[1];
6820         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6821         int i;
6822
6823         /* salt away the number of multicast addresses assigned
6824          * to this VF for later use to restore when the PF multi cast
6825          * list changes
6826          */
6827         vf_data->num_vf_mc_hashes = n;
6828
6829         /* only up to 30 hash values supported */
6830         if (n > 30)
6831                 n = 30;
6832
6833         /* store the hashes for later use */
6834         for (i = 0; i < n; i++)
6835                 vf_data->vf_mc_hashes[i] = hash_list[i];
6836
6837         /* Flush and reset the mta with the new values */
6838         igb_set_rx_mode(adapter->netdev);
6839
6840         return 0;
6841 }
6842
6843 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6844 {
6845         struct e1000_hw *hw = &adapter->hw;
6846         struct vf_data_storage *vf_data;
6847         int i, j;
6848
6849         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6850                 u32 vmolr = rd32(E1000_VMOLR(i));
6851
6852                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6853
6854                 vf_data = &adapter->vf_data[i];
6855
6856                 if ((vf_data->num_vf_mc_hashes > 30) ||
6857                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6858                         vmolr |= E1000_VMOLR_MPME;
6859                 } else if (vf_data->num_vf_mc_hashes) {
6860                         vmolr |= E1000_VMOLR_ROMPE;
6861                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6862                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6863                 }
6864                 wr32(E1000_VMOLR(i), vmolr);
6865         }
6866 }
6867
6868 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6869 {
6870         struct e1000_hw *hw = &adapter->hw;
6871         u32 pool_mask, vlvf_mask, i;
6872
6873         /* create mask for VF and other pools */
6874         pool_mask = E1000_VLVF_POOLSEL_MASK;
6875         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6876
6877         /* drop PF from pool bits */
6878         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6879                              adapter->vfs_allocated_count);
6880
6881         /* Find the vlan filter for this id */
6882         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6883                 u32 vlvf = rd32(E1000_VLVF(i));
6884                 u32 vfta_mask, vid, vfta;
6885
6886                 /* remove the vf from the pool */
6887                 if (!(vlvf & vlvf_mask))
6888                         continue;
6889
6890                 /* clear out bit from VLVF */
6891                 vlvf ^= vlvf_mask;
6892
6893                 /* if other pools are present, just remove ourselves */
6894                 if (vlvf & pool_mask)
6895                         goto update_vlvfb;
6896
6897                 /* if PF is present, leave VFTA */
6898                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6899                         goto update_vlvf;
6900
6901                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6902                 vfta_mask = BIT(vid % 32);
6903
6904                 /* clear bit from VFTA */
6905                 vfta = adapter->shadow_vfta[vid / 32];
6906                 if (vfta & vfta_mask)
6907                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6908 update_vlvf:
6909                 /* clear pool selection enable */
6910                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6911                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6912                 else
6913                         vlvf = 0;
6914 update_vlvfb:
6915                 /* clear pool bits */
6916                 wr32(E1000_VLVF(i), vlvf);
6917         }
6918 }
6919
6920 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6921 {
6922         u32 vlvf;
6923         int idx;
6924
6925         /* short cut the special case */
6926         if (vlan == 0)
6927                 return 0;
6928
6929         /* Search for the VLAN id in the VLVF entries */
6930         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6931                 vlvf = rd32(E1000_VLVF(idx));
6932                 if ((vlvf & VLAN_VID_MASK) == vlan)
6933                         break;
6934         }
6935
6936         return idx;
6937 }
6938
6939 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6940 {
6941         struct e1000_hw *hw = &adapter->hw;
6942         u32 bits, pf_id;
6943         int idx;
6944
6945         idx = igb_find_vlvf_entry(hw, vid);
6946         if (!idx)
6947                 return;
6948
6949         /* See if any other pools are set for this VLAN filter
6950          * entry other than the PF.
6951          */
6952         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6953         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6954         bits &= rd32(E1000_VLVF(idx));
6955
6956         /* Disable the filter so this falls into the default pool. */
6957         if (!bits) {
6958                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6959                         wr32(E1000_VLVF(idx), BIT(pf_id));
6960                 else
6961                         wr32(E1000_VLVF(idx), 0);
6962         }
6963 }
6964
6965 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6966                            bool add, u32 vf)
6967 {
6968         int pf_id = adapter->vfs_allocated_count;
6969         struct e1000_hw *hw = &adapter->hw;
6970         int err;
6971
6972         /* If VLAN overlaps with one the PF is currently monitoring make
6973          * sure that we are able to allocate a VLVF entry.  This may be
6974          * redundant but it guarantees PF will maintain visibility to
6975          * the VLAN.
6976          */
6977         if (add && test_bit(vid, adapter->active_vlans)) {
6978                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6979                 if (err)
6980                         return err;
6981         }
6982
6983         err = igb_vfta_set(hw, vid, vf, add, false);
6984
6985         if (add && !err)
6986                 return err;
6987
6988         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6989          * we may need to drop the PF pool bit in order to allow us to free
6990          * up the VLVF resources.
6991          */
6992         if (test_bit(vid, adapter->active_vlans) ||
6993             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6994                 igb_update_pf_vlvf(adapter, vid);
6995
6996         return err;
6997 }
6998
6999 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7000 {
7001         struct e1000_hw *hw = &adapter->hw;
7002
7003         if (vid)
7004                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7005         else
7006                 wr32(E1000_VMVIR(vf), 0);
7007 }
7008
7009 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7010                                 u16 vlan, u8 qos)
7011 {
7012         int err;
7013
7014         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7015         if (err)
7016                 return err;
7017
7018         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7019         igb_set_vmolr(adapter, vf, !vlan);
7020
7021         /* revoke access to previous VLAN */
7022         if (vlan != adapter->vf_data[vf].pf_vlan)
7023                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7024                                 false, vf);
7025
7026         adapter->vf_data[vf].pf_vlan = vlan;
7027         adapter->vf_data[vf].pf_qos = qos;
7028         igb_set_vf_vlan_strip(adapter, vf, true);
7029         dev_info(&adapter->pdev->dev,
7030                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7031         if (test_bit(__IGB_DOWN, &adapter->state)) {
7032                 dev_warn(&adapter->pdev->dev,
7033                          "The VF VLAN has been set, but the PF device is not up.\n");
7034                 dev_warn(&adapter->pdev->dev,
7035                          "Bring the PF device up before attempting to use the VF device.\n");
7036         }
7037
7038         return err;
7039 }
7040
7041 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7042 {
7043         /* Restore tagless access via VLAN 0 */
7044         igb_set_vf_vlan(adapter, 0, true, vf);
7045
7046         igb_set_vmvir(adapter, 0, vf);
7047         igb_set_vmolr(adapter, vf, true);
7048
7049         /* Remove any PF assigned VLAN */
7050         if (adapter->vf_data[vf].pf_vlan)
7051                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7052                                 false, vf);
7053
7054         adapter->vf_data[vf].pf_vlan = 0;
7055         adapter->vf_data[vf].pf_qos = 0;
7056         igb_set_vf_vlan_strip(adapter, vf, false);
7057
7058         return 0;
7059 }
7060
7061 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7062                                u16 vlan, u8 qos, __be16 vlan_proto)
7063 {
7064         struct igb_adapter *adapter = netdev_priv(netdev);
7065
7066         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7067                 return -EINVAL;
7068
7069         if (vlan_proto != htons(ETH_P_8021Q))
7070                 return -EPROTONOSUPPORT;
7071
7072         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7073                                igb_disable_port_vlan(adapter, vf);
7074 }
7075
7076 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7077 {
7078         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7079         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7080         int ret;
7081
7082         if (adapter->vf_data[vf].pf_vlan)
7083                 return -1;
7084
7085         /* VLAN 0 is a special case, don't allow it to be removed */
7086         if (!vid && !add)
7087                 return 0;
7088
7089         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7090         if (!ret)
7091                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7092         return ret;
7093 }
7094
7095 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7096 {
7097         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7098
7099         /* clear flags - except flag that indicates PF has set the MAC */
7100         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7101         vf_data->last_nack = jiffies;
7102
7103         /* reset vlans for device */
7104         igb_clear_vf_vfta(adapter, vf);
7105         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7106         igb_set_vmvir(adapter, vf_data->pf_vlan |
7107                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7108         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7109         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7110
7111         /* reset multicast table array for vf */
7112         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7113
7114         /* Flush and reset the mta with the new values */
7115         igb_set_rx_mode(adapter->netdev);
7116 }
7117
7118 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7119 {
7120         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7121
7122         /* clear mac address as we were hotplug removed/added */
7123         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7124                 eth_zero_addr(vf_mac);
7125
7126         /* process remaining reset events */
7127         igb_vf_reset(adapter, vf);
7128 }
7129
7130 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7131 {
7132         struct e1000_hw *hw = &adapter->hw;
7133         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7134         u32 reg, msgbuf[3];
7135         u8 *addr = (u8 *)(&msgbuf[1]);
7136
7137         /* process all the same items cleared in a function level reset */
7138         igb_vf_reset(adapter, vf);
7139
7140         /* set vf mac address */
7141         igb_set_vf_mac(adapter, vf, vf_mac);
7142
7143         /* enable transmit and receive for vf */
7144         reg = rd32(E1000_VFTE);
7145         wr32(E1000_VFTE, reg | BIT(vf));
7146         reg = rd32(E1000_VFRE);
7147         wr32(E1000_VFRE, reg | BIT(vf));
7148
7149         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7150
7151         /* reply to reset with ack and vf mac address */
7152         if (!is_zero_ether_addr(vf_mac)) {
7153                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7154                 memcpy(addr, vf_mac, ETH_ALEN);
7155         } else {
7156                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7157         }
7158         igb_write_mbx(hw, msgbuf, 3, vf);
7159 }
7160
7161 static void igb_flush_mac_table(struct igb_adapter *adapter)
7162 {
7163         struct e1000_hw *hw = &adapter->hw;
7164         int i;
7165
7166         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7167                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7168                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7169                 adapter->mac_table[i].queue = 0;
7170                 igb_rar_set_index(adapter, i);
7171         }
7172 }
7173
7174 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7175 {
7176         struct e1000_hw *hw = &adapter->hw;
7177         /* do not count rar entries reserved for VFs MAC addresses */
7178         int rar_entries = hw->mac.rar_entry_count -
7179                           adapter->vfs_allocated_count;
7180         int i, count = 0;
7181
7182         for (i = 0; i < rar_entries; i++) {
7183                 /* do not count default entries */
7184                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7185                         continue;
7186
7187                 /* do not count "in use" entries for different queues */
7188                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7189                     (adapter->mac_table[i].queue != queue))
7190                         continue;
7191
7192                 count++;
7193         }
7194
7195         return count;
7196 }
7197
7198 /* Set default MAC address for the PF in the first RAR entry */
7199 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7200 {
7201         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7202
7203         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7204         mac_table->queue = adapter->vfs_allocated_count;
7205         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7206
7207         igb_rar_set_index(adapter, 0);
7208 }
7209
7210 /* If the filter to be added and an already existing filter express
7211  * the same address and address type, it should be possible to only
7212  * override the other configurations, for example the queue to steer
7213  * traffic.
7214  */
7215 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7216                                       const u8 *addr, const u8 flags)
7217 {
7218         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7219                 return true;
7220
7221         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7222             (flags & IGB_MAC_STATE_SRC_ADDR))
7223                 return false;
7224
7225         if (!ether_addr_equal(addr, entry->addr))
7226                 return false;
7227
7228         return true;
7229 }
7230
7231 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7232  * 'flags' is used to indicate what kind of match is made, match is by
7233  * default for the destination address, if matching by source address
7234  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7235  */
7236 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7237                                     const u8 *addr, const u8 queue,
7238                                     const u8 flags)
7239 {
7240         struct e1000_hw *hw = &adapter->hw;
7241         int rar_entries = hw->mac.rar_entry_count -
7242                           adapter->vfs_allocated_count;
7243         int i;
7244
7245         if (is_zero_ether_addr(addr))
7246                 return -EINVAL;
7247
7248         /* Search for the first empty entry in the MAC table.
7249          * Do not touch entries at the end of the table reserved for the VF MAC
7250          * addresses.
7251          */
7252         for (i = 0; i < rar_entries; i++) {
7253                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7254                                                addr, flags))
7255                         continue;
7256
7257                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7258                 adapter->mac_table[i].queue = queue;
7259                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7260
7261                 igb_rar_set_index(adapter, i);
7262                 return i;
7263         }
7264
7265         return -ENOSPC;
7266 }
7267
7268 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7269                               const u8 queue)
7270 {
7271         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7272 }
7273
7274 /* Remove a MAC filter for 'addr' directing matching traffic to
7275  * 'queue', 'flags' is used to indicate what kind of match need to be
7276  * removed, match is by default for the destination address, if
7277  * matching by source address is to be removed the flag
7278  * IGB_MAC_STATE_SRC_ADDR can be used.
7279  */
7280 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7281                                     const u8 *addr, const u8 queue,
7282                                     const u8 flags)
7283 {
7284         struct e1000_hw *hw = &adapter->hw;
7285         int rar_entries = hw->mac.rar_entry_count -
7286                           adapter->vfs_allocated_count;
7287         int i;
7288
7289         if (is_zero_ether_addr(addr))
7290                 return -EINVAL;
7291
7292         /* Search for matching entry in the MAC table based on given address
7293          * and queue. Do not touch entries at the end of the table reserved
7294          * for the VF MAC addresses.
7295          */
7296         for (i = 0; i < rar_entries; i++) {
7297                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7298                         continue;
7299                 if ((adapter->mac_table[i].state & flags) != flags)
7300                         continue;
7301                 if (adapter->mac_table[i].queue != queue)
7302                         continue;
7303                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7304                         continue;
7305
7306                 /* When a filter for the default address is "deleted",
7307                  * we return it to its initial configuration
7308                  */
7309                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7310                         adapter->mac_table[i].state =
7311                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7312                         adapter->mac_table[i].queue =
7313                                 adapter->vfs_allocated_count;
7314                 } else {
7315                         adapter->mac_table[i].state = 0;
7316                         adapter->mac_table[i].queue = 0;
7317                         memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7318                 }
7319
7320                 igb_rar_set_index(adapter, i);
7321                 return 0;
7322         }
7323
7324         return -ENOENT;
7325 }
7326
7327 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7328                               const u8 queue)
7329 {
7330         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7331 }
7332
7333 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7334                                 const u8 *addr, u8 queue, u8 flags)
7335 {
7336         struct e1000_hw *hw = &adapter->hw;
7337
7338         /* In theory, this should be supported on 82575 as well, but
7339          * that part wasn't easily accessible during development.
7340          */
7341         if (hw->mac.type != e1000_i210)
7342                 return -EOPNOTSUPP;
7343
7344         return igb_add_mac_filter_flags(adapter, addr, queue,
7345                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7346 }
7347
7348 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7349                                 const u8 *addr, u8 queue, u8 flags)
7350 {
7351         return igb_del_mac_filter_flags(adapter, addr, queue,
7352                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7353 }
7354
7355 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7356 {
7357         struct igb_adapter *adapter = netdev_priv(netdev);
7358         int ret;
7359
7360         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7361
7362         return min_t(int, ret, 0);
7363 }
7364
7365 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7366 {
7367         struct igb_adapter *adapter = netdev_priv(netdev);
7368
7369         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7370
7371         return 0;
7372 }
7373
7374 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7375                                  const u32 info, const u8 *addr)
7376 {
7377         struct pci_dev *pdev = adapter->pdev;
7378         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7379         struct list_head *pos;
7380         struct vf_mac_filter *entry = NULL;
7381         int ret = 0;
7382
7383         switch (info) {
7384         case E1000_VF_MAC_FILTER_CLR:
7385                 /* remove all unicast MAC filters related to the current VF */
7386                 list_for_each(pos, &adapter->vf_macs.l) {
7387                         entry = list_entry(pos, struct vf_mac_filter, l);
7388                         if (entry->vf == vf) {
7389                                 entry->vf = -1;
7390                                 entry->free = true;
7391                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7392                         }
7393                 }
7394                 break;
7395         case E1000_VF_MAC_FILTER_ADD:
7396                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7397                     !vf_data->trusted) {
7398                         dev_warn(&pdev->dev,
7399                                  "VF %d requested MAC filter but is administratively denied\n",
7400                                  vf);
7401                         return -EINVAL;
7402                 }
7403                 if (!is_valid_ether_addr(addr)) {
7404                         dev_warn(&pdev->dev,
7405                                  "VF %d attempted to set invalid MAC filter\n",
7406                                  vf);
7407                         return -EINVAL;
7408                 }
7409
7410                 /* try to find empty slot in the list */
7411                 list_for_each(pos, &adapter->vf_macs.l) {
7412                         entry = list_entry(pos, struct vf_mac_filter, l);
7413                         if (entry->free)
7414                                 break;
7415                 }
7416
7417                 if (entry && entry->free) {
7418                         entry->free = false;
7419                         entry->vf = vf;
7420                         ether_addr_copy(entry->vf_mac, addr);
7421
7422                         ret = igb_add_mac_filter(adapter, addr, vf);
7423                         ret = min_t(int, ret, 0);
7424                 } else {
7425                         ret = -ENOSPC;
7426                 }
7427
7428                 if (ret == -ENOSPC)
7429                         dev_warn(&pdev->dev,
7430                                  "VF %d has requested MAC filter but there is no space for it\n",
7431                                  vf);
7432                 break;
7433         default:
7434                 ret = -EINVAL;
7435                 break;
7436         }
7437
7438         return ret;
7439 }
7440
7441 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7442 {
7443         struct pci_dev *pdev = adapter->pdev;
7444         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7445         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7446
7447         /* The VF MAC Address is stored in a packed array of bytes
7448          * starting at the second 32 bit word of the msg array
7449          */
7450         unsigned char *addr = (unsigned char *)&msg[1];
7451         int ret = 0;
7452
7453         if (!info) {
7454                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7455                     !vf_data->trusted) {
7456                         dev_warn(&pdev->dev,
7457                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7458                                  vf);
7459                         return -EINVAL;
7460                 }
7461
7462                 if (!is_valid_ether_addr(addr)) {
7463                         dev_warn(&pdev->dev,
7464                                  "VF %d attempted to set invalid MAC\n",
7465                                  vf);
7466                         return -EINVAL;
7467                 }
7468
7469                 ret = igb_set_vf_mac(adapter, vf, addr);
7470         } else {
7471                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7472         }
7473
7474         return ret;
7475 }
7476
7477 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7478 {
7479         struct e1000_hw *hw = &adapter->hw;
7480         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7481         u32 msg = E1000_VT_MSGTYPE_NACK;
7482
7483         /* if device isn't clear to send it shouldn't be reading either */
7484         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7485             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7486                 igb_write_mbx(hw, &msg, 1, vf);
7487                 vf_data->last_nack = jiffies;
7488         }
7489 }
7490
7491 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7492 {
7493         struct pci_dev *pdev = adapter->pdev;
7494         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7495         struct e1000_hw *hw = &adapter->hw;
7496         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7497         s32 retval;
7498
7499         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7500
7501         if (retval) {
7502                 /* if receive failed revoke VF CTS stats and restart init */
7503                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7504                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7505                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7506                         goto unlock;
7507                 goto out;
7508         }
7509
7510         /* this is a message we already processed, do nothing */
7511         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7512                 goto unlock;
7513
7514         /* until the vf completes a reset it should not be
7515          * allowed to start any configuration.
7516          */
7517         if (msgbuf[0] == E1000_VF_RESET) {
7518                 /* unlocks mailbox */
7519                 igb_vf_reset_msg(adapter, vf);
7520                 return;
7521         }
7522
7523         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7524                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7525                         goto unlock;
7526                 retval = -1;
7527                 goto out;
7528         }
7529
7530         switch ((msgbuf[0] & 0xFFFF)) {
7531         case E1000_VF_SET_MAC_ADDR:
7532                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7533                 break;
7534         case E1000_VF_SET_PROMISC:
7535                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7536                 break;
7537         case E1000_VF_SET_MULTICAST:
7538                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7539                 break;
7540         case E1000_VF_SET_LPE:
7541                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7542                 break;
7543         case E1000_VF_SET_VLAN:
7544                 retval = -1;
7545                 if (vf_data->pf_vlan)
7546                         dev_warn(&pdev->dev,
7547                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7548                                  vf);
7549                 else
7550                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7551                 break;
7552         default:
7553                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7554                 retval = -1;
7555                 break;
7556         }
7557
7558         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7559 out:
7560         /* notify the VF of the results of what it sent us */
7561         if (retval)
7562                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7563         else
7564                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7565
7566         /* unlocks mailbox */
7567         igb_write_mbx(hw, msgbuf, 1, vf);
7568         return;
7569
7570 unlock:
7571         igb_unlock_mbx(hw, vf);
7572 }
7573
7574 static void igb_msg_task(struct igb_adapter *adapter)
7575 {
7576         struct e1000_hw *hw = &adapter->hw;
7577         u32 vf;
7578
7579         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7580                 /* process any reset requests */
7581                 if (!igb_check_for_rst(hw, vf))
7582                         igb_vf_reset_event(adapter, vf);
7583
7584                 /* process any messages pending */
7585                 if (!igb_check_for_msg(hw, vf))
7586                         igb_rcv_msg_from_vf(adapter, vf);
7587
7588                 /* process any acks */
7589                 if (!igb_check_for_ack(hw, vf))
7590                         igb_rcv_ack_from_vf(adapter, vf);
7591         }
7592 }
7593
7594 /**
7595  *  igb_set_uta - Set unicast filter table address
7596  *  @adapter: board private structure
7597  *  @set: boolean indicating if we are setting or clearing bits
7598  *
7599  *  The unicast table address is a register array of 32-bit registers.
7600  *  The table is meant to be used in a way similar to how the MTA is used
7601  *  however due to certain limitations in the hardware it is necessary to
7602  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7603  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7604  **/
7605 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7606 {
7607         struct e1000_hw *hw = &adapter->hw;
7608         u32 uta = set ? ~0 : 0;
7609         int i;
7610
7611         /* we only need to do this if VMDq is enabled */
7612         if (!adapter->vfs_allocated_count)
7613                 return;
7614
7615         for (i = hw->mac.uta_reg_count; i--;)
7616                 array_wr32(E1000_UTA, i, uta);
7617 }
7618
7619 /**
7620  *  igb_intr_msi - Interrupt Handler
7621  *  @irq: interrupt number
7622  *  @data: pointer to a network interface device structure
7623  **/
7624 static irqreturn_t igb_intr_msi(int irq, void *data)
7625 {
7626         struct igb_adapter *adapter = data;
7627         struct igb_q_vector *q_vector = adapter->q_vector[0];
7628         struct e1000_hw *hw = &adapter->hw;
7629         /* read ICR disables interrupts using IAM */
7630         u32 icr = rd32(E1000_ICR);
7631
7632         igb_write_itr(q_vector);
7633
7634         if (icr & E1000_ICR_DRSTA)
7635                 schedule_work(&adapter->reset_task);
7636
7637         if (icr & E1000_ICR_DOUTSYNC) {
7638                 /* HW is reporting DMA is out of sync */
7639                 adapter->stats.doosync++;
7640         }
7641
7642         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7643                 hw->mac.get_link_status = 1;
7644                 if (!test_bit(__IGB_DOWN, &adapter->state))
7645                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7646         }
7647
7648         if (icr & E1000_ICR_TS)
7649                 igb_tsync_interrupt(adapter);
7650
7651         napi_schedule(&q_vector->napi);
7652
7653         return IRQ_HANDLED;
7654 }
7655
7656 /**
7657  *  igb_intr - Legacy Interrupt Handler
7658  *  @irq: interrupt number
7659  *  @data: pointer to a network interface device structure
7660  **/
7661 static irqreturn_t igb_intr(int irq, void *data)
7662 {
7663         struct igb_adapter *adapter = data;
7664         struct igb_q_vector *q_vector = adapter->q_vector[0];
7665         struct e1000_hw *hw = &adapter->hw;
7666         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7667          * need for the IMC write
7668          */
7669         u32 icr = rd32(E1000_ICR);
7670
7671         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7672          * not set, then the adapter didn't send an interrupt
7673          */
7674         if (!(icr & E1000_ICR_INT_ASSERTED))
7675                 return IRQ_NONE;
7676
7677         igb_write_itr(q_vector);
7678
7679         if (icr & E1000_ICR_DRSTA)
7680                 schedule_work(&adapter->reset_task);
7681
7682         if (icr & E1000_ICR_DOUTSYNC) {
7683                 /* HW is reporting DMA is out of sync */
7684                 adapter->stats.doosync++;
7685         }
7686
7687         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7688                 hw->mac.get_link_status = 1;
7689                 /* guard against interrupt when we're going down */
7690                 if (!test_bit(__IGB_DOWN, &adapter->state))
7691                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7692         }
7693
7694         if (icr & E1000_ICR_TS)
7695                 igb_tsync_interrupt(adapter);
7696
7697         napi_schedule(&q_vector->napi);
7698
7699         return IRQ_HANDLED;
7700 }
7701
7702 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7703 {
7704         struct igb_adapter *adapter = q_vector->adapter;
7705         struct e1000_hw *hw = &adapter->hw;
7706
7707         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7708             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7709                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7710                         igb_set_itr(q_vector);
7711                 else
7712                         igb_update_ring_itr(q_vector);
7713         }
7714
7715         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7716                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7717                         wr32(E1000_EIMS, q_vector->eims_value);
7718                 else
7719                         igb_irq_enable(adapter);
7720         }
7721 }
7722
7723 /**
7724  *  igb_poll - NAPI Rx polling callback
7725  *  @napi: napi polling structure
7726  *  @budget: count of how many packets we should handle
7727  **/
7728 static int igb_poll(struct napi_struct *napi, int budget)
7729 {
7730         struct igb_q_vector *q_vector = container_of(napi,
7731                                                      struct igb_q_vector,
7732                                                      napi);
7733         bool clean_complete = true;
7734         int work_done = 0;
7735
7736 #ifdef CONFIG_IGB_DCA
7737         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7738                 igb_update_dca(q_vector);
7739 #endif
7740         if (q_vector->tx.ring)
7741                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7742
7743         if (q_vector->rx.ring) {
7744                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7745
7746                 work_done += cleaned;
7747                 if (cleaned >= budget)
7748                         clean_complete = false;
7749         }
7750
7751         /* If all work not completed, return budget and keep polling */
7752         if (!clean_complete)
7753                 return budget;
7754
7755         /* Exit the polling mode, but don't re-enable interrupts if stack might
7756          * poll us due to busy-polling
7757          */
7758         if (likely(napi_complete_done(napi, work_done)))
7759                 igb_ring_irq_enable(q_vector);
7760
7761         return min(work_done, budget - 1);
7762 }
7763
7764 /**
7765  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7766  *  @q_vector: pointer to q_vector containing needed info
7767  *  @napi_budget: Used to determine if we are in netpoll
7768  *
7769  *  returns true if ring is completely cleaned
7770  **/
7771 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7772 {
7773         struct igb_adapter *adapter = q_vector->adapter;
7774         struct igb_ring *tx_ring = q_vector->tx.ring;
7775         struct igb_tx_buffer *tx_buffer;
7776         union e1000_adv_tx_desc *tx_desc;
7777         unsigned int total_bytes = 0, total_packets = 0;
7778         unsigned int budget = q_vector->tx.work_limit;
7779         unsigned int i = tx_ring->next_to_clean;
7780
7781         if (test_bit(__IGB_DOWN, &adapter->state))
7782                 return true;
7783
7784         tx_buffer = &tx_ring->tx_buffer_info[i];
7785         tx_desc = IGB_TX_DESC(tx_ring, i);
7786         i -= tx_ring->count;
7787
7788         do {
7789                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7790
7791                 /* if next_to_watch is not set then there is no work pending */
7792                 if (!eop_desc)
7793                         break;
7794
7795                 /* prevent any other reads prior to eop_desc */
7796                 smp_rmb();
7797
7798                 /* if DD is not set pending work has not been completed */
7799                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7800                         break;
7801
7802                 /* clear next_to_watch to prevent false hangs */
7803                 tx_buffer->next_to_watch = NULL;
7804
7805                 /* update the statistics for this packet */
7806                 total_bytes += tx_buffer->bytecount;
7807                 total_packets += tx_buffer->gso_segs;
7808
7809                 /* free the skb */
7810                 napi_consume_skb(tx_buffer->skb, napi_budget);
7811
7812                 /* unmap skb header data */
7813                 dma_unmap_single(tx_ring->dev,
7814                                  dma_unmap_addr(tx_buffer, dma),
7815                                  dma_unmap_len(tx_buffer, len),
7816                                  DMA_TO_DEVICE);
7817
7818                 /* clear tx_buffer data */
7819                 dma_unmap_len_set(tx_buffer, len, 0);
7820
7821                 /* clear last DMA location and unmap remaining buffers */
7822                 while (tx_desc != eop_desc) {
7823                         tx_buffer++;
7824                         tx_desc++;
7825                         i++;
7826                         if (unlikely(!i)) {
7827                                 i -= tx_ring->count;
7828                                 tx_buffer = tx_ring->tx_buffer_info;
7829                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7830                         }
7831
7832                         /* unmap any remaining paged data */
7833                         if (dma_unmap_len(tx_buffer, len)) {
7834                                 dma_unmap_page(tx_ring->dev,
7835                                                dma_unmap_addr(tx_buffer, dma),
7836                                                dma_unmap_len(tx_buffer, len),
7837                                                DMA_TO_DEVICE);
7838                                 dma_unmap_len_set(tx_buffer, len, 0);
7839                         }
7840                 }
7841
7842                 /* move us one more past the eop_desc for start of next pkt */
7843                 tx_buffer++;
7844                 tx_desc++;
7845                 i++;
7846                 if (unlikely(!i)) {
7847                         i -= tx_ring->count;
7848                         tx_buffer = tx_ring->tx_buffer_info;
7849                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7850                 }
7851
7852                 /* issue prefetch for next Tx descriptor */
7853                 prefetch(tx_desc);
7854
7855                 /* update budget accounting */
7856                 budget--;
7857         } while (likely(budget));
7858
7859         netdev_tx_completed_queue(txring_txq(tx_ring),
7860                                   total_packets, total_bytes);
7861         i += tx_ring->count;
7862         tx_ring->next_to_clean = i;
7863         u64_stats_update_begin(&tx_ring->tx_syncp);
7864         tx_ring->tx_stats.bytes += total_bytes;
7865         tx_ring->tx_stats.packets += total_packets;
7866         u64_stats_update_end(&tx_ring->tx_syncp);
7867         q_vector->tx.total_bytes += total_bytes;
7868         q_vector->tx.total_packets += total_packets;
7869
7870         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7871                 struct e1000_hw *hw = &adapter->hw;
7872
7873                 /* Detect a transmit hang in hardware, this serializes the
7874                  * check with the clearing of time_stamp and movement of i
7875                  */
7876                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7877                 if (tx_buffer->next_to_watch &&
7878                     time_after(jiffies, tx_buffer->time_stamp +
7879                                (adapter->tx_timeout_factor * HZ)) &&
7880                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7881
7882                         /* detected Tx unit hang */
7883                         dev_err(tx_ring->dev,
7884                                 "Detected Tx Unit Hang\n"
7885                                 "  Tx Queue             <%d>\n"
7886                                 "  TDH                  <%x>\n"
7887                                 "  TDT                  <%x>\n"
7888                                 "  next_to_use          <%x>\n"
7889                                 "  next_to_clean        <%x>\n"
7890                                 "buffer_info[next_to_clean]\n"
7891                                 "  time_stamp           <%lx>\n"
7892                                 "  next_to_watch        <%p>\n"
7893                                 "  jiffies              <%lx>\n"
7894                                 "  desc.status          <%x>\n",
7895                                 tx_ring->queue_index,
7896                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7897                                 readl(tx_ring->tail),
7898                                 tx_ring->next_to_use,
7899                                 tx_ring->next_to_clean,
7900                                 tx_buffer->time_stamp,
7901                                 tx_buffer->next_to_watch,
7902                                 jiffies,
7903                                 tx_buffer->next_to_watch->wb.status);
7904                         netif_stop_subqueue(tx_ring->netdev,
7905                                             tx_ring->queue_index);
7906
7907                         /* we are about to reset, no point in enabling stuff */
7908                         return true;
7909                 }
7910         }
7911
7912 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7913         if (unlikely(total_packets &&
7914             netif_carrier_ok(tx_ring->netdev) &&
7915             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7916                 /* Make sure that anybody stopping the queue after this
7917                  * sees the new next_to_clean.
7918                  */
7919                 smp_mb();
7920                 if (__netif_subqueue_stopped(tx_ring->netdev,
7921                                              tx_ring->queue_index) &&
7922                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7923                         netif_wake_subqueue(tx_ring->netdev,
7924                                             tx_ring->queue_index);
7925
7926                         u64_stats_update_begin(&tx_ring->tx_syncp);
7927                         tx_ring->tx_stats.restart_queue++;
7928                         u64_stats_update_end(&tx_ring->tx_syncp);
7929                 }
7930         }
7931
7932         return !!budget;
7933 }
7934
7935 /**
7936  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7937  *  @rx_ring: rx descriptor ring to store buffers on
7938  *  @old_buff: donor buffer to have page reused
7939  *
7940  *  Synchronizes page for reuse by the adapter
7941  **/
7942 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7943                               struct igb_rx_buffer *old_buff)
7944 {
7945         struct igb_rx_buffer *new_buff;
7946         u16 nta = rx_ring->next_to_alloc;
7947
7948         new_buff = &rx_ring->rx_buffer_info[nta];
7949
7950         /* update, and store next to alloc */
7951         nta++;
7952         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7953
7954         /* Transfer page from old buffer to new buffer.
7955          * Move each member individually to avoid possible store
7956          * forwarding stalls.
7957          */
7958         new_buff->dma           = old_buff->dma;
7959         new_buff->page          = old_buff->page;
7960         new_buff->page_offset   = old_buff->page_offset;
7961         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7962 }
7963
7964 static inline bool igb_page_is_reserved(struct page *page)
7965 {
7966         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7967 }
7968
7969 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7970 {
7971         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7972         struct page *page = rx_buffer->page;
7973
7974         /* avoid re-using remote pages */
7975         if (unlikely(igb_page_is_reserved(page)))
7976                 return false;
7977
7978 #if (PAGE_SIZE < 8192)
7979         /* if we are only owner of page we can reuse it */
7980         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7981                 return false;
7982 #else
7983 #define IGB_LAST_OFFSET \
7984         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7985
7986         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7987                 return false;
7988 #endif
7989
7990         /* If we have drained the page fragment pool we need to update
7991          * the pagecnt_bias and page count so that we fully restock the
7992          * number of references the driver holds.
7993          */
7994         if (unlikely(!pagecnt_bias)) {
7995                 page_ref_add(page, USHRT_MAX);
7996                 rx_buffer->pagecnt_bias = USHRT_MAX;
7997         }
7998
7999         return true;
8000 }
8001
8002 /**
8003  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8004  *  @rx_ring: rx descriptor ring to transact packets on
8005  *  @rx_buffer: buffer containing page to add
8006  *  @skb: sk_buff to place the data into
8007  *  @size: size of buffer to be added
8008  *
8009  *  This function will add the data contained in rx_buffer->page to the skb.
8010  **/
8011 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8012                             struct igb_rx_buffer *rx_buffer,
8013                             struct sk_buff *skb,
8014                             unsigned int size)
8015 {
8016 #if (PAGE_SIZE < 8192)
8017         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8018 #else
8019         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8020                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8021                                 SKB_DATA_ALIGN(size);
8022 #endif
8023         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8024                         rx_buffer->page_offset, size, truesize);
8025 #if (PAGE_SIZE < 8192)
8026         rx_buffer->page_offset ^= truesize;
8027 #else
8028         rx_buffer->page_offset += truesize;
8029 #endif
8030 }
8031
8032 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8033                                          struct igb_rx_buffer *rx_buffer,
8034                                          union e1000_adv_rx_desc *rx_desc,
8035                                          unsigned int size)
8036 {
8037         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8038 #if (PAGE_SIZE < 8192)
8039         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8040 #else
8041         unsigned int truesize = SKB_DATA_ALIGN(size);
8042 #endif
8043         unsigned int headlen;
8044         struct sk_buff *skb;
8045
8046         /* prefetch first cache line of first page */
8047         prefetch(va);
8048 #if L1_CACHE_BYTES < 128
8049         prefetch(va + L1_CACHE_BYTES);
8050 #endif
8051
8052         /* allocate a skb to store the frags */
8053         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8054         if (unlikely(!skb))
8055                 return NULL;
8056
8057         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8058                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8059                 va += IGB_TS_HDR_LEN;
8060                 size -= IGB_TS_HDR_LEN;
8061         }
8062
8063         /* Determine available headroom for copy */
8064         headlen = size;
8065         if (headlen > IGB_RX_HDR_LEN)
8066                 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8067
8068         /* align pull length to size of long to optimize memcpy performance */
8069         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8070
8071         /* update all of the pointers */
8072         size -= headlen;
8073         if (size) {
8074                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8075                                 (va + headlen) - page_address(rx_buffer->page),
8076                                 size, truesize);
8077 #if (PAGE_SIZE < 8192)
8078                 rx_buffer->page_offset ^= truesize;
8079 #else
8080                 rx_buffer->page_offset += truesize;
8081 #endif
8082         } else {
8083                 rx_buffer->pagecnt_bias++;
8084         }
8085
8086         return skb;
8087 }
8088
8089 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8090                                      struct igb_rx_buffer *rx_buffer,
8091                                      union e1000_adv_rx_desc *rx_desc,
8092                                      unsigned int size)
8093 {
8094         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8095 #if (PAGE_SIZE < 8192)
8096         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8097 #else
8098         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8099                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8100 #endif
8101         struct sk_buff *skb;
8102
8103         /* prefetch first cache line of first page */
8104         prefetch(va);
8105 #if L1_CACHE_BYTES < 128
8106         prefetch(va + L1_CACHE_BYTES);
8107 #endif
8108
8109         /* build an skb around the page buffer */
8110         skb = build_skb(va - IGB_SKB_PAD, truesize);
8111         if (unlikely(!skb))
8112                 return NULL;
8113
8114         /* update pointers within the skb to store the data */
8115         skb_reserve(skb, IGB_SKB_PAD);
8116         __skb_put(skb, size);
8117
8118         /* pull timestamp out of packet data */
8119         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8120                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8121                 __skb_pull(skb, IGB_TS_HDR_LEN);
8122         }
8123
8124         /* update buffer offset */
8125 #if (PAGE_SIZE < 8192)
8126         rx_buffer->page_offset ^= truesize;
8127 #else
8128         rx_buffer->page_offset += truesize;
8129 #endif
8130
8131         return skb;
8132 }
8133
8134 static inline void igb_rx_checksum(struct igb_ring *ring,
8135                                    union e1000_adv_rx_desc *rx_desc,
8136                                    struct sk_buff *skb)
8137 {
8138         skb_checksum_none_assert(skb);
8139
8140         /* Ignore Checksum bit is set */
8141         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8142                 return;
8143
8144         /* Rx checksum disabled via ethtool */
8145         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8146                 return;
8147
8148         /* TCP/UDP checksum error bit is set */
8149         if (igb_test_staterr(rx_desc,
8150                              E1000_RXDEXT_STATERR_TCPE |
8151                              E1000_RXDEXT_STATERR_IPE)) {
8152                 /* work around errata with sctp packets where the TCPE aka
8153                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8154                  * packets, (aka let the stack check the crc32c)
8155                  */
8156                 if (!((skb->len == 60) &&
8157                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8158                         u64_stats_update_begin(&ring->rx_syncp);
8159                         ring->rx_stats.csum_err++;
8160                         u64_stats_update_end(&ring->rx_syncp);
8161                 }
8162                 /* let the stack verify checksum errors */
8163                 return;
8164         }
8165         /* It must be a TCP or UDP packet with a valid checksum */
8166         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8167                                       E1000_RXD_STAT_UDPCS))
8168                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8169
8170         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8171                 le32_to_cpu(rx_desc->wb.upper.status_error));
8172 }
8173
8174 static inline void igb_rx_hash(struct igb_ring *ring,
8175                                union e1000_adv_rx_desc *rx_desc,
8176                                struct sk_buff *skb)
8177 {
8178         if (ring->netdev->features & NETIF_F_RXHASH)
8179                 skb_set_hash(skb,
8180                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8181                              PKT_HASH_TYPE_L3);
8182 }
8183
8184 /**
8185  *  igb_is_non_eop - process handling of non-EOP buffers
8186  *  @rx_ring: Rx ring being processed
8187  *  @rx_desc: Rx descriptor for current buffer
8188  *  @skb: current socket buffer containing buffer in progress
8189  *
8190  *  This function updates next to clean.  If the buffer is an EOP buffer
8191  *  this function exits returning false, otherwise it will place the
8192  *  sk_buff in the next buffer to be chained and return true indicating
8193  *  that this is in fact a non-EOP buffer.
8194  **/
8195 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8196                            union e1000_adv_rx_desc *rx_desc)
8197 {
8198         u32 ntc = rx_ring->next_to_clean + 1;
8199
8200         /* fetch, update, and store next to clean */
8201         ntc = (ntc < rx_ring->count) ? ntc : 0;
8202         rx_ring->next_to_clean = ntc;
8203
8204         prefetch(IGB_RX_DESC(rx_ring, ntc));
8205
8206         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8207                 return false;
8208
8209         return true;
8210 }
8211
8212 /**
8213  *  igb_cleanup_headers - Correct corrupted or empty headers
8214  *  @rx_ring: rx descriptor ring packet is being transacted on
8215  *  @rx_desc: pointer to the EOP Rx descriptor
8216  *  @skb: pointer to current skb being fixed
8217  *
8218  *  Address the case where we are pulling data in on pages only
8219  *  and as such no data is present in the skb header.
8220  *
8221  *  In addition if skb is not at least 60 bytes we need to pad it so that
8222  *  it is large enough to qualify as a valid Ethernet frame.
8223  *
8224  *  Returns true if an error was encountered and skb was freed.
8225  **/
8226 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8227                                 union e1000_adv_rx_desc *rx_desc,
8228                                 struct sk_buff *skb)
8229 {
8230         if (unlikely((igb_test_staterr(rx_desc,
8231                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8232                 struct net_device *netdev = rx_ring->netdev;
8233                 if (!(netdev->features & NETIF_F_RXALL)) {
8234                         dev_kfree_skb_any(skb);
8235                         return true;
8236                 }
8237         }
8238
8239         /* if eth_skb_pad returns an error the skb was freed */
8240         if (eth_skb_pad(skb))
8241                 return true;
8242
8243         return false;
8244 }
8245
8246 /**
8247  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8248  *  @rx_ring: rx descriptor ring packet is being transacted on
8249  *  @rx_desc: pointer to the EOP Rx descriptor
8250  *  @skb: pointer to current skb being populated
8251  *
8252  *  This function checks the ring, descriptor, and packet information in
8253  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8254  *  other fields within the skb.
8255  **/
8256 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8257                                    union e1000_adv_rx_desc *rx_desc,
8258                                    struct sk_buff *skb)
8259 {
8260         struct net_device *dev = rx_ring->netdev;
8261
8262         igb_rx_hash(rx_ring, rx_desc, skb);
8263
8264         igb_rx_checksum(rx_ring, rx_desc, skb);
8265
8266         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8267             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8268                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8269
8270         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8271             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8272                 u16 vid;
8273
8274                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8275                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8276                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8277                 else
8278                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8279
8280                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8281         }
8282
8283         skb_record_rx_queue(skb, rx_ring->queue_index);
8284
8285         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8286 }
8287
8288 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8289                                                const unsigned int size)
8290 {
8291         struct igb_rx_buffer *rx_buffer;
8292
8293         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8294         prefetchw(rx_buffer->page);
8295
8296         /* we are reusing so sync this buffer for CPU use */
8297         dma_sync_single_range_for_cpu(rx_ring->dev,
8298                                       rx_buffer->dma,
8299                                       rx_buffer->page_offset,
8300                                       size,
8301                                       DMA_FROM_DEVICE);
8302
8303         rx_buffer->pagecnt_bias--;
8304
8305         return rx_buffer;
8306 }
8307
8308 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8309                               struct igb_rx_buffer *rx_buffer)
8310 {
8311         if (igb_can_reuse_rx_page(rx_buffer)) {
8312                 /* hand second half of page back to the ring */
8313                 igb_reuse_rx_page(rx_ring, rx_buffer);
8314         } else {
8315                 /* We are not reusing the buffer so unmap it and free
8316                  * any references we are holding to it
8317                  */
8318                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8319                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8320                                      IGB_RX_DMA_ATTR);
8321                 __page_frag_cache_drain(rx_buffer->page,
8322                                         rx_buffer->pagecnt_bias);
8323         }
8324
8325         /* clear contents of rx_buffer */
8326         rx_buffer->page = NULL;
8327 }
8328
8329 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8330 {
8331         struct igb_ring *rx_ring = q_vector->rx.ring;
8332         struct sk_buff *skb = rx_ring->skb;
8333         unsigned int total_bytes = 0, total_packets = 0;
8334         u16 cleaned_count = igb_desc_unused(rx_ring);
8335
8336         while (likely(total_packets < budget)) {
8337                 union e1000_adv_rx_desc *rx_desc;
8338                 struct igb_rx_buffer *rx_buffer;
8339                 unsigned int size;
8340
8341                 /* return some buffers to hardware, one at a time is too slow */
8342                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8343                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8344                         cleaned_count = 0;
8345                 }
8346
8347                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8348                 size = le16_to_cpu(rx_desc->wb.upper.length);
8349                 if (!size)
8350                         break;
8351
8352                 /* This memory barrier is needed to keep us from reading
8353                  * any other fields out of the rx_desc until we know the
8354                  * descriptor has been written back
8355                  */
8356                 dma_rmb();
8357
8358                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8359
8360                 /* retrieve a buffer from the ring */
8361                 if (skb)
8362                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8363                 else if (ring_uses_build_skb(rx_ring))
8364                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8365                 else
8366                         skb = igb_construct_skb(rx_ring, rx_buffer,
8367                                                 rx_desc, size);
8368
8369                 /* exit if we failed to retrieve a buffer */
8370                 if (!skb) {
8371                         rx_ring->rx_stats.alloc_failed++;
8372                         rx_buffer->pagecnt_bias++;
8373                         break;
8374                 }
8375
8376                 igb_put_rx_buffer(rx_ring, rx_buffer);
8377                 cleaned_count++;
8378
8379                 /* fetch next buffer in frame if non-eop */
8380                 if (igb_is_non_eop(rx_ring, rx_desc))
8381                         continue;
8382
8383                 /* verify the packet layout is correct */
8384                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8385                         skb = NULL;
8386                         continue;
8387                 }
8388
8389                 /* probably a little skewed due to removing CRC */
8390                 total_bytes += skb->len;
8391
8392                 /* populate checksum, timestamp, VLAN, and protocol */
8393                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8394
8395                 napi_gro_receive(&q_vector->napi, skb);
8396
8397                 /* reset skb pointer */
8398                 skb = NULL;
8399
8400                 /* update budget accounting */
8401                 total_packets++;
8402         }
8403
8404         /* place incomplete frames back on ring for completion */
8405         rx_ring->skb = skb;
8406
8407         u64_stats_update_begin(&rx_ring->rx_syncp);
8408         rx_ring->rx_stats.packets += total_packets;
8409         rx_ring->rx_stats.bytes += total_bytes;
8410         u64_stats_update_end(&rx_ring->rx_syncp);
8411         q_vector->rx.total_packets += total_packets;
8412         q_vector->rx.total_bytes += total_bytes;
8413
8414         if (cleaned_count)
8415                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8416
8417         return total_packets;
8418 }
8419
8420 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8421 {
8422         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8423 }
8424
8425 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8426                                   struct igb_rx_buffer *bi)
8427 {
8428         struct page *page = bi->page;
8429         dma_addr_t dma;
8430
8431         /* since we are recycling buffers we should seldom need to alloc */
8432         if (likely(page))
8433                 return true;
8434
8435         /* alloc new page for storage */
8436         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8437         if (unlikely(!page)) {
8438                 rx_ring->rx_stats.alloc_failed++;
8439                 return false;
8440         }
8441
8442         /* map page for use */
8443         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8444                                  igb_rx_pg_size(rx_ring),
8445                                  DMA_FROM_DEVICE,
8446                                  IGB_RX_DMA_ATTR);
8447
8448         /* if mapping failed free memory back to system since
8449          * there isn't much point in holding memory we can't use
8450          */
8451         if (dma_mapping_error(rx_ring->dev, dma)) {
8452                 __free_pages(page, igb_rx_pg_order(rx_ring));
8453
8454                 rx_ring->rx_stats.alloc_failed++;
8455                 return false;
8456         }
8457
8458         bi->dma = dma;
8459         bi->page = page;
8460         bi->page_offset = igb_rx_offset(rx_ring);
8461         bi->pagecnt_bias = 1;
8462
8463         return true;
8464 }
8465
8466 /**
8467  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8468  *  @adapter: address of board private structure
8469  **/
8470 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8471 {
8472         union e1000_adv_rx_desc *rx_desc;
8473         struct igb_rx_buffer *bi;
8474         u16 i = rx_ring->next_to_use;
8475         u16 bufsz;
8476
8477         /* nothing to do */
8478         if (!cleaned_count)
8479                 return;
8480
8481         rx_desc = IGB_RX_DESC(rx_ring, i);
8482         bi = &rx_ring->rx_buffer_info[i];
8483         i -= rx_ring->count;
8484
8485         bufsz = igb_rx_bufsz(rx_ring);
8486
8487         do {
8488                 if (!igb_alloc_mapped_page(rx_ring, bi))
8489                         break;
8490
8491                 /* sync the buffer for use by the device */
8492                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8493                                                  bi->page_offset, bufsz,
8494                                                  DMA_FROM_DEVICE);
8495
8496                 /* Refresh the desc even if buffer_addrs didn't change
8497                  * because each write-back erases this info.
8498                  */
8499                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8500
8501                 rx_desc++;
8502                 bi++;
8503                 i++;
8504                 if (unlikely(!i)) {
8505                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8506                         bi = rx_ring->rx_buffer_info;
8507                         i -= rx_ring->count;
8508                 }
8509
8510                 /* clear the length for the next_to_use descriptor */
8511                 rx_desc->wb.upper.length = 0;
8512
8513                 cleaned_count--;
8514         } while (cleaned_count);
8515
8516         i += rx_ring->count;
8517
8518         if (rx_ring->next_to_use != i) {
8519                 /* record the next descriptor to use */
8520                 rx_ring->next_to_use = i;
8521
8522                 /* update next to alloc since we have filled the ring */
8523                 rx_ring->next_to_alloc = i;
8524
8525                 /* Force memory writes to complete before letting h/w
8526                  * know there are new descriptors to fetch.  (Only
8527                  * applicable for weak-ordered memory model archs,
8528                  * such as IA-64).
8529                  */
8530                 dma_wmb();
8531                 writel(i, rx_ring->tail);
8532         }
8533 }
8534
8535 /**
8536  * igb_mii_ioctl -
8537  * @netdev:
8538  * @ifreq:
8539  * @cmd:
8540  **/
8541 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8542 {
8543         struct igb_adapter *adapter = netdev_priv(netdev);
8544         struct mii_ioctl_data *data = if_mii(ifr);
8545
8546         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8547                 return -EOPNOTSUPP;
8548
8549         switch (cmd) {
8550         case SIOCGMIIPHY:
8551                 data->phy_id = adapter->hw.phy.addr;
8552                 break;
8553         case SIOCGMIIREG:
8554                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8555                                      &data->val_out))
8556                         return -EIO;
8557                 break;
8558         case SIOCSMIIREG:
8559         default:
8560                 return -EOPNOTSUPP;
8561         }
8562         return 0;
8563 }
8564
8565 /**
8566  * igb_ioctl -
8567  * @netdev:
8568  * @ifreq:
8569  * @cmd:
8570  **/
8571 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8572 {
8573         switch (cmd) {
8574         case SIOCGMIIPHY:
8575         case SIOCGMIIREG:
8576         case SIOCSMIIREG:
8577                 return igb_mii_ioctl(netdev, ifr, cmd);
8578         case SIOCGHWTSTAMP:
8579                 return igb_ptp_get_ts_config(netdev, ifr);
8580         case SIOCSHWTSTAMP:
8581                 return igb_ptp_set_ts_config(netdev, ifr);
8582         default:
8583                 return -EOPNOTSUPP;
8584         }
8585 }
8586
8587 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8588 {
8589         struct igb_adapter *adapter = hw->back;
8590
8591         pci_read_config_word(adapter->pdev, reg, value);
8592 }
8593
8594 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8595 {
8596         struct igb_adapter *adapter = hw->back;
8597
8598         pci_write_config_word(adapter->pdev, reg, *value);
8599 }
8600
8601 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8602 {
8603         struct igb_adapter *adapter = hw->back;
8604
8605         if (pcie_capability_read_word(adapter->pdev, reg, value))
8606                 return -E1000_ERR_CONFIG;
8607
8608         return 0;
8609 }
8610
8611 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8612 {
8613         struct igb_adapter *adapter = hw->back;
8614
8615         if (pcie_capability_write_word(adapter->pdev, reg, *value))
8616                 return -E1000_ERR_CONFIG;
8617
8618         return 0;
8619 }
8620
8621 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8622 {
8623         struct igb_adapter *adapter = netdev_priv(netdev);
8624         struct e1000_hw *hw = &adapter->hw;
8625         u32 ctrl, rctl;
8626         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8627
8628         if (enable) {
8629                 /* enable VLAN tag insert/strip */
8630                 ctrl = rd32(E1000_CTRL);
8631                 ctrl |= E1000_CTRL_VME;
8632                 wr32(E1000_CTRL, ctrl);
8633
8634                 /* Disable CFI check */
8635                 rctl = rd32(E1000_RCTL);
8636                 rctl &= ~E1000_RCTL_CFIEN;
8637                 wr32(E1000_RCTL, rctl);
8638         } else {
8639                 /* disable VLAN tag insert/strip */
8640                 ctrl = rd32(E1000_CTRL);
8641                 ctrl &= ~E1000_CTRL_VME;
8642                 wr32(E1000_CTRL, ctrl);
8643         }
8644
8645         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8646 }
8647
8648 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8649                                __be16 proto, u16 vid)
8650 {
8651         struct igb_adapter *adapter = netdev_priv(netdev);
8652         struct e1000_hw *hw = &adapter->hw;
8653         int pf_id = adapter->vfs_allocated_count;
8654
8655         /* add the filter since PF can receive vlans w/o entry in vlvf */
8656         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8657                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8658
8659         set_bit(vid, adapter->active_vlans);
8660
8661         return 0;
8662 }
8663
8664 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8665                                 __be16 proto, u16 vid)
8666 {
8667         struct igb_adapter *adapter = netdev_priv(netdev);
8668         int pf_id = adapter->vfs_allocated_count;
8669         struct e1000_hw *hw = &adapter->hw;
8670
8671         /* remove VID from filter table */
8672         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8673                 igb_vfta_set(hw, vid, pf_id, false, true);
8674
8675         clear_bit(vid, adapter->active_vlans);
8676
8677         return 0;
8678 }
8679
8680 static void igb_restore_vlan(struct igb_adapter *adapter)
8681 {
8682         u16 vid = 1;
8683
8684         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8685         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8686
8687         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8688                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8689 }
8690
8691 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8692 {
8693         struct pci_dev *pdev = adapter->pdev;
8694         struct e1000_mac_info *mac = &adapter->hw.mac;
8695
8696         mac->autoneg = 0;
8697
8698         /* Make sure dplx is at most 1 bit and lsb of speed is not set
8699          * for the switch() below to work
8700          */
8701         if ((spd & 1) || (dplx & ~1))
8702                 goto err_inval;
8703
8704         /* Fiber NIC's only allow 1000 gbps Full duplex
8705          * and 100Mbps Full duplex for 100baseFx sfp
8706          */
8707         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8708                 switch (spd + dplx) {
8709                 case SPEED_10 + DUPLEX_HALF:
8710                 case SPEED_10 + DUPLEX_FULL:
8711                 case SPEED_100 + DUPLEX_HALF:
8712                         goto err_inval;
8713                 default:
8714                         break;
8715                 }
8716         }
8717
8718         switch (spd + dplx) {
8719         case SPEED_10 + DUPLEX_HALF:
8720                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8721                 break;
8722         case SPEED_10 + DUPLEX_FULL:
8723                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8724                 break;
8725         case SPEED_100 + DUPLEX_HALF:
8726                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8727                 break;
8728         case SPEED_100 + DUPLEX_FULL:
8729                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8730                 break;
8731         case SPEED_1000 + DUPLEX_FULL:
8732                 mac->autoneg = 1;
8733                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8734                 break;
8735         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8736         default:
8737                 goto err_inval;
8738         }
8739
8740         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8741         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8742
8743         return 0;
8744
8745 err_inval:
8746         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8747         return -EINVAL;
8748 }
8749
8750 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8751                           bool runtime)
8752 {
8753         struct net_device *netdev = pci_get_drvdata(pdev);
8754         struct igb_adapter *adapter = netdev_priv(netdev);
8755         struct e1000_hw *hw = &adapter->hw;
8756         u32 ctrl, rctl, status;
8757         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8758 #ifdef CONFIG_PM
8759         int retval = 0;
8760 #endif
8761
8762         rtnl_lock();
8763         netif_device_detach(netdev);
8764
8765         if (netif_running(netdev))
8766                 __igb_close(netdev, true);
8767
8768         igb_ptp_suspend(adapter);
8769
8770         igb_clear_interrupt_scheme(adapter);
8771         rtnl_unlock();
8772
8773 #ifdef CONFIG_PM
8774         if (!runtime) {
8775                 retval = pci_save_state(pdev);
8776                 if (retval)
8777                         return retval;
8778         }
8779 #endif
8780
8781         status = rd32(E1000_STATUS);
8782         if (status & E1000_STATUS_LU)
8783                 wufc &= ~E1000_WUFC_LNKC;
8784
8785         if (wufc) {
8786                 igb_setup_rctl(adapter);
8787                 igb_set_rx_mode(netdev);
8788
8789                 /* turn on all-multi mode if wake on multicast is enabled */
8790                 if (wufc & E1000_WUFC_MC) {
8791                         rctl = rd32(E1000_RCTL);
8792                         rctl |= E1000_RCTL_MPE;
8793                         wr32(E1000_RCTL, rctl);
8794                 }
8795
8796                 ctrl = rd32(E1000_CTRL);
8797                 /* advertise wake from D3Cold */
8798                 #define E1000_CTRL_ADVD3WUC 0x00100000
8799                 /* phy power management enable */
8800                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8801                 ctrl |= E1000_CTRL_ADVD3WUC;
8802                 wr32(E1000_CTRL, ctrl);
8803
8804                 /* Allow time for pending master requests to run */
8805                 igb_disable_pcie_master(hw);
8806
8807                 wr32(E1000_WUC, E1000_WUC_PME_EN);
8808                 wr32(E1000_WUFC, wufc);
8809         } else {
8810                 wr32(E1000_WUC, 0);
8811                 wr32(E1000_WUFC, 0);
8812         }
8813
8814         *enable_wake = wufc || adapter->en_mng_pt;
8815         if (!*enable_wake)
8816                 igb_power_down_link(adapter);
8817         else
8818                 igb_power_up_link(adapter);
8819
8820         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8821          * would have already happened in close and is redundant.
8822          */
8823         igb_release_hw_control(adapter);
8824
8825         pci_disable_device(pdev);
8826
8827         return 0;
8828 }
8829
8830 static void igb_deliver_wake_packet(struct net_device *netdev)
8831 {
8832         struct igb_adapter *adapter = netdev_priv(netdev);
8833         struct e1000_hw *hw = &adapter->hw;
8834         struct sk_buff *skb;
8835         u32 wupl;
8836
8837         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8838
8839         /* WUPM stores only the first 128 bytes of the wake packet.
8840          * Read the packet only if we have the whole thing.
8841          */
8842         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8843                 return;
8844
8845         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8846         if (!skb)
8847                 return;
8848
8849         skb_put(skb, wupl);
8850
8851         /* Ensure reads are 32-bit aligned */
8852         wupl = roundup(wupl, 4);
8853
8854         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8855
8856         skb->protocol = eth_type_trans(skb, netdev);
8857         netif_rx(skb);
8858 }
8859
8860 static int __maybe_unused igb_suspend(struct device *dev)
8861 {
8862         int retval;
8863         bool wake;
8864         struct pci_dev *pdev = to_pci_dev(dev);
8865
8866         retval = __igb_shutdown(pdev, &wake, 0);
8867         if (retval)
8868                 return retval;
8869
8870         if (wake) {
8871                 pci_prepare_to_sleep(pdev);
8872         } else {
8873                 pci_wake_from_d3(pdev, false);
8874                 pci_set_power_state(pdev, PCI_D3hot);
8875         }
8876
8877         return 0;
8878 }
8879
8880 static int __maybe_unused igb_resume(struct device *dev)
8881 {
8882         struct pci_dev *pdev = to_pci_dev(dev);
8883         struct net_device *netdev = pci_get_drvdata(pdev);
8884         struct igb_adapter *adapter = netdev_priv(netdev);
8885         struct e1000_hw *hw = &adapter->hw;
8886         u32 err, val;
8887
8888         pci_set_power_state(pdev, PCI_D0);
8889         pci_restore_state(pdev);
8890         pci_save_state(pdev);
8891
8892         if (!pci_device_is_present(pdev))
8893                 return -ENODEV;
8894         err = pci_enable_device_mem(pdev);
8895         if (err) {
8896                 dev_err(&pdev->dev,
8897                         "igb: Cannot enable PCI device from suspend\n");
8898                 return err;
8899         }
8900         pci_set_master(pdev);
8901
8902         pci_enable_wake(pdev, PCI_D3hot, 0);
8903         pci_enable_wake(pdev, PCI_D3cold, 0);
8904
8905         if (igb_init_interrupt_scheme(adapter, true)) {
8906                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8907                 return -ENOMEM;
8908         }
8909
8910         igb_reset(adapter);
8911
8912         /* let the f/w know that the h/w is now under the control of the
8913          * driver.
8914          */
8915         igb_get_hw_control(adapter);
8916
8917         val = rd32(E1000_WUS);
8918         if (val & WAKE_PKT_WUS)
8919                 igb_deliver_wake_packet(netdev);
8920
8921         wr32(E1000_WUS, ~0);
8922
8923         rtnl_lock();
8924         if (!err && netif_running(netdev))
8925                 err = __igb_open(netdev, true);
8926
8927         if (!err)
8928                 netif_device_attach(netdev);
8929         rtnl_unlock();
8930
8931         return err;
8932 }
8933
8934 static int __maybe_unused igb_runtime_idle(struct device *dev)
8935 {
8936         struct pci_dev *pdev = to_pci_dev(dev);
8937         struct net_device *netdev = pci_get_drvdata(pdev);
8938         struct igb_adapter *adapter = netdev_priv(netdev);
8939
8940         if (!igb_has_link(adapter))
8941                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8942
8943         return -EBUSY;
8944 }
8945
8946 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8947 {
8948         struct pci_dev *pdev = to_pci_dev(dev);
8949         int retval;
8950         bool wake;
8951
8952         retval = __igb_shutdown(pdev, &wake, 1);
8953         if (retval)
8954                 return retval;
8955
8956         if (wake) {
8957                 pci_prepare_to_sleep(pdev);
8958         } else {
8959                 pci_wake_from_d3(pdev, false);
8960                 pci_set_power_state(pdev, PCI_D3hot);
8961         }
8962
8963         return 0;
8964 }
8965
8966 static int __maybe_unused igb_runtime_resume(struct device *dev)
8967 {
8968         return igb_resume(dev);
8969 }
8970
8971 static void igb_shutdown(struct pci_dev *pdev)
8972 {
8973         bool wake;
8974
8975         __igb_shutdown(pdev, &wake, 0);
8976
8977         if (system_state == SYSTEM_POWER_OFF) {
8978                 pci_wake_from_d3(pdev, wake);
8979                 pci_set_power_state(pdev, PCI_D3hot);
8980         }
8981 }
8982
8983 #ifdef CONFIG_PCI_IOV
8984 static int igb_sriov_reinit(struct pci_dev *dev)
8985 {
8986         struct net_device *netdev = pci_get_drvdata(dev);
8987         struct igb_adapter *adapter = netdev_priv(netdev);
8988         struct pci_dev *pdev = adapter->pdev;
8989
8990         rtnl_lock();
8991
8992         if (netif_running(netdev))
8993                 igb_close(netdev);
8994         else
8995                 igb_reset(adapter);
8996
8997         igb_clear_interrupt_scheme(adapter);
8998
8999         igb_init_queue_configuration(adapter);
9000
9001         if (igb_init_interrupt_scheme(adapter, true)) {
9002                 rtnl_unlock();
9003                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9004                 return -ENOMEM;
9005         }
9006
9007         if (netif_running(netdev))
9008                 igb_open(netdev);
9009
9010         rtnl_unlock();
9011
9012         return 0;
9013 }
9014
9015 static int igb_pci_disable_sriov(struct pci_dev *dev)
9016 {
9017         int err = igb_disable_sriov(dev);
9018
9019         if (!err)
9020                 err = igb_sriov_reinit(dev);
9021
9022         return err;
9023 }
9024
9025 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9026 {
9027         int err = igb_enable_sriov(dev, num_vfs);
9028
9029         if (err)
9030                 goto out;
9031
9032         err = igb_sriov_reinit(dev);
9033         if (!err)
9034                 return num_vfs;
9035
9036 out:
9037         return err;
9038 }
9039
9040 #endif
9041 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9042 {
9043 #ifdef CONFIG_PCI_IOV
9044         if (num_vfs == 0)
9045                 return igb_pci_disable_sriov(dev);
9046         else
9047                 return igb_pci_enable_sriov(dev, num_vfs);
9048 #endif
9049         return 0;
9050 }
9051
9052 /**
9053  *  igb_io_error_detected - called when PCI error is detected
9054  *  @pdev: Pointer to PCI device
9055  *  @state: The current pci connection state
9056  *
9057  *  This function is called after a PCI bus error affecting
9058  *  this device has been detected.
9059  **/
9060 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9061                                               pci_channel_state_t state)
9062 {
9063         struct net_device *netdev = pci_get_drvdata(pdev);
9064         struct igb_adapter *adapter = netdev_priv(netdev);
9065
9066         netif_device_detach(netdev);
9067
9068         if (state == pci_channel_io_perm_failure)
9069                 return PCI_ERS_RESULT_DISCONNECT;
9070
9071         if (netif_running(netdev))
9072                 igb_down(adapter);
9073         pci_disable_device(pdev);
9074
9075         /* Request a slot slot reset. */
9076         return PCI_ERS_RESULT_NEED_RESET;
9077 }
9078
9079 /**
9080  *  igb_io_slot_reset - called after the pci bus has been reset.
9081  *  @pdev: Pointer to PCI device
9082  *
9083  *  Restart the card from scratch, as if from a cold-boot. Implementation
9084  *  resembles the first-half of the igb_resume routine.
9085  **/
9086 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9087 {
9088         struct net_device *netdev = pci_get_drvdata(pdev);
9089         struct igb_adapter *adapter = netdev_priv(netdev);
9090         struct e1000_hw *hw = &adapter->hw;
9091         pci_ers_result_t result;
9092
9093         if (pci_enable_device_mem(pdev)) {
9094                 dev_err(&pdev->dev,
9095                         "Cannot re-enable PCI device after reset.\n");
9096                 result = PCI_ERS_RESULT_DISCONNECT;
9097         } else {
9098                 pci_set_master(pdev);
9099                 pci_restore_state(pdev);
9100                 pci_save_state(pdev);
9101
9102                 pci_enable_wake(pdev, PCI_D3hot, 0);
9103                 pci_enable_wake(pdev, PCI_D3cold, 0);
9104
9105                 /* In case of PCI error, adapter lose its HW address
9106                  * so we should re-assign it here.
9107                  */
9108                 hw->hw_addr = adapter->io_addr;
9109
9110                 igb_reset(adapter);
9111                 wr32(E1000_WUS, ~0);
9112                 result = PCI_ERS_RESULT_RECOVERED;
9113         }
9114
9115         return result;
9116 }
9117
9118 /**
9119  *  igb_io_resume - called when traffic can start flowing again.
9120  *  @pdev: Pointer to PCI device
9121  *
9122  *  This callback is called when the error recovery driver tells us that
9123  *  its OK to resume normal operation. Implementation resembles the
9124  *  second-half of the igb_resume routine.
9125  */
9126 static void igb_io_resume(struct pci_dev *pdev)
9127 {
9128         struct net_device *netdev = pci_get_drvdata(pdev);
9129         struct igb_adapter *adapter = netdev_priv(netdev);
9130
9131         if (netif_running(netdev)) {
9132                 if (igb_up(adapter)) {
9133                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9134                         return;
9135                 }
9136         }
9137
9138         netif_device_attach(netdev);
9139
9140         /* let the f/w know that the h/w is now under the control of the
9141          * driver.
9142          */
9143         igb_get_hw_control(adapter);
9144 }
9145
9146 /**
9147  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9148  *  @adapter: Pointer to adapter structure
9149  *  @index: Index of the RAR entry which need to be synced with MAC table
9150  **/
9151 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9152 {
9153         struct e1000_hw *hw = &adapter->hw;
9154         u32 rar_low, rar_high;
9155         u8 *addr = adapter->mac_table[index].addr;
9156
9157         /* HW expects these to be in network order when they are plugged
9158          * into the registers which are little endian.  In order to guarantee
9159          * that ordering we need to do an leXX_to_cpup here in order to be
9160          * ready for the byteswap that occurs with writel
9161          */
9162         rar_low = le32_to_cpup((__le32 *)(addr));
9163         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9164
9165         /* Indicate to hardware the Address is Valid. */
9166         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9167                 if (is_valid_ether_addr(addr))
9168                         rar_high |= E1000_RAH_AV;
9169
9170                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9171                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9172
9173                 switch (hw->mac.type) {
9174                 case e1000_82575:
9175                 case e1000_i210:
9176                         if (adapter->mac_table[index].state &
9177                             IGB_MAC_STATE_QUEUE_STEERING)
9178                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9179
9180                         rar_high |= E1000_RAH_POOL_1 *
9181                                     adapter->mac_table[index].queue;
9182                         break;
9183                 default:
9184                         rar_high |= E1000_RAH_POOL_1 <<
9185                                     adapter->mac_table[index].queue;
9186                         break;
9187                 }
9188         }
9189
9190         wr32(E1000_RAL(index), rar_low);
9191         wrfl();
9192         wr32(E1000_RAH(index), rar_high);
9193         wrfl();
9194 }
9195
9196 static int igb_set_vf_mac(struct igb_adapter *adapter,
9197                           int vf, unsigned char *mac_addr)
9198 {
9199         struct e1000_hw *hw = &adapter->hw;
9200         /* VF MAC addresses start at end of receive addresses and moves
9201          * towards the first, as a result a collision should not be possible
9202          */
9203         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9204         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9205
9206         ether_addr_copy(vf_mac_addr, mac_addr);
9207         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9208         adapter->mac_table[rar_entry].queue = vf;
9209         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9210         igb_rar_set_index(adapter, rar_entry);
9211
9212         return 0;
9213 }
9214
9215 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9216 {
9217         struct igb_adapter *adapter = netdev_priv(netdev);
9218
9219         if (vf >= adapter->vfs_allocated_count)
9220                 return -EINVAL;
9221
9222         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9223          * flag and allows to overwrite the MAC via VF netdev.  This
9224          * is necessary to allow libvirt a way to restore the original
9225          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9226          * down a VM.
9227          */
9228         if (is_zero_ether_addr(mac)) {
9229                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9230                 dev_info(&adapter->pdev->dev,
9231                          "remove administratively set MAC on VF %d\n",
9232                          vf);
9233         } else if (is_valid_ether_addr(mac)) {
9234                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9235                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9236                          mac, vf);
9237                 dev_info(&adapter->pdev->dev,
9238                          "Reload the VF driver to make this change effective.");
9239                 /* Generate additional warning if PF is down */
9240                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9241                         dev_warn(&adapter->pdev->dev,
9242                                  "The VF MAC address has been set, but the PF device is not up.\n");
9243                         dev_warn(&adapter->pdev->dev,
9244                                  "Bring the PF device up before attempting to use the VF device.\n");
9245                 }
9246         } else {
9247                 return -EINVAL;
9248         }
9249         return igb_set_vf_mac(adapter, vf, mac);
9250 }
9251
9252 static int igb_link_mbps(int internal_link_speed)
9253 {
9254         switch (internal_link_speed) {
9255         case SPEED_100:
9256                 return 100;
9257         case SPEED_1000:
9258                 return 1000;
9259         default:
9260                 return 0;
9261         }
9262 }
9263
9264 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9265                                   int link_speed)
9266 {
9267         int rf_dec, rf_int;
9268         u32 bcnrc_val;
9269
9270         if (tx_rate != 0) {
9271                 /* Calculate the rate factor values to set */
9272                 rf_int = link_speed / tx_rate;
9273                 rf_dec = (link_speed - (rf_int * tx_rate));
9274                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9275                          tx_rate;
9276
9277                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9278                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9279                               E1000_RTTBCNRC_RF_INT_MASK);
9280                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9281         } else {
9282                 bcnrc_val = 0;
9283         }
9284
9285         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9286         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9287          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9288          */
9289         wr32(E1000_RTTBCNRM, 0x14);
9290         wr32(E1000_RTTBCNRC, bcnrc_val);
9291 }
9292
9293 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9294 {
9295         int actual_link_speed, i;
9296         bool reset_rate = false;
9297
9298         /* VF TX rate limit was not set or not supported */
9299         if ((adapter->vf_rate_link_speed == 0) ||
9300             (adapter->hw.mac.type != e1000_82576))
9301                 return;
9302
9303         actual_link_speed = igb_link_mbps(adapter->link_speed);
9304         if (actual_link_speed != adapter->vf_rate_link_speed) {
9305                 reset_rate = true;
9306                 adapter->vf_rate_link_speed = 0;
9307                 dev_info(&adapter->pdev->dev,
9308                          "Link speed has been changed. VF Transmit rate is disabled\n");
9309         }
9310
9311         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9312                 if (reset_rate)
9313                         adapter->vf_data[i].tx_rate = 0;
9314
9315                 igb_set_vf_rate_limit(&adapter->hw, i,
9316                                       adapter->vf_data[i].tx_rate,
9317                                       actual_link_speed);
9318         }
9319 }
9320
9321 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9322                              int min_tx_rate, int max_tx_rate)
9323 {
9324         struct igb_adapter *adapter = netdev_priv(netdev);
9325         struct e1000_hw *hw = &adapter->hw;
9326         int actual_link_speed;
9327
9328         if (hw->mac.type != e1000_82576)
9329                 return -EOPNOTSUPP;
9330
9331         if (min_tx_rate)
9332                 return -EINVAL;
9333
9334         actual_link_speed = igb_link_mbps(adapter->link_speed);
9335         if ((vf >= adapter->vfs_allocated_count) ||
9336             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9337             (max_tx_rate < 0) ||
9338             (max_tx_rate > actual_link_speed))
9339                 return -EINVAL;
9340
9341         adapter->vf_rate_link_speed = actual_link_speed;
9342         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9343         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9344
9345         return 0;
9346 }
9347
9348 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9349                                    bool setting)
9350 {
9351         struct igb_adapter *adapter = netdev_priv(netdev);
9352         struct e1000_hw *hw = &adapter->hw;
9353         u32 reg_val, reg_offset;
9354
9355         if (!adapter->vfs_allocated_count)
9356                 return -EOPNOTSUPP;
9357
9358         if (vf >= adapter->vfs_allocated_count)
9359                 return -EINVAL;
9360
9361         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9362         reg_val = rd32(reg_offset);
9363         if (setting)
9364                 reg_val |= (BIT(vf) |
9365                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9366         else
9367                 reg_val &= ~(BIT(vf) |
9368                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9369         wr32(reg_offset, reg_val);
9370
9371         adapter->vf_data[vf].spoofchk_enabled = setting;
9372         return 0;
9373 }
9374
9375 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9376 {
9377         struct igb_adapter *adapter = netdev_priv(netdev);
9378
9379         if (vf >= adapter->vfs_allocated_count)
9380                 return -EINVAL;
9381         if (adapter->vf_data[vf].trusted == setting)
9382                 return 0;
9383
9384         adapter->vf_data[vf].trusted = setting;
9385
9386         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9387                  vf, setting ? "" : "not ");
9388         return 0;
9389 }
9390
9391 static int igb_ndo_get_vf_config(struct net_device *netdev,
9392                                  int vf, struct ifla_vf_info *ivi)
9393 {
9394         struct igb_adapter *adapter = netdev_priv(netdev);
9395         if (vf >= adapter->vfs_allocated_count)
9396                 return -EINVAL;
9397         ivi->vf = vf;
9398         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9399         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9400         ivi->min_tx_rate = 0;
9401         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9402         ivi->qos = adapter->vf_data[vf].pf_qos;
9403         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9404         ivi->trusted = adapter->vf_data[vf].trusted;
9405         return 0;
9406 }
9407
9408 static void igb_vmm_control(struct igb_adapter *adapter)
9409 {
9410         struct e1000_hw *hw = &adapter->hw;
9411         u32 reg;
9412
9413         switch (hw->mac.type) {
9414         case e1000_82575:
9415         case e1000_i210:
9416         case e1000_i211:
9417         case e1000_i354:
9418         default:
9419                 /* replication is not supported for 82575 */
9420                 return;
9421         case e1000_82576:
9422                 /* notify HW that the MAC is adding vlan tags */
9423                 reg = rd32(E1000_DTXCTL);
9424                 reg |= E1000_DTXCTL_VLAN_ADDED;
9425                 wr32(E1000_DTXCTL, reg);
9426                 /* Fall through */
9427         case e1000_82580:
9428                 /* enable replication vlan tag stripping */
9429                 reg = rd32(E1000_RPLOLR);
9430                 reg |= E1000_RPLOLR_STRVLAN;
9431                 wr32(E1000_RPLOLR, reg);
9432                 /* Fall through */
9433         case e1000_i350:
9434                 /* none of the above registers are supported by i350 */
9435                 break;
9436         }
9437
9438         if (adapter->vfs_allocated_count) {
9439                 igb_vmdq_set_loopback_pf(hw, true);
9440                 igb_vmdq_set_replication_pf(hw, true);
9441                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9442                                               adapter->vfs_allocated_count);
9443         } else {
9444                 igb_vmdq_set_loopback_pf(hw, false);
9445                 igb_vmdq_set_replication_pf(hw, false);
9446         }
9447 }
9448
9449 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9450 {
9451         struct e1000_hw *hw = &adapter->hw;
9452         u32 dmac_thr;
9453         u16 hwm;
9454
9455         if (hw->mac.type > e1000_82580) {
9456                 if (adapter->flags & IGB_FLAG_DMAC) {
9457                         u32 reg;
9458
9459                         /* force threshold to 0. */
9460                         wr32(E1000_DMCTXTH, 0);
9461
9462                         /* DMA Coalescing high water mark needs to be greater
9463                          * than the Rx threshold. Set hwm to PBA - max frame
9464                          * size in 16B units, capping it at PBA - 6KB.
9465                          */
9466                         hwm = 64 * (pba - 6);
9467                         reg = rd32(E1000_FCRTC);
9468                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9469                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9470                                 & E1000_FCRTC_RTH_COAL_MASK);
9471                         wr32(E1000_FCRTC, reg);
9472
9473                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9474                          * frame size, capping it at PBA - 10KB.
9475                          */
9476                         dmac_thr = pba - 10;
9477                         reg = rd32(E1000_DMACR);
9478                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9479                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9480                                 & E1000_DMACR_DMACTHR_MASK);
9481
9482                         /* transition to L0x or L1 if available..*/
9483                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9484
9485                         /* watchdog timer= +-1000 usec in 32usec intervals */
9486                         reg |= (1000 >> 5);
9487
9488                         /* Disable BMC-to-OS Watchdog Enable */
9489                         if (hw->mac.type != e1000_i354)
9490                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9491
9492                         wr32(E1000_DMACR, reg);
9493
9494                         /* no lower threshold to disable
9495                          * coalescing(smart fifb)-UTRESH=0
9496                          */
9497                         wr32(E1000_DMCRTRH, 0);
9498
9499                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9500
9501                         wr32(E1000_DMCTLX, reg);
9502
9503                         /* free space in tx packet buffer to wake from
9504                          * DMA coal
9505                          */
9506                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9507                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9508
9509                         /* make low power state decision controlled
9510                          * by DMA coal
9511                          */
9512                         reg = rd32(E1000_PCIEMISC);
9513                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9514                         wr32(E1000_PCIEMISC, reg);
9515                 } /* endif adapter->dmac is not disabled */
9516         } else if (hw->mac.type == e1000_82580) {
9517                 u32 reg = rd32(E1000_PCIEMISC);
9518
9519                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9520                 wr32(E1000_DMACR, 0);
9521         }
9522 }
9523
9524 /**
9525  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9526  *  @hw: pointer to hardware structure
9527  *  @byte_offset: byte offset to read
9528  *  @dev_addr: device address
9529  *  @data: value read
9530  *
9531  *  Performs byte read operation over I2C interface at
9532  *  a specified device address.
9533  **/
9534 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9535                       u8 dev_addr, u8 *data)
9536 {
9537         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9538         struct i2c_client *this_client = adapter->i2c_client;
9539         s32 status;
9540         u16 swfw_mask = 0;
9541
9542         if (!this_client)
9543                 return E1000_ERR_I2C;
9544
9545         swfw_mask = E1000_SWFW_PHY0_SM;
9546
9547         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9548                 return E1000_ERR_SWFW_SYNC;
9549
9550         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9551         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9552
9553         if (status < 0)
9554                 return E1000_ERR_I2C;
9555         else {
9556                 *data = status;
9557                 return 0;
9558         }
9559 }
9560
9561 /**
9562  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9563  *  @hw: pointer to hardware structure
9564  *  @byte_offset: byte offset to write
9565  *  @dev_addr: device address
9566  *  @data: value to write
9567  *
9568  *  Performs byte write operation over I2C interface at
9569  *  a specified device address.
9570  **/
9571 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9572                        u8 dev_addr, u8 data)
9573 {
9574         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9575         struct i2c_client *this_client = adapter->i2c_client;
9576         s32 status;
9577         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9578
9579         if (!this_client)
9580                 return E1000_ERR_I2C;
9581
9582         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9583                 return E1000_ERR_SWFW_SYNC;
9584         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9585         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9586
9587         if (status)
9588                 return E1000_ERR_I2C;
9589         else
9590                 return 0;
9591
9592 }
9593
9594 int igb_reinit_queues(struct igb_adapter *adapter)
9595 {
9596         struct net_device *netdev = adapter->netdev;
9597         struct pci_dev *pdev = adapter->pdev;
9598         int err = 0;
9599
9600         if (netif_running(netdev))
9601                 igb_close(netdev);
9602
9603         igb_reset_interrupt_capability(adapter);
9604
9605         if (igb_init_interrupt_scheme(adapter, true)) {
9606                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9607                 return -ENOMEM;
9608         }
9609
9610         if (netif_running(netdev))
9611                 err = igb_open(netdev);
9612
9613         return err;
9614 }
9615
9616 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9617 {
9618         struct igb_nfc_filter *rule;
9619
9620         spin_lock(&adapter->nfc_lock);
9621
9622         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9623                 igb_erase_filter(adapter, rule);
9624
9625         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9626                 igb_erase_filter(adapter, rule);
9627
9628         spin_unlock(&adapter->nfc_lock);
9629 }
9630
9631 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9632 {
9633         struct igb_nfc_filter *rule;
9634
9635         spin_lock(&adapter->nfc_lock);
9636
9637         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9638                 igb_add_filter(adapter, rule);
9639
9640         spin_unlock(&adapter->nfc_lock);
9641 }
9642 /* igb_main.c */