docs: driver-model: move it to the driver-api book
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / ice / ice_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "ice.h"
9 #include "ice_lib.h"
10 #include "ice_dcb_lib.h"
11
12 #define DRV_VERSION     "0.7.4-k"
13 #define DRV_SUMMARY     "Intel(R) Ethernet Connection E800 Series Linux Driver"
14 const char ice_drv_ver[] = DRV_VERSION;
15 static const char ice_driver_string[] = DRV_SUMMARY;
16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
17
18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
19 MODULE_DESCRIPTION(DRV_SUMMARY);
20 MODULE_LICENSE("GPL v2");
21 MODULE_VERSION(DRV_VERSION);
22
23 static int debug = -1;
24 module_param(debug, int, 0644);
25 #ifndef CONFIG_DYNAMIC_DEBUG
26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
27 #else
28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
29 #endif /* !CONFIG_DYNAMIC_DEBUG */
30
31 static struct workqueue_struct *ice_wq;
32 static const struct net_device_ops ice_netdev_ops;
33
34 static void ice_rebuild(struct ice_pf *pf);
35
36 static void ice_vsi_release_all(struct ice_pf *pf);
37 static void ice_update_vsi_stats(struct ice_vsi *vsi);
38 static void ice_update_pf_stats(struct ice_pf *pf);
39
40 /**
41  * ice_get_tx_pending - returns number of Tx descriptors not processed
42  * @ring: the ring of descriptors
43  */
44 static u32 ice_get_tx_pending(struct ice_ring *ring)
45 {
46         u32 head, tail;
47
48         head = ring->next_to_clean;
49         tail = readl(ring->tail);
50
51         if (head != tail)
52                 return (head < tail) ?
53                         tail - head : (tail + ring->count - head);
54         return 0;
55 }
56
57 /**
58  * ice_check_for_hang_subtask - check for and recover hung queues
59  * @pf: pointer to PF struct
60  */
61 static void ice_check_for_hang_subtask(struct ice_pf *pf)
62 {
63         struct ice_vsi *vsi = NULL;
64         struct ice_hw *hw;
65         unsigned int i;
66         int packets;
67         u32 v;
68
69         ice_for_each_vsi(pf, v)
70                 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
71                         vsi = pf->vsi[v];
72                         break;
73                 }
74
75         if (!vsi || test_bit(__ICE_DOWN, vsi->state))
76                 return;
77
78         if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
79                 return;
80
81         hw = &vsi->back->hw;
82
83         for (i = 0; i < vsi->num_txq; i++) {
84                 struct ice_ring *tx_ring = vsi->tx_rings[i];
85
86                 if (tx_ring && tx_ring->desc) {
87                         /* If packet counter has not changed the queue is
88                          * likely stalled, so force an interrupt for this
89                          * queue.
90                          *
91                          * prev_pkt would be negative if there was no
92                          * pending work.
93                          */
94                         packets = tx_ring->stats.pkts & INT_MAX;
95                         if (tx_ring->tx_stats.prev_pkt == packets) {
96                                 /* Trigger sw interrupt to revive the queue */
97                                 ice_trigger_sw_intr(hw, tx_ring->q_vector);
98                                 continue;
99                         }
100
101                         /* Memory barrier between read of packet count and call
102                          * to ice_get_tx_pending()
103                          */
104                         smp_rmb();
105                         tx_ring->tx_stats.prev_pkt =
106                             ice_get_tx_pending(tx_ring) ? packets : -1;
107                 }
108         }
109 }
110
111 /**
112  * ice_init_mac_fltr - Set initial MAC filters
113  * @pf: board private structure
114  *
115  * Set initial set of MAC filters for PF VSI; configure filters for permanent
116  * address and broadcast address. If an error is encountered, netdevice will be
117  * unregistered.
118  */
119 static int ice_init_mac_fltr(struct ice_pf *pf)
120 {
121         LIST_HEAD(tmp_add_list);
122         u8 broadcast[ETH_ALEN];
123         struct ice_vsi *vsi;
124         int status;
125
126         vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
127         if (!vsi)
128                 return -EINVAL;
129
130         /* To add a MAC filter, first add the MAC to a list and then
131          * pass the list to ice_add_mac.
132          */
133
134          /* Add a unicast MAC filter so the VSI can get its packets */
135         status = ice_add_mac_to_list(vsi, &tmp_add_list,
136                                      vsi->port_info->mac.perm_addr);
137         if (status)
138                 goto unregister;
139
140         /* VSI needs to receive broadcast traffic, so add the broadcast
141          * MAC address to the list as well.
142          */
143         eth_broadcast_addr(broadcast);
144         status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
145         if (status)
146                 goto free_mac_list;
147
148         /* Program MAC filters for entries in tmp_add_list */
149         status = ice_add_mac(&pf->hw, &tmp_add_list);
150         if (status)
151                 status = -ENOMEM;
152
153 free_mac_list:
154         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
155
156 unregister:
157         /* We aren't useful with no MAC filters, so unregister if we
158          * had an error
159          */
160         if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
161                 dev_err(&pf->pdev->dev,
162                         "Could not add MAC filters error %d. Unregistering device\n",
163                         status);
164                 unregister_netdev(vsi->netdev);
165                 free_netdev(vsi->netdev);
166                 vsi->netdev = NULL;
167         }
168
169         return status;
170 }
171
172 /**
173  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
174  * @netdev: the net device on which the sync is happening
175  * @addr: MAC address to sync
176  *
177  * This is a callback function which is called by the in kernel device sync
178  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
179  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
180  * MAC filters from the hardware.
181  */
182 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
183 {
184         struct ice_netdev_priv *np = netdev_priv(netdev);
185         struct ice_vsi *vsi = np->vsi;
186
187         if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
188                 return -EINVAL;
189
190         return 0;
191 }
192
193 /**
194  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
195  * @netdev: the net device on which the unsync is happening
196  * @addr: MAC address to unsync
197  *
198  * This is a callback function which is called by the in kernel device unsync
199  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
200  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
201  * delete the MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
204 {
205         struct ice_netdev_priv *np = netdev_priv(netdev);
206         struct ice_vsi *vsi = np->vsi;
207
208         if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
209                 return -EINVAL;
210
211         return 0;
212 }
213
214 /**
215  * ice_vsi_fltr_changed - check if filter state changed
216  * @vsi: VSI to be checked
217  *
218  * returns true if filter state has changed, false otherwise.
219  */
220 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
221 {
222         return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
223                test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
224                test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
225 }
226
227 /**
228  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
229  * @vsi: the VSI being configured
230  * @promisc_m: mask of promiscuous config bits
231  * @set_promisc: enable or disable promisc flag request
232  *
233  */
234 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
235 {
236         struct ice_hw *hw = &vsi->back->hw;
237         enum ice_status status = 0;
238
239         if (vsi->type != ICE_VSI_PF)
240                 return 0;
241
242         if (vsi->vlan_ena) {
243                 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
244                                                   set_promisc);
245         } else {
246                 if (set_promisc)
247                         status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
248                                                      0);
249                 else
250                         status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
251                                                        0);
252         }
253
254         if (status)
255                 return -EIO;
256
257         return 0;
258 }
259
260 /**
261  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
262  * @vsi: ptr to the VSI
263  *
264  * Push any outstanding VSI filter changes through the AdminQ.
265  */
266 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
267 {
268         struct device *dev = &vsi->back->pdev->dev;
269         struct net_device *netdev = vsi->netdev;
270         bool promisc_forced_on = false;
271         struct ice_pf *pf = vsi->back;
272         struct ice_hw *hw = &pf->hw;
273         enum ice_status status = 0;
274         u32 changed_flags = 0;
275         u8 promisc_m;
276         int err = 0;
277
278         if (!vsi->netdev)
279                 return -EINVAL;
280
281         while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
282                 usleep_range(1000, 2000);
283
284         changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
285         vsi->current_netdev_flags = vsi->netdev->flags;
286
287         INIT_LIST_HEAD(&vsi->tmp_sync_list);
288         INIT_LIST_HEAD(&vsi->tmp_unsync_list);
289
290         if (ice_vsi_fltr_changed(vsi)) {
291                 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
292                 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
293                 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
294
295                 /* grab the netdev's addr_list_lock */
296                 netif_addr_lock_bh(netdev);
297                 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
298                               ice_add_mac_to_unsync_list);
299                 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
300                               ice_add_mac_to_unsync_list);
301                 /* our temp lists are populated. release lock */
302                 netif_addr_unlock_bh(netdev);
303         }
304
305         /* Remove MAC addresses in the unsync list */
306         status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
307         ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
308         if (status) {
309                 netdev_err(netdev, "Failed to delete MAC filters\n");
310                 /* if we failed because of alloc failures, just bail */
311                 if (status == ICE_ERR_NO_MEMORY) {
312                         err = -ENOMEM;
313                         goto out;
314                 }
315         }
316
317         /* Add MAC addresses in the sync list */
318         status = ice_add_mac(hw, &vsi->tmp_sync_list);
319         ice_free_fltr_list(dev, &vsi->tmp_sync_list);
320         /* If filter is added successfully or already exists, do not go into
321          * 'if' condition and report it as error. Instead continue processing
322          * rest of the function.
323          */
324         if (status && status != ICE_ERR_ALREADY_EXISTS) {
325                 netdev_err(netdev, "Failed to add MAC filters\n");
326                 /* If there is no more space for new umac filters, VSI
327                  * should go into promiscuous mode. There should be some
328                  * space reserved for promiscuous filters.
329                  */
330                 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
331                     !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
332                                       vsi->state)) {
333                         promisc_forced_on = true;
334                         netdev_warn(netdev,
335                                     "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
336                                     vsi->vsi_num);
337                 } else {
338                         err = -EIO;
339                         goto out;
340                 }
341         }
342         /* check for changes in promiscuous modes */
343         if (changed_flags & IFF_ALLMULTI) {
344                 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
345                         if (vsi->vlan_ena)
346                                 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
347                         else
348                                 promisc_m = ICE_MCAST_PROMISC_BITS;
349
350                         err = ice_cfg_promisc(vsi, promisc_m, true);
351                         if (err) {
352                                 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
353                                            vsi->vsi_num);
354                                 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
355                                 goto out_promisc;
356                         }
357                 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
358                         if (vsi->vlan_ena)
359                                 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
360                         else
361                                 promisc_m = ICE_MCAST_PROMISC_BITS;
362
363                         err = ice_cfg_promisc(vsi, promisc_m, false);
364                         if (err) {
365                                 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
366                                            vsi->vsi_num);
367                                 vsi->current_netdev_flags |= IFF_ALLMULTI;
368                                 goto out_promisc;
369                         }
370                 }
371         }
372
373         if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
374             test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
375                 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
376                 if (vsi->current_netdev_flags & IFF_PROMISC) {
377                         /* Apply Rx filter rule to get traffic from wire */
378                         status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
379                                                   ICE_FLTR_RX);
380                         if (status) {
381                                 netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
382                                            vsi->vsi_num);
383                                 vsi->current_netdev_flags &= ~IFF_PROMISC;
384                                 err = -EIO;
385                                 goto out_promisc;
386                         }
387                 } else {
388                         /* Clear Rx filter to remove traffic from wire */
389                         status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
390                                                   ICE_FLTR_RX);
391                         if (status) {
392                                 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
393                                            vsi->vsi_num);
394                                 vsi->current_netdev_flags |= IFF_PROMISC;
395                                 err = -EIO;
396                                 goto out_promisc;
397                         }
398                 }
399         }
400         goto exit;
401
402 out_promisc:
403         set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
404         goto exit;
405 out:
406         /* if something went wrong then set the changed flag so we try again */
407         set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
408         set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
409 exit:
410         clear_bit(__ICE_CFG_BUSY, vsi->state);
411         return err;
412 }
413
414 /**
415  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
416  * @pf: board private structure
417  */
418 static void ice_sync_fltr_subtask(struct ice_pf *pf)
419 {
420         int v;
421
422         if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
423                 return;
424
425         clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
426
427         ice_for_each_vsi(pf, v)
428                 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
429                     ice_vsi_sync_fltr(pf->vsi[v])) {
430                         /* come back and try again later */
431                         set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
432                         break;
433                 }
434 }
435
436 /**
437  * ice_dis_vsi - pause a VSI
438  * @vsi: the VSI being paused
439  * @locked: is the rtnl_lock already held
440  */
441 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
442 {
443         if (test_bit(__ICE_DOWN, vsi->state))
444                 return;
445
446         set_bit(__ICE_NEEDS_RESTART, vsi->state);
447
448         if (vsi->type == ICE_VSI_PF && vsi->netdev) {
449                 if (netif_running(vsi->netdev)) {
450                         if (!locked) {
451                                 rtnl_lock();
452                                 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
453                                 rtnl_unlock();
454                         } else {
455                                 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
456                         }
457                 } else {
458                         ice_vsi_close(vsi);
459                 }
460         }
461 }
462
463 /**
464  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
465  * @pf: the PF
466  * @locked: is the rtnl_lock already held
467  */
468 #ifdef CONFIG_DCB
469 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
470 #else
471 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
472 #endif /* CONFIG_DCB */
473 {
474         int v;
475
476         ice_for_each_vsi(pf, v)
477                 if (pf->vsi[v])
478                         ice_dis_vsi(pf->vsi[v], locked);
479 }
480
481 /**
482  * ice_prepare_for_reset - prep for the core to reset
483  * @pf: board private structure
484  *
485  * Inform or close all dependent features in prep for reset.
486  */
487 static void
488 ice_prepare_for_reset(struct ice_pf *pf)
489 {
490         struct ice_hw *hw = &pf->hw;
491
492         /* already prepared for reset */
493         if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
494                 return;
495
496         /* Notify VFs of impending reset */
497         if (ice_check_sq_alive(hw, &hw->mailboxq))
498                 ice_vc_notify_reset(pf);
499
500         /* disable the VSIs and their queues that are not already DOWN */
501         ice_pf_dis_all_vsi(pf, false);
502
503         if (hw->port_info)
504                 ice_sched_clear_port(hw->port_info);
505
506         ice_shutdown_all_ctrlq(hw);
507
508         set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
509 }
510
511 /**
512  * ice_do_reset - Initiate one of many types of resets
513  * @pf: board private structure
514  * @reset_type: reset type requested
515  * before this function was called.
516  */
517 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
518 {
519         struct device *dev = &pf->pdev->dev;
520         struct ice_hw *hw = &pf->hw;
521
522         dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
523         WARN_ON(in_interrupt());
524
525         ice_prepare_for_reset(pf);
526
527         /* trigger the reset */
528         if (ice_reset(hw, reset_type)) {
529                 dev_err(dev, "reset %d failed\n", reset_type);
530                 set_bit(__ICE_RESET_FAILED, pf->state);
531                 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
532                 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
533                 clear_bit(__ICE_PFR_REQ, pf->state);
534                 clear_bit(__ICE_CORER_REQ, pf->state);
535                 clear_bit(__ICE_GLOBR_REQ, pf->state);
536                 return;
537         }
538
539         /* PFR is a bit of a special case because it doesn't result in an OICR
540          * interrupt. So for PFR, rebuild after the reset and clear the reset-
541          * associated state bits.
542          */
543         if (reset_type == ICE_RESET_PFR) {
544                 pf->pfr_count++;
545                 ice_rebuild(pf);
546                 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
547                 clear_bit(__ICE_PFR_REQ, pf->state);
548                 ice_reset_all_vfs(pf, true);
549         }
550 }
551
552 /**
553  * ice_reset_subtask - Set up for resetting the device and driver
554  * @pf: board private structure
555  */
556 static void ice_reset_subtask(struct ice_pf *pf)
557 {
558         enum ice_reset_req reset_type = ICE_RESET_INVAL;
559
560         /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
561          * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
562          * of reset is pending and sets bits in pf->state indicating the reset
563          * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
564          * prepare for pending reset if not already (for PF software-initiated
565          * global resets the software should already be prepared for it as
566          * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
567          * by firmware or software on other PFs, that bit is not set so prepare
568          * for the reset now), poll for reset done, rebuild and return.
569          */
570         if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
571                 /* Perform the largest reset requested */
572                 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
573                         reset_type = ICE_RESET_CORER;
574                 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
575                         reset_type = ICE_RESET_GLOBR;
576                 /* return if no valid reset type requested */
577                 if (reset_type == ICE_RESET_INVAL)
578                         return;
579                 ice_prepare_for_reset(pf);
580
581                 /* make sure we are ready to rebuild */
582                 if (ice_check_reset(&pf->hw)) {
583                         set_bit(__ICE_RESET_FAILED, pf->state);
584                 } else {
585                         /* done with reset. start rebuild */
586                         pf->hw.reset_ongoing = false;
587                         ice_rebuild(pf);
588                         /* clear bit to resume normal operations, but
589                          * ICE_NEEDS_RESTART bit is set in case rebuild failed
590                          */
591                         clear_bit(__ICE_RESET_OICR_RECV, pf->state);
592                         clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
593                         clear_bit(__ICE_PFR_REQ, pf->state);
594                         clear_bit(__ICE_CORER_REQ, pf->state);
595                         clear_bit(__ICE_GLOBR_REQ, pf->state);
596                         ice_reset_all_vfs(pf, true);
597                 }
598
599                 return;
600         }
601
602         /* No pending resets to finish processing. Check for new resets */
603         if (test_bit(__ICE_PFR_REQ, pf->state))
604                 reset_type = ICE_RESET_PFR;
605         if (test_bit(__ICE_CORER_REQ, pf->state))
606                 reset_type = ICE_RESET_CORER;
607         if (test_bit(__ICE_GLOBR_REQ, pf->state))
608                 reset_type = ICE_RESET_GLOBR;
609         /* If no valid reset type requested just return */
610         if (reset_type == ICE_RESET_INVAL)
611                 return;
612
613         /* reset if not already down or busy */
614         if (!test_bit(__ICE_DOWN, pf->state) &&
615             !test_bit(__ICE_CFG_BUSY, pf->state)) {
616                 ice_do_reset(pf, reset_type);
617         }
618 }
619
620 /**
621  * ice_print_link_msg - print link up or down message
622  * @vsi: the VSI whose link status is being queried
623  * @isup: boolean for if the link is now up or down
624  */
625 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
626 {
627         struct ice_aqc_get_phy_caps_data *caps;
628         enum ice_status status;
629         const char *fec_req;
630         const char *speed;
631         const char *fec;
632         const char *fc;
633
634         if (!vsi)
635                 return;
636
637         if (vsi->current_isup == isup)
638                 return;
639
640         vsi->current_isup = isup;
641
642         if (!isup) {
643                 netdev_info(vsi->netdev, "NIC Link is Down\n");
644                 return;
645         }
646
647         switch (vsi->port_info->phy.link_info.link_speed) {
648         case ICE_AQ_LINK_SPEED_100GB:
649                 speed = "100 G";
650                 break;
651         case ICE_AQ_LINK_SPEED_50GB:
652                 speed = "50 G";
653                 break;
654         case ICE_AQ_LINK_SPEED_40GB:
655                 speed = "40 G";
656                 break;
657         case ICE_AQ_LINK_SPEED_25GB:
658                 speed = "25 G";
659                 break;
660         case ICE_AQ_LINK_SPEED_20GB:
661                 speed = "20 G";
662                 break;
663         case ICE_AQ_LINK_SPEED_10GB:
664                 speed = "10 G";
665                 break;
666         case ICE_AQ_LINK_SPEED_5GB:
667                 speed = "5 G";
668                 break;
669         case ICE_AQ_LINK_SPEED_2500MB:
670                 speed = "2.5 G";
671                 break;
672         case ICE_AQ_LINK_SPEED_1000MB:
673                 speed = "1 G";
674                 break;
675         case ICE_AQ_LINK_SPEED_100MB:
676                 speed = "100 M";
677                 break;
678         default:
679                 speed = "Unknown";
680                 break;
681         }
682
683         switch (vsi->port_info->fc.current_mode) {
684         case ICE_FC_FULL:
685                 fc = "Rx/Tx";
686                 break;
687         case ICE_FC_TX_PAUSE:
688                 fc = "Tx";
689                 break;
690         case ICE_FC_RX_PAUSE:
691                 fc = "Rx";
692                 break;
693         case ICE_FC_NONE:
694                 fc = "None";
695                 break;
696         default:
697                 fc = "Unknown";
698                 break;
699         }
700
701         /* Get FEC mode based on negotiated link info */
702         switch (vsi->port_info->phy.link_info.fec_info) {
703         case ICE_AQ_LINK_25G_RS_528_FEC_EN:
704                 /* fall through */
705         case ICE_AQ_LINK_25G_RS_544_FEC_EN:
706                 fec = "RS-FEC";
707                 break;
708         case ICE_AQ_LINK_25G_KR_FEC_EN:
709                 fec = "FC-FEC/BASE-R";
710                 break;
711         default:
712                 fec = "NONE";
713                 break;
714         }
715
716         /* Get FEC mode requested based on PHY caps last SW configuration */
717         caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
718         if (!caps) {
719                 fec_req = "Unknown";
720                 goto done;
721         }
722
723         status = ice_aq_get_phy_caps(vsi->port_info, false,
724                                      ICE_AQC_REPORT_SW_CFG, caps, NULL);
725         if (status)
726                 netdev_info(vsi->netdev, "Get phy capability failed.\n");
727
728         if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
729             caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
730                 fec_req = "RS-FEC";
731         else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
732                  caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
733                 fec_req = "FC-FEC/BASE-R";
734         else
735                 fec_req = "NONE";
736
737         devm_kfree(&vsi->back->pdev->dev, caps);
738
739 done:
740         netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Flow Control: %s\n",
741                     speed, fec_req, fec, fc);
742 }
743
744 /**
745  * ice_vsi_link_event - update the VSI's netdev
746  * @vsi: the VSI on which the link event occurred
747  * @link_up: whether or not the VSI needs to be set up or down
748  */
749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
750 {
751         if (!vsi)
752                 return;
753
754         if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
755                 return;
756
757         if (vsi->type == ICE_VSI_PF) {
758                 if (link_up == netif_carrier_ok(vsi->netdev))
759                         return;
760
761                 if (link_up) {
762                         netif_carrier_on(vsi->netdev);
763                         netif_tx_wake_all_queues(vsi->netdev);
764                 } else {
765                         netif_carrier_off(vsi->netdev);
766                         netif_tx_stop_all_queues(vsi->netdev);
767                 }
768         }
769 }
770
771 /**
772  * ice_link_event - process the link event
773  * @pf: PF that the link event is associated with
774  * @pi: port_info for the port that the link event is associated with
775  * @link_up: true if the physical link is up and false if it is down
776  * @link_speed: current link speed received from the link event
777  *
778  * Returns 0 on success and negative on failure
779  */
780 static int
781 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
782                u16 link_speed)
783 {
784         struct ice_phy_info *phy_info;
785         struct ice_vsi *vsi;
786         u16 old_link_speed;
787         bool old_link;
788         int result;
789
790         phy_info = &pi->phy;
791         phy_info->link_info_old = phy_info->link_info;
792
793         old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
794         old_link_speed = phy_info->link_info_old.link_speed;
795
796         /* update the link info structures and re-enable link events,
797          * don't bail on failure due to other book keeping needed
798          */
799         result = ice_update_link_info(pi);
800         if (result)
801                 dev_dbg(&pf->pdev->dev,
802                         "Failed to update link status and re-enable link events for port %d\n",
803                         pi->lport);
804
805         /* if the old link up/down and speed is the same as the new */
806         if (link_up == old_link && link_speed == old_link_speed)
807                 return result;
808
809         vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
810         if (!vsi || !vsi->port_info)
811                 return -EINVAL;
812
813         ice_vsi_link_event(vsi, link_up);
814         ice_print_link_msg(vsi, link_up);
815
816         if (pf->num_alloc_vfs)
817                 ice_vc_notify_link_state(pf);
818
819         return result;
820 }
821
822 /**
823  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
824  * @pf: board private structure
825  */
826 static void ice_watchdog_subtask(struct ice_pf *pf)
827 {
828         int i;
829
830         /* if interface is down do nothing */
831         if (test_bit(__ICE_DOWN, pf->state) ||
832             test_bit(__ICE_CFG_BUSY, pf->state))
833                 return;
834
835         /* make sure we don't do these things too often */
836         if (time_before(jiffies,
837                         pf->serv_tmr_prev + pf->serv_tmr_period))
838                 return;
839
840         pf->serv_tmr_prev = jiffies;
841
842         /* Update the stats for active netdevs so the network stack
843          * can look at updated numbers whenever it cares to
844          */
845         ice_update_pf_stats(pf);
846         ice_for_each_vsi(pf, i)
847                 if (pf->vsi[i] && pf->vsi[i]->netdev)
848                         ice_update_vsi_stats(pf->vsi[i]);
849 }
850
851 /**
852  * ice_init_link_events - enable/initialize link events
853  * @pi: pointer to the port_info instance
854  *
855  * Returns -EIO on failure, 0 on success
856  */
857 static int ice_init_link_events(struct ice_port_info *pi)
858 {
859         u16 mask;
860
861         mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
862                        ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
863
864         if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
865                 dev_dbg(ice_hw_to_dev(pi->hw),
866                         "Failed to set link event mask for port %d\n",
867                         pi->lport);
868                 return -EIO;
869         }
870
871         if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
872                 dev_dbg(ice_hw_to_dev(pi->hw),
873                         "Failed to enable link events for port %d\n",
874                         pi->lport);
875                 return -EIO;
876         }
877
878         return 0;
879 }
880
881 /**
882  * ice_handle_link_event - handle link event via ARQ
883  * @pf: PF that the link event is associated with
884  * @event: event structure containing link status info
885  */
886 static int
887 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
888 {
889         struct ice_aqc_get_link_status_data *link_data;
890         struct ice_port_info *port_info;
891         int status;
892
893         link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
894         port_info = pf->hw.port_info;
895         if (!port_info)
896                 return -EINVAL;
897
898         status = ice_link_event(pf, port_info,
899                                 !!(link_data->link_info & ICE_AQ_LINK_UP),
900                                 le16_to_cpu(link_data->link_speed));
901         if (status)
902                 dev_dbg(&pf->pdev->dev,
903                         "Could not process link event, error %d\n", status);
904
905         return status;
906 }
907
908 /**
909  * __ice_clean_ctrlq - helper function to clean controlq rings
910  * @pf: ptr to struct ice_pf
911  * @q_type: specific Control queue type
912  */
913 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
914 {
915         struct ice_rq_event_info event;
916         struct ice_hw *hw = &pf->hw;
917         struct ice_ctl_q_info *cq;
918         u16 pending, i = 0;
919         const char *qtype;
920         u32 oldval, val;
921
922         /* Do not clean control queue if/when PF reset fails */
923         if (test_bit(__ICE_RESET_FAILED, pf->state))
924                 return 0;
925
926         switch (q_type) {
927         case ICE_CTL_Q_ADMIN:
928                 cq = &hw->adminq;
929                 qtype = "Admin";
930                 break;
931         case ICE_CTL_Q_MAILBOX:
932                 cq = &hw->mailboxq;
933                 qtype = "Mailbox";
934                 break;
935         default:
936                 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
937                          q_type);
938                 return 0;
939         }
940
941         /* check for error indications - PF_xx_AxQLEN register layout for
942          * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
943          */
944         val = rd32(hw, cq->rq.len);
945         if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
946                    PF_FW_ARQLEN_ARQCRIT_M)) {
947                 oldval = val;
948                 if (val & PF_FW_ARQLEN_ARQVFE_M)
949                         dev_dbg(&pf->pdev->dev,
950                                 "%s Receive Queue VF Error detected\n", qtype);
951                 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
952                         dev_dbg(&pf->pdev->dev,
953                                 "%s Receive Queue Overflow Error detected\n",
954                                 qtype);
955                 }
956                 if (val & PF_FW_ARQLEN_ARQCRIT_M)
957                         dev_dbg(&pf->pdev->dev,
958                                 "%s Receive Queue Critical Error detected\n",
959                                 qtype);
960                 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
961                          PF_FW_ARQLEN_ARQCRIT_M);
962                 if (oldval != val)
963                         wr32(hw, cq->rq.len, val);
964         }
965
966         val = rd32(hw, cq->sq.len);
967         if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
968                    PF_FW_ATQLEN_ATQCRIT_M)) {
969                 oldval = val;
970                 if (val & PF_FW_ATQLEN_ATQVFE_M)
971                         dev_dbg(&pf->pdev->dev,
972                                 "%s Send Queue VF Error detected\n", qtype);
973                 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
974                         dev_dbg(&pf->pdev->dev,
975                                 "%s Send Queue Overflow Error detected\n",
976                                 qtype);
977                 }
978                 if (val & PF_FW_ATQLEN_ATQCRIT_M)
979                         dev_dbg(&pf->pdev->dev,
980                                 "%s Send Queue Critical Error detected\n",
981                                 qtype);
982                 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
983                          PF_FW_ATQLEN_ATQCRIT_M);
984                 if (oldval != val)
985                         wr32(hw, cq->sq.len, val);
986         }
987
988         event.buf_len = cq->rq_buf_size;
989         event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
990                                      GFP_KERNEL);
991         if (!event.msg_buf)
992                 return 0;
993
994         do {
995                 enum ice_status ret;
996                 u16 opcode;
997
998                 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
999                 if (ret == ICE_ERR_AQ_NO_WORK)
1000                         break;
1001                 if (ret) {
1002                         dev_err(&pf->pdev->dev,
1003                                 "%s Receive Queue event error %d\n", qtype,
1004                                 ret);
1005                         break;
1006                 }
1007
1008                 opcode = le16_to_cpu(event.desc.opcode);
1009
1010                 switch (opcode) {
1011                 case ice_aqc_opc_get_link_status:
1012                         if (ice_handle_link_event(pf, &event))
1013                                 dev_err(&pf->pdev->dev,
1014                                         "Could not handle link event\n");
1015                         break;
1016                 case ice_mbx_opc_send_msg_to_pf:
1017                         ice_vc_process_vf_msg(pf, &event);
1018                         break;
1019                 case ice_aqc_opc_fw_logging:
1020                         ice_output_fw_log(hw, &event.desc, event.msg_buf);
1021                         break;
1022                 case ice_aqc_opc_lldp_set_mib_change:
1023                         ice_dcb_process_lldp_set_mib_change(pf, &event);
1024                         break;
1025                 default:
1026                         dev_dbg(&pf->pdev->dev,
1027                                 "%s Receive Queue unknown event 0x%04x ignored\n",
1028                                 qtype, opcode);
1029                         break;
1030                 }
1031         } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1032
1033         devm_kfree(&pf->pdev->dev, event.msg_buf);
1034
1035         return pending && (i == ICE_DFLT_IRQ_WORK);
1036 }
1037
1038 /**
1039  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1040  * @hw: pointer to hardware info
1041  * @cq: control queue information
1042  *
1043  * returns true if there are pending messages in a queue, false if there aren't
1044  */
1045 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1046 {
1047         u16 ntu;
1048
1049         ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1050         return cq->rq.next_to_clean != ntu;
1051 }
1052
1053 /**
1054  * ice_clean_adminq_subtask - clean the AdminQ rings
1055  * @pf: board private structure
1056  */
1057 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1058 {
1059         struct ice_hw *hw = &pf->hw;
1060
1061         if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1062                 return;
1063
1064         if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1065                 return;
1066
1067         clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1068
1069         /* There might be a situation where new messages arrive to a control
1070          * queue between processing the last message and clearing the
1071          * EVENT_PENDING bit. So before exiting, check queue head again (using
1072          * ice_ctrlq_pending) and process new messages if any.
1073          */
1074         if (ice_ctrlq_pending(hw, &hw->adminq))
1075                 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1076
1077         ice_flush(hw);
1078 }
1079
1080 /**
1081  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1082  * @pf: board private structure
1083  */
1084 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1085 {
1086         struct ice_hw *hw = &pf->hw;
1087
1088         if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1089                 return;
1090
1091         if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1092                 return;
1093
1094         clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1095
1096         if (ice_ctrlq_pending(hw, &hw->mailboxq))
1097                 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1098
1099         ice_flush(hw);
1100 }
1101
1102 /**
1103  * ice_service_task_schedule - schedule the service task to wake up
1104  * @pf: board private structure
1105  *
1106  * If not already scheduled, this puts the task into the work queue.
1107  */
1108 static void ice_service_task_schedule(struct ice_pf *pf)
1109 {
1110         if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1111             !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1112             !test_bit(__ICE_NEEDS_RESTART, pf->state))
1113                 queue_work(ice_wq, &pf->serv_task);
1114 }
1115
1116 /**
1117  * ice_service_task_complete - finish up the service task
1118  * @pf: board private structure
1119  */
1120 static void ice_service_task_complete(struct ice_pf *pf)
1121 {
1122         WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1123
1124         /* force memory (pf->state) to sync before next service task */
1125         smp_mb__before_atomic();
1126         clear_bit(__ICE_SERVICE_SCHED, pf->state);
1127 }
1128
1129 /**
1130  * ice_service_task_stop - stop service task and cancel works
1131  * @pf: board private structure
1132  */
1133 static void ice_service_task_stop(struct ice_pf *pf)
1134 {
1135         set_bit(__ICE_SERVICE_DIS, pf->state);
1136
1137         if (pf->serv_tmr.function)
1138                 del_timer_sync(&pf->serv_tmr);
1139         if (pf->serv_task.func)
1140                 cancel_work_sync(&pf->serv_task);
1141
1142         clear_bit(__ICE_SERVICE_SCHED, pf->state);
1143 }
1144
1145 /**
1146  * ice_service_task_restart - restart service task and schedule works
1147  * @pf: board private structure
1148  *
1149  * This function is needed for suspend and resume works (e.g WoL scenario)
1150  */
1151 static void ice_service_task_restart(struct ice_pf *pf)
1152 {
1153         clear_bit(__ICE_SERVICE_DIS, pf->state);
1154         ice_service_task_schedule(pf);
1155 }
1156
1157 /**
1158  * ice_service_timer - timer callback to schedule service task
1159  * @t: pointer to timer_list
1160  */
1161 static void ice_service_timer(struct timer_list *t)
1162 {
1163         struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1164
1165         mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1166         ice_service_task_schedule(pf);
1167 }
1168
1169 /**
1170  * ice_handle_mdd_event - handle malicious driver detect event
1171  * @pf: pointer to the PF structure
1172  *
1173  * Called from service task. OICR interrupt handler indicates MDD event
1174  */
1175 static void ice_handle_mdd_event(struct ice_pf *pf)
1176 {
1177         struct ice_hw *hw = &pf->hw;
1178         bool mdd_detected = false;
1179         u32 reg;
1180         int i;
1181
1182         if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1183                 return;
1184
1185         /* find what triggered the MDD event */
1186         reg = rd32(hw, GL_MDET_TX_PQM);
1187         if (reg & GL_MDET_TX_PQM_VALID_M) {
1188                 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1189                                 GL_MDET_TX_PQM_PF_NUM_S;
1190                 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1191                                 GL_MDET_TX_PQM_VF_NUM_S;
1192                 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1193                                 GL_MDET_TX_PQM_MAL_TYPE_S;
1194                 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1195                                 GL_MDET_TX_PQM_QNUM_S);
1196
1197                 if (netif_msg_tx_err(pf))
1198                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1199                                  event, queue, pf_num, vf_num);
1200                 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1201                 mdd_detected = true;
1202         }
1203
1204         reg = rd32(hw, GL_MDET_TX_TCLAN);
1205         if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1206                 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1207                                 GL_MDET_TX_TCLAN_PF_NUM_S;
1208                 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1209                                 GL_MDET_TX_TCLAN_VF_NUM_S;
1210                 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1211                                 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1212                 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1213                                 GL_MDET_TX_TCLAN_QNUM_S);
1214
1215                 if (netif_msg_rx_err(pf))
1216                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1217                                  event, queue, pf_num, vf_num);
1218                 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1219                 mdd_detected = true;
1220         }
1221
1222         reg = rd32(hw, GL_MDET_RX);
1223         if (reg & GL_MDET_RX_VALID_M) {
1224                 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1225                                 GL_MDET_RX_PF_NUM_S;
1226                 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1227                                 GL_MDET_RX_VF_NUM_S;
1228                 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1229                                 GL_MDET_RX_MAL_TYPE_S;
1230                 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1231                                 GL_MDET_RX_QNUM_S);
1232
1233                 if (netif_msg_rx_err(pf))
1234                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1235                                  event, queue, pf_num, vf_num);
1236                 wr32(hw, GL_MDET_RX, 0xffffffff);
1237                 mdd_detected = true;
1238         }
1239
1240         if (mdd_detected) {
1241                 bool pf_mdd_detected = false;
1242
1243                 reg = rd32(hw, PF_MDET_TX_PQM);
1244                 if (reg & PF_MDET_TX_PQM_VALID_M) {
1245                         wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1246                         dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1247                         pf_mdd_detected = true;
1248                 }
1249
1250                 reg = rd32(hw, PF_MDET_TX_TCLAN);
1251                 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1252                         wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1253                         dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1254                         pf_mdd_detected = true;
1255                 }
1256
1257                 reg = rd32(hw, PF_MDET_RX);
1258                 if (reg & PF_MDET_RX_VALID_M) {
1259                         wr32(hw, PF_MDET_RX, 0xFFFF);
1260                         dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1261                         pf_mdd_detected = true;
1262                 }
1263                 /* Queue belongs to the PF initiate a reset */
1264                 if (pf_mdd_detected) {
1265                         set_bit(__ICE_NEEDS_RESTART, pf->state);
1266                         ice_service_task_schedule(pf);
1267                 }
1268         }
1269
1270         /* check to see if one of the VFs caused the MDD */
1271         for (i = 0; i < pf->num_alloc_vfs; i++) {
1272                 struct ice_vf *vf = &pf->vf[i];
1273
1274                 bool vf_mdd_detected = false;
1275
1276                 reg = rd32(hw, VP_MDET_TX_PQM(i));
1277                 if (reg & VP_MDET_TX_PQM_VALID_M) {
1278                         wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1279                         vf_mdd_detected = true;
1280                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1281                                  i);
1282                 }
1283
1284                 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1285                 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1286                         wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1287                         vf_mdd_detected = true;
1288                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1289                                  i);
1290                 }
1291
1292                 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1293                 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1294                         wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1295                         vf_mdd_detected = true;
1296                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1297                                  i);
1298                 }
1299
1300                 reg = rd32(hw, VP_MDET_RX(i));
1301                 if (reg & VP_MDET_RX_VALID_M) {
1302                         wr32(hw, VP_MDET_RX(i), 0xFFFF);
1303                         vf_mdd_detected = true;
1304                         dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1305                                  i);
1306                 }
1307
1308                 if (vf_mdd_detected) {
1309                         vf->num_mdd_events++;
1310                         if (vf->num_mdd_events > 1)
1311                                 dev_info(&pf->pdev->dev, "VF %d has had %llu MDD events since last boot\n",
1312                                          i, vf->num_mdd_events);
1313                 }
1314         }
1315 }
1316
1317 /**
1318  * ice_service_task - manage and run subtasks
1319  * @work: pointer to work_struct contained by the PF struct
1320  */
1321 static void ice_service_task(struct work_struct *work)
1322 {
1323         struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1324         unsigned long start_time = jiffies;
1325
1326         /* subtasks */
1327
1328         /* process reset requests first */
1329         ice_reset_subtask(pf);
1330
1331         /* bail if a reset/recovery cycle is pending or rebuild failed */
1332         if (ice_is_reset_in_progress(pf->state) ||
1333             test_bit(__ICE_SUSPENDED, pf->state) ||
1334             test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1335                 ice_service_task_complete(pf);
1336                 return;
1337         }
1338
1339         ice_check_for_hang_subtask(pf);
1340         ice_sync_fltr_subtask(pf);
1341         ice_handle_mdd_event(pf);
1342         ice_process_vflr_event(pf);
1343         ice_watchdog_subtask(pf);
1344         ice_clean_adminq_subtask(pf);
1345         ice_clean_mailboxq_subtask(pf);
1346
1347         /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1348         ice_service_task_complete(pf);
1349
1350         /* If the tasks have taken longer than one service timer period
1351          * or there is more work to be done, reset the service timer to
1352          * schedule the service task now.
1353          */
1354         if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1355             test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1356             test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1357             test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1358             test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1359                 mod_timer(&pf->serv_tmr, jiffies);
1360 }
1361
1362 /**
1363  * ice_set_ctrlq_len - helper function to set controlq length
1364  * @hw: pointer to the HW instance
1365  */
1366 static void ice_set_ctrlq_len(struct ice_hw *hw)
1367 {
1368         hw->adminq.num_rq_entries = ICE_AQ_LEN;
1369         hw->adminq.num_sq_entries = ICE_AQ_LEN;
1370         hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1371         hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1372         hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
1373         hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
1374         hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1375         hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1376 }
1377
1378 /**
1379  * ice_irq_affinity_notify - Callback for affinity changes
1380  * @notify: context as to what irq was changed
1381  * @mask: the new affinity mask
1382  *
1383  * This is a callback function used by the irq_set_affinity_notifier function
1384  * so that we may register to receive changes to the irq affinity masks.
1385  */
1386 static void
1387 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1388                         const cpumask_t *mask)
1389 {
1390         struct ice_q_vector *q_vector =
1391                 container_of(notify, struct ice_q_vector, affinity_notify);
1392
1393         cpumask_copy(&q_vector->affinity_mask, mask);
1394 }
1395
1396 /**
1397  * ice_irq_affinity_release - Callback for affinity notifier release
1398  * @ref: internal core kernel usage
1399  *
1400  * This is a callback function used by the irq_set_affinity_notifier function
1401  * to inform the current notification subscriber that they will no longer
1402  * receive notifications.
1403  */
1404 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1405
1406 /**
1407  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1408  * @vsi: the VSI being configured
1409  */
1410 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1411 {
1412         struct ice_pf *pf = vsi->back;
1413         struct ice_hw *hw = &pf->hw;
1414
1415         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1416                 int i;
1417
1418                 ice_for_each_q_vector(vsi, i)
1419                         ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1420         }
1421
1422         ice_flush(hw);
1423         return 0;
1424 }
1425
1426 /**
1427  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1428  * @vsi: the VSI being configured
1429  * @basename: name for the vector
1430  */
1431 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1432 {
1433         int q_vectors = vsi->num_q_vectors;
1434         struct ice_pf *pf = vsi->back;
1435         int base = vsi->base_vector;
1436         int rx_int_idx = 0;
1437         int tx_int_idx = 0;
1438         int vector, err;
1439         int irq_num;
1440
1441         for (vector = 0; vector < q_vectors; vector++) {
1442                 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1443
1444                 irq_num = pf->msix_entries[base + vector].vector;
1445
1446                 if (q_vector->tx.ring && q_vector->rx.ring) {
1447                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1448                                  "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1449                         tx_int_idx++;
1450                 } else if (q_vector->rx.ring) {
1451                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1452                                  "%s-%s-%d", basename, "rx", rx_int_idx++);
1453                 } else if (q_vector->tx.ring) {
1454                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1455                                  "%s-%s-%d", basename, "tx", tx_int_idx++);
1456                 } else {
1457                         /* skip this unused q_vector */
1458                         continue;
1459                 }
1460                 err = devm_request_irq(&pf->pdev->dev, irq_num,
1461                                        vsi->irq_handler, 0,
1462                                        q_vector->name, q_vector);
1463                 if (err) {
1464                         netdev_err(vsi->netdev,
1465                                    "MSIX request_irq failed, error: %d\n", err);
1466                         goto free_q_irqs;
1467                 }
1468
1469                 /* register for affinity change notifications */
1470                 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1471                 q_vector->affinity_notify.release = ice_irq_affinity_release;
1472                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1473
1474                 /* assign the mask for this irq */
1475                 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1476         }
1477
1478         vsi->irqs_ready = true;
1479         return 0;
1480
1481 free_q_irqs:
1482         while (vector) {
1483                 vector--;
1484                 irq_num = pf->msix_entries[base + vector].vector,
1485                 irq_set_affinity_notifier(irq_num, NULL);
1486                 irq_set_affinity_hint(irq_num, NULL);
1487                 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1488         }
1489         return err;
1490 }
1491
1492 /**
1493  * ice_ena_misc_vector - enable the non-queue interrupts
1494  * @pf: board private structure
1495  */
1496 static void ice_ena_misc_vector(struct ice_pf *pf)
1497 {
1498         struct ice_hw *hw = &pf->hw;
1499         u32 val;
1500
1501         /* clear things first */
1502         wr32(hw, PFINT_OICR_ENA, 0);    /* disable all */
1503         rd32(hw, PFINT_OICR);           /* read to clear */
1504
1505         val = (PFINT_OICR_ECC_ERR_M |
1506                PFINT_OICR_MAL_DETECT_M |
1507                PFINT_OICR_GRST_M |
1508                PFINT_OICR_PCI_EXCEPTION_M |
1509                PFINT_OICR_VFLR_M |
1510                PFINT_OICR_HMC_ERR_M |
1511                PFINT_OICR_PE_CRITERR_M);
1512
1513         wr32(hw, PFINT_OICR_ENA, val);
1514
1515         /* SW_ITR_IDX = 0, but don't change INTENA */
1516         wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1517              GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1518 }
1519
1520 /**
1521  * ice_misc_intr - misc interrupt handler
1522  * @irq: interrupt number
1523  * @data: pointer to a q_vector
1524  */
1525 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1526 {
1527         struct ice_pf *pf = (struct ice_pf *)data;
1528         struct ice_hw *hw = &pf->hw;
1529         irqreturn_t ret = IRQ_NONE;
1530         u32 oicr, ena_mask;
1531
1532         set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1533         set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1534
1535         oicr = rd32(hw, PFINT_OICR);
1536         ena_mask = rd32(hw, PFINT_OICR_ENA);
1537
1538         if (oicr & PFINT_OICR_SWINT_M) {
1539                 ena_mask &= ~PFINT_OICR_SWINT_M;
1540                 pf->sw_int_count++;
1541         }
1542
1543         if (oicr & PFINT_OICR_MAL_DETECT_M) {
1544                 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1545                 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1546         }
1547         if (oicr & PFINT_OICR_VFLR_M) {
1548                 ena_mask &= ~PFINT_OICR_VFLR_M;
1549                 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
1550         }
1551
1552         if (oicr & PFINT_OICR_GRST_M) {
1553                 u32 reset;
1554
1555                 /* we have a reset warning */
1556                 ena_mask &= ~PFINT_OICR_GRST_M;
1557                 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1558                         GLGEN_RSTAT_RESET_TYPE_S;
1559
1560                 if (reset == ICE_RESET_CORER)
1561                         pf->corer_count++;
1562                 else if (reset == ICE_RESET_GLOBR)
1563                         pf->globr_count++;
1564                 else if (reset == ICE_RESET_EMPR)
1565                         pf->empr_count++;
1566                 else
1567                         dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1568                                 reset);
1569
1570                 /* If a reset cycle isn't already in progress, we set a bit in
1571                  * pf->state so that the service task can start a reset/rebuild.
1572                  * We also make note of which reset happened so that peer
1573                  * devices/drivers can be informed.
1574                  */
1575                 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1576                         if (reset == ICE_RESET_CORER)
1577                                 set_bit(__ICE_CORER_RECV, pf->state);
1578                         else if (reset == ICE_RESET_GLOBR)
1579                                 set_bit(__ICE_GLOBR_RECV, pf->state);
1580                         else
1581                                 set_bit(__ICE_EMPR_RECV, pf->state);
1582
1583                         /* There are couple of different bits at play here.
1584                          * hw->reset_ongoing indicates whether the hardware is
1585                          * in reset. This is set to true when a reset interrupt
1586                          * is received and set back to false after the driver
1587                          * has determined that the hardware is out of reset.
1588                          *
1589                          * __ICE_RESET_OICR_RECV in pf->state indicates
1590                          * that a post reset rebuild is required before the
1591                          * driver is operational again. This is set above.
1592                          *
1593                          * As this is the start of the reset/rebuild cycle, set
1594                          * both to indicate that.
1595                          */
1596                         hw->reset_ongoing = true;
1597                 }
1598         }
1599
1600         if (oicr & PFINT_OICR_HMC_ERR_M) {
1601                 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1602                 dev_dbg(&pf->pdev->dev,
1603                         "HMC Error interrupt - info 0x%x, data 0x%x\n",
1604                         rd32(hw, PFHMC_ERRORINFO),
1605                         rd32(hw, PFHMC_ERRORDATA));
1606         }
1607
1608         /* Report any remaining unexpected interrupts */
1609         oicr &= ena_mask;
1610         if (oicr) {
1611                 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1612                         oicr);
1613                 /* If a critical error is pending there is no choice but to
1614                  * reset the device.
1615                  */
1616                 if (oicr & (PFINT_OICR_PE_CRITERR_M |
1617                             PFINT_OICR_PCI_EXCEPTION_M |
1618                             PFINT_OICR_ECC_ERR_M)) {
1619                         set_bit(__ICE_PFR_REQ, pf->state);
1620                         ice_service_task_schedule(pf);
1621                 }
1622         }
1623         ret = IRQ_HANDLED;
1624
1625         if (!test_bit(__ICE_DOWN, pf->state)) {
1626                 ice_service_task_schedule(pf);
1627                 ice_irq_dynamic_ena(hw, NULL, NULL);
1628         }
1629
1630         return ret;
1631 }
1632
1633 /**
1634  * ice_dis_ctrlq_interrupts - disable control queue interrupts
1635  * @hw: pointer to HW structure
1636  */
1637 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1638 {
1639         /* disable Admin queue Interrupt causes */
1640         wr32(hw, PFINT_FW_CTL,
1641              rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1642
1643         /* disable Mailbox queue Interrupt causes */
1644         wr32(hw, PFINT_MBX_CTL,
1645              rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1646
1647         /* disable Control queue Interrupt causes */
1648         wr32(hw, PFINT_OICR_CTL,
1649              rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1650
1651         ice_flush(hw);
1652 }
1653
1654 /**
1655  * ice_free_irq_msix_misc - Unroll misc vector setup
1656  * @pf: board private structure
1657  */
1658 static void ice_free_irq_msix_misc(struct ice_pf *pf)
1659 {
1660         struct ice_hw *hw = &pf->hw;
1661
1662         ice_dis_ctrlq_interrupts(hw);
1663
1664         /* disable OICR interrupt */
1665         wr32(hw, PFINT_OICR_ENA, 0);
1666         ice_flush(hw);
1667
1668         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
1669                 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1670                 devm_free_irq(&pf->pdev->dev,
1671                               pf->msix_entries[pf->oicr_idx].vector, pf);
1672         }
1673
1674         pf->num_avail_sw_msix += 1;
1675         ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1676 }
1677
1678 /**
1679  * ice_ena_ctrlq_interrupts - enable control queue interrupts
1680  * @hw: pointer to HW structure
1681  * @reg_idx: HW vector index to associate the control queue interrupts with
1682  */
1683 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1684 {
1685         u32 val;
1686
1687         val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1688                PFINT_OICR_CTL_CAUSE_ENA_M);
1689         wr32(hw, PFINT_OICR_CTL, val);
1690
1691         /* enable Admin queue Interrupt causes */
1692         val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1693                PFINT_FW_CTL_CAUSE_ENA_M);
1694         wr32(hw, PFINT_FW_CTL, val);
1695
1696         /* enable Mailbox queue Interrupt causes */
1697         val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1698                PFINT_MBX_CTL_CAUSE_ENA_M);
1699         wr32(hw, PFINT_MBX_CTL, val);
1700
1701         ice_flush(hw);
1702 }
1703
1704 /**
1705  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1706  * @pf: board private structure
1707  *
1708  * This sets up the handler for MSIX 0, which is used to manage the
1709  * non-queue interrupts, e.g. AdminQ and errors. This is not used
1710  * when in MSI or Legacy interrupt mode.
1711  */
1712 static int ice_req_irq_msix_misc(struct ice_pf *pf)
1713 {
1714         struct ice_hw *hw = &pf->hw;
1715         int oicr_idx, err = 0;
1716
1717         if (!pf->int_name[0])
1718                 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1719                          dev_driver_string(&pf->pdev->dev),
1720                          dev_name(&pf->pdev->dev));
1721
1722         /* Do not request IRQ but do enable OICR interrupt since settings are
1723          * lost during reset. Note that this function is called only during
1724          * rebuild path and not while reset is in progress.
1725          */
1726         if (ice_is_reset_in_progress(pf->state))
1727                 goto skip_req_irq;
1728
1729         /* reserve one vector in irq_tracker for misc interrupts */
1730         oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1731         if (oicr_idx < 0)
1732                 return oicr_idx;
1733
1734         pf->num_avail_sw_msix -= 1;
1735         pf->oicr_idx = oicr_idx;
1736
1737         err = devm_request_irq(&pf->pdev->dev,
1738                                pf->msix_entries[pf->oicr_idx].vector,
1739                                ice_misc_intr, 0, pf->int_name, pf);
1740         if (err) {
1741                 dev_err(&pf->pdev->dev,
1742                         "devm_request_irq for %s failed: %d\n",
1743                         pf->int_name, err);
1744                 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1745                 pf->num_avail_sw_msix += 1;
1746                 return err;
1747         }
1748
1749 skip_req_irq:
1750         ice_ena_misc_vector(pf);
1751
1752         ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1753         wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1754              ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1755
1756         ice_flush(hw);
1757         ice_irq_dynamic_ena(hw, NULL, NULL);
1758
1759         return 0;
1760 }
1761
1762 /**
1763  * ice_napi_add - register NAPI handler for the VSI
1764  * @vsi: VSI for which NAPI handler is to be registered
1765  *
1766  * This function is only called in the driver's load path. Registering the NAPI
1767  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1768  * reset/rebuild, etc.)
1769  */
1770 static void ice_napi_add(struct ice_vsi *vsi)
1771 {
1772         int v_idx;
1773
1774         if (!vsi->netdev)
1775                 return;
1776
1777         ice_for_each_q_vector(vsi, v_idx)
1778                 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1779                                ice_napi_poll, NAPI_POLL_WEIGHT);
1780 }
1781
1782 /**
1783  * ice_cfg_netdev - Allocate, configure and register a netdev
1784  * @vsi: the VSI associated with the new netdev
1785  *
1786  * Returns 0 on success, negative value on failure
1787  */
1788 static int ice_cfg_netdev(struct ice_vsi *vsi)
1789 {
1790         netdev_features_t csumo_features;
1791         netdev_features_t vlano_features;
1792         netdev_features_t dflt_features;
1793         netdev_features_t tso_features;
1794         struct ice_netdev_priv *np;
1795         struct net_device *netdev;
1796         u8 mac_addr[ETH_ALEN];
1797         int err;
1798
1799         netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
1800                                     vsi->alloc_rxq);
1801         if (!netdev)
1802                 return -ENOMEM;
1803
1804         vsi->netdev = netdev;
1805         np = netdev_priv(netdev);
1806         np->vsi = vsi;
1807
1808         dflt_features = NETIF_F_SG      |
1809                         NETIF_F_HIGHDMA |
1810                         NETIF_F_RXHASH;
1811
1812         csumo_features = NETIF_F_RXCSUM   |
1813                          NETIF_F_IP_CSUM  |
1814                          NETIF_F_SCTP_CRC |
1815                          NETIF_F_IPV6_CSUM;
1816
1817         vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
1818                          NETIF_F_HW_VLAN_CTAG_TX     |
1819                          NETIF_F_HW_VLAN_CTAG_RX;
1820
1821         tso_features = NETIF_F_TSO;
1822
1823         /* set features that user can change */
1824         netdev->hw_features = dflt_features | csumo_features |
1825                               vlano_features | tso_features;
1826
1827         /* enable features */
1828         netdev->features |= netdev->hw_features;
1829         /* encap and VLAN devices inherit default, csumo and tso features */
1830         netdev->hw_enc_features |= dflt_features | csumo_features |
1831                                    tso_features;
1832         netdev->vlan_features |= dflt_features | csumo_features |
1833                                  tso_features;
1834
1835         if (vsi->type == ICE_VSI_PF) {
1836                 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
1837                 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
1838
1839                 ether_addr_copy(netdev->dev_addr, mac_addr);
1840                 ether_addr_copy(netdev->perm_addr, mac_addr);
1841         }
1842
1843         netdev->priv_flags |= IFF_UNICAST_FLT;
1844
1845         /* assign netdev_ops */
1846         netdev->netdev_ops = &ice_netdev_ops;
1847
1848         /* setup watchdog timeout value to be 5 second */
1849         netdev->watchdog_timeo = 5 * HZ;
1850
1851         ice_set_ethtool_ops(netdev);
1852
1853         netdev->min_mtu = ETH_MIN_MTU;
1854         netdev->max_mtu = ICE_MAX_MTU;
1855
1856         err = register_netdev(vsi->netdev);
1857         if (err)
1858                 return err;
1859
1860         netif_carrier_off(vsi->netdev);
1861
1862         /* make sure transmit queues start off as stopped */
1863         netif_tx_stop_all_queues(vsi->netdev);
1864
1865         return 0;
1866 }
1867
1868 /**
1869  * ice_fill_rss_lut - Fill the RSS lookup table with default values
1870  * @lut: Lookup table
1871  * @rss_table_size: Lookup table size
1872  * @rss_size: Range of queue number for hashing
1873  */
1874 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
1875 {
1876         u16 i;
1877
1878         for (i = 0; i < rss_table_size; i++)
1879                 lut[i] = i % rss_size;
1880 }
1881
1882 /**
1883  * ice_pf_vsi_setup - Set up a PF VSI
1884  * @pf: board private structure
1885  * @pi: pointer to the port_info instance
1886  *
1887  * Returns pointer to the successfully allocated VSI software struct
1888  * on success, otherwise returns NULL on failure.
1889  */
1890 static struct ice_vsi *
1891 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
1892 {
1893         return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
1894 }
1895
1896 /**
1897  * ice_lb_vsi_setup - Set up a loopback VSI
1898  * @pf: board private structure
1899  * @pi: pointer to the port_info instance
1900  *
1901  * Returns pointer to the successfully allocated VSI software struct
1902  * on success, otherwise returns NULL on failure.
1903  */
1904 struct ice_vsi *
1905 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
1906 {
1907         return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
1908 }
1909
1910 /**
1911  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
1912  * @netdev: network interface to be adjusted
1913  * @proto: unused protocol
1914  * @vid: VLAN ID to be added
1915  *
1916  * net_device_ops implementation for adding VLAN IDs
1917  */
1918 static int
1919 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
1920                     u16 vid)
1921 {
1922         struct ice_netdev_priv *np = netdev_priv(netdev);
1923         struct ice_vsi *vsi = np->vsi;
1924         int ret;
1925
1926         if (vid >= VLAN_N_VID) {
1927                 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
1928                            vid, VLAN_N_VID);
1929                 return -EINVAL;
1930         }
1931
1932         if (vsi->info.pvid)
1933                 return -EINVAL;
1934
1935         /* Enable VLAN pruning when VLAN 0 is added */
1936         if (unlikely(!vid)) {
1937                 ret = ice_cfg_vlan_pruning(vsi, true, false);
1938                 if (ret)
1939                         return ret;
1940         }
1941
1942         /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
1943          * needed to continue allowing all untagged packets since VLAN prune
1944          * list is applied to all packets by the switch
1945          */
1946         ret = ice_vsi_add_vlan(vsi, vid);
1947         if (!ret) {
1948                 vsi->vlan_ena = true;
1949                 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
1950         }
1951
1952         return ret;
1953 }
1954
1955 /**
1956  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
1957  * @netdev: network interface to be adjusted
1958  * @proto: unused protocol
1959  * @vid: VLAN ID to be removed
1960  *
1961  * net_device_ops implementation for removing VLAN IDs
1962  */
1963 static int
1964 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
1965                      u16 vid)
1966 {
1967         struct ice_netdev_priv *np = netdev_priv(netdev);
1968         struct ice_vsi *vsi = np->vsi;
1969         int ret;
1970
1971         if (vsi->info.pvid)
1972                 return -EINVAL;
1973
1974         /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
1975          * information
1976          */
1977         ret = ice_vsi_kill_vlan(vsi, vid);
1978         if (ret)
1979                 return ret;
1980
1981         /* Disable VLAN pruning when VLAN 0 is removed */
1982         if (unlikely(!vid))
1983                 ret = ice_cfg_vlan_pruning(vsi, false, false);
1984
1985         vsi->vlan_ena = false;
1986         set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
1987         return ret;
1988 }
1989
1990 /**
1991  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
1992  * @pf: board private structure
1993  *
1994  * Returns 0 on success, negative value on failure
1995  */
1996 static int ice_setup_pf_sw(struct ice_pf *pf)
1997 {
1998         struct ice_vsi *vsi;
1999         int status = 0;
2000
2001         if (ice_is_reset_in_progress(pf->state))
2002                 return -EBUSY;
2003
2004         vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2005         if (!vsi) {
2006                 status = -ENOMEM;
2007                 goto unroll_vsi_setup;
2008         }
2009
2010         status = ice_cfg_netdev(vsi);
2011         if (status) {
2012                 status = -ENODEV;
2013                 goto unroll_vsi_setup;
2014         }
2015
2016         /* registering the NAPI handler requires both the queues and
2017          * netdev to be created, which are done in ice_pf_vsi_setup()
2018          * and ice_cfg_netdev() respectively
2019          */
2020         ice_napi_add(vsi);
2021
2022         status = ice_init_mac_fltr(pf);
2023         if (status)
2024                 goto unroll_napi_add;
2025
2026         return status;
2027
2028 unroll_napi_add:
2029         if (vsi) {
2030                 ice_napi_del(vsi);
2031                 if (vsi->netdev) {
2032                         if (vsi->netdev->reg_state == NETREG_REGISTERED)
2033                                 unregister_netdev(vsi->netdev);
2034                         free_netdev(vsi->netdev);
2035                         vsi->netdev = NULL;
2036                 }
2037         }
2038
2039 unroll_vsi_setup:
2040         if (vsi) {
2041                 ice_vsi_free_q_vectors(vsi);
2042                 ice_vsi_delete(vsi);
2043                 ice_vsi_put_qs(vsi);
2044                 pf->q_left_tx += vsi->alloc_txq;
2045                 pf->q_left_rx += vsi->alloc_rxq;
2046                 ice_vsi_clear(vsi);
2047         }
2048         return status;
2049 }
2050
2051 /**
2052  * ice_determine_q_usage - Calculate queue distribution
2053  * @pf: board private structure
2054  *
2055  * Return -ENOMEM if we don't get enough queues for all ports
2056  */
2057 static void ice_determine_q_usage(struct ice_pf *pf)
2058 {
2059         u16 q_left_tx, q_left_rx;
2060
2061         q_left_tx = pf->hw.func_caps.common_cap.num_txq;
2062         q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
2063
2064         pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
2065
2066         /* only 1 Rx queue unless RSS is enabled */
2067         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2068                 pf->num_lan_rx = 1;
2069         else
2070                 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
2071
2072         pf->q_left_tx = q_left_tx - pf->num_lan_tx;
2073         pf->q_left_rx = q_left_rx - pf->num_lan_rx;
2074 }
2075
2076 /**
2077  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2078  * @pf: board private structure to initialize
2079  */
2080 static void ice_deinit_pf(struct ice_pf *pf)
2081 {
2082         ice_service_task_stop(pf);
2083         mutex_destroy(&pf->sw_mutex);
2084         mutex_destroy(&pf->avail_q_mutex);
2085 }
2086
2087 /**
2088  * ice_init_pf - Initialize general software structures (struct ice_pf)
2089  * @pf: board private structure to initialize
2090  */
2091 static void ice_init_pf(struct ice_pf *pf)
2092 {
2093         bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
2094         set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2095 #ifdef CONFIG_PCI_IOV
2096         if (pf->hw.func_caps.common_cap.sr_iov_1_1) {
2097                 struct ice_hw *hw = &pf->hw;
2098
2099                 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2100                 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs,
2101                                               ICE_MAX_VF_COUNT);
2102         }
2103 #endif /* CONFIG_PCI_IOV */
2104
2105         mutex_init(&pf->sw_mutex);
2106         mutex_init(&pf->avail_q_mutex);
2107
2108         /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
2109         mutex_lock(&pf->avail_q_mutex);
2110         bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
2111         bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
2112         mutex_unlock(&pf->avail_q_mutex);
2113
2114         if (pf->hw.func_caps.common_cap.rss_table_size)
2115                 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2116
2117         /* setup service timer and periodic service task */
2118         timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2119         pf->serv_tmr_period = HZ;
2120         INIT_WORK(&pf->serv_task, ice_service_task);
2121         clear_bit(__ICE_SERVICE_SCHED, pf->state);
2122 }
2123
2124 /**
2125  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2126  * @pf: board private structure
2127  *
2128  * compute the number of MSIX vectors required (v_budget) and request from
2129  * the OS. Return the number of vectors reserved or negative on failure
2130  */
2131 static int ice_ena_msix_range(struct ice_pf *pf)
2132 {
2133         int v_left, v_actual, v_budget = 0;
2134         int needed, err, i;
2135
2136         v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2137
2138         /* reserve one vector for miscellaneous handler */
2139         needed = 1;
2140         v_budget += needed;
2141         v_left -= needed;
2142
2143         /* reserve vectors for LAN traffic */
2144         pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
2145         v_budget += pf->num_lan_msix;
2146         v_left -= pf->num_lan_msix;
2147
2148         pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2149                                         sizeof(*pf->msix_entries), GFP_KERNEL);
2150
2151         if (!pf->msix_entries) {
2152                 err = -ENOMEM;
2153                 goto exit_err;
2154         }
2155
2156         for (i = 0; i < v_budget; i++)
2157                 pf->msix_entries[i].entry = i;
2158
2159         /* actually reserve the vectors */
2160         v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2161                                          ICE_MIN_MSIX, v_budget);
2162
2163         if (v_actual < 0) {
2164                 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2165                 err = v_actual;
2166                 goto msix_err;
2167         }
2168
2169         if (v_actual < v_budget) {
2170                 dev_warn(&pf->pdev->dev,
2171                          "not enough vectors. requested = %d, obtained = %d\n",
2172                          v_budget, v_actual);
2173                 if (v_actual >= (pf->num_lan_msix + 1)) {
2174                         pf->num_avail_sw_msix = v_actual -
2175                                                 (pf->num_lan_msix + 1);
2176                 } else if (v_actual >= 2) {
2177                         pf->num_lan_msix = 1;
2178                         pf->num_avail_sw_msix = v_actual - 2;
2179                 } else {
2180                         pci_disable_msix(pf->pdev);
2181                         err = -ERANGE;
2182                         goto msix_err;
2183                 }
2184         }
2185
2186         return v_actual;
2187
2188 msix_err:
2189         devm_kfree(&pf->pdev->dev, pf->msix_entries);
2190         goto exit_err;
2191
2192 exit_err:
2193         pf->num_lan_msix = 0;
2194         clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2195         return err;
2196 }
2197
2198 /**
2199  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2200  * @pf: board private structure
2201  */
2202 static void ice_dis_msix(struct ice_pf *pf)
2203 {
2204         pci_disable_msix(pf->pdev);
2205         devm_kfree(&pf->pdev->dev, pf->msix_entries);
2206         pf->msix_entries = NULL;
2207         clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
2208 }
2209
2210 /**
2211  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2212  * @pf: board private structure
2213  */
2214 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2215 {
2216         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2217                 ice_dis_msix(pf);
2218
2219         if (pf->irq_tracker) {
2220                 devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2221                 pf->irq_tracker = NULL;
2222         }
2223 }
2224
2225 /**
2226  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2227  * @pf: board private structure to initialize
2228  */
2229 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2230 {
2231         int vectors;
2232
2233         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2234                 vectors = ice_ena_msix_range(pf);
2235         else
2236                 return -ENODEV;
2237
2238         if (vectors < 0)
2239                 return vectors;
2240
2241         /* set up vector assignment tracking */
2242         pf->irq_tracker =
2243                 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2244                              (sizeof(u16) * vectors), GFP_KERNEL);
2245         if (!pf->irq_tracker) {
2246                 ice_dis_msix(pf);
2247                 return -ENOMEM;
2248         }
2249
2250         /* populate SW interrupts pool with number of OS granted IRQs. */
2251         pf->num_avail_sw_msix = vectors;
2252         pf->irq_tracker->num_entries = vectors;
2253         pf->irq_tracker->end = pf->irq_tracker->num_entries;
2254
2255         return 0;
2256 }
2257
2258 /**
2259  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2260  * @pf: pointer to the PF structure
2261  *
2262  * There is no error returned here because the driver should be able to handle
2263  * 128 Byte cache lines, so we only print a warning in case issues are seen,
2264  * specifically with Tx.
2265  */
2266 static void ice_verify_cacheline_size(struct ice_pf *pf)
2267 {
2268         if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2269                 dev_warn(&pf->pdev->dev,
2270                          "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2271                          ICE_CACHE_LINE_BYTES);
2272 }
2273
2274 /**
2275  * ice_probe - Device initialization routine
2276  * @pdev: PCI device information struct
2277  * @ent: entry in ice_pci_tbl
2278  *
2279  * Returns 0 on success, negative on failure
2280  */
2281 static int
2282 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2283 {
2284         struct device *dev = &pdev->dev;
2285         struct ice_pf *pf;
2286         struct ice_hw *hw;
2287         int err;
2288
2289         /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
2290         err = pcim_enable_device(pdev);
2291         if (err)
2292                 return err;
2293
2294         err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2295         if (err) {
2296                 dev_err(dev, "BAR0 I/O map error %d\n", err);
2297                 return err;
2298         }
2299
2300         pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2301         if (!pf)
2302                 return -ENOMEM;
2303
2304         /* set up for high or low DMA */
2305         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2306         if (err)
2307                 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2308         if (err) {
2309                 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2310                 return err;
2311         }
2312
2313         pci_enable_pcie_error_reporting(pdev);
2314         pci_set_master(pdev);
2315
2316         pf->pdev = pdev;
2317         pci_set_drvdata(pdev, pf);
2318         set_bit(__ICE_DOWN, pf->state);
2319         /* Disable service task until DOWN bit is cleared */
2320         set_bit(__ICE_SERVICE_DIS, pf->state);
2321
2322         hw = &pf->hw;
2323         hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
2324         hw->back = pf;
2325         hw->vendor_id = pdev->vendor;
2326         hw->device_id = pdev->device;
2327         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2328         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2329         hw->subsystem_device_id = pdev->subsystem_device;
2330         hw->bus.device = PCI_SLOT(pdev->devfn);
2331         hw->bus.func = PCI_FUNC(pdev->devfn);
2332         ice_set_ctrlq_len(hw);
2333
2334         pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2335
2336 #ifndef CONFIG_DYNAMIC_DEBUG
2337         if (debug < -1)
2338                 hw->debug_mask = debug;
2339 #endif
2340
2341         err = ice_init_hw(hw);
2342         if (err) {
2343                 dev_err(dev, "ice_init_hw failed: %d\n", err);
2344                 err = -EIO;
2345                 goto err_exit_unroll;
2346         }
2347
2348         dev_info(dev, "firmware %d.%d.%05d api %d.%d\n",
2349                  hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
2350                  hw->api_maj_ver, hw->api_min_ver);
2351
2352         ice_init_pf(pf);
2353
2354         err = ice_init_pf_dcb(pf, false);
2355         if (err) {
2356                 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2357                 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2358
2359                 /* do not fail overall init if DCB init fails */
2360                 err = 0;
2361         }
2362
2363         ice_determine_q_usage(pf);
2364
2365         pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2366         if (!pf->num_alloc_vsi) {
2367                 err = -EIO;
2368                 goto err_init_pf_unroll;
2369         }
2370
2371         pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2372                                GFP_KERNEL);
2373         if (!pf->vsi) {
2374                 err = -ENOMEM;
2375                 goto err_init_pf_unroll;
2376         }
2377
2378         err = ice_init_interrupt_scheme(pf);
2379         if (err) {
2380                 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2381                 err = -EIO;
2382                 goto err_init_interrupt_unroll;
2383         }
2384
2385         /* Driver is mostly up */
2386         clear_bit(__ICE_DOWN, pf->state);
2387
2388         /* In case of MSIX we are going to setup the misc vector right here
2389          * to handle admin queue events etc. In case of legacy and MSI
2390          * the misc functionality and queue processing is combined in
2391          * the same vector and that gets setup at open.
2392          */
2393         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2394                 err = ice_req_irq_msix_misc(pf);
2395                 if (err) {
2396                         dev_err(dev, "setup of misc vector failed: %d\n", err);
2397                         goto err_init_interrupt_unroll;
2398                 }
2399         }
2400
2401         /* create switch struct for the switch element created by FW on boot */
2402         pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2403         if (!pf->first_sw) {
2404                 err = -ENOMEM;
2405                 goto err_msix_misc_unroll;
2406         }
2407
2408         if (hw->evb_veb)
2409                 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2410         else
2411                 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2412
2413         pf->first_sw->pf = pf;
2414
2415         /* record the sw_id available for later use */
2416         pf->first_sw->sw_id = hw->port_info->sw_id;
2417
2418         err = ice_setup_pf_sw(pf);
2419         if (err) {
2420                 dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2421                 goto err_alloc_sw_unroll;
2422         }
2423
2424         clear_bit(__ICE_SERVICE_DIS, pf->state);
2425
2426         /* since everything is good, start the service timer */
2427         mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2428
2429         err = ice_init_link_events(pf->hw.port_info);
2430         if (err) {
2431                 dev_err(dev, "ice_init_link_events failed: %d\n", err);
2432                 goto err_alloc_sw_unroll;
2433         }
2434
2435         ice_verify_cacheline_size(pf);
2436
2437         return 0;
2438
2439 err_alloc_sw_unroll:
2440         set_bit(__ICE_SERVICE_DIS, pf->state);
2441         set_bit(__ICE_DOWN, pf->state);
2442         devm_kfree(&pf->pdev->dev, pf->first_sw);
2443 err_msix_misc_unroll:
2444         ice_free_irq_msix_misc(pf);
2445 err_init_interrupt_unroll:
2446         ice_clear_interrupt_scheme(pf);
2447         devm_kfree(dev, pf->vsi);
2448 err_init_pf_unroll:
2449         ice_deinit_pf(pf);
2450         ice_deinit_hw(hw);
2451 err_exit_unroll:
2452         pci_disable_pcie_error_reporting(pdev);
2453         return err;
2454 }
2455
2456 /**
2457  * ice_remove - Device removal routine
2458  * @pdev: PCI device information struct
2459  */
2460 static void ice_remove(struct pci_dev *pdev)
2461 {
2462         struct ice_pf *pf = pci_get_drvdata(pdev);
2463         int i;
2464
2465         if (!pf)
2466                 return;
2467
2468         for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
2469                 if (!ice_is_reset_in_progress(pf->state))
2470                         break;
2471                 msleep(100);
2472         }
2473
2474         set_bit(__ICE_DOWN, pf->state);
2475         ice_service_task_stop(pf);
2476
2477         if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2478                 ice_free_vfs(pf);
2479         ice_vsi_release_all(pf);
2480         ice_free_irq_msix_misc(pf);
2481         ice_for_each_vsi(pf, i) {
2482                 if (!pf->vsi[i])
2483                         continue;
2484                 ice_vsi_free_q_vectors(pf->vsi[i]);
2485         }
2486         ice_clear_interrupt_scheme(pf);
2487         ice_deinit_pf(pf);
2488         ice_deinit_hw(&pf->hw);
2489         pci_disable_pcie_error_reporting(pdev);
2490 }
2491
2492 /**
2493  * ice_pci_err_detected - warning that PCI error has been detected
2494  * @pdev: PCI device information struct
2495  * @err: the type of PCI error
2496  *
2497  * Called to warn that something happened on the PCI bus and the error handling
2498  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
2499  */
2500 static pci_ers_result_t
2501 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
2502 {
2503         struct ice_pf *pf = pci_get_drvdata(pdev);
2504
2505         if (!pf) {
2506                 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
2507                         __func__, err);
2508                 return PCI_ERS_RESULT_DISCONNECT;
2509         }
2510
2511         if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2512                 ice_service_task_stop(pf);
2513
2514                 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2515                         set_bit(__ICE_PFR_REQ, pf->state);
2516                         ice_prepare_for_reset(pf);
2517                 }
2518         }
2519
2520         return PCI_ERS_RESULT_NEED_RESET;
2521 }
2522
2523 /**
2524  * ice_pci_err_slot_reset - a PCI slot reset has just happened
2525  * @pdev: PCI device information struct
2526  *
2527  * Called to determine if the driver can recover from the PCI slot reset by
2528  * using a register read to determine if the device is recoverable.
2529  */
2530 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
2531 {
2532         struct ice_pf *pf = pci_get_drvdata(pdev);
2533         pci_ers_result_t result;
2534         int err;
2535         u32 reg;
2536
2537         err = pci_enable_device_mem(pdev);
2538         if (err) {
2539                 dev_err(&pdev->dev,
2540                         "Cannot re-enable PCI device after reset, error %d\n",
2541                         err);
2542                 result = PCI_ERS_RESULT_DISCONNECT;
2543         } else {
2544                 pci_set_master(pdev);
2545                 pci_restore_state(pdev);
2546                 pci_save_state(pdev);
2547                 pci_wake_from_d3(pdev, false);
2548
2549                 /* Check for life */
2550                 reg = rd32(&pf->hw, GLGEN_RTRIG);
2551                 if (!reg)
2552                         result = PCI_ERS_RESULT_RECOVERED;
2553                 else
2554                         result = PCI_ERS_RESULT_DISCONNECT;
2555         }
2556
2557         err = pci_cleanup_aer_uncorrect_error_status(pdev);
2558         if (err)
2559                 dev_dbg(&pdev->dev,
2560                         "pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
2561                         err);
2562                 /* non-fatal, continue */
2563
2564         return result;
2565 }
2566
2567 /**
2568  * ice_pci_err_resume - restart operations after PCI error recovery
2569  * @pdev: PCI device information struct
2570  *
2571  * Called to allow the driver to bring things back up after PCI error and/or
2572  * reset recovery have finished
2573  */
2574 static void ice_pci_err_resume(struct pci_dev *pdev)
2575 {
2576         struct ice_pf *pf = pci_get_drvdata(pdev);
2577
2578         if (!pf) {
2579                 dev_err(&pdev->dev,
2580                         "%s failed, device is unrecoverable\n", __func__);
2581                 return;
2582         }
2583
2584         if (test_bit(__ICE_SUSPENDED, pf->state)) {
2585                 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
2586                         __func__);
2587                 return;
2588         }
2589
2590         ice_do_reset(pf, ICE_RESET_PFR);
2591         ice_service_task_restart(pf);
2592         mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2593 }
2594
2595 /**
2596  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
2597  * @pdev: PCI device information struct
2598  */
2599 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
2600 {
2601         struct ice_pf *pf = pci_get_drvdata(pdev);
2602
2603         if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2604                 ice_service_task_stop(pf);
2605
2606                 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2607                         set_bit(__ICE_PFR_REQ, pf->state);
2608                         ice_prepare_for_reset(pf);
2609                 }
2610         }
2611 }
2612
2613 /**
2614  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
2615  * @pdev: PCI device information struct
2616  */
2617 static void ice_pci_err_reset_done(struct pci_dev *pdev)
2618 {
2619         ice_pci_err_resume(pdev);
2620 }
2621
2622 /* ice_pci_tbl - PCI Device ID Table
2623  *
2624  * Wildcard entries (PCI_ANY_ID) should come last
2625  * Last entry must be all 0s
2626  *
2627  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
2628  *   Class, Class Mask, private data (not used) }
2629  */
2630 static const struct pci_device_id ice_pci_tbl[] = {
2631         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
2632         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
2633         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
2634         /* required last entry */
2635         { 0, }
2636 };
2637 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
2638
2639 static const struct pci_error_handlers ice_pci_err_handler = {
2640         .error_detected = ice_pci_err_detected,
2641         .slot_reset = ice_pci_err_slot_reset,
2642         .reset_prepare = ice_pci_err_reset_prepare,
2643         .reset_done = ice_pci_err_reset_done,
2644         .resume = ice_pci_err_resume
2645 };
2646
2647 static struct pci_driver ice_driver = {
2648         .name = KBUILD_MODNAME,
2649         .id_table = ice_pci_tbl,
2650         .probe = ice_probe,
2651         .remove = ice_remove,
2652         .sriov_configure = ice_sriov_configure,
2653         .err_handler = &ice_pci_err_handler
2654 };
2655
2656 /**
2657  * ice_module_init - Driver registration routine
2658  *
2659  * ice_module_init is the first routine called when the driver is
2660  * loaded. All it does is register with the PCI subsystem.
2661  */
2662 static int __init ice_module_init(void)
2663 {
2664         int status;
2665
2666         pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
2667         pr_info("%s\n", ice_copyright);
2668
2669         ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
2670         if (!ice_wq) {
2671                 pr_err("Failed to create workqueue\n");
2672                 return -ENOMEM;
2673         }
2674
2675         status = pci_register_driver(&ice_driver);
2676         if (status) {
2677                 pr_err("failed to register PCI driver, err %d\n", status);
2678                 destroy_workqueue(ice_wq);
2679         }
2680
2681         return status;
2682 }
2683 module_init(ice_module_init);
2684
2685 /**
2686  * ice_module_exit - Driver exit cleanup routine
2687  *
2688  * ice_module_exit is called just before the driver is removed
2689  * from memory.
2690  */
2691 static void __exit ice_module_exit(void)
2692 {
2693         pci_unregister_driver(&ice_driver);
2694         destroy_workqueue(ice_wq);
2695         pr_info("module unloaded\n");
2696 }
2697 module_exit(ice_module_exit);
2698
2699 /**
2700  * ice_set_mac_address - NDO callback to set MAC address
2701  * @netdev: network interface device structure
2702  * @pi: pointer to an address structure
2703  *
2704  * Returns 0 on success, negative on failure
2705  */
2706 static int ice_set_mac_address(struct net_device *netdev, void *pi)
2707 {
2708         struct ice_netdev_priv *np = netdev_priv(netdev);
2709         struct ice_vsi *vsi = np->vsi;
2710         struct ice_pf *pf = vsi->back;
2711         struct ice_hw *hw = &pf->hw;
2712         struct sockaddr *addr = pi;
2713         enum ice_status status;
2714         LIST_HEAD(a_mac_list);
2715         LIST_HEAD(r_mac_list);
2716         u8 flags = 0;
2717         int err;
2718         u8 *mac;
2719
2720         mac = (u8 *)addr->sa_data;
2721
2722         if (!is_valid_ether_addr(mac))
2723                 return -EADDRNOTAVAIL;
2724
2725         if (ether_addr_equal(netdev->dev_addr, mac)) {
2726                 netdev_warn(netdev, "already using mac %pM\n", mac);
2727                 return 0;
2728         }
2729
2730         if (test_bit(__ICE_DOWN, pf->state) ||
2731             ice_is_reset_in_progress(pf->state)) {
2732                 netdev_err(netdev, "can't set mac %pM. device not ready\n",
2733                            mac);
2734                 return -EBUSY;
2735         }
2736
2737         /* When we change the MAC address we also have to change the MAC address
2738          * based filter rules that were created previously for the old MAC
2739          * address. So first, we remove the old filter rule using ice_remove_mac
2740          * and then create a new filter rule using ice_add_mac. Note that for
2741          * both these operations, we first need to form a "list" of MAC
2742          * addresses (even though in this case, we have only 1 MAC address to be
2743          * added/removed) and this done using ice_add_mac_to_list. Depending on
2744          * the ensuing operation this "list" of MAC addresses is either to be
2745          * added or removed from the filter.
2746          */
2747         err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
2748         if (err) {
2749                 err = -EADDRNOTAVAIL;
2750                 goto free_lists;
2751         }
2752
2753         status = ice_remove_mac(hw, &r_mac_list);
2754         if (status) {
2755                 err = -EADDRNOTAVAIL;
2756                 goto free_lists;
2757         }
2758
2759         err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
2760         if (err) {
2761                 err = -EADDRNOTAVAIL;
2762                 goto free_lists;
2763         }
2764
2765         status = ice_add_mac(hw, &a_mac_list);
2766         if (status) {
2767                 err = -EADDRNOTAVAIL;
2768                 goto free_lists;
2769         }
2770
2771 free_lists:
2772         /* free list entries */
2773         ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
2774         ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
2775
2776         if (err) {
2777                 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
2778                            mac);
2779                 return err;
2780         }
2781
2782         /* change the netdev's MAC address */
2783         memcpy(netdev->dev_addr, mac, netdev->addr_len);
2784         netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
2785                    netdev->dev_addr);
2786
2787         /* write new MAC address to the firmware */
2788         flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
2789         status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
2790         if (status) {
2791                 netdev_err(netdev, "can't set MAC %pM. write to firmware failed.\n",
2792                            mac);
2793         }
2794         return 0;
2795 }
2796
2797 /**
2798  * ice_set_rx_mode - NDO callback to set the netdev filters
2799  * @netdev: network interface device structure
2800  */
2801 static void ice_set_rx_mode(struct net_device *netdev)
2802 {
2803         struct ice_netdev_priv *np = netdev_priv(netdev);
2804         struct ice_vsi *vsi = np->vsi;
2805
2806         if (!vsi)
2807                 return;
2808
2809         /* Set the flags to synchronize filters
2810          * ndo_set_rx_mode may be triggered even without a change in netdev
2811          * flags
2812          */
2813         set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
2814         set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
2815         set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
2816
2817         /* schedule our worker thread which will take care of
2818          * applying the new filter changes
2819          */
2820         ice_service_task_schedule(vsi->back);
2821 }
2822
2823 /**
2824  * ice_fdb_add - add an entry to the hardware database
2825  * @ndm: the input from the stack
2826  * @tb: pointer to array of nladdr (unused)
2827  * @dev: the net device pointer
2828  * @addr: the MAC address entry being added
2829  * @vid: VLAN ID
2830  * @flags: instructions from stack about fdb operation
2831  * @extack: netlink extended ack
2832  */
2833 static int
2834 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
2835             struct net_device *dev, const unsigned char *addr, u16 vid,
2836             u16 flags, struct netlink_ext_ack __always_unused *extack)
2837 {
2838         int err;
2839
2840         if (vid) {
2841                 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
2842                 return -EINVAL;
2843         }
2844         if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
2845                 netdev_err(dev, "FDB only supports static addresses\n");
2846                 return -EINVAL;
2847         }
2848
2849         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
2850                 err = dev_uc_add_excl(dev, addr);
2851         else if (is_multicast_ether_addr(addr))
2852                 err = dev_mc_add_excl(dev, addr);
2853         else
2854                 err = -EINVAL;
2855
2856         /* Only return duplicate errors if NLM_F_EXCL is set */
2857         if (err == -EEXIST && !(flags & NLM_F_EXCL))
2858                 err = 0;
2859
2860         return err;
2861 }
2862
2863 /**
2864  * ice_fdb_del - delete an entry from the hardware database
2865  * @ndm: the input from the stack
2866  * @tb: pointer to array of nladdr (unused)
2867  * @dev: the net device pointer
2868  * @addr: the MAC address entry being added
2869  * @vid: VLAN ID
2870  */
2871 static int
2872 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
2873             struct net_device *dev, const unsigned char *addr,
2874             __always_unused u16 vid)
2875 {
2876         int err;
2877
2878         if (ndm->ndm_state & NUD_PERMANENT) {
2879                 netdev_err(dev, "FDB only supports static addresses\n");
2880                 return -EINVAL;
2881         }
2882
2883         if (is_unicast_ether_addr(addr))
2884                 err = dev_uc_del(dev, addr);
2885         else if (is_multicast_ether_addr(addr))
2886                 err = dev_mc_del(dev, addr);
2887         else
2888                 err = -EINVAL;
2889
2890         return err;
2891 }
2892
2893 /**
2894  * ice_set_features - set the netdev feature flags
2895  * @netdev: ptr to the netdev being adjusted
2896  * @features: the feature set that the stack is suggesting
2897  */
2898 static int
2899 ice_set_features(struct net_device *netdev, netdev_features_t features)
2900 {
2901         struct ice_netdev_priv *np = netdev_priv(netdev);
2902         struct ice_vsi *vsi = np->vsi;
2903         int ret = 0;
2904
2905         /* Multiple features can be changed in one call so keep features in
2906          * separate if/else statements to guarantee each feature is checked
2907          */
2908         if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
2909                 ret = ice_vsi_manage_rss_lut(vsi, true);
2910         else if (!(features & NETIF_F_RXHASH) &&
2911                  netdev->features & NETIF_F_RXHASH)
2912                 ret = ice_vsi_manage_rss_lut(vsi, false);
2913
2914         if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
2915             !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
2916                 ret = ice_vsi_manage_vlan_stripping(vsi, true);
2917         else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
2918                  (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
2919                 ret = ice_vsi_manage_vlan_stripping(vsi, false);
2920
2921         if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
2922             !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
2923                 ret = ice_vsi_manage_vlan_insertion(vsi);
2924         else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
2925                  (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
2926                 ret = ice_vsi_manage_vlan_insertion(vsi);
2927
2928         if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2929             !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
2930                 ret = ice_cfg_vlan_pruning(vsi, true, false);
2931         else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2932                  (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
2933                 ret = ice_cfg_vlan_pruning(vsi, false, false);
2934
2935         return ret;
2936 }
2937
2938 /**
2939  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
2940  * @vsi: VSI to setup VLAN properties for
2941  */
2942 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
2943 {
2944         int ret = 0;
2945
2946         if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2947                 ret = ice_vsi_manage_vlan_stripping(vsi, true);
2948         if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
2949                 ret = ice_vsi_manage_vlan_insertion(vsi);
2950
2951         return ret;
2952 }
2953
2954 /**
2955  * ice_vsi_cfg - Setup the VSI
2956  * @vsi: the VSI being configured
2957  *
2958  * Return 0 on success and negative value on error
2959  */
2960 int ice_vsi_cfg(struct ice_vsi *vsi)
2961 {
2962         int err;
2963
2964         if (vsi->netdev) {
2965                 ice_set_rx_mode(vsi->netdev);
2966
2967                 err = ice_vsi_vlan_setup(vsi);
2968
2969                 if (err)
2970                         return err;
2971         }
2972         ice_vsi_cfg_dcb_rings(vsi);
2973
2974         err = ice_vsi_cfg_lan_txqs(vsi);
2975         if (!err)
2976                 err = ice_vsi_cfg_rxqs(vsi);
2977
2978         return err;
2979 }
2980
2981 /**
2982  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
2983  * @vsi: the VSI being configured
2984  */
2985 static void ice_napi_enable_all(struct ice_vsi *vsi)
2986 {
2987         int q_idx;
2988
2989         if (!vsi->netdev)
2990                 return;
2991
2992         ice_for_each_q_vector(vsi, q_idx) {
2993                 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
2994
2995                 if (q_vector->rx.ring || q_vector->tx.ring)
2996                         napi_enable(&q_vector->napi);
2997         }
2998 }
2999
3000 /**
3001  * ice_up_complete - Finish the last steps of bringing up a connection
3002  * @vsi: The VSI being configured
3003  *
3004  * Return 0 on success and negative value on error
3005  */
3006 static int ice_up_complete(struct ice_vsi *vsi)
3007 {
3008         struct ice_pf *pf = vsi->back;
3009         int err;
3010
3011         if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3012                 ice_vsi_cfg_msix(vsi);
3013         else
3014                 return -ENOTSUPP;
3015
3016         /* Enable only Rx rings, Tx rings were enabled by the FW when the
3017          * Tx queue group list was configured and the context bits were
3018          * programmed using ice_vsi_cfg_txqs
3019          */
3020         err = ice_vsi_start_rx_rings(vsi);
3021         if (err)
3022                 return err;
3023
3024         clear_bit(__ICE_DOWN, vsi->state);
3025         ice_napi_enable_all(vsi);
3026         ice_vsi_ena_irq(vsi);
3027
3028         if (vsi->port_info &&
3029             (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3030             vsi->netdev) {
3031                 ice_print_link_msg(vsi, true);
3032                 netif_tx_start_all_queues(vsi->netdev);
3033                 netif_carrier_on(vsi->netdev);
3034         }
3035
3036         ice_service_task_schedule(pf);
3037
3038         return 0;
3039 }
3040
3041 /**
3042  * ice_up - Bring the connection back up after being down
3043  * @vsi: VSI being configured
3044  */
3045 int ice_up(struct ice_vsi *vsi)
3046 {
3047         int err;
3048
3049         err = ice_vsi_cfg(vsi);
3050         if (!err)
3051                 err = ice_up_complete(vsi);
3052
3053         return err;
3054 }
3055
3056 /**
3057  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3058  * @ring: Tx or Rx ring to read stats from
3059  * @pkts: packets stats counter
3060  * @bytes: bytes stats counter
3061  *
3062  * This function fetches stats from the ring considering the atomic operations
3063  * that needs to be performed to read u64 values in 32 bit machine.
3064  */
3065 static void
3066 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3067 {
3068         unsigned int start;
3069         *pkts = 0;
3070         *bytes = 0;
3071
3072         if (!ring)
3073                 return;
3074         do {
3075                 start = u64_stats_fetch_begin_irq(&ring->syncp);
3076                 *pkts = ring->stats.pkts;
3077                 *bytes = ring->stats.bytes;
3078         } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3079 }
3080
3081 /**
3082  * ice_update_vsi_ring_stats - Update VSI stats counters
3083  * @vsi: the VSI to be updated
3084  */
3085 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3086 {
3087         struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3088         struct ice_ring *ring;
3089         u64 pkts, bytes;
3090         int i;
3091
3092         /* reset netdev stats */
3093         vsi_stats->tx_packets = 0;
3094         vsi_stats->tx_bytes = 0;
3095         vsi_stats->rx_packets = 0;
3096         vsi_stats->rx_bytes = 0;
3097
3098         /* reset non-netdev (extended) stats */
3099         vsi->tx_restart = 0;
3100         vsi->tx_busy = 0;
3101         vsi->tx_linearize = 0;
3102         vsi->rx_buf_failed = 0;
3103         vsi->rx_page_failed = 0;
3104
3105         rcu_read_lock();
3106
3107         /* update Tx rings counters */
3108         ice_for_each_txq(vsi, i) {
3109                 ring = READ_ONCE(vsi->tx_rings[i]);
3110                 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3111