Merge tag 'nfs-for-4.20-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28
29 #include "e1000.h"
30
31 #define DRV_EXTRAVERSION "-k"
32
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41
42 static const struct e1000_info *e1000_info_tbl[] = {
43         [board_82571]           = &e1000_82571_info,
44         [board_82572]           = &e1000_82572_info,
45         [board_82573]           = &e1000_82573_info,
46         [board_82574]           = &e1000_82574_info,
47         [board_82583]           = &e1000_82583_info,
48         [board_80003es2lan]     = &e1000_es2_info,
49         [board_ich8lan]         = &e1000_ich8_info,
50         [board_ich9lan]         = &e1000_ich9_info,
51         [board_ich10lan]        = &e1000_ich10_info,
52         [board_pchlan]          = &e1000_pch_info,
53         [board_pch2lan]         = &e1000_pch2_info,
54         [board_pch_lpt]         = &e1000_pch_lpt_info,
55         [board_pch_spt]         = &e1000_pch_spt_info,
56         [board_pch_cnp]         = &e1000_pch_cnp_info,
57 };
58
59 struct e1000_reg_info {
60         u32 ofs;
61         char *name;
62 };
63
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65         /* General Registers */
66         {E1000_CTRL, "CTRL"},
67         {E1000_STATUS, "STATUS"},
68         {E1000_CTRL_EXT, "CTRL_EXT"},
69
70         /* Interrupt Registers */
71         {E1000_ICR, "ICR"},
72
73         /* Rx Registers */
74         {E1000_RCTL, "RCTL"},
75         {E1000_RDLEN(0), "RDLEN"},
76         {E1000_RDH(0), "RDH"},
77         {E1000_RDT(0), "RDT"},
78         {E1000_RDTR, "RDTR"},
79         {E1000_RXDCTL(0), "RXDCTL"},
80         {E1000_ERT, "ERT"},
81         {E1000_RDBAL(0), "RDBAL"},
82         {E1000_RDBAH(0), "RDBAH"},
83         {E1000_RDFH, "RDFH"},
84         {E1000_RDFT, "RDFT"},
85         {E1000_RDFHS, "RDFHS"},
86         {E1000_RDFTS, "RDFTS"},
87         {E1000_RDFPC, "RDFPC"},
88
89         /* Tx Registers */
90         {E1000_TCTL, "TCTL"},
91         {E1000_TDBAL(0), "TDBAL"},
92         {E1000_TDBAH(0), "TDBAH"},
93         {E1000_TDLEN(0), "TDLEN"},
94         {E1000_TDH(0), "TDH"},
95         {E1000_TDT(0), "TDT"},
96         {E1000_TIDV, "TIDV"},
97         {E1000_TXDCTL(0), "TXDCTL"},
98         {E1000_TADV, "TADV"},
99         {E1000_TARC(0), "TARC"},
100         {E1000_TDFH, "TDFH"},
101         {E1000_TDFT, "TDFT"},
102         {E1000_TDFHS, "TDFHS"},
103         {E1000_TDFTS, "TDFTS"},
104         {E1000_TDFPC, "TDFPC"},
105
106         /* List Terminator */
107         {0, NULL}
108 };
109
110 /**
111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112  * @hw: pointer to the HW structure
113  *
114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
115  * be accessing the registers at the same time.  Normally, this is handled in
116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117  * accesses later than it should which could result in the register to have
118  * an incorrect value.  Workaround this by checking the FWSM register which
119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120  * and try again a number of times.
121  **/
122 s32 __ew32_prepare(struct e1000_hw *hw)
123 {
124         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125
126         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127                 udelay(50);
128
129         return i;
130 }
131
132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133 {
134         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135                 __ew32_prepare(hw);
136
137         writel(val, hw->hw_addr + reg);
138 }
139
140 /**
141  * e1000_regdump - register printout routine
142  * @hw: pointer to the HW structure
143  * @reginfo: pointer to the register info table
144  **/
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 {
147         int n = 0;
148         char rname[16];
149         u32 regs[8];
150
151         switch (reginfo->ofs) {
152         case E1000_RXDCTL(0):
153                 for (n = 0; n < 2; n++)
154                         regs[n] = __er32(hw, E1000_RXDCTL(n));
155                 break;
156         case E1000_TXDCTL(0):
157                 for (n = 0; n < 2; n++)
158                         regs[n] = __er32(hw, E1000_TXDCTL(n));
159                 break;
160         case E1000_TARC(0):
161                 for (n = 0; n < 2; n++)
162                         regs[n] = __er32(hw, E1000_TARC(n));
163                 break;
164         default:
165                 pr_info("%-15s %08x\n",
166                         reginfo->name, __er32(hw, reginfo->ofs));
167                 return;
168         }
169
170         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
172 }
173
174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175                                  struct e1000_buffer *bi)
176 {
177         int i;
178         struct e1000_ps_page *ps_page;
179
180         for (i = 0; i < adapter->rx_ps_pages; i++) {
181                 ps_page = &bi->ps_pages[i];
182
183                 if (ps_page->page) {
184                         pr_info("packet dump for ps_page %d:\n", i);
185                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186                                        16, 1, page_address(ps_page->page),
187                                        PAGE_SIZE, true);
188                 }
189         }
190 }
191
192 /**
193  * e1000e_dump - Print registers, Tx-ring and Rx-ring
194  * @adapter: board private structure
195  **/
196 static void e1000e_dump(struct e1000_adapter *adapter)
197 {
198         struct net_device *netdev = adapter->netdev;
199         struct e1000_hw *hw = &adapter->hw;
200         struct e1000_reg_info *reginfo;
201         struct e1000_ring *tx_ring = adapter->tx_ring;
202         struct e1000_tx_desc *tx_desc;
203         struct my_u0 {
204                 __le64 a;
205                 __le64 b;
206         } *u0;
207         struct e1000_buffer *buffer_info;
208         struct e1000_ring *rx_ring = adapter->rx_ring;
209         union e1000_rx_desc_packet_split *rx_desc_ps;
210         union e1000_rx_desc_extended *rx_desc;
211         struct my_u1 {
212                 __le64 a;
213                 __le64 b;
214                 __le64 c;
215                 __le64 d;
216         } *u1;
217         u32 staterr;
218         int i = 0;
219
220         if (!netif_msg_hw(adapter))
221                 return;
222
223         /* Print netdevice Info */
224         if (netdev) {
225                 dev_info(&adapter->pdev->dev, "Net device Info\n");
226                 pr_info("Device Name     state            trans_start\n");
227                 pr_info("%-15s %016lX %016lX\n", netdev->name,
228                         netdev->state, dev_trans_start(netdev));
229         }
230
231         /* Print Registers */
232         dev_info(&adapter->pdev->dev, "Register Dump\n");
233         pr_info(" Register Name   Value\n");
234         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235              reginfo->name; reginfo++) {
236                 e1000_regdump(hw, reginfo);
237         }
238
239         /* Print Tx Ring Summary */
240         if (!netdev || !netif_running(netdev))
241                 return;
242
243         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
245         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
248                 (unsigned long long)buffer_info->dma,
249                 buffer_info->length,
250                 buffer_info->next_to_watch,
251                 (unsigned long long)buffer_info->time_stamp);
252
253         /* Print Tx Ring */
254         if (!netif_msg_tx_done(adapter))
255                 goto rx_ring_summary;
256
257         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258
259         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260          *
261          * Legacy Transmit Descriptor
262          *   +--------------------------------------------------------------+
263          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
264          *   +--------------------------------------------------------------+
265          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
266          *   +--------------------------------------------------------------+
267          *   63       48 47        36 35    32 31     24 23    16 15        0
268          *
269          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270          *   63      48 47    40 39       32 31             16 15    8 7      0
271          *   +----------------------------------------------------------------+
272          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
273          *   +----------------------------------------------------------------+
274          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
275          *   +----------------------------------------------------------------+
276          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
277          *
278          * Extended Data Descriptor (DTYP=0x1)
279          *   +----------------------------------------------------------------+
280          * 0 |                     Buffer Address [63:0]                      |
281          *   +----------------------------------------------------------------+
282          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
283          *   +----------------------------------------------------------------+
284          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
285          */
286         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
287         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
288         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
289         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290                 const char *next_desc;
291                 tx_desc = E1000_TX_DESC(*tx_ring, i);
292                 buffer_info = &tx_ring->buffer_info[i];
293                 u0 = (struct my_u0 *)tx_desc;
294                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295                         next_desc = " NTC/U";
296                 else if (i == tx_ring->next_to_use)
297                         next_desc = " NTU";
298                 else if (i == tx_ring->next_to_clean)
299                         next_desc = " NTC";
300                 else
301                         next_desc = "";
302                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
303                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305                         i,
306                         (unsigned long long)le64_to_cpu(u0->a),
307                         (unsigned long long)le64_to_cpu(u0->b),
308                         (unsigned long long)buffer_info->dma,
309                         buffer_info->length, buffer_info->next_to_watch,
310                         (unsigned long long)buffer_info->time_stamp,
311                         buffer_info->skb, next_desc);
312
313                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
314                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315                                        16, 1, buffer_info->skb->data,
316                                        buffer_info->skb->len, true);
317         }
318
319         /* Print Rx Ring Summary */
320 rx_ring_summary:
321         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322         pr_info("Queue [NTU] [NTC]\n");
323         pr_info(" %5d %5X %5X\n",
324                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
325
326         /* Print Rx Ring */
327         if (!netif_msg_rx_status(adapter))
328                 return;
329
330         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331         switch (adapter->rx_ps_pages) {
332         case 1:
333         case 2:
334         case 3:
335                 /* [Extended] Packet Split Receive Descriptor Format
336                  *
337                  *    +-----------------------------------------------------+
338                  *  0 |                Buffer Address 0 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  *  8 |                Buffer Address 1 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  * 16 |                Buffer Address 2 [63:0]              |
343                  *    +-----------------------------------------------------+
344                  * 24 |                Buffer Address 3 [63:0]              |
345                  *    +-----------------------------------------------------+
346                  */
347                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
348                 /* [Extended] Receive Descriptor (Write-Back) Format
349                  *
350                  *   63       48 47    32 31     13 12    8 7    4 3        0
351                  *   +------------------------------------------------------+
352                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
353                  *   | Checksum | Ident  |         | Queue |      |  Type   |
354                  *   +------------------------------------------------------+
355                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356                  *   +------------------------------------------------------+
357                  *   63       48 47    32 31            20 19               0
358                  */
359                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360                 for (i = 0; i < rx_ring->count; i++) {
361                         const char *next_desc;
362                         buffer_info = &rx_ring->buffer_info[i];
363                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364                         u1 = (struct my_u1 *)rx_desc_ps;
365                         staterr =
366                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367
368                         if (i == rx_ring->next_to_use)
369                                 next_desc = " NTU";
370                         else if (i == rx_ring->next_to_clean)
371                                 next_desc = " NTC";
372                         else
373                                 next_desc = "";
374
375                         if (staterr & E1000_RXD_STAT_DD) {
376                                 /* Descriptor Done */
377                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378                                         "RWB", i,
379                                         (unsigned long long)le64_to_cpu(u1->a),
380                                         (unsigned long long)le64_to_cpu(u1->b),
381                                         (unsigned long long)le64_to_cpu(u1->c),
382                                         (unsigned long long)le64_to_cpu(u1->d),
383                                         buffer_info->skb, next_desc);
384                         } else {
385                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
386                                         "R  ", i,
387                                         (unsigned long long)le64_to_cpu(u1->a),
388                                         (unsigned long long)le64_to_cpu(u1->b),
389                                         (unsigned long long)le64_to_cpu(u1->c),
390                                         (unsigned long long)le64_to_cpu(u1->d),
391                                         (unsigned long long)buffer_info->dma,
392                                         buffer_info->skb, next_desc);
393
394                                 if (netif_msg_pktdata(adapter))
395                                         e1000e_dump_ps_pages(adapter,
396                                                              buffer_info);
397                         }
398                 }
399                 break;
400         default:
401         case 0:
402                 /* Extended Receive Descriptor (Read) Format
403                  *
404                  *   +-----------------------------------------------------+
405                  * 0 |                Buffer Address [63:0]                |
406                  *   +-----------------------------------------------------+
407                  * 8 |                      Reserved                       |
408                  *   +-----------------------------------------------------+
409                  */
410                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
411                 /* Extended Receive Descriptor (Write-Back) Format
412                  *
413                  *   63       48 47    32 31    24 23            4 3        0
414                  *   +------------------------------------------------------+
415                  *   |     RSS Hash      |        |               |         |
416                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
417                  *   | Packet   | IP     |        |               |  Type   |
418                  *   | Checksum | Ident  |        |               |         |
419                  *   +------------------------------------------------------+
420                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421                  *   +------------------------------------------------------+
422                  *   63       48 47    32 31            20 19               0
423                  */
424                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
425
426                 for (i = 0; i < rx_ring->count; i++) {
427                         const char *next_desc;
428
429                         buffer_info = &rx_ring->buffer_info[i];
430                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431                         u1 = (struct my_u1 *)rx_desc;
432                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433
434                         if (i == rx_ring->next_to_use)
435                                 next_desc = " NTU";
436                         else if (i == rx_ring->next_to_clean)
437                                 next_desc = " NTC";
438                         else
439                                 next_desc = "";
440
441                         if (staterr & E1000_RXD_STAT_DD) {
442                                 /* Descriptor Done */
443                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
444                                         "RWB", i,
445                                         (unsigned long long)le64_to_cpu(u1->a),
446                                         (unsigned long long)le64_to_cpu(u1->b),
447                                         buffer_info->skb, next_desc);
448                         } else {
449                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
450                                         "R  ", i,
451                                         (unsigned long long)le64_to_cpu(u1->a),
452                                         (unsigned long long)le64_to_cpu(u1->b),
453                                         (unsigned long long)buffer_info->dma,
454                                         buffer_info->skb, next_desc);
455
456                                 if (netif_msg_pktdata(adapter) &&
457                                     buffer_info->skb)
458                                         print_hex_dump(KERN_INFO, "",
459                                                        DUMP_PREFIX_ADDRESS, 16,
460                                                        1,
461                                                        buffer_info->skb->data,
462                                                        adapter->rx_buffer_len,
463                                                        true);
464                         }
465                 }
466         }
467 }
468
469 /**
470  * e1000_desc_unused - calculate if we have unused descriptors
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474         if (ring->next_to_clean > ring->next_to_use)
475                 return ring->next_to_clean - ring->next_to_use - 1;
476
477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495                                       struct skb_shared_hwtstamps *hwtstamps,
496                                       u64 systim)
497 {
498         u64 ns;
499         unsigned long flags;
500
501         spin_lock_irqsave(&adapter->systim_lock, flags);
502         ns = timecounter_cyc2time(&adapter->tc, systim);
503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
504
505         memset(hwtstamps, 0, sizeof(*hwtstamps));
506         hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520                                struct sk_buff *skb)
521 {
522         struct e1000_hw *hw = &adapter->hw;
523         u64 rxstmp;
524
525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526             !(status & E1000_RXDEXT_STATERR_TST) ||
527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528                 return;
529
530         /* The Rx time stamp registers contain the time stamp.  No other
531          * received packet will be time stamped until the Rx time stamp
532          * registers are read.  Because only one packet can be time stamped
533          * at a time, the register values must belong to this packet and
534          * therefore none of the other additional attributes need to be
535          * compared.
536          */
537         rxstmp = (u64)er32(RXSTMPL);
538         rxstmp |= (u64)er32(RXSTMPH) << 32;
539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540
541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @staterr: descriptor extended error and status field as written by hardware
548  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
549  * @skb: pointer to sk_buff to be indicated to stack
550  **/
551 static void e1000_receive_skb(struct e1000_adapter *adapter,
552                               struct net_device *netdev, struct sk_buff *skb,
553                               u32 staterr, __le16 vlan)
554 {
555         u16 tag = le16_to_cpu(vlan);
556
557         e1000e_rx_hwtstamp(adapter, staterr, skb);
558
559         skb->protocol = eth_type_trans(skb, netdev);
560
561         if (staterr & E1000_RXD_STAT_VP)
562                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
563
564         napi_gro_receive(&adapter->napi, skb);
565 }
566
567 /**
568  * e1000_rx_checksum - Receive Checksum Offload
569  * @adapter: board private structure
570  * @status_err: receive descriptor status and error fields
571  * @csum: receive descriptor csum field
572  * @sk_buff: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575                               struct sk_buff *skb)
576 {
577         u16 status = (u16)status_err;
578         u8 errors = (u8)(status_err >> 24);
579
580         skb_checksum_none_assert(skb);
581
582         /* Rx checksum disabled */
583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584                 return;
585
586         /* Ignore Checksum bit is set */
587         if (status & E1000_RXD_STAT_IXSM)
588                 return;
589
590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592                 /* let the stack verify checksum errors */
593                 adapter->hw_csum_err++;
594                 return;
595         }
596
597         /* TCP/UDP Checksum has not been calculated */
598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599                 return;
600
601         /* It must be a TCP or UDP packet with a valid checksum */
602         skb->ip_summed = CHECKSUM_UNNECESSARY;
603         adapter->hw_csum_good++;
604 }
605
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608         struct e1000_adapter *adapter = rx_ring->adapter;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 ret_val = __ew32_prepare(hw);
611
612         writel(i, rx_ring->tail);
613
614         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
615                 u32 rctl = er32(RCTL);
616
617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
618                 e_err("ME firmware caused invalid RDT - resetting\n");
619                 schedule_work(&adapter->reset_task);
620         }
621 }
622
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = tx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, tx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
632                 u32 tctl = er32(TCTL);
633
634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
635                 e_err("ME firmware caused invalid TDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  **/
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645                                    int cleaned_count, gfp_t gfp)
646 {
647         struct e1000_adapter *adapter = rx_ring->adapter;
648         struct net_device *netdev = adapter->netdev;
649         struct pci_dev *pdev = adapter->pdev;
650         union e1000_rx_desc_extended *rx_desc;
651         struct e1000_buffer *buffer_info;
652         struct sk_buff *skb;
653         unsigned int i;
654         unsigned int bufsz = adapter->rx_buffer_len;
655
656         i = rx_ring->next_to_use;
657         buffer_info = &rx_ring->buffer_info[i];
658
659         while (cleaned_count--) {
660                 skb = buffer_info->skb;
661                 if (skb) {
662                         skb_trim(skb, 0);
663                         goto map_skb;
664                 }
665
666                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667                 if (!skb) {
668                         /* Better luck next round */
669                         adapter->alloc_rx_buff_failed++;
670                         break;
671                 }
672
673                 buffer_info->skb = skb;
674 map_skb:
675                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676                                                   adapter->rx_buffer_len,
677                                                   DMA_FROM_DEVICE);
678                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679                         dev_err(&pdev->dev, "Rx DMA map failed\n");
680                         adapter->rx_dma_failed++;
681                         break;
682                 }
683
684                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686
687                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688                         /* Force memory writes to complete before letting h/w
689                          * know there are new descriptors to fetch.  (Only
690                          * applicable for weak-ordered memory model archs,
691                          * such as IA-64).
692                          */
693                         wmb();
694                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695                                 e1000e_update_rdt_wa(rx_ring, i);
696                         else
697                                 writel(i, rx_ring->tail);
698                 }
699                 i++;
700                 if (i == rx_ring->count)
701                         i = 0;
702                 buffer_info = &rx_ring->buffer_info[i];
703         }
704
705         rx_ring->next_to_use = i;
706 }
707
708 /**
709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710  * @rx_ring: Rx descriptor ring
711  **/
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713                                       int cleaned_count, gfp_t gfp)
714 {
715         struct e1000_adapter *adapter = rx_ring->adapter;
716         struct net_device *netdev = adapter->netdev;
717         struct pci_dev *pdev = adapter->pdev;
718         union e1000_rx_desc_packet_split *rx_desc;
719         struct e1000_buffer *buffer_info;
720         struct e1000_ps_page *ps_page;
721         struct sk_buff *skb;
722         unsigned int i, j;
723
724         i = rx_ring->next_to_use;
725         buffer_info = &rx_ring->buffer_info[i];
726
727         while (cleaned_count--) {
728                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729
730                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731                         ps_page = &buffer_info->ps_pages[j];
732                         if (j >= adapter->rx_ps_pages) {
733                                 /* all unused desc entries get hw null ptr */
734                                 rx_desc->read.buffer_addr[j + 1] =
735                                     ~cpu_to_le64(0);
736                                 continue;
737                         }
738                         if (!ps_page->page) {
739                                 ps_page->page = alloc_page(gfp);
740                                 if (!ps_page->page) {
741                                         adapter->alloc_rx_buff_failed++;
742                                         goto no_buffers;
743                                 }
744                                 ps_page->dma = dma_map_page(&pdev->dev,
745                                                             ps_page->page,
746                                                             0, PAGE_SIZE,
747                                                             DMA_FROM_DEVICE);
748                                 if (dma_mapping_error(&pdev->dev,
749                                                       ps_page->dma)) {
750                                         dev_err(&adapter->pdev->dev,
751                                                 "Rx DMA page map failed\n");
752                                         adapter->rx_dma_failed++;
753                                         goto no_buffers;
754                                 }
755                         }
756                         /* Refresh the desc even if buffer_addrs
757                          * didn't change because each write-back
758                          * erases this info.
759                          */
760                         rx_desc->read.buffer_addr[j + 1] =
761                             cpu_to_le64(ps_page->dma);
762                 }
763
764                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
765                                                   gfp);
766
767                 if (!skb) {
768                         adapter->alloc_rx_buff_failed++;
769                         break;
770                 }
771
772                 buffer_info->skb = skb;
773                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774                                                   adapter->rx_ps_bsize0,
775                                                   DMA_FROM_DEVICE);
776                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777                         dev_err(&pdev->dev, "Rx DMA map failed\n");
778                         adapter->rx_dma_failed++;
779                         /* cleanup skb */
780                         dev_kfree_skb_any(skb);
781                         buffer_info->skb = NULL;
782                         break;
783                 }
784
785                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
786
787                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788                         /* Force memory writes to complete before letting h/w
789                          * know there are new descriptors to fetch.  (Only
790                          * applicable for weak-ordered memory model archs,
791                          * such as IA-64).
792                          */
793                         wmb();
794                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795                                 e1000e_update_rdt_wa(rx_ring, i << 1);
796                         else
797                                 writel(i << 1, rx_ring->tail);
798                 }
799
800                 i++;
801                 if (i == rx_ring->count)
802                         i = 0;
803                 buffer_info = &rx_ring->buffer_info[i];
804         }
805
806 no_buffers:
807         rx_ring->next_to_use = i;
808 }
809
810 /**
811  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812  * @rx_ring: Rx descriptor ring
813  * @cleaned_count: number of buffers to allocate this pass
814  **/
815
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817                                          int cleaned_count, gfp_t gfp)
818 {
819         struct e1000_adapter *adapter = rx_ring->adapter;
820         struct net_device *netdev = adapter->netdev;
821         struct pci_dev *pdev = adapter->pdev;
822         union e1000_rx_desc_extended *rx_desc;
823         struct e1000_buffer *buffer_info;
824         struct sk_buff *skb;
825         unsigned int i;
826         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
827
828         i = rx_ring->next_to_use;
829         buffer_info = &rx_ring->buffer_info[i];
830
831         while (cleaned_count--) {
832                 skb = buffer_info->skb;
833                 if (skb) {
834                         skb_trim(skb, 0);
835                         goto check_page;
836                 }
837
838                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839                 if (unlikely(!skb)) {
840                         /* Better luck next round */
841                         adapter->alloc_rx_buff_failed++;
842                         break;
843                 }
844
845                 buffer_info->skb = skb;
846 check_page:
847                 /* allocate a new page if necessary */
848                 if (!buffer_info->page) {
849                         buffer_info->page = alloc_page(gfp);
850                         if (unlikely(!buffer_info->page)) {
851                                 adapter->alloc_rx_buff_failed++;
852                                 break;
853                         }
854                 }
855
856                 if (!buffer_info->dma) {
857                         buffer_info->dma = dma_map_page(&pdev->dev,
858                                                         buffer_info->page, 0,
859                                                         PAGE_SIZE,
860                                                         DMA_FROM_DEVICE);
861                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862                                 adapter->alloc_rx_buff_failed++;
863                                 break;
864                         }
865                 }
866
867                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
869
870                 if (unlikely(++i == rx_ring->count))
871                         i = 0;
872                 buffer_info = &rx_ring->buffer_info[i];
873         }
874
875         if (likely(rx_ring->next_to_use != i)) {
876                 rx_ring->next_to_use = i;
877                 if (unlikely(i-- == 0))
878                         i = (rx_ring->count - 1);
879
880                 /* Force memory writes to complete before letting h/w
881                  * know there are new descriptors to fetch.  (Only
882                  * applicable for weak-ordered memory model archs,
883                  * such as IA-64).
884                  */
885                 wmb();
886                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887                         e1000e_update_rdt_wa(rx_ring, i);
888                 else
889                         writel(i, rx_ring->tail);
890         }
891 }
892
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894                                  struct sk_buff *skb)
895 {
896         if (netdev->features & NETIF_F_RXHASH)
897                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
898 }
899
900 /**
901  * e1000_clean_rx_irq - Send received data up the network stack
902  * @rx_ring: Rx descriptor ring
903  *
904  * the return value indicates whether actual cleaning was done, there
905  * is no guarantee that everything was cleaned
906  **/
907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
908                                int work_to_do)
909 {
910         struct e1000_adapter *adapter = rx_ring->adapter;
911         struct net_device *netdev = adapter->netdev;
912         struct pci_dev *pdev = adapter->pdev;
913         struct e1000_hw *hw = &adapter->hw;
914         union e1000_rx_desc_extended *rx_desc, *next_rxd;
915         struct e1000_buffer *buffer_info, *next_buffer;
916         u32 length, staterr;
917         unsigned int i;
918         int cleaned_count = 0;
919         bool cleaned = false;
920         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
921
922         i = rx_ring->next_to_clean;
923         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
924         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
925         buffer_info = &rx_ring->buffer_info[i];
926
927         while (staterr & E1000_RXD_STAT_DD) {
928                 struct sk_buff *skb;
929
930                 if (*work_done >= work_to_do)
931                         break;
932                 (*work_done)++;
933                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
934
935                 skb = buffer_info->skb;
936                 buffer_info->skb = NULL;
937
938                 prefetch(skb->data - NET_IP_ALIGN);
939
940                 i++;
941                 if (i == rx_ring->count)
942                         i = 0;
943                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
944                 prefetch(next_rxd);
945
946                 next_buffer = &rx_ring->buffer_info[i];
947
948                 cleaned = true;
949                 cleaned_count++;
950                 dma_unmap_single(&pdev->dev, buffer_info->dma,
951                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
952                 buffer_info->dma = 0;
953
954                 length = le16_to_cpu(rx_desc->wb.upper.length);
955
956                 /* !EOP means multiple descriptors were used to store a single
957                  * packet, if that's the case we need to toss it.  In fact, we
958                  * need to toss every packet with the EOP bit clear and the
959                  * next frame that _does_ have the EOP bit set, as it is by
960                  * definition only a frame fragment
961                  */
962                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
963                         adapter->flags2 |= FLAG2_IS_DISCARDING;
964
965                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
966                         /* All receives must fit into a single buffer */
967                         e_dbg("Receive packet consumed multiple buffers\n");
968                         /* recycle */
969                         buffer_info->skb = skb;
970                         if (staterr & E1000_RXD_STAT_EOP)
971                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
972                         goto next_desc;
973                 }
974
975                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
976                              !(netdev->features & NETIF_F_RXALL))) {
977                         /* recycle */
978                         buffer_info->skb = skb;
979                         goto next_desc;
980                 }
981
982                 /* adjust length to remove Ethernet CRC */
983                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
984                         /* If configured to store CRC, don't subtract FCS,
985                          * but keep the FCS bytes out of the total_rx_bytes
986                          * counter
987                          */
988                         if (netdev->features & NETIF_F_RXFCS)
989                                 total_rx_bytes -= 4;
990                         else
991                                 length -= 4;
992                 }
993
994                 total_rx_bytes += length;
995                 total_rx_packets++;
996
997                 /* code added for copybreak, this should improve
998                  * performance for small packets with large amounts
999                  * of reassembly being done in the stack
1000                  */
1001                 if (length < copybreak) {
1002                         struct sk_buff *new_skb =
1003                                 napi_alloc_skb(&adapter->napi, length);
1004                         if (new_skb) {
1005                                 skb_copy_to_linear_data_offset(new_skb,
1006                                                                -NET_IP_ALIGN,
1007                                                                (skb->data -
1008                                                                 NET_IP_ALIGN),
1009                                                                (length +
1010                                                                 NET_IP_ALIGN));
1011                                 /* save the skb in buffer_info as good */
1012                                 buffer_info->skb = skb;
1013                                 skb = new_skb;
1014                         }
1015                         /* else just continue with the old one */
1016                 }
1017                 /* end copybreak code */
1018                 skb_put(skb, length);
1019
1020                 /* Receive Checksum Offload */
1021                 e1000_rx_checksum(adapter, staterr, skb);
1022
1023                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1024
1025                 e1000_receive_skb(adapter, netdev, skb, staterr,
1026                                   rx_desc->wb.upper.vlan);
1027
1028 next_desc:
1029                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1030
1031                 /* return some buffers to hardware, one at a time is too slow */
1032                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1033                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1034                                               GFP_ATOMIC);
1035                         cleaned_count = 0;
1036                 }
1037
1038                 /* use prefetched values */
1039                 rx_desc = next_rxd;
1040                 buffer_info = next_buffer;
1041
1042                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1043         }
1044         rx_ring->next_to_clean = i;
1045
1046         cleaned_count = e1000_desc_unused(rx_ring);
1047         if (cleaned_count)
1048                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1049
1050         adapter->total_rx_bytes += total_rx_bytes;
1051         adapter->total_rx_packets += total_rx_packets;
1052         return cleaned;
1053 }
1054
1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1056                             struct e1000_buffer *buffer_info,
1057                             bool drop)
1058 {
1059         struct e1000_adapter *adapter = tx_ring->adapter;
1060
1061         if (buffer_info->dma) {
1062                 if (buffer_info->mapped_as_page)
1063                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1064                                        buffer_info->length, DMA_TO_DEVICE);
1065                 else
1066                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1067                                          buffer_info->length, DMA_TO_DEVICE);
1068                 buffer_info->dma = 0;
1069         }
1070         if (buffer_info->skb) {
1071                 if (drop)
1072                         dev_kfree_skb_any(buffer_info->skb);
1073                 else
1074                         dev_consume_skb_any(buffer_info->skb);
1075                 buffer_info->skb = NULL;
1076         }
1077         buffer_info->time_stamp = 0;
1078 }
1079
1080 static void e1000_print_hw_hang(struct work_struct *work)
1081 {
1082         struct e1000_adapter *adapter = container_of(work,
1083                                                      struct e1000_adapter,
1084                                                      print_hang_task);
1085         struct net_device *netdev = adapter->netdev;
1086         struct e1000_ring *tx_ring = adapter->tx_ring;
1087         unsigned int i = tx_ring->next_to_clean;
1088         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1089         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1090         struct e1000_hw *hw = &adapter->hw;
1091         u16 phy_status, phy_1000t_status, phy_ext_status;
1092         u16 pci_status;
1093
1094         if (test_bit(__E1000_DOWN, &adapter->state))
1095                 return;
1096
1097         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1098                 /* May be block on write-back, flush and detect again
1099                  * flush pending descriptor writebacks to memory
1100                  */
1101                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102                 /* execute the writes immediately */
1103                 e1e_flush();
1104                 /* Due to rare timing issues, write to TIDV again to ensure
1105                  * the write is successful
1106                  */
1107                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1108                 /* execute the writes immediately */
1109                 e1e_flush();
1110                 adapter->tx_hang_recheck = true;
1111                 return;
1112         }
1113         adapter->tx_hang_recheck = false;
1114
1115         if (er32(TDH(0)) == er32(TDT(0))) {
1116                 e_dbg("false hang detected, ignoring\n");
1117                 return;
1118         }
1119
1120         /* Real hang detected */
1121         netif_stop_queue(netdev);
1122
1123         e1e_rphy(hw, MII_BMSR, &phy_status);
1124         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1125         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1126
1127         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1128
1129         /* detected Hardware unit hang */
1130         e_err("Detected Hardware Unit Hang:\n"
1131               "  TDH                  <%x>\n"
1132               "  TDT                  <%x>\n"
1133               "  next_to_use          <%x>\n"
1134               "  next_to_clean        <%x>\n"
1135               "buffer_info[next_to_clean]:\n"
1136               "  time_stamp           <%lx>\n"
1137               "  next_to_watch        <%x>\n"
1138               "  jiffies              <%lx>\n"
1139               "  next_to_watch.status <%x>\n"
1140               "MAC Status             <%x>\n"
1141               "PHY Status             <%x>\n"
1142               "PHY 1000BASE-T Status  <%x>\n"
1143               "PHY Extended Status    <%x>\n"
1144               "PCI Status             <%x>\n",
1145               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1146               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1147               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1148               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1149
1150         e1000e_dump(adapter);
1151
1152         /* Suggest workaround for known h/w issue */
1153         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1154                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1155 }
1156
1157 /**
1158  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1159  * @work: pointer to work struct
1160  *
1161  * This work function polls the TSYNCTXCTL valid bit to determine when a
1162  * timestamp has been taken for the current stored skb.  The timestamp must
1163  * be for this skb because only one such packet is allowed in the queue.
1164  */
1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1166 {
1167         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1168                                                      tx_hwtstamp_work);
1169         struct e1000_hw *hw = &adapter->hw;
1170
1171         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1172                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1173                 struct skb_shared_hwtstamps shhwtstamps;
1174                 u64 txstmp;
1175
1176                 txstmp = er32(TXSTMPL);
1177                 txstmp |= (u64)er32(TXSTMPH) << 32;
1178
1179                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1180
1181                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1182                  * prior to notifying the stack of a Tx timestamp.
1183                  */
1184                 adapter->tx_hwtstamp_skb = NULL;
1185                 wmb(); /* force write prior to skb_tstamp_tx */
1186
1187                 skb_tstamp_tx(skb, &shhwtstamps);
1188                 dev_consume_skb_any(skb);
1189         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1190                               + adapter->tx_timeout_factor * HZ)) {
1191                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1192                 adapter->tx_hwtstamp_skb = NULL;
1193                 adapter->tx_hwtstamp_timeouts++;
1194                 e_warn("clearing Tx timestamp hang\n");
1195         } else {
1196                 /* reschedule to check later */
1197                 schedule_work(&adapter->tx_hwtstamp_work);
1198         }
1199 }
1200
1201 /**
1202  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1203  * @tx_ring: Tx descriptor ring
1204  *
1205  * the return value indicates whether actual cleaning was done, there
1206  * is no guarantee that everything was cleaned
1207  **/
1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1209 {
1210         struct e1000_adapter *adapter = tx_ring->adapter;
1211         struct net_device *netdev = adapter->netdev;
1212         struct e1000_hw *hw = &adapter->hw;
1213         struct e1000_tx_desc *tx_desc, *eop_desc;
1214         struct e1000_buffer *buffer_info;
1215         unsigned int i, eop;
1216         unsigned int count = 0;
1217         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1218         unsigned int bytes_compl = 0, pkts_compl = 0;
1219
1220         i = tx_ring->next_to_clean;
1221         eop = tx_ring->buffer_info[i].next_to_watch;
1222         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1223
1224         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1225                (count < tx_ring->count)) {
1226                 bool cleaned = false;
1227
1228                 dma_rmb();              /* read buffer_info after eop_desc */
1229                 for (; !cleaned; count++) {
1230                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1231                         buffer_info = &tx_ring->buffer_info[i];
1232                         cleaned = (i == eop);
1233
1234                         if (cleaned) {
1235                                 total_tx_packets += buffer_info->segs;
1236                                 total_tx_bytes += buffer_info->bytecount;
1237                                 if (buffer_info->skb) {
1238                                         bytes_compl += buffer_info->skb->len;
1239                                         pkts_compl++;
1240                                 }
1241                         }
1242
1243                         e1000_put_txbuf(tx_ring, buffer_info, false);
1244                         tx_desc->upper.data = 0;
1245
1246                         i++;
1247                         if (i == tx_ring->count)
1248                                 i = 0;
1249                 }
1250
1251                 if (i == tx_ring->next_to_use)
1252                         break;
1253                 eop = tx_ring->buffer_info[i].next_to_watch;
1254                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1255         }
1256
1257         tx_ring->next_to_clean = i;
1258
1259         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1260
1261 #define TX_WAKE_THRESHOLD 32
1262         if (count && netif_carrier_ok(netdev) &&
1263             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1264                 /* Make sure that anybody stopping the queue after this
1265                  * sees the new next_to_clean.
1266                  */
1267                 smp_mb();
1268
1269                 if (netif_queue_stopped(netdev) &&
1270                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1271                         netif_wake_queue(netdev);
1272                         ++adapter->restart_queue;
1273                 }
1274         }
1275
1276         if (adapter->detect_tx_hung) {
1277                 /* Detect a transmit hang in hardware, this serializes the
1278                  * check with the clearing of time_stamp and movement of i
1279                  */
1280                 adapter->detect_tx_hung = false;
1281                 if (tx_ring->buffer_info[i].time_stamp &&
1282                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1283                                + (adapter->tx_timeout_factor * HZ)) &&
1284                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1285                         schedule_work(&adapter->print_hang_task);
1286                 else
1287                         adapter->tx_hang_recheck = false;
1288         }
1289         adapter->total_tx_bytes += total_tx_bytes;
1290         adapter->total_tx_packets += total_tx_packets;
1291         return count < tx_ring->count;
1292 }
1293
1294 /**
1295  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1296  * @rx_ring: Rx descriptor ring
1297  *
1298  * the return value indicates whether actual cleaning was done, there
1299  * is no guarantee that everything was cleaned
1300  **/
1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1302                                   int work_to_do)
1303 {
1304         struct e1000_adapter *adapter = rx_ring->adapter;
1305         struct e1000_hw *hw = &adapter->hw;
1306         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1307         struct net_device *netdev = adapter->netdev;
1308         struct pci_dev *pdev = adapter->pdev;
1309         struct e1000_buffer *buffer_info, *next_buffer;
1310         struct e1000_ps_page *ps_page;
1311         struct sk_buff *skb;
1312         unsigned int i, j;
1313         u32 length, staterr;
1314         int cleaned_count = 0;
1315         bool cleaned = false;
1316         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1317
1318         i = rx_ring->next_to_clean;
1319         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1320         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1321         buffer_info = &rx_ring->buffer_info[i];
1322
1323         while (staterr & E1000_RXD_STAT_DD) {
1324                 if (*work_done >= work_to_do)
1325                         break;
1326                 (*work_done)++;
1327                 skb = buffer_info->skb;
1328                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1329
1330                 /* in the packet split case this is header only */
1331                 prefetch(skb->data - NET_IP_ALIGN);
1332
1333                 i++;
1334                 if (i == rx_ring->count)
1335                         i = 0;
1336                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1337                 prefetch(next_rxd);
1338
1339                 next_buffer = &rx_ring->buffer_info[i];
1340
1341                 cleaned = true;
1342                 cleaned_count++;
1343                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1344                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1345                 buffer_info->dma = 0;
1346
1347                 /* see !EOP comment in other Rx routine */
1348                 if (!(staterr & E1000_RXD_STAT_EOP))
1349                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1350
1351                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1352                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1353                         dev_kfree_skb_irq(skb);
1354                         if (staterr & E1000_RXD_STAT_EOP)
1355                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1356                         goto next_desc;
1357                 }
1358
1359                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1360                              !(netdev->features & NETIF_F_RXALL))) {
1361                         dev_kfree_skb_irq(skb);
1362                         goto next_desc;
1363                 }
1364
1365                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1366
1367                 if (!length) {
1368                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1369                         dev_kfree_skb_irq(skb);
1370                         goto next_desc;
1371                 }
1372
1373                 /* Good Receive */
1374                 skb_put(skb, length);
1375
1376                 {
1377                         /* this looks ugly, but it seems compiler issues make
1378                          * it more efficient than reusing j
1379                          */
1380                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1381
1382                         /* page alloc/put takes too long and effects small
1383                          * packet throughput, so unsplit small packets and
1384                          * save the alloc/put only valid in softirq (napi)
1385                          * context to call kmap_*
1386                          */
1387                         if (l1 && (l1 <= copybreak) &&
1388                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1389                                 u8 *vaddr;
1390
1391                                 ps_page = &buffer_info->ps_pages[0];
1392
1393                                 /* there is no documentation about how to call
1394                                  * kmap_atomic, so we can't hold the mapping
1395                                  * very long
1396                                  */
1397                                 dma_sync_single_for_cpu(&pdev->dev,
1398                                                         ps_page->dma,
1399                                                         PAGE_SIZE,
1400                                                         DMA_FROM_DEVICE);
1401                                 vaddr = kmap_atomic(ps_page->page);
1402                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1403                                 kunmap_atomic(vaddr);
1404                                 dma_sync_single_for_device(&pdev->dev,
1405                                                            ps_page->dma,
1406                                                            PAGE_SIZE,
1407                                                            DMA_FROM_DEVICE);
1408
1409                                 /* remove the CRC */
1410                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411                                         if (!(netdev->features & NETIF_F_RXFCS))
1412                                                 l1 -= 4;
1413                                 }
1414
1415                                 skb_put(skb, l1);
1416                                 goto copydone;
1417                         }       /* if */
1418                 }
1419
1420                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1421                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1422                         if (!length)
1423                                 break;
1424
1425                         ps_page = &buffer_info->ps_pages[j];
1426                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1427                                        DMA_FROM_DEVICE);
1428                         ps_page->dma = 0;
1429                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1430                         ps_page->page = NULL;
1431                         skb->len += length;
1432                         skb->data_len += length;
1433                         skb->truesize += PAGE_SIZE;
1434                 }
1435
1436                 /* strip the ethernet crc, problem is we're using pages now so
1437                  * this whole operation can get a little cpu intensive
1438                  */
1439                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1440                         if (!(netdev->features & NETIF_F_RXFCS))
1441                                 pskb_trim(skb, skb->len - 4);
1442                 }
1443
1444 copydone:
1445                 total_rx_bytes += skb->len;
1446                 total_rx_packets++;
1447
1448                 e1000_rx_checksum(adapter, staterr, skb);
1449
1450                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1451
1452                 if (rx_desc->wb.upper.header_status &
1453                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1454                         adapter->rx_hdr_split++;
1455
1456                 e1000_receive_skb(adapter, netdev, skb, staterr,
1457                                   rx_desc->wb.middle.vlan);
1458
1459 next_desc:
1460                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1461                 buffer_info->skb = NULL;
1462
1463                 /* return some buffers to hardware, one at a time is too slow */
1464                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1465                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1466                                               GFP_ATOMIC);
1467                         cleaned_count = 0;
1468                 }
1469
1470                 /* use prefetched values */
1471                 rx_desc = next_rxd;
1472                 buffer_info = next_buffer;
1473
1474                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1475         }
1476         rx_ring->next_to_clean = i;
1477
1478         cleaned_count = e1000_desc_unused(rx_ring);
1479         if (cleaned_count)
1480                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1481
1482         adapter->total_rx_bytes += total_rx_bytes;
1483         adapter->total_rx_packets += total_rx_packets;
1484         return cleaned;
1485 }
1486
1487 /**
1488  * e1000_consume_page - helper function
1489  **/
1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1491                                u16 length)
1492 {
1493         bi->page = NULL;
1494         skb->len += length;
1495         skb->data_len += length;
1496         skb->truesize += PAGE_SIZE;
1497 }
1498
1499 /**
1500  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1501  * @adapter: board private structure
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542
1543                 next_buffer = &rx_ring->buffer_info[i];
1544
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         u8 *vaddr;
1605                                         vaddr = kmap_atomic(buffer_info->page);
1606                                         memcpy(skb_tail_pointer(skb), vaddr,
1607                                                length);
1608                                         kunmap_atomic(vaddr);
1609                                         /* re-use the page, so don't erase
1610                                          * buffer_info->page
1611                                          */
1612                                         skb_put(skb, length);
1613                                 } else {
1614                                         skb_fill_page_desc(skb, 0,
1615                                                            buffer_info->page, 0,
1616                                                            length);
1617                                         e1000_consume_page(buffer_info, skb,
1618                                                            length);
1619                                 }
1620                         }
1621                 }
1622
1623                 /* Receive Checksum Offload */
1624                 e1000_rx_checksum(adapter, staterr, skb);
1625
1626                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1627
1628                 /* probably a little skewed due to removing CRC */
1629                 total_rx_bytes += skb->len;
1630                 total_rx_packets++;
1631
1632                 /* eth type trans needs skb->data to point to something */
1633                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1634                         e_err("pskb_may_pull failed.\n");
1635                         dev_kfree_skb_irq(skb);
1636                         goto next_desc;
1637                 }
1638
1639                 e1000_receive_skb(adapter, netdev, skb, staterr,
1640                                   rx_desc->wb.upper.vlan);
1641
1642 next_desc:
1643                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1644
1645                 /* return some buffers to hardware, one at a time is too slow */
1646                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1647                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1648                                               GFP_ATOMIC);
1649                         cleaned_count = 0;
1650                 }
1651
1652                 /* use prefetched values */
1653                 rx_desc = next_rxd;
1654                 buffer_info = next_buffer;
1655
1656                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1657         }
1658         rx_ring->next_to_clean = i;
1659
1660         cleaned_count = e1000_desc_unused(rx_ring);
1661         if (cleaned_count)
1662                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1663
1664         adapter->total_rx_bytes += total_rx_bytes;
1665         adapter->total_rx_packets += total_rx_packets;
1666         return cleaned;
1667 }
1668
1669 /**
1670  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1671  * @rx_ring: Rx descriptor ring
1672  **/
1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1674 {
1675         struct e1000_adapter *adapter = rx_ring->adapter;
1676         struct e1000_buffer *buffer_info;
1677         struct e1000_ps_page *ps_page;
1678         struct pci_dev *pdev = adapter->pdev;
1679         unsigned int i, j;
1680
1681         /* Free all the Rx ring sk_buffs */
1682         for (i = 0; i < rx_ring->count; i++) {
1683                 buffer_info = &rx_ring->buffer_info[i];
1684                 if (buffer_info->dma) {
1685                         if (adapter->clean_rx == e1000_clean_rx_irq)
1686                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1687                                                  adapter->rx_buffer_len,
1688                                                  DMA_FROM_DEVICE);
1689                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1690                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1691                                                PAGE_SIZE, DMA_FROM_DEVICE);
1692                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_ps_bsize0,
1695                                                  DMA_FROM_DEVICE);
1696                         buffer_info->dma = 0;
1697                 }
1698
1699                 if (buffer_info->page) {
1700                         put_page(buffer_info->page);
1701                         buffer_info->page = NULL;
1702                 }
1703
1704                 if (buffer_info->skb) {
1705                         dev_kfree_skb(buffer_info->skb);
1706                         buffer_info->skb = NULL;
1707                 }
1708
1709                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1710                         ps_page = &buffer_info->ps_pages[j];
1711                         if (!ps_page->page)
1712                                 break;
1713                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714                                        DMA_FROM_DEVICE);
1715                         ps_page->dma = 0;
1716                         put_page(ps_page->page);
1717                         ps_page->page = NULL;
1718                 }
1719         }
1720
1721         /* there also may be some cached data from a chained receive */
1722         if (rx_ring->rx_skb_top) {
1723                 dev_kfree_skb(rx_ring->rx_skb_top);
1724                 rx_ring->rx_skb_top = NULL;
1725         }
1726
1727         /* Zero out the descriptor ring */
1728         memset(rx_ring->desc, 0, rx_ring->size);
1729
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1733 }
1734
1735 static void e1000e_downshift_workaround(struct work_struct *work)
1736 {
1737         struct e1000_adapter *adapter = container_of(work,
1738                                                      struct e1000_adapter,
1739                                                      downshift_task);
1740
1741         if (test_bit(__E1000_DOWN, &adapter->state))
1742                 return;
1743
1744         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1745 }
1746
1747 /**
1748  * e1000_intr_msi - Interrupt Handler
1749  * @irq: interrupt number
1750  * @data: pointer to a network interface device structure
1751  **/
1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1753 {
1754         struct net_device *netdev = data;
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757         u32 icr = er32(ICR);
1758
1759         /* read ICR disables interrupts using IAM */
1760         if (icr & E1000_ICR_LSC) {
1761                 hw->mac.get_link_status = true;
1762                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1763                  * disconnect (LSC) before accessing any PHY registers
1764                  */
1765                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1766                     (!(er32(STATUS) & E1000_STATUS_LU)))
1767                         schedule_work(&adapter->downshift_task);
1768
1769                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1770                  * link down event; disable receives here in the ISR and reset
1771                  * adapter in watchdog
1772                  */
1773                 if (netif_carrier_ok(netdev) &&
1774                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1775                         /* disable receives */
1776                         u32 rctl = er32(RCTL);
1777
1778                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1779                         adapter->flags |= FLAG_RESTART_NOW;
1780                 }
1781                 /* guard against interrupt when we're going down */
1782                 if (!test_bit(__E1000_DOWN, &adapter->state))
1783                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1784         }
1785
1786         /* Reset on uncorrectable ECC error */
1787         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1788                 u32 pbeccsts = er32(PBECCSTS);
1789
1790                 adapter->corr_errors +=
1791                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1792                 adapter->uncorr_errors +=
1793                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1794                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1795
1796                 /* Do the reset outside of interrupt context */
1797                 schedule_work(&adapter->reset_task);
1798
1799                 /* return immediately since reset is imminent */
1800                 return IRQ_HANDLED;
1801         }
1802
1803         if (napi_schedule_prep(&adapter->napi)) {
1804                 adapter->total_tx_bytes = 0;
1805                 adapter->total_tx_packets = 0;
1806                 adapter->total_rx_bytes = 0;
1807                 adapter->total_rx_packets = 0;
1808                 __napi_schedule(&adapter->napi);
1809         }
1810
1811         return IRQ_HANDLED;
1812 }
1813
1814 /**
1815  * e1000_intr - Interrupt Handler
1816  * @irq: interrupt number
1817  * @data: pointer to a network interface device structure
1818  **/
1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1820 {
1821         struct net_device *netdev = data;
1822         struct e1000_adapter *adapter = netdev_priv(netdev);
1823         struct e1000_hw *hw = &adapter->hw;
1824         u32 rctl, icr = er32(ICR);
1825
1826         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1827                 return IRQ_NONE;        /* Not our interrupt */
1828
1829         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1830          * not set, then the adapter didn't send an interrupt
1831          */
1832         if (!(icr & E1000_ICR_INT_ASSERTED))
1833                 return IRQ_NONE;
1834
1835         /* Interrupt Auto-Mask...upon reading ICR,
1836          * interrupts are masked.  No need for the
1837          * IMC write
1838          */
1839
1840         if (icr & E1000_ICR_LSC) {
1841                 hw->mac.get_link_status = true;
1842                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1843                  * disconnect (LSC) before accessing any PHY registers
1844                  */
1845                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1846                     (!(er32(STATUS) & E1000_STATUS_LU)))
1847                         schedule_work(&adapter->downshift_task);
1848
1849                 /* 80003ES2LAN workaround--
1850                  * For packet buffer work-around on link down event;
1851                  * disable receives here in the ISR and
1852                  * reset adapter in watchdog
1853                  */
1854                 if (netif_carrier_ok(netdev) &&
1855                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1856                         /* disable receives */
1857                         rctl = er32(RCTL);
1858                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1859                         adapter->flags |= FLAG_RESTART_NOW;
1860                 }
1861                 /* guard against interrupt when we're going down */
1862                 if (!test_bit(__E1000_DOWN, &adapter->state))
1863                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1864         }
1865
1866         /* Reset on uncorrectable ECC error */
1867         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1868                 u32 pbeccsts = er32(PBECCSTS);
1869
1870                 adapter->corr_errors +=
1871                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1872                 adapter->uncorr_errors +=
1873                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1874                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1875
1876                 /* Do the reset outside of interrupt context */
1877                 schedule_work(&adapter->reset_task);
1878
1879                 /* return immediately since reset is imminent */
1880                 return IRQ_HANDLED;
1881         }
1882
1883         if (napi_schedule_prep(&adapter->napi)) {
1884                 adapter->total_tx_bytes = 0;
1885                 adapter->total_tx_packets = 0;
1886                 adapter->total_rx_bytes = 0;
1887                 adapter->total_rx_packets = 0;
1888                 __napi_schedule(&adapter->napi);
1889         }
1890
1891         return IRQ_HANDLED;
1892 }
1893
1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1895 {
1896         struct net_device *netdev = data;
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898         struct e1000_hw *hw = &adapter->hw;
1899         u32 icr = er32(ICR);
1900
1901         if (icr & adapter->eiac_mask)
1902                 ew32(ICS, (icr & adapter->eiac_mask));
1903
1904         if (icr & E1000_ICR_LSC) {
1905                 hw->mac.get_link_status = true;
1906                 /* guard against interrupt when we're going down */
1907                 if (!test_bit(__E1000_DOWN, &adapter->state))
1908                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1909         }
1910
1911         if (!test_bit(__E1000_DOWN, &adapter->state))
1912                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1913
1914         return IRQ_HANDLED;
1915 }
1916
1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1918 {
1919         struct net_device *netdev = data;
1920         struct e1000_adapter *adapter = netdev_priv(netdev);
1921         struct e1000_hw *hw = &adapter->hw;
1922         struct e1000_ring *tx_ring = adapter->tx_ring;
1923
1924         adapter->total_tx_bytes = 0;
1925         adapter->total_tx_packets = 0;
1926
1927         if (!e1000_clean_tx_irq(tx_ring))
1928                 /* Ring was not completely cleaned, so fire another interrupt */
1929                 ew32(ICS, tx_ring->ims_val);
1930
1931         if (!test_bit(__E1000_DOWN, &adapter->state))
1932                 ew32(IMS, adapter->tx_ring->ims_val);
1933
1934         return IRQ_HANDLED;
1935 }
1936
1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1938 {
1939         struct net_device *netdev = data;
1940         struct e1000_adapter *adapter = netdev_priv(netdev);
1941         struct e1000_ring *rx_ring = adapter->rx_ring;
1942
1943         /* Write the ITR value calculated at the end of the
1944          * previous interrupt.
1945          */
1946         if (rx_ring->set_itr) {
1947                 u32 itr = rx_ring->itr_val ?
1948                           1000000000 / (rx_ring->itr_val * 256) : 0;
1949
1950                 writel(itr, rx_ring->itr_register);
1951                 rx_ring->set_itr = 0;
1952         }
1953
1954         if (napi_schedule_prep(&adapter->napi)) {
1955                 adapter->total_rx_bytes = 0;
1956                 adapter->total_rx_packets = 0;
1957                 __napi_schedule(&adapter->napi);
1958         }
1959         return IRQ_HANDLED;
1960 }
1961
1962 /**
1963  * e1000_configure_msix - Configure MSI-X hardware
1964  *
1965  * e1000_configure_msix sets up the hardware to properly
1966  * generate MSI-X interrupts.
1967  **/
1968 static void e1000_configure_msix(struct e1000_adapter *adapter)
1969 {
1970         struct e1000_hw *hw = &adapter->hw;
1971         struct e1000_ring *rx_ring = adapter->rx_ring;
1972         struct e1000_ring *tx_ring = adapter->tx_ring;
1973         int vector = 0;
1974         u32 ctrl_ext, ivar = 0;
1975
1976         adapter->eiac_mask = 0;
1977
1978         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979         if (hw->mac.type == e1000_82574) {
1980                 u32 rfctl = er32(RFCTL);
1981
1982                 rfctl |= E1000_RFCTL_ACK_DIS;
1983                 ew32(RFCTL, rfctl);
1984         }
1985
1986         /* Configure Rx vector */
1987         rx_ring->ims_val = E1000_IMS_RXQ0;
1988         adapter->eiac_mask |= rx_ring->ims_val;
1989         if (rx_ring->itr_val)
1990                 writel(1000000000 / (rx_ring->itr_val * 256),
1991                        rx_ring->itr_register);
1992         else
1993                 writel(1, rx_ring->itr_register);
1994         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995
1996         /* Configure Tx vector */
1997         tx_ring->ims_val = E1000_IMS_TXQ0;
1998         vector++;
1999         if (tx_ring->itr_val)
2000                 writel(1000000000 / (tx_ring->itr_val * 256),
2001                        tx_ring->itr_register);
2002         else
2003                 writel(1, tx_ring->itr_register);
2004         adapter->eiac_mask |= tx_ring->ims_val;
2005         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006
2007         /* set vector for Other Causes, e.g. link changes */
2008         vector++;
2009         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010         if (rx_ring->itr_val)
2011                 writel(1000000000 / (rx_ring->itr_val * 256),
2012                        hw->hw_addr + E1000_EITR_82574(vector));
2013         else
2014                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015
2016         /* Cause Tx interrupts on every write back */
2017         ivar |= BIT(31);
2018
2019         ew32(IVAR, ivar);
2020
2021         /* enable MSI-X PBA support */
2022         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024         ew32(CTRL_EXT, ctrl_ext);
2025         e1e_flush();
2026 }
2027
2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029 {
2030         if (adapter->msix_entries) {
2031                 pci_disable_msix(adapter->pdev);
2032                 kfree(adapter->msix_entries);
2033                 adapter->msix_entries = NULL;
2034         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2035                 pci_disable_msi(adapter->pdev);
2036                 adapter->flags &= ~FLAG_MSI_ENABLED;
2037         }
2038 }
2039
2040 /**
2041  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042  *
2043  * Attempt to configure interrupts using the best available
2044  * capabilities of the hardware and kernel.
2045  **/
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2047 {
2048         int err;
2049         int i;
2050
2051         switch (adapter->int_mode) {
2052         case E1000E_INT_MODE_MSIX:
2053                 if (adapter->flags & FLAG_HAS_MSIX) {
2054                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2056                                                         sizeof(struct
2057                                                                msix_entry),
2058                                                         GFP_KERNEL);
2059                         if (adapter->msix_entries) {
2060                                 struct e1000_adapter *a = adapter;
2061
2062                                 for (i = 0; i < adapter->num_vectors; i++)
2063                                         adapter->msix_entries[i].entry = i;
2064
2065                                 err = pci_enable_msix_range(a->pdev,
2066                                                             a->msix_entries,
2067                                                             a->num_vectors,
2068                                                             a->num_vectors);
2069                                 if (err > 0)
2070                                         return;
2071                         }
2072                         /* MSI-X failed, so fall through and try MSI */
2073                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2074                         e1000e_reset_interrupt_capability(adapter);
2075                 }
2076                 adapter->int_mode = E1000E_INT_MODE_MSI;
2077                 /* Fall through */
2078         case E1000E_INT_MODE_MSI:
2079                 if (!pci_enable_msi(adapter->pdev)) {
2080                         adapter->flags |= FLAG_MSI_ENABLED;
2081                 } else {
2082                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2084                 }
2085                 /* Fall through */
2086         case E1000E_INT_MODE_LEGACY:
2087                 /* Don't do anything; this is the system default */
2088                 break;
2089         }
2090
2091         /* store the number of vectors being used */
2092         adapter->num_vectors = 1;
2093 }
2094
2095 /**
2096  * e1000_request_msix - Initialize MSI-X interrupts
2097  *
2098  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2099  * kernel.
2100  **/
2101 static int e1000_request_msix(struct e1000_adapter *adapter)
2102 {
2103         struct net_device *netdev = adapter->netdev;
2104         int err = 0, vector = 0;
2105
2106         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2107                 snprintf(adapter->rx_ring->name,
2108                          sizeof(adapter->rx_ring->name) - 1,
2109                          "%s-rx-0", netdev->name);
2110         else
2111                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2112         err = request_irq(adapter->msix_entries[vector].vector,
2113                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2114                           netdev);
2115         if (err)
2116                 return err;
2117         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2118             E1000_EITR_82574(vector);
2119         adapter->rx_ring->itr_val = adapter->itr;
2120         vector++;
2121
2122         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2123                 snprintf(adapter->tx_ring->name,
2124                          sizeof(adapter->tx_ring->name) - 1,
2125                          "%s-tx-0", netdev->name);
2126         else
2127                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2128         err = request_irq(adapter->msix_entries[vector].vector,
2129                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2130                           netdev);
2131         if (err)
2132                 return err;
2133         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2134             E1000_EITR_82574(vector);
2135         adapter->tx_ring->itr_val = adapter->itr;
2136         vector++;
2137
2138         err = request_irq(adapter->msix_entries[vector].vector,
2139                           e1000_msix_other, 0, netdev->name, netdev);
2140         if (err)
2141                 return err;
2142
2143         e1000_configure_msix(adapter);
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * e1000_request_irq - initialize interrupts
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         int err;
2158
2159         if (adapter->msix_entries) {
2160                 err = e1000_request_msix(adapter);
2161                 if (!err)
2162                         return err;
2163                 /* fall back to MSI */
2164                 e1000e_reset_interrupt_capability(adapter);
2165                 adapter->int_mode = E1000E_INT_MODE_MSI;
2166                 e1000e_set_interrupt_capability(adapter);
2167         }
2168         if (adapter->flags & FLAG_MSI_ENABLED) {
2169                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170                                   netdev->name, netdev);
2171                 if (!err)
2172                         return err;
2173
2174                 /* fall back to legacy interrupt */
2175                 e1000e_reset_interrupt_capability(adapter);
2176                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177         }
2178
2179         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180                           netdev->name, netdev);
2181         if (err)
2182                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184         return err;
2185 }
2186
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190
2191         if (adapter->msix_entries) {
2192                 int vector = 0;
2193
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 vector++;
2196
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199
2200                 /* Other Causes interrupt vector */
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 return;
2203         }
2204
2205         free_irq(adapter->pdev->irq, netdev);
2206 }
2207
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  **/
2211 static void e1000_irq_disable(struct e1000_adapter *adapter)
2212 {
2213         struct e1000_hw *hw = &adapter->hw;
2214
2215         ew32(IMC, ~0);
2216         if (adapter->msix_entries)
2217                 ew32(EIAC_82574, 0);
2218         e1e_flush();
2219
2220         if (adapter->msix_entries) {
2221                 int i;
2222
2223                 for (i = 0; i < adapter->num_vectors; i++)
2224                         synchronize_irq(adapter->msix_entries[i].vector);
2225         } else {
2226                 synchronize_irq(adapter->pdev->irq);
2227         }
2228 }
2229
2230 /**
2231  * e1000_irq_enable - Enable default interrupt generation settings
2232  **/
2233 static void e1000_irq_enable(struct e1000_adapter *adapter)
2234 {
2235         struct e1000_hw *hw = &adapter->hw;
2236
2237         if (adapter->msix_entries) {
2238                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2239                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2240                      IMS_OTHER_MASK);
2241         } else if (hw->mac.type >= e1000_pch_lpt) {
2242                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2243         } else {
2244                 ew32(IMS, IMS_ENABLE_MASK);
2245         }
2246         e1e_flush();
2247 }
2248
2249 /**
2250  * e1000e_get_hw_control - get control of the h/w from f/w
2251  * @adapter: address of board private structure
2252  *
2253  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2254  * For ASF and Pass Through versions of f/w this means that
2255  * the driver is loaded. For AMT version (only with 82573)
2256  * of the f/w this means that the network i/f is open.
2257  **/
2258 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2259 {
2260         struct e1000_hw *hw = &adapter->hw;
2261         u32 ctrl_ext;
2262         u32 swsm;
2263
2264         /* Let firmware know the driver has taken over */
2265         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2266                 swsm = er32(SWSM);
2267                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2268         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2269                 ctrl_ext = er32(CTRL_EXT);
2270                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2271         }
2272 }
2273
2274 /**
2275  * e1000e_release_hw_control - release control of the h/w to f/w
2276  * @adapter: address of board private structure
2277  *
2278  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2279  * For ASF and Pass Through versions of f/w this means that the
2280  * driver is no longer loaded. For AMT version (only with 82573) i
2281  * of the f/w this means that the network i/f is closed.
2282  *
2283  **/
2284 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2285 {
2286         struct e1000_hw *hw = &adapter->hw;
2287         u32 ctrl_ext;
2288         u32 swsm;
2289
2290         /* Let firmware taken over control of h/w */
2291         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2292                 swsm = er32(SWSM);
2293                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2294         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2295                 ctrl_ext = er32(CTRL_EXT);
2296                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2297         }
2298 }
2299
2300 /**
2301  * e1000_alloc_ring_dma - allocate memory for a ring structure
2302  **/
2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2304                                 struct e1000_ring *ring)
2305 {
2306         struct pci_dev *pdev = adapter->pdev;
2307
2308         ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2309                                          GFP_KERNEL);
2310         if (!ring->desc)
2311                 return -ENOMEM;
2312
2313         return 0;
2314 }
2315
2316 /**
2317  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2318  * @tx_ring: Tx descriptor ring
2319  *
2320  * Return 0 on success, negative on failure
2321  **/
2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2323 {
2324         struct e1000_adapter *adapter = tx_ring->adapter;
2325         int err = -ENOMEM, size;
2326
2327         size = sizeof(struct e1000_buffer) * tx_ring->count;
2328         tx_ring->buffer_info = vzalloc(size);
2329         if (!tx_ring->buffer_info)
2330                 goto err;
2331
2332         /* round up to nearest 4K */
2333         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2334         tx_ring->size = ALIGN(tx_ring->size, 4096);
2335
2336         err = e1000_alloc_ring_dma(adapter, tx_ring);
2337         if (err)
2338                 goto err;
2339
2340         tx_ring->next_to_use = 0;
2341         tx_ring->next_to_clean = 0;
2342
2343         return 0;
2344 err:
2345         vfree(tx_ring->buffer_info);
2346         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2347         return err;
2348 }
2349
2350 /**
2351  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2352  * @rx_ring: Rx descriptor ring
2353  *
2354  * Returns 0 on success, negative on failure
2355  **/
2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2357 {
2358         struct e1000_adapter *adapter = rx_ring->adapter;
2359         struct e1000_buffer *buffer_info;
2360         int i, size, desc_len, err = -ENOMEM;
2361
2362         size = sizeof(struct e1000_buffer) * rx_ring->count;
2363         rx_ring->buffer_info = vzalloc(size);
2364         if (!rx_ring->buffer_info)
2365                 goto err;
2366
2367         for (i = 0; i < rx_ring->count; i++) {
2368                 buffer_info = &rx_ring->buffer_info[i];
2369                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2370                                                 sizeof(struct e1000_ps_page),
2371                                                 GFP_KERNEL);
2372                 if (!buffer_info->ps_pages)
2373                         goto err_pages;
2374         }
2375
2376         desc_len = sizeof(union e1000_rx_desc_packet_split);
2377
2378         /* Round up to nearest 4K */
2379         rx_ring->size = rx_ring->count * desc_len;
2380         rx_ring->size = ALIGN(rx_ring->size, 4096);
2381
2382         err = e1000_alloc_ring_dma(adapter, rx_ring);
2383         if (err)
2384                 goto err_pages;
2385
2386         rx_ring->next_to_clean = 0;
2387         rx_ring->next_to_use = 0;
2388         rx_ring->rx_skb_top = NULL;
2389
2390         return 0;
2391
2392 err_pages:
2393         for (i = 0; i < rx_ring->count; i++) {
2394                 buffer_info = &rx_ring->buffer_info[i];
2395                 kfree(buffer_info->ps_pages);
2396         }
2397 err:
2398         vfree(rx_ring->buffer_info);
2399         e_err("Unable to allocate memory for the receive descriptor ring\n");
2400         return err;
2401 }
2402
2403 /**
2404  * e1000_clean_tx_ring - Free Tx Buffers
2405  * @tx_ring: Tx descriptor ring
2406  **/
2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2408 {
2409         struct e1000_adapter *adapter = tx_ring->adapter;
2410         struct e1000_buffer *buffer_info;
2411         unsigned long size;
2412         unsigned int i;
2413
2414         for (i = 0; i < tx_ring->count; i++) {
2415                 buffer_info = &tx_ring->buffer_info[i];
2416                 e1000_put_txbuf(tx_ring, buffer_info, false);
2417         }
2418
2419         netdev_reset_queue(adapter->netdev);
2420         size = sizeof(struct e1000_buffer) * tx_ring->count;
2421         memset(tx_ring->buffer_info, 0, size);
2422
2423         memset(tx_ring->desc, 0, tx_ring->size);
2424
2425         tx_ring->next_to_use = 0;
2426         tx_ring->next_to_clean = 0;
2427 }
2428
2429 /**
2430  * e1000e_free_tx_resources - Free Tx Resources per Queue
2431  * @tx_ring: Tx descriptor ring
2432  *
2433  * Free all transmit software resources
2434  **/
2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2436 {
2437         struct e1000_adapter *adapter = tx_ring->adapter;
2438         struct pci_dev *pdev = adapter->pdev;
2439
2440         e1000_clean_tx_ring(tx_ring);
2441
2442         vfree(tx_ring->buffer_info);
2443         tx_ring->buffer_info = NULL;
2444
2445         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2446                           tx_ring->dma);
2447         tx_ring->desc = NULL;
2448 }
2449
2450 /**
2451  * e1000e_free_rx_resources - Free Rx Resources
2452  * @rx_ring: Rx descriptor ring
2453  *
2454  * Free all receive software resources
2455  **/
2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2457 {
2458         struct e1000_adapter *adapter = rx_ring->adapter;
2459         struct pci_dev *pdev = adapter->pdev;
2460         int i;
2461
2462         e1000_clean_rx_ring(rx_ring);
2463
2464         for (i = 0; i < rx_ring->count; i++)
2465                 kfree(rx_ring->buffer_info[i].ps_pages);
2466
2467         vfree(rx_ring->buffer_info);
2468         rx_ring->buffer_info = NULL;
2469
2470         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2471                           rx_ring->dma);
2472         rx_ring->desc = NULL;
2473 }
2474
2475 /**
2476  * e1000_update_itr - update the dynamic ITR value based on statistics
2477  * @adapter: pointer to adapter
2478  * @itr_setting: current adapter->itr
2479  * @packets: the number of packets during this measurement interval
2480  * @bytes: the number of bytes during this measurement interval
2481  *
2482  *      Stores a new ITR value based on packets and byte
2483  *      counts during the last interrupt.  The advantage of per interrupt
2484  *      computation is faster updates and more accurate ITR for the current
2485  *      traffic pattern.  Constants in this function were computed
2486  *      based on theoretical maximum wire speed and thresholds were set based
2487  *      on testing data as well as attempting to minimize response time
2488  *      while increasing bulk throughput.  This functionality is controlled
2489  *      by the InterruptThrottleRate module parameter.
2490  **/
2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2492 {
2493         unsigned int retval = itr_setting;
2494
2495         if (packets == 0)
2496                 return itr_setting;
2497
2498         switch (itr_setting) {
2499         case lowest_latency:
2500                 /* handle TSO and jumbo frames */
2501                 if (bytes / packets > 8000)
2502                         retval = bulk_latency;
2503                 else if ((packets < 5) && (bytes > 512))
2504                         retval = low_latency;
2505                 break;
2506         case low_latency:       /* 50 usec aka 20000 ints/s */
2507                 if (bytes > 10000) {
2508                         /* this if handles the TSO accounting */
2509                         if (bytes / packets > 8000)
2510                                 retval = bulk_latency;
2511                         else if ((packets < 10) || ((bytes / packets) > 1200))
2512                                 retval = bulk_latency;
2513                         else if ((packets > 35))
2514                                 retval = lowest_latency;
2515                 } else if (bytes / packets > 2000) {
2516                         retval = bulk_latency;
2517                 } else if (packets <= 2 && bytes < 512) {
2518                         retval = lowest_latency;
2519                 }
2520                 break;
2521         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2522                 if (bytes > 25000) {
2523                         if (packets > 35)
2524                                 retval = low_latency;
2525                 } else if (bytes < 6000) {
2526                         retval = low_latency;
2527                 }
2528                 break;
2529         }
2530
2531         return retval;
2532 }
2533
2534 static void e1000_set_itr(struct e1000_adapter *adapter)
2535 {
2536         u16 current_itr;
2537         u32 new_itr = adapter->itr;
2538
2539         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2540         if (adapter->link_speed != SPEED_1000) {
2541                 current_itr = 0;
2542                 new_itr = 4000;
2543                 goto set_itr_now;
2544         }
2545
2546         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2547                 new_itr = 0;
2548                 goto set_itr_now;
2549         }
2550
2551         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2552                                            adapter->total_tx_packets,
2553                                            adapter->total_tx_bytes);
2554         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2555         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2556                 adapter->tx_itr = low_latency;
2557
2558         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2559                                            adapter->total_rx_packets,
2560                                            adapter->total_rx_bytes);
2561         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2562         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2563                 adapter->rx_itr = low_latency;
2564
2565         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2566
2567         /* counts and packets in update_itr are dependent on these numbers */
2568         switch (current_itr) {
2569         case lowest_latency:
2570                 new_itr = 70000;
2571                 break;
2572         case low_latency:
2573                 new_itr = 20000;        /* aka hwitr = ~200 */
2574                 break;
2575         case bulk_latency:
2576                 new_itr = 4000;
2577                 break;
2578         default:
2579                 break;
2580         }
2581
2582 set_itr_now:
2583         if (new_itr != adapter->itr) {
2584                 /* this attempts to bias the interrupt rate towards Bulk
2585                  * by adding intermediate steps when interrupt rate is
2586                  * increasing
2587                  */
2588                 new_itr = new_itr > adapter->itr ?
2589                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2590                 adapter->itr = new_itr;
2591                 adapter->rx_ring->itr_val = new_itr;
2592                 if (adapter->msix_entries)
2593                         adapter->rx_ring->set_itr = 1;
2594                 else
2595                         e1000e_write_itr(adapter, new_itr);
2596         }
2597 }
2598
2599 /**
2600  * e1000e_write_itr - write the ITR value to the appropriate registers
2601  * @adapter: address of board private structure
2602  * @itr: new ITR value to program
2603  *
2604  * e1000e_write_itr determines if the adapter is in MSI-X mode
2605  * and, if so, writes the EITR registers with the ITR value.
2606  * Otherwise, it writes the ITR value into the ITR register.
2607  **/
2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2609 {
2610         struct e1000_hw *hw = &adapter->hw;
2611         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2612
2613         if (adapter->msix_entries) {
2614                 int vector;
2615
2616                 for (vector = 0; vector < adapter->num_vectors; vector++)
2617                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2618         } else {
2619                 ew32(ITR, new_itr);
2620         }
2621 }
2622
2623 /**
2624  * e1000_alloc_queues - Allocate memory for all rings
2625  * @adapter: board private structure to initialize
2626  **/
2627 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2628 {
2629         int size = sizeof(struct e1000_ring);
2630
2631         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2632         if (!adapter->tx_ring)
2633                 goto err;
2634         adapter->tx_ring->count = adapter->tx_ring_count;
2635         adapter->tx_ring->adapter = adapter;
2636
2637         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2638         if (!adapter->rx_ring)
2639                 goto err;
2640         adapter->rx_ring->count = adapter->rx_ring_count;
2641         adapter->rx_ring->adapter = adapter;
2642
2643         return 0;
2644 err:
2645         e_err("Unable to allocate memory for queues\n");
2646         kfree(adapter->rx_ring);
2647         kfree(adapter->tx_ring);
2648         return -ENOMEM;
2649 }
2650
2651 /**
2652  * e1000e_poll - NAPI Rx polling callback
2653  * @napi: struct associated with this polling callback
2654  * @weight: number of packets driver is allowed to process this poll
2655  **/
2656 static int e1000e_poll(struct napi_struct *napi, int weight)
2657 {
2658         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2659                                                      napi);
2660         struct e1000_hw *hw = &adapter->hw;
2661         struct net_device *poll_dev = adapter->netdev;
2662         int tx_cleaned = 1, work_done = 0;
2663
2664         adapter = netdev_priv(poll_dev);
2665
2666         if (!adapter->msix_entries ||
2667             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2668                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2669
2670         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2671
2672         if (!tx_cleaned)
2673                 work_done = weight;
2674
2675         /* If weight not fully consumed, exit the polling mode */
2676         if (work_done < weight) {
2677                 if (adapter->itr_setting & 3)
2678                         e1000_set_itr(adapter);
2679                 napi_complete_done(napi, work_done);
2680                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2681                         if (adapter->msix_entries)
2682                                 ew32(IMS, adapter->rx_ring->ims_val);
2683                         else
2684                                 e1000_irq_enable(adapter);
2685                 }
2686         }
2687
2688         return work_done;
2689 }
2690
2691 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2692                                  __always_unused __be16 proto, u16 vid)
2693 {
2694         struct e1000_adapter *adapter = netdev_priv(netdev);
2695         struct e1000_hw *hw = &adapter->hw;
2696         u32 vfta, index;
2697
2698         /* don't update vlan cookie if already programmed */
2699         if ((adapter->hw.mng_cookie.status &
2700              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2701             (vid == adapter->mng_vlan_id))
2702                 return 0;
2703
2704         /* add VID to filter table */
2705         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2706                 index = (vid >> 5) & 0x7F;
2707                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2708                 vfta |= BIT((vid & 0x1F));
2709                 hw->mac.ops.write_vfta(hw, index, vfta);
2710         }
2711
2712         set_bit(vid, adapter->active_vlans);
2713
2714         return 0;
2715 }
2716
2717 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2718                                   __always_unused __be16 proto, u16 vid)
2719 {
2720         struct e1000_adapter *adapter = netdev_priv(netdev);
2721         struct e1000_hw *hw = &adapter->hw;
2722         u32 vfta, index;
2723
2724         if ((adapter->hw.mng_cookie.status &
2725              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2726             (vid == adapter->mng_vlan_id)) {
2727                 /* release control to f/w */
2728                 e1000e_release_hw_control(adapter);
2729                 return 0;
2730         }
2731
2732         /* remove VID from filter table */
2733         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2734                 index = (vid >> 5) & 0x7F;
2735                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2736                 vfta &= ~BIT((vid & 0x1F));
2737                 hw->mac.ops.write_vfta(hw, index, vfta);
2738         }
2739
2740         clear_bit(vid, adapter->active_vlans);
2741
2742         return 0;
2743 }
2744
2745 /**
2746  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2747  * @adapter: board private structure to initialize
2748  **/
2749 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2750 {
2751         struct net_device *netdev = adapter->netdev;
2752         struct e1000_hw *hw = &adapter->hw;
2753         u32 rctl;
2754
2755         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2756                 /* disable VLAN receive filtering */
2757                 rctl = er32(RCTL);
2758                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2759                 ew32(RCTL, rctl);
2760
2761                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2762                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2763                                                adapter->mng_vlan_id);
2764                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2765                 }
2766         }
2767 }
2768
2769 /**
2770  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2771  * @adapter: board private structure to initialize
2772  **/
2773 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2774 {
2775         struct e1000_hw *hw = &adapter->hw;
2776         u32 rctl;
2777
2778         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2779                 /* enable VLAN receive filtering */
2780                 rctl = er32(RCTL);
2781                 rctl |= E1000_RCTL_VFE;
2782                 rctl &= ~E1000_RCTL_CFIEN;
2783                 ew32(RCTL, rctl);
2784         }
2785 }
2786
2787 /**
2788  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2789  * @adapter: board private structure to initialize
2790  **/
2791 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2792 {
2793         struct e1000_hw *hw = &adapter->hw;
2794         u32 ctrl;
2795
2796         /* disable VLAN tag insert/strip */
2797         ctrl = er32(CTRL);
2798         ctrl &= ~E1000_CTRL_VME;
2799         ew32(CTRL, ctrl);
2800 }
2801
2802 /**
2803  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2804  * @adapter: board private structure to initialize
2805  **/
2806 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2807 {
2808         struct e1000_hw *hw = &adapter->hw;
2809         u32 ctrl;
2810
2811         /* enable VLAN tag insert/strip */
2812         ctrl = er32(CTRL);
2813         ctrl |= E1000_CTRL_VME;
2814         ew32(CTRL, ctrl);
2815 }
2816
2817 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2818 {
2819         struct net_device *netdev = adapter->netdev;
2820         u16 vid = adapter->hw.mng_cookie.vlan_id;
2821         u16 old_vid = adapter->mng_vlan_id;
2822
2823         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2824                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2825                 adapter->mng_vlan_id = vid;
2826         }
2827
2828         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2829                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2830 }
2831
2832 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2833 {
2834         u16 vid;
2835
2836         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2837
2838         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2839             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2840 }
2841
2842 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2843 {
2844         struct e1000_hw *hw = &adapter->hw;
2845         u32 manc, manc2h, mdef, i, j;
2846
2847         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2848                 return;
2849
2850         manc = er32(MANC);
2851
2852         /* enable receiving management packets to the host. this will probably
2853          * generate destination unreachable messages from the host OS, but
2854          * the packets will be handled on SMBUS
2855          */
2856         manc |= E1000_MANC_EN_MNG2HOST;
2857         manc2h = er32(MANC2H);
2858
2859         switch (hw->mac.type) {
2860         default:
2861                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2862                 break;
2863         case e1000_82574:
2864         case e1000_82583:
2865                 /* Check if IPMI pass-through decision filter already exists;
2866                  * if so, enable it.
2867                  */
2868                 for (i = 0, j = 0; i < 8; i++) {
2869                         mdef = er32(MDEF(i));
2870
2871                         /* Ignore filters with anything other than IPMI ports */
2872                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2873                                 continue;
2874
2875                         /* Enable this decision filter in MANC2H */
2876                         if (mdef)
2877                                 manc2h |= BIT(i);
2878
2879                         j |= mdef;
2880                 }
2881
2882                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2883                         break;
2884
2885                 /* Create new decision filter in an empty filter */
2886                 for (i = 0, j = 0; i < 8; i++)
2887                         if (er32(MDEF(i)) == 0) {
2888                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2889                                                E1000_MDEF_PORT_664));
2890                                 manc2h |= BIT(1);
2891                                 j++;
2892                                 break;
2893                         }
2894
2895                 if (!j)
2896                         e_warn("Unable to create IPMI pass-through filter\n");
2897                 break;
2898         }
2899
2900         ew32(MANC2H, manc2h);
2901         ew32(MANC, manc);
2902 }
2903
2904 /**
2905  * e1000_configure_tx - Configure Transmit Unit after Reset
2906  * @adapter: board private structure
2907  *
2908  * Configure the Tx unit of the MAC after a reset.
2909  **/
2910 static void e1000_configure_tx(struct e1000_adapter *adapter)
2911 {
2912         struct e1000_hw *hw = &adapter->hw;
2913         struct e1000_ring *tx_ring = adapter->tx_ring;
2914         u64 tdba;
2915         u32 tdlen, tctl, tarc;
2916
2917         /* Setup the HW Tx Head and Tail descriptor pointers */
2918         tdba = tx_ring->dma;
2919         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2920         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2921         ew32(TDBAH(0), (tdba >> 32));
2922         ew32(TDLEN(0), tdlen);
2923         ew32(TDH(0), 0);
2924         ew32(TDT(0), 0);
2925         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2926         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2927
2928         writel(0, tx_ring->head);
2929         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2930                 e1000e_update_tdt_wa(tx_ring, 0);
2931         else
2932                 writel(0, tx_ring->tail);
2933
2934         /* Set the Tx Interrupt Delay register */
2935         ew32(TIDV, adapter->tx_int_delay);
2936         /* Tx irq moderation */
2937         ew32(TADV, adapter->tx_abs_int_delay);
2938
2939         if (adapter->flags2 & FLAG2_DMA_BURST) {
2940                 u32 txdctl = er32(TXDCTL(0));
2941
2942                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943                             E1000_TXDCTL_WTHRESH);
2944                 /* set up some performance related parameters to encourage the
2945                  * hardware to use the bus more efficiently in bursts, depends
2946                  * on the tx_int_delay to be enabled,
2947                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948                  * hthresh = 1 ==> prefetch when one or more available
2949                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950                  * BEWARE: this seems to work but should be considered first if
2951                  * there are Tx hangs or other Tx related bugs
2952                  */
2953                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954                 ew32(TXDCTL(0), txdctl);
2955         }
2956         /* erratum work around: set txdctl the same for both queues */
2957         ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959         /* Program the Transmit Control Register */
2960         tctl = er32(TCTL);
2961         tctl &= ~E1000_TCTL_CT;
2962         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966                 tarc = er32(TARC(0));
2967                 /* set the speed mode bit, we'll clear it if we're not at
2968                  * gigabit link later
2969                  */
2970 #define SPEED_MODE_BIT BIT(21)
2971                 tarc |= SPEED_MODE_BIT;
2972                 ew32(TARC(0), tarc);
2973         }
2974
2975         /* errata: program both queues to unweighted RR */
2976         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977                 tarc = er32(TARC(0));
2978                 tarc |= 1;
2979                 ew32(TARC(0), tarc);
2980                 tarc = er32(TARC(1));
2981                 tarc |= 1;
2982                 ew32(TARC(1), tarc);
2983         }
2984
2985         /* Setup Transmit Descriptor Settings for eop descriptor */
2986         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988         /* only set IDE if we are delaying interrupts using the timers */
2989         if (adapter->tx_int_delay)
2990                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992         /* enable Report Status bit */
2993         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995         ew32(TCTL, tctl);
2996
2997         hw->mac.ops.config_collision_dist(hw);
2998
2999         /* SPT and KBL Si errata workaround to avoid data corruption */
3000         if (hw->mac.type == e1000_pch_spt) {
3001                 u32 reg_val;
3002
3003                 reg_val = er32(IOSFPC);
3004                 reg_val |= E1000_RCTL_RDMTS_HEX;
3005                 ew32(IOSFPC, reg_val);
3006
3007                 reg_val = er32(TARC(0));
3008                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3009                  * Dropping the number of outstanding requests from
3010                  * 3 to 2 in order to avoid a buffer overrun.
3011                  */
3012                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014                 ew32(TARC(0), reg_val);
3015         }
3016 }
3017
3018 /**
3019  * e1000_setup_rctl - configure the receive control registers
3020  * @adapter: Board private structure
3021  **/
3022 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3023                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3024 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3025 {
3026         struct e1000_hw *hw = &adapter->hw;
3027         u32 rctl, rfctl;
3028         u32 pages = 0;
3029
3030         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3031          * If jumbo frames not set, program related MAC/PHY registers
3032          * to h/w defaults
3033          */
3034         if (hw->mac.type >= e1000_pch2lan) {
3035                 s32 ret_val;
3036
3037                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3038                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3039                 else
3040                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3041
3042                 if (ret_val)
3043                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3044         }
3045
3046         /* Program MC offset vector base */
3047         rctl = er32(RCTL);
3048         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3049         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3050             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3051             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3052
3053         /* Do not Store bad packets */
3054         rctl &= ~E1000_RCTL_SBP;
3055
3056         /* Enable Long Packet receive */
3057         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3058                 rctl &= ~E1000_RCTL_LPE;
3059         else
3060                 rctl |= E1000_RCTL_LPE;
3061
3062         /* Some systems expect that the CRC is included in SMBUS traffic. The
3063          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3064          * host memory when this is enabled
3065          */
3066         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3067                 rctl |= E1000_RCTL_SECRC;
3068
3069         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3070         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3071                 u16 phy_data;
3072
3073                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3074                 phy_data &= 0xfff8;
3075                 phy_data |= BIT(2);
3076                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3077
3078                 e1e_rphy(hw, 22, &phy_data);
3079                 phy_data &= 0x0fff;
3080                 phy_data |= BIT(14);
3081                 e1e_wphy(hw, 0x10, 0x2823);
3082                 e1e_wphy(hw, 0x11, 0x0003);
3083                 e1e_wphy(hw, 22, phy_data);
3084         }
3085
3086         /* Setup buffer sizes */
3087         rctl &= ~E1000_RCTL_SZ_4096;
3088         rctl |= E1000_RCTL_BSEX;
3089         switch (adapter->rx_buffer_len) {
3090         case 2048:
3091         default:
3092                 rctl |= E1000_RCTL_SZ_2048;
3093                 rctl &= ~E1000_RCTL_BSEX;
3094                 break;
3095         case 4096:
3096                 rctl |= E1000_RCTL_SZ_4096;
3097                 break;
3098         case 8192:
3099                 rctl |= E1000_RCTL_SZ_8192;
3100                 break;
3101         case 16384:
3102                 rctl |= E1000_RCTL_SZ_16384;
3103                 break;
3104         }
3105
3106         /* Enable Extended Status in all Receive Descriptors */
3107         rfctl = er32(RFCTL);
3108         rfctl |= E1000_RFCTL_EXTEN;
3109         ew32(RFCTL, rfctl);
3110
3111         /* 82571 and greater support packet-split where the protocol
3112          * header is placed in skb->data and the packet data is
3113          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3114          * In the case of a non-split, skb->data is linearly filled,
3115          * followed by the page buffers.  Therefore, skb->data is
3116          * sized to hold the largest protocol header.
3117          *
3118          * allocations using alloc_page take too long for regular MTU
3119          * so only enable packet split for jumbo frames
3120          *
3121          * Using pages when the page size is greater than 16k wastes
3122          * a lot of memory, since we allocate 3 pages at all times
3123          * per packet.
3124          */
3125         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3126         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3127                 adapter->rx_ps_pages = pages;
3128         else
3129                 adapter->rx_ps_pages = 0;
3130
3131         if (adapter->rx_ps_pages) {
3132                 u32 psrctl = 0;
3133
3134                 /* Enable Packet split descriptors */
3135                 rctl |= E1000_RCTL_DTYP_PS;
3136
3137                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3138
3139                 switch (adapter->rx_ps_pages) {
3140                 case 3:
3141                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3142                         /* fall-through */
3143                 case 2:
3144                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3145                         /* fall-through */
3146                 case 1:
3147                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3148                         break;
3149                 }
3150
3151                 ew32(PSRCTL, psrctl);
3152         }
3153
3154         /* This is useful for sniffing bad packets. */
3155         if (adapter->netdev->features & NETIF_F_RXALL) {
3156                 /* UPE and MPE will be handled by normal PROMISC logic
3157                  * in e1000e_set_rx_mode
3158                  */
3159                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3160                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3161                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3162
3163                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3164                           E1000_RCTL_DPF |      /* Allow filtered pause */
3165                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3166                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3167                  * and that breaks VLANs.
3168                  */
3169         }
3170
3171         ew32(RCTL, rctl);
3172         /* just started the receive unit, no need to restart */
3173         adapter->flags &= ~FLAG_RESTART_NOW;
3174 }
3175
3176 /**
3177  * e1000_configure_rx - Configure Receive Unit after Reset
3178  * @adapter: board private structure
3179  *
3180  * Configure the Rx unit of the MAC after a reset.
3181  **/
3182 static void e1000_configure_rx(struct e1000_adapter *adapter)
3183 {
3184         struct e1000_hw *hw = &adapter->hw;
3185         struct e1000_ring *rx_ring = adapter->rx_ring;
3186         u64 rdba;
3187         u32 rdlen, rctl, rxcsum, ctrl_ext;
3188
3189         if (adapter->rx_ps_pages) {
3190                 /* this is a 32 byte descriptor */
3191                 rdlen = rx_ring->count *
3192                     sizeof(union e1000_rx_desc_packet_split);
3193                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3194                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3195         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3196                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3197                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3198                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3199         } else {
3200                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201                 adapter->clean_rx = e1000_clean_rx_irq;
3202                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3203         }
3204
3205         /* disable receives while setting up the descriptors */
3206         rctl = er32(RCTL);
3207         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3208                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3209         e1e_flush();
3210         usleep_range(10000, 20000);
3211
3212         if (adapter->flags2 & FLAG2_DMA_BURST) {
3213                 /* set the writeback threshold (only takes effect if the RDTR
3214                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3215                  * enable prefetching of 0x20 Rx descriptors
3216                  * granularity = 01
3217                  * wthresh = 04,
3218                  * hthresh = 04,
3219                  * pthresh = 0x20
3220                  */
3221                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3222                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3223         }
3224
3225         /* set the Receive Delay Timer Register */
3226         ew32(RDTR, adapter->rx_int_delay);
3227
3228         /* irq moderation */
3229         ew32(RADV, adapter->rx_abs_int_delay);
3230         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3231                 e1000e_write_itr(adapter, adapter->itr);
3232
3233         ctrl_ext = er32(CTRL_EXT);
3234         /* Auto-Mask interrupts upon ICR access */
3235         ctrl_ext |= E1000_CTRL_EXT_IAME;
3236         ew32(IAM, 0xffffffff);
3237         ew32(CTRL_EXT, ctrl_ext);
3238         e1e_flush();
3239
3240         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3241          * the Base and Length of the Rx Descriptor Ring
3242          */
3243         rdba = rx_ring->dma;
3244         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3245         ew32(RDBAH(0), (rdba >> 32));
3246         ew32(RDLEN(0), rdlen);
3247         ew32(RDH(0), 0);
3248         ew32(RDT(0), 0);
3249         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3250         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3251
3252         writel(0, rx_ring->head);
3253         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254                 e1000e_update_rdt_wa(rx_ring, 0);
3255         else
3256                 writel(0, rx_ring->tail);
3257
3258         /* Enable Receive Checksum Offload for TCP and UDP */
3259         rxcsum = er32(RXCSUM);
3260         if (adapter->netdev->features & NETIF_F_RXCSUM)
3261                 rxcsum |= E1000_RXCSUM_TUOFL;
3262         else
3263                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3264         ew32(RXCSUM, rxcsum);
3265
3266         /* With jumbo frames, excessive C-state transition latencies result
3267          * in dropped transactions.
3268          */
3269         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3270                 u32 lat =
3271                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3272                      adapter->max_frame_size) * 8 / 1000;
3273
3274                 if (adapter->flags & FLAG_IS_ICH) {
3275                         u32 rxdctl = er32(RXDCTL(0));
3276
3277                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3278                 }
3279
3280                 dev_info(&adapter->pdev->dev,
3281                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3282                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3283         } else {
3284                 pm_qos_update_request(&adapter->pm_qos_req,
3285                                       PM_QOS_DEFAULT_VALUE);
3286         }
3287
3288         /* Enable Receives */
3289         ew32(RCTL, rctl);
3290 }
3291
3292 /**
3293  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3294  * @netdev: network interface device structure
3295  *
3296  * Writes multicast address list to the MTA hash table.
3297  * Returns: -ENOMEM on failure
3298  *                0 on no addresses written
3299  *                X on writing X addresses to MTA
3300  */
3301 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3302 {
3303         struct e1000_adapter *adapter = netdev_priv(netdev);
3304         struct e1000_hw *hw = &adapter->hw;
3305         struct netdev_hw_addr *ha;
3306         u8 *mta_list;
3307         int i;
3308
3309         if (netdev_mc_empty(netdev)) {
3310                 /* nothing to program, so clear mc list */
3311                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3312                 return 0;
3313         }
3314
3315         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3316         if (!mta_list)
3317                 return -ENOMEM;
3318
3319         /* update_mc_addr_list expects a packed array of only addresses. */
3320         i = 0;
3321         netdev_for_each_mc_addr(ha, netdev)
3322             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3323
3324         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3325         kfree(mta_list);
3326
3327         return netdev_mc_count(netdev);
3328 }
3329
3330 /**
3331  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3332  * @netdev: network interface device structure
3333  *
3334  * Writes unicast address list to the RAR table.
3335  * Returns: -ENOMEM on failure/insufficient address space
3336  *                0 on no addresses written
3337  *                X on writing X addresses to the RAR table
3338  **/
3339 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3340 {
3341         struct e1000_adapter *adapter = netdev_priv(netdev);
3342         struct e1000_hw *hw = &adapter->hw;
3343         unsigned int rar_entries;
3344         int count = 0;
3345
3346         rar_entries = hw->mac.ops.rar_get_count(hw);
3347
3348         /* save a rar entry for our hardware address */
3349         rar_entries--;
3350
3351         /* save a rar entry for the LAA workaround */
3352         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3353                 rar_entries--;
3354
3355         /* return ENOMEM indicating insufficient memory for addresses */
3356         if (netdev_uc_count(netdev) > rar_entries)
3357                 return -ENOMEM;
3358
3359         if (!netdev_uc_empty(netdev) && rar_entries) {
3360                 struct netdev_hw_addr *ha;
3361
3362                 /* write the addresses in reverse order to avoid write
3363                  * combining
3364                  */
3365                 netdev_for_each_uc_addr(ha, netdev) {
3366                         int ret_val;
3367
3368                         if (!rar_entries)
3369                                 break;
3370                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3371                         if (ret_val < 0)
3372                                 return -ENOMEM;
3373                         count++;
3374                 }
3375         }
3376
3377         /* zero out the remaining RAR entries not used above */
3378         for (; rar_entries > 0; rar_entries--) {
3379                 ew32(RAH(rar_entries), 0);
3380                 ew32(RAL(rar_entries), 0);
3381         }
3382         e1e_flush();
3383
3384         return count;
3385 }
3386
3387 /**
3388  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3389  * @netdev: network interface device structure
3390  *
3391  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3392  * address list or the network interface flags are updated.  This routine is
3393  * responsible for configuring the hardware for proper unicast, multicast,
3394  * promiscuous mode, and all-multi behavior.
3395  **/
3396 static void e1000e_set_rx_mode(struct net_device *netdev)
3397 {
3398         struct e1000_adapter *adapter = netdev_priv(netdev);
3399         struct e1000_hw *hw = &adapter->hw;
3400         u32 rctl;
3401
3402         if (pm_runtime_suspended(netdev->dev.parent))
3403                 return;
3404
3405         /* Check for Promiscuous and All Multicast modes */
3406         rctl = er32(RCTL);
3407
3408         /* clear the affected bits */
3409         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3410
3411         if (netdev->flags & IFF_PROMISC) {
3412                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3413                 /* Do not hardware filter VLANs in promisc mode */
3414                 e1000e_vlan_filter_disable(adapter);
3415         } else {
3416                 int count;
3417
3418                 if (netdev->flags & IFF_ALLMULTI) {
3419                         rctl |= E1000_RCTL_MPE;
3420                 } else {
3421                         /* Write addresses to the MTA, if the attempt fails
3422                          * then we should just turn on promiscuous mode so
3423                          * that we can at least receive multicast traffic
3424                          */
3425                         count = e1000e_write_mc_addr_list(netdev);
3426                         if (count < 0)
3427                                 rctl |= E1000_RCTL_MPE;
3428                 }
3429                 e1000e_vlan_filter_enable(adapter);
3430                 /* Write addresses to available RAR registers, if there is not
3431                  * sufficient space to store all the addresses then enable
3432                  * unicast promiscuous mode
3433                  */
3434                 count = e1000e_write_uc_addr_list(netdev);
3435                 if (count < 0)
3436                         rctl |= E1000_RCTL_UPE;
3437         }
3438
3439         ew32(RCTL, rctl);
3440
3441         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3442                 e1000e_vlan_strip_enable(adapter);
3443         else
3444                 e1000e_vlan_strip_disable(adapter);
3445 }
3446
3447 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3448 {
3449         struct e1000_hw *hw = &adapter->hw;
3450         u32 mrqc, rxcsum;
3451         u32 rss_key[10];
3452         int i;
3453
3454         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3455         for (i = 0; i < 10; i++)
3456                 ew32(RSSRK(i), rss_key[i]);
3457
3458         /* Direct all traffic to queue 0 */
3459         for (i = 0; i < 32; i++)
3460                 ew32(RETA(i), 0);
3461
3462         /* Disable raw packet checksumming so that RSS hash is placed in
3463          * descriptor on writeback.
3464          */
3465         rxcsum = er32(RXCSUM);
3466         rxcsum |= E1000_RXCSUM_PCSD;
3467
3468         ew32(RXCSUM, rxcsum);
3469
3470         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3471                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3472                 E1000_MRQC_RSS_FIELD_IPV6 |
3473                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3474                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3475
3476         ew32(MRQC, mrqc);
3477 }
3478
3479 /**
3480  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3481  * @adapter: board private structure
3482  * @timinca: pointer to returned time increment attributes
3483  *
3484  * Get attributes for incrementing the System Time Register SYSTIML/H at
3485  * the default base frequency, and set the cyclecounter shift value.
3486  **/
3487 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3488 {
3489         struct e1000_hw *hw = &adapter->hw;
3490         u32 incvalue, incperiod, shift;
3491
3492         /* Make sure clock is enabled on I217/I218/I219  before checking
3493          * the frequency
3494          */
3495         if ((hw->mac.type >= e1000_pch_lpt) &&
3496             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3497             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3498                 u32 fextnvm7 = er32(FEXTNVM7);
3499
3500                 if (!(fextnvm7 & BIT(0))) {
3501                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3502                         e1e_flush();
3503                 }
3504         }
3505
3506         switch (hw->mac.type) {
3507         case e1000_pch2lan:
3508                 /* Stable 96MHz frequency */
3509                 incperiod = INCPERIOD_96MHZ;
3510                 incvalue = INCVALUE_96MHZ;
3511                 shift = INCVALUE_SHIFT_96MHZ;
3512                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3513                 break;
3514         case e1000_pch_lpt:
3515                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3516                         /* Stable 96MHz frequency */
3517                         incperiod = INCPERIOD_96MHZ;
3518                         incvalue = INCVALUE_96MHZ;
3519                         shift = INCVALUE_SHIFT_96MHZ;
3520                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3521                 } else {
3522                         /* Stable 25MHz frequency */
3523                         incperiod = INCPERIOD_25MHZ;
3524                         incvalue = INCVALUE_25MHZ;
3525                         shift = INCVALUE_SHIFT_25MHZ;
3526                         adapter->cc.shift = shift;
3527                 }
3528                 break;
3529         case e1000_pch_spt:
3530                 /* Stable 24MHz frequency */
3531                 incperiod = INCPERIOD_24MHZ;
3532                 incvalue = INCVALUE_24MHZ;
3533                 shift = INCVALUE_SHIFT_24MHZ;
3534                 adapter->cc.shift = shift;
3535                 break;
3536         case e1000_pch_cnp:
3537                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3538                         /* Stable 24MHz frequency */
3539                         incperiod = INCPERIOD_24MHZ;
3540                         incvalue = INCVALUE_24MHZ;
3541                         shift = INCVALUE_SHIFT_24MHZ;
3542                         adapter->cc.shift = shift;
3543                 } else {
3544                         /* Stable 38400KHz frequency */
3545                         incperiod = INCPERIOD_38400KHZ;
3546                         incvalue = INCVALUE_38400KHZ;
3547                         shift = INCVALUE_SHIFT_38400KHZ;
3548                         adapter->cc.shift = shift;
3549                 }
3550                 break;
3551         case e1000_82574:
3552         case e1000_82583:
3553                 /* Stable 25MHz frequency */
3554                 incperiod = INCPERIOD_25MHZ;
3555                 incvalue = INCVALUE_25MHZ;
3556                 shift = INCVALUE_SHIFT_25MHZ;
3557                 adapter->cc.shift = shift;
3558                 break;
3559         default:
3560                 return -EINVAL;
3561         }
3562
3563         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3564                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3565
3566         return 0;
3567 }
3568
3569 /**
3570  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3571  * @adapter: board private structure
3572  *
3573  * Outgoing time stamping can be enabled and disabled. Play nice and
3574  * disable it when requested, although it shouldn't cause any overhead
3575  * when no packet needs it. At most one packet in the queue may be
3576  * marked for time stamping, otherwise it would be impossible to tell
3577  * for sure to which packet the hardware time stamp belongs.
3578  *
3579  * Incoming time stamping has to be configured via the hardware filters.
3580  * Not all combinations are supported, in particular event type has to be
3581  * specified. Matching the kind of event packet is not supported, with the
3582  * exception of "all V2 events regardless of level 2 or 4".
3583  **/
3584 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3585                                   struct hwtstamp_config *config)
3586 {
3587         struct e1000_hw *hw = &adapter->hw;
3588         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3589         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3590         u32 rxmtrl = 0;
3591         u16 rxudp = 0;
3592         bool is_l4 = false;
3593         bool is_l2 = false;
3594         u32 regval;
3595
3596         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3597                 return -EINVAL;
3598
3599         /* flags reserved for future extensions - must be zero */
3600         if (config->flags)
3601                 return -EINVAL;
3602
3603         switch (config->tx_type) {
3604         case HWTSTAMP_TX_OFF:
3605                 tsync_tx_ctl = 0;
3606                 break;
3607         case HWTSTAMP_TX_ON:
3608                 break;
3609         default:
3610                 return -ERANGE;
3611         }
3612
3613         switch (config->rx_filter) {
3614         case HWTSTAMP_FILTER_NONE:
3615                 tsync_rx_ctl = 0;
3616                 break;
3617         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3618                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3619                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3620                 is_l4 = true;
3621                 break;
3622         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3623                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3624                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3625                 is_l4 = true;
3626                 break;
3627         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3628                 /* Also time stamps V2 L2 Path Delay Request/Response */
3629                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3631                 is_l2 = true;
3632                 break;
3633         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3634                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3635                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3636                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3637                 is_l2 = true;
3638                 break;
3639         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3640                 /* Hardware cannot filter just V2 L4 Sync messages;
3641                  * fall-through to V2 (both L2 and L4) Sync.
3642                  */
3643         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644                 /* Also time stamps V2 Path Delay Request/Response. */
3645                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647                 is_l2 = true;
3648                 is_l4 = true;
3649                 break;
3650         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3652                  * fall-through to V2 (both L2 and L4) Delay Request.
3653                  */
3654         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3655                 /* Also time stamps V2 Path Delay Request/Response. */
3656                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3657                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3658                 is_l2 = true;
3659                 is_l4 = true;
3660                 break;
3661         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3662         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3663                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3664                  * fall-through to all V2 (both L2 and L4) Events.
3665                  */
3666         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3667                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3668                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3669                 is_l2 = true;
3670                 is_l4 = true;
3671                 break;
3672         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3673                 /* For V1, the hardware can only filter Sync messages or
3674                  * Delay Request messages but not both so fall-through to
3675                  * time stamp all packets.
3676                  */
3677         case HWTSTAMP_FILTER_NTP_ALL:
3678         case HWTSTAMP_FILTER_ALL:
3679                 is_l2 = true;
3680                 is_l4 = true;
3681                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3682                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3683                 break;
3684         default:
3685                 return -ERANGE;
3686         }
3687
3688         adapter->hwtstamp_config = *config;
3689
3690         /* enable/disable Tx h/w time stamping */
3691         regval = er32(TSYNCTXCTL);
3692         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3693         regval |= tsync_tx_ctl;
3694         ew32(TSYNCTXCTL, regval);
3695         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3696             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3697                 e_err("Timesync Tx Control register not set as expected\n");
3698                 return -EAGAIN;
3699         }
3700
3701         /* enable/disable Rx h/w time stamping */
3702         regval = er32(TSYNCRXCTL);
3703         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3704         regval |= tsync_rx_ctl;
3705         ew32(TSYNCRXCTL, regval);
3706         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3707                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3708             (regval & (E1000_TSYNCRXCTL_ENABLED |
3709                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3710                 e_err("Timesync Rx Control register not set as expected\n");
3711                 return -EAGAIN;
3712         }
3713
3714         /* L2: define ethertype filter for time stamped packets */
3715         if (is_l2)
3716                 rxmtrl |= ETH_P_1588;
3717
3718         /* define which PTP packets get time stamped */
3719         ew32(RXMTRL, rxmtrl);
3720
3721         /* Filter by destination port */
3722         if (is_l4) {
3723                 rxudp = PTP_EV_PORT;
3724                 cpu_to_be16s(&rxudp);
3725         }
3726         ew32(RXUDP, rxudp);
3727
3728         e1e_flush();
3729
3730         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3731         er32(RXSTMPH);
3732         er32(TXSTMPH);
3733
3734         return 0;
3735 }
3736
3737 /**
3738  * e1000_configure - configure the hardware for Rx and Tx
3739  * @adapter: private board structure
3740  **/
3741 static void e1000_configure(struct e1000_adapter *adapter)
3742 {
3743         struct e1000_ring *rx_ring = adapter->rx_ring;
3744
3745         e1000e_set_rx_mode(adapter->netdev);
3746
3747         e1000_restore_vlan(adapter);
3748         e1000_init_manageability_pt(adapter);
3749
3750         e1000_configure_tx(adapter);
3751
3752         if (adapter->netdev->features & NETIF_F_RXHASH)
3753                 e1000e_setup_rss_hash(adapter);
3754         e1000_setup_rctl(adapter);
3755         e1000_configure_rx(adapter);
3756         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3757 }
3758
3759 /**
3760  * e1000e_power_up_phy - restore link in case the phy was powered down
3761  * @adapter: address of board private structure
3762  *
3763  * The phy may be powered down to save power and turn off link when the
3764  * driver is unloaded and wake on lan is not enabled (among others)
3765  * *** this routine MUST be followed by a call to e1000e_reset ***
3766  **/
3767 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3768 {
3769         if (adapter->hw.phy.ops.power_up)
3770                 adapter->hw.phy.ops.power_up(&adapter->hw);
3771
3772         adapter->hw.mac.ops.setup_link(&adapter->hw);
3773 }
3774
3775 /**
3776  * e1000_power_down_phy - Power down the PHY
3777  *
3778  * Power down the PHY so no link is implied when interface is down.
3779  * The PHY cannot be powered down if management or WoL is active.
3780  */
3781 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782 {
3783         if (adapter->hw.phy.ops.power_down)
3784                 adapter->hw.phy.ops.power_down(&adapter->hw);
3785 }
3786
3787 /**
3788  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789  *
3790  * We want to clear all pending descriptors from the TX ring.
3791  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3792  * the data of the next descriptor. We don't care about the data we are about
3793  * to reset the HW.
3794  */
3795 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3796 {
3797         struct e1000_hw *hw = &adapter->hw;
3798         struct e1000_ring *tx_ring = adapter->tx_ring;
3799         struct e1000_tx_desc *tx_desc = NULL;
3800         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3801         u16 size = 512;
3802
3803         tctl = er32(TCTL);
3804         ew32(TCTL, tctl | E1000_TCTL_EN);
3805         tdt = er32(TDT(0));
3806         BUG_ON(tdt != tx_ring->next_to_use);
3807         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3808         tx_desc->buffer_addr = tx_ring->dma;
3809
3810         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3811         tx_desc->upper.data = 0;
3812         /* flush descriptors to memory before notifying the HW */
3813         wmb();
3814         tx_ring->next_to_use++;
3815         if (tx_ring->next_to_use == tx_ring->count)
3816                 tx_ring->next_to_use = 0;
3817         ew32(TDT(0), tx_ring->next_to_use);
3818         mmiowb();
3819         usleep_range(200, 250);
3820 }
3821
3822 /**
3823  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824  *
3825  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3826  */
3827 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3828 {
3829         u32 rctl, rxdctl;
3830         struct e1000_hw *hw = &adapter->hw;
3831
3832         rctl = er32(RCTL);
3833         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3834         e1e_flush();
3835         usleep_range(100, 150);
3836
3837         rxdctl = er32(RXDCTL(0));
3838         /* zero the lower 14 bits (prefetch and host thresholds) */
3839         rxdctl &= 0xffffc000;
3840
3841         /* update thresholds: prefetch threshold to 31, host threshold to 1
3842          * and make sure the granularity is "descriptors" and not "cache lines"
3843          */
3844         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3845
3846         ew32(RXDCTL(0), rxdctl);
3847         /* momentarily enable the RX ring for the changes to take effect */
3848         ew32(RCTL, rctl | E1000_RCTL_EN);
3849         e1e_flush();
3850         usleep_range(100, 150);
3851         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3852 }
3853
3854 /**
3855  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3856  *
3857  * In i219, the descriptor rings must be emptied before resetting the HW
3858  * or before changing the device state to D3 during runtime (runtime PM).
3859  *
3860  * Failure to do this will cause the HW to enter a unit hang state which can
3861  * only be released by PCI reset on the device
3862  *
3863  */
3864
3865 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3866 {
3867         u16 hang_state;
3868         u32 fext_nvm11, tdlen;
3869         struct e1000_hw *hw = &adapter->hw;
3870
3871         /* First, disable MULR fix in FEXTNVM11 */
3872         fext_nvm11 = er32(FEXTNVM11);
3873         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3874         ew32(FEXTNVM11, fext_nvm11);
3875         /* do nothing if we're not in faulty state, or if the queue is empty */
3876         tdlen = er32(TDLEN(0));
3877         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3878                              &hang_state);
3879         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3880                 return;
3881         e1000_flush_tx_ring(adapter);
3882         /* recheck, maybe the fault is caused by the rx ring */
3883         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3884                              &hang_state);
3885         if (hang_state & FLUSH_DESC_REQUIRED)
3886                 e1000_flush_rx_ring(adapter);
3887 }
3888
3889 /**
3890  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3891  * @adapter: board private structure
3892  *
3893  * When the MAC is reset, all hardware bits for timesync will be reset to the
3894  * default values. This function will restore the settings last in place.
3895  * Since the clock SYSTIME registers are reset, we will simply restore the
3896  * cyclecounter to the kernel real clock time.
3897  **/
3898 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3899 {
3900         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3901         struct e1000_hw *hw = &adapter->hw;
3902         unsigned long flags;
3903         u32 timinca;
3904         s32 ret_val;
3905
3906         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3907                 return;
3908
3909         if (info->adjfreq) {
3910                 /* restore the previous ptp frequency delta */
3911                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3912         } else {
3913                 /* set the default base frequency if no adjustment possible */
3914                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3915                 if (!ret_val)
3916                         ew32(TIMINCA, timinca);
3917         }
3918
3919         if (ret_val) {
3920                 dev_warn(&adapter->pdev->dev,
3921                          "Failed to restore TIMINCA clock rate delta: %d\n",
3922                          ret_val);
3923                 return;
3924         }
3925
3926         /* reset the systim ns time counter */
3927         spin_lock_irqsave(&adapter->systim_lock, flags);
3928         timecounter_init(&adapter->tc, &adapter->cc,
3929                          ktime_to_ns(ktime_get_real()));
3930         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3931
3932         /* restore the previous hwtstamp configuration settings */
3933         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3934 }
3935
3936 /**
3937  * e1000e_reset - bring the hardware into a known good state
3938  *
3939  * This function boots the hardware and enables some settings that
3940  * require a configuration cycle of the hardware - those cannot be
3941  * set/changed during runtime. After reset the device needs to be
3942  * properly configured for Rx, Tx etc.
3943  */
3944 void e1000e_reset(struct e1000_adapter *adapter)
3945 {
3946         struct e1000_mac_info *mac = &adapter->hw.mac;
3947         struct e1000_fc_info *fc = &adapter->hw.fc;
3948         struct e1000_hw *hw = &adapter->hw;
3949         u32 tx_space, min_tx_space, min_rx_space;
3950         u32 pba = adapter->pba;
3951         u16 hwm;
3952
3953         /* reset Packet Buffer Allocation to default */
3954         ew32(PBA, pba);
3955
3956         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3957                 /* To maintain wire speed transmits, the Tx FIFO should be
3958                  * large enough to accommodate two full transmit packets,
3959                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3960                  * the Rx FIFO should be large enough to accommodate at least
3961                  * one full receive packet and is similarly rounded up and
3962                  * expressed in KB.
3963                  */
3964                 pba = er32(PBA);
3965                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3966                 tx_space = pba >> 16;
3967                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3968                 pba &= 0xffff;
3969                 /* the Tx fifo also stores 16 bytes of information about the Tx
3970                  * but don't include ethernet FCS because hardware appends it
3971                  */
3972                 min_tx_space = (adapter->max_frame_size +
3973                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3974                 min_tx_space = ALIGN(min_tx_space, 1024);
3975                 min_tx_space >>= 10;
3976                 /* software strips receive CRC, so leave room for it */
3977                 min_rx_space = adapter->max_frame_size;
3978                 min_rx_space = ALIGN(min_rx_space, 1024);
3979                 min_rx_space >>= 10;
3980
3981                 /* If current Tx allocation is less than the min Tx FIFO size,
3982                  * and the min Tx FIFO size is less than the current Rx FIFO
3983                  * allocation, take space away from current Rx allocation
3984                  */
3985                 if ((tx_space < min_tx_space) &&
3986                     ((min_tx_space - tx_space) < pba)) {
3987                         pba -= min_tx_space - tx_space;
3988
3989                         /* if short on Rx space, Rx wins and must trump Tx
3990                          * adjustment
3991                          */
3992                         if (pba < min_rx_space)
3993                                 pba = min_rx_space;
3994                 }
3995
3996                 ew32(PBA, pba);
3997         }
3998
3999         /* flow control settings
4000          *
4001          * The high water mark must be low enough to fit one full frame
4002          * (or the size used for early receive) above it in the Rx FIFO.
4003          * Set it to the lower of:
4004          * - 90% of the Rx FIFO size, and
4005          * - the full Rx FIFO size minus one full frame
4006          */
4007         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4008                 fc->pause_time = 0xFFFF;
4009         else
4010                 fc->pause_time = E1000_FC_PAUSE_TIME;
4011         fc->send_xon = true;
4012         fc->current_mode = fc->requested_mode;
4013
4014         switch (hw->mac.type) {
4015         case e1000_ich9lan:
4016         case e1000_ich10lan:
4017                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4018                         pba = 14;
4019                         ew32(PBA, pba);
4020                         fc->high_water = 0x2800;
4021                         fc->low_water = fc->high_water - 8;
4022                         break;
4023                 }
4024                 /* fall-through */
4025         default:
4026                 hwm = min(((pba << 10) * 9 / 10),
4027                           ((pba << 10) - adapter->max_frame_size));
4028
4029                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4030                 fc->low_water = fc->high_water - 8;
4031                 break;
4032         case e1000_pchlan:
4033                 /* Workaround PCH LOM adapter hangs with certain network
4034                  * loads.  If hangs persist, try disabling Tx flow control.
4035                  */
4036                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4037                         fc->high_water = 0x3500;
4038                         fc->low_water = 0x1500;
4039                 } else {
4040                         fc->high_water = 0x5000;
4041                         fc->low_water = 0x3000;
4042                 }
4043                 fc->refresh_time = 0x1000;
4044                 break;
4045         case e1000_pch2lan:
4046         case e1000_pch_lpt:
4047         case e1000_pch_spt:
4048         case e1000_pch_cnp:
4049                 fc->refresh_time = 0x0400;
4050
4051                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4052                         fc->high_water = 0x05C20;
4053                         fc->low_water = 0x05048;
4054                         fc->pause_time = 0x0650;
4055                         break;
4056                 }
4057
4058                 pba = 14;
4059                 ew32(PBA, pba);
4060                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4061                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4062                 break;
4063         }
4064
4065         /* Alignment of Tx data is on an arbitrary byte boundary with the
4066          * maximum size per Tx descriptor limited only to the transmit
4067          * allocation of the packet buffer minus 96 bytes with an upper
4068          * limit of 24KB due to receive synchronization limitations.
4069          */
4070         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4071                                        24 << 10);
4072
4073         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4074          * fit in receive buffer.
4075          */
4076         if (adapter->itr_setting & 0x3) {
4077                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4078                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4079                                 dev_info(&adapter->pdev->dev,
4080                                          "Interrupt Throttle Rate off\n");
4081                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4082                                 e1000e_write_itr(adapter, 0);
4083                         }
4084                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4085                         dev_info(&adapter->pdev->dev,
4086                                  "Interrupt Throttle Rate on\n");
4087                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4088                         adapter->itr = 20000;
4089                         e1000e_write_itr(adapter, adapter->itr);
4090                 }
4091         }
4092
4093         if (hw->mac.type >= e1000_pch_spt)
4094                 e1000_flush_desc_rings(adapter);
4095         /* Allow time for pending master requests to run */
4096         mac->ops.reset_hw(hw);
4097
4098         /* For parts with AMT enabled, let the firmware know
4099          * that the network interface is in control
4100          */
4101         if (adapter->flags & FLAG_HAS_AMT)
4102                 e1000e_get_hw_control(adapter);
4103
4104         ew32(WUC, 0);
4105
4106         if (mac->ops.init_hw(hw))
4107                 e_err("Hardware Error\n");
4108
4109         e1000_update_mng_vlan(adapter);
4110
4111         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4112         ew32(VET, ETH_P_8021Q);
4113
4114         e1000e_reset_adaptive(hw);
4115
4116         /* restore systim and hwtstamp settings */
4117         e1000e_systim_reset(adapter);
4118
4119         /* Set EEE advertisement as appropriate */
4120         if (adapter->flags2 & FLAG2_HAS_EEE) {
4121                 s32 ret_val;
4122                 u16 adv_addr;
4123
4124                 switch (hw->phy.type) {
4125                 case e1000_phy_82579:
4126                         adv_addr = I82579_EEE_ADVERTISEMENT;
4127                         break;
4128                 case e1000_phy_i217:
4129                         adv_addr = I217_EEE_ADVERTISEMENT;
4130                         break;
4131                 default:
4132                         dev_err(&adapter->pdev->dev,
4133                                 "Invalid PHY type setting EEE advertisement\n");
4134                         return;
4135                 }
4136
4137                 ret_val = hw->phy.ops.acquire(hw);
4138                 if (ret_val) {
4139                         dev_err(&adapter->pdev->dev,
4140                                 "EEE advertisement - unable to acquire PHY\n");
4141                         return;
4142                 }
4143
4144                 e1000_write_emi_reg_locked(hw, adv_addr,
4145                                            hw->dev_spec.ich8lan.eee_disable ?
4146                                            0 : adapter->eee_advert);
4147
4148                 hw->phy.ops.release(hw);
4149         }
4150
4151         if (!netif_running(adapter->netdev) &&
4152             !test_bit(__E1000_TESTING, &adapter->state))
4153                 e1000_power_down_phy(adapter);
4154
4155         e1000_get_phy_info(hw);
4156
4157         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4158             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4159                 u16 phy_data = 0;
4160                 /* speed up time to link by disabling smart power down, ignore
4161                  * the return value of this function because there is nothing
4162                  * different we would do if it failed
4163                  */
4164                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4165                 phy_data &= ~IGP02E1000_PM_SPD;
4166                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4167         }
4168         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4169                 u32 reg;
4170
4171                 /* Fextnvm7 @ 0xe4[2] = 1 */
4172                 reg = er32(FEXTNVM7);
4173                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4174                 ew32(FEXTNVM7, reg);
4175                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4176                 reg = er32(FEXTNVM9);
4177                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4178                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4179                 ew32(FEXTNVM9, reg);
4180         }
4181
4182 }
4183
4184 /**
4185  * e1000e_trigger_lsc - trigger an LSC interrupt
4186  * @adapter: 
4187  *
4188  * Fire a link status change interrupt to start the watchdog.
4189  **/
4190 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4191 {
4192         struct e1000_hw *hw = &adapter->hw;
4193
4194         if (adapter->msix_entries)
4195                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4196         else
4197                 ew32(ICS, E1000_ICS_LSC);
4198 }
4199
4200 void e1000e_up(struct e1000_adapter *adapter)
4201 {
4202         /* hardware has been reset, we need to reload some things */
4203         e1000_configure(adapter);
4204
4205         clear_bit(__E1000_DOWN, &adapter->state);
4206
4207         if (adapter->msix_entries)
4208                 e1000_configure_msix(adapter);
4209         e1000_irq_enable(adapter);
4210
4211         netif_start_queue(adapter->netdev);
4212
4213         e1000e_trigger_lsc(adapter);
4214 }
4215
4216 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4217 {
4218         struct e1000_hw *hw = &adapter->hw;
4219
4220         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4221                 return;
4222
4223         /* flush pending descriptor writebacks to memory */
4224         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4225         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4226
4227         /* execute the writes immediately */
4228         e1e_flush();
4229
4230         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4231          * write is successful
4232          */
4233         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236         /* execute the writes immediately */
4237         e1e_flush();
4238 }
4239
4240 static void e1000e_update_stats(struct e1000_adapter *adapter);
4241
4242 /**
4243  * e1000e_down - quiesce the device and optionally reset the hardware
4244  * @adapter: board private structure
4245  * @reset: boolean flag to reset the hardware or not
4246  */
4247 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4248 {
4249         struct net_device *netdev = adapter->netdev;
4250         struct e1000_hw *hw = &adapter->hw;
4251         u32 tctl, rctl;
4252
4253         /* signal that we're down so the interrupt handler does not
4254          * reschedule our watchdog timer
4255          */
4256         set_bit(__E1000_DOWN, &adapter->state);
4257
4258         netif_carrier_off(netdev);
4259
4260         /* disable receives in the hardware */
4261         rctl = er32(RCTL);
4262         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4263                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4264         /* flush and sleep below */
4265
4266         netif_stop_queue(netdev);
4267
4268         /* disable transmits in the hardware */
4269         tctl = er32(TCTL);
4270         tctl &= ~E1000_TCTL_EN;
4271         ew32(TCTL, tctl);
4272
4273         /* flush both disables and wait for them to finish */
4274         e1e_flush();
4275         usleep_range(10000, 20000);
4276
4277         e1000_irq_disable(adapter);
4278
4279         napi_synchronize(&adapter->napi);
4280
4281         del_timer_sync(&adapter->watchdog_timer);
4282         del_timer_sync(&adapter->phy_info_timer);
4283
4284         spin_lock(&adapter->stats64_lock);
4285         e1000e_update_stats(adapter);
4286         spin_unlock(&adapter->stats64_lock);
4287
4288         e1000e_flush_descriptors(adapter);
4289
4290         adapter->link_speed = 0;
4291         adapter->link_duplex = 0;
4292
4293         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4294         if ((hw->mac.type >= e1000_pch2lan) &&
4295             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4296             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4297                 e_dbg("failed to disable jumbo frame workaround mode\n");
4298
4299         if (!pci_channel_offline(adapter->pdev)) {
4300                 if (reset)
4301                         e1000e_reset(adapter);
4302                 else if (hw->mac.type >= e1000_pch_spt)
4303                         e1000_flush_desc_rings(adapter);
4304         }
4305         e1000_clean_tx_ring(adapter->tx_ring);
4306         e1000_clean_rx_ring(adapter->rx_ring);
4307 }
4308
4309 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4310 {
4311         might_sleep();
4312         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4313                 usleep_range(1000, 2000);
4314         e1000e_down(adapter, true);
4315         e1000e_up(adapter);
4316         clear_bit(__E1000_RESETTING, &adapter->state);
4317 }
4318
4319 /**
4320  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4321  * @hw: pointer to the HW structure
4322  * @systim: time value read, sanitized and returned
4323  *
4324  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4325  * check to see that the time is incrementing at a reasonable
4326  * rate and is a multiple of incvalue.
4327  **/
4328 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4329 {
4330         u64 time_delta, rem, temp;
4331         u64 systim_next;
4332         u32 incvalue;
4333         int i;
4334
4335         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4336         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4337                 /* latch SYSTIMH on read of SYSTIML */
4338                 systim_next = (u64)er32(SYSTIML);
4339                 systim_next |= (u64)er32(SYSTIMH) << 32;
4340
4341                 time_delta = systim_next - systim;
4342                 temp = time_delta;
4343                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4344                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4345
4346                 systim = systim_next;
4347
4348                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4349                         break;
4350         }
4351
4352         return systim;
4353 }
4354
4355 /**
4356  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4357  * @cc: cyclecounter structure
4358  **/
4359 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4360 {
4361         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4362                                                      cc);
4363         struct e1000_hw *hw = &adapter->hw;
4364         u32 systimel, systimeh;
4365         u64 systim;
4366         /* SYSTIMH latching upon SYSTIML read does not work well.
4367          * This means that if SYSTIML overflows after we read it but before
4368          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4369          * will experience a huge non linear increment in the systime value
4370          * to fix that we test for overflow and if true, we re-read systime.
4371          */
4372         systimel = er32(SYSTIML);
4373         systimeh = er32(SYSTIMH);
4374         /* Is systimel is so large that overflow is possible? */
4375         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4376                 u32 systimel_2 = er32(SYSTIML);
4377                 if (systimel > systimel_2) {
4378                         /* There was an overflow, read again SYSTIMH, and use
4379                          * systimel_2
4380                          */
4381                         systimeh = er32(SYSTIMH);
4382                         systimel = systimel_2;
4383                 }
4384         }
4385         systim = (u64)systimel;
4386         systim |= (u64)systimeh << 32;
4387
4388         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4389                 systim = e1000e_sanitize_systim(hw, systim);
4390
4391         return systim;
4392 }
4393
4394 /**
4395  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4396  * @adapter: board private structure to initialize
4397  *
4398  * e1000_sw_init initializes the Adapter private data structure.
4399  * Fields are initialized based on PCI device information and
4400  * OS network device settings (MTU size).
4401  **/
4402 static int e1000_sw_init(struct e1000_adapter *adapter)
4403 {
4404         struct net_device *netdev = adapter->netdev;
4405
4406         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4407         adapter->rx_ps_bsize0 = 128;
4408         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4409         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4410         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4411         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4412
4413         spin_lock_init(&adapter->stats64_lock);
4414
4415         e1000e_set_interrupt_capability(adapter);
4416
4417         if (e1000_alloc_queues(adapter))
4418                 return -ENOMEM;
4419
4420         /* Setup hardware time stamping cyclecounter */
4421         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4422                 adapter->cc.read = e1000e_cyclecounter_read;
4423                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4424                 adapter->cc.mult = 1;
4425                 /* cc.shift set in e1000e_get_base_tininca() */
4426
4427                 spin_lock_init(&adapter->systim_lock);
4428                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4429         }
4430
4431         /* Explicitly disable IRQ since the NIC can be in any state. */
4432         e1000_irq_disable(adapter);
4433
4434         set_bit(__E1000_DOWN, &adapter->state);
4435         return 0;
4436 }
4437
4438 /**
4439  * e1000_intr_msi_test - Interrupt Handler
4440  * @irq: interrupt number
4441  * @data: pointer to a network interface device structure
4442  **/
4443 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4444 {
4445         struct net_device *netdev = data;
4446         struct e1000_adapter *adapter = netdev_priv(netdev);
4447         struct e1000_hw *hw = &adapter->hw;
4448         u32 icr = er32(ICR);
4449
4450         e_dbg("icr is %08X\n", icr);
4451         if (icr & E1000_ICR_RXSEQ) {
4452                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4453                 /* Force memory writes to complete before acknowledging the
4454                  * interrupt is handled.
4455                  */
4456                 wmb();
4457         }
4458
4459         return IRQ_HANDLED;
4460 }
4461
4462 /**
4463  * e1000_test_msi_interrupt - Returns 0 for successful test
4464  * @adapter: board private struct
4465  *
4466  * code flow taken from tg3.c
4467  **/
4468 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4469 {
4470         struct net_device *netdev = adapter->netdev;
4471         struct e1000_hw *hw = &adapter->hw;
4472         int err;
4473
4474         /* poll_enable hasn't been called yet, so don't need disable */
4475         /* clear any pending events */
4476         er32(ICR);
4477
4478         /* free the real vector and request a test handler */
4479         e1000_free_irq(adapter);
4480         e1000e_reset_interrupt_capability(adapter);
4481
4482         /* Assume that the test fails, if it succeeds then the test
4483          * MSI irq handler will unset this flag
4484          */
4485         adapter->flags |= FLAG_MSI_TEST_FAILED;
4486
4487         err = pci_enable_msi(adapter->pdev);
4488         if (err)
4489                 goto msi_test_failed;
4490
4491         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4492                           netdev->name, netdev);
4493         if (err) {
4494                 pci_disable_msi(adapter->pdev);
4495                 goto msi_test_failed;
4496         }
4497
4498         /* Force memory writes to complete before enabling and firing an
4499          * interrupt.
4500          */
4501         wmb();
4502
4503         e1000_irq_enable(adapter);
4504
4505         /* fire an unusual interrupt on the test handler */
4506         ew32(ICS, E1000_ICS_RXSEQ);
4507         e1e_flush();
4508         msleep(100);
4509
4510         e1000_irq_disable(adapter);
4511
4512         rmb();                  /* read flags after interrupt has been fired */
4513
4514         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4515                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4516                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4517         } else {
4518                 e_dbg("MSI interrupt test succeeded!\n");
4519         }
4520
4521         free_irq(adapter->pdev->irq, netdev);
4522         pci_disable_msi(adapter->pdev);
4523
4524 msi_test_failed:
4525         e1000e_set_interrupt_capability(adapter);
4526         return e1000_request_irq(adapter);
4527 }
4528
4529 /**
4530  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4531  * @adapter: board private struct
4532  *
4533  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4534  **/
4535 static int e1000_test_msi(struct e1000_adapter *adapter)
4536 {
4537         int err;
4538         u16 pci_cmd;
4539
4540         if (!(adapter->flags & FLAG_MSI_ENABLED))
4541                 return 0;
4542
4543         /* disable SERR in case the MSI write causes a master abort */
4544         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4545         if (pci_cmd & PCI_COMMAND_SERR)
4546                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4547                                       pci_cmd & ~PCI_COMMAND_SERR);
4548
4549         err = e1000_test_msi_interrupt(adapter);
4550
4551         /* re-enable SERR */
4552         if (pci_cmd & PCI_COMMAND_SERR) {
4553                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4554                 pci_cmd |= PCI_COMMAND_SERR;
4555                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4556         }
4557
4558         return err;
4559 }
4560
4561 /**
4562  * e1000e_open - Called when a network interface is made active
4563  * @netdev: network interface device structure
4564  *
4565  * Returns 0 on success, negative value on failure
4566  *
4567  * The open entry point is called when a network interface is made
4568  * active by the system (IFF_UP).  At this point all resources needed
4569  * for transmit and receive operations are allocated, the interrupt
4570  * handler is registered with the OS, the watchdog timer is started,
4571  * and the stack is notified that the interface is ready.
4572  **/
4573 int e1000e_open(struct net_device *netdev)
4574 {
4575         struct e1000_adapter *adapter = netdev_priv(netdev);
4576         struct e1000_hw *hw = &adapter->hw;
4577         struct pci_dev *pdev = adapter->pdev;
4578         int err;
4579
4580         /* disallow open during test */
4581         if (test_bit(__E1000_TESTING, &adapter->state))
4582                 return -EBUSY;
4583
4584         pm_runtime_get_sync(&pdev->dev);
4585
4586         netif_carrier_off(netdev);
4587
4588         /* allocate transmit descriptors */
4589         err = e1000e_setup_tx_resources(adapter->tx_ring);
4590         if (err)
4591                 goto err_setup_tx;
4592
4593         /* allocate receive descriptors */
4594         err = e1000e_setup_rx_resources(adapter->rx_ring);
4595         if (err)
4596                 goto err_setup_rx;
4597
4598         /* If AMT is enabled, let the firmware know that the network
4599          * interface is now open and reset the part to a known state.
4600          */
4601         if (adapter->flags & FLAG_HAS_AMT) {
4602                 e1000e_get_hw_control(adapter);
4603                 e1000e_reset(adapter);
4604         }
4605
4606         e1000e_power_up_phy(adapter);
4607
4608         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4609         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4610                 e1000_update_mng_vlan(adapter);
4611
4612         /* DMA latency requirement to workaround jumbo issue */
4613         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4614                            PM_QOS_DEFAULT_VALUE);
4615
4616         /* before we allocate an interrupt, we must be ready to handle it.
4617          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4618          * as soon as we call pci_request_irq, so we have to setup our
4619          * clean_rx handler before we do so.
4620          */
4621         e1000_configure(adapter);
4622
4623         err = e1000_request_irq(adapter);
4624         if (err)
4625                 goto err_req_irq;
4626
4627         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4628          * ignore e1000e MSI messages, which means we need to test our MSI
4629          * interrupt now
4630          */
4631         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4632                 err = e1000_test_msi(adapter);
4633                 if (err) {
4634                         e_err("Interrupt allocation failed\n");
4635                         goto err_req_irq;
4636                 }
4637         }
4638
4639         /* From here on the code is the same as e1000e_up() */
4640         clear_bit(__E1000_DOWN, &adapter->state);
4641
4642         napi_enable(&adapter->napi);
4643
4644         e1000_irq_enable(adapter);
4645
4646         adapter->tx_hang_recheck = false;
4647         netif_start_queue(netdev);
4648
4649         hw->mac.get_link_status = true;
4650         pm_runtime_put(&pdev->dev);
4651
4652         e1000e_trigger_lsc(adapter);
4653
4654         return 0;
4655
4656 err_req_irq:
4657         pm_qos_remove_request(&adapter->pm_qos_req);
4658         e1000e_release_hw_control(adapter);
4659         e1000_power_down_phy(adapter);
4660         e1000e_free_rx_resources(adapter->rx_ring);
4661 err_setup_rx:
4662         e1000e_free_tx_resources(adapter->tx_ring);
4663 err_setup_tx:
4664         e1000e_reset(adapter);
4665         pm_runtime_put_sync(&pdev->dev);
4666
4667         return err;
4668 }
4669
4670 /**
4671  * e1000e_close - Disables a network interface
4672  * @netdev: network interface device structure
4673  *
4674  * Returns 0, this is not allowed to fail
4675  *
4676  * The close entry point is called when an interface is de-activated
4677  * by the OS.  The hardware is still under the drivers control, but
4678  * needs to be disabled.  A global MAC reset is issued to stop the
4679  * hardware, and all transmit and receive resources are freed.
4680  **/
4681 int e1000e_close(struct net_device *netdev)
4682 {
4683         struct e1000_adapter *adapter = netdev_priv(netdev);
4684         struct pci_dev *pdev = adapter->pdev;
4685         int count = E1000_CHECK_RESET_COUNT;
4686
4687         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4688                 usleep_range(10000, 20000);
4689
4690         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4691
4692         pm_runtime_get_sync(&pdev->dev);
4693
4694         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4695                 e1000e_down(adapter, true);
4696                 e1000_free_irq(adapter);
4697
4698                 /* Link status message must follow this format */
4699                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4700         }
4701
4702         napi_disable(&adapter->napi);
4703
4704         e1000e_free_tx_resources(adapter->tx_ring);
4705         e1000e_free_rx_resources(adapter->rx_ring);
4706
4707         /* kill manageability vlan ID if supported, but not if a vlan with
4708          * the same ID is registered on the host OS (let 8021q kill it)
4709          */
4710         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4711                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4712                                        adapter->mng_vlan_id);
4713
4714         /* If AMT is enabled, let the firmware know that the network
4715          * interface is now closed
4716          */
4717         if ((adapter->flags & FLAG_HAS_AMT) &&
4718             !test_bit(__E1000_TESTING, &adapter->state))
4719                 e1000e_release_hw_control(adapter);
4720
4721         pm_qos_remove_request(&adapter->pm_qos_req);
4722
4723         pm_runtime_put_sync(&pdev->dev);
4724
4725         return 0;
4726 }
4727
4728 /**
4729  * e1000_set_mac - Change the Ethernet Address of the NIC
4730  * @netdev: network interface device structure
4731  * @p: pointer to an address structure
4732  *
4733  * Returns 0 on success, negative on failure
4734  **/
4735 static int e1000_set_mac(struct net_device *netdev, void *p)
4736 {
4737         struct e1000_adapter *adapter = netdev_priv(netdev);
4738         struct e1000_hw *hw = &adapter->hw;
4739         struct sockaddr *addr = p;
4740
4741         if (!is_valid_ether_addr(addr->sa_data))
4742                 return -EADDRNOTAVAIL;
4743
4744         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4745         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4746
4747         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4748
4749         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4750                 /* activate the work around */
4751                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4752
4753                 /* Hold a copy of the LAA in RAR[14] This is done so that
4754                  * between the time RAR[0] gets clobbered  and the time it
4755                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4756                  * of the RARs and no incoming packets directed to this port
4757                  * are dropped. Eventually the LAA will be in RAR[0] and
4758                  * RAR[14]
4759                  */
4760                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4761                                     adapter->hw.mac.rar_entry_count - 1);
4762         }
4763
4764         return 0;
4765 }
4766
4767 /**
4768  * e1000e_update_phy_task - work thread to update phy
4769  * @work: pointer to our work struct
4770  *
4771  * this worker thread exists because we must acquire a
4772  * semaphore to read the phy, which we could msleep while
4773  * waiting for it, and we can't msleep in a timer.
4774  **/
4775 static void e1000e_update_phy_task(struct work_struct *work)
4776 {
4777         struct e1000_adapter *adapter = container_of(work,
4778                                                      struct e1000_adapter,
4779                                                      update_phy_task);
4780         struct e1000_hw *hw = &adapter->hw;
4781
4782         if (test_bit(__E1000_DOWN, &adapter->state))
4783                 return;
4784
4785         e1000_get_phy_info(hw);
4786
4787         /* Enable EEE on 82579 after link up */
4788         if (hw->phy.type >= e1000_phy_82579)
4789                 e1000_set_eee_pchlan(hw);
4790 }
4791
4792 /**
4793  * e1000_update_phy_info - timre call-back to update PHY info
4794  * @data: pointer to adapter cast into an unsigned long
4795  *
4796  * Need to wait a few seconds after link up to get diagnostic information from
4797  * the phy
4798  **/
4799 static void e1000_update_phy_info(struct timer_list *t)
4800 {
4801         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4802
4803         if (test_bit(__E1000_DOWN, &adapter->state))
4804                 return;
4805
4806         schedule_work(&adapter->update_phy_task);
4807 }
4808
4809 /**
4810  * e1000e_update_phy_stats - Update the PHY statistics counters
4811  * @adapter: board private structure
4812  *
4813  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4814  **/
4815 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4816 {
4817         struct e1000_hw *hw = &adapter->hw;
4818         s32 ret_val;
4819         u16 phy_data;
4820
4821         ret_val = hw->phy.ops.acquire(hw);
4822         if (ret_val)
4823                 return;
4824
4825         /* A page set is expensive so check if already on desired page.
4826          * If not, set to the page with the PHY status registers.
4827          */
4828         hw->phy.addr = 1;
4829         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4830                                            &phy_data);
4831         if (ret_val)
4832                 goto release;
4833         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4834                 ret_val = hw->phy.ops.set_page(hw,
4835                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4836                 if (ret_val)
4837                         goto release;
4838         }
4839
4840         /* Single Collision Count */
4841         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4842         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4843         if (!ret_val)
4844                 adapter->stats.scc += phy_data;
4845
4846         /* Excessive Collision Count */
4847         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4848         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4849         if (!ret_val)
4850                 adapter->stats.ecol += phy_data;
4851
4852         /* Multiple Collision Count */
4853         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4854         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4855         if (!ret_val)
4856                 adapter->stats.mcc += phy_data;
4857
4858         /* Late Collision Count */
4859         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4860         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4861         if (!ret_val)
4862                 adapter->stats.latecol += phy_data;
4863
4864         /* Collision Count - also used for adaptive IFS */
4865         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4866         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4867         if (!ret_val)
4868                 hw->mac.collision_delta = phy_data;
4869
4870         /* Defer Count */
4871         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4872         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4873         if (!ret_val)
4874                 adapter->stats.dc += phy_data;
4875
4876         /* Transmit with no CRS */
4877         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4878         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4879         if (!ret_val)
4880                 adapter->stats.tncrs += phy_data;
4881
4882 release:
4883         hw->phy.ops.release(hw);
4884 }
4885
4886 /**
4887  * e1000e_update_stats - Update the board statistics counters
4888  * @adapter: board private structure
4889  **/
4890 static void e1000e_update_stats(struct e1000_adapter *adapter)
4891 {
4892         struct net_device *netdev = adapter->netdev;
4893         struct e1000_hw *hw = &adapter->hw;
4894         struct pci_dev *pdev = adapter->pdev;
4895
4896         /* Prevent stats update while adapter is being reset, or if the pci
4897          * connection is down.
4898          */
4899         if (adapter->link_speed == 0)
4900                 return;
4901         if (pci_channel_offline(pdev))
4902                 return;
4903
4904         adapter->stats.crcerrs += er32(CRCERRS);
4905         adapter->stats.gprc += er32(GPRC);
4906         adapter->stats.gorc += er32(GORCL);
4907         er32(GORCH);            /* Clear gorc */
4908         adapter->stats.bprc += er32(BPRC);
4909         adapter->stats.mprc += er32(MPRC);
4910         adapter->stats.roc += er32(ROC);
4911
4912         adapter->stats.mpc += er32(MPC);
4913
4914         /* Half-duplex statistics */
4915         if (adapter->link_duplex == HALF_DUPLEX) {
4916                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4917                         e1000e_update_phy_stats(adapter);
4918                 } else {
4919                         adapter->stats.scc += er32(SCC);
4920                         adapter->stats.ecol += er32(ECOL);
4921                         adapter->stats.mcc += er32(MCC);
4922                         adapter->stats.latecol += er32(LATECOL);
4923                         adapter->stats.dc += er32(DC);
4924
4925                         hw->mac.collision_delta = er32(COLC);
4926
4927                         if ((hw->mac.type != e1000_82574) &&
4928                             (hw->mac.type != e1000_82583))
4929                                 adapter->stats.tncrs += er32(TNCRS);
4930                 }
4931                 adapter->stats.colc += hw->mac.collision_delta;
4932         }
4933
4934         adapter->stats.xonrxc += er32(XONRXC);
4935         adapter->stats.xontxc += er32(XONTXC);
4936         adapter->stats.xoffrxc += er32(XOFFRXC);
4937         adapter->stats.xofftxc += er32(XOFFTXC);
4938         adapter->stats.gptc += er32(GPTC);
4939         adapter->stats.gotc += er32(GOTCL);
4940         er32(GOTCH);            /* Clear gotc */
4941         adapter->stats.rnbc += er32(RNBC);
4942         adapter->stats.ruc += er32(RUC);
4943
4944         adapter->stats.mptc += er32(MPTC);
4945         adapter->stats.bptc += er32(BPTC);
4946
4947         /* used for adaptive IFS */
4948
4949         hw->mac.tx_packet_delta = er32(TPT);
4950         adapter->stats.tpt += hw->mac.tx_packet_delta;
4951
4952         adapter->stats.algnerrc += er32(ALGNERRC);
4953         adapter->stats.rxerrc += er32(RXERRC);
4954         adapter->stats.cexterr += er32(CEXTERR);
4955         adapter->stats.tsctc += er32(TSCTC);
4956         adapter->stats.tsctfc += er32(TSCTFC);
4957
4958         /* Fill out the OS statistics structure */
4959         netdev->stats.multicast = adapter->stats.mprc;
4960         netdev->stats.collisions = adapter->stats.colc;
4961
4962         /* Rx Errors */
4963
4964         /* RLEC on some newer hardware can be incorrect so build
4965          * our own version based on RUC and ROC
4966          */
4967         netdev->stats.rx_errors = adapter->stats.rxerrc +
4968             adapter->stats.crcerrs + adapter->stats.algnerrc +
4969             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4970         netdev->stats.rx_length_errors = adapter->stats.ruc +
4971             adapter->stats.roc;
4972         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4973         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4974         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4975
4976         /* Tx Errors */
4977         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4978         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4979         netdev->stats.tx_window_errors = adapter->stats.latecol;
4980         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4981
4982         /* Tx Dropped needs to be maintained elsewhere */
4983
4984         /* Management Stats */
4985         adapter->stats.mgptc += er32(MGTPTC);
4986         adapter->stats.mgprc += er32(MGTPRC);
4987         adapter->stats.mgpdc += er32(MGTPDC);
4988
4989         /* Correctable ECC Errors */
4990         if (hw->mac.type >= e1000_pch_lpt) {
4991                 u32 pbeccsts = er32(PBECCSTS);
4992
4993                 adapter->corr_errors +=
4994                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4995                 adapter->uncorr_errors +=
4996                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4997                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4998         }
4999 }
5000
5001 /**
5002  * e1000_phy_read_status - Update the PHY register status snapshot
5003  * @adapter: board private structure
5004  **/
5005 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5006 {
5007         struct e1000_hw *hw = &adapter->hw;
5008         struct e1000_phy_regs *phy = &adapter->phy_regs;
5009
5010         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5011             (er32(STATUS) & E1000_STATUS_LU) &&
5012             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5013                 int ret_val;
5014
5015                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5016                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5017                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5018                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5019                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5020                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5021                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5022                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5023                 if (ret_val)
5024                         e_warn("Error reading PHY register\n");
5025         } else {
5026                 /* Do not read PHY registers if link is not up
5027                  * Set values to typical power-on defaults
5028                  */
5029                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5030                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5031                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5032                              BMSR_ERCAP);
5033                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5034                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5035                 phy->lpa = 0;
5036                 phy->expansion = EXPANSION_ENABLENPAGE;
5037                 phy->ctrl1000 = ADVERTISE_1000FULL;
5038                 phy->stat1000 = 0;
5039                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5040         }
5041 }
5042
5043 static void e1000_print_link_info(struct e1000_adapter *adapter)
5044 {
5045         struct e1000_hw *hw = &adapter->hw;
5046         u32 ctrl = er32(CTRL);
5047
5048         /* Link status message must follow this format for user tools */
5049         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5050                 adapter->netdev->name, adapter->link_speed,
5051                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5052                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5053                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5054                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5055 }
5056
5057 static bool e1000e_has_link(struct e1000_adapter *adapter)
5058 {
5059         struct e1000_hw *hw = &adapter->hw;
5060         bool link_active = false;
5061         s32 ret_val = 0;
5062
5063         /* get_link_status is set on LSC (link status) interrupt or
5064          * Rx sequence error interrupt.  get_link_status will stay
5065          * true until the check_for_link establishes link
5066          * for copper adapters ONLY
5067          */
5068         switch (hw->phy.media_type) {
5069         case e1000_media_type_copper:
5070                 if (hw->mac.get_link_status) {
5071                         ret_val = hw->mac.ops.check_for_link(hw);
5072                         link_active = !hw->mac.get_link_status;
5073                 } else {
5074                         link_active = true;
5075                 }
5076                 break;
5077         case e1000_media_type_fiber:
5078                 ret_val = hw->mac.ops.check_for_link(hw);
5079                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5080                 break;
5081         case e1000_media_type_internal_serdes:
5082                 ret_val = hw->mac.ops.check_for_link(hw);
5083                 link_active = hw->mac.serdes_has_link;
5084                 break;
5085         default:
5086         case e1000_media_type_unknown:
5087                 break;
5088         }
5089
5090         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5091             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5092                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5093                 e_info("Gigabit has been disabled, downgrading speed\n");
5094         }
5095
5096         return link_active;
5097 }
5098
5099 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5100 {
5101         /* make sure the receive unit is started */
5102         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5103             (adapter->flags & FLAG_RESTART_NOW)) {
5104                 struct e1000_hw *hw = &adapter->hw;
5105                 u32 rctl = er32(RCTL);
5106
5107                 ew32(RCTL, rctl | E1000_RCTL_EN);
5108                 adapter->flags &= ~FLAG_RESTART_NOW;
5109         }
5110 }
5111
5112 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5113 {
5114         struct e1000_hw *hw = &adapter->hw;
5115
5116         /* With 82574 controllers, PHY needs to be checked periodically
5117          * for hung state and reset, if two calls return true
5118          */
5119         if (e1000_check_phy_82574(hw))
5120                 adapter->phy_hang_count++;
5121         else
5122                 adapter->phy_hang_count = 0;
5123
5124         if (adapter->phy_hang_count > 1) {
5125                 adapter->phy_hang_count = 0;
5126                 e_dbg("PHY appears hung - resetting\n");
5127                 schedule_work(&adapter->reset_task);
5128         }
5129 }
5130
5131 /**
5132  * e1000_watchdog - Timer Call-back
5133  * @data: pointer to adapter cast into an unsigned long
5134  **/
5135 static void e1000_watchdog(struct timer_list *t)
5136 {
5137         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5138
5139         /* Do the rest outside of interrupt context */
5140         schedule_work(&adapter->watchdog_task);
5141
5142         /* TODO: make this use queue_delayed_work() */
5143 }
5144
5145 static void e1000_watchdog_task(struct work_struct *work)
5146 {
5147         struct e1000_adapter *adapter = container_of(work,
5148                                                      struct e1000_adapter,
5149                                                      watchdog_task);
5150         struct net_device *netdev = adapter->netdev;
5151         struct e1000_mac_info *mac = &adapter->hw.mac;
5152         struct e1000_phy_info *phy = &adapter->hw.phy;
5153         struct e1000_ring *tx_ring = adapter->tx_ring;
5154         struct e1000_hw *hw = &adapter->hw;
5155         u32 link, tctl;
5156
5157         if (test_bit(__E1000_DOWN, &adapter->state))
5158                 return;
5159
5160         link = e1000e_has_link(adapter);
5161         if ((netif_carrier_ok(netdev)) && link) {
5162                 /* Cancel scheduled suspend requests. */
5163                 pm_runtime_resume(netdev->dev.parent);
5164
5165                 e1000e_enable_receives(adapter);
5166                 goto link_up;
5167         }
5168
5169         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5170             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5171                 e1000_update_mng_vlan(adapter);
5172
5173         if (link) {
5174                 if (!netif_carrier_ok(netdev)) {
5175                         bool txb2b = true;
5176
5177                         /* Cancel scheduled suspend requests. */
5178                         pm_runtime_resume(netdev->dev.parent);
5179
5180                         /* update snapshot of PHY registers on LSC */
5181                         e1000_phy_read_status(adapter);
5182                         mac->ops.get_link_up_info(&adapter->hw,
5183                                                   &adapter->link_speed,
5184                                                   &adapter->link_duplex);
5185                         e1000_print_link_info(adapter);
5186
5187                         /* check if SmartSpeed worked */
5188                         e1000e_check_downshift(hw);
5189                         if (phy->speed_downgraded)
5190                                 netdev_warn(netdev,
5191                                             "Link Speed was downgraded by SmartSpeed\n");
5192
5193                         /* On supported PHYs, check for duplex mismatch only
5194                          * if link has autonegotiated at 10/100 half
5195                          */
5196                         if ((hw->phy.type == e1000_phy_igp_3 ||
5197                              hw->phy.type == e1000_phy_bm) &&
5198                             hw->mac.autoneg &&
5199                             (adapter->link_speed == SPEED_10 ||
5200                              adapter->link_speed == SPEED_100) &&
5201                             (adapter->link_duplex == HALF_DUPLEX)) {
5202                                 u16 autoneg_exp;
5203
5204                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5205
5206                                 if (!(autoneg_exp & EXPANSION_NWAY))
5207                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5208                         }
5209
5210                         /* adjust timeout factor according to speed/duplex */
5211                         adapter->tx_timeout_factor = 1;
5212                         switch (adapter->link_speed) {
5213                         case SPEED_10:
5214                                 txb2b = false;
5215                                 adapter->tx_timeout_factor = 16;
5216                                 break;
5217                         case SPEED_100:
5218                                 txb2b = false;
5219                                 adapter->tx_timeout_factor = 10;
5220                                 break;
5221                         }
5222
5223                         /* workaround: re-program speed mode bit after
5224                          * link-up event
5225                          */
5226                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5227                             !txb2b) {
5228                                 u32 tarc0;
5229
5230                                 tarc0 = er32(TARC(0));
5231                                 tarc0 &= ~SPEED_MODE_BIT;
5232                                 ew32(TARC(0), tarc0);
5233                         }
5234
5235                         /* disable TSO for pcie and 10/100 speeds, to avoid
5236                          * some hardware issues
5237                          */
5238                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5239                                 switch (adapter->link_speed) {
5240                                 case SPEED_10:
5241                                 case SPEED_100:
5242                                         e_info("10/100 speed: disabling TSO\n");
5243                                         netdev->features &= ~NETIF_F_TSO;
5244                                         netdev->features &= ~NETIF_F_TSO6;
5245                                         break;
5246                                 case SPEED_1000:
5247                                         netdev->features |= NETIF_F_TSO;
5248                                         netdev->features |= NETIF_F_TSO6;
5249                                         break;
5250                                 default:
5251                                         /* oops */
5252                                         break;
5253                                 }
5254                         }
5255
5256                         /* enable transmits in the hardware, need to do this
5257                          * after setting TARC(0)
5258                          */
5259                         tctl = er32(TCTL);
5260                         tctl |= E1000_TCTL_EN;
5261                         ew32(TCTL, tctl);
5262
5263                         /* Perform any post-link-up configuration before
5264                          * reporting link up.
5265                          */
5266                         if (phy->ops.cfg_on_link_up)
5267                                 phy->ops.cfg_on_link_up(hw);
5268
5269                         netif_carrier_on(netdev);
5270
5271                         if (!test_bit(__E1000_DOWN, &adapter->state))
5272                                 mod_timer(&adapter->phy_info_timer,
5273                                           round_jiffies(jiffies + 2 * HZ));
5274                 }
5275         } else {
5276                 if (netif_carrier_ok(netdev)) {
5277                         adapter->link_speed = 0;
5278                         adapter->link_duplex = 0;
5279                         /* Link status message must follow this format */
5280                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5281                         netif_carrier_off(netdev);
5282                         if (!test_bit(__E1000_DOWN, &adapter->state))
5283                                 mod_timer(&adapter->phy_info_timer,
5284                                           round_jiffies(jiffies + 2 * HZ));
5285
5286                         /* 8000ES2LAN requires a Rx packet buffer work-around
5287                          * on link down event; reset the controller to flush
5288                          * the Rx packet buffer.
5289                          */
5290                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5291                                 adapter->flags |= FLAG_RESTART_NOW;
5292                         else
5293                                 pm_schedule_suspend(netdev->dev.parent,
5294                                                     LINK_TIMEOUT);
5295                 }
5296         }
5297
5298 link_up:
5299         spin_lock(&adapter->stats64_lock);
5300         e1000e_update_stats(adapter);
5301
5302         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5303         adapter->tpt_old = adapter->stats.tpt;
5304         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5305         adapter->colc_old = adapter->stats.colc;
5306
5307         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5308         adapter->gorc_old = adapter->stats.gorc;
5309         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5310         adapter->gotc_old = adapter->stats.gotc;
5311         spin_unlock(&adapter->stats64_lock);
5312
5313         /* If the link is lost the controller stops DMA, but
5314          * if there is queued Tx work it cannot be done.  So
5315          * reset the controller to flush the Tx packet buffers.
5316          */
5317         if (!netif_carrier_ok(netdev) &&
5318             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5319                 adapter->flags |= FLAG_RESTART_NOW;
5320
5321         /* If reset is necessary, do it outside of interrupt context. */
5322         if (adapter->flags & FLAG_RESTART_NOW) {
5323                 schedule_work(&adapter->reset_task);
5324                 /* return immediately since reset is imminent */
5325                 return;
5326         }
5327
5328         e1000e_update_adaptive(&adapter->hw);
5329
5330         /* Simple mode for Interrupt Throttle Rate (ITR) */
5331         if (adapter->itr_setting == 4) {
5332                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5333                  * Total asymmetrical Tx or Rx gets ITR=8000;
5334                  * everyone else is between 2000-8000.
5335                  */
5336                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5337                 u32 dif = (adapter->gotc > adapter->gorc ?
5338                            adapter->gotc - adapter->gorc :
5339                            adapter->gorc - adapter->gotc) / 10000;
5340                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5341
5342                 e1000e_write_itr(adapter, itr);
5343         }
5344
5345         /* Cause software interrupt to ensure Rx ring is cleaned */
5346         if (adapter->msix_entries)
5347                 ew32(ICS, adapter->rx_ring->ims_val);
5348         else
5349                 ew32(ICS, E1000_ICS_RXDMT0);
5350
5351         /* flush pending descriptors to memory before detecting Tx hang */
5352         e1000e_flush_descriptors(adapter);
5353
5354         /* Force detection of hung controller every watchdog period */
5355         adapter->detect_tx_hung = true;
5356
5357         /* With 82571 controllers, LAA may be overwritten due to controller
5358          * reset from the other port. Set the appropriate LAA in RAR[0]
5359          */
5360         if (e1000e_get_laa_state_82571(hw))
5361                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5362
5363         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5364                 e1000e_check_82574_phy_workaround(adapter);
5365
5366         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5367         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5368                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5369                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5370                         er32(RXSTMPH);
5371                         adapter->rx_hwtstamp_cleared++;
5372                 } else {
5373                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5374                 }
5375         }
5376
5377         /* Reset the timer */
5378         if (!test_bit(__E1000_DOWN, &adapter->state))
5379                 mod_timer(&adapter->watchdog_timer,
5380                           round_jiffies(jiffies + 2 * HZ));
5381 }
5382
5383 #define E1000_TX_FLAGS_CSUM             0x00000001
5384 #define E1000_TX_FLAGS_VLAN             0x00000002
5385 #define E1000_TX_FLAGS_TSO              0x00000004
5386 #define E1000_TX_FLAGS_IPV4             0x00000008
5387 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5388 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5389 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5390 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5391
5392 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5393                      __be16 protocol)
5394 {
5395         struct e1000_context_desc *context_desc;
5396         struct e1000_buffer *buffer_info;
5397         unsigned int i;
5398         u32 cmd_length = 0;
5399         u16 ipcse = 0, mss;
5400         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5401         int err;
5402
5403         if (!skb_is_gso(skb))
5404                 return 0;
5405
5406         err = skb_cow_head(skb, 0);
5407         if (err < 0)
5408                 return err;
5409
5410         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5411         mss = skb_shinfo(skb)->gso_size;
5412         if (protocol == htons(ETH_P_IP)) {
5413                 struct iphdr *iph = ip_hdr(skb);
5414                 iph->tot_len = 0;
5415                 iph->check = 0;
5416                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5417                                                          0, IPPROTO_TCP, 0);
5418                 cmd_length = E1000_TXD_CMD_IP;
5419                 ipcse = skb_transport_offset(skb) - 1;
5420         } else if (skb_is_gso_v6(skb)) {
5421                 ipv6_hdr(skb)->payload_len = 0;
5422                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5423                                                        &ipv6_hdr(skb)->daddr,
5424                                                        0, IPPROTO_TCP, 0);
5425                 ipcse = 0;
5426         }
5427         ipcss = skb_network_offset(skb);
5428         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5429         tucss = skb_transport_offset(skb);
5430         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5431
5432         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5433                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5434
5435         i = tx_ring->next_to_use;
5436         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5437         buffer_info = &tx_ring->buffer_info[i];
5438
5439         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5440         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5441         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5442         context_desc->upper_setup.tcp_fields.tucss = tucss;
5443         context_desc->upper_setup.tcp_fields.tucso = tucso;
5444         context_desc->upper_setup.tcp_fields.tucse = 0;
5445         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5446         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5447         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5448
5449         buffer_info->time_stamp = jiffies;
5450         buffer_info->next_to_watch = i;
5451
5452         i++;
5453         if (i == tx_ring->count)
5454                 i = 0;
5455         tx_ring->next_to_use = i;
5456
5457         return 1;
5458 }
5459
5460 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5461                           __be16 protocol)
5462 {
5463         struct e1000_adapter *adapter = tx_ring->adapter;
5464         struct e1000_context_desc *context_desc;
5465         struct e1000_buffer *buffer_info;
5466         unsigned int i;
5467         u8 css;
5468         u32 cmd_len = E1000_TXD_CMD_DEXT;
5469
5470         if (skb->ip_summed != CHECKSUM_PARTIAL)
5471                 return false;
5472
5473         switch (protocol) {
5474         case cpu_to_be16(ETH_P_IP):
5475                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5476                         cmd_len |= E1000_TXD_CMD_TCP;
5477                 break;
5478         case cpu_to_be16(ETH_P_IPV6):
5479                 /* XXX not handling all IPV6 headers */
5480                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5481                         cmd_len |= E1000_TXD_CMD_TCP;
5482                 break;
5483         default:
5484                 if (unlikely(net_ratelimit()))
5485                         e_warn("checksum_partial proto=%x!\n",
5486                                be16_to_cpu(protocol));
5487                 break;
5488         }
5489
5490         css = skb_checksum_start_offset(skb);
5491
5492         i = tx_ring->next_to_use;
5493         buffer_info = &tx_ring->buffer_info[i];
5494         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5495
5496         context_desc->lower_setup.ip_config = 0;
5497         context_desc->upper_setup.tcp_fields.tucss = css;
5498         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5499         context_desc->upper_setup.tcp_fields.tucse = 0;
5500         context_desc->tcp_seg_setup.data = 0;
5501         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5502
5503         buffer_info->time_stamp = jiffies;
5504         buffer_info->next_to_watch = i;
5505
5506         i++;
5507         if (i == tx_ring->count)
5508                 i = 0;
5509         tx_ring->next_to_use = i;
5510
5511         return true;
5512 }
5513
5514 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5515                         unsigned int first, unsigned int max_per_txd,
5516                         unsigned int nr_frags)
5517 {
5518         struct e1000_adapter *adapter = tx_ring->adapter;
5519         struct pci_dev *pdev = adapter->pdev;
5520         struct e1000_buffer *buffer_info;
5521         unsigned int len = skb_headlen(skb);
5522         unsigned int offset = 0, size, count = 0, i;
5523         unsigned int f, bytecount, segs;
5524
5525         i = tx_ring->next_to_use;
5526
5527         while (len) {
5528                 buffer_info = &tx_ring->buffer_info[i];
5529                 size = min(len, max_per_txd);
5530
5531                 buffer_info->length = size;
5532                 buffer_info->time_stamp = jiffies;
5533                 buffer_info->next_to_watch = i;
5534                 buffer_info->dma = dma_map_single(&pdev->dev,
5535                                                   skb->data + offset,
5536                                                   size, DMA_TO_DEVICE);
5537                 buffer_info->mapped_as_page = false;
5538                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5539                         goto dma_error;
5540
5541                 len -= size;
5542                 offset += size;
5543                 count++;
5544
5545                 if (len) {
5546                         i++;
5547                         if (i == tx_ring->count)
5548                                 i = 0;
5549                 }
5550         }
5551
5552         for (f = 0; f < nr_frags; f++) {
5553                 const struct skb_frag_struct *frag;
5554
5555                 frag = &skb_shinfo(skb)->frags[f];
5556                 len = skb_frag_size(frag);
5557                 offset = 0;
5558
5559                 while (len) {
5560                         i++;
5561                         if (i == tx_ring->count)
5562                                 i = 0;
5563
5564                         buffer_info = &tx_ring->buffer_info[i];
5565                         size = min(len, max_per_txd);
5566
5567                         buffer_info->length = size;
5568                         buffer_info->time_stamp = jiffies;
5569                         buffer_info->next_to_watch = i;
5570                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5571                                                             offset, size,
5572                                                             DMA_TO_DEVICE);
5573                         buffer_info->mapped_as_page = true;
5574                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5575                                 goto dma_error;
5576
5577                         len -= size;
5578                         offset += size;
5579                         count++;
5580                 }
5581         }
5582
5583         segs = skb_shinfo(skb)->gso_segs ? : 1;
5584         /* multiply data chunks by size of headers */
5585         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5586
5587         tx_ring->buffer_info[i].skb = skb;
5588         tx_ring->buffer_info[i].segs = segs;
5589         tx_ring->buffer_info[i].bytecount = bytecount;
5590         tx_ring->buffer_info[first].next_to_watch = i;
5591
5592         return count;
5593
5594 dma_error:
5595         dev_err(&pdev->dev, "Tx DMA map failed\n");
5596         buffer_info->dma = 0;
5597         if (count)
5598                 count--;
5599
5600         while (count--) {
5601                 if (i == 0)
5602                         i += tx_ring->count;
5603                 i--;
5604                 buffer_info = &tx_ring->buffer_info[i];
5605                 e1000_put_txbuf(tx_ring, buffer_info, true);
5606         }
5607
5608         return 0;
5609 }
5610
5611 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5612 {
5613         struct e1000_adapter *adapter = tx_ring->adapter;
5614         struct e1000_tx_desc *tx_desc = NULL;
5615         struct e1000_buffer *buffer_info;
5616         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5617         unsigned int i;
5618
5619         if (tx_flags & E1000_TX_FLAGS_TSO) {
5620                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5621                     E1000_TXD_CMD_TSE;
5622                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5623
5624                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5625                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5626         }
5627
5628         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5629                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5630                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5631         }
5632
5633         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5634                 txd_lower |= E1000_TXD_CMD_VLE;
5635                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5636         }
5637
5638         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5639                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5640
5641         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5642                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5643                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5644         }
5645
5646         i = tx_ring->next_to_use;
5647
5648         do {
5649                 buffer_info = &tx_ring->buffer_info[i];
5650                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5651                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5652                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5653                                                   buffer_info->length);
5654                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5655
5656                 i++;
5657                 if (i == tx_ring->count)
5658                         i = 0;
5659         } while (--count > 0);
5660
5661         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5662
5663         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5664         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5665                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5666
5667         /* Force memory writes to complete before letting h/w
5668          * know there are new descriptors to fetch.  (Only
5669          * applicable for weak-ordered memory model archs,
5670          * such as IA-64).
5671          */
5672         wmb();
5673
5674         tx_ring->next_to_use = i;
5675 }
5676
5677 #define MINIMUM_DHCP_PACKET_SIZE 282
5678 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5679                                     struct sk_buff *skb)
5680 {
5681         struct e1000_hw *hw = &adapter->hw;
5682         u16 length, offset;
5683
5684         if (skb_vlan_tag_present(skb) &&
5685             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5686               (adapter->hw.mng_cookie.status &
5687                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5688                 return 0;
5689
5690         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5691                 return 0;
5692
5693         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5694                 return 0;
5695
5696         {
5697                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5698                 struct udphdr *udp;
5699
5700                 if (ip->protocol != IPPROTO_UDP)
5701                         return 0;
5702
5703                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5704                 if (ntohs(udp->dest) != 67)
5705                         return 0;
5706
5707                 offset = (u8 *)udp + 8 - skb->data;
5708                 length = skb->len - offset;
5709                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5710         }
5711
5712         return 0;
5713 }
5714
5715 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5716 {
5717         struct e1000_adapter *adapter = tx_ring->adapter;
5718
5719         netif_stop_queue(adapter->netdev);
5720         /* Herbert's original patch had:
5721          *  smp_mb__after_netif_stop_queue();
5722          * but since that doesn't exist yet, just open code it.
5723          */
5724         smp_mb();
5725
5726         /* We need to check again in a case another CPU has just
5727          * made room available.
5728          */
5729         if (e1000_desc_unused(tx_ring) < size)
5730                 return -EBUSY;
5731
5732         /* A reprieve! */
5733         netif_start_queue(adapter->netdev);
5734         ++adapter->restart_queue;
5735         return 0;
5736 }
5737
5738 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5739 {
5740         BUG_ON(size > tx_ring->count);
5741
5742         if (e1000_desc_unused(tx_ring) >= size)
5743                 return 0;
5744         return __e1000_maybe_stop_tx(tx_ring, size);
5745 }
5746
5747 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5748                                     struct net_device *netdev)
5749 {
5750         struct e1000_adapter *adapter = netdev_priv(netdev);
5751         struct e1000_ring *tx_ring = adapter->tx_ring;
5752         unsigned int first;
5753         unsigned int tx_flags = 0;
5754         unsigned int len = skb_headlen(skb);
5755         unsigned int nr_frags;
5756         unsigned int mss;
5757         int count = 0;
5758         int tso;
5759         unsigned int f;
5760         __be16 protocol = vlan_get_protocol(skb);
5761
5762         if (test_bit(__E1000_DOWN, &adapter->state)) {
5763                 dev_kfree_skb_any(skb);
5764                 return NETDEV_TX_OK;
5765         }
5766
5767         if (skb->len <= 0) {
5768                 dev_kfree_skb_any(skb);
5769                 return NETDEV_TX_OK;
5770         }
5771
5772         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5773          * pad skb in order to meet this minimum size requirement
5774          */
5775         if (skb_put_padto(skb, 17))
5776                 return NETDEV_TX_OK;
5777
5778         mss = skb_shinfo(skb)->gso_size;
5779         if (mss) {
5780                 u8 hdr_len;
5781
5782                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5783                  * points to just header, pull a few bytes of payload from
5784                  * frags into skb->data
5785                  */
5786                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5787                 /* we do this workaround for ES2LAN, but it is un-necessary,
5788                  * avoiding it could save a lot of cycles
5789                  */
5790                 if (skb->data_len && (hdr_len == len)) {
5791                         unsigned int pull_size;
5792
5793                         pull_size = min_t(unsigned int, 4, skb->data_len);
5794                         if (!__pskb_pull_tail(skb, pull_size)) {
5795                                 e_err("__pskb_pull_tail failed.\n");
5796                                 dev_kfree_skb_any(skb);
5797                                 return NETDEV_TX_OK;
5798                         }
5799                         len = skb_headlen(skb);
5800                 }
5801         }
5802
5803         /* reserve a descriptor for the offload context */
5804         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5805                 count++;
5806         count++;
5807
5808         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5809
5810         nr_frags = skb_shinfo(skb)->nr_frags;
5811         for (f = 0; f < nr_frags; f++)
5812                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5813                                       adapter->tx_fifo_limit);
5814
5815         if (adapter->hw.mac.tx_pkt_filtering)
5816                 e1000_transfer_dhcp_info(adapter, skb);
5817
5818         /* need: count + 2 desc gap to keep tail from touching
5819          * head, otherwise try next time
5820          */
5821         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5822                 return NETDEV_TX_BUSY;
5823
5824         if (skb_vlan_tag_present(skb)) {
5825                 tx_flags |= E1000_TX_FLAGS_VLAN;
5826                 tx_flags |= (skb_vlan_tag_get(skb) <<
5827                              E1000_TX_FLAGS_VLAN_SHIFT);
5828         }
5829
5830         first = tx_ring->next_to_use;
5831
5832         tso = e1000_tso(tx_ring, skb, protocol);
5833         if (tso < 0) {
5834                 dev_kfree_skb_any(skb);
5835                 return NETDEV_TX_OK;
5836         }
5837
5838         if (tso)
5839                 tx_flags |= E1000_TX_FLAGS_TSO;
5840         else if (e1000_tx_csum(tx_ring, skb, protocol))
5841                 tx_flags |= E1000_TX_FLAGS_CSUM;
5842
5843         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5844          * 82571 hardware supports TSO capabilities for IPv6 as well...
5845          * no longer assume, we must.
5846          */
5847         if (protocol == htons(ETH_P_IP))
5848                 tx_flags |= E1000_TX_FLAGS_IPV4;
5849
5850         if (unlikely(skb->no_fcs))
5851                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5852
5853         /* if count is 0 then mapping error has occurred */
5854         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5855                              nr_frags);
5856         if (count) {
5857                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5858                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5859                         if (!adapter->tx_hwtstamp_skb) {
5860                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5861                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5862                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5863                                 adapter->tx_hwtstamp_start = jiffies;
5864                                 schedule_work(&adapter->tx_hwtstamp_work);
5865                         } else {
5866                                 adapter->tx_hwtstamp_skipped++;
5867                         }
5868                 }
5869
5870                 skb_tx_timestamp(skb);
5871
5872                 netdev_sent_queue(netdev, skb->len);
5873                 e1000_tx_queue(tx_ring, tx_flags, count);
5874                 /* Make sure there is space in the ring for the next send. */
5875                 e1000_maybe_stop_tx(tx_ring,
5876                                     (MAX_SKB_FRAGS *
5877                                      DIV_ROUND_UP(PAGE_SIZE,
5878                                                   adapter->tx_fifo_limit) + 2));
5879
5880                 if (!skb->xmit_more ||
5881                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5882                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5883                                 e1000e_update_tdt_wa(tx_ring,
5884                                                      tx_ring->next_to_use);
5885                         else
5886                                 writel(tx_ring->next_to_use, tx_ring->tail);
5887
5888                         /* we need this if more than one processor can write
5889                          * to our tail at a time, it synchronizes IO on
5890                          *IA64/Altix systems
5891                          */
5892                         mmiowb();
5893                 }
5894         } else {
5895                 dev_kfree_skb_any(skb);
5896                 tx_ring->buffer_info[first].time_stamp = 0;
5897                 tx_ring->next_to_use = first;
5898         }
5899
5900         return NETDEV_TX_OK;
5901 }
5902
5903 /**
5904  * e1000_tx_timeout - Respond to a Tx Hang
5905  * @netdev: network interface device structure
5906  **/
5907 static void e1000_tx_timeout(struct net_device *netdev)
5908 {
5909         struct e1000_adapter *adapter = netdev_priv(netdev);
5910
5911         /* Do the reset outside of interrupt context */
5912         adapter->tx_timeout_count++;
5913         schedule_work(&adapter->reset_task);
5914 }
5915
5916 static void e1000_reset_task(struct work_struct *work)
5917 {
5918         struct e1000_adapter *adapter;
5919         adapter = container_of(work, struct e1000_adapter, reset_task);
5920
5921         /* don't run the task if already down */
5922         if (test_bit(__E1000_DOWN, &adapter->state))
5923                 return;
5924
5925         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5926                 e1000e_dump(adapter);
5927                 e_err("Reset adapter unexpectedly\n");
5928         }
5929         e1000e_reinit_locked(adapter);
5930 }
5931
5932 /**
5933  * e1000_get_stats64 - Get System Network Statistics
5934  * @netdev: network interface device structure
5935  * @stats: rtnl_link_stats64 pointer
5936  *
5937  * Returns the address of the device statistics structure.
5938  **/
5939 void e1000e_get_stats64(struct net_device *netdev,
5940                         struct rtnl_link_stats64 *stats)
5941 {
5942         struct e1000_adapter *adapter = netdev_priv(netdev);
5943
5944         spin_lock(&adapter->stats64_lock);
5945         e1000e_update_stats(adapter);
5946         /* Fill out the OS statistics structure */
5947         stats->rx_bytes = adapter->stats.gorc;
5948         stats->rx_packets = adapter->stats.gprc;
5949         stats->tx_bytes = adapter->stats.gotc;
5950         stats->tx_packets = adapter->stats.gptc;
5951         stats->multicast = adapter->stats.mprc;
5952         stats->collisions = adapter->stats.colc;
5953
5954         /* Rx Errors */
5955
5956         /* RLEC on some newer hardware can be incorrect so build
5957          * our own version based on RUC and ROC
5958          */
5959         stats->rx_errors = adapter->stats.rxerrc +
5960             adapter->stats.crcerrs + adapter->stats.algnerrc +
5961             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5962         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5963         stats->rx_crc_errors = adapter->stats.crcerrs;
5964         stats->rx_frame_errors = adapter->stats.algnerrc;
5965         stats->rx_missed_errors = adapter->stats.mpc;
5966
5967         /* Tx Errors */
5968         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5969         stats->tx_aborted_errors = adapter->stats.ecol;
5970         stats->tx_window_errors = adapter->stats.latecol;
5971         stats->tx_carrier_errors = adapter->stats.tncrs;
5972
5973         /* Tx Dropped needs to be maintained elsewhere */
5974
5975         spin_unlock(&adapter->stats64_lock);
5976 }
5977
5978 /**
5979  * e1000_change_mtu - Change the Maximum Transfer Unit
5980  * @netdev: network interface device structure
5981  * @new_mtu: new value for maximum frame size
5982  *
5983  * Returns 0 on success, negative on failure
5984  **/
5985 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5986 {
5987         struct e1000_adapter *adapter = netdev_priv(netdev);
5988         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5989
5990         /* Jumbo frame support */
5991         if ((new_mtu > ETH_DATA_LEN) &&
5992             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5993                 e_err("Jumbo Frames not supported.\n");
5994                 return -EINVAL;
5995         }
5996
5997         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5998         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5999             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6000             (new_mtu > ETH_DATA_LEN)) {
6001                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6002                 return -EINVAL;
6003         }
6004
6005         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6006                 usleep_range(1000, 2000);
6007         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6008         adapter->max_frame_size = max_frame;
6009         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6010         netdev->mtu = new_mtu;
6011
6012         pm_runtime_get_sync(netdev->dev.parent);
6013
6014         if (netif_running(netdev))
6015                 e1000e_down(adapter, true);
6016
6017         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6018          * means we reserve 2 more, this pushes us to allocate from the next
6019          * larger slab size.
6020          * i.e. RXBUFFER_2048 --> size-4096 slab
6021          * However with the new *_jumbo_rx* routines, jumbo receives will use
6022          * fragmented skbs
6023          */
6024
6025         if (max_frame <= 2048)
6026                 adapter->rx_buffer_len = 2048;
6027         else
6028                 adapter->rx_buffer_len = 4096;
6029
6030         /* adjust allocation if LPE protects us, and we aren't using SBP */
6031         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6032                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6033
6034         if (netif_running(netdev))
6035                 e1000e_up(adapter);
6036         else
6037                 e1000e_reset(adapter);
6038
6039         pm_runtime_put_sync(netdev->dev.parent);
6040
6041         clear_bit(__E1000_RESETTING, &adapter->state);
6042
6043         return 0;
6044 }
6045
6046 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6047                            int cmd)
6048 {
6049         struct e1000_adapter *adapter = netdev_priv(netdev);
6050         struct mii_ioctl_data *data = if_mii(ifr);
6051
6052         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6053                 return -EOPNOTSUPP;
6054
6055         switch (cmd) {
6056         case SIOCGMIIPHY:
6057                 data->phy_id = adapter->hw.phy.addr;
6058                 break;
6059         case SIOCGMIIREG:
6060                 e1000_phy_read_status(adapter);
6061
6062                 switch (data->reg_num & 0x1F) {
6063                 case MII_BMCR:
6064                         data->val_out = adapter->phy_regs.bmcr;
6065                         break;
6066                 case MII_BMSR:
6067                         data->val_out = adapter->phy_regs.bmsr;
6068                         break;
6069                 case MII_PHYSID1:
6070                         data->val_out = (adapter->hw.phy.id >> 16);
6071                         break;
6072                 case MII_PHYSID2:
6073                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6074                         break;
6075                 case MII_ADVERTISE:
6076                         data->val_out = adapter->phy_regs.advertise;
6077                         break;
6078                 case MII_LPA:
6079                         data->val_out = adapter->phy_regs.lpa;
6080                         break;
6081                 case MII_EXPANSION:
6082                         data->val_out = adapter->phy_regs.expansion;
6083                         break;
6084                 case MII_CTRL1000:
6085                         data->val_out = adapter->phy_regs.ctrl1000;
6086                         break;
6087                 case MII_STAT1000:
6088                         data->val_out = adapter->phy_regs.stat1000;
6089                         break;
6090                 case MII_ESTATUS:
6091                         data->val_out = adapter->phy_regs.estatus;
6092                         break;
6093                 default:
6094                         return -EIO;
6095                 }
6096                 break;
6097         case SIOCSMIIREG:
6098         default:
6099                 return -EOPNOTSUPP;
6100         }
6101         return 0;
6102 }
6103
6104 /**
6105  * e1000e_hwtstamp_ioctl - control hardware time stamping
6106  * @netdev: network interface device structure
6107  * @ifreq: interface request
6108  *
6109  * Outgoing time stamping can be enabled and disabled. Play nice and
6110  * disable it when requested, although it shouldn't cause any overhead
6111  * when no packet needs it. At most one packet in the queue may be
6112  * marked for time stamping, otherwise it would be impossible to tell
6113  * for sure to which packet the hardware time stamp belongs.
6114  *
6115  * Incoming time stamping has to be configured via the hardware filters.
6116  * Not all combinations are supported, in particular event type has to be
6117  * specified. Matching the kind of event packet is not supported, with the
6118  * exception of "all V2 events regardless of level 2 or 4".
6119  **/
6120 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6121 {
6122         struct e1000_adapter *adapter = netdev_priv(netdev);
6123         struct hwtstamp_config config;
6124         int ret_val;
6125
6126         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6127                 return -EFAULT;
6128
6129         ret_val = e1000e_config_hwtstamp(adapter, &config);
6130         if (ret_val)
6131                 return ret_val;
6132
6133         switch (config.rx_filter) {
6134         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6135         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6136         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6137         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6138         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6139         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6140                 /* With V2 type filters which specify a Sync or Delay Request,
6141                  * Path Delay Request/Response messages are also time stamped
6142                  * by hardware so notify the caller the requested packets plus
6143                  * some others are time stamped.
6144                  */
6145                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6146                 break;
6147         default:
6148                 break;
6149         }
6150
6151         return copy_to_user(ifr->ifr_data, &config,
6152                             sizeof(config)) ? -EFAULT : 0;
6153 }
6154
6155 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6156 {
6157         struct e1000_adapter *adapter = netdev_priv(netdev);
6158
6159         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6160                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6161 }
6162
6163 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6164 {
6165         switch (cmd) {
6166         case SIOCGMIIPHY:
6167         case SIOCGMIIREG:
6168         case SIOCSMIIREG:
6169                 return e1000_mii_ioctl(netdev, ifr, cmd);
6170         case SIOCSHWTSTAMP:
6171                 return e1000e_hwtstamp_set(netdev, ifr);
6172         case SIOCGHWTSTAMP:
6173                 return e1000e_hwtstamp_get(netdev, ifr);
6174         default:
6175                 return -EOPNOTSUPP;
6176         }
6177 }
6178
6179 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6180 {
6181         struct e1000_hw *hw = &adapter->hw;
6182         u32 i, mac_reg, wuc;
6183         u16 phy_reg, wuc_enable;
6184         int retval;
6185
6186         /* copy MAC RARs to PHY RARs */
6187         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6188
6189         retval = hw->phy.ops.acquire(hw);
6190         if (retval) {
6191                 e_err("Could not acquire PHY\n");
6192                 return retval;
6193         }
6194
6195         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6196         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6197         if (retval)
6198                 goto release;
6199
6200         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6201         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6202                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6203                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6204                                            (u16)(mac_reg & 0xFFFF));
6205                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6206                                            (u16)((mac_reg >> 16) & 0xFFFF));
6207         }
6208
6209         /* configure PHY Rx Control register */
6210         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6211         mac_reg = er32(RCTL);
6212         if (mac_reg & E1000_RCTL_UPE)
6213                 phy_reg |= BM_RCTL_UPE;
6214         if (mac_reg & E1000_RCTL_MPE)
6215                 phy_reg |= BM_RCTL_MPE;
6216         phy_reg &= ~(BM_RCTL_MO_MASK);
6217         if (mac_reg & E1000_RCTL_MO_3)
6218                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6219                             << BM_RCTL_MO_SHIFT);
6220         if (mac_reg & E1000_RCTL_BAM)
6221                 phy_reg |= BM_RCTL_BAM;
6222         if (mac_reg & E1000_RCTL_PMCF)
6223                 phy_reg |= BM_RCTL_PMCF;
6224         mac_reg = er32(CTRL);
6225         if (mac_reg & E1000_CTRL_RFCE)
6226                 phy_reg |= BM_RCTL_RFCE;
6227         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6228
6229         wuc = E1000_WUC_PME_EN;
6230         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6231                 wuc |= E1000_WUC_APME;
6232
6233         /* enable PHY wakeup in MAC register */
6234         ew32(WUFC, wufc);
6235         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6236                    E1000_WUC_PME_STATUS | wuc));
6237
6238         /* configure and enable PHY wakeup in PHY registers */
6239         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6240         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6241
6242         /* activate PHY wakeup */
6243         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6244         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6245         if (retval)
6246                 e_err("Could not set PHY Host Wakeup bit\n");
6247 release:
6248         hw->phy.ops.release(hw);
6249
6250         return retval;
6251 }
6252
6253 static void e1000e_flush_lpic(struct pci_dev *pdev)
6254 {
6255         struct net_device *netdev = pci_get_drvdata(pdev);
6256         struct e1000_adapter *adapter = netdev_priv(netdev);
6257         struct e1000_hw *hw = &adapter->hw;
6258         u32 ret_val;
6259
6260         pm_runtime_get_sync(netdev->dev.parent);
6261
6262         ret_val = hw->phy.ops.acquire(hw);
6263         if (ret_val)
6264                 goto fl_out;
6265
6266         pr_info("EEE TX LPI TIMER: %08X\n",
6267                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6268
6269         hw->phy.ops.release(hw);
6270
6271 fl_out:
6272         pm_runtime_put_sync(netdev->dev.parent);
6273 }
6274
6275 static int e1000e_pm_freeze(struct device *dev)
6276 {
6277         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6278         struct e1000_adapter *adapter = netdev_priv(netdev);
6279
6280         netif_device_detach(netdev);
6281
6282         if (netif_running(netdev)) {
6283                 int count = E1000_CHECK_RESET_COUNT;
6284
6285                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6286                         usleep_range(10000, 20000);
6287
6288                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6289
6290                 /* Quiesce the device without resetting the hardware */
6291                 e1000e_down(adapter, false);
6292                 e1000_free_irq(adapter);
6293         }
6294         e1000e_reset_interrupt_capability(adapter);
6295
6296         /* Allow time for pending master requests to run */
6297         e1000e_disable_pcie_master(&adapter->hw);
6298
6299         return 0;
6300 }
6301
6302 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6303 {
6304         struct net_device *netdev = pci_get_drvdata(pdev);
6305         struct e1000_adapter *adapter = netdev_priv(netdev);
6306         struct e1000_hw *hw = &adapter->hw;
6307         u32 ctrl, ctrl_ext, rctl, status;
6308         /* Runtime suspend should only enable wakeup for link changes */
6309         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6310         int retval = 0;
6311
6312         status = er32(STATUS);
6313         if (status & E1000_STATUS_LU)
6314                 wufc &= ~E1000_WUFC_LNKC;
6315
6316         if (wufc) {
6317                 e1000_setup_rctl(adapter);
6318                 e1000e_set_rx_mode(netdev);
6319
6320                 /* turn on all-multi mode if wake on multicast is enabled */
6321                 if (wufc & E1000_WUFC_MC) {
6322                         rctl = er32(RCTL);
6323                         rctl |= E1000_RCTL_MPE;
6324                         ew32(RCTL, rctl);
6325                 }
6326
6327                 ctrl = er32(CTRL);
6328                 ctrl |= E1000_CTRL_ADVD3WUC;
6329                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6330                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6331                 ew32(CTRL, ctrl);
6332
6333                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6334                     adapter->hw.phy.media_type ==
6335                     e1000_media_type_internal_serdes) {
6336                         /* keep the laser running in D3 */
6337                         ctrl_ext = er32(CTRL_EXT);
6338                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6339                         ew32(CTRL_EXT, ctrl_ext);
6340                 }
6341
6342                 if (!runtime)
6343                         e1000e_power_up_phy(adapter);
6344
6345                 if (adapter->flags & FLAG_IS_ICH)
6346                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6347
6348                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6349                         /* enable wakeup by the PHY */
6350                         retval = e1000_init_phy_wakeup(adapter, wufc);
6351                         if (retval)
6352                                 return retval;
6353                 } else {
6354                         /* enable wakeup by the MAC */
6355                         ew32(WUFC, wufc);
6356                         ew32(WUC, E1000_WUC_PME_EN);
6357                 }
6358         } else {
6359                 ew32(WUC, 0);
6360                 ew32(WUFC, 0);
6361
6362                 e1000_power_down_phy(adapter);
6363         }
6364
6365         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6366                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6367         } else if (hw->mac.type >= e1000_pch_lpt) {
6368                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6369                         /* ULP does not support wake from unicast, multicast
6370                          * or broadcast.
6371                          */
6372                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6373
6374                 if (retval)
6375                         return retval;
6376         }
6377
6378         /* Ensure that the appropriate bits are set in LPI_CTRL
6379          * for EEE in Sx
6380          */
6381         if ((hw->phy.type >= e1000_phy_i217) &&
6382             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6383                 u16 lpi_ctrl = 0;
6384
6385                 retval = hw->phy.ops.acquire(hw);
6386                 if (!retval) {
6387                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6388                                                  &lpi_ctrl);
6389                         if (!retval) {
6390                                 if (adapter->eee_advert &
6391                                     hw->dev_spec.ich8lan.eee_lp_ability &
6392                                     I82579_EEE_100_SUPPORTED)
6393                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6394                                 if (adapter->eee_advert &
6395                                     hw->dev_spec.ich8lan.eee_lp_ability &
6396                                     I82579_EEE_1000_SUPPORTED)
6397                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6398
6399                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6400                                                          lpi_ctrl);
6401                         }
6402                 }
6403                 hw->phy.ops.release(hw);
6404         }
6405
6406         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6407          * would have already happened in close and is redundant.
6408          */
6409         e1000e_release_hw_control(adapter);
6410
6411         pci_clear_master(pdev);
6412
6413         /* The pci-e switch on some quad port adapters will report a
6414          * correctable error when the MAC transitions from D0 to D3.  To
6415          * prevent this we need to mask off the correctable errors on the
6416          * downstream port of the pci-e switch.
6417          *
6418          * We don't have the associated upstream bridge while assigning
6419          * the PCI device into guest. For example, the KVM on power is
6420          * one of the cases.
6421          */
6422         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6423                 struct pci_dev *us_dev = pdev->bus->self;
6424                 u16 devctl;
6425
6426                 if (!us_dev)
6427                         return 0;
6428
6429                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6430                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6431                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6432
6433                 pci_save_state(pdev);
6434                 pci_prepare_to_sleep(pdev);
6435
6436                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6437         }
6438
6439         return 0;
6440 }
6441
6442 /**
6443  * __e1000e_disable_aspm - Disable ASPM states
6444  * @pdev: pointer to PCI device struct
6445  * @state: bit-mask of ASPM states to disable
6446  * @locked: indication if this context holds pci_bus_sem locked.
6447  *
6448  * Some devices *must* have certain ASPM states disabled per hardware errata.
6449  **/
6450 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6451 {
6452         struct pci_dev *parent = pdev->bus->self;
6453         u16 aspm_dis_mask = 0;
6454         u16 pdev_aspmc, parent_aspmc;
6455
6456         switch (state) {
6457         case PCIE_LINK_STATE_L0S:
6458         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6459                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6460                 /* fall-through - can't have L1 without L0s */
6461         case PCIE_LINK_STATE_L1:
6462                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6463                 break;
6464         default:
6465                 return;
6466         }
6467
6468         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6469         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6470
6471         if (parent) {
6472                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6473                                           &parent_aspmc);
6474                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6475         }
6476
6477         /* Nothing to do if the ASPM states to be disabled already are */
6478         if (!(pdev_aspmc & aspm_dis_mask) &&
6479             (!parent || !(parent_aspmc & aspm_dis_mask)))
6480                 return;
6481
6482         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6483                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6484                  "L0s" : "",
6485                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6486                  "L1" : "");
6487
6488 #ifdef CONFIG_PCIEASPM
6489         if (locked)
6490                 pci_disable_link_state_locked(pdev, state);
6491         else
6492                 pci_disable_link_state(pdev, state);
6493
6494         /* Double-check ASPM control.  If not disabled by the above, the
6495          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6496          * not enabled); override by writing PCI config space directly.
6497          */
6498         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6499         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6500
6501         if (!(aspm_dis_mask & pdev_aspmc))
6502                 return;
6503 #endif
6504
6505         /* Both device and parent should have the same ASPM setting.
6506          * Disable ASPM in downstream component first and then upstream.
6507          */
6508         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6509
6510         if (parent)
6511                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6512                                            aspm_dis_mask);
6513 }
6514
6515 /**
6516  * e1000e_disable_aspm - Disable ASPM states.
6517  * @pdev: pointer to PCI device struct
6518  * @state: bit-mask of ASPM states to disable
6519  *
6520  * This function acquires the pci_bus_sem!
6521  * Some devices *must* have certain ASPM states disabled per hardware errata.
6522  **/
6523 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6524 {
6525         __e1000e_disable_aspm(pdev, state, 0);
6526 }
6527
6528 /**
6529  * e1000e_disable_aspm_locked   Disable ASPM states.
6530  * @pdev: pointer to PCI device struct
6531  * @state: bit-mask of ASPM states to disable
6532  *
6533  * This function must be called with pci_bus_sem acquired!
6534  * Some devices *must* have certain ASPM states disabled per hardware errata.
6535  **/
6536 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6537 {
6538         __e1000e_disable_aspm(pdev, state, 1);
6539 }
6540
6541 #ifdef CONFIG_PM
6542 static int __e1000_resume(struct pci_dev *pdev)
6543 {
6544         struct net_device *netdev = pci_get_drvdata(pdev);
6545         struct e1000_adapter *adapter = netdev_priv(netdev);
6546         struct e1000_hw *hw = &adapter->hw;
6547         u16 aspm_disable_flag = 0;
6548
6549         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6550                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6551         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6552                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6553         if (aspm_disable_flag)
6554                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6555
6556         pci_set_master(pdev);
6557
6558         if (hw->mac.type >= e1000_pch2lan)
6559                 e1000_resume_workarounds_pchlan(&adapter->hw);
6560
6561         e1000e_power_up_phy(adapter);
6562
6563         /* report the system wakeup cause from S3/S4 */
6564         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6565                 u16 phy_data;
6566
6567                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6568                 if (phy_data) {
6569                         e_info("PHY Wakeup cause - %s\n",
6570                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6571                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6572                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6573                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6574                                phy_data & E1000_WUS_LNKC ?
6575                                "Link Status Change" : "other");
6576                 }
6577                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6578         } else {
6579                 u32 wus = er32(WUS);
6580
6581                 if (wus) {
6582                         e_info("MAC Wakeup cause - %s\n",
6583                                wus & E1000_WUS_EX ? "Unicast Packet" :
6584                                wus & E1000_WUS_MC ? "Multicast Packet" :
6585                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6586                                wus & E1000_WUS_MAG ? "Magic Packet" :
6587                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6588                                "other");
6589                 }
6590                 ew32(WUS, ~0);
6591         }
6592
6593         e1000e_reset(adapter);
6594
6595         e1000_init_manageability_pt(adapter);
6596
6597         /* If the controller has AMT, do not set DRV_LOAD until the interface
6598          * is up.  For all other cases, let the f/w know that the h/w is now
6599          * under the control of the driver.
6600          */
6601         if (!(adapter->flags & FLAG_HAS_AMT))
6602                 e1000e_get_hw_control(adapter);
6603
6604         return 0;
6605 }
6606
6607 #ifdef CONFIG_PM_SLEEP
6608 static int e1000e_pm_thaw(struct device *dev)
6609 {
6610         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6611         struct e1000_adapter *adapter = netdev_priv(netdev);
6612
6613         e1000e_set_interrupt_capability(adapter);
6614         if (netif_running(netdev)) {
6615                 u32 err = e1000_request_irq(adapter);
6616
6617                 if (err)
6618                         return err;
6619
6620                 e1000e_up(adapter);
6621         }
6622
6623         netif_device_attach(netdev);
6624
6625         return 0;
6626 }
6627
6628 static int e1000e_pm_suspend(struct device *dev)
6629 {
6630         struct pci_dev *pdev = to_pci_dev(dev);
6631         int rc;
6632
6633         e1000e_flush_lpic(pdev);
6634
6635         e1000e_pm_freeze(dev);
6636
6637         rc = __e1000_shutdown(pdev, false);
6638         if (rc)
6639                 e1000e_pm_thaw(dev);
6640
6641         return rc;
6642 }
6643
6644 static int e1000e_pm_resume(struct device *dev)
6645 {
6646         struct pci_dev *pdev = to_pci_dev(dev);
6647         int rc;
6648
6649         rc = __e1000_resume(pdev);
6650         if (rc)
6651                 return rc;
6652
6653         return e1000e_pm_thaw(dev);
6654 }
6655 #endif /* CONFIG_PM_SLEEP */
6656
6657 static int e1000e_pm_runtime_idle(struct device *dev)
6658 {
6659         struct pci_dev *pdev = to_pci_dev(dev);
6660         struct net_device *netdev = pci_get_drvdata(pdev);
6661         struct e1000_adapter *adapter = netdev_priv(netdev);
6662         u16 eee_lp;
6663
6664         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6665
6666         if (!e1000e_has_link(adapter)) {
6667                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6668                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6669         }
6670
6671         return -EBUSY;
6672 }
6673
6674 static int e1000e_pm_runtime_resume(struct device *dev)
6675 {
6676         struct pci_dev *pdev = to_pci_dev(dev);
6677         struct net_device *netdev = pci_get_drvdata(pdev);
6678         struct e1000_adapter *adapter = netdev_priv(netdev);
6679         int rc;
6680
6681         rc = __e1000_resume(pdev);
6682         if (rc)
6683                 return rc;
6684
6685         if (netdev->flags & IFF_UP)
6686                 e1000e_up(adapter);
6687
6688         return rc;
6689 }
6690
6691 static int e1000e_pm_runtime_suspend(struct device *dev)
6692 {
6693         struct pci_dev *pdev = to_pci_dev(dev);
6694         struct net_device *netdev = pci_get_drvdata(pdev);
6695         struct e1000_adapter *adapter = netdev_priv(netdev);
6696
6697         if (netdev->flags & IFF_UP) {
6698                 int count = E1000_CHECK_RESET_COUNT;
6699
6700                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6701                         usleep_range(10000, 20000);
6702
6703                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6704
6705                 /* Down the device without resetting the hardware */
6706                 e1000e_down(adapter, false);
6707         }
6708
6709         if (__e1000_shutdown(pdev, true)) {
6710                 e1000e_pm_runtime_resume(dev);
6711                 return -EBUSY;
6712         }
6713
6714         return 0;
6715 }
6716 #endif /* CONFIG_PM */
6717
6718 static void e1000_shutdown(struct pci_dev *pdev)
6719 {
6720         e1000e_flush_lpic(pdev);
6721
6722         e1000e_pm_freeze(&pdev->dev);
6723
6724         __e1000_shutdown(pdev, false);
6725 }
6726
6727 #ifdef CONFIG_NET_POLL_CONTROLLER
6728
6729 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6730 {
6731         struct net_device *netdev = data;
6732         struct e1000_adapter *adapter = netdev_priv(netdev);
6733
6734         if (adapter->msix_entries) {
6735                 int vector, msix_irq;
6736
6737                 vector = 0;
6738                 msix_irq = adapter->msix_entries[vector].vector;
6739                 if (disable_hardirq(msix_irq))
6740                         e1000_intr_msix_rx(msix_irq, netdev);
6741                 enable_irq(msix_irq);
6742
6743                 vector++;
6744                 msix_irq = adapter->msix_entries[vector].vector;
6745                 if (disable_hardirq(msix_irq))
6746                         e1000_intr_msix_tx(msix_irq, netdev);
6747                 enable_irq(msix_irq);
6748
6749                 vector++;
6750                 msix_irq = adapter->msix_entries[vector].vector;
6751                 if (disable_hardirq(msix_irq))
6752                         e1000_msix_other(msix_irq, netdev);
6753                 enable_irq(msix_irq);
6754         }
6755
6756         return IRQ_HANDLED;
6757 }
6758
6759 /**
6760  * e1000_netpoll
6761  * @netdev: network interface device structure
6762  *
6763  * Polling 'interrupt' - used by things like netconsole to send skbs
6764  * without having to re-enable interrupts. It's not called while
6765  * the interrupt routine is executing.
6766  */
6767 static void e1000_netpoll(struct net_device *netdev)
6768 {
6769         struct e1000_adapter *adapter = netdev_priv(netdev);
6770
6771         switch (adapter->int_mode) {
6772         case E1000E_INT_MODE_MSIX:
6773                 e1000_intr_msix(adapter->pdev->irq, netdev);
6774                 break;
6775         case E1000E_INT_MODE_MSI:
6776                 if (disable_hardirq(adapter->pdev->irq))
6777                         e1000_intr_msi(adapter->pdev->irq, netdev);
6778                 enable_irq(adapter->pdev->irq);
6779                 break;
6780         default:                /* E1000E_INT_MODE_LEGACY */
6781                 if (disable_hardirq(adapter->pdev->irq))
6782                         e1000_intr(adapter->pdev->irq, netdev);
6783                 enable_irq(adapter->pdev->irq);
6784                 break;
6785         }
6786 }
6787 #endif
6788
6789 /**
6790  * e1000_io_error_detected - called when PCI error is detected
6791  * @pdev: Pointer to PCI device
6792  * @state: The current pci connection state
6793  *
6794  * This function is called after a PCI bus error affecting
6795  * this device has been detected.
6796  */
6797 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6798                                                 pci_channel_state_t state)
6799 {
6800         struct net_device *netdev = pci_get_drvdata(pdev);
6801         struct e1000_adapter *adapter = netdev_priv(netdev);
6802
6803         netif_device_detach(netdev);
6804
6805         if (state == pci_channel_io_perm_failure)
6806                 return PCI_ERS_RESULT_DISCONNECT;
6807
6808         if (netif_running(netdev))
6809                 e1000e_down(adapter, true);
6810         pci_disable_device(pdev);
6811
6812         /* Request a slot slot reset. */
6813         return PCI_ERS_RESULT_NEED_RESET;
6814 }
6815
6816 /**
6817  * e1000_io_slot_reset - called after the pci bus has been reset.
6818  * @pdev: Pointer to PCI device
6819  *
6820  * Restart the card from scratch, as if from a cold-boot. Implementation
6821  * resembles the first-half of the e1000e_pm_resume routine.
6822  */
6823 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6824 {
6825         struct net_device *netdev = pci_get_drvdata(pdev);
6826         struct e1000_adapter *adapter = netdev_priv(netdev);
6827         struct e1000_hw *hw = &adapter->hw;
6828         u16 aspm_disable_flag = 0;
6829         int err;
6830         pci_ers_result_t result;
6831
6832         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6833                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6834         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6835                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6836         if (aspm_disable_flag)
6837                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6838
6839         err = pci_enable_device_mem(pdev);
6840         if (err) {
6841                 dev_err(&pdev->dev,
6842                         "Cannot re-enable PCI device after reset.\n");
6843                 result = PCI_ERS_RESULT_DISCONNECT;
6844         } else {
6845                 pdev->state_saved = true;
6846                 pci_restore_state(pdev);
6847                 pci_set_master(pdev);
6848
6849                 pci_enable_wake(pdev, PCI_D3hot, 0);
6850                 pci_enable_wake(pdev, PCI_D3cold, 0);
6851
6852                 e1000e_reset(adapter);
6853                 ew32(WUS, ~0);
6854                 result = PCI_ERS_RESULT_RECOVERED;
6855         }
6856
6857         pci_cleanup_aer_uncorrect_error_status(pdev);
6858
6859         return result;
6860 }
6861
6862 /**
6863  * e1000_io_resume - called when traffic can start flowing again.
6864  * @pdev: Pointer to PCI device
6865  *
6866  * This callback is called when the error recovery driver tells us that
6867  * its OK to resume normal operation. Implementation resembles the
6868  * second-half of the e1000e_pm_resume routine.
6869  */
6870 static void e1000_io_resume(struct pci_dev *pdev)
6871 {
6872         struct net_device *netdev = pci_get_drvdata(pdev);
6873         struct e1000_adapter *adapter = netdev_priv(netdev);
6874
6875         e1000_init_manageability_pt(adapter);
6876
6877         if (netif_running(netdev))
6878                 e1000e_up(adapter);
6879
6880         netif_device_attach(netdev);
6881
6882         /* If the controller has AMT, do not set DRV_LOAD until the interface
6883          * is up.  For all other cases, let the f/w know that the h/w is now
6884          * under the control of the driver.
6885          */
6886         if (!(adapter->flags & FLAG_HAS_AMT))
6887                 e1000e_get_hw_control(adapter);
6888 }
6889
6890 static void e1000_print_device_info(struct e1000_adapter *adapter)
6891 {
6892         struct e1000_hw *hw = &adapter->hw;
6893         struct net_device *netdev = adapter->netdev;
6894         u32 ret_val;
6895         u8 pba_str[E1000_PBANUM_LENGTH];
6896
6897         /* print bus type/speed/width info */
6898         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6899                /* bus width */
6900                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6901                 "Width x1"),
6902                /* MAC address */
6903                netdev->dev_addr);
6904         e_info("Intel(R) PRO/%s Network Connection\n",
6905                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6906         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6907                                                 E1000_PBANUM_LENGTH);
6908         if (ret_val)
6909                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6910         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6911                hw->mac.type, hw->phy.type, pba_str);
6912 }
6913
6914 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6915 {
6916         struct e1000_hw *hw = &adapter->hw;
6917         int ret_val;
6918         u16 buf = 0;
6919
6920         if (hw->mac.type != e1000_82573)
6921                 return;
6922
6923         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6924         le16_to_cpus(&buf);
6925         if (!ret_val && (!(buf & BIT(0)))) {
6926                 /* Deep Smart Power Down (DSPD) */
6927                 dev_warn(&adapter->pdev->dev,
6928                          "Warning: detected DSPD enabled in EEPROM\n");
6929         }
6930 }
6931
6932 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6933                                             netdev_features_t features)
6934 {
6935         struct e1000_adapter *adapter = netdev_priv(netdev);
6936         struct e1000_hw *hw = &adapter->hw;
6937
6938         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6939         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6940                 features &= ~NETIF_F_RXFCS;
6941
6942         /* Since there is no support for separate Rx/Tx vlan accel
6943          * enable/disable make sure Tx flag is always in same state as Rx.
6944          */
6945         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6946                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6947         else
6948                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6949
6950         return features;
6951 }
6952
6953 static int e1000_set_features(struct net_device *netdev,
6954                               netdev_features_t features)
6955 {
6956         struct e1000_adapter *adapter = netdev_priv(netdev);
6957         netdev_features_t changed = features ^ netdev->features;
6958
6959         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6960                 adapter->flags |= FLAG_TSO_FORCE;
6961
6962         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6963                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6964                          NETIF_F_RXALL)))
6965                 return 0;
6966
6967         if (changed & NETIF_F_RXFCS) {
6968                 if (features & NETIF_F_RXFCS) {
6969                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6970                 } else {
6971                         /* We need to take it back to defaults, which might mean
6972                          * stripping is still disabled at the adapter level.
6973                          */
6974                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6975                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6976                         else
6977                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6978                 }
6979         }
6980
6981         netdev->features = features;
6982
6983         if (netif_running(netdev))
6984                 e1000e_reinit_locked(adapter);
6985         else
6986                 e1000e_reset(adapter);
6987
6988         return 0;
6989 }
6990
6991 static const struct net_device_ops e1000e_netdev_ops = {
6992         .ndo_open               = e1000e_open,
6993         .ndo_stop               = e1000e_close,
6994         .ndo_start_xmit         = e1000_xmit_frame,
6995         .ndo_get_stats64        = e1000e_get_stats64,
6996         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6997         .ndo_set_mac_address    = e1000_set_mac,
6998         .ndo_change_mtu         = e1000_change_mtu,
6999         .ndo_do_ioctl           = e1000_ioctl,
7000         .ndo_tx_timeout         = e1000_tx_timeout,
7001         .ndo_validate_addr      = eth_validate_addr,
7002
7003         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7004         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7005 #ifdef CONFIG_NET_POLL_CONTROLLER
7006         .ndo_poll_controller    = e1000_netpoll,
7007 #endif
7008         .ndo_set_features = e1000_set_features,
7009         .ndo_fix_features = e1000_fix_features,
7010         .ndo_features_check     = passthru_features_check,
7011 };
7012
7013 /**
7014  * e1000_probe - Device Initialization Routine
7015  * @pdev: PCI device information struct
7016  * @ent: entry in e1000_pci_tbl
7017  *
7018  * Returns 0 on success, negative on failure
7019  *
7020  * e1000_probe initializes an adapter identified by a pci_dev structure.
7021  * The OS initialization, configuring of the adapter private structure,
7022  * and a hardware reset occur.
7023  **/
7024 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7025 {
7026         struct net_device *netdev;
7027         struct e1000_adapter *adapter;
7028         struct e1000_hw *hw;
7029         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7030         resource_size_t mmio_start, mmio_len;
7031         resource_size_t flash_start, flash_len;
7032         static int cards_found;
7033         u16 aspm_disable_flag = 0;
7034         int bars, i, err, pci_using_dac;
7035         u16 eeprom_data = 0;
7036         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7037         s32 ret_val = 0;
7038
7039         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7040                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7041         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7042                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7043         if (aspm_disable_flag)
7044                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7045
7046         err = pci_enable_device_mem(pdev);
7047         if (err)
7048                 return err;
7049
7050         pci_using_dac = 0;
7051         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7052         if (!err) {
7053                 pci_using_dac = 1;
7054         } else {
7055                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7056                 if (err) {
7057                         dev_err(&pdev->dev,
7058                                 "No usable DMA configuration, aborting\n");
7059                         goto err_dma;
7060                 }
7061         }
7062
7063         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7064         err = pci_request_selected_regions_exclusive(pdev, bars,
7065                                                      e1000e_driver_name);
7066         if (err)
7067                 goto err_pci_reg;
7068
7069         /* AER (Advanced Error Reporting) hooks */
7070         pci_enable_pcie_error_reporting(pdev);
7071
7072         pci_set_master(pdev);
7073         /* PCI config space info */
7074         err = pci_save_state(pdev);
7075         if (err)
7076                 goto err_alloc_etherdev;
7077
7078         err = -ENOMEM;
7079         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7080         if (!netdev)
7081                 goto err_alloc_etherdev;
7082
7083         SET_NETDEV_DEV(netdev, &pdev->dev);
7084
7085         netdev->irq = pdev->irq;
7086
7087         pci_set_drvdata(pdev, netdev);
7088         adapter = netdev_priv(netdev);
7089         hw = &adapter->hw;
7090         adapter->netdev = netdev;
7091         adapter->pdev = pdev;
7092         adapter->ei = ei;
7093         adapter->pba = ei->pba;
7094         adapter->flags = ei->flags;
7095         adapter->flags2 = ei->flags2;
7096         adapter->hw.adapter = adapter;
7097         adapter->hw.mac.type = ei->mac;
7098         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7099         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7100
7101         mmio_start = pci_resource_start(pdev, 0);
7102         mmio_len = pci_resource_len(pdev, 0);
7103
7104         err = -EIO;
7105         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7106         if (!adapter->hw.hw_addr)
7107                 goto err_ioremap;
7108
7109         if ((adapter->flags & FLAG_HAS_FLASH) &&
7110             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7111             (hw->mac.type < e1000_pch_spt)) {
7112                 flash_start = pci_resource_start(pdev, 1);
7113                 flash_len = pci_resource_len(pdev, 1);
7114                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7115                 if (!adapter->hw.flash_address)
7116                         goto err_flashmap;
7117         }
7118
7119         /* Set default EEE advertisement */
7120         if (adapter->flags2 & FLAG2_HAS_EEE)
7121                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7122
7123         /* construct the net_device struct */
7124         netdev->netdev_ops = &e1000e_netdev_ops;
7125         e1000e_set_ethtool_ops(netdev);
7126         netdev->watchdog_timeo = 5 * HZ;
7127         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7128         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7129
7130         netdev->mem_start = mmio_start;
7131         netdev->mem_end = mmio_start + mmio_len;
7132
7133         adapter->bd_number = cards_found++;
7134
7135         e1000e_check_options(adapter);
7136
7137         /* setup adapter struct */
7138         err = e1000_sw_init(adapter);
7139         if (err)
7140                 goto err_sw_init;
7141
7142         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7143         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7144         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7145
7146         err = ei->get_variants(adapter);
7147         if (err)
7148                 goto err_hw_init;
7149
7150         if ((adapter->flags & FLAG_IS_ICH) &&
7151             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7152             (hw->mac.type < e1000_pch_spt))
7153                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7154
7155         hw->mac.ops.get_bus_info(&adapter->hw);
7156
7157         adapter->hw.phy.autoneg_wait_to_complete = 0;
7158
7159         /* Copper options */
7160         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7161                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7162                 adapter->hw.phy.disable_polarity_correction = 0;
7163                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7164         }
7165
7166         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7167                 dev_info(&pdev->dev,
7168                          "PHY reset is blocked due to SOL/IDER session.\n");
7169
7170         /* Set initial default active device features */
7171         netdev->features = (NETIF_F_SG |
7172                             NETIF_F_HW_VLAN_CTAG_RX |
7173                             NETIF_F_HW_VLAN_CTAG_TX |
7174                             NETIF_F_TSO |
7175                             NETIF_F_TSO6 |
7176                             NETIF_F_RXHASH |
7177                             NETIF_F_RXCSUM |
7178                             NETIF_F_HW_CSUM);
7179
7180         /* Set user-changeable features (subset of all device features) */
7181         netdev->hw_features = netdev->features;
7182         netdev->hw_features |= NETIF_F_RXFCS;
7183         netdev->priv_flags |= IFF_SUPP_NOFCS;
7184         netdev->hw_features |= NETIF_F_RXALL;
7185
7186         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7187                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7188
7189         netdev->vlan_features |= (NETIF_F_SG |
7190                                   NETIF_F_TSO |
7191                                   NETIF_F_TSO6 |
7192                                   NETIF_F_HW_CSUM);
7193
7194         netdev->priv_flags |= IFF_UNICAST_FLT;
7195
7196         if (pci_using_dac) {
7197                 netdev->features |= NETIF_F_HIGHDMA;
7198                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7199         }
7200
7201         /* MTU range: 68 - max_hw_frame_size */
7202         netdev->min_mtu = ETH_MIN_MTU;
7203         netdev->max_mtu = adapter->max_hw_frame_size -
7204                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7205
7206         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7207                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7208
7209         /* before reading the NVM, reset the controller to
7210          * put the device in a known good starting state
7211          */
7212         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7213
7214         /* systems with ASPM and others may see the checksum fail on the first
7215          * attempt. Let's give it a few tries
7216          */
7217         for (i = 0;; i++) {
7218                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7219                         break;
7220                 if (i == 2) {
7221                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7222                         err = -EIO;
7223                         goto err_eeprom;
7224                 }
7225         }
7226
7227         e1000_eeprom_checks(adapter);
7228
7229         /* copy the MAC address */
7230         if (e1000e_read_mac_addr(&adapter->hw))
7231                 dev_err(&pdev->dev,
7232                         "NVM Read Error while reading MAC address\n");
7233
7234         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7235
7236         if (!is_valid_ether_addr(netdev->dev_addr)) {
7237                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7238                         netdev->dev_addr);
7239                 err = -EIO;
7240                 goto err_eeprom;
7241         }
7242
7243         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7244         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7245
7246         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7247         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7248         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7249         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7250         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7251
7252         /* Initialize link parameters. User can change them with ethtool */
7253         adapter->hw.mac.autoneg = 1;
7254         adapter->fc_autoneg = true;
7255         adapter->hw.fc.requested_mode = e1000_fc_default;
7256         adapter->hw.fc.current_mode = e1000_fc_default;
7257         adapter->hw.phy.autoneg_advertised = 0x2f;
7258
7259         /* Initial Wake on LAN setting - If APM wake is enabled in
7260          * the EEPROM, enable the ACPI Magic Packet filter
7261          */
7262         if (adapter->flags & FLAG_APME_IN_WUC) {
7263                 /* APME bit in EEPROM is mapped to WUC.APME */
7264                 eeprom_data = er32(WUC);
7265                 eeprom_apme_mask = E1000_WUC_APME;
7266                 if ((hw->mac.type > e1000_ich10lan) &&
7267                     (eeprom_data & E1000_WUC_PHY_WAKE))
7268                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7269         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7270                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7271                     (adapter->hw.bus.func == 1))
7272                         ret_val = e1000_read_nvm(&adapter->hw,
7273                                               NVM_INIT_CONTROL3_PORT_B,
7274                                               1, &eeprom_data);
7275                 else
7276                         ret_val = e1000_read_nvm(&adapter->hw,
7277                                               NVM_INIT_CONTROL3_PORT_A,
7278                                               1, &eeprom_data);
7279         }
7280
7281         /* fetch WoL from EEPROM */
7282         if (ret_val)
7283                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7284         else if (eeprom_data & eeprom_apme_mask)
7285                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7286
7287         /* now that we have the eeprom settings, apply the special cases
7288          * where the eeprom may be wrong or the board simply won't support
7289          * wake on lan on a particular port
7290          */
7291         if (!(adapter->flags & FLAG_HAS_WOL))
7292                 adapter->eeprom_wol = 0;
7293
7294         /* initialize the wol settings based on the eeprom settings */
7295         adapter->wol = adapter->eeprom_wol;
7296
7297         /* make sure adapter isn't asleep if manageability is enabled */
7298         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7299             (hw->mac.ops.check_mng_mode(hw)))
7300                 device_wakeup_enable(&pdev->dev);
7301
7302         /* save off EEPROM version number */
7303         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7304
7305         if (ret_val) {
7306                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7307                 adapter->eeprom_vers = 0;
7308         }
7309
7310         /* init PTP hardware clock */
7311         e1000e_ptp_init(adapter);
7312
7313         /* reset the hardware with the new settings */
7314         e1000e_reset(adapter);
7315
7316         /* If the controller has AMT, do not set DRV_LOAD until the interface
7317          * is up.  For all other cases, let the f/w know that the h/w is now
7318          * under the control of the driver.
7319          */
7320         if (!(adapter->flags & FLAG_HAS_AMT))
7321                 e1000e_get_hw_control(adapter);
7322
7323         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7324         err = register_netdev(netdev);
7325         if (err)
7326                 goto err_register;
7327
7328         /* carrier off reporting is important to ethtool even BEFORE open */
7329         netif_carrier_off(netdev);
7330
7331         e1000_print_device_info(adapter);
7332
7333         if (pci_dev_run_wake(pdev))
7334                 pm_runtime_put_noidle(&pdev->dev);
7335
7336         return 0;
7337
7338 err_register:
7339         if (!(adapter->flags & FLAG_HAS_AMT))
7340                 e1000e_release_hw_control(adapter);
7341 err_eeprom:
7342         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7343                 e1000_phy_hw_reset(&adapter->hw);
7344 err_hw_init:
7345         kfree(adapter->tx_ring);
7346         kfree(adapter->rx_ring);
7347 err_sw_init:
7348         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7349                 iounmap(adapter->hw.flash_address);
7350         e1000e_reset_interrupt_capability(adapter);
7351 err_flashmap:
7352         iounmap(adapter->hw.hw_addr);
7353 err_ioremap:
7354         free_netdev(netdev);
7355 err_alloc_etherdev:
7356         pci_release_mem_regions(pdev);
7357 err_pci_reg:
7358 err_dma:
7359         pci_disable_device(pdev);
7360         return err;
7361 }
7362
7363 /**
7364  * e1000_remove - Device Removal Routine
7365  * @pdev: PCI device information struct
7366  *
7367  * e1000_remove is called by the PCI subsystem to alert the driver
7368  * that it should release a PCI device.  The could be caused by a
7369  * Hot-Plug event, or because the driver is going to be removed from
7370  * memory.
7371  **/
7372 static void e1000_remove(struct pci_dev *pdev)
7373 {
7374         struct net_device *netdev = pci_get_drvdata(pdev);
7375         struct e1000_adapter *adapter = netdev_priv(netdev);
7376         bool down = test_bit(__E1000_DOWN, &adapter->state);
7377
7378         e1000e_ptp_remove(adapter);
7379
7380         /* The timers may be rescheduled, so explicitly disable them
7381          * from being rescheduled.
7382          */
7383         if (!down)
7384                 set_bit(__E1000_DOWN, &adapter->state);
7385         del_timer_sync(&adapter->watchdog_timer);
7386         del_timer_sync(&adapter->phy_info_timer);
7387
7388         cancel_work_sync(&adapter->reset_task);
7389         cancel_work_sync(&adapter->watchdog_task);
7390         cancel_work_sync(&adapter->downshift_task);
7391         cancel_work_sync(&adapter->update_phy_task);
7392         cancel_work_sync(&adapter->print_hang_task);
7393
7394         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7395                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7396                 if (adapter->tx_hwtstamp_skb) {
7397                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7398                         adapter->tx_hwtstamp_skb = NULL;
7399                 }
7400         }
7401
7402         /* Don't lie to e1000_close() down the road. */
7403         if (!down)
7404                 clear_bit(__E1000_DOWN, &adapter->state);
7405         unregister_netdev(netdev);
7406
7407         if (pci_dev_run_wake(pdev))
7408                 pm_runtime_get_noresume(&pdev->dev);
7409
7410         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7411          * would have already happened in close and is redundant.
7412          */
7413         e1000e_release_hw_control(adapter);
7414
7415         e1000e_reset_interrupt_capability(adapter);
7416         kfree(adapter->tx_ring);
7417         kfree(adapter->rx_ring);
7418
7419         iounmap(adapter->hw.hw_addr);
7420         if ((adapter->hw.flash_address) &&
7421             (adapter->hw.mac.type < e1000_pch_spt))
7422                 iounmap(adapter->hw.flash_address);
7423         pci_release_mem_regions(pdev);
7424
7425         free_netdev(netdev);
7426
7427         /* AER disable */
7428         pci_disable_pcie_error_reporting(pdev);
7429
7430         pci_disable_device(pdev);
7431 }
7432
7433 /* PCI Error Recovery (ERS) */
7434 static const struct pci_error_handlers e1000_err_handler = {
7435         .error_detected = e1000_io_error_detected,
7436         .slot_reset = e1000_io_slot_reset,
7437         .resume = e1000_io_resume,
7438 };
7439
7440 static const struct pci_device_id e1000_pci_tbl[] = {
7441         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7442         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7443         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7444         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7445           board_82571 },
7446         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7447         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7448         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7449         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7450         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7451
7452         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7453         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7454         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7455         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7456
7457         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7460
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7464
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7466           board_80003es2lan },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7468           board_80003es2lan },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7470           board_80003es2lan },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7472           board_80003es2lan },
7473
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7481         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7482
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7492
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7496
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7500
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7505
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7508
7509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7534
7535         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7536 };
7537 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7538
7539 static const struct dev_pm_ops e1000_pm_ops = {
7540 #ifdef CONFIG_PM_SLEEP
7541         .suspend        = e1000e_pm_suspend,
7542         .resume         = e1000e_pm_resume,
7543         .freeze         = e1000e_pm_freeze,
7544         .thaw           = e1000e_pm_thaw,
7545         .poweroff       = e1000e_pm_suspend,
7546         .restore        = e1000e_pm_resume,
7547 #endif
7548         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7549                            e1000e_pm_runtime_idle)
7550 };
7551
7552 /* PCI Device API Driver */
7553 static struct pci_driver e1000_driver = {
7554         .name     = e1000e_driver_name,
7555         .id_table = e1000_pci_tbl,
7556         .probe    = e1000_probe,
7557         .remove   = e1000_remove,
7558         .driver   = {
7559                 .pm = &e1000_pm_ops,
7560         },
7561         .shutdown = e1000_shutdown,
7562         .err_handler = &e1000_err_handler
7563 };
7564
7565 /**
7566  * e1000_init_module - Driver Registration Routine
7567  *
7568  * e1000_init_module is the first routine called when the driver is
7569  * loaded. All it does is register with the PCI subsystem.
7570  **/
7571 static int __init e1000_init_module(void)
7572 {
7573         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7574                 e1000e_driver_version);
7575         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7576
7577         return pci_register_driver(&e1000_driver);
7578 }
7579 module_init(e1000_init_module);
7580
7581 /**
7582  * e1000_exit_module - Driver Exit Cleanup Routine
7583  *
7584  * e1000_exit_module is called just before the driver is removed
7585  * from memory.
7586  **/
7587 static void __exit e1000_exit_module(void)
7588 {
7589         pci_unregister_driver(&e1000_driver);
7590 }
7591 module_exit(e1000_exit_module);
7592
7593 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7594 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7595 MODULE_LICENSE("GPL v2");
7596 MODULE_VERSION(DRV_VERSION);
7597
7598 /* netdev.c */