Merge remote-tracking branches 'asoc/topic/cs47l24', 'asoc/topic/cx20442', 'asoc...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74         [board_pch_cnp]         = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78         u32 ofs;
79         char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83         /* General Registers */
84         {E1000_CTRL, "CTRL"},
85         {E1000_STATUS, "STATUS"},
86         {E1000_CTRL_EXT, "CTRL_EXT"},
87
88         /* Interrupt Registers */
89         {E1000_ICR, "ICR"},
90
91         /* Rx Registers */
92         {E1000_RCTL, "RCTL"},
93         {E1000_RDLEN(0), "RDLEN"},
94         {E1000_RDH(0), "RDH"},
95         {E1000_RDT(0), "RDT"},
96         {E1000_RDTR, "RDTR"},
97         {E1000_RXDCTL(0), "RXDCTL"},
98         {E1000_ERT, "ERT"},
99         {E1000_RDBAL(0), "RDBAL"},
100         {E1000_RDBAH(0), "RDBAH"},
101         {E1000_RDFH, "RDFH"},
102         {E1000_RDFT, "RDFT"},
103         {E1000_RDFHS, "RDFHS"},
104         {E1000_RDFTS, "RDFTS"},
105         {E1000_RDFPC, "RDFPC"},
106
107         /* Tx Registers */
108         {E1000_TCTL, "TCTL"},
109         {E1000_TDBAL(0), "TDBAL"},
110         {E1000_TDBAH(0), "TDBAH"},
111         {E1000_TDLEN(0), "TDLEN"},
112         {E1000_TDH(0), "TDH"},
113         {E1000_TDT(0), "TDT"},
114         {E1000_TIDV, "TIDV"},
115         {E1000_TXDCTL(0), "TXDCTL"},
116         {E1000_TADV, "TADV"},
117         {E1000_TARC(0), "TARC"},
118         {E1000_TDFH, "TDFH"},
119         {E1000_TDFT, "TDFT"},
120         {E1000_TDFHS, "TDFHS"},
121         {E1000_TDFTS, "TDFTS"},
122         {E1000_TDFPC, "TDFPC"},
123
124         /* List Terminator */
125         {0, NULL}
126 };
127
128 /**
129  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130  * @hw: pointer to the HW structure
131  *
132  * When updating the MAC CSR registers, the Manageability Engine (ME) could
133  * be accessing the registers at the same time.  Normally, this is handled in
134  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135  * accesses later than it should which could result in the register to have
136  * an incorrect value.  Workaround this by checking the FWSM register which
137  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138  * and try again a number of times.
139  **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145                 udelay(50);
146
147         return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153                 __ew32_prepare(hw);
154
155         writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159  * e1000_regdump - register printout routine
160  * @hw: pointer to the HW structure
161  * @reginfo: pointer to the register info table
162  **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165         int n = 0;
166         char rname[16];
167         u32 regs[8];
168
169         switch (reginfo->ofs) {
170         case E1000_RXDCTL(0):
171                 for (n = 0; n < 2; n++)
172                         regs[n] = __er32(hw, E1000_RXDCTL(n));
173                 break;
174         case E1000_TXDCTL(0):
175                 for (n = 0; n < 2; n++)
176                         regs[n] = __er32(hw, E1000_TXDCTL(n));
177                 break;
178         case E1000_TARC(0):
179                 for (n = 0; n < 2; n++)
180                         regs[n] = __er32(hw, E1000_TARC(n));
181                 break;
182         default:
183                 pr_info("%-15s %08x\n",
184                         reginfo->name, __er32(hw, reginfo->ofs));
185                 return;
186         }
187
188         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193                                  struct e1000_buffer *bi)
194 {
195         int i;
196         struct e1000_ps_page *ps_page;
197
198         for (i = 0; i < adapter->rx_ps_pages; i++) {
199                 ps_page = &bi->ps_pages[i];
200
201                 if (ps_page->page) {
202                         pr_info("packet dump for ps_page %d:\n", i);
203                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204                                        16, 1, page_address(ps_page->page),
205                                        PAGE_SIZE, true);
206                 }
207         }
208 }
209
210 /**
211  * e1000e_dump - Print registers, Tx-ring and Rx-ring
212  * @adapter: board private structure
213  **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216         struct net_device *netdev = adapter->netdev;
217         struct e1000_hw *hw = &adapter->hw;
218         struct e1000_reg_info *reginfo;
219         struct e1000_ring *tx_ring = adapter->tx_ring;
220         struct e1000_tx_desc *tx_desc;
221         struct my_u0 {
222                 __le64 a;
223                 __le64 b;
224         } *u0;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ring *rx_ring = adapter->rx_ring;
227         union e1000_rx_desc_packet_split *rx_desc_ps;
228         union e1000_rx_desc_extended *rx_desc;
229         struct my_u1 {
230                 __le64 a;
231                 __le64 b;
232                 __le64 c;
233                 __le64 d;
234         } *u1;
235         u32 staterr;
236         int i = 0;
237
238         if (!netif_msg_hw(adapter))
239                 return;
240
241         /* Print netdevice Info */
242         if (netdev) {
243                 dev_info(&adapter->pdev->dev, "Net device Info\n");
244                 pr_info("Device Name     state            trans_start\n");
245                 pr_info("%-15s %016lX %016lX\n", netdev->name,
246                         netdev->state, dev_trans_start(netdev));
247         }
248
249         /* Print Registers */
250         dev_info(&adapter->pdev->dev, "Register Dump\n");
251         pr_info(" Register Name   Value\n");
252         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253              reginfo->name; reginfo++) {
254                 e1000_regdump(hw, reginfo);
255         }
256
257         /* Print Tx Ring Summary */
258         if (!netdev || !netif_running(netdev))
259                 return;
260
261         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
263         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266                 (unsigned long long)buffer_info->dma,
267                 buffer_info->length,
268                 buffer_info->next_to_watch,
269                 (unsigned long long)buffer_info->time_stamp);
270
271         /* Print Tx Ring */
272         if (!netif_msg_tx_done(adapter))
273                 goto rx_ring_summary;
274
275         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278          *
279          * Legacy Transmit Descriptor
280          *   +--------------------------------------------------------------+
281          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
282          *   +--------------------------------------------------------------+
283          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
284          *   +--------------------------------------------------------------+
285          *   63       48 47        36 35    32 31     24 23    16 15        0
286          *
287          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288          *   63      48 47    40 39       32 31             16 15    8 7      0
289          *   +----------------------------------------------------------------+
290          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
291          *   +----------------------------------------------------------------+
292          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
293          *   +----------------------------------------------------------------+
294          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
295          *
296          * Extended Data Descriptor (DTYP=0x1)
297          *   +----------------------------------------------------------------+
298          * 0 |                     Buffer Address [63:0]                      |
299          *   +----------------------------------------------------------------+
300          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
301          *   +----------------------------------------------------------------+
302          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
303          */
304         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
305         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
306         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
307         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308                 const char *next_desc;
309                 tx_desc = E1000_TX_DESC(*tx_ring, i);
310                 buffer_info = &tx_ring->buffer_info[i];
311                 u0 = (struct my_u0 *)tx_desc;
312                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313                         next_desc = " NTC/U";
314                 else if (i == tx_ring->next_to_use)
315                         next_desc = " NTU";
316                 else if (i == tx_ring->next_to_clean)
317                         next_desc = " NTC";
318                 else
319                         next_desc = "";
320                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
321                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323                         i,
324                         (unsigned long long)le64_to_cpu(u0->a),
325                         (unsigned long long)le64_to_cpu(u0->b),
326                         (unsigned long long)buffer_info->dma,
327                         buffer_info->length, buffer_info->next_to_watch,
328                         (unsigned long long)buffer_info->time_stamp,
329                         buffer_info->skb, next_desc);
330
331                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333                                        16, 1, buffer_info->skb->data,
334                                        buffer_info->skb->len, true);
335         }
336
337         /* Print Rx Ring Summary */
338 rx_ring_summary:
339         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340         pr_info("Queue [NTU] [NTC]\n");
341         pr_info(" %5d %5X %5X\n",
342                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344         /* Print Rx Ring */
345         if (!netif_msg_rx_status(adapter))
346                 return;
347
348         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349         switch (adapter->rx_ps_pages) {
350         case 1:
351         case 2:
352         case 3:
353                 /* [Extended] Packet Split Receive Descriptor Format
354                  *
355                  *    +-----------------------------------------------------+
356                  *  0 |                Buffer Address 0 [63:0]              |
357                  *    +-----------------------------------------------------+
358                  *  8 |                Buffer Address 1 [63:0]              |
359                  *    +-----------------------------------------------------+
360                  * 16 |                Buffer Address 2 [63:0]              |
361                  *    +-----------------------------------------------------+
362                  * 24 |                Buffer Address 3 [63:0]              |
363                  *    +-----------------------------------------------------+
364                  */
365                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
366                 /* [Extended] Receive Descriptor (Write-Back) Format
367                  *
368                  *   63       48 47    32 31     13 12    8 7    4 3        0
369                  *   +------------------------------------------------------+
370                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
371                  *   | Checksum | Ident  |         | Queue |      |  Type   |
372                  *   +------------------------------------------------------+
373                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374                  *   +------------------------------------------------------+
375                  *   63       48 47    32 31            20 19               0
376                  */
377                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378                 for (i = 0; i < rx_ring->count; i++) {
379                         const char *next_desc;
380                         buffer_info = &rx_ring->buffer_info[i];
381                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382                         u1 = (struct my_u1 *)rx_desc_ps;
383                         staterr =
384                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386                         if (i == rx_ring->next_to_use)
387                                 next_desc = " NTU";
388                         else if (i == rx_ring->next_to_clean)
389                                 next_desc = " NTC";
390                         else
391                                 next_desc = "";
392
393                         if (staterr & E1000_RXD_STAT_DD) {
394                                 /* Descriptor Done */
395                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396                                         "RWB", i,
397                                         (unsigned long long)le64_to_cpu(u1->a),
398                                         (unsigned long long)le64_to_cpu(u1->b),
399                                         (unsigned long long)le64_to_cpu(u1->c),
400                                         (unsigned long long)le64_to_cpu(u1->d),
401                                         buffer_info->skb, next_desc);
402                         } else {
403                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
404                                         "R  ", i,
405                                         (unsigned long long)le64_to_cpu(u1->a),
406                                         (unsigned long long)le64_to_cpu(u1->b),
407                                         (unsigned long long)le64_to_cpu(u1->c),
408                                         (unsigned long long)le64_to_cpu(u1->d),
409                                         (unsigned long long)buffer_info->dma,
410                                         buffer_info->skb, next_desc);
411
412                                 if (netif_msg_pktdata(adapter))
413                                         e1000e_dump_ps_pages(adapter,
414                                                              buffer_info);
415                         }
416                 }
417                 break;
418         default:
419         case 0:
420                 /* Extended Receive Descriptor (Read) Format
421                  *
422                  *   +-----------------------------------------------------+
423                  * 0 |                Buffer Address [63:0]                |
424                  *   +-----------------------------------------------------+
425                  * 8 |                      Reserved                       |
426                  *   +-----------------------------------------------------+
427                  */
428                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
429                 /* Extended Receive Descriptor (Write-Back) Format
430                  *
431                  *   63       48 47    32 31    24 23            4 3        0
432                  *   +------------------------------------------------------+
433                  *   |     RSS Hash      |        |               |         |
434                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
435                  *   | Packet   | IP     |        |               |  Type   |
436                  *   | Checksum | Ident  |        |               |         |
437                  *   +------------------------------------------------------+
438                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439                  *   +------------------------------------------------------+
440                  *   63       48 47    32 31            20 19               0
441                  */
442                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444                 for (i = 0; i < rx_ring->count; i++) {
445                         const char *next_desc;
446
447                         buffer_info = &rx_ring->buffer_info[i];
448                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449                         u1 = (struct my_u1 *)rx_desc;
450                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452                         if (i == rx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == rx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         if (staterr & E1000_RXD_STAT_DD) {
460                                 /* Descriptor Done */
461                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
462                                         "RWB", i,
463                                         (unsigned long long)le64_to_cpu(u1->a),
464                                         (unsigned long long)le64_to_cpu(u1->b),
465                                         buffer_info->skb, next_desc);
466                         } else {
467                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
468                                         "R  ", i,
469                                         (unsigned long long)le64_to_cpu(u1->a),
470                                         (unsigned long long)le64_to_cpu(u1->b),
471                                         (unsigned long long)buffer_info->dma,
472                                         buffer_info->skb, next_desc);
473
474                                 if (netif_msg_pktdata(adapter) &&
475                                     buffer_info->skb)
476                                         print_hex_dump(KERN_INFO, "",
477                                                        DUMP_PREFIX_ADDRESS, 16,
478                                                        1,
479                                                        buffer_info->skb->data,
480                                                        adapter->rx_buffer_len,
481                                                        true);
482                         }
483                 }
484         }
485 }
486
487 /**
488  * e1000_desc_unused - calculate if we have unused descriptors
489  **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492         if (ring->next_to_clean > ring->next_to_use)
493                 return ring->next_to_clean - ring->next_to_use - 1;
494
495         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500  * @adapter: board private structure
501  * @hwtstamps: time stamp structure to update
502  * @systim: unsigned 64bit system time value.
503  *
504  * Convert the system time value stored in the RX/TXSTMP registers into a
505  * hwtstamp which can be used by the upper level time stamping functions.
506  *
507  * The 'systim_lock' spinlock is used to protect the consistency of the
508  * system time value. This is needed because reading the 64 bit time
509  * value involves reading two 32 bit registers. The first read latches the
510  * value.
511  **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513                                       struct skb_shared_hwtstamps *hwtstamps,
514                                       u64 systim)
515 {
516         u64 ns;
517         unsigned long flags;
518
519         spin_lock_irqsave(&adapter->systim_lock, flags);
520         ns = timecounter_cyc2time(&adapter->tc, systim);
521         spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523         memset(hwtstamps, 0, sizeof(*hwtstamps));
524         hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529  * @adapter: board private structure
530  * @status: descriptor extended error and status field
531  * @skb: particular skb to include time stamp
532  *
533  * If the time stamp is valid, convert it into the timecounter ns value
534  * and store that result into the shhwtstamps structure which is passed
535  * up the network stack.
536  **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538                                struct sk_buff *skb)
539 {
540         struct e1000_hw *hw = &adapter->hw;
541         u64 rxstmp;
542
543         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544             !(status & E1000_RXDEXT_STATERR_TST) ||
545             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546                 return;
547
548         /* The Rx time stamp registers contain the time stamp.  No other
549          * received packet will be time stamped until the Rx time stamp
550          * registers are read.  Because only one packet can be time stamped
551          * at a time, the register values must belong to this packet and
552          * therefore none of the other additional attributes need to be
553          * compared.
554          */
555         rxstmp = (u64)er32(RXSTMPL);
556         rxstmp |= (u64)er32(RXSTMPH) << 32;
557         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563  * e1000_receive_skb - helper function to handle Rx indications
564  * @adapter: board private structure
565  * @staterr: descriptor extended error and status field as written by hardware
566  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567  * @skb: pointer to sk_buff to be indicated to stack
568  **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570                               struct net_device *netdev, struct sk_buff *skb,
571                               u32 staterr, __le16 vlan)
572 {
573         u16 tag = le16_to_cpu(vlan);
574
575         e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577         skb->protocol = eth_type_trans(skb, netdev);
578
579         if (staterr & E1000_RXD_STAT_VP)
580                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582         napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586  * e1000_rx_checksum - Receive Checksum Offload
587  * @adapter: board private structure
588  * @status_err: receive descriptor status and error fields
589  * @csum: receive descriptor csum field
590  * @sk_buff: socket buffer with received data
591  **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593                               struct sk_buff *skb)
594 {
595         u16 status = (u16)status_err;
596         u8 errors = (u8)(status_err >> 24);
597
598         skb_checksum_none_assert(skb);
599
600         /* Rx checksum disabled */
601         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602                 return;
603
604         /* Ignore Checksum bit is set */
605         if (status & E1000_RXD_STAT_IXSM)
606                 return;
607
608         /* TCP/UDP checksum error bit or IP checksum error bit is set */
609         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610                 /* let the stack verify checksum errors */
611                 adapter->hw_csum_err++;
612                 return;
613         }
614
615         /* TCP/UDP Checksum has not been calculated */
616         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617                 return;
618
619         /* It must be a TCP or UDP packet with a valid checksum */
620         skb->ip_summed = CHECKSUM_UNNECESSARY;
621         adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626         struct e1000_adapter *adapter = rx_ring->adapter;
627         struct e1000_hw *hw = &adapter->hw;
628         s32 ret_val = __ew32_prepare(hw);
629
630         writel(i, rx_ring->tail);
631
632         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633                 u32 rctl = er32(RCTL);
634
635                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636                 e_err("ME firmware caused invalid RDT - resetting\n");
637                 schedule_work(&adapter->reset_task);
638         }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643         struct e1000_adapter *adapter = tx_ring->adapter;
644         struct e1000_hw *hw = &adapter->hw;
645         s32 ret_val = __ew32_prepare(hw);
646
647         writel(i, tx_ring->tail);
648
649         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650                 u32 tctl = er32(TCTL);
651
652                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653                 e_err("ME firmware caused invalid TDT - resetting\n");
654                 schedule_work(&adapter->reset_task);
655         }
656 }
657
658 /**
659  * e1000_alloc_rx_buffers - Replace used receive buffers
660  * @rx_ring: Rx descriptor ring
661  **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663                                    int cleaned_count, gfp_t gfp)
664 {
665         struct e1000_adapter *adapter = rx_ring->adapter;
666         struct net_device *netdev = adapter->netdev;
667         struct pci_dev *pdev = adapter->pdev;
668         union e1000_rx_desc_extended *rx_desc;
669         struct e1000_buffer *buffer_info;
670         struct sk_buff *skb;
671         unsigned int i;
672         unsigned int bufsz = adapter->rx_buffer_len;
673
674         i = rx_ring->next_to_use;
675         buffer_info = &rx_ring->buffer_info[i];
676
677         while (cleaned_count--) {
678                 skb = buffer_info->skb;
679                 if (skb) {
680                         skb_trim(skb, 0);
681                         goto map_skb;
682                 }
683
684                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685                 if (!skb) {
686                         /* Better luck next round */
687                         adapter->alloc_rx_buff_failed++;
688                         break;
689                 }
690
691                 buffer_info->skb = skb;
692 map_skb:
693                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694                                                   adapter->rx_buffer_len,
695                                                   DMA_FROM_DEVICE);
696                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697                         dev_err(&pdev->dev, "Rx DMA map failed\n");
698                         adapter->rx_dma_failed++;
699                         break;
700                 }
701
702                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706                         /* Force memory writes to complete before letting h/w
707                          * know there are new descriptors to fetch.  (Only
708                          * applicable for weak-ordered memory model archs,
709                          * such as IA-64).
710                          */
711                         wmb();
712                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713                                 e1000e_update_rdt_wa(rx_ring, i);
714                         else
715                                 writel(i, rx_ring->tail);
716                 }
717                 i++;
718                 if (i == rx_ring->count)
719                         i = 0;
720                 buffer_info = &rx_ring->buffer_info[i];
721         }
722
723         rx_ring->next_to_use = i;
724 }
725
726 /**
727  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728  * @rx_ring: Rx descriptor ring
729  **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731                                       int cleaned_count, gfp_t gfp)
732 {
733         struct e1000_adapter *adapter = rx_ring->adapter;
734         struct net_device *netdev = adapter->netdev;
735         struct pci_dev *pdev = adapter->pdev;
736         union e1000_rx_desc_packet_split *rx_desc;
737         struct e1000_buffer *buffer_info;
738         struct e1000_ps_page *ps_page;
739         struct sk_buff *skb;
740         unsigned int i, j;
741
742         i = rx_ring->next_to_use;
743         buffer_info = &rx_ring->buffer_info[i];
744
745         while (cleaned_count--) {
746                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749                         ps_page = &buffer_info->ps_pages[j];
750                         if (j >= adapter->rx_ps_pages) {
751                                 /* all unused desc entries get hw null ptr */
752                                 rx_desc->read.buffer_addr[j + 1] =
753                                     ~cpu_to_le64(0);
754                                 continue;
755                         }
756                         if (!ps_page->page) {
757                                 ps_page->page = alloc_page(gfp);
758                                 if (!ps_page->page) {
759                                         adapter->alloc_rx_buff_failed++;
760                                         goto no_buffers;
761                                 }
762                                 ps_page->dma = dma_map_page(&pdev->dev,
763                                                             ps_page->page,
764                                                             0, PAGE_SIZE,
765                                                             DMA_FROM_DEVICE);
766                                 if (dma_mapping_error(&pdev->dev,
767                                                       ps_page->dma)) {
768                                         dev_err(&adapter->pdev->dev,
769                                                 "Rx DMA page map failed\n");
770                                         adapter->rx_dma_failed++;
771                                         goto no_buffers;
772                                 }
773                         }
774                         /* Refresh the desc even if buffer_addrs
775                          * didn't change because each write-back
776                          * erases this info.
777                          */
778                         rx_desc->read.buffer_addr[j + 1] =
779                             cpu_to_le64(ps_page->dma);
780                 }
781
782                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783                                                   gfp);
784
785                 if (!skb) {
786                         adapter->alloc_rx_buff_failed++;
787                         break;
788                 }
789
790                 buffer_info->skb = skb;
791                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792                                                   adapter->rx_ps_bsize0,
793                                                   DMA_FROM_DEVICE);
794                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795                         dev_err(&pdev->dev, "Rx DMA map failed\n");
796                         adapter->rx_dma_failed++;
797                         /* cleanup skb */
798                         dev_kfree_skb_any(skb);
799                         buffer_info->skb = NULL;
800                         break;
801                 }
802
803                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806                         /* Force memory writes to complete before letting h/w
807                          * know there are new descriptors to fetch.  (Only
808                          * applicable for weak-ordered memory model archs,
809                          * such as IA-64).
810                          */
811                         wmb();
812                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813                                 e1000e_update_rdt_wa(rx_ring, i << 1);
814                         else
815                                 writel(i << 1, rx_ring->tail);
816                 }
817
818                 i++;
819                 if (i == rx_ring->count)
820                         i = 0;
821                 buffer_info = &rx_ring->buffer_info[i];
822         }
823
824 no_buffers:
825         rx_ring->next_to_use = i;
826 }
827
828 /**
829  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830  * @rx_ring: Rx descriptor ring
831  * @cleaned_count: number of buffers to allocate this pass
832  **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835                                          int cleaned_count, gfp_t gfp)
836 {
837         struct e1000_adapter *adapter = rx_ring->adapter;
838         struct net_device *netdev = adapter->netdev;
839         struct pci_dev *pdev = adapter->pdev;
840         union e1000_rx_desc_extended *rx_desc;
841         struct e1000_buffer *buffer_info;
842         struct sk_buff *skb;
843         unsigned int i;
844         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
845
846         i = rx_ring->next_to_use;
847         buffer_info = &rx_ring->buffer_info[i];
848
849         while (cleaned_count--) {
850                 skb = buffer_info->skb;
851                 if (skb) {
852                         skb_trim(skb, 0);
853                         goto check_page;
854                 }
855
856                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857                 if (unlikely(!skb)) {
858                         /* Better luck next round */
859                         adapter->alloc_rx_buff_failed++;
860                         break;
861                 }
862
863                 buffer_info->skb = skb;
864 check_page:
865                 /* allocate a new page if necessary */
866                 if (!buffer_info->page) {
867                         buffer_info->page = alloc_page(gfp);
868                         if (unlikely(!buffer_info->page)) {
869                                 adapter->alloc_rx_buff_failed++;
870                                 break;
871                         }
872                 }
873
874                 if (!buffer_info->dma) {
875                         buffer_info->dma = dma_map_page(&pdev->dev,
876                                                         buffer_info->page, 0,
877                                                         PAGE_SIZE,
878                                                         DMA_FROM_DEVICE);
879                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880                                 adapter->alloc_rx_buff_failed++;
881                                 break;
882                         }
883                 }
884
885                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888                 if (unlikely(++i == rx_ring->count))
889                         i = 0;
890                 buffer_info = &rx_ring->buffer_info[i];
891         }
892
893         if (likely(rx_ring->next_to_use != i)) {
894                 rx_ring->next_to_use = i;
895                 if (unlikely(i-- == 0))
896                         i = (rx_ring->count - 1);
897
898                 /* Force memory writes to complete before letting h/w
899                  * know there are new descriptors to fetch.  (Only
900                  * applicable for weak-ordered memory model archs,
901                  * such as IA-64).
902                  */
903                 wmb();
904                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905                         e1000e_update_rdt_wa(rx_ring, i);
906                 else
907                         writel(i, rx_ring->tail);
908         }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912                                  struct sk_buff *skb)
913 {
914         if (netdev->features & NETIF_F_RXHASH)
915                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919  * e1000_clean_rx_irq - Send received data up the network stack
920  * @rx_ring: Rx descriptor ring
921  *
922  * the return value indicates whether actual cleaning was done, there
923  * is no guarantee that everything was cleaned
924  **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926                                int work_to_do)
927 {
928         struct e1000_adapter *adapter = rx_ring->adapter;
929         struct net_device *netdev = adapter->netdev;
930         struct pci_dev *pdev = adapter->pdev;
931         struct e1000_hw *hw = &adapter->hw;
932         union e1000_rx_desc_extended *rx_desc, *next_rxd;
933         struct e1000_buffer *buffer_info, *next_buffer;
934         u32 length, staterr;
935         unsigned int i;
936         int cleaned_count = 0;
937         bool cleaned = false;
938         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940         i = rx_ring->next_to_clean;
941         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943         buffer_info = &rx_ring->buffer_info[i];
944
945         while (staterr & E1000_RXD_STAT_DD) {
946                 struct sk_buff *skb;
947
948                 if (*work_done >= work_to_do)
949                         break;
950                 (*work_done)++;
951                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
952
953                 skb = buffer_info->skb;
954                 buffer_info->skb = NULL;
955
956                 prefetch(skb->data - NET_IP_ALIGN);
957
958                 i++;
959                 if (i == rx_ring->count)
960                         i = 0;
961                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962                 prefetch(next_rxd);
963
964                 next_buffer = &rx_ring->buffer_info[i];
965
966                 cleaned = true;
967                 cleaned_count++;
968                 dma_unmap_single(&pdev->dev, buffer_info->dma,
969                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
970                 buffer_info->dma = 0;
971
972                 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974                 /* !EOP means multiple descriptors were used to store a single
975                  * packet, if that's the case we need to toss it.  In fact, we
976                  * need to toss every packet with the EOP bit clear and the
977                  * next frame that _does_ have the EOP bit set, as it is by
978                  * definition only a frame fragment
979                  */
980                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981                         adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984                         /* All receives must fit into a single buffer */
985                         e_dbg("Receive packet consumed multiple buffers\n");
986                         /* recycle */
987                         buffer_info->skb = skb;
988                         if (staterr & E1000_RXD_STAT_EOP)
989                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990                         goto next_desc;
991                 }
992
993                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994                              !(netdev->features & NETIF_F_RXALL))) {
995                         /* recycle */
996                         buffer_info->skb = skb;
997                         goto next_desc;
998                 }
999
1000                 /* adjust length to remove Ethernet CRC */
1001                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002                         /* If configured to store CRC, don't subtract FCS,
1003                          * but keep the FCS bytes out of the total_rx_bytes
1004                          * counter
1005                          */
1006                         if (netdev->features & NETIF_F_RXFCS)
1007                                 total_rx_bytes -= 4;
1008                         else
1009                                 length -= 4;
1010                 }
1011
1012                 total_rx_bytes += length;
1013                 total_rx_packets++;
1014
1015                 /* code added for copybreak, this should improve
1016                  * performance for small packets with large amounts
1017                  * of reassembly being done in the stack
1018                  */
1019                 if (length < copybreak) {
1020                         struct sk_buff *new_skb =
1021                                 napi_alloc_skb(&adapter->napi, length);
1022                         if (new_skb) {
1023                                 skb_copy_to_linear_data_offset(new_skb,
1024                                                                -NET_IP_ALIGN,
1025                                                                (skb->data -
1026                                                                 NET_IP_ALIGN),
1027                                                                (length +
1028                                                                 NET_IP_ALIGN));
1029                                 /* save the skb in buffer_info as good */
1030                                 buffer_info->skb = skb;
1031                                 skb = new_skb;
1032                         }
1033                         /* else just continue with the old one */
1034                 }
1035                 /* end copybreak code */
1036                 skb_put(skb, length);
1037
1038                 /* Receive Checksum Offload */
1039                 e1000_rx_checksum(adapter, staterr, skb);
1040
1041                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043                 e1000_receive_skb(adapter, netdev, skb, staterr,
1044                                   rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049                 /* return some buffers to hardware, one at a time is too slow */
1050                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052                                               GFP_ATOMIC);
1053                         cleaned_count = 0;
1054                 }
1055
1056                 /* use prefetched values */
1057                 rx_desc = next_rxd;
1058                 buffer_info = next_buffer;
1059
1060                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061         }
1062         rx_ring->next_to_clean = i;
1063
1064         cleaned_count = e1000_desc_unused(rx_ring);
1065         if (cleaned_count)
1066                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068         adapter->total_rx_bytes += total_rx_bytes;
1069         adapter->total_rx_packets += total_rx_packets;
1070         return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074                             struct e1000_buffer *buffer_info,
1075                             bool drop)
1076 {
1077         struct e1000_adapter *adapter = tx_ring->adapter;
1078
1079         if (buffer_info->dma) {
1080                 if (buffer_info->mapped_as_page)
1081                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082                                        buffer_info->length, DMA_TO_DEVICE);
1083                 else
1084                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085                                          buffer_info->length, DMA_TO_DEVICE);
1086                 buffer_info->dma = 0;
1087         }
1088         if (buffer_info->skb) {
1089                 if (drop)
1090                         dev_kfree_skb_any(buffer_info->skb);
1091                 else
1092                         dev_consume_skb_any(buffer_info->skb);
1093                 buffer_info->skb = NULL;
1094         }
1095         buffer_info->time_stamp = 0;
1096 }
1097
1098 static void e1000_print_hw_hang(struct work_struct *work)
1099 {
1100         struct e1000_adapter *adapter = container_of(work,
1101                                                      struct e1000_adapter,
1102                                                      print_hang_task);
1103         struct net_device *netdev = adapter->netdev;
1104         struct e1000_ring *tx_ring = adapter->tx_ring;
1105         unsigned int i = tx_ring->next_to_clean;
1106         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108         struct e1000_hw *hw = &adapter->hw;
1109         u16 phy_status, phy_1000t_status, phy_ext_status;
1110         u16 pci_status;
1111
1112         if (test_bit(__E1000_DOWN, &adapter->state))
1113                 return;
1114
1115         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116                 /* May be block on write-back, flush and detect again
1117                  * flush pending descriptor writebacks to memory
1118                  */
1119                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120                 /* execute the writes immediately */
1121                 e1e_flush();
1122                 /* Due to rare timing issues, write to TIDV again to ensure
1123                  * the write is successful
1124                  */
1125                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126                 /* execute the writes immediately */
1127                 e1e_flush();
1128                 adapter->tx_hang_recheck = true;
1129                 return;
1130         }
1131         adapter->tx_hang_recheck = false;
1132
1133         if (er32(TDH(0)) == er32(TDT(0))) {
1134                 e_dbg("false hang detected, ignoring\n");
1135                 return;
1136         }
1137
1138         /* Real hang detected */
1139         netif_stop_queue(netdev);
1140
1141         e1e_rphy(hw, MII_BMSR, &phy_status);
1142         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1144
1145         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1146
1147         /* detected Hardware unit hang */
1148         e_err("Detected Hardware Unit Hang:\n"
1149               "  TDH                  <%x>\n"
1150               "  TDT                  <%x>\n"
1151               "  next_to_use          <%x>\n"
1152               "  next_to_clean        <%x>\n"
1153               "buffer_info[next_to_clean]:\n"
1154               "  time_stamp           <%lx>\n"
1155               "  next_to_watch        <%x>\n"
1156               "  jiffies              <%lx>\n"
1157               "  next_to_watch.status <%x>\n"
1158               "MAC Status             <%x>\n"
1159               "PHY Status             <%x>\n"
1160               "PHY 1000BASE-T Status  <%x>\n"
1161               "PHY Extended Status    <%x>\n"
1162               "PCI Status             <%x>\n",
1163               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1167
1168         e1000e_dump(adapter);
1169
1170         /* Suggest workaround for known h/w issue */
1171         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1173 }
1174
1175 /**
1176  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177  * @work: pointer to work struct
1178  *
1179  * This work function polls the TSYNCTXCTL valid bit to determine when a
1180  * timestamp has been taken for the current stored skb.  The timestamp must
1181  * be for this skb because only one such packet is allowed in the queue.
1182  */
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1184 {
1185         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186                                                      tx_hwtstamp_work);
1187         struct e1000_hw *hw = &adapter->hw;
1188
1189         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191                 struct skb_shared_hwtstamps shhwtstamps;
1192                 u64 txstmp;
1193
1194                 txstmp = er32(TXSTMPL);
1195                 txstmp |= (u64)er32(TXSTMPH) << 32;
1196
1197                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1198
1199                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200                  * prior to notifying the stack of a Tx timestamp.
1201                  */
1202                 adapter->tx_hwtstamp_skb = NULL;
1203                 wmb(); /* force write prior to skb_tstamp_tx */
1204
1205                 skb_tstamp_tx(skb, &shhwtstamps);
1206                 dev_consume_skb_any(skb);
1207         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208                               + adapter->tx_timeout_factor * HZ)) {
1209                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210                 adapter->tx_hwtstamp_skb = NULL;
1211                 adapter->tx_hwtstamp_timeouts++;
1212                 e_warn("clearing Tx timestamp hang\n");
1213         } else {
1214                 /* reschedule to check later */
1215                 schedule_work(&adapter->tx_hwtstamp_work);
1216         }
1217 }
1218
1219 /**
1220  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221  * @tx_ring: Tx descriptor ring
1222  *
1223  * the return value indicates whether actual cleaning was done, there
1224  * is no guarantee that everything was cleaned
1225  **/
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1227 {
1228         struct e1000_adapter *adapter = tx_ring->adapter;
1229         struct net_device *netdev = adapter->netdev;
1230         struct e1000_hw *hw = &adapter->hw;
1231         struct e1000_tx_desc *tx_desc, *eop_desc;
1232         struct e1000_buffer *buffer_info;
1233         unsigned int i, eop;
1234         unsigned int count = 0;
1235         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236         unsigned int bytes_compl = 0, pkts_compl = 0;
1237
1238         i = tx_ring->next_to_clean;
1239         eop = tx_ring->buffer_info[i].next_to_watch;
1240         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1241
1242         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243                (count < tx_ring->count)) {
1244                 bool cleaned = false;
1245
1246                 dma_rmb();              /* read buffer_info after eop_desc */
1247                 for (; !cleaned; count++) {
1248                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1249                         buffer_info = &tx_ring->buffer_info[i];
1250                         cleaned = (i == eop);
1251
1252                         if (cleaned) {
1253                                 total_tx_packets += buffer_info->segs;
1254                                 total_tx_bytes += buffer_info->bytecount;
1255                                 if (buffer_info->skb) {
1256                                         bytes_compl += buffer_info->skb->len;
1257                                         pkts_compl++;
1258                                 }
1259                         }
1260
1261                         e1000_put_txbuf(tx_ring, buffer_info, false);
1262                         tx_desc->upper.data = 0;
1263
1264                         i++;
1265                         if (i == tx_ring->count)
1266                                 i = 0;
1267                 }
1268
1269                 if (i == tx_ring->next_to_use)
1270                         break;
1271                 eop = tx_ring->buffer_info[i].next_to_watch;
1272                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1273         }
1274
1275         tx_ring->next_to_clean = i;
1276
1277         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1278
1279 #define TX_WAKE_THRESHOLD 32
1280         if (count && netif_carrier_ok(netdev) &&
1281             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282                 /* Make sure that anybody stopping the queue after this
1283                  * sees the new next_to_clean.
1284                  */
1285                 smp_mb();
1286
1287                 if (netif_queue_stopped(netdev) &&
1288                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1289                         netif_wake_queue(netdev);
1290                         ++adapter->restart_queue;
1291                 }
1292         }
1293
1294         if (adapter->detect_tx_hung) {
1295                 /* Detect a transmit hang in hardware, this serializes the
1296                  * check with the clearing of time_stamp and movement of i
1297                  */
1298                 adapter->detect_tx_hung = false;
1299                 if (tx_ring->buffer_info[i].time_stamp &&
1300                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301                                + (adapter->tx_timeout_factor * HZ)) &&
1302                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1303                         schedule_work(&adapter->print_hang_task);
1304                 else
1305                         adapter->tx_hang_recheck = false;
1306         }
1307         adapter->total_tx_bytes += total_tx_bytes;
1308         adapter->total_tx_packets += total_tx_packets;
1309         return count < tx_ring->count;
1310 }
1311
1312 /**
1313  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314  * @rx_ring: Rx descriptor ring
1315  *
1316  * the return value indicates whether actual cleaning was done, there
1317  * is no guarantee that everything was cleaned
1318  **/
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320                                   int work_to_do)
1321 {
1322         struct e1000_adapter *adapter = rx_ring->adapter;
1323         struct e1000_hw *hw = &adapter->hw;
1324         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325         struct net_device *netdev = adapter->netdev;
1326         struct pci_dev *pdev = adapter->pdev;
1327         struct e1000_buffer *buffer_info, *next_buffer;
1328         struct e1000_ps_page *ps_page;
1329         struct sk_buff *skb;
1330         unsigned int i, j;
1331         u32 length, staterr;
1332         int cleaned_count = 0;
1333         bool cleaned = false;
1334         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1335
1336         i = rx_ring->next_to_clean;
1337         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339         buffer_info = &rx_ring->buffer_info[i];
1340
1341         while (staterr & E1000_RXD_STAT_DD) {
1342                 if (*work_done >= work_to_do)
1343                         break;
1344                 (*work_done)++;
1345                 skb = buffer_info->skb;
1346                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1347
1348                 /* in the packet split case this is header only */
1349                 prefetch(skb->data - NET_IP_ALIGN);
1350
1351                 i++;
1352                 if (i == rx_ring->count)
1353                         i = 0;
1354                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355                 prefetch(next_rxd);
1356
1357                 next_buffer = &rx_ring->buffer_info[i];
1358
1359                 cleaned = true;
1360                 cleaned_count++;
1361                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363                 buffer_info->dma = 0;
1364
1365                 /* see !EOP comment in other Rx routine */
1366                 if (!(staterr & E1000_RXD_STAT_EOP))
1367                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1368
1369                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371                         dev_kfree_skb_irq(skb);
1372                         if (staterr & E1000_RXD_STAT_EOP)
1373                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374                         goto next_desc;
1375                 }
1376
1377                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378                              !(netdev->features & NETIF_F_RXALL))) {
1379                         dev_kfree_skb_irq(skb);
1380                         goto next_desc;
1381                 }
1382
1383                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1384
1385                 if (!length) {
1386                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1387                         dev_kfree_skb_irq(skb);
1388                         goto next_desc;
1389                 }
1390
1391                 /* Good Receive */
1392                 skb_put(skb, length);
1393
1394                 {
1395                         /* this looks ugly, but it seems compiler issues make
1396                          * it more efficient than reusing j
1397                          */
1398                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1399
1400                         /* page alloc/put takes too long and effects small
1401                          * packet throughput, so unsplit small packets and
1402                          * save the alloc/put only valid in softirq (napi)
1403                          * context to call kmap_*
1404                          */
1405                         if (l1 && (l1 <= copybreak) &&
1406                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1407                                 u8 *vaddr;
1408
1409                                 ps_page = &buffer_info->ps_pages[0];
1410
1411                                 /* there is no documentation about how to call
1412                                  * kmap_atomic, so we can't hold the mapping
1413                                  * very long
1414                                  */
1415                                 dma_sync_single_for_cpu(&pdev->dev,
1416                                                         ps_page->dma,
1417                                                         PAGE_SIZE,
1418                                                         DMA_FROM_DEVICE);
1419                                 vaddr = kmap_atomic(ps_page->page);
1420                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421                                 kunmap_atomic(vaddr);
1422                                 dma_sync_single_for_device(&pdev->dev,
1423                                                            ps_page->dma,
1424                                                            PAGE_SIZE,
1425                                                            DMA_FROM_DEVICE);
1426
1427                                 /* remove the CRC */
1428                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429                                         if (!(netdev->features & NETIF_F_RXFCS))
1430                                                 l1 -= 4;
1431                                 }
1432
1433                                 skb_put(skb, l1);
1434                                 goto copydone;
1435                         }       /* if */
1436                 }
1437
1438                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440                         if (!length)
1441                                 break;
1442
1443                         ps_page = &buffer_info->ps_pages[j];
1444                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445                                        DMA_FROM_DEVICE);
1446                         ps_page->dma = 0;
1447                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448                         ps_page->page = NULL;
1449                         skb->len += length;
1450                         skb->data_len += length;
1451                         skb->truesize += PAGE_SIZE;
1452                 }
1453
1454                 /* strip the ethernet crc, problem is we're using pages now so
1455                  * this whole operation can get a little cpu intensive
1456                  */
1457                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458                         if (!(netdev->features & NETIF_F_RXFCS))
1459                                 pskb_trim(skb, skb->len - 4);
1460                 }
1461
1462 copydone:
1463                 total_rx_bytes += skb->len;
1464                 total_rx_packets++;
1465
1466                 e1000_rx_checksum(adapter, staterr, skb);
1467
1468                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1469
1470                 if (rx_desc->wb.upper.header_status &
1471                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472                         adapter->rx_hdr_split++;
1473
1474                 e1000_receive_skb(adapter, netdev, skb, staterr,
1475                                   rx_desc->wb.middle.vlan);
1476
1477 next_desc:
1478                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479                 buffer_info->skb = NULL;
1480
1481                 /* return some buffers to hardware, one at a time is too slow */
1482                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484                                               GFP_ATOMIC);
1485                         cleaned_count = 0;
1486                 }
1487
1488                 /* use prefetched values */
1489                 rx_desc = next_rxd;
1490                 buffer_info = next_buffer;
1491
1492                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1493         }
1494         rx_ring->next_to_clean = i;
1495
1496         cleaned_count = e1000_desc_unused(rx_ring);
1497         if (cleaned_count)
1498                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1499
1500         adapter->total_rx_bytes += total_rx_bytes;
1501         adapter->total_rx_packets += total_rx_packets;
1502         return cleaned;
1503 }
1504
1505 /**
1506  * e1000_consume_page - helper function
1507  **/
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509                                u16 length)
1510 {
1511         bi->page = NULL;
1512         skb->len += length;
1513         skb->data_len += length;
1514         skb->truesize += PAGE_SIZE;
1515 }
1516
1517 /**
1518  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519  * @adapter: board private structure
1520  *
1521  * the return value indicates whether actual cleaning was done, there
1522  * is no guarantee that everything was cleaned
1523  **/
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525                                      int work_to_do)
1526 {
1527         struct e1000_adapter *adapter = rx_ring->adapter;
1528         struct net_device *netdev = adapter->netdev;
1529         struct pci_dev *pdev = adapter->pdev;
1530         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531         struct e1000_buffer *buffer_info, *next_buffer;
1532         u32 length, staterr;
1533         unsigned int i;
1534         int cleaned_count = 0;
1535         bool cleaned = false;
1536         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537         struct skb_shared_info *shinfo;
1538
1539         i = rx_ring->next_to_clean;
1540         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542         buffer_info = &rx_ring->buffer_info[i];
1543
1544         while (staterr & E1000_RXD_STAT_DD) {
1545                 struct sk_buff *skb;
1546
1547                 if (*work_done >= work_to_do)
1548                         break;
1549                 (*work_done)++;
1550                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1551
1552                 skb = buffer_info->skb;
1553                 buffer_info->skb = NULL;
1554
1555                 ++i;
1556                 if (i == rx_ring->count)
1557                         i = 0;
1558                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559                 prefetch(next_rxd);
1560
1561                 next_buffer = &rx_ring->buffer_info[i];
1562
1563                 cleaned = true;
1564                 cleaned_count++;
1565                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566                                DMA_FROM_DEVICE);
1567                 buffer_info->dma = 0;
1568
1569                 length = le16_to_cpu(rx_desc->wb.upper.length);
1570
1571                 /* errors is only valid for DD + EOP descriptors */
1572                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574                               !(netdev->features & NETIF_F_RXALL)))) {
1575                         /* recycle both page and skb */
1576                         buffer_info->skb = skb;
1577                         /* an error means any chain goes out the window too */
1578                         if (rx_ring->rx_skb_top)
1579                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580                         rx_ring->rx_skb_top = NULL;
1581                         goto next_desc;
1582                 }
1583 #define rxtop (rx_ring->rx_skb_top)
1584                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585                         /* this descriptor is only the beginning (or middle) */
1586                         if (!rxtop) {
1587                                 /* this is the beginning of a chain */
1588                                 rxtop = skb;
1589                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590                                                    0, length);
1591                         } else {
1592                                 /* this is the middle of a chain */
1593                                 shinfo = skb_shinfo(rxtop);
1594                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595                                                    buffer_info->page, 0,
1596                                                    length);
1597                                 /* re-use the skb, only consumed the page */
1598                                 buffer_info->skb = skb;
1599                         }
1600                         e1000_consume_page(buffer_info, rxtop, length);
1601                         goto next_desc;
1602                 } else {
1603                         if (rxtop) {
1604                                 /* end of the chain */
1605                                 shinfo = skb_shinfo(rxtop);
1606                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607                                                    buffer_info->page, 0,
1608                                                    length);
1609                                 /* re-use the current skb, we only consumed the
1610                                  * page
1611                                  */
1612                                 buffer_info->skb = skb;
1613                                 skb = rxtop;
1614                                 rxtop = NULL;
1615                                 e1000_consume_page(buffer_info, skb, length);
1616                         } else {
1617                                 /* no chain, got EOP, this buf is the packet
1618                                  * copybreak to save the put_page/alloc_page
1619                                  */
1620                                 if (length <= copybreak &&
1621                                     skb_tailroom(skb) >= length) {
1622                                         u8 *vaddr;
1623                                         vaddr = kmap_atomic(buffer_info->page);
1624                                         memcpy(skb_tail_pointer(skb), vaddr,
1625                                                length);
1626                                         kunmap_atomic(vaddr);
1627                                         /* re-use the page, so don't erase
1628                                          * buffer_info->page
1629                                          */
1630                                         skb_put(skb, length);
1631                                 } else {
1632                                         skb_fill_page_desc(skb, 0,
1633                                                            buffer_info->page, 0,
1634                                                            length);
1635                                         e1000_consume_page(buffer_info, skb,
1636                                                            length);
1637                                 }
1638                         }
1639                 }
1640
1641                 /* Receive Checksum Offload */
1642                 e1000_rx_checksum(adapter, staterr, skb);
1643
1644                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1645
1646                 /* probably a little skewed due to removing CRC */
1647                 total_rx_bytes += skb->len;
1648                 total_rx_packets++;
1649
1650                 /* eth type trans needs skb->data to point to something */
1651                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652                         e_err("pskb_may_pull failed.\n");
1653                         dev_kfree_skb_irq(skb);
1654                         goto next_desc;
1655                 }
1656
1657                 e1000_receive_skb(adapter, netdev, skb, staterr,
1658                                   rx_desc->wb.upper.vlan);
1659
1660 next_desc:
1661                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1662
1663                 /* return some buffers to hardware, one at a time is too slow */
1664                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666                                               GFP_ATOMIC);
1667                         cleaned_count = 0;
1668                 }
1669
1670                 /* use prefetched values */
1671                 rx_desc = next_rxd;
1672                 buffer_info = next_buffer;
1673
1674                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1675         }
1676         rx_ring->next_to_clean = i;
1677
1678         cleaned_count = e1000_desc_unused(rx_ring);
1679         if (cleaned_count)
1680                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1681
1682         adapter->total_rx_bytes += total_rx_bytes;
1683         adapter->total_rx_packets += total_rx_packets;
1684         return cleaned;
1685 }
1686
1687 /**
1688  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689  * @rx_ring: Rx descriptor ring
1690  **/
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1692 {
1693         struct e1000_adapter *adapter = rx_ring->adapter;
1694         struct e1000_buffer *buffer_info;
1695         struct e1000_ps_page *ps_page;
1696         struct pci_dev *pdev = adapter->pdev;
1697         unsigned int i, j;
1698
1699         /* Free all the Rx ring sk_buffs */
1700         for (i = 0; i < rx_ring->count; i++) {
1701                 buffer_info = &rx_ring->buffer_info[i];
1702                 if (buffer_info->dma) {
1703                         if (adapter->clean_rx == e1000_clean_rx_irq)
1704                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705                                                  adapter->rx_buffer_len,
1706                                                  DMA_FROM_DEVICE);
1707                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709                                                PAGE_SIZE, DMA_FROM_DEVICE);
1710                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712                                                  adapter->rx_ps_bsize0,
1713                                                  DMA_FROM_DEVICE);
1714                         buffer_info->dma = 0;
1715                 }
1716
1717                 if (buffer_info->page) {
1718                         put_page(buffer_info->page);
1719                         buffer_info->page = NULL;
1720                 }
1721
1722                 if (buffer_info->skb) {
1723                         dev_kfree_skb(buffer_info->skb);
1724                         buffer_info->skb = NULL;
1725                 }
1726
1727                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728                         ps_page = &buffer_info->ps_pages[j];
1729                         if (!ps_page->page)
1730                                 break;
1731                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732                                        DMA_FROM_DEVICE);
1733                         ps_page->dma = 0;
1734                         put_page(ps_page->page);
1735                         ps_page->page = NULL;
1736                 }
1737         }
1738
1739         /* there also may be some cached data from a chained receive */
1740         if (rx_ring->rx_skb_top) {
1741                 dev_kfree_skb(rx_ring->rx_skb_top);
1742                 rx_ring->rx_skb_top = NULL;
1743         }
1744
1745         /* Zero out the descriptor ring */
1746         memset(rx_ring->desc, 0, rx_ring->size);
1747
1748         rx_ring->next_to_clean = 0;
1749         rx_ring->next_to_use = 0;
1750         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1751 }
1752
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1754 {
1755         struct e1000_adapter *adapter = container_of(work,
1756                                                      struct e1000_adapter,
1757                                                      downshift_task);
1758
1759         if (test_bit(__E1000_DOWN, &adapter->state))
1760                 return;
1761
1762         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1763 }
1764
1765 /**
1766  * e1000_intr_msi - Interrupt Handler
1767  * @irq: interrupt number
1768  * @data: pointer to a network interface device structure
1769  **/
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1771 {
1772         struct net_device *netdev = data;
1773         struct e1000_adapter *adapter = netdev_priv(netdev);
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 icr = er32(ICR);
1776
1777         /* read ICR disables interrupts using IAM */
1778         if (icr & E1000_ICR_LSC) {
1779                 hw->mac.get_link_status = true;
1780                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781                  * disconnect (LSC) before accessing any PHY registers
1782                  */
1783                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784                     (!(er32(STATUS) & E1000_STATUS_LU)))
1785                         schedule_work(&adapter->downshift_task);
1786
1787                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788                  * link down event; disable receives here in the ISR and reset
1789                  * adapter in watchdog
1790                  */
1791                 if (netif_carrier_ok(netdev) &&
1792                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793                         /* disable receives */
1794                         u32 rctl = er32(RCTL);
1795
1796                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797                         adapter->flags |= FLAG_RESTART_NOW;
1798                 }
1799                 /* guard against interrupt when we're going down */
1800                 if (!test_bit(__E1000_DOWN, &adapter->state))
1801                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1802         }
1803
1804         /* Reset on uncorrectable ECC error */
1805         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806                 u32 pbeccsts = er32(PBECCSTS);
1807
1808                 adapter->corr_errors +=
1809                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810                 adapter->uncorr_errors +=
1811                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814                 /* Do the reset outside of interrupt context */
1815                 schedule_work(&adapter->reset_task);
1816
1817                 /* return immediately since reset is imminent */
1818                 return IRQ_HANDLED;
1819         }
1820
1821         if (napi_schedule_prep(&adapter->napi)) {
1822                 adapter->total_tx_bytes = 0;
1823                 adapter->total_tx_packets = 0;
1824                 adapter->total_rx_bytes = 0;
1825                 adapter->total_rx_packets = 0;
1826                 __napi_schedule(&adapter->napi);
1827         }
1828
1829         return IRQ_HANDLED;
1830 }
1831
1832 /**
1833  * e1000_intr - Interrupt Handler
1834  * @irq: interrupt number
1835  * @data: pointer to a network interface device structure
1836  **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839         struct net_device *netdev = data;
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 rctl, icr = er32(ICR);
1843
1844         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845                 return IRQ_NONE;        /* Not our interrupt */
1846
1847         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848          * not set, then the adapter didn't send an interrupt
1849          */
1850         if (!(icr & E1000_ICR_INT_ASSERTED))
1851                 return IRQ_NONE;
1852
1853         /* Interrupt Auto-Mask...upon reading ICR,
1854          * interrupts are masked.  No need for the
1855          * IMC write
1856          */
1857
1858         if (icr & E1000_ICR_LSC) {
1859                 hw->mac.get_link_status = true;
1860                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861                  * disconnect (LSC) before accessing any PHY registers
1862                  */
1863                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864                     (!(er32(STATUS) & E1000_STATUS_LU)))
1865                         schedule_work(&adapter->downshift_task);
1866
1867                 /* 80003ES2LAN workaround--
1868                  * For packet buffer work-around on link down event;
1869                  * disable receives here in the ISR and
1870                  * reset adapter in watchdog
1871                  */
1872                 if (netif_carrier_ok(netdev) &&
1873                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874                         /* disable receives */
1875                         rctl = er32(RCTL);
1876                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877                         adapter->flags |= FLAG_RESTART_NOW;
1878                 }
1879                 /* guard against interrupt when we're going down */
1880                 if (!test_bit(__E1000_DOWN, &adapter->state))
1881                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882         }
1883
1884         /* Reset on uncorrectable ECC error */
1885         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886                 u32 pbeccsts = er32(PBECCSTS);
1887
1888                 adapter->corr_errors +=
1889                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890                 adapter->uncorr_errors +=
1891                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1893
1894                 /* Do the reset outside of interrupt context */
1895                 schedule_work(&adapter->reset_task);
1896
1897                 /* return immediately since reset is imminent */
1898                 return IRQ_HANDLED;
1899         }
1900
1901         if (napi_schedule_prep(&adapter->napi)) {
1902                 adapter->total_tx_bytes = 0;
1903                 adapter->total_tx_packets = 0;
1904                 adapter->total_rx_bytes = 0;
1905                 adapter->total_rx_packets = 0;
1906                 __napi_schedule(&adapter->napi);
1907         }
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1913 {
1914         struct net_device *netdev = data;
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916         struct e1000_hw *hw = &adapter->hw;
1917         u32 icr;
1918         bool enable = true;
1919
1920         icr = er32(ICR);
1921         if (icr & E1000_ICR_RXO) {
1922                 ew32(ICR, E1000_ICR_RXO);
1923                 enable = false;
1924                 /* napi poll will re-enable Other, make sure it runs */
1925                 if (napi_schedule_prep(&adapter->napi)) {
1926                         adapter->total_rx_bytes = 0;
1927                         adapter->total_rx_packets = 0;
1928                         __napi_schedule(&adapter->napi);
1929                 }
1930         }
1931         if (icr & E1000_ICR_LSC) {
1932                 ew32(ICR, E1000_ICR_LSC);
1933                 hw->mac.get_link_status = true;
1934                 /* guard against interrupt when we're going down */
1935                 if (!test_bit(__E1000_DOWN, &adapter->state))
1936                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1937         }
1938
1939         if (enable && !test_bit(__E1000_DOWN, &adapter->state))
1940                 ew32(IMS, E1000_IMS_OTHER);
1941
1942         return IRQ_HANDLED;
1943 }
1944
1945 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1946 {
1947         struct net_device *netdev = data;
1948         struct e1000_adapter *adapter = netdev_priv(netdev);
1949         struct e1000_hw *hw = &adapter->hw;
1950         struct e1000_ring *tx_ring = adapter->tx_ring;
1951
1952         adapter->total_tx_bytes = 0;
1953         adapter->total_tx_packets = 0;
1954
1955         if (!e1000_clean_tx_irq(tx_ring))
1956                 /* Ring was not completely cleaned, so fire another interrupt */
1957                 ew32(ICS, tx_ring->ims_val);
1958
1959         if (!test_bit(__E1000_DOWN, &adapter->state))
1960                 ew32(IMS, adapter->tx_ring->ims_val);
1961
1962         return IRQ_HANDLED;
1963 }
1964
1965 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1966 {
1967         struct net_device *netdev = data;
1968         struct e1000_adapter *adapter = netdev_priv(netdev);
1969         struct e1000_ring *rx_ring = adapter->rx_ring;
1970
1971         /* Write the ITR value calculated at the end of the
1972          * previous interrupt.
1973          */
1974         if (rx_ring->set_itr) {
1975                 u32 itr = rx_ring->itr_val ?
1976                           1000000000 / (rx_ring->itr_val * 256) : 0;
1977
1978                 writel(itr, rx_ring->itr_register);
1979                 rx_ring->set_itr = 0;
1980         }
1981
1982         if (napi_schedule_prep(&adapter->napi)) {
1983                 adapter->total_rx_bytes = 0;
1984                 adapter->total_rx_packets = 0;
1985                 __napi_schedule(&adapter->napi);
1986         }
1987         return IRQ_HANDLED;
1988 }
1989
1990 /**
1991  * e1000_configure_msix - Configure MSI-X hardware
1992  *
1993  * e1000_configure_msix sets up the hardware to properly
1994  * generate MSI-X interrupts.
1995  **/
1996 static void e1000_configure_msix(struct e1000_adapter *adapter)
1997 {
1998         struct e1000_hw *hw = &adapter->hw;
1999         struct e1000_ring *rx_ring = adapter->rx_ring;
2000         struct e1000_ring *tx_ring = adapter->tx_ring;
2001         int vector = 0;
2002         u32 ctrl_ext, ivar = 0;
2003
2004         adapter->eiac_mask = 0;
2005
2006         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007         if (hw->mac.type == e1000_82574) {
2008                 u32 rfctl = er32(RFCTL);
2009
2010                 rfctl |= E1000_RFCTL_ACK_DIS;
2011                 ew32(RFCTL, rfctl);
2012         }
2013
2014         /* Configure Rx vector */
2015         rx_ring->ims_val = E1000_IMS_RXQ0;
2016         adapter->eiac_mask |= rx_ring->ims_val;
2017         if (rx_ring->itr_val)
2018                 writel(1000000000 / (rx_ring->itr_val * 256),
2019                        rx_ring->itr_register);
2020         else
2021                 writel(1, rx_ring->itr_register);
2022         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2023
2024         /* Configure Tx vector */
2025         tx_ring->ims_val = E1000_IMS_TXQ0;
2026         vector++;
2027         if (tx_ring->itr_val)
2028                 writel(1000000000 / (tx_ring->itr_val * 256),
2029                        tx_ring->itr_register);
2030         else
2031                 writel(1, tx_ring->itr_register);
2032         adapter->eiac_mask |= tx_ring->ims_val;
2033         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2034
2035         /* set vector for Other Causes, e.g. link changes */
2036         vector++;
2037         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2038         if (rx_ring->itr_val)
2039                 writel(1000000000 / (rx_ring->itr_val * 256),
2040                        hw->hw_addr + E1000_EITR_82574(vector));
2041         else
2042                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2043         adapter->eiac_mask |= E1000_IMS_OTHER;
2044
2045         /* Cause Tx interrupts on every write back */
2046         ivar |= BIT(31);
2047
2048         ew32(IVAR, ivar);
2049
2050         /* enable MSI-X PBA support */
2051         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2052         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2053         ew32(CTRL_EXT, ctrl_ext);
2054         e1e_flush();
2055 }
2056
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2058 {
2059         if (adapter->msix_entries) {
2060                 pci_disable_msix(adapter->pdev);
2061                 kfree(adapter->msix_entries);
2062                 adapter->msix_entries = NULL;
2063         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2064                 pci_disable_msi(adapter->pdev);
2065                 adapter->flags &= ~FLAG_MSI_ENABLED;
2066         }
2067 }
2068
2069 /**
2070  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2071  *
2072  * Attempt to configure interrupts using the best available
2073  * capabilities of the hardware and kernel.
2074  **/
2075 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2076 {
2077         int err;
2078         int i;
2079
2080         switch (adapter->int_mode) {
2081         case E1000E_INT_MODE_MSIX:
2082                 if (adapter->flags & FLAG_HAS_MSIX) {
2083                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2084                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2085                                                         sizeof(struct
2086                                                                msix_entry),
2087                                                         GFP_KERNEL);
2088                         if (adapter->msix_entries) {
2089                                 struct e1000_adapter *a = adapter;
2090
2091                                 for (i = 0; i < adapter->num_vectors; i++)
2092                                         adapter->msix_entries[i].entry = i;
2093
2094                                 err = pci_enable_msix_range(a->pdev,
2095                                                             a->msix_entries,
2096                                                             a->num_vectors,
2097                                                             a->num_vectors);
2098                                 if (err > 0)
2099                                         return;
2100                         }
2101                         /* MSI-X failed, so fall through and try MSI */
2102                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2103                         e1000e_reset_interrupt_capability(adapter);
2104                 }
2105                 adapter->int_mode = E1000E_INT_MODE_MSI;
2106                 /* Fall through */
2107         case E1000E_INT_MODE_MSI:
2108                 if (!pci_enable_msi(adapter->pdev)) {
2109                         adapter->flags |= FLAG_MSI_ENABLED;
2110                 } else {
2111                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2112                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2113                 }
2114                 /* Fall through */
2115         case E1000E_INT_MODE_LEGACY:
2116                 /* Don't do anything; this is the system default */
2117                 break;
2118         }
2119
2120         /* store the number of vectors being used */
2121         adapter->num_vectors = 1;
2122 }
2123
2124 /**
2125  * e1000_request_msix - Initialize MSI-X interrupts
2126  *
2127  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2128  * kernel.
2129  **/
2130 static int e1000_request_msix(struct e1000_adapter *adapter)
2131 {
2132         struct net_device *netdev = adapter->netdev;
2133         int err = 0, vector = 0;
2134
2135         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2136                 snprintf(adapter->rx_ring->name,
2137                          sizeof(adapter->rx_ring->name) - 1,
2138                          "%s-rx-0", netdev->name);
2139         else
2140                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2141         err = request_irq(adapter->msix_entries[vector].vector,
2142                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2143                           netdev);
2144         if (err)
2145                 return err;
2146         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2147             E1000_EITR_82574(vector);
2148         adapter->rx_ring->itr_val = adapter->itr;
2149         vector++;
2150
2151         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152                 snprintf(adapter->tx_ring->name,
2153                          sizeof(adapter->tx_ring->name) - 1,
2154                          "%s-tx-0", netdev->name);
2155         else
2156                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2157         err = request_irq(adapter->msix_entries[vector].vector,
2158                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2159                           netdev);
2160         if (err)
2161                 return err;
2162         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2163             E1000_EITR_82574(vector);
2164         adapter->tx_ring->itr_val = adapter->itr;
2165         vector++;
2166
2167         err = request_irq(adapter->msix_entries[vector].vector,
2168                           e1000_msix_other, 0, netdev->name, netdev);
2169         if (err)
2170                 return err;
2171
2172         e1000_configure_msix(adapter);
2173
2174         return 0;
2175 }
2176
2177 /**
2178  * e1000_request_irq - initialize interrupts
2179  *
2180  * Attempts to configure interrupts using the best available
2181  * capabilities of the hardware and kernel.
2182  **/
2183 static int e1000_request_irq(struct e1000_adapter *adapter)
2184 {
2185         struct net_device *netdev = adapter->netdev;
2186         int err;
2187
2188         if (adapter->msix_entries) {
2189                 err = e1000_request_msix(adapter);
2190                 if (!err)
2191                         return err;
2192                 /* fall back to MSI */
2193                 e1000e_reset_interrupt_capability(adapter);
2194                 adapter->int_mode = E1000E_INT_MODE_MSI;
2195                 e1000e_set_interrupt_capability(adapter);
2196         }
2197         if (adapter->flags & FLAG_MSI_ENABLED) {
2198                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2199                                   netdev->name, netdev);
2200                 if (!err)
2201                         return err;
2202
2203                 /* fall back to legacy interrupt */
2204                 e1000e_reset_interrupt_capability(adapter);
2205                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2206         }
2207
2208         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2209                           netdev->name, netdev);
2210         if (err)
2211                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2212
2213         return err;
2214 }
2215
2216 static void e1000_free_irq(struct e1000_adapter *adapter)
2217 {
2218         struct net_device *netdev = adapter->netdev;
2219
2220         if (adapter->msix_entries) {
2221                 int vector = 0;
2222
2223                 free_irq(adapter->msix_entries[vector].vector, netdev);
2224                 vector++;
2225
2226                 free_irq(adapter->msix_entries[vector].vector, netdev);
2227                 vector++;
2228
2229                 /* Other Causes interrupt vector */
2230                 free_irq(adapter->msix_entries[vector].vector, netdev);
2231                 return;
2232         }
2233
2234         free_irq(adapter->pdev->irq, netdev);
2235 }
2236
2237 /**
2238  * e1000_irq_disable - Mask off interrupt generation on the NIC
2239  **/
2240 static void e1000_irq_disable(struct e1000_adapter *adapter)
2241 {
2242         struct e1000_hw *hw = &adapter->hw;
2243
2244         ew32(IMC, ~0);
2245         if (adapter->msix_entries)
2246                 ew32(EIAC_82574, 0);
2247         e1e_flush();
2248
2249         if (adapter->msix_entries) {
2250                 int i;
2251
2252                 for (i = 0; i < adapter->num_vectors; i++)
2253                         synchronize_irq(adapter->msix_entries[i].vector);
2254         } else {
2255                 synchronize_irq(adapter->pdev->irq);
2256         }
2257 }
2258
2259 /**
2260  * e1000_irq_enable - Enable default interrupt generation settings
2261  **/
2262 static void e1000_irq_enable(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265
2266         if (adapter->msix_entries) {
2267                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2268                 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2269         } else if (hw->mac.type >= e1000_pch_lpt) {
2270                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2271         } else {
2272                 ew32(IMS, IMS_ENABLE_MASK);
2273         }
2274         e1e_flush();
2275 }
2276
2277 /**
2278  * e1000e_get_hw_control - get control of the h/w from f/w
2279  * @adapter: address of board private structure
2280  *
2281  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282  * For ASF and Pass Through versions of f/w this means that
2283  * the driver is loaded. For AMT version (only with 82573)
2284  * of the f/w this means that the network i/f is open.
2285  **/
2286 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2287 {
2288         struct e1000_hw *hw = &adapter->hw;
2289         u32 ctrl_ext;
2290         u32 swsm;
2291
2292         /* Let firmware know the driver has taken over */
2293         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294                 swsm = er32(SWSM);
2295                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2296         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297                 ctrl_ext = er32(CTRL_EXT);
2298                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2299         }
2300 }
2301
2302 /**
2303  * e1000e_release_hw_control - release control of the h/w to f/w
2304  * @adapter: address of board private structure
2305  *
2306  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307  * For ASF and Pass Through versions of f/w this means that the
2308  * driver is no longer loaded. For AMT version (only with 82573) i
2309  * of the f/w this means that the network i/f is closed.
2310  *
2311  **/
2312 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2313 {
2314         struct e1000_hw *hw = &adapter->hw;
2315         u32 ctrl_ext;
2316         u32 swsm;
2317
2318         /* Let firmware taken over control of h/w */
2319         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2320                 swsm = er32(SWSM);
2321                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2322         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2323                 ctrl_ext = er32(CTRL_EXT);
2324                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2325         }
2326 }
2327
2328 /**
2329  * e1000_alloc_ring_dma - allocate memory for a ring structure
2330  **/
2331 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2332                                 struct e1000_ring *ring)
2333 {
2334         struct pci_dev *pdev = adapter->pdev;
2335
2336         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2337                                         GFP_KERNEL);
2338         if (!ring->desc)
2339                 return -ENOMEM;
2340
2341         return 0;
2342 }
2343
2344 /**
2345  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346  * @tx_ring: Tx descriptor ring
2347  *
2348  * Return 0 on success, negative on failure
2349  **/
2350 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2351 {
2352         struct e1000_adapter *adapter = tx_ring->adapter;
2353         int err = -ENOMEM, size;
2354
2355         size = sizeof(struct e1000_buffer) * tx_ring->count;
2356         tx_ring->buffer_info = vzalloc(size);
2357         if (!tx_ring->buffer_info)
2358                 goto err;
2359
2360         /* round up to nearest 4K */
2361         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2362         tx_ring->size = ALIGN(tx_ring->size, 4096);
2363
2364         err = e1000_alloc_ring_dma(adapter, tx_ring);
2365         if (err)
2366                 goto err;
2367
2368         tx_ring->next_to_use = 0;
2369         tx_ring->next_to_clean = 0;
2370
2371         return 0;
2372 err:
2373         vfree(tx_ring->buffer_info);
2374         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2375         return err;
2376 }
2377
2378 /**
2379  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380  * @rx_ring: Rx descriptor ring
2381  *
2382  * Returns 0 on success, negative on failure
2383  **/
2384 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2385 {
2386         struct e1000_adapter *adapter = rx_ring->adapter;
2387         struct e1000_buffer *buffer_info;
2388         int i, size, desc_len, err = -ENOMEM;
2389
2390         size = sizeof(struct e1000_buffer) * rx_ring->count;
2391         rx_ring->buffer_info = vzalloc(size);
2392         if (!rx_ring->buffer_info)
2393                 goto err;
2394
2395         for (i = 0; i < rx_ring->count; i++) {
2396                 buffer_info = &rx_ring->buffer_info[i];
2397                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2398                                                 sizeof(struct e1000_ps_page),
2399                                                 GFP_KERNEL);
2400                 if (!buffer_info->ps_pages)
2401                         goto err_pages;
2402         }
2403
2404         desc_len = sizeof(union e1000_rx_desc_packet_split);
2405
2406         /* Round up to nearest 4K */
2407         rx_ring->size = rx_ring->count * desc_len;
2408         rx_ring->size = ALIGN(rx_ring->size, 4096);
2409
2410         err = e1000_alloc_ring_dma(adapter, rx_ring);
2411         if (err)
2412                 goto err_pages;
2413
2414         rx_ring->next_to_clean = 0;
2415         rx_ring->next_to_use = 0;
2416         rx_ring->rx_skb_top = NULL;
2417
2418         return 0;
2419
2420 err_pages:
2421         for (i = 0; i < rx_ring->count; i++) {
2422                 buffer_info = &rx_ring->buffer_info[i];
2423                 kfree(buffer_info->ps_pages);
2424         }
2425 err:
2426         vfree(rx_ring->buffer_info);
2427         e_err("Unable to allocate memory for the receive descriptor ring\n");
2428         return err;
2429 }
2430
2431 /**
2432  * e1000_clean_tx_ring - Free Tx Buffers
2433  * @tx_ring: Tx descriptor ring
2434  **/
2435 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2436 {
2437         struct e1000_adapter *adapter = tx_ring->adapter;
2438         struct e1000_buffer *buffer_info;
2439         unsigned long size;
2440         unsigned int i;
2441
2442         for (i = 0; i < tx_ring->count; i++) {
2443                 buffer_info = &tx_ring->buffer_info[i];
2444                 e1000_put_txbuf(tx_ring, buffer_info, false);
2445         }
2446
2447         netdev_reset_queue(adapter->netdev);
2448         size = sizeof(struct e1000_buffer) * tx_ring->count;
2449         memset(tx_ring->buffer_info, 0, size);
2450
2451         memset(tx_ring->desc, 0, tx_ring->size);
2452
2453         tx_ring->next_to_use = 0;
2454         tx_ring->next_to_clean = 0;
2455 }
2456
2457 /**
2458  * e1000e_free_tx_resources - Free Tx Resources per Queue
2459  * @tx_ring: Tx descriptor ring
2460  *
2461  * Free all transmit software resources
2462  **/
2463 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2464 {
2465         struct e1000_adapter *adapter = tx_ring->adapter;
2466         struct pci_dev *pdev = adapter->pdev;
2467
2468         e1000_clean_tx_ring(tx_ring);
2469
2470         vfree(tx_ring->buffer_info);
2471         tx_ring->buffer_info = NULL;
2472
2473         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2474                           tx_ring->dma);
2475         tx_ring->desc = NULL;
2476 }
2477
2478 /**
2479  * e1000e_free_rx_resources - Free Rx Resources
2480  * @rx_ring: Rx descriptor ring
2481  *
2482  * Free all receive software resources
2483  **/
2484 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2485 {
2486         struct e1000_adapter *adapter = rx_ring->adapter;
2487         struct pci_dev *pdev = adapter->pdev;
2488         int i;
2489
2490         e1000_clean_rx_ring(rx_ring);
2491
2492         for (i = 0; i < rx_ring->count; i++)
2493                 kfree(rx_ring->buffer_info[i].ps_pages);
2494
2495         vfree(rx_ring->buffer_info);
2496         rx_ring->buffer_info = NULL;
2497
2498         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2499                           rx_ring->dma);
2500         rx_ring->desc = NULL;
2501 }
2502
2503 /**
2504  * e1000_update_itr - update the dynamic ITR value based on statistics
2505  * @adapter: pointer to adapter
2506  * @itr_setting: current adapter->itr
2507  * @packets: the number of packets during this measurement interval
2508  * @bytes: the number of bytes during this measurement interval
2509  *
2510  *      Stores a new ITR value based on packets and byte
2511  *      counts during the last interrupt.  The advantage of per interrupt
2512  *      computation is faster updates and more accurate ITR for the current
2513  *      traffic pattern.  Constants in this function were computed
2514  *      based on theoretical maximum wire speed and thresholds were set based
2515  *      on testing data as well as attempting to minimize response time
2516  *      while increasing bulk throughput.  This functionality is controlled
2517  *      by the InterruptThrottleRate module parameter.
2518  **/
2519 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2520 {
2521         unsigned int retval = itr_setting;
2522
2523         if (packets == 0)
2524                 return itr_setting;
2525
2526         switch (itr_setting) {
2527         case lowest_latency:
2528                 /* handle TSO and jumbo frames */
2529                 if (bytes / packets > 8000)
2530                         retval = bulk_latency;
2531                 else if ((packets < 5) && (bytes > 512))
2532                         retval = low_latency;
2533                 break;
2534         case low_latency:       /* 50 usec aka 20000 ints/s */
2535                 if (bytes > 10000) {
2536                         /* this if handles the TSO accounting */
2537                         if (bytes / packets > 8000)
2538                                 retval = bulk_latency;
2539                         else if ((packets < 10) || ((bytes / packets) > 1200))
2540                                 retval = bulk_latency;
2541                         else if ((packets > 35))
2542                                 retval = lowest_latency;
2543                 } else if (bytes / packets > 2000) {
2544                         retval = bulk_latency;
2545                 } else if (packets <= 2 && bytes < 512) {
2546                         retval = lowest_latency;
2547                 }
2548                 break;
2549         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2550                 if (bytes > 25000) {
2551                         if (packets > 35)
2552                                 retval = low_latency;
2553                 } else if (bytes < 6000) {
2554                         retval = low_latency;
2555                 }
2556                 break;
2557         }
2558
2559         return retval;
2560 }
2561
2562 static void e1000_set_itr(struct e1000_adapter *adapter)
2563 {
2564         u16 current_itr;
2565         u32 new_itr = adapter->itr;
2566
2567         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568         if (adapter->link_speed != SPEED_1000) {
2569                 current_itr = 0;
2570                 new_itr = 4000;
2571                 goto set_itr_now;
2572         }
2573
2574         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2575                 new_itr = 0;
2576                 goto set_itr_now;
2577         }
2578
2579         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2580                                            adapter->total_tx_packets,
2581                                            adapter->total_tx_bytes);
2582         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2584                 adapter->tx_itr = low_latency;
2585
2586         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2587                                            adapter->total_rx_packets,
2588                                            adapter->total_rx_bytes);
2589         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2591                 adapter->rx_itr = low_latency;
2592
2593         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2594
2595         /* counts and packets in update_itr are dependent on these numbers */
2596         switch (current_itr) {
2597         case lowest_latency:
2598                 new_itr = 70000;
2599                 break;
2600         case low_latency:
2601                 new_itr = 20000;        /* aka hwitr = ~200 */
2602                 break;
2603         case bulk_latency:
2604                 new_itr = 4000;
2605                 break;
2606         default:
2607                 break;
2608         }
2609
2610 set_itr_now:
2611         if (new_itr != adapter->itr) {
2612                 /* this attempts to bias the interrupt rate towards Bulk
2613                  * by adding intermediate steps when interrupt rate is
2614                  * increasing
2615                  */
2616                 new_itr = new_itr > adapter->itr ?
2617                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2618                 adapter->itr = new_itr;
2619                 adapter->rx_ring->itr_val = new_itr;
2620                 if (adapter->msix_entries)
2621                         adapter->rx_ring->set_itr = 1;
2622                 else
2623                         e1000e_write_itr(adapter, new_itr);
2624         }
2625 }
2626
2627 /**
2628  * e1000e_write_itr - write the ITR value to the appropriate registers
2629  * @adapter: address of board private structure
2630  * @itr: new ITR value to program
2631  *
2632  * e1000e_write_itr determines if the adapter is in MSI-X mode
2633  * and, if so, writes the EITR registers with the ITR value.
2634  * Otherwise, it writes the ITR value into the ITR register.
2635  **/
2636 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2637 {
2638         struct e1000_hw *hw = &adapter->hw;
2639         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2640
2641         if (adapter->msix_entries) {
2642                 int vector;
2643
2644                 for (vector = 0; vector < adapter->num_vectors; vector++)
2645                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2646         } else {
2647                 ew32(ITR, new_itr);
2648         }
2649 }
2650
2651 /**
2652  * e1000_alloc_queues - Allocate memory for all rings
2653  * @adapter: board private structure to initialize
2654  **/
2655 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2656 {
2657         int size = sizeof(struct e1000_ring);
2658
2659         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2660         if (!adapter->tx_ring)
2661                 goto err;
2662         adapter->tx_ring->count = adapter->tx_ring_count;
2663         adapter->tx_ring->adapter = adapter;
2664
2665         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2666         if (!adapter->rx_ring)
2667                 goto err;
2668         adapter->rx_ring->count = adapter->rx_ring_count;
2669         adapter->rx_ring->adapter = adapter;
2670
2671         return 0;
2672 err:
2673         e_err("Unable to allocate memory for queues\n");
2674         kfree(adapter->rx_ring);
2675         kfree(adapter->tx_ring);
2676         return -ENOMEM;
2677 }
2678
2679 /**
2680  * e1000e_poll - NAPI Rx polling callback
2681  * @napi: struct associated with this polling callback
2682  * @weight: number of packets driver is allowed to process this poll
2683  **/
2684 static int e1000e_poll(struct napi_struct *napi, int weight)
2685 {
2686         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2687                                                      napi);
2688         struct e1000_hw *hw = &adapter->hw;
2689         struct net_device *poll_dev = adapter->netdev;
2690         int tx_cleaned = 1, work_done = 0;
2691
2692         adapter = netdev_priv(poll_dev);
2693
2694         if (!adapter->msix_entries ||
2695             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2696                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2697
2698         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2699
2700         if (!tx_cleaned)
2701                 work_done = weight;
2702
2703         /* If weight not fully consumed, exit the polling mode */
2704         if (work_done < weight) {
2705                 if (adapter->itr_setting & 3)
2706                         e1000_set_itr(adapter);
2707                 napi_complete_done(napi, work_done);
2708                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2709                         if (adapter->msix_entries)
2710                                 ew32(IMS, adapter->rx_ring->ims_val |
2711                                      E1000_IMS_OTHER);
2712                         else
2713                                 e1000_irq_enable(adapter);
2714                 }
2715         }
2716
2717         return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721                                  __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         /* don't update vlan cookie if already programmed */
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id))
2731                 return 0;
2732
2733         /* add VID to filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta |= BIT((vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740
2741         set_bit(vid, adapter->active_vlans);
2742
2743         return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747                                   __always_unused __be16 proto, u16 vid)
2748 {
2749         struct e1000_adapter *adapter = netdev_priv(netdev);
2750         struct e1000_hw *hw = &adapter->hw;
2751         u32 vfta, index;
2752
2753         if ((adapter->hw.mng_cookie.status &
2754              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755             (vid == adapter->mng_vlan_id)) {
2756                 /* release control to f/w */
2757                 e1000e_release_hw_control(adapter);
2758                 return 0;
2759         }
2760
2761         /* remove VID from filter table */
2762         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763                 index = (vid >> 5) & 0x7F;
2764                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765                 vfta &= ~BIT((vid & 0x1F));
2766                 hw->mac.ops.write_vfta(hw, index, vfta);
2767         }
2768
2769         clear_bit(vid, adapter->active_vlans);
2770
2771         return 0;
2772 }
2773
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780         struct net_device *netdev = adapter->netdev;
2781         struct e1000_hw *hw = &adapter->hw;
2782         u32 rctl;
2783
2784         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785                 /* disable VLAN receive filtering */
2786                 rctl = er32(RCTL);
2787                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788                 ew32(RCTL, rctl);
2789
2790                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792                                                adapter->mng_vlan_id);
2793                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794                 }
2795         }
2796 }
2797
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804         struct e1000_hw *hw = &adapter->hw;
2805         u32 rctl;
2806
2807         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808                 /* enable VLAN receive filtering */
2809                 rctl = er32(RCTL);
2810                 rctl |= E1000_RCTL_VFE;
2811                 rctl &= ~E1000_RCTL_CFIEN;
2812                 ew32(RCTL, rctl);
2813         }
2814 }
2815
2816 /**
2817  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 ctrl;
2824
2825         /* disable VLAN tag insert/strip */
2826         ctrl = er32(CTRL);
2827         ctrl &= ~E1000_CTRL_VME;
2828         ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837         struct e1000_hw *hw = &adapter->hw;
2838         u32 ctrl;
2839
2840         /* enable VLAN tag insert/strip */
2841         ctrl = er32(CTRL);
2842         ctrl |= E1000_CTRL_VME;
2843         ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848         struct net_device *netdev = adapter->netdev;
2849         u16 vid = adapter->hw.mng_cookie.vlan_id;
2850         u16 old_vid = adapter->mng_vlan_id;
2851
2852         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854                 adapter->mng_vlan_id = vid;
2855         }
2856
2857         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863         u16 vid;
2864
2865         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873         struct e1000_hw *hw = &adapter->hw;
2874         u32 manc, manc2h, mdef, i, j;
2875
2876         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877                 return;
2878
2879         manc = er32(MANC);
2880
2881         /* enable receiving management packets to the host. this will probably
2882          * generate destination unreachable messages from the host OS, but
2883          * the packets will be handled on SMBUS
2884          */
2885         manc |= E1000_MANC_EN_MNG2HOST;
2886         manc2h = er32(MANC2H);
2887
2888         switch (hw->mac.type) {
2889         default:
2890                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891                 break;
2892         case e1000_82574:
2893         case e1000_82583:
2894                 /* Check if IPMI pass-through decision filter already exists;
2895                  * if so, enable it.
2896                  */
2897                 for (i = 0, j = 0; i < 8; i++) {
2898                         mdef = er32(MDEF(i));
2899
2900                         /* Ignore filters with anything other than IPMI ports */
2901                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902                                 continue;
2903
2904                         /* Enable this decision filter in MANC2H */
2905                         if (mdef)
2906                                 manc2h |= BIT(i);
2907
2908                         j |= mdef;
2909                 }
2910
2911                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912                         break;
2913
2914                 /* Create new decision filter in an empty filter */
2915                 for (i = 0, j = 0; i < 8; i++)
2916                         if (er32(MDEF(i)) == 0) {
2917                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918                                                E1000_MDEF_PORT_664));
2919                                 manc2h |= BIT(1);
2920                                 j++;
2921                                 break;
2922                         }
2923
2924                 if (!j)
2925                         e_warn("Unable to create IPMI pass-through filter\n");
2926                 break;
2927         }
2928
2929         ew32(MANC2H, manc2h);
2930         ew32(MANC, manc);
2931 }
2932
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_ring *tx_ring = adapter->tx_ring;
2943         u64 tdba;
2944         u32 tdlen, tctl, tarc;
2945
2946         /* Setup the HW Tx Head and Tail descriptor pointers */
2947         tdba = tx_ring->dma;
2948         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950         ew32(TDBAH(0), (tdba >> 32));
2951         ew32(TDLEN(0), tdlen);
2952         ew32(TDH(0), 0);
2953         ew32(TDT(0), 0);
2954         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957         writel(0, tx_ring->head);
2958         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2959                 e1000e_update_tdt_wa(tx_ring, 0);
2960         else
2961                 writel(0, tx_ring->tail);
2962
2963         /* Set the Tx Interrupt Delay register */
2964         ew32(TIDV, adapter->tx_int_delay);
2965         /* Tx irq moderation */
2966         ew32(TADV, adapter->tx_abs_int_delay);
2967
2968         if (adapter->flags2 & FLAG2_DMA_BURST) {
2969                 u32 txdctl = er32(TXDCTL(0));
2970
2971                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2972                             E1000_TXDCTL_WTHRESH);
2973                 /* set up some performance related parameters to encourage the
2974                  * hardware to use the bus more efficiently in bursts, depends
2975                  * on the tx_int_delay to be enabled,
2976                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977                  * hthresh = 1 ==> prefetch when one or more available
2978                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979                  * BEWARE: this seems to work but should be considered first if
2980                  * there are Tx hangs or other Tx related bugs
2981                  */
2982                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2983                 ew32(TXDCTL(0), txdctl);
2984         }
2985         /* erratum work around: set txdctl the same for both queues */
2986         ew32(TXDCTL(1), er32(TXDCTL(0)));
2987
2988         /* Program the Transmit Control Register */
2989         tctl = er32(TCTL);
2990         tctl &= ~E1000_TCTL_CT;
2991         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2992                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2993
2994         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2995                 tarc = er32(TARC(0));
2996                 /* set the speed mode bit, we'll clear it if we're not at
2997                  * gigabit link later
2998                  */
2999 #define SPEED_MODE_BIT BIT(21)
3000                 tarc |= SPEED_MODE_BIT;
3001                 ew32(TARC(0), tarc);
3002         }
3003
3004         /* errata: program both queues to unweighted RR */
3005         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3006                 tarc = er32(TARC(0));
3007                 tarc |= 1;
3008                 ew32(TARC(0), tarc);
3009                 tarc = er32(TARC(1));
3010                 tarc |= 1;
3011                 ew32(TARC(1), tarc);
3012         }
3013
3014         /* Setup Transmit Descriptor Settings for eop descriptor */
3015         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3016
3017         /* only set IDE if we are delaying interrupts using the timers */
3018         if (adapter->tx_int_delay)
3019                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3020
3021         /* enable Report Status bit */
3022         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3023
3024         ew32(TCTL, tctl);
3025
3026         hw->mac.ops.config_collision_dist(hw);
3027
3028         /* SPT and KBL Si errata workaround to avoid data corruption */
3029         if (hw->mac.type == e1000_pch_spt) {
3030                 u32 reg_val;
3031
3032                 reg_val = er32(IOSFPC);
3033                 reg_val |= E1000_RCTL_RDMTS_HEX;
3034                 ew32(IOSFPC, reg_val);
3035
3036                 reg_val = er32(TARC(0));
3037                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3038                  * Dropping the number of outstanding requests from
3039                  * 3 to 2 in order to avoid a buffer overrun.
3040                  */
3041                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3042                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3043                 ew32(TARC(0), reg_val);
3044         }
3045 }
3046
3047 /**
3048  * e1000_setup_rctl - configure the receive control registers
3049  * @adapter: Board private structure
3050  **/
3051 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3052                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3053 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3054 {
3055         struct e1000_hw *hw = &adapter->hw;
3056         u32 rctl, rfctl;
3057         u32 pages = 0;
3058
3059         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3060          * If jumbo frames not set, program related MAC/PHY registers
3061          * to h/w defaults
3062          */
3063         if (hw->mac.type >= e1000_pch2lan) {
3064                 s32 ret_val;
3065
3066                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3067                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3068                 else
3069                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3070
3071                 if (ret_val)
3072                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3073         }
3074
3075         /* Program MC offset vector base */
3076         rctl = er32(RCTL);
3077         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3078         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3079             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3080             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3081
3082         /* Do not Store bad packets */
3083         rctl &= ~E1000_RCTL_SBP;
3084
3085         /* Enable Long Packet receive */
3086         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3087                 rctl &= ~E1000_RCTL_LPE;
3088         else
3089                 rctl |= E1000_RCTL_LPE;
3090
3091         /* Some systems expect that the CRC is included in SMBUS traffic. The
3092          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3093          * host memory when this is enabled
3094          */
3095         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3096                 rctl |= E1000_RCTL_SECRC;
3097
3098         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3099         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3100                 u16 phy_data;
3101
3102                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3103                 phy_data &= 0xfff8;
3104                 phy_data |= BIT(2);
3105                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3106
3107                 e1e_rphy(hw, 22, &phy_data);
3108                 phy_data &= 0x0fff;
3109                 phy_data |= BIT(14);
3110                 e1e_wphy(hw, 0x10, 0x2823);
3111                 e1e_wphy(hw, 0x11, 0x0003);
3112                 e1e_wphy(hw, 22, phy_data);
3113         }
3114
3115         /* Setup buffer sizes */
3116         rctl &= ~E1000_RCTL_SZ_4096;
3117         rctl |= E1000_RCTL_BSEX;
3118         switch (adapter->rx_buffer_len) {
3119         case 2048:
3120         default:
3121                 rctl |= E1000_RCTL_SZ_2048;
3122                 rctl &= ~E1000_RCTL_BSEX;
3123                 break;
3124         case 4096:
3125                 rctl |= E1000_RCTL_SZ_4096;
3126                 break;
3127         case 8192:
3128                 rctl |= E1000_RCTL_SZ_8192;
3129                 break;
3130         case 16384:
3131                 rctl |= E1000_RCTL_SZ_16384;
3132                 break;
3133         }
3134
3135         /* Enable Extended Status in all Receive Descriptors */
3136         rfctl = er32(RFCTL);
3137         rfctl |= E1000_RFCTL_EXTEN;
3138         ew32(RFCTL, rfctl);
3139
3140         /* 82571 and greater support packet-split where the protocol
3141          * header is placed in skb->data and the packet data is
3142          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3143          * In the case of a non-split, skb->data is linearly filled,
3144          * followed by the page buffers.  Therefore, skb->data is
3145          * sized to hold the largest protocol header.
3146          *
3147          * allocations using alloc_page take too long for regular MTU
3148          * so only enable packet split for jumbo frames
3149          *
3150          * Using pages when the page size is greater than 16k wastes
3151          * a lot of memory, since we allocate 3 pages at all times
3152          * per packet.
3153          */
3154         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3155         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3156                 adapter->rx_ps_pages = pages;
3157         else
3158                 adapter->rx_ps_pages = 0;
3159
3160         if (adapter->rx_ps_pages) {
3161                 u32 psrctl = 0;
3162
3163                 /* Enable Packet split descriptors */
3164                 rctl |= E1000_RCTL_DTYP_PS;
3165
3166                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3167
3168                 switch (adapter->rx_ps_pages) {
3169                 case 3:
3170                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3171                         /* fall-through */
3172                 case 2:
3173                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3174                         /* fall-through */
3175                 case 1:
3176                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3177                         break;
3178                 }
3179
3180                 ew32(PSRCTL, psrctl);
3181         }
3182
3183         /* This is useful for sniffing bad packets. */
3184         if (adapter->netdev->features & NETIF_F_RXALL) {
3185                 /* UPE and MPE will be handled by normal PROMISC logic
3186                  * in e1000e_set_rx_mode
3187                  */
3188                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3189                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3190                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3191
3192                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3193                           E1000_RCTL_DPF |      /* Allow filtered pause */
3194                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3195                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3196                  * and that breaks VLANs.
3197                  */
3198         }
3199
3200         ew32(RCTL, rctl);
3201         /* just started the receive unit, no need to restart */
3202         adapter->flags &= ~FLAG_RESTART_NOW;
3203 }
3204
3205 /**
3206  * e1000_configure_rx - Configure Receive Unit after Reset
3207  * @adapter: board private structure
3208  *
3209  * Configure the Rx unit of the MAC after a reset.
3210  **/
3211 static void e1000_configure_rx(struct e1000_adapter *adapter)
3212 {
3213         struct e1000_hw *hw = &adapter->hw;
3214         struct e1000_ring *rx_ring = adapter->rx_ring;
3215         u64 rdba;
3216         u32 rdlen, rctl, rxcsum, ctrl_ext;
3217
3218         if (adapter->rx_ps_pages) {
3219                 /* this is a 32 byte descriptor */
3220                 rdlen = rx_ring->count *
3221                     sizeof(union e1000_rx_desc_packet_split);
3222                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3223                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3224         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3225                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3226                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3227                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3228         } else {
3229                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3230                 adapter->clean_rx = e1000_clean_rx_irq;
3231                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3232         }
3233
3234         /* disable receives while setting up the descriptors */
3235         rctl = er32(RCTL);
3236         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3237                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3238         e1e_flush();
3239         usleep_range(10000, 20000);
3240
3241         if (adapter->flags2 & FLAG2_DMA_BURST) {
3242                 /* set the writeback threshold (only takes effect if the RDTR
3243                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3244                  * enable prefetching of 0x20 Rx descriptors
3245                  * granularity = 01
3246                  * wthresh = 04,
3247                  * hthresh = 04,
3248                  * pthresh = 0x20
3249                  */
3250                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3251                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3252         }
3253
3254         /* set the Receive Delay Timer Register */
3255         ew32(RDTR, adapter->rx_int_delay);
3256
3257         /* irq moderation */
3258         ew32(RADV, adapter->rx_abs_int_delay);
3259         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3260                 e1000e_write_itr(adapter, adapter->itr);
3261
3262         ctrl_ext = er32(CTRL_EXT);
3263         /* Auto-Mask interrupts upon ICR access */
3264         ctrl_ext |= E1000_CTRL_EXT_IAME;
3265         ew32(IAM, 0xffffffff);
3266         ew32(CTRL_EXT, ctrl_ext);
3267         e1e_flush();
3268
3269         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3270          * the Base and Length of the Rx Descriptor Ring
3271          */
3272         rdba = rx_ring->dma;
3273         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3274         ew32(RDBAH(0), (rdba >> 32));
3275         ew32(RDLEN(0), rdlen);
3276         ew32(RDH(0), 0);
3277         ew32(RDT(0), 0);
3278         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3279         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3280
3281         writel(0, rx_ring->head);
3282         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3283                 e1000e_update_rdt_wa(rx_ring, 0);
3284         else
3285                 writel(0, rx_ring->tail);
3286
3287         /* Enable Receive Checksum Offload for TCP and UDP */
3288         rxcsum = er32(RXCSUM);
3289         if (adapter->netdev->features & NETIF_F_RXCSUM)
3290                 rxcsum |= E1000_RXCSUM_TUOFL;
3291         else
3292                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3293         ew32(RXCSUM, rxcsum);
3294
3295         /* With jumbo frames, excessive C-state transition latencies result
3296          * in dropped transactions.
3297          */
3298         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3299                 u32 lat =
3300                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3301                      adapter->max_frame_size) * 8 / 1000;
3302
3303                 if (adapter->flags & FLAG_IS_ICH) {
3304                         u32 rxdctl = er32(RXDCTL(0));
3305
3306                         ew32(RXDCTL(0), rxdctl | 0x3);
3307                 }
3308
3309                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3310         } else {
3311                 pm_qos_update_request(&adapter->pm_qos_req,
3312                                       PM_QOS_DEFAULT_VALUE);
3313         }
3314
3315         /* Enable Receives */
3316         ew32(RCTL, rctl);
3317 }
3318
3319 /**
3320  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3321  * @netdev: network interface device structure
3322  *
3323  * Writes multicast address list to the MTA hash table.
3324  * Returns: -ENOMEM on failure
3325  *                0 on no addresses written
3326  *                X on writing X addresses to MTA
3327  */
3328 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3329 {
3330         struct e1000_adapter *adapter = netdev_priv(netdev);
3331         struct e1000_hw *hw = &adapter->hw;
3332         struct netdev_hw_addr *ha;
3333         u8 *mta_list;
3334         int i;
3335
3336         if (netdev_mc_empty(netdev)) {
3337                 /* nothing to program, so clear mc list */
3338                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3339                 return 0;
3340         }
3341
3342         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3343         if (!mta_list)
3344                 return -ENOMEM;
3345
3346         /* update_mc_addr_list expects a packed array of only addresses. */
3347         i = 0;
3348         netdev_for_each_mc_addr(ha, netdev)
3349             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3350
3351         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3352         kfree(mta_list);
3353
3354         return netdev_mc_count(netdev);
3355 }
3356
3357 /**
3358  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3359  * @netdev: network interface device structure
3360  *
3361  * Writes unicast address list to the RAR table.
3362  * Returns: -ENOMEM on failure/insufficient address space
3363  *                0 on no addresses written
3364  *                X on writing X addresses to the RAR table
3365  **/
3366 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3367 {
3368         struct e1000_adapter *adapter = netdev_priv(netdev);
3369         struct e1000_hw *hw = &adapter->hw;
3370         unsigned int rar_entries;
3371         int count = 0;
3372
3373         rar_entries = hw->mac.ops.rar_get_count(hw);
3374
3375         /* save a rar entry for our hardware address */
3376         rar_entries--;
3377
3378         /* save a rar entry for the LAA workaround */
3379         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3380                 rar_entries--;
3381
3382         /* return ENOMEM indicating insufficient memory for addresses */
3383         if (netdev_uc_count(netdev) > rar_entries)
3384                 return -ENOMEM;
3385
3386         if (!netdev_uc_empty(netdev) && rar_entries) {
3387                 struct netdev_hw_addr *ha;
3388
3389                 /* write the addresses in reverse order to avoid write
3390                  * combining
3391                  */
3392                 netdev_for_each_uc_addr(ha, netdev) {
3393                         int ret_val;
3394
3395                         if (!rar_entries)
3396                                 break;
3397                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3398                         if (ret_val < 0)
3399                                 return -ENOMEM;
3400                         count++;
3401                 }
3402         }
3403
3404         /* zero out the remaining RAR entries not used above */
3405         for (; rar_entries > 0; rar_entries--) {
3406                 ew32(RAH(rar_entries), 0);
3407                 ew32(RAL(rar_entries), 0);
3408         }
3409         e1e_flush();
3410
3411         return count;
3412 }
3413
3414 /**
3415  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3416  * @netdev: network interface device structure
3417  *
3418  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3419  * address list or the network interface flags are updated.  This routine is
3420  * responsible for configuring the hardware for proper unicast, multicast,
3421  * promiscuous mode, and all-multi behavior.
3422  **/
3423 static void e1000e_set_rx_mode(struct net_device *netdev)
3424 {
3425         struct e1000_adapter *adapter = netdev_priv(netdev);
3426         struct e1000_hw *hw = &adapter->hw;
3427         u32 rctl;
3428
3429         if (pm_runtime_suspended(netdev->dev.parent))
3430                 return;
3431
3432         /* Check for Promiscuous and All Multicast modes */
3433         rctl = er32(RCTL);
3434
3435         /* clear the affected bits */
3436         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3437
3438         if (netdev->flags & IFF_PROMISC) {
3439                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3440                 /* Do not hardware filter VLANs in promisc mode */
3441                 e1000e_vlan_filter_disable(adapter);
3442         } else {
3443                 int count;
3444
3445                 if (netdev->flags & IFF_ALLMULTI) {
3446                         rctl |= E1000_RCTL_MPE;
3447                 } else {
3448                         /* Write addresses to the MTA, if the attempt fails
3449                          * then we should just turn on promiscuous mode so
3450                          * that we can at least receive multicast traffic
3451                          */
3452                         count = e1000e_write_mc_addr_list(netdev);
3453                         if (count < 0)
3454                                 rctl |= E1000_RCTL_MPE;
3455                 }
3456                 e1000e_vlan_filter_enable(adapter);
3457                 /* Write addresses to available RAR registers, if there is not
3458                  * sufficient space to store all the addresses then enable
3459                  * unicast promiscuous mode
3460                  */
3461                 count = e1000e_write_uc_addr_list(netdev);
3462                 if (count < 0)
3463                         rctl |= E1000_RCTL_UPE;
3464         }
3465
3466         ew32(RCTL, rctl);
3467
3468         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3469                 e1000e_vlan_strip_enable(adapter);
3470         else
3471                 e1000e_vlan_strip_disable(adapter);
3472 }
3473
3474 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3475 {
3476         struct e1000_hw *hw = &adapter->hw;
3477         u32 mrqc, rxcsum;
3478         u32 rss_key[10];
3479         int i;
3480
3481         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3482         for (i = 0; i < 10; i++)
3483                 ew32(RSSRK(i), rss_key[i]);
3484
3485         /* Direct all traffic to queue 0 */
3486         for (i = 0; i < 32; i++)
3487                 ew32(RETA(i), 0);
3488
3489         /* Disable raw packet checksumming so that RSS hash is placed in
3490          * descriptor on writeback.
3491          */
3492         rxcsum = er32(RXCSUM);
3493         rxcsum |= E1000_RXCSUM_PCSD;
3494
3495         ew32(RXCSUM, rxcsum);
3496
3497         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3498                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3499                 E1000_MRQC_RSS_FIELD_IPV6 |
3500                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3501                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3502
3503         ew32(MRQC, mrqc);
3504 }
3505
3506 /**
3507  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3508  * @adapter: board private structure
3509  * @timinca: pointer to returned time increment attributes
3510  *
3511  * Get attributes for incrementing the System Time Register SYSTIML/H at
3512  * the default base frequency, and set the cyclecounter shift value.
3513  **/
3514 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3515 {
3516         struct e1000_hw *hw = &adapter->hw;
3517         u32 incvalue, incperiod, shift;
3518
3519         /* Make sure clock is enabled on I217/I218/I219  before checking
3520          * the frequency
3521          */
3522         if ((hw->mac.type >= e1000_pch_lpt) &&
3523             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3524             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3525                 u32 fextnvm7 = er32(FEXTNVM7);
3526
3527                 if (!(fextnvm7 & BIT(0))) {
3528                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3529                         e1e_flush();
3530                 }
3531         }
3532
3533         switch (hw->mac.type) {
3534         case e1000_pch2lan:
3535                 /* Stable 96MHz frequency */
3536                 incperiod = INCPERIOD_96MHZ;
3537                 incvalue = INCVALUE_96MHZ;
3538                 shift = INCVALUE_SHIFT_96MHZ;
3539                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3540                 break;
3541         case e1000_pch_lpt:
3542                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3543                         /* Stable 96MHz frequency */
3544                         incperiod = INCPERIOD_96MHZ;
3545                         incvalue = INCVALUE_96MHZ;
3546                         shift = INCVALUE_SHIFT_96MHZ;
3547                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3548                 } else {
3549                         /* Stable 25MHz frequency */
3550                         incperiod = INCPERIOD_25MHZ;
3551                         incvalue = INCVALUE_25MHZ;
3552                         shift = INCVALUE_SHIFT_25MHZ;
3553                         adapter->cc.shift = shift;
3554                 }
3555                 break;
3556         case e1000_pch_spt:
3557                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3558                         /* Stable 24MHz frequency */
3559                         incperiod = INCPERIOD_24MHZ;
3560                         incvalue = INCVALUE_24MHZ;
3561                         shift = INCVALUE_SHIFT_24MHZ;
3562                         adapter->cc.shift = shift;
3563                         break;
3564                 }
3565                 return -EINVAL;
3566         case e1000_pch_cnp:
3567                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3568                         /* Stable 24MHz frequency */
3569                         incperiod = INCPERIOD_24MHZ;
3570                         incvalue = INCVALUE_24MHZ;
3571                         shift = INCVALUE_SHIFT_24MHZ;
3572                         adapter->cc.shift = shift;
3573                 } else {
3574                         /* Stable 38400KHz frequency */
3575                         incperiod = INCPERIOD_38400KHZ;
3576                         incvalue = INCVALUE_38400KHZ;
3577                         shift = INCVALUE_SHIFT_38400KHZ;
3578                         adapter->cc.shift = shift;
3579                 }
3580                 break;
3581         case e1000_82574:
3582         case e1000_82583:
3583                 /* Stable 25MHz frequency */
3584                 incperiod = INCPERIOD_25MHZ;
3585                 incvalue = INCVALUE_25MHZ;
3586                 shift = INCVALUE_SHIFT_25MHZ;
3587                 adapter->cc.shift = shift;
3588                 break;
3589         default:
3590                 return -EINVAL;
3591         }
3592
3593         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3594                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3595
3596         return 0;
3597 }
3598
3599 /**
3600  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3601  * @adapter: board private structure
3602  *
3603  * Outgoing time stamping can be enabled and disabled. Play nice and
3604  * disable it when requested, although it shouldn't cause any overhead
3605  * when no packet needs it. At most one packet in the queue may be
3606  * marked for time stamping, otherwise it would be impossible to tell
3607  * for sure to which packet the hardware time stamp belongs.
3608  *
3609  * Incoming time stamping has to be configured via the hardware filters.
3610  * Not all combinations are supported, in particular event type has to be
3611  * specified. Matching the kind of event packet is not supported, with the
3612  * exception of "all V2 events regardless of level 2 or 4".
3613  **/
3614 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3615                                   struct hwtstamp_config *config)
3616 {
3617         struct e1000_hw *hw = &adapter->hw;
3618         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3619         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3620         u32 rxmtrl = 0;
3621         u16 rxudp = 0;
3622         bool is_l4 = false;
3623         bool is_l2 = false;
3624         u32 regval;
3625
3626         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3627                 return -EINVAL;
3628
3629         /* flags reserved for future extensions - must be zero */
3630         if (config->flags)
3631                 return -EINVAL;
3632
3633         switch (config->tx_type) {
3634         case HWTSTAMP_TX_OFF:
3635                 tsync_tx_ctl = 0;
3636                 break;
3637         case HWTSTAMP_TX_ON:
3638                 break;
3639         default:
3640                 return -ERANGE;
3641         }
3642
3643         switch (config->rx_filter) {
3644         case HWTSTAMP_FILTER_NONE:
3645                 tsync_rx_ctl = 0;
3646                 break;
3647         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3648                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3649                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3650                 is_l4 = true;
3651                 break;
3652         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3653                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3654                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3655                 is_l4 = true;
3656                 break;
3657         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3658                 /* Also time stamps V2 L2 Path Delay Request/Response */
3659                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3660                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661                 is_l2 = true;
3662                 break;
3663         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3664                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3665                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3666                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3667                 is_l2 = true;
3668                 break;
3669         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3670                 /* Hardware cannot filter just V2 L4 Sync messages;
3671                  * fall-through to V2 (both L2 and L4) Sync.
3672                  */
3673         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3674                 /* Also time stamps V2 Path Delay Request/Response. */
3675                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3676                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3677                 is_l2 = true;
3678                 is_l4 = true;
3679                 break;
3680         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3681                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3682                  * fall-through to V2 (both L2 and L4) Delay Request.
3683                  */
3684         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3685                 /* Also time stamps V2 Path Delay Request/Response. */
3686                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3687                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3688                 is_l2 = true;
3689                 is_l4 = true;
3690                 break;
3691         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3692         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3693                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3694                  * fall-through to all V2 (both L2 and L4) Events.
3695                  */
3696         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3697                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3698                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3699                 is_l2 = true;
3700                 is_l4 = true;
3701                 break;
3702         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3703                 /* For V1, the hardware can only filter Sync messages or
3704                  * Delay Request messages but not both so fall-through to
3705                  * time stamp all packets.
3706                  */
3707         case HWTSTAMP_FILTER_NTP_ALL:
3708         case HWTSTAMP_FILTER_ALL:
3709                 is_l2 = true;
3710                 is_l4 = true;
3711                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3712                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3713                 break;
3714         default:
3715                 return -ERANGE;
3716         }
3717
3718         adapter->hwtstamp_config = *config;
3719
3720         /* enable/disable Tx h/w time stamping */
3721         regval = er32(TSYNCTXCTL);
3722         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3723         regval |= tsync_tx_ctl;
3724         ew32(TSYNCTXCTL, regval);
3725         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3726             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3727                 e_err("Timesync Tx Control register not set as expected\n");
3728                 return -EAGAIN;
3729         }
3730
3731         /* enable/disable Rx h/w time stamping */
3732         regval = er32(TSYNCRXCTL);
3733         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3734         regval |= tsync_rx_ctl;
3735         ew32(TSYNCRXCTL, regval);
3736         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3737                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3738             (regval & (E1000_TSYNCRXCTL_ENABLED |
3739                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3740                 e_err("Timesync Rx Control register not set as expected\n");
3741                 return -EAGAIN;
3742         }
3743
3744         /* L2: define ethertype filter for time stamped packets */
3745         if (is_l2)
3746                 rxmtrl |= ETH_P_1588;
3747
3748         /* define which PTP packets get time stamped */
3749         ew32(RXMTRL, rxmtrl);
3750
3751         /* Filter by destination port */
3752         if (is_l4) {
3753                 rxudp = PTP_EV_PORT;
3754                 cpu_to_be16s(&rxudp);
3755         }
3756         ew32(RXUDP, rxudp);
3757
3758         e1e_flush();
3759
3760         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3761         er32(RXSTMPH);
3762         er32(TXSTMPH);
3763
3764         return 0;
3765 }
3766
3767 /**
3768  * e1000_configure - configure the hardware for Rx and Tx
3769  * @adapter: private board structure
3770  **/
3771 static void e1000_configure(struct e1000_adapter *adapter)
3772 {
3773         struct e1000_ring *rx_ring = adapter->rx_ring;
3774
3775         e1000e_set_rx_mode(adapter->netdev);
3776
3777         e1000_restore_vlan(adapter);
3778         e1000_init_manageability_pt(adapter);
3779
3780         e1000_configure_tx(adapter);
3781
3782         if (adapter->netdev->features & NETIF_F_RXHASH)
3783                 e1000e_setup_rss_hash(adapter);
3784         e1000_setup_rctl(adapter);
3785         e1000_configure_rx(adapter);
3786         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3787 }
3788
3789 /**
3790  * e1000e_power_up_phy - restore link in case the phy was powered down
3791  * @adapter: address of board private structure
3792  *
3793  * The phy may be powered down to save power and turn off link when the
3794  * driver is unloaded and wake on lan is not enabled (among others)
3795  * *** this routine MUST be followed by a call to e1000e_reset ***
3796  **/
3797 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3798 {
3799         if (adapter->hw.phy.ops.power_up)
3800                 adapter->hw.phy.ops.power_up(&adapter->hw);
3801
3802         adapter->hw.mac.ops.setup_link(&adapter->hw);
3803 }
3804
3805 /**
3806  * e1000_power_down_phy - Power down the PHY
3807  *
3808  * Power down the PHY so no link is implied when interface is down.
3809  * The PHY cannot be powered down if management or WoL is active.
3810  */
3811 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3812 {
3813         if (adapter->hw.phy.ops.power_down)
3814                 adapter->hw.phy.ops.power_down(&adapter->hw);
3815 }
3816
3817 /**
3818  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3819  *
3820  * We want to clear all pending descriptors from the TX ring.
3821  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3822  * the data of the next descriptor. We don't care about the data we are about
3823  * to reset the HW.
3824  */
3825 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3826 {
3827         struct e1000_hw *hw = &adapter->hw;
3828         struct e1000_ring *tx_ring = adapter->tx_ring;
3829         struct e1000_tx_desc *tx_desc = NULL;
3830         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3831         u16 size = 512;
3832
3833         tctl = er32(TCTL);
3834         ew32(TCTL, tctl | E1000_TCTL_EN);
3835         tdt = er32(TDT(0));
3836         BUG_ON(tdt != tx_ring->next_to_use);
3837         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3838         tx_desc->buffer_addr = tx_ring->dma;
3839
3840         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3841         tx_desc->upper.data = 0;
3842         /* flush descriptors to memory before notifying the HW */
3843         wmb();
3844         tx_ring->next_to_use++;
3845         if (tx_ring->next_to_use == tx_ring->count)
3846                 tx_ring->next_to_use = 0;
3847         ew32(TDT(0), tx_ring->next_to_use);
3848         mmiowb();
3849         usleep_range(200, 250);
3850 }
3851
3852 /**
3853  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3854  *
3855  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3856  */
3857 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3858 {
3859         u32 rctl, rxdctl;
3860         struct e1000_hw *hw = &adapter->hw;
3861
3862         rctl = er32(RCTL);
3863         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3864         e1e_flush();
3865         usleep_range(100, 150);
3866
3867         rxdctl = er32(RXDCTL(0));
3868         /* zero the lower 14 bits (prefetch and host thresholds) */
3869         rxdctl &= 0xffffc000;
3870
3871         /* update thresholds: prefetch threshold to 31, host threshold to 1
3872          * and make sure the granularity is "descriptors" and not "cache lines"
3873          */
3874         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3875
3876         ew32(RXDCTL(0), rxdctl);
3877         /* momentarily enable the RX ring for the changes to take effect */
3878         ew32(RCTL, rctl | E1000_RCTL_EN);
3879         e1e_flush();
3880         usleep_range(100, 150);
3881         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3882 }
3883
3884 /**
3885  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3886  *
3887  * In i219, the descriptor rings must be emptied before resetting the HW
3888  * or before changing the device state to D3 during runtime (runtime PM).
3889  *
3890  * Failure to do this will cause the HW to enter a unit hang state which can
3891  * only be released by PCI reset on the device
3892  *
3893  */
3894
3895 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3896 {
3897         u16 hang_state;
3898         u32 fext_nvm11, tdlen;
3899         struct e1000_hw *hw = &adapter->hw;
3900
3901         /* First, disable MULR fix in FEXTNVM11 */
3902         fext_nvm11 = er32(FEXTNVM11);
3903         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3904         ew32(FEXTNVM11, fext_nvm11);
3905         /* do nothing if we're not in faulty state, or if the queue is empty */
3906         tdlen = er32(TDLEN(0));
3907         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3908                              &hang_state);
3909         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3910                 return;
3911         e1000_flush_tx_ring(adapter);
3912         /* recheck, maybe the fault is caused by the rx ring */
3913         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3914                              &hang_state);
3915         if (hang_state & FLUSH_DESC_REQUIRED)
3916                 e1000_flush_rx_ring(adapter);
3917 }
3918
3919 /**
3920  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3921  * @adapter: board private structure
3922  *
3923  * When the MAC is reset, all hardware bits for timesync will be reset to the
3924  * default values. This function will restore the settings last in place.
3925  * Since the clock SYSTIME registers are reset, we will simply restore the
3926  * cyclecounter to the kernel real clock time.
3927  **/
3928 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3929 {
3930         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3931         struct e1000_hw *hw = &adapter->hw;
3932         unsigned long flags;
3933         u32 timinca;
3934         s32 ret_val;
3935
3936         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3937                 return;
3938
3939         if (info->adjfreq) {
3940                 /* restore the previous ptp frequency delta */
3941                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3942         } else {
3943                 /* set the default base frequency if no adjustment possible */
3944                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3945                 if (!ret_val)
3946                         ew32(TIMINCA, timinca);
3947         }
3948
3949         if (ret_val) {
3950                 dev_warn(&adapter->pdev->dev,
3951                          "Failed to restore TIMINCA clock rate delta: %d\n",
3952                          ret_val);
3953                 return;
3954         }
3955
3956         /* reset the systim ns time counter */
3957         spin_lock_irqsave(&adapter->systim_lock, flags);
3958         timecounter_init(&adapter->tc, &adapter->cc,
3959                          ktime_to_ns(ktime_get_real()));
3960         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3961
3962         /* restore the previous hwtstamp configuration settings */
3963         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3964 }
3965
3966 /**
3967  * e1000e_reset - bring the hardware into a known good state
3968  *
3969  * This function boots the hardware and enables some settings that
3970  * require a configuration cycle of the hardware - those cannot be
3971  * set/changed during runtime. After reset the device needs to be
3972  * properly configured for Rx, Tx etc.
3973  */
3974 void e1000e_reset(struct e1000_adapter *adapter)
3975 {
3976         struct e1000_mac_info *mac = &adapter->hw.mac;
3977         struct e1000_fc_info *fc = &adapter->hw.fc;
3978         struct e1000_hw *hw = &adapter->hw;
3979         u32 tx_space, min_tx_space, min_rx_space;
3980         u32 pba = adapter->pba;
3981         u16 hwm;
3982
3983         /* reset Packet Buffer Allocation to default */
3984         ew32(PBA, pba);
3985
3986         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3987                 /* To maintain wire speed transmits, the Tx FIFO should be
3988                  * large enough to accommodate two full transmit packets,
3989                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3990                  * the Rx FIFO should be large enough to accommodate at least
3991                  * one full receive packet and is similarly rounded up and
3992                  * expressed in KB.
3993                  */
3994                 pba = er32(PBA);
3995                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3996                 tx_space = pba >> 16;
3997                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3998                 pba &= 0xffff;
3999                 /* the Tx fifo also stores 16 bytes of information about the Tx
4000                  * but don't include ethernet FCS because hardware appends it
4001                  */
4002                 min_tx_space = (adapter->max_frame_size +
4003                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4004                 min_tx_space = ALIGN(min_tx_space, 1024);
4005                 min_tx_space >>= 10;
4006                 /* software strips receive CRC, so leave room for it */
4007                 min_rx_space = adapter->max_frame_size;
4008                 min_rx_space = ALIGN(min_rx_space, 1024);
4009                 min_rx_space >>= 10;
4010
4011                 /* If current Tx allocation is less than the min Tx FIFO size,
4012                  * and the min Tx FIFO size is less than the current Rx FIFO
4013                  * allocation, take space away from current Rx allocation
4014                  */
4015                 if ((tx_space < min_tx_space) &&
4016                     ((min_tx_space - tx_space) < pba)) {
4017                         pba -= min_tx_space - tx_space;
4018
4019                         /* if short on Rx space, Rx wins and must trump Tx
4020                          * adjustment
4021                          */
4022                         if (pba < min_rx_space)
4023                                 pba = min_rx_space;
4024                 }
4025
4026                 ew32(PBA, pba);
4027         }
4028
4029         /* flow control settings
4030          *
4031          * The high water mark must be low enough to fit one full frame
4032          * (or the size used for early receive) above it in the Rx FIFO.
4033          * Set it to the lower of:
4034          * - 90% of the Rx FIFO size, and
4035          * - the full Rx FIFO size minus one full frame
4036          */
4037         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4038                 fc->pause_time = 0xFFFF;
4039         else
4040                 fc->pause_time = E1000_FC_PAUSE_TIME;
4041         fc->send_xon = true;
4042         fc->current_mode = fc->requested_mode;
4043
4044         switch (hw->mac.type) {
4045         case e1000_ich9lan:
4046         case e1000_ich10lan:
4047                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4048                         pba = 14;
4049                         ew32(PBA, pba);
4050                         fc->high_water = 0x2800;
4051                         fc->low_water = fc->high_water - 8;
4052                         break;
4053                 }
4054                 /* fall-through */
4055         default:
4056                 hwm = min(((pba << 10) * 9 / 10),
4057                           ((pba << 10) - adapter->max_frame_size));
4058
4059                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4060                 fc->low_water = fc->high_water - 8;
4061                 break;
4062         case e1000_pchlan:
4063                 /* Workaround PCH LOM adapter hangs with certain network
4064                  * loads.  If hangs persist, try disabling Tx flow control.
4065                  */
4066                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4067                         fc->high_water = 0x3500;
4068                         fc->low_water = 0x1500;
4069                 } else {
4070                         fc->high_water = 0x5000;
4071                         fc->low_water = 0x3000;
4072                 }
4073                 fc->refresh_time = 0x1000;
4074                 break;
4075         case e1000_pch2lan:
4076         case e1000_pch_lpt:
4077         case e1000_pch_spt:
4078         case e1000_pch_cnp:
4079                 fc->refresh_time = 0x0400;
4080
4081                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4082                         fc->high_water = 0x05C20;
4083                         fc->low_water = 0x05048;
4084                         fc->pause_time = 0x0650;
4085                         break;
4086                 }
4087
4088                 pba = 14;
4089                 ew32(PBA, pba);
4090                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4091                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4092                 break;
4093         }
4094
4095         /* Alignment of Tx data is on an arbitrary byte boundary with the
4096          * maximum size per Tx descriptor limited only to the transmit
4097          * allocation of the packet buffer minus 96 bytes with an upper
4098          * limit of 24KB due to receive synchronization limitations.
4099          */
4100         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4101                                        24 << 10);
4102
4103         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4104          * fit in receive buffer.
4105          */
4106         if (adapter->itr_setting & 0x3) {
4107                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4108                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4109                                 dev_info(&adapter->pdev->dev,
4110                                          "Interrupt Throttle Rate off\n");
4111                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4112                                 e1000e_write_itr(adapter, 0);
4113                         }
4114                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4115                         dev_info(&adapter->pdev->dev,
4116                                  "Interrupt Throttle Rate on\n");
4117                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4118                         adapter->itr = 20000;
4119                         e1000e_write_itr(adapter, adapter->itr);
4120                 }
4121         }
4122
4123         if (hw->mac.type >= e1000_pch_spt)
4124                 e1000_flush_desc_rings(adapter);
4125         /* Allow time for pending master requests to run */
4126         mac->ops.reset_hw(hw);
4127
4128         /* For parts with AMT enabled, let the firmware know
4129          * that the network interface is in control
4130          */
4131         if (adapter->flags & FLAG_HAS_AMT)
4132                 e1000e_get_hw_control(adapter);
4133
4134         ew32(WUC, 0);
4135
4136         if (mac->ops.init_hw(hw))
4137                 e_err("Hardware Error\n");
4138
4139         e1000_update_mng_vlan(adapter);
4140
4141         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4142         ew32(VET, ETH_P_8021Q);
4143
4144         e1000e_reset_adaptive(hw);
4145
4146         /* restore systim and hwtstamp settings */
4147         e1000e_systim_reset(adapter);
4148
4149         /* Set EEE advertisement as appropriate */
4150         if (adapter->flags2 & FLAG2_HAS_EEE) {
4151                 s32 ret_val;
4152                 u16 adv_addr;
4153
4154                 switch (hw->phy.type) {
4155                 case e1000_phy_82579:
4156                         adv_addr = I82579_EEE_ADVERTISEMENT;
4157                         break;
4158                 case e1000_phy_i217:
4159                         adv_addr = I217_EEE_ADVERTISEMENT;
4160                         break;
4161                 default:
4162                         dev_err(&adapter->pdev->dev,
4163                                 "Invalid PHY type setting EEE advertisement\n");
4164                         return;
4165                 }
4166
4167                 ret_val = hw->phy.ops.acquire(hw);
4168                 if (ret_val) {
4169                         dev_err(&adapter->pdev->dev,
4170                                 "EEE advertisement - unable to acquire PHY\n");
4171                         return;
4172                 }
4173
4174                 e1000_write_emi_reg_locked(hw, adv_addr,
4175                                            hw->dev_spec.ich8lan.eee_disable ?
4176                                            0 : adapter->eee_advert);
4177
4178                 hw->phy.ops.release(hw);
4179         }
4180
4181         if (!netif_running(adapter->netdev) &&
4182             !test_bit(__E1000_TESTING, &adapter->state))
4183                 e1000_power_down_phy(adapter);
4184
4185         e1000_get_phy_info(hw);
4186
4187         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4188             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4189                 u16 phy_data = 0;
4190                 /* speed up time to link by disabling smart power down, ignore
4191                  * the return value of this function because there is nothing
4192                  * different we would do if it failed
4193                  */
4194                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4195                 phy_data &= ~IGP02E1000_PM_SPD;
4196                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4197         }
4198         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4199                 u32 reg;
4200
4201                 /* Fextnvm7 @ 0xe4[2] = 1 */
4202                 reg = er32(FEXTNVM7);
4203                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4204                 ew32(FEXTNVM7, reg);
4205                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4206                 reg = er32(FEXTNVM9);
4207                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4208                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4209                 ew32(FEXTNVM9, reg);
4210         }
4211
4212 }
4213
4214 /**
4215  * e1000e_trigger_lsc - trigger an LSC interrupt
4216  * @adapter: 
4217  *
4218  * Fire a link status change interrupt to start the watchdog.
4219  **/
4220 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4221 {
4222         struct e1000_hw *hw = &adapter->hw;
4223
4224         if (adapter->msix_entries)
4225                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4226         else
4227                 ew32(ICS, E1000_ICS_LSC);
4228 }
4229
4230 void e1000e_up(struct e1000_adapter *adapter)
4231 {
4232         /* hardware has been reset, we need to reload some things */
4233         e1000_configure(adapter);
4234
4235         clear_bit(__E1000_DOWN, &adapter->state);
4236
4237         if (adapter->msix_entries)
4238                 e1000_configure_msix(adapter);
4239         e1000_irq_enable(adapter);
4240
4241         netif_start_queue(adapter->netdev);
4242
4243         e1000e_trigger_lsc(adapter);
4244 }
4245
4246 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4247 {
4248         struct e1000_hw *hw = &adapter->hw;
4249
4250         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4251                 return;
4252
4253         /* flush pending descriptor writebacks to memory */
4254         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256
4257         /* execute the writes immediately */
4258         e1e_flush();
4259
4260         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4261          * write is successful
4262          */
4263         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4264         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4265
4266         /* execute the writes immediately */
4267         e1e_flush();
4268 }
4269
4270 static void e1000e_update_stats(struct e1000_adapter *adapter);
4271
4272 /**
4273  * e1000e_down - quiesce the device and optionally reset the hardware
4274  * @adapter: board private structure
4275  * @reset: boolean flag to reset the hardware or not
4276  */
4277 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4278 {
4279         struct net_device *netdev = adapter->netdev;
4280         struct e1000_hw *hw = &adapter->hw;
4281         u32 tctl, rctl;
4282
4283         /* signal that we're down so the interrupt handler does not
4284          * reschedule our watchdog timer
4285          */
4286         set_bit(__E1000_DOWN, &adapter->state);
4287
4288         netif_carrier_off(netdev);
4289
4290         /* disable receives in the hardware */
4291         rctl = er32(RCTL);
4292         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4293                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4294         /* flush and sleep below */
4295
4296         netif_stop_queue(netdev);
4297
4298         /* disable transmits in the hardware */
4299         tctl = er32(TCTL);
4300         tctl &= ~E1000_TCTL_EN;
4301         ew32(TCTL, tctl);
4302
4303         /* flush both disables and wait for them to finish */
4304         e1e_flush();
4305         usleep_range(10000, 20000);
4306
4307         e1000_irq_disable(adapter);
4308
4309         napi_synchronize(&adapter->napi);
4310
4311         del_timer_sync(&adapter->watchdog_timer);
4312         del_timer_sync(&adapter->phy_info_timer);
4313
4314         spin_lock(&adapter->stats64_lock);
4315         e1000e_update_stats(adapter);
4316         spin_unlock(&adapter->stats64_lock);
4317
4318         e1000e_flush_descriptors(adapter);
4319
4320         adapter->link_speed = 0;
4321         adapter->link_duplex = 0;
4322
4323         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4324         if ((hw->mac.type >= e1000_pch2lan) &&
4325             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4326             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4327                 e_dbg("failed to disable jumbo frame workaround mode\n");
4328
4329         if (!pci_channel_offline(adapter->pdev)) {
4330                 if (reset)
4331                         e1000e_reset(adapter);
4332                 else if (hw->mac.type >= e1000_pch_spt)
4333                         e1000_flush_desc_rings(adapter);
4334         }
4335         e1000_clean_tx_ring(adapter->tx_ring);
4336         e1000_clean_rx_ring(adapter->rx_ring);
4337 }
4338
4339 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4340 {
4341         might_sleep();
4342         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4343                 usleep_range(1000, 2000);
4344         e1000e_down(adapter, true);
4345         e1000e_up(adapter);
4346         clear_bit(__E1000_RESETTING, &adapter->state);
4347 }
4348
4349 /**
4350  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4351  * @hw: pointer to the HW structure
4352  * @systim: time value read, sanitized and returned
4353  *
4354  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4355  * check to see that the time is incrementing at a reasonable
4356  * rate and is a multiple of incvalue.
4357  **/
4358 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4359 {
4360         u64 time_delta, rem, temp;
4361         u64 systim_next;
4362         u32 incvalue;
4363         int i;
4364
4365         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4366         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4367                 /* latch SYSTIMH on read of SYSTIML */
4368                 systim_next = (u64)er32(SYSTIML);
4369                 systim_next |= (u64)er32(SYSTIMH) << 32;
4370
4371                 time_delta = systim_next - systim;
4372                 temp = time_delta;
4373                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4374                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4375
4376                 systim = systim_next;
4377
4378                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4379                         break;
4380         }
4381
4382         return systim;
4383 }
4384
4385 /**
4386  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4387  * @cc: cyclecounter structure
4388  **/
4389 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4390 {
4391         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4392                                                      cc);
4393         struct e1000_hw *hw = &adapter->hw;
4394         u32 systimel, systimeh;
4395         u64 systim;
4396         /* SYSTIMH latching upon SYSTIML read does not work well.
4397          * This means that if SYSTIML overflows after we read it but before
4398          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4399          * will experience a huge non linear increment in the systime value
4400          * to fix that we test for overflow and if true, we re-read systime.
4401          */
4402         systimel = er32(SYSTIML);
4403         systimeh = er32(SYSTIMH);
4404         /* Is systimel is so large that overflow is possible? */
4405         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4406                 u32 systimel_2 = er32(SYSTIML);
4407                 if (systimel > systimel_2) {
4408                         /* There was an overflow, read again SYSTIMH, and use
4409                          * systimel_2
4410                          */
4411                         systimeh = er32(SYSTIMH);
4412                         systimel = systimel_2;
4413                 }
4414         }
4415         systim = (u64)systimel;
4416         systim |= (u64)systimeh << 32;
4417
4418         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4419                 systim = e1000e_sanitize_systim(hw, systim);
4420
4421         return systim;
4422 }
4423
4424 /**
4425  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4426  * @adapter: board private structure to initialize
4427  *
4428  * e1000_sw_init initializes the Adapter private data structure.
4429  * Fields are initialized based on PCI device information and
4430  * OS network device settings (MTU size).
4431  **/
4432 static int e1000_sw_init(struct e1000_adapter *adapter)
4433 {
4434         struct net_device *netdev = adapter->netdev;
4435
4436         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4437         adapter->rx_ps_bsize0 = 128;
4438         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4439         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4440         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4441         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4442
4443         spin_lock_init(&adapter->stats64_lock);
4444
4445         e1000e_set_interrupt_capability(adapter);
4446
4447         if (e1000_alloc_queues(adapter))
4448                 return -ENOMEM;
4449
4450         /* Setup hardware time stamping cyclecounter */
4451         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4452                 adapter->cc.read = e1000e_cyclecounter_read;
4453                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4454                 adapter->cc.mult = 1;
4455                 /* cc.shift set in e1000e_get_base_tininca() */
4456
4457                 spin_lock_init(&adapter->systim_lock);
4458                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4459         }
4460
4461         /* Explicitly disable IRQ since the NIC can be in any state. */
4462         e1000_irq_disable(adapter);
4463
4464         set_bit(__E1000_DOWN, &adapter->state);
4465         return 0;
4466 }
4467
4468 /**
4469  * e1000_intr_msi_test - Interrupt Handler
4470  * @irq: interrupt number
4471  * @data: pointer to a network interface device structure
4472  **/
4473 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4474 {
4475         struct net_device *netdev = data;
4476         struct e1000_adapter *adapter = netdev_priv(netdev);
4477         struct e1000_hw *hw = &adapter->hw;
4478         u32 icr = er32(ICR);
4479
4480         e_dbg("icr is %08X\n", icr);
4481         if (icr & E1000_ICR_RXSEQ) {
4482                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4483                 /* Force memory writes to complete before acknowledging the
4484                  * interrupt is handled.
4485                  */
4486                 wmb();
4487         }
4488
4489         return IRQ_HANDLED;
4490 }
4491
4492 /**
4493  * e1000_test_msi_interrupt - Returns 0 for successful test
4494  * @adapter: board private struct
4495  *
4496  * code flow taken from tg3.c
4497  **/
4498 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4499 {
4500         struct net_device *netdev = adapter->netdev;
4501         struct e1000_hw *hw = &adapter->hw;
4502         int err;
4503
4504         /* poll_enable hasn't been called yet, so don't need disable */
4505         /* clear any pending events */
4506         er32(ICR);
4507
4508         /* free the real vector and request a test handler */
4509         e1000_free_irq(adapter);
4510         e1000e_reset_interrupt_capability(adapter);
4511
4512         /* Assume that the test fails, if it succeeds then the test
4513          * MSI irq handler will unset this flag
4514          */
4515         adapter->flags |= FLAG_MSI_TEST_FAILED;
4516
4517         err = pci_enable_msi(adapter->pdev);
4518         if (err)
4519                 goto msi_test_failed;
4520
4521         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4522                           netdev->name, netdev);
4523         if (err) {
4524                 pci_disable_msi(adapter->pdev);
4525                 goto msi_test_failed;
4526         }
4527
4528         /* Force memory writes to complete before enabling and firing an
4529          * interrupt.
4530          */
4531         wmb();
4532
4533         e1000_irq_enable(adapter);
4534
4535         /* fire an unusual interrupt on the test handler */
4536         ew32(ICS, E1000_ICS_RXSEQ);
4537         e1e_flush();
4538         msleep(100);
4539
4540         e1000_irq_disable(adapter);
4541
4542         rmb();                  /* read flags after interrupt has been fired */
4543
4544         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4545                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4546                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4547         } else {
4548                 e_dbg("MSI interrupt test succeeded!\n");
4549         }
4550
4551         free_irq(adapter->pdev->irq, netdev);
4552         pci_disable_msi(adapter->pdev);
4553
4554 msi_test_failed:
4555         e1000e_set_interrupt_capability(adapter);
4556         return e1000_request_irq(adapter);
4557 }
4558
4559 /**
4560  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4561  * @adapter: board private struct
4562  *
4563  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4564  **/
4565 static int e1000_test_msi(struct e1000_adapter *adapter)
4566 {
4567         int err;
4568         u16 pci_cmd;
4569
4570         if (!(adapter->flags & FLAG_MSI_ENABLED))
4571                 return 0;
4572
4573         /* disable SERR in case the MSI write causes a master abort */
4574         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4575         if (pci_cmd & PCI_COMMAND_SERR)
4576                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4577                                       pci_cmd & ~PCI_COMMAND_SERR);
4578
4579         err = e1000_test_msi_interrupt(adapter);
4580
4581         /* re-enable SERR */
4582         if (pci_cmd & PCI_COMMAND_SERR) {
4583                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4584                 pci_cmd |= PCI_COMMAND_SERR;
4585                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4586         }
4587
4588         return err;
4589 }
4590
4591 /**
4592  * e1000e_open - Called when a network interface is made active
4593  * @netdev: network interface device structure
4594  *
4595  * Returns 0 on success, negative value on failure
4596  *
4597  * The open entry point is called when a network interface is made
4598  * active by the system (IFF_UP).  At this point all resources needed
4599  * for transmit and receive operations are allocated, the interrupt
4600  * handler is registered with the OS, the watchdog timer is started,
4601  * and the stack is notified that the interface is ready.
4602  **/
4603 int e1000e_open(struct net_device *netdev)
4604 {
4605         struct e1000_adapter *adapter = netdev_priv(netdev);
4606         struct e1000_hw *hw = &adapter->hw;
4607         struct pci_dev *pdev = adapter->pdev;
4608         int err;
4609
4610         /* disallow open during test */
4611         if (test_bit(__E1000_TESTING, &adapter->state))
4612                 return -EBUSY;
4613
4614         pm_runtime_get_sync(&pdev->dev);
4615
4616         netif_carrier_off(netdev);
4617
4618         /* allocate transmit descriptors */
4619         err = e1000e_setup_tx_resources(adapter->tx_ring);
4620         if (err)
4621                 goto err_setup_tx;
4622
4623         /* allocate receive descriptors */
4624         err = e1000e_setup_rx_resources(adapter->rx_ring);
4625         if (err)
4626                 goto err_setup_rx;
4627
4628         /* If AMT is enabled, let the firmware know that the network
4629          * interface is now open and reset the part to a known state.
4630          */
4631         if (adapter->flags & FLAG_HAS_AMT) {
4632                 e1000e_get_hw_control(adapter);
4633                 e1000e_reset(adapter);
4634         }
4635
4636         e1000e_power_up_phy(adapter);
4637
4638         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4639         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4640                 e1000_update_mng_vlan(adapter);
4641
4642         /* DMA latency requirement to workaround jumbo issue */
4643         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4644                            PM_QOS_DEFAULT_VALUE);
4645
4646         /* before we allocate an interrupt, we must be ready to handle it.
4647          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4648          * as soon as we call pci_request_irq, so we have to setup our
4649          * clean_rx handler before we do so.
4650          */
4651         e1000_configure(adapter);
4652
4653         err = e1000_request_irq(adapter);
4654         if (err)
4655                 goto err_req_irq;
4656
4657         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4658          * ignore e1000e MSI messages, which means we need to test our MSI
4659          * interrupt now
4660          */
4661         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4662                 err = e1000_test_msi(adapter);
4663                 if (err) {
4664                         e_err("Interrupt allocation failed\n");
4665                         goto err_req_irq;
4666                 }
4667         }
4668
4669         /* From here on the code is the same as e1000e_up() */
4670         clear_bit(__E1000_DOWN, &adapter->state);
4671
4672         napi_enable(&adapter->napi);
4673
4674         e1000_irq_enable(adapter);
4675
4676         adapter->tx_hang_recheck = false;
4677         netif_start_queue(netdev);
4678
4679         hw->mac.get_link_status = true;
4680         pm_runtime_put(&pdev->dev);
4681
4682         e1000e_trigger_lsc(adapter);
4683
4684         return 0;
4685
4686 err_req_irq:
4687         pm_qos_remove_request(&adapter->pm_qos_req);
4688         e1000e_release_hw_control(adapter);
4689         e1000_power_down_phy(adapter);
4690         e1000e_free_rx_resources(adapter->rx_ring);
4691 err_setup_rx:
4692         e1000e_free_tx_resources(adapter->tx_ring);
4693 err_setup_tx:
4694         e1000e_reset(adapter);
4695         pm_runtime_put_sync(&pdev->dev);
4696
4697         return err;
4698 }
4699
4700 /**
4701  * e1000e_close - Disables a network interface
4702  * @netdev: network interface device structure
4703  *
4704  * Returns 0, this is not allowed to fail
4705  *
4706  * The close entry point is called when an interface is de-activated
4707  * by the OS.  The hardware is still under the drivers control, but
4708  * needs to be disabled.  A global MAC reset is issued to stop the
4709  * hardware, and all transmit and receive resources are freed.
4710  **/
4711 int e1000e_close(struct net_device *netdev)
4712 {
4713         struct e1000_adapter *adapter = netdev_priv(netdev);
4714         struct pci_dev *pdev = adapter->pdev;
4715         int count = E1000_CHECK_RESET_COUNT;
4716
4717         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4718                 usleep_range(10000, 20000);
4719
4720         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4721
4722         pm_runtime_get_sync(&pdev->dev);
4723
4724         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4725                 e1000e_down(adapter, true);
4726                 e1000_free_irq(adapter);
4727
4728                 /* Link status message must follow this format */
4729                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4730         }
4731
4732         napi_disable(&adapter->napi);
4733
4734         e1000e_free_tx_resources(adapter->tx_ring);
4735         e1000e_free_rx_resources(adapter->rx_ring);
4736
4737         /* kill manageability vlan ID if supported, but not if a vlan with
4738          * the same ID is registered on the host OS (let 8021q kill it)
4739          */
4740         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4741                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4742                                        adapter->mng_vlan_id);
4743
4744         /* If AMT is enabled, let the firmware know that the network
4745          * interface is now closed
4746          */
4747         if ((adapter->flags & FLAG_HAS_AMT) &&
4748             !test_bit(__E1000_TESTING, &adapter->state))
4749                 e1000e_release_hw_control(adapter);
4750
4751         pm_qos_remove_request(&adapter->pm_qos_req);
4752
4753         pm_runtime_put_sync(&pdev->dev);
4754
4755         return 0;
4756 }
4757
4758 /**
4759  * e1000_set_mac - Change the Ethernet Address of the NIC
4760  * @netdev: network interface device structure
4761  * @p: pointer to an address structure
4762  *
4763  * Returns 0 on success, negative on failure
4764  **/
4765 static int e1000_set_mac(struct net_device *netdev, void *p)
4766 {
4767         struct e1000_adapter *adapter = netdev_priv(netdev);
4768         struct e1000_hw *hw = &adapter->hw;
4769         struct sockaddr *addr = p;
4770
4771         if (!is_valid_ether_addr(addr->sa_data))
4772                 return -EADDRNOTAVAIL;
4773
4774         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4775         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4776
4777         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4778
4779         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4780                 /* activate the work around */
4781                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4782
4783                 /* Hold a copy of the LAA in RAR[14] This is done so that
4784                  * between the time RAR[0] gets clobbered  and the time it
4785                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4786                  * of the RARs and no incoming packets directed to this port
4787                  * are dropped. Eventually the LAA will be in RAR[0] and
4788                  * RAR[14]
4789                  */
4790                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4791                                     adapter->hw.mac.rar_entry_count - 1);
4792         }
4793
4794         return 0;
4795 }
4796
4797 /**
4798  * e1000e_update_phy_task - work thread to update phy
4799  * @work: pointer to our work struct
4800  *
4801  * this worker thread exists because we must acquire a
4802  * semaphore to read the phy, which we could msleep while
4803  * waiting for it, and we can't msleep in a timer.
4804  **/
4805 static void e1000e_update_phy_task(struct work_struct *work)
4806 {
4807         struct e1000_adapter *adapter = container_of(work,
4808                                                      struct e1000_adapter,
4809                                                      update_phy_task);
4810         struct e1000_hw *hw = &adapter->hw;
4811
4812         if (test_bit(__E1000_DOWN, &adapter->state))
4813                 return;
4814
4815         e1000_get_phy_info(hw);
4816
4817         /* Enable EEE on 82579 after link up */
4818         if (hw->phy.type >= e1000_phy_82579)
4819                 e1000_set_eee_pchlan(hw);
4820 }
4821
4822 /**
4823  * e1000_update_phy_info - timre call-back to update PHY info
4824  * @data: pointer to adapter cast into an unsigned long
4825  *
4826  * Need to wait a few seconds after link up to get diagnostic information from
4827  * the phy
4828  **/
4829 static void e1000_update_phy_info(struct timer_list *t)
4830 {
4831         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4832
4833         if (test_bit(__E1000_DOWN, &adapter->state))
4834                 return;
4835
4836         schedule_work(&adapter->update_phy_task);
4837 }
4838
4839 /**
4840  * e1000e_update_phy_stats - Update the PHY statistics counters
4841  * @adapter: board private structure
4842  *
4843  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4844  **/
4845 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4846 {
4847         struct e1000_hw *hw = &adapter->hw;
4848         s32 ret_val;
4849         u16 phy_data;
4850
4851         ret_val = hw->phy.ops.acquire(hw);
4852         if (ret_val)
4853                 return;
4854
4855         /* A page set is expensive so check if already on desired page.
4856          * If not, set to the page with the PHY status registers.
4857          */
4858         hw->phy.addr = 1;
4859         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4860                                            &phy_data);
4861         if (ret_val)
4862                 goto release;
4863         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4864                 ret_val = hw->phy.ops.set_page(hw,
4865                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4866                 if (ret_val)
4867                         goto release;
4868         }
4869
4870         /* Single Collision Count */
4871         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4872         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4873         if (!ret_val)
4874                 adapter->stats.scc += phy_data;
4875
4876         /* Excessive Collision Count */
4877         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4878         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4879         if (!ret_val)
4880                 adapter->stats.ecol += phy_data;
4881
4882         /* Multiple Collision Count */
4883         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4884         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4885         if (!ret_val)
4886                 adapter->stats.mcc += phy_data;
4887
4888         /* Late Collision Count */
4889         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4890         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4891         if (!ret_val)
4892                 adapter->stats.latecol += phy_data;
4893
4894         /* Collision Count - also used for adaptive IFS */
4895         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4896         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4897         if (!ret_val)
4898                 hw->mac.collision_delta = phy_data;
4899
4900         /* Defer Count */
4901         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4902         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4903         if (!ret_val)
4904                 adapter->stats.dc += phy_data;
4905
4906         /* Transmit with no CRS */
4907         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4908         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4909         if (!ret_val)
4910                 adapter->stats.tncrs += phy_data;
4911
4912 release:
4913         hw->phy.ops.release(hw);
4914 }
4915
4916 /**
4917  * e1000e_update_stats - Update the board statistics counters
4918  * @adapter: board private structure
4919  **/
4920 static void e1000e_update_stats(struct e1000_adapter *adapter)
4921 {
4922         struct net_device *netdev = adapter->netdev;
4923         struct e1000_hw *hw = &adapter->hw;
4924         struct pci_dev *pdev = adapter->pdev;
4925
4926         /* Prevent stats update while adapter is being reset, or if the pci
4927          * connection is down.
4928          */
4929         if (adapter->link_speed == 0)
4930                 return;
4931         if (pci_channel_offline(pdev))
4932                 return;
4933
4934         adapter->stats.crcerrs += er32(CRCERRS);
4935         adapter->stats.gprc += er32(GPRC);
4936         adapter->stats.gorc += er32(GORCL);
4937         er32(GORCH);            /* Clear gorc */
4938         adapter->stats.bprc += er32(BPRC);
4939         adapter->stats.mprc += er32(MPRC);
4940         adapter->stats.roc += er32(ROC);
4941
4942         adapter->stats.mpc += er32(MPC);
4943
4944         /* Half-duplex statistics */
4945         if (adapter->link_duplex == HALF_DUPLEX) {
4946                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4947                         e1000e_update_phy_stats(adapter);
4948                 } else {
4949                         adapter->stats.scc += er32(SCC);
4950                         adapter->stats.ecol += er32(ECOL);
4951                         adapter->stats.mcc += er32(MCC);
4952                         adapter->stats.latecol += er32(LATECOL);
4953                         adapter->stats.dc += er32(DC);
4954
4955                         hw->mac.collision_delta = er32(COLC);
4956
4957                         if ((hw->mac.type != e1000_82574) &&
4958                             (hw->mac.type != e1000_82583))
4959                                 adapter->stats.tncrs += er32(TNCRS);
4960                 }
4961                 adapter->stats.colc += hw->mac.collision_delta;
4962         }
4963
4964         adapter->stats.xonrxc += er32(XONRXC);
4965         adapter->stats.xontxc += er32(XONTXC);
4966         adapter->stats.xoffrxc += er32(XOFFRXC);
4967         adapter->stats.xofftxc += er32(XOFFTXC);
4968         adapter->stats.gptc += er32(GPTC);
4969         adapter->stats.gotc += er32(GOTCL);
4970         er32(GOTCH);            /* Clear gotc */
4971         adapter->stats.rnbc += er32(RNBC);
4972         adapter->stats.ruc += er32(RUC);
4973
4974         adapter->stats.mptc += er32(MPTC);
4975         adapter->stats.bptc += er32(BPTC);
4976
4977         /* used for adaptive IFS */
4978
4979         hw->mac.tx_packet_delta = er32(TPT);
4980         adapter->stats.tpt += hw->mac.tx_packet_delta;
4981
4982         adapter->stats.algnerrc += er32(ALGNERRC);
4983         adapter->stats.rxerrc += er32(RXERRC);
4984         adapter->stats.cexterr += er32(CEXTERR);
4985         adapter->stats.tsctc += er32(TSCTC);
4986         adapter->stats.tsctfc += er32(TSCTFC);
4987
4988         /* Fill out the OS statistics structure */
4989         netdev->stats.multicast = adapter->stats.mprc;
4990         netdev->stats.collisions = adapter->stats.colc;
4991
4992         /* Rx Errors */
4993
4994         /* RLEC on some newer hardware can be incorrect so build
4995          * our own version based on RUC and ROC
4996          */
4997         netdev->stats.rx_errors = adapter->stats.rxerrc +
4998             adapter->stats.crcerrs + adapter->stats.algnerrc +
4999             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5000         netdev->stats.rx_length_errors = adapter->stats.ruc +
5001             adapter->stats.roc;
5002         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5003         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5004         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5005
5006         /* Tx Errors */
5007         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5008         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5009         netdev->stats.tx_window_errors = adapter->stats.latecol;
5010         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5011
5012         /* Tx Dropped needs to be maintained elsewhere */
5013
5014         /* Management Stats */
5015         adapter->stats.mgptc += er32(MGTPTC);
5016         adapter->stats.mgprc += er32(MGTPRC);
5017         adapter->stats.mgpdc += er32(MGTPDC);
5018
5019         /* Correctable ECC Errors */
5020         if (hw->mac.type >= e1000_pch_lpt) {
5021                 u32 pbeccsts = er32(PBECCSTS);
5022
5023                 adapter->corr_errors +=
5024                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5025                 adapter->uncorr_errors +=
5026                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5027                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5028         }
5029 }
5030
5031 /**
5032  * e1000_phy_read_status - Update the PHY register status snapshot
5033  * @adapter: board private structure
5034  **/
5035 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5036 {
5037         struct e1000_hw *hw = &adapter->hw;
5038         struct e1000_phy_regs *phy = &adapter->phy_regs;
5039
5040         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5041             (er32(STATUS) & E1000_STATUS_LU) &&
5042             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5043                 int ret_val;
5044
5045                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5046                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5047                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5048                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5049                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5050                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5051                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5052                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5053                 if (ret_val)
5054                         e_warn("Error reading PHY register\n");
5055         } else {
5056                 /* Do not read PHY registers if link is not up
5057                  * Set values to typical power-on defaults
5058                  */
5059                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5060                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5061                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5062                              BMSR_ERCAP);
5063                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5064                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5065                 phy->lpa = 0;
5066                 phy->expansion = EXPANSION_ENABLENPAGE;
5067                 phy->ctrl1000 = ADVERTISE_1000FULL;
5068                 phy->stat1000 = 0;
5069                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5070         }
5071 }
5072
5073 static void e1000_print_link_info(struct e1000_adapter *adapter)
5074 {
5075         struct e1000_hw *hw = &adapter->hw;
5076         u32 ctrl = er32(CTRL);
5077
5078         /* Link status message must follow this format for user tools */
5079         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5080                 adapter->netdev->name, adapter->link_speed,
5081                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5082                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5083                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5084                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5085 }
5086
5087 static bool e1000e_has_link(struct e1000_adapter *adapter)
5088 {
5089         struct e1000_hw *hw = &adapter->hw;
5090         bool link_active = false;
5091         s32 ret_val = 0;
5092
5093         /* get_link_status is set on LSC (link status) interrupt or
5094          * Rx sequence error interrupt.  get_link_status will stay
5095          * true until the check_for_link establishes link
5096          * for copper adapters ONLY
5097          */
5098         switch (hw->phy.media_type) {
5099         case e1000_media_type_copper:
5100                 if (hw->mac.get_link_status) {
5101                         ret_val = hw->mac.ops.check_for_link(hw);
5102                         link_active = ret_val > 0;
5103                 } else {
5104                         link_active = true;
5105                 }
5106                 break;
5107         case e1000_media_type_fiber:
5108                 ret_val = hw->mac.ops.check_for_link(hw);
5109                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5110                 break;
5111         case e1000_media_type_internal_serdes:
5112                 ret_val = hw->mac.ops.check_for_link(hw);
5113                 link_active = hw->mac.serdes_has_link;
5114                 break;
5115         default:
5116         case e1000_media_type_unknown:
5117                 break;
5118         }
5119
5120         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5121             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5122                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5123                 e_info("Gigabit has been disabled, downgrading speed\n");
5124         }
5125
5126         return link_active;
5127 }
5128
5129 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5130 {
5131         /* make sure the receive unit is started */
5132         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5133             (adapter->flags & FLAG_RESTART_NOW)) {
5134                 struct e1000_hw *hw = &adapter->hw;
5135                 u32 rctl = er32(RCTL);
5136
5137                 ew32(RCTL, rctl | E1000_RCTL_EN);
5138                 adapter->flags &= ~FLAG_RESTART_NOW;
5139         }
5140 }
5141
5142 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5143 {
5144         struct e1000_hw *hw = &adapter->hw;
5145
5146         /* With 82574 controllers, PHY needs to be checked periodically
5147          * for hung state and reset, if two calls return true
5148          */
5149         if (e1000_check_phy_82574(hw))
5150                 adapter->phy_hang_count++;
5151         else
5152                 adapter->phy_hang_count = 0;
5153
5154         if (adapter->phy_hang_count > 1) {
5155                 adapter->phy_hang_count = 0;
5156                 e_dbg("PHY appears hung - resetting\n");
5157                 schedule_work(&adapter->reset_task);
5158         }
5159 }
5160
5161 /**
5162  * e1000_watchdog - Timer Call-back
5163  * @data: pointer to adapter cast into an unsigned long
5164  **/
5165 static void e1000_watchdog(struct timer_list *t)
5166 {
5167         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5168
5169         /* Do the rest outside of interrupt context */
5170         schedule_work(&adapter->watchdog_task);
5171
5172         /* TODO: make this use queue_delayed_work() */
5173 }
5174
5175 static void e1000_watchdog_task(struct work_struct *work)
5176 {
5177         struct e1000_adapter *adapter = container_of(work,
5178                                                      struct e1000_adapter,
5179                                                      watchdog_task);
5180         struct net_device *netdev = adapter->netdev;
5181         struct e1000_mac_info *mac = &adapter->hw.mac;
5182         struct e1000_phy_info *phy = &adapter->hw.phy;
5183         struct e1000_ring *tx_ring = adapter->tx_ring;
5184         struct e1000_hw *hw = &adapter->hw;
5185         u32 link, tctl;
5186
5187         if (test_bit(__E1000_DOWN, &adapter->state))
5188                 return;
5189
5190         link = e1000e_has_link(adapter);
5191         if ((netif_carrier_ok(netdev)) && link) {
5192                 /* Cancel scheduled suspend requests. */
5193                 pm_runtime_resume(netdev->dev.parent);
5194
5195                 e1000e_enable_receives(adapter);
5196                 goto link_up;
5197         }
5198
5199         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5200             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5201                 e1000_update_mng_vlan(adapter);
5202
5203         if (link) {
5204                 if (!netif_carrier_ok(netdev)) {
5205                         bool txb2b = true;
5206
5207                         /* Cancel scheduled suspend requests. */
5208                         pm_runtime_resume(netdev->dev.parent);
5209
5210                         /* update snapshot of PHY registers on LSC */
5211                         e1000_phy_read_status(adapter);
5212                         mac->ops.get_link_up_info(&adapter->hw,
5213                                                   &adapter->link_speed,
5214                                                   &adapter->link_duplex);
5215                         e1000_print_link_info(adapter);
5216
5217                         /* check if SmartSpeed worked */
5218                         e1000e_check_downshift(hw);
5219                         if (phy->speed_downgraded)
5220                                 netdev_warn(netdev,
5221                                             "Link Speed was downgraded by SmartSpeed\n");
5222
5223                         /* On supported PHYs, check for duplex mismatch only
5224                          * if link has autonegotiated at 10/100 half
5225                          */
5226                         if ((hw->phy.type == e1000_phy_igp_3 ||
5227                              hw->phy.type == e1000_phy_bm) &&
5228                             hw->mac.autoneg &&
5229                             (adapter->link_speed == SPEED_10 ||
5230                              adapter->link_speed == SPEED_100) &&
5231                             (adapter->link_duplex == HALF_DUPLEX)) {
5232                                 u16 autoneg_exp;
5233
5234                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5235
5236                                 if (!(autoneg_exp & EXPANSION_NWAY))
5237                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5238                         }
5239
5240                         /* adjust timeout factor according to speed/duplex */
5241                         adapter->tx_timeout_factor = 1;
5242                         switch (adapter->link_speed) {
5243                         case SPEED_10:
5244                                 txb2b = false;
5245                                 adapter->tx_timeout_factor = 16;
5246                                 break;
5247                         case SPEED_100:
5248                                 txb2b = false;
5249                                 adapter->tx_timeout_factor = 10;
5250                                 break;
5251                         }
5252
5253                         /* workaround: re-program speed mode bit after
5254                          * link-up event
5255                          */
5256                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5257                             !txb2b) {
5258                                 u32 tarc0;
5259
5260                                 tarc0 = er32(TARC(0));
5261                                 tarc0 &= ~SPEED_MODE_BIT;
5262                                 ew32(TARC(0), tarc0);
5263                         }
5264
5265                         /* disable TSO for pcie and 10/100 speeds, to avoid
5266                          * some hardware issues
5267                          */
5268                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5269                                 switch (adapter->link_speed) {
5270                                 case SPEED_10:
5271                                 case SPEED_100:
5272                                         e_info("10/100 speed: disabling TSO\n");
5273                                         netdev->features &= ~NETIF_F_TSO;
5274                                         netdev->features &= ~NETIF_F_TSO6;
5275                                         break;
5276                                 case SPEED_1000:
5277                                         netdev->features |= NETIF_F_TSO;
5278                                         netdev->features |= NETIF_F_TSO6;
5279                                         break;
5280                                 default:
5281                                         /* oops */
5282                                         break;
5283                                 }
5284                         }
5285
5286                         /* enable transmits in the hardware, need to do this
5287                          * after setting TARC(0)
5288                          */
5289                         tctl = er32(TCTL);
5290                         tctl |= E1000_TCTL_EN;
5291                         ew32(TCTL, tctl);
5292
5293                         /* Perform any post-link-up configuration before
5294                          * reporting link up.
5295                          */
5296                         if (phy->ops.cfg_on_link_up)
5297                                 phy->ops.cfg_on_link_up(hw);
5298
5299                         netif_carrier_on(netdev);
5300
5301                         if (!test_bit(__E1000_DOWN, &adapter->state))
5302                                 mod_timer(&adapter->phy_info_timer,
5303                                           round_jiffies(jiffies + 2 * HZ));
5304                 }
5305         } else {
5306                 if (netif_carrier_ok(netdev)) {
5307                         adapter->link_speed = 0;
5308                         adapter->link_duplex = 0;
5309                         /* Link status message must follow this format */
5310                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5311                         netif_carrier_off(netdev);
5312                         if (!test_bit(__E1000_DOWN, &adapter->state))
5313                                 mod_timer(&adapter->phy_info_timer,
5314                                           round_jiffies(jiffies + 2 * HZ));
5315
5316                         /* 8000ES2LAN requires a Rx packet buffer work-around
5317                          * on link down event; reset the controller to flush
5318                          * the Rx packet buffer.
5319                          */
5320                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5321                                 adapter->flags |= FLAG_RESTART_NOW;
5322                         else
5323                                 pm_schedule_suspend(netdev->dev.parent,
5324                                                     LINK_TIMEOUT);
5325                 }
5326         }
5327
5328 link_up:
5329         spin_lock(&adapter->stats64_lock);
5330         e1000e_update_stats(adapter);
5331
5332         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5333         adapter->tpt_old = adapter->stats.tpt;
5334         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5335         adapter->colc_old = adapter->stats.colc;
5336
5337         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5338         adapter->gorc_old = adapter->stats.gorc;
5339         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5340         adapter->gotc_old = adapter->stats.gotc;
5341         spin_unlock(&adapter->stats64_lock);
5342
5343         /* If the link is lost the controller stops DMA, but
5344          * if there is queued Tx work it cannot be done.  So
5345          * reset the controller to flush the Tx packet buffers.
5346          */
5347         if (!netif_carrier_ok(netdev) &&
5348             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5349                 adapter->flags |= FLAG_RESTART_NOW;
5350
5351         /* If reset is necessary, do it outside of interrupt context. */
5352         if (adapter->flags & FLAG_RESTART_NOW) {
5353                 schedule_work(&adapter->reset_task);
5354                 /* return immediately since reset is imminent */
5355                 return;
5356         }
5357
5358         e1000e_update_adaptive(&adapter->hw);
5359
5360         /* Simple mode for Interrupt Throttle Rate (ITR) */
5361         if (adapter->itr_setting == 4) {
5362                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5363                  * Total asymmetrical Tx or Rx gets ITR=8000;
5364                  * everyone else is between 2000-8000.
5365                  */
5366                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5367                 u32 dif = (adapter->gotc > adapter->gorc ?
5368                            adapter->gotc - adapter->gorc :
5369                            adapter->gorc - adapter->gotc) / 10000;
5370                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5371
5372                 e1000e_write_itr(adapter, itr);
5373         }
5374
5375         /* Cause software interrupt to ensure Rx ring is cleaned */
5376         if (adapter->msix_entries)
5377                 ew32(ICS, adapter->rx_ring->ims_val);
5378         else
5379                 ew32(ICS, E1000_ICS_RXDMT0);
5380
5381         /* flush pending descriptors to memory before detecting Tx hang */
5382         e1000e_flush_descriptors(adapter);
5383
5384         /* Force detection of hung controller every watchdog period */
5385         adapter->detect_tx_hung = true;
5386
5387         /* With 82571 controllers, LAA may be overwritten due to controller
5388          * reset from the other port. Set the appropriate LAA in RAR[0]
5389          */
5390         if (e1000e_get_laa_state_82571(hw))
5391                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5392
5393         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5394                 e1000e_check_82574_phy_workaround(adapter);
5395
5396         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5397         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5398                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5399                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5400                         er32(RXSTMPH);
5401                         adapter->rx_hwtstamp_cleared++;
5402                 } else {
5403                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5404                 }
5405         }
5406
5407         /* Reset the timer */
5408         if (!test_bit(__E1000_DOWN, &adapter->state))
5409                 mod_timer(&adapter->watchdog_timer,
5410                           round_jiffies(jiffies + 2 * HZ));
5411 }
5412
5413 #define E1000_TX_FLAGS_CSUM             0x00000001
5414 #define E1000_TX_FLAGS_VLAN             0x00000002
5415 #define E1000_TX_FLAGS_TSO              0x00000004
5416 #define E1000_TX_FLAGS_IPV4             0x00000008
5417 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5418 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5419 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5420 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5421
5422 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5423                      __be16 protocol)
5424 {
5425         struct e1000_context_desc *context_desc;
5426         struct e1000_buffer *buffer_info;
5427         unsigned int i;
5428         u32 cmd_length = 0;
5429         u16 ipcse = 0, mss;
5430         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5431         int err;
5432
5433         if (!skb_is_gso(skb))
5434                 return 0;
5435
5436         err = skb_cow_head(skb, 0);
5437         if (err < 0)
5438                 return err;
5439
5440         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5441         mss = skb_shinfo(skb)->gso_size;
5442         if (protocol == htons(ETH_P_IP)) {
5443                 struct iphdr *iph = ip_hdr(skb);
5444                 iph->tot_len = 0;
5445                 iph->check = 0;
5446                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5447                                                          0, IPPROTO_TCP, 0);
5448                 cmd_length = E1000_TXD_CMD_IP;
5449                 ipcse = skb_transport_offset(skb) - 1;
5450         } else if (skb_is_gso_v6(skb)) {
5451                 ipv6_hdr(skb)->payload_len = 0;
5452                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5453                                                        &ipv6_hdr(skb)->daddr,
5454                                                        0, IPPROTO_TCP, 0);
5455                 ipcse = 0;
5456         }
5457         ipcss = skb_network_offset(skb);
5458         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5459         tucss = skb_transport_offset(skb);
5460         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5461
5462         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5463                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5464
5465         i = tx_ring->next_to_use;
5466         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5467         buffer_info = &tx_ring->buffer_info[i];
5468
5469         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5470         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5471         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5472         context_desc->upper_setup.tcp_fields.tucss = tucss;
5473         context_desc->upper_setup.tcp_fields.tucso = tucso;
5474         context_desc->upper_setup.tcp_fields.tucse = 0;
5475         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5476         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5477         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5478
5479         buffer_info->time_stamp = jiffies;
5480         buffer_info->next_to_watch = i;
5481
5482         i++;
5483         if (i == tx_ring->count)
5484                 i = 0;
5485         tx_ring->next_to_use = i;
5486
5487         return 1;
5488 }
5489
5490 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5491                           __be16 protocol)
5492 {
5493         struct e1000_adapter *adapter = tx_ring->adapter;
5494         struct e1000_context_desc *context_desc;
5495         struct e1000_buffer *buffer_info;
5496         unsigned int i;
5497         u8 css;
5498         u32 cmd_len = E1000_TXD_CMD_DEXT;
5499
5500         if (skb->ip_summed != CHECKSUM_PARTIAL)
5501                 return false;
5502
5503         switch (protocol) {
5504         case cpu_to_be16(ETH_P_IP):
5505                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5506                         cmd_len |= E1000_TXD_CMD_TCP;
5507                 break;
5508         case cpu_to_be16(ETH_P_IPV6):
5509                 /* XXX not handling all IPV6 headers */
5510                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5511                         cmd_len |= E1000_TXD_CMD_TCP;
5512                 break;
5513         default:
5514                 if (unlikely(net_ratelimit()))
5515                         e_warn("checksum_partial proto=%x!\n",
5516                                be16_to_cpu(protocol));
5517                 break;
5518         }
5519
5520         css = skb_checksum_start_offset(skb);
5521
5522         i = tx_ring->next_to_use;
5523         buffer_info = &tx_ring->buffer_info[i];
5524         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5525
5526         context_desc->lower_setup.ip_config = 0;
5527         context_desc->upper_setup.tcp_fields.tucss = css;
5528         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5529         context_desc->upper_setup.tcp_fields.tucse = 0;
5530         context_desc->tcp_seg_setup.data = 0;
5531         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5532
5533         buffer_info->time_stamp = jiffies;
5534         buffer_info->next_to_watch = i;
5535
5536         i++;
5537         if (i == tx_ring->count)
5538                 i = 0;
5539         tx_ring->next_to_use = i;
5540
5541         return true;
5542 }
5543
5544 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5545                         unsigned int first, unsigned int max_per_txd,
5546                         unsigned int nr_frags)
5547 {
5548         struct e1000_adapter *adapter = tx_ring->adapter;
5549         struct pci_dev *pdev = adapter->pdev;
5550         struct e1000_buffer *buffer_info;
5551         unsigned int len = skb_headlen(skb);
5552         unsigned int offset = 0, size, count = 0, i;
5553         unsigned int f, bytecount, segs;
5554
5555         i = tx_ring->next_to_use;
5556
5557         while (len) {
5558                 buffer_info = &tx_ring->buffer_info[i];
5559                 size = min(len, max_per_txd);
5560
5561                 buffer_info->length = size;
5562                 buffer_info->time_stamp = jiffies;
5563                 buffer_info->next_to_watch = i;
5564                 buffer_info->dma = dma_map_single(&pdev->dev,
5565                                                   skb->data + offset,
5566                                                   size, DMA_TO_DEVICE);
5567                 buffer_info->mapped_as_page = false;
5568                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5569                         goto dma_error;
5570
5571                 len -= size;
5572                 offset += size;
5573                 count++;
5574
5575                 if (len) {
5576                         i++;
5577                         if (i == tx_ring->count)
5578                                 i = 0;
5579                 }
5580         }
5581
5582         for (f = 0; f < nr_frags; f++) {
5583                 const struct skb_frag_struct *frag;
5584
5585                 frag = &skb_shinfo(skb)->frags[f];
5586                 len = skb_frag_size(frag);
5587                 offset = 0;
5588
5589                 while (len) {
5590                         i++;
5591                         if (i == tx_ring->count)
5592                                 i = 0;
5593
5594                         buffer_info = &tx_ring->buffer_info[i];
5595                         size = min(len, max_per_txd);
5596
5597                         buffer_info->length = size;
5598                         buffer_info->time_stamp = jiffies;
5599                         buffer_info->next_to_watch = i;
5600                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5601                                                             offset, size,
5602                                                             DMA_TO_DEVICE);
5603                         buffer_info->mapped_as_page = true;
5604                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5605                                 goto dma_error;
5606
5607                         len -= size;
5608                         offset += size;
5609                         count++;
5610                 }
5611         }
5612
5613         segs = skb_shinfo(skb)->gso_segs ? : 1;
5614         /* multiply data chunks by size of headers */
5615         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5616
5617         tx_ring->buffer_info[i].skb = skb;
5618         tx_ring->buffer_info[i].segs = segs;
5619         tx_ring->buffer_info[i].bytecount = bytecount;
5620         tx_ring->buffer_info[first].next_to_watch = i;
5621
5622         return count;
5623
5624 dma_error:
5625         dev_err(&pdev->dev, "Tx DMA map failed\n");
5626         buffer_info->dma = 0;
5627         if (count)
5628                 count--;
5629
5630         while (count--) {
5631                 if (i == 0)
5632                         i += tx_ring->count;
5633                 i--;
5634                 buffer_info = &tx_ring->buffer_info[i];
5635                 e1000_put_txbuf(tx_ring, buffer_info, true);
5636         }
5637
5638         return 0;
5639 }
5640
5641 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5642 {
5643         struct e1000_adapter *adapter = tx_ring->adapter;
5644         struct e1000_tx_desc *tx_desc = NULL;
5645         struct e1000_buffer *buffer_info;
5646         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5647         unsigned int i;
5648
5649         if (tx_flags & E1000_TX_FLAGS_TSO) {
5650                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5651                     E1000_TXD_CMD_TSE;
5652                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5653
5654                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5655                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5656         }
5657
5658         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5659                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5660                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5661         }
5662
5663         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5664                 txd_lower |= E1000_TXD_CMD_VLE;
5665                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5666         }
5667
5668         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5669                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5670
5671         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5672                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5673                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5674         }
5675
5676         i = tx_ring->next_to_use;
5677
5678         do {
5679                 buffer_info = &tx_ring->buffer_info[i];
5680                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5681                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5682                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5683                                                   buffer_info->length);
5684                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5685
5686                 i++;
5687                 if (i == tx_ring->count)
5688                         i = 0;
5689         } while (--count > 0);
5690
5691         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5692
5693         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5694         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5695                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5696
5697         /* Force memory writes to complete before letting h/w
5698          * know there are new descriptors to fetch.  (Only
5699          * applicable for weak-ordered memory model archs,
5700          * such as IA-64).
5701          */
5702         wmb();
5703
5704         tx_ring->next_to_use = i;
5705 }
5706
5707 #define MINIMUM_DHCP_PACKET_SIZE 282
5708 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5709                                     struct sk_buff *skb)
5710 {
5711         struct e1000_hw *hw = &adapter->hw;
5712         u16 length, offset;
5713
5714         if (skb_vlan_tag_present(skb) &&
5715             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5716               (adapter->hw.mng_cookie.status &
5717                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5718                 return 0;
5719
5720         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5721                 return 0;
5722
5723         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5724                 return 0;
5725
5726         {
5727                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5728                 struct udphdr *udp;
5729
5730                 if (ip->protocol != IPPROTO_UDP)
5731                         return 0;
5732
5733                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5734                 if (ntohs(udp->dest) != 67)
5735                         return 0;
5736
5737                 offset = (u8 *)udp + 8 - skb->data;
5738                 length = skb->len - offset;
5739                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5740         }
5741
5742         return 0;
5743 }
5744
5745 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5746 {
5747         struct e1000_adapter *adapter = tx_ring->adapter;
5748
5749         netif_stop_queue(adapter->netdev);
5750         /* Herbert's original patch had:
5751          *  smp_mb__after_netif_stop_queue();
5752          * but since that doesn't exist yet, just open code it.
5753          */
5754         smp_mb();
5755
5756         /* We need to check again in a case another CPU has just
5757          * made room available.
5758          */
5759         if (e1000_desc_unused(tx_ring) < size)
5760                 return -EBUSY;
5761
5762         /* A reprieve! */
5763         netif_start_queue(adapter->netdev);
5764         ++adapter->restart_queue;
5765         return 0;
5766 }
5767
5768 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5769 {
5770         BUG_ON(size > tx_ring->count);
5771
5772         if (e1000_desc_unused(tx_ring) >= size)
5773                 return 0;
5774         return __e1000_maybe_stop_tx(tx_ring, size);
5775 }
5776
5777 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5778                                     struct net_device *netdev)
5779 {
5780         struct e1000_adapter *adapter = netdev_priv(netdev);
5781         struct e1000_ring *tx_ring = adapter->tx_ring;
5782         unsigned int first;
5783         unsigned int tx_flags = 0;
5784         unsigned int len = skb_headlen(skb);
5785         unsigned int nr_frags;
5786         unsigned int mss;
5787         int count = 0;
5788         int tso;
5789         unsigned int f;
5790         __be16 protocol = vlan_get_protocol(skb);
5791
5792         if (test_bit(__E1000_DOWN, &adapter->state)) {
5793                 dev_kfree_skb_any(skb);
5794                 return NETDEV_TX_OK;
5795         }
5796
5797         if (skb->len <= 0) {
5798                 dev_kfree_skb_any(skb);
5799                 return NETDEV_TX_OK;
5800         }
5801
5802         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5803          * pad skb in order to meet this minimum size requirement
5804          */
5805         if (skb_put_padto(skb, 17))
5806                 return NETDEV_TX_OK;
5807
5808         mss = skb_shinfo(skb)->gso_size;
5809         if (mss) {
5810                 u8 hdr_len;
5811
5812                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5813                  * points to just header, pull a few bytes of payload from
5814                  * frags into skb->data
5815                  */
5816                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5817                 /* we do this workaround for ES2LAN, but it is un-necessary,
5818                  * avoiding it could save a lot of cycles
5819                  */
5820                 if (skb->data_len && (hdr_len == len)) {
5821                         unsigned int pull_size;
5822
5823                         pull_size = min_t(unsigned int, 4, skb->data_len);
5824                         if (!__pskb_pull_tail(skb, pull_size)) {
5825                                 e_err("__pskb_pull_tail failed.\n");
5826                                 dev_kfree_skb_any(skb);
5827                                 return NETDEV_TX_OK;
5828                         }
5829                         len = skb_headlen(skb);
5830                 }
5831         }
5832
5833         /* reserve a descriptor for the offload context */
5834         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5835                 count++;
5836         count++;
5837
5838         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5839
5840         nr_frags = skb_shinfo(skb)->nr_frags;
5841         for (f = 0; f < nr_frags; f++)
5842                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5843                                       adapter->tx_fifo_limit);
5844
5845         if (adapter->hw.mac.tx_pkt_filtering)
5846                 e1000_transfer_dhcp_info(adapter, skb);
5847
5848         /* need: count + 2 desc gap to keep tail from touching
5849          * head, otherwise try next time
5850          */
5851         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5852                 return NETDEV_TX_BUSY;
5853
5854         if (skb_vlan_tag_present(skb)) {
5855                 tx_flags |= E1000_TX_FLAGS_VLAN;
5856                 tx_flags |= (skb_vlan_tag_get(skb) <<
5857                              E1000_TX_FLAGS_VLAN_SHIFT);
5858         }
5859
5860         first = tx_ring->next_to_use;
5861
5862         tso = e1000_tso(tx_ring, skb, protocol);
5863         if (tso < 0) {
5864                 dev_kfree_skb_any(skb);
5865                 return NETDEV_TX_OK;
5866         }
5867
5868         if (tso)
5869                 tx_flags |= E1000_TX_FLAGS_TSO;
5870         else if (e1000_tx_csum(tx_ring, skb, protocol))
5871                 tx_flags |= E1000_TX_FLAGS_CSUM;
5872
5873         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5874          * 82571 hardware supports TSO capabilities for IPv6 as well...
5875          * no longer assume, we must.
5876          */
5877         if (protocol == htons(ETH_P_IP))
5878                 tx_flags |= E1000_TX_FLAGS_IPV4;
5879
5880         if (unlikely(skb->no_fcs))
5881                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5882
5883         /* if count is 0 then mapping error has occurred */
5884         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5885                              nr_frags);
5886         if (count) {
5887                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5888                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5889                         if (!adapter->tx_hwtstamp_skb) {
5890                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5891                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5892                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5893                                 adapter->tx_hwtstamp_start = jiffies;
5894                                 schedule_work(&adapter->tx_hwtstamp_work);
5895                         } else {
5896                                 adapter->tx_hwtstamp_skipped++;
5897                         }
5898                 }
5899
5900                 skb_tx_timestamp(skb);
5901
5902                 netdev_sent_queue(netdev, skb->len);
5903                 e1000_tx_queue(tx_ring, tx_flags, count);
5904                 /* Make sure there is space in the ring for the next send. */
5905                 e1000_maybe_stop_tx(tx_ring,
5906                                     (MAX_SKB_FRAGS *
5907                                      DIV_ROUND_UP(PAGE_SIZE,
5908                                                   adapter->tx_fifo_limit) + 2));
5909
5910                 if (!skb->xmit_more ||
5911                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5912                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5913                                 e1000e_update_tdt_wa(tx_ring,
5914                                                      tx_ring->next_to_use);
5915                         else
5916                                 writel(tx_ring->next_to_use, tx_ring->tail);
5917
5918                         /* we need this if more than one processor can write
5919                          * to our tail at a time, it synchronizes IO on
5920                          *IA64/Altix systems
5921                          */
5922                         mmiowb();
5923                 }
5924         } else {
5925                 dev_kfree_skb_any(skb);
5926                 tx_ring->buffer_info[first].time_stamp = 0;
5927                 tx_ring->next_to_use = first;
5928         }
5929
5930         return NETDEV_TX_OK;
5931 }
5932
5933 /**
5934  * e1000_tx_timeout - Respond to a Tx Hang
5935  * @netdev: network interface device structure
5936  **/
5937 static void e1000_tx_timeout(struct net_device *netdev)
5938 {
5939         struct e1000_adapter *adapter = netdev_priv(netdev);
5940
5941         /* Do the reset outside of interrupt context */
5942         adapter->tx_timeout_count++;
5943         schedule_work(&adapter->reset_task);
5944 }
5945
5946 static void e1000_reset_task(struct work_struct *work)
5947 {
5948         struct e1000_adapter *adapter;
5949         adapter = container_of(work, struct e1000_adapter, reset_task);
5950
5951         /* don't run the task if already down */
5952         if (test_bit(__E1000_DOWN, &adapter->state))
5953                 return;
5954
5955         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5956                 e1000e_dump(adapter);
5957                 e_err("Reset adapter unexpectedly\n");
5958         }
5959         e1000e_reinit_locked(adapter);
5960 }
5961
5962 /**
5963  * e1000_get_stats64 - Get System Network Statistics
5964  * @netdev: network interface device structure
5965  * @stats: rtnl_link_stats64 pointer
5966  *
5967  * Returns the address of the device statistics structure.
5968  **/
5969 void e1000e_get_stats64(struct net_device *netdev,
5970                         struct rtnl_link_stats64 *stats)
5971 {
5972         struct e1000_adapter *adapter = netdev_priv(netdev);
5973
5974         spin_lock(&adapter->stats64_lock);
5975         e1000e_update_stats(adapter);
5976         /* Fill out the OS statistics structure */
5977         stats->rx_bytes = adapter->stats.gorc;
5978         stats->rx_packets = adapter->stats.gprc;
5979         stats->tx_bytes = adapter->stats.gotc;
5980         stats->tx_packets = adapter->stats.gptc;
5981         stats->multicast = adapter->stats.mprc;
5982         stats->collisions = adapter->stats.colc;
5983
5984         /* Rx Errors */
5985
5986         /* RLEC on some newer hardware can be incorrect so build
5987          * our own version based on RUC and ROC
5988          */
5989         stats->rx_errors = adapter->stats.rxerrc +
5990             adapter->stats.crcerrs + adapter->stats.algnerrc +
5991             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993         stats->rx_crc_errors = adapter->stats.crcerrs;
5994         stats->rx_frame_errors = adapter->stats.algnerrc;
5995         stats->rx_missed_errors = adapter->stats.mpc;
5996
5997         /* Tx Errors */
5998         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999         stats->tx_aborted_errors = adapter->stats.ecol;
6000         stats->tx_window_errors = adapter->stats.latecol;
6001         stats->tx_carrier_errors = adapter->stats.tncrs;
6002
6003         /* Tx Dropped needs to be maintained elsewhere */
6004
6005         spin_unlock(&adapter->stats64_lock);
6006 }
6007
6008 /**
6009  * e1000_change_mtu - Change the Maximum Transfer Unit
6010  * @netdev: network interface device structure
6011  * @new_mtu: new value for maximum frame size
6012  *
6013  * Returns 0 on success, negative on failure
6014  **/
6015 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016 {
6017         struct e1000_adapter *adapter = netdev_priv(netdev);
6018         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019
6020         /* Jumbo frame support */
6021         if ((new_mtu > ETH_DATA_LEN) &&
6022             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023                 e_err("Jumbo Frames not supported.\n");
6024                 return -EINVAL;
6025         }
6026
6027         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030             (new_mtu > ETH_DATA_LEN)) {
6031                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032                 return -EINVAL;
6033         }
6034
6035         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036                 usleep_range(1000, 2000);
6037         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038         adapter->max_frame_size = max_frame;
6039         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6040         netdev->mtu = new_mtu;
6041
6042         pm_runtime_get_sync(netdev->dev.parent);
6043
6044         if (netif_running(netdev))
6045                 e1000e_down(adapter, true);
6046
6047         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6048          * means we reserve 2 more, this pushes us to allocate from the next
6049          * larger slab size.
6050          * i.e. RXBUFFER_2048 --> size-4096 slab
6051          * However with the new *_jumbo_rx* routines, jumbo receives will use
6052          * fragmented skbs
6053          */
6054
6055         if (max_frame <= 2048)
6056                 adapter->rx_buffer_len = 2048;
6057         else
6058                 adapter->rx_buffer_len = 4096;
6059
6060         /* adjust allocation if LPE protects us, and we aren't using SBP */
6061         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6062                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6063
6064         if (netif_running(netdev))
6065                 e1000e_up(adapter);
6066         else
6067                 e1000e_reset(adapter);
6068
6069         pm_runtime_put_sync(netdev->dev.parent);
6070
6071         clear_bit(__E1000_RESETTING, &adapter->state);
6072
6073         return 0;
6074 }
6075
6076 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6077                            int cmd)
6078 {
6079         struct e1000_adapter *adapter = netdev_priv(netdev);
6080         struct mii_ioctl_data *data = if_mii(ifr);
6081
6082         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6083                 return -EOPNOTSUPP;
6084
6085         switch (cmd) {
6086         case SIOCGMIIPHY:
6087                 data->phy_id = adapter->hw.phy.addr;
6088                 break;
6089         case SIOCGMIIREG:
6090                 e1000_phy_read_status(adapter);
6091
6092                 switch (data->reg_num & 0x1F) {
6093                 case MII_BMCR:
6094                         data->val_out = adapter->phy_regs.bmcr;
6095                         break;
6096                 case MII_BMSR:
6097                         data->val_out = adapter->phy_regs.bmsr;
6098                         break;
6099                 case MII_PHYSID1:
6100                         data->val_out = (adapter->hw.phy.id >> 16);
6101                         break;
6102                 case MII_PHYSID2:
6103                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6104                         break;
6105                 case MII_ADVERTISE:
6106                         data->val_out = adapter->phy_regs.advertise;
6107                         break;
6108                 case MII_LPA:
6109                         data->val_out = adapter->phy_regs.lpa;
6110                         break;
6111                 case MII_EXPANSION:
6112                         data->val_out = adapter->phy_regs.expansion;
6113                         break;
6114                 case MII_CTRL1000:
6115                         data->val_out = adapter->phy_regs.ctrl1000;
6116                         break;
6117                 case MII_STAT1000:
6118                         data->val_out = adapter->phy_regs.stat1000;
6119                         break;
6120                 case MII_ESTATUS:
6121                         data->val_out = adapter->phy_regs.estatus;
6122                         break;
6123                 default:
6124                         return -EIO;
6125                 }
6126                 break;
6127         case SIOCSMIIREG:
6128         default:
6129                 return -EOPNOTSUPP;
6130         }
6131         return 0;
6132 }
6133
6134 /**
6135  * e1000e_hwtstamp_ioctl - control hardware time stamping
6136  * @netdev: network interface device structure
6137  * @ifreq: interface request
6138  *
6139  * Outgoing time stamping can be enabled and disabled. Play nice and
6140  * disable it when requested, although it shouldn't cause any overhead
6141  * when no packet needs it. At most one packet in the queue may be
6142  * marked for time stamping, otherwise it would be impossible to tell
6143  * for sure to which packet the hardware time stamp belongs.
6144  *
6145  * Incoming time stamping has to be configured via the hardware filters.
6146  * Not all combinations are supported, in particular event type has to be
6147  * specified. Matching the kind of event packet is not supported, with the
6148  * exception of "all V2 events regardless of level 2 or 4".
6149  **/
6150 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6151 {
6152         struct e1000_adapter *adapter = netdev_priv(netdev);
6153         struct hwtstamp_config config;
6154         int ret_val;
6155
6156         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6157                 return -EFAULT;
6158
6159         ret_val = e1000e_config_hwtstamp(adapter, &config);
6160         if (ret_val)
6161                 return ret_val;
6162
6163         switch (config.rx_filter) {
6164         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6165         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6166         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6167         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6168         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6169         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6170                 /* With V2 type filters which specify a Sync or Delay Request,
6171                  * Path Delay Request/Response messages are also time stamped
6172                  * by hardware so notify the caller the requested packets plus
6173                  * some others are time stamped.
6174                  */
6175                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6176                 break;
6177         default:
6178                 break;
6179         }
6180
6181         return copy_to_user(ifr->ifr_data, &config,
6182                             sizeof(config)) ? -EFAULT : 0;
6183 }
6184
6185 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6186 {
6187         struct e1000_adapter *adapter = netdev_priv(netdev);
6188
6189         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6190                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6191 }
6192
6193 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6194 {
6195         switch (cmd) {
6196         case SIOCGMIIPHY:
6197         case SIOCGMIIREG:
6198         case SIOCSMIIREG:
6199                 return e1000_mii_ioctl(netdev, ifr, cmd);
6200         case SIOCSHWTSTAMP:
6201                 return e1000e_hwtstamp_set(netdev, ifr);
6202         case SIOCGHWTSTAMP:
6203                 return e1000e_hwtstamp_get(netdev, ifr);
6204         default:
6205                 return -EOPNOTSUPP;
6206         }
6207 }
6208
6209 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6210 {
6211         struct e1000_hw *hw = &adapter->hw;
6212         u32 i, mac_reg, wuc;
6213         u16 phy_reg, wuc_enable;
6214         int retval;
6215
6216         /* copy MAC RARs to PHY RARs */
6217         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6218
6219         retval = hw->phy.ops.acquire(hw);
6220         if (retval) {
6221                 e_err("Could not acquire PHY\n");
6222                 return retval;
6223         }
6224
6225         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6226         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6227         if (retval)
6228                 goto release;
6229
6230         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6231         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6232                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6233                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6234                                            (u16)(mac_reg & 0xFFFF));
6235                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6236                                            (u16)((mac_reg >> 16) & 0xFFFF));
6237         }
6238
6239         /* configure PHY Rx Control register */
6240         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6241         mac_reg = er32(RCTL);
6242         if (mac_reg & E1000_RCTL_UPE)
6243                 phy_reg |= BM_RCTL_UPE;
6244         if (mac_reg & E1000_RCTL_MPE)
6245                 phy_reg |= BM_RCTL_MPE;
6246         phy_reg &= ~(BM_RCTL_MO_MASK);
6247         if (mac_reg & E1000_RCTL_MO_3)
6248                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6249                             << BM_RCTL_MO_SHIFT);
6250         if (mac_reg & E1000_RCTL_BAM)
6251                 phy_reg |= BM_RCTL_BAM;
6252         if (mac_reg & E1000_RCTL_PMCF)
6253                 phy_reg |= BM_RCTL_PMCF;
6254         mac_reg = er32(CTRL);
6255         if (mac_reg & E1000_CTRL_RFCE)
6256                 phy_reg |= BM_RCTL_RFCE;
6257         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6258
6259         wuc = E1000_WUC_PME_EN;
6260         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6261                 wuc |= E1000_WUC_APME;
6262
6263         /* enable PHY wakeup in MAC register */
6264         ew32(WUFC, wufc);
6265         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6266                    E1000_WUC_PME_STATUS | wuc));
6267
6268         /* configure and enable PHY wakeup in PHY registers */
6269         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6270         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6271
6272         /* activate PHY wakeup */
6273         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6274         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6275         if (retval)
6276                 e_err("Could not set PHY Host Wakeup bit\n");
6277 release:
6278         hw->phy.ops.release(hw);
6279
6280         return retval;
6281 }
6282
6283 static void e1000e_flush_lpic(struct pci_dev *pdev)
6284 {
6285         struct net_device *netdev = pci_get_drvdata(pdev);
6286         struct e1000_adapter *adapter = netdev_priv(netdev);
6287         struct e1000_hw *hw = &adapter->hw;
6288         u32 ret_val;
6289
6290         pm_runtime_get_sync(netdev->dev.parent);
6291
6292         ret_val = hw->phy.ops.acquire(hw);
6293         if (ret_val)
6294                 goto fl_out;
6295
6296         pr_info("EEE TX LPI TIMER: %08X\n",
6297                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6298
6299         hw->phy.ops.release(hw);
6300
6301 fl_out:
6302         pm_runtime_put_sync(netdev->dev.parent);
6303 }
6304
6305 static int e1000e_pm_freeze(struct device *dev)
6306 {
6307         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6308         struct e1000_adapter *adapter = netdev_priv(netdev);
6309
6310         netif_device_detach(netdev);
6311
6312         if (netif_running(netdev)) {
6313                 int count = E1000_CHECK_RESET_COUNT;
6314
6315                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6316                         usleep_range(10000, 20000);
6317
6318                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6319
6320                 /* Quiesce the device without resetting the hardware */
6321                 e1000e_down(adapter, false);
6322                 e1000_free_irq(adapter);
6323         }
6324         e1000e_reset_interrupt_capability(adapter);
6325
6326         /* Allow time for pending master requests to run */
6327         e1000e_disable_pcie_master(&adapter->hw);
6328
6329         return 0;
6330 }
6331
6332 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6333 {
6334         struct net_device *netdev = pci_get_drvdata(pdev);
6335         struct e1000_adapter *adapter = netdev_priv(netdev);
6336         struct e1000_hw *hw = &adapter->hw;
6337         u32 ctrl, ctrl_ext, rctl, status;
6338         /* Runtime suspend should only enable wakeup for link changes */
6339         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6340         int retval = 0;
6341
6342         status = er32(STATUS);
6343         if (status & E1000_STATUS_LU)
6344                 wufc &= ~E1000_WUFC_LNKC;
6345
6346         if (wufc) {
6347                 e1000_setup_rctl(adapter);
6348                 e1000e_set_rx_mode(netdev);
6349
6350                 /* turn on all-multi mode if wake on multicast is enabled */
6351                 if (wufc & E1000_WUFC_MC) {
6352                         rctl = er32(RCTL);
6353                         rctl |= E1000_RCTL_MPE;
6354                         ew32(RCTL, rctl);
6355                 }
6356
6357                 ctrl = er32(CTRL);
6358                 ctrl |= E1000_CTRL_ADVD3WUC;
6359                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6360                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6361                 ew32(CTRL, ctrl);
6362
6363                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6364                     adapter->hw.phy.media_type ==
6365                     e1000_media_type_internal_serdes) {
6366                         /* keep the laser running in D3 */
6367                         ctrl_ext = er32(CTRL_EXT);
6368                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6369                         ew32(CTRL_EXT, ctrl_ext);
6370                 }
6371
6372                 if (!runtime)
6373                         e1000e_power_up_phy(adapter);
6374
6375                 if (adapter->flags & FLAG_IS_ICH)
6376                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6377
6378                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6379                         /* enable wakeup by the PHY */
6380                         retval = e1000_init_phy_wakeup(adapter, wufc);
6381                         if (retval)
6382                                 return retval;
6383                 } else {
6384                         /* enable wakeup by the MAC */
6385                         ew32(WUFC, wufc);
6386                         ew32(WUC, E1000_WUC_PME_EN);
6387                 }
6388         } else {
6389                 ew32(WUC, 0);
6390                 ew32(WUFC, 0);
6391
6392                 e1000_power_down_phy(adapter);
6393         }
6394
6395         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6396                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6397         } else if (hw->mac.type >= e1000_pch_lpt) {
6398                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6399                         /* ULP does not support wake from unicast, multicast
6400                          * or broadcast.
6401                          */
6402                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6403
6404                 if (retval)
6405                         return retval;
6406         }
6407
6408         /* Ensure that the appropriate bits are set in LPI_CTRL
6409          * for EEE in Sx
6410          */
6411         if ((hw->phy.type >= e1000_phy_i217) &&
6412             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6413                 u16 lpi_ctrl = 0;
6414
6415                 retval = hw->phy.ops.acquire(hw);
6416                 if (!retval) {
6417                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6418                                                  &lpi_ctrl);
6419                         if (!retval) {
6420                                 if (adapter->eee_advert &
6421                                     hw->dev_spec.ich8lan.eee_lp_ability &
6422                                     I82579_EEE_100_SUPPORTED)
6423                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6424                                 if (adapter->eee_advert &
6425                                     hw->dev_spec.ich8lan.eee_lp_ability &
6426                                     I82579_EEE_1000_SUPPORTED)
6427                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6428
6429                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6430                                                          lpi_ctrl);
6431                         }
6432                 }
6433                 hw->phy.ops.release(hw);
6434         }
6435
6436         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6437          * would have already happened in close and is redundant.
6438          */
6439         e1000e_release_hw_control(adapter);
6440
6441         pci_clear_master(pdev);
6442
6443         /* The pci-e switch on some quad port adapters will report a
6444          * correctable error when the MAC transitions from D0 to D3.  To
6445          * prevent this we need to mask off the correctable errors on the
6446          * downstream port of the pci-e switch.
6447          *
6448          * We don't have the associated upstream bridge while assigning
6449          * the PCI device into guest. For example, the KVM on power is
6450          * one of the cases.
6451          */
6452         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6453                 struct pci_dev *us_dev = pdev->bus->self;
6454                 u16 devctl;
6455
6456                 if (!us_dev)
6457                         return 0;
6458
6459                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6460                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6461                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6462
6463                 pci_save_state(pdev);
6464                 pci_prepare_to_sleep(pdev);
6465
6466                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6467         }
6468
6469         return 0;
6470 }
6471
6472 /**
6473  * __e1000e_disable_aspm - Disable ASPM states
6474  * @pdev: pointer to PCI device struct
6475  * @state: bit-mask of ASPM states to disable
6476  * @locked: indication if this context holds pci_bus_sem locked.
6477  *
6478  * Some devices *must* have certain ASPM states disabled per hardware errata.
6479  **/
6480 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6481 {
6482         struct pci_dev *parent = pdev->bus->self;
6483         u16 aspm_dis_mask = 0;
6484         u16 pdev_aspmc, parent_aspmc;
6485
6486         switch (state) {
6487         case PCIE_LINK_STATE_L0S:
6488         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6489                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6490                 /* fall-through - can't have L1 without L0s */
6491         case PCIE_LINK_STATE_L1:
6492                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6493                 break;
6494         default:
6495                 return;
6496         }
6497
6498         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6499         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6500
6501         if (parent) {
6502                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6503                                           &parent_aspmc);
6504                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6505         }
6506
6507         /* Nothing to do if the ASPM states to be disabled already are */
6508         if (!(pdev_aspmc & aspm_dis_mask) &&
6509             (!parent || !(parent_aspmc & aspm_dis_mask)))
6510                 return;
6511
6512         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6513                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6514                  "L0s" : "",
6515                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6516                  "L1" : "");
6517
6518 #ifdef CONFIG_PCIEASPM
6519         if (locked)
6520                 pci_disable_link_state_locked(pdev, state);
6521         else
6522                 pci_disable_link_state(pdev, state);
6523
6524         /* Double-check ASPM control.  If not disabled by the above, the
6525          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6526          * not enabled); override by writing PCI config space directly.
6527          */
6528         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6529         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6530
6531         if (!(aspm_dis_mask & pdev_aspmc))
6532                 return;
6533 #endif
6534
6535         /* Both device and parent should have the same ASPM setting.
6536          * Disable ASPM in downstream component first and then upstream.
6537          */
6538         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6539
6540         if (parent)
6541                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6542                                            aspm_dis_mask);
6543 }
6544
6545 /**
6546  * e1000e_disable_aspm - Disable ASPM states.
6547  * @pdev: pointer to PCI device struct
6548  * @state: bit-mask of ASPM states to disable
6549  *
6550  * This function acquires the pci_bus_sem!
6551  * Some devices *must* have certain ASPM states disabled per hardware errata.
6552  **/
6553 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6554 {
6555         __e1000e_disable_aspm(pdev, state, 0);
6556 }
6557
6558 /**
6559  * e1000e_disable_aspm_locked   Disable ASPM states.
6560  * @pdev: pointer to PCI device struct
6561  * @state: bit-mask of ASPM states to disable
6562  *
6563  * This function must be called with pci_bus_sem acquired!
6564  * Some devices *must* have certain ASPM states disabled per hardware errata.
6565  **/
6566 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6567 {
6568         __e1000e_disable_aspm(pdev, state, 1);
6569 }
6570
6571 #ifdef CONFIG_PM
6572 static int __e1000_resume(struct pci_dev *pdev)
6573 {
6574         struct net_device *netdev = pci_get_drvdata(pdev);
6575         struct e1000_adapter *adapter = netdev_priv(netdev);
6576         struct e1000_hw *hw = &adapter->hw;
6577         u16 aspm_disable_flag = 0;
6578
6579         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6580                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6581         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6582                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6583         if (aspm_disable_flag)
6584                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6585
6586         pci_set_master(pdev);
6587
6588         if (hw->mac.type >= e1000_pch2lan)
6589                 e1000_resume_workarounds_pchlan(&adapter->hw);
6590
6591         e1000e_power_up_phy(adapter);
6592
6593         /* report the system wakeup cause from S3/S4 */
6594         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6595                 u16 phy_data;
6596
6597                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6598                 if (phy_data) {
6599                         e_info("PHY Wakeup cause - %s\n",
6600                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6601                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6602                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6603                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6604                                phy_data & E1000_WUS_LNKC ?
6605                                "Link Status Change" : "other");
6606                 }
6607                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6608         } else {
6609                 u32 wus = er32(WUS);
6610
6611                 if (wus) {
6612                         e_info("MAC Wakeup cause - %s\n",
6613                                wus & E1000_WUS_EX ? "Unicast Packet" :
6614                                wus & E1000_WUS_MC ? "Multicast Packet" :
6615                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6616                                wus & E1000_WUS_MAG ? "Magic Packet" :
6617                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6618                                "other");
6619                 }
6620                 ew32(WUS, ~0);
6621         }
6622
6623         e1000e_reset(adapter);
6624
6625         e1000_init_manageability_pt(adapter);
6626
6627         /* If the controller has AMT, do not set DRV_LOAD until the interface
6628          * is up.  For all other cases, let the f/w know that the h/w is now
6629          * under the control of the driver.
6630          */
6631         if (!(adapter->flags & FLAG_HAS_AMT))
6632                 e1000e_get_hw_control(adapter);
6633
6634         return 0;
6635 }
6636
6637 #ifdef CONFIG_PM_SLEEP
6638 static int e1000e_pm_thaw(struct device *dev)
6639 {
6640         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6641         struct e1000_adapter *adapter = netdev_priv(netdev);
6642
6643         e1000e_set_interrupt_capability(adapter);
6644         if (netif_running(netdev)) {
6645                 u32 err = e1000_request_irq(adapter);
6646
6647                 if (err)
6648                         return err;
6649
6650                 e1000e_up(adapter);
6651         }
6652
6653         netif_device_attach(netdev);
6654
6655         return 0;
6656 }
6657
6658 static int e1000e_pm_suspend(struct device *dev)
6659 {
6660         struct pci_dev *pdev = to_pci_dev(dev);
6661         int rc;
6662
6663         e1000e_flush_lpic(pdev);
6664
6665         e1000e_pm_freeze(dev);
6666
6667         rc = __e1000_shutdown(pdev, false);
6668         if (rc)
6669                 e1000e_pm_thaw(dev);
6670
6671         return rc;
6672 }
6673
6674 static int e1000e_pm_resume(struct device *dev)
6675 {
6676         struct pci_dev *pdev = to_pci_dev(dev);
6677         int rc;
6678
6679         rc = __e1000_resume(pdev);
6680         if (rc)
6681                 return rc;
6682
6683         return e1000e_pm_thaw(dev);
6684 }
6685 #endif /* CONFIG_PM_SLEEP */
6686
6687 static int e1000e_pm_runtime_idle(struct device *dev)
6688 {
6689         struct pci_dev *pdev = to_pci_dev(dev);
6690         struct net_device *netdev = pci_get_drvdata(pdev);
6691         struct e1000_adapter *adapter = netdev_priv(netdev);
6692         u16 eee_lp;
6693
6694         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6695
6696         if (!e1000e_has_link(adapter)) {
6697                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6698                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6699         }
6700
6701         return -EBUSY;
6702 }
6703
6704 static int e1000e_pm_runtime_resume(struct device *dev)
6705 {
6706         struct pci_dev *pdev = to_pci_dev(dev);
6707         struct net_device *netdev = pci_get_drvdata(pdev);
6708         struct e1000_adapter *adapter = netdev_priv(netdev);
6709         int rc;
6710
6711         rc = __e1000_resume(pdev);
6712         if (rc)
6713                 return rc;
6714
6715         if (netdev->flags & IFF_UP)
6716                 e1000e_up(adapter);
6717
6718         return rc;
6719 }
6720
6721 static int e1000e_pm_runtime_suspend(struct device *dev)
6722 {
6723         struct pci_dev *pdev = to_pci_dev(dev);
6724         struct net_device *netdev = pci_get_drvdata(pdev);
6725         struct e1000_adapter *adapter = netdev_priv(netdev);
6726
6727         if (netdev->flags & IFF_UP) {
6728                 int count = E1000_CHECK_RESET_COUNT;
6729
6730                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6731                         usleep_range(10000, 20000);
6732
6733                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6734
6735                 /* Down the device without resetting the hardware */
6736                 e1000e_down(adapter, false);
6737         }
6738
6739         if (__e1000_shutdown(pdev, true)) {
6740                 e1000e_pm_runtime_resume(dev);
6741                 return -EBUSY;
6742         }
6743
6744         return 0;
6745 }
6746 #endif /* CONFIG_PM */
6747
6748 static void e1000_shutdown(struct pci_dev *pdev)
6749 {
6750         e1000e_flush_lpic(pdev);
6751
6752         e1000e_pm_freeze(&pdev->dev);
6753
6754         __e1000_shutdown(pdev, false);
6755 }
6756
6757 #ifdef CONFIG_NET_POLL_CONTROLLER
6758
6759 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6760 {
6761         struct net_device *netdev = data;
6762         struct e1000_adapter *adapter = netdev_priv(netdev);
6763
6764         if (adapter->msix_entries) {
6765                 int vector, msix_irq;
6766
6767                 vector = 0;
6768                 msix_irq = adapter->msix_entries[vector].vector;
6769                 if (disable_hardirq(msix_irq))
6770                         e1000_intr_msix_rx(msix_irq, netdev);
6771                 enable_irq(msix_irq);
6772
6773                 vector++;
6774                 msix_irq = adapter->msix_entries[vector].vector;
6775                 if (disable_hardirq(msix_irq))
6776                         e1000_intr_msix_tx(msix_irq, netdev);
6777                 enable_irq(msix_irq);
6778
6779                 vector++;
6780                 msix_irq = adapter->msix_entries[vector].vector;
6781                 if (disable_hardirq(msix_irq))
6782                         e1000_msix_other(msix_irq, netdev);
6783                 enable_irq(msix_irq);
6784         }
6785
6786         return IRQ_HANDLED;
6787 }
6788
6789 /**
6790  * e1000_netpoll
6791  * @netdev: network interface device structure
6792  *
6793  * Polling 'interrupt' - used by things like netconsole to send skbs
6794  * without having to re-enable interrupts. It's not called while
6795  * the interrupt routine is executing.
6796  */
6797 static void e1000_netpoll(struct net_device *netdev)
6798 {
6799         struct e1000_adapter *adapter = netdev_priv(netdev);
6800
6801         switch (adapter->int_mode) {
6802         case E1000E_INT_MODE_MSIX:
6803                 e1000_intr_msix(adapter->pdev->irq, netdev);
6804                 break;
6805         case E1000E_INT_MODE_MSI:
6806                 if (disable_hardirq(adapter->pdev->irq))
6807                         e1000_intr_msi(adapter->pdev->irq, netdev);
6808                 enable_irq(adapter->pdev->irq);
6809                 break;
6810         default:                /* E1000E_INT_MODE_LEGACY */
6811                 if (disable_hardirq(adapter->pdev->irq))
6812                         e1000_intr(adapter->pdev->irq, netdev);
6813                 enable_irq(adapter->pdev->irq);
6814                 break;
6815         }
6816 }
6817 #endif
6818
6819 /**
6820  * e1000_io_error_detected - called when PCI error is detected
6821  * @pdev: Pointer to PCI device
6822  * @state: The current pci connection state
6823  *
6824  * This function is called after a PCI bus error affecting
6825  * this device has been detected.
6826  */
6827 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6828                                                 pci_channel_state_t state)
6829 {
6830         struct net_device *netdev = pci_get_drvdata(pdev);
6831         struct e1000_adapter *adapter = netdev_priv(netdev);
6832
6833         netif_device_detach(netdev);
6834
6835         if (state == pci_channel_io_perm_failure)
6836                 return PCI_ERS_RESULT_DISCONNECT;
6837
6838         if (netif_running(netdev))
6839                 e1000e_down(adapter, true);
6840         pci_disable_device(pdev);
6841
6842         /* Request a slot slot reset. */
6843         return PCI_ERS_RESULT_NEED_RESET;
6844 }
6845
6846 /**
6847  * e1000_io_slot_reset - called after the pci bus has been reset.
6848  * @pdev: Pointer to PCI device
6849  *
6850  * Restart the card from scratch, as if from a cold-boot. Implementation
6851  * resembles the first-half of the e1000e_pm_resume routine.
6852  */
6853 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6854 {
6855         struct net_device *netdev = pci_get_drvdata(pdev);
6856         struct e1000_adapter *adapter = netdev_priv(netdev);
6857         struct e1000_hw *hw = &adapter->hw;
6858         u16 aspm_disable_flag = 0;
6859         int err;
6860         pci_ers_result_t result;
6861
6862         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6863                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6864         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6865                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6866         if (aspm_disable_flag)
6867                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6868
6869         err = pci_enable_device_mem(pdev);
6870         if (err) {
6871                 dev_err(&pdev->dev,
6872                         "Cannot re-enable PCI device after reset.\n");
6873                 result = PCI_ERS_RESULT_DISCONNECT;
6874         } else {
6875                 pdev->state_saved = true;
6876                 pci_restore_state(pdev);
6877                 pci_set_master(pdev);
6878
6879                 pci_enable_wake(pdev, PCI_D3hot, 0);
6880                 pci_enable_wake(pdev, PCI_D3cold, 0);
6881
6882                 e1000e_reset(adapter);
6883                 ew32(WUS, ~0);
6884                 result = PCI_ERS_RESULT_RECOVERED;
6885         }
6886
6887         pci_cleanup_aer_uncorrect_error_status(pdev);
6888
6889         return result;
6890 }
6891
6892 /**
6893  * e1000_io_resume - called when traffic can start flowing again.
6894  * @pdev: Pointer to PCI device
6895  *
6896  * This callback is called when the error recovery driver tells us that
6897  * its OK to resume normal operation. Implementation resembles the
6898  * second-half of the e1000e_pm_resume routine.
6899  */
6900 static void e1000_io_resume(struct pci_dev *pdev)
6901 {
6902         struct net_device *netdev = pci_get_drvdata(pdev);
6903         struct e1000_adapter *adapter = netdev_priv(netdev);
6904
6905         e1000_init_manageability_pt(adapter);
6906
6907         if (netif_running(netdev))
6908                 e1000e_up(adapter);
6909
6910         netif_device_attach(netdev);
6911
6912         /* If the controller has AMT, do not set DRV_LOAD until the interface
6913          * is up.  For all other cases, let the f/w know that the h/w is now
6914          * under the control of the driver.
6915          */
6916         if (!(adapter->flags & FLAG_HAS_AMT))
6917                 e1000e_get_hw_control(adapter);
6918 }
6919
6920 static void e1000_print_device_info(struct e1000_adapter *adapter)
6921 {
6922         struct e1000_hw *hw = &adapter->hw;
6923         struct net_device *netdev = adapter->netdev;
6924         u32 ret_val;
6925         u8 pba_str[E1000_PBANUM_LENGTH];
6926
6927         /* print bus type/speed/width info */
6928         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6929                /* bus width */
6930                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6931                 "Width x1"),
6932                /* MAC address */
6933                netdev->dev_addr);
6934         e_info("Intel(R) PRO/%s Network Connection\n",
6935                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6936         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6937                                                 E1000_PBANUM_LENGTH);
6938         if (ret_val)
6939                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6940         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6941                hw->mac.type, hw->phy.type, pba_str);
6942 }
6943
6944 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6945 {
6946         struct e1000_hw *hw = &adapter->hw;
6947         int ret_val;
6948         u16 buf = 0;
6949
6950         if (hw->mac.type != e1000_82573)
6951                 return;
6952
6953         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6954         le16_to_cpus(&buf);
6955         if (!ret_val && (!(buf & BIT(0)))) {
6956                 /* Deep Smart Power Down (DSPD) */
6957                 dev_warn(&adapter->pdev->dev,
6958                          "Warning: detected DSPD enabled in EEPROM\n");
6959         }
6960 }
6961
6962 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6963                                             netdev_features_t features)
6964 {
6965         struct e1000_adapter *adapter = netdev_priv(netdev);
6966         struct e1000_hw *hw = &adapter->hw;
6967
6968         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6969         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6970                 features &= ~NETIF_F_RXFCS;
6971
6972         /* Since there is no support for separate Rx/Tx vlan accel
6973          * enable/disable make sure Tx flag is always in same state as Rx.
6974          */
6975         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6976                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6977         else
6978                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6979
6980         return features;
6981 }
6982
6983 static int e1000_set_features(struct net_device *netdev,
6984                               netdev_features_t features)
6985 {
6986         struct e1000_adapter *adapter = netdev_priv(netdev);
6987         netdev_features_t changed = features ^ netdev->features;
6988
6989         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6990                 adapter->flags |= FLAG_TSO_FORCE;
6991
6992         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6993                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6994                          NETIF_F_RXALL)))
6995                 return 0;
6996
6997         if (changed & NETIF_F_RXFCS) {
6998                 if (features & NETIF_F_RXFCS) {
6999                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7000                 } else {
7001                         /* We need to take it back to defaults, which might mean
7002                          * stripping is still disabled at the adapter level.
7003                          */
7004                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7005                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7006                         else
7007                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7008                 }
7009         }
7010
7011         netdev->features = features;
7012
7013         if (netif_running(netdev))
7014                 e1000e_reinit_locked(adapter);
7015         else
7016                 e1000e_reset(adapter);
7017
7018         return 0;
7019 }
7020
7021 static const struct net_device_ops e1000e_netdev_ops = {
7022         .ndo_open               = e1000e_open,
7023         .ndo_stop               = e1000e_close,
7024         .ndo_start_xmit         = e1000_xmit_frame,
7025         .ndo_get_stats64        = e1000e_get_stats64,
7026         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7027         .ndo_set_mac_address    = e1000_set_mac,
7028         .ndo_change_mtu         = e1000_change_mtu,
7029         .ndo_do_ioctl           = e1000_ioctl,
7030         .ndo_tx_timeout         = e1000_tx_timeout,
7031         .ndo_validate_addr      = eth_validate_addr,
7032
7033         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7034         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7035 #ifdef CONFIG_NET_POLL_CONTROLLER
7036         .ndo_poll_controller    = e1000_netpoll,
7037 #endif
7038         .ndo_set_features = e1000_set_features,
7039         .ndo_fix_features = e1000_fix_features,
7040         .ndo_features_check     = passthru_features_check,
7041 };
7042
7043 /**
7044  * e1000_probe - Device Initialization Routine
7045  * @pdev: PCI device information struct
7046  * @ent: entry in e1000_pci_tbl
7047  *
7048  * Returns 0 on success, negative on failure
7049  *
7050  * e1000_probe initializes an adapter identified by a pci_dev structure.
7051  * The OS initialization, configuring of the adapter private structure,
7052  * and a hardware reset occur.
7053  **/
7054 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7055 {
7056         struct net_device *netdev;
7057         struct e1000_adapter *adapter;
7058         struct e1000_hw *hw;
7059         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7060         resource_size_t mmio_start, mmio_len;
7061         resource_size_t flash_start, flash_len;
7062         static int cards_found;
7063         u16 aspm_disable_flag = 0;
7064         int bars, i, err, pci_using_dac;
7065         u16 eeprom_data = 0;
7066         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7067         s32 ret_val = 0;
7068
7069         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7070                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7071         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7072                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7073         if (aspm_disable_flag)
7074                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7075
7076         err = pci_enable_device_mem(pdev);
7077         if (err)
7078                 return err;
7079
7080         pci_using_dac = 0;
7081         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7082         if (!err) {
7083                 pci_using_dac = 1;
7084         } else {
7085                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7086                 if (err) {
7087                         dev_err(&pdev->dev,
7088                                 "No usable DMA configuration, aborting\n");
7089                         goto err_dma;
7090                 }
7091         }
7092
7093         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7094         err = pci_request_selected_regions_exclusive(pdev, bars,
7095                                                      e1000e_driver_name);
7096         if (err)
7097                 goto err_pci_reg;
7098
7099         /* AER (Advanced Error Reporting) hooks */
7100         pci_enable_pcie_error_reporting(pdev);
7101
7102         pci_set_master(pdev);
7103         /* PCI config space info */
7104         err = pci_save_state(pdev);
7105         if (err)
7106                 goto err_alloc_etherdev;
7107
7108         err = -ENOMEM;
7109         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7110         if (!netdev)
7111                 goto err_alloc_etherdev;
7112
7113         SET_NETDEV_DEV(netdev, &pdev->dev);
7114
7115         netdev->irq = pdev->irq;
7116
7117         pci_set_drvdata(pdev, netdev);
7118         adapter = netdev_priv(netdev);
7119         hw = &adapter->hw;
7120         adapter->netdev = netdev;
7121         adapter->pdev = pdev;
7122         adapter->ei = ei;
7123         adapter->pba = ei->pba;
7124         adapter->flags = ei->flags;
7125         adapter->flags2 = ei->flags2;
7126         adapter->hw.adapter = adapter;
7127         adapter->hw.mac.type = ei->mac;
7128         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7129         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7130
7131         mmio_start = pci_resource_start(pdev, 0);
7132         mmio_len = pci_resource_len(pdev, 0);
7133
7134         err = -EIO;
7135         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7136         if (!adapter->hw.hw_addr)
7137                 goto err_ioremap;
7138
7139         if ((adapter->flags & FLAG_HAS_FLASH) &&
7140             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7141             (hw->mac.type < e1000_pch_spt)) {
7142                 flash_start = pci_resource_start(pdev, 1);
7143                 flash_len = pci_resource_len(pdev, 1);
7144                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7145                 if (!adapter->hw.flash_address)
7146                         goto err_flashmap;
7147         }
7148
7149         /* Set default EEE advertisement */
7150         if (adapter->flags2 & FLAG2_HAS_EEE)
7151                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7152
7153         /* construct the net_device struct */
7154         netdev->netdev_ops = &e1000e_netdev_ops;
7155         e1000e_set_ethtool_ops(netdev);
7156         netdev->watchdog_timeo = 5 * HZ;
7157         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7158         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7159
7160         netdev->mem_start = mmio_start;
7161         netdev->mem_end = mmio_start + mmio_len;
7162
7163         adapter->bd_number = cards_found++;
7164
7165         e1000e_check_options(adapter);
7166
7167         /* setup adapter struct */
7168         err = e1000_sw_init(adapter);
7169         if (err)
7170                 goto err_sw_init;
7171
7172         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7173         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7174         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7175
7176         err = ei->get_variants(adapter);
7177         if (err)
7178                 goto err_hw_init;
7179
7180         if ((adapter->flags & FLAG_IS_ICH) &&
7181             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7182             (hw->mac.type < e1000_pch_spt))
7183                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7184
7185         hw->mac.ops.get_bus_info(&adapter->hw);
7186
7187         adapter->hw.phy.autoneg_wait_to_complete = 0;
7188
7189         /* Copper options */
7190         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7191                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7192                 adapter->hw.phy.disable_polarity_correction = 0;
7193                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7194         }
7195
7196         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7197                 dev_info(&pdev->dev,
7198                          "PHY reset is blocked due to SOL/IDER session.\n");
7199
7200         /* Set initial default active device features */
7201         netdev->features = (NETIF_F_SG |
7202                             NETIF_F_HW_VLAN_CTAG_RX |
7203                             NETIF_F_HW_VLAN_CTAG_TX |
7204                             NETIF_F_TSO |
7205                             NETIF_F_TSO6 |
7206                             NETIF_F_RXHASH |
7207                             NETIF_F_RXCSUM |
7208                             NETIF_F_HW_CSUM);
7209
7210         /* Set user-changeable features (subset of all device features) */
7211         netdev->hw_features = netdev->features;
7212         netdev->hw_features |= NETIF_F_RXFCS;
7213         netdev->priv_flags |= IFF_SUPP_NOFCS;
7214         netdev->hw_features |= NETIF_F_RXALL;
7215
7216         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7217                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7218
7219         netdev->vlan_features |= (NETIF_F_SG |
7220                                   NETIF_F_TSO |
7221                                   NETIF_F_TSO6 |
7222                                   NETIF_F_HW_CSUM);
7223
7224         netdev->priv_flags |= IFF_UNICAST_FLT;
7225
7226         if (pci_using_dac) {
7227                 netdev->features |= NETIF_F_HIGHDMA;
7228                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7229         }
7230
7231         /* MTU range: 68 - max_hw_frame_size */
7232         netdev->min_mtu = ETH_MIN_MTU;
7233         netdev->max_mtu = adapter->max_hw_frame_size -
7234                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7235
7236         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7237                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7238
7239         /* before reading the NVM, reset the controller to
7240          * put the device in a known good starting state
7241          */
7242         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7243
7244         /* systems with ASPM and others may see the checksum fail on the first
7245          * attempt. Let's give it a few tries
7246          */
7247         for (i = 0;; i++) {
7248                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7249                         break;
7250                 if (i == 2) {
7251                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7252                         err = -EIO;
7253                         goto err_eeprom;
7254                 }
7255         }
7256
7257         e1000_eeprom_checks(adapter);
7258
7259         /* copy the MAC address */
7260         if (e1000e_read_mac_addr(&adapter->hw))
7261                 dev_err(&pdev->dev,
7262                         "NVM Read Error while reading MAC address\n");
7263
7264         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7265
7266         if (!is_valid_ether_addr(netdev->dev_addr)) {
7267                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7268                         netdev->dev_addr);
7269                 err = -EIO;
7270                 goto err_eeprom;
7271         }
7272
7273         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7274         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7275
7276         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7277         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7278         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7279         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7280         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7281
7282         /* Initialize link parameters. User can change them with ethtool */
7283         adapter->hw.mac.autoneg = 1;
7284         adapter->fc_autoneg = true;
7285         adapter->hw.fc.requested_mode = e1000_fc_default;
7286         adapter->hw.fc.current_mode = e1000_fc_default;
7287         adapter->hw.phy.autoneg_advertised = 0x2f;
7288
7289         /* Initial Wake on LAN setting - If APM wake is enabled in
7290          * the EEPROM, enable the ACPI Magic Packet filter
7291          */
7292         if (adapter->flags & FLAG_APME_IN_WUC) {
7293                 /* APME bit in EEPROM is mapped to WUC.APME */
7294                 eeprom_data = er32(WUC);
7295                 eeprom_apme_mask = E1000_WUC_APME;
7296                 if ((hw->mac.type > e1000_ich10lan) &&
7297                     (eeprom_data & E1000_WUC_PHY_WAKE))
7298                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7299         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7300                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7301                     (adapter->hw.bus.func == 1))
7302                         ret_val = e1000_read_nvm(&adapter->hw,
7303                                               NVM_INIT_CONTROL3_PORT_B,
7304                                               1, &eeprom_data);
7305                 else
7306                         ret_val = e1000_read_nvm(&adapter->hw,
7307                                               NVM_INIT_CONTROL3_PORT_A,
7308                                               1, &eeprom_data);
7309         }
7310
7311         /* fetch WoL from EEPROM */
7312         if (ret_val)
7313                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7314         else if (eeprom_data & eeprom_apme_mask)
7315                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7316
7317         /* now that we have the eeprom settings, apply the special cases
7318          * where the eeprom may be wrong or the board simply won't support
7319          * wake on lan on a particular port
7320          */
7321         if (!(adapter->flags & FLAG_HAS_WOL))
7322                 adapter->eeprom_wol = 0;
7323
7324         /* initialize the wol settings based on the eeprom settings */
7325         adapter->wol = adapter->eeprom_wol;
7326
7327         /* make sure adapter isn't asleep if manageability is enabled */
7328         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7329             (hw->mac.ops.check_mng_mode(hw)))
7330                 device_wakeup_enable(&pdev->dev);
7331
7332         /* save off EEPROM version number */
7333         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7334
7335         if (ret_val) {
7336                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7337                 adapter->eeprom_vers = 0;
7338         }
7339
7340         /* init PTP hardware clock */
7341         e1000e_ptp_init(adapter);
7342
7343         /* reset the hardware with the new settings */
7344         e1000e_reset(adapter);
7345
7346         /* If the controller has AMT, do not set DRV_LOAD until the interface
7347          * is up.  For all other cases, let the f/w know that the h/w is now
7348          * under the control of the driver.
7349          */
7350         if (!(adapter->flags & FLAG_HAS_AMT))
7351                 e1000e_get_hw_control(adapter);
7352
7353         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7354         err = register_netdev(netdev);
7355         if (err)
7356                 goto err_register;
7357
7358         /* carrier off reporting is important to ethtool even BEFORE open */
7359         netif_carrier_off(netdev);
7360
7361         e1000_print_device_info(adapter);
7362
7363         if (pci_dev_run_wake(pdev))
7364                 pm_runtime_put_noidle(&pdev->dev);
7365
7366         return 0;
7367
7368 err_register:
7369         if (!(adapter->flags & FLAG_HAS_AMT))
7370                 e1000e_release_hw_control(adapter);
7371 err_eeprom:
7372         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7373                 e1000_phy_hw_reset(&adapter->hw);
7374 err_hw_init:
7375         kfree(adapter->tx_ring);
7376         kfree(adapter->rx_ring);
7377 err_sw_init:
7378         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7379                 iounmap(adapter->hw.flash_address);
7380         e1000e_reset_interrupt_capability(adapter);
7381 err_flashmap:
7382         iounmap(adapter->hw.hw_addr);
7383 err_ioremap:
7384         free_netdev(netdev);
7385 err_alloc_etherdev:
7386         pci_release_mem_regions(pdev);
7387 err_pci_reg:
7388 err_dma:
7389         pci_disable_device(pdev);
7390         return err;
7391 }
7392
7393 /**
7394  * e1000_remove - Device Removal Routine
7395  * @pdev: PCI device information struct
7396  *
7397  * e1000_remove is called by the PCI subsystem to alert the driver
7398  * that it should release a PCI device.  The could be caused by a
7399  * Hot-Plug event, or because the driver is going to be removed from
7400  * memory.
7401  **/
7402 static void e1000_remove(struct pci_dev *pdev)
7403 {
7404         struct net_device *netdev = pci_get_drvdata(pdev);
7405         struct e1000_adapter *adapter = netdev_priv(netdev);
7406         bool down = test_bit(__E1000_DOWN, &adapter->state);
7407
7408         e1000e_ptp_remove(adapter);
7409
7410         /* The timers may be rescheduled, so explicitly disable them
7411          * from being rescheduled.
7412          */
7413         if (!down)
7414                 set_bit(__E1000_DOWN, &adapter->state);
7415         del_timer_sync(&adapter->watchdog_timer);
7416         del_timer_sync(&adapter->phy_info_timer);
7417
7418         cancel_work_sync(&adapter->reset_task);
7419         cancel_work_sync(&adapter->watchdog_task);
7420         cancel_work_sync(&adapter->downshift_task);
7421         cancel_work_sync(&adapter->update_phy_task);
7422         cancel_work_sync(&adapter->print_hang_task);
7423
7424         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7425                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7426                 if (adapter->tx_hwtstamp_skb) {
7427                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7428                         adapter->tx_hwtstamp_skb = NULL;
7429                 }
7430         }
7431
7432         /* Don't lie to e1000_close() down the road. */
7433         if (!down)
7434                 clear_bit(__E1000_DOWN, &adapter->state);
7435         unregister_netdev(netdev);
7436
7437         if (pci_dev_run_wake(pdev))
7438                 pm_runtime_get_noresume(&pdev->dev);
7439
7440         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7441          * would have already happened in close and is redundant.
7442          */
7443         e1000e_release_hw_control(adapter);
7444
7445         e1000e_reset_interrupt_capability(adapter);
7446         kfree(adapter->tx_ring);
7447         kfree(adapter->rx_ring);
7448
7449         iounmap(adapter->hw.hw_addr);
7450         if ((adapter->hw.flash_address) &&
7451             (adapter->hw.mac.type < e1000_pch_spt))
7452                 iounmap(adapter->hw.flash_address);
7453         pci_release_mem_regions(pdev);
7454
7455         free_netdev(netdev);
7456
7457         /* AER disable */
7458         pci_disable_pcie_error_reporting(pdev);
7459
7460         pci_disable_device(pdev);
7461 }
7462
7463 /* PCI Error Recovery (ERS) */
7464 static const struct pci_error_handlers e1000_err_handler = {
7465         .error_detected = e1000_io_error_detected,
7466         .slot_reset = e1000_io_slot_reset,
7467         .resume = e1000_io_resume,
7468 };
7469
7470 static const struct pci_device_id e1000_pci_tbl[] = {
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7475           board_82571 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7486
7487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7490
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7494
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7496           board_80003es2lan },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7498           board_80003es2lan },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7500           board_80003es2lan },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7502           board_80003es2lan },
7503
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7512
7513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7522
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7526
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7530
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7535
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7538
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7555         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7557         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7559         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7560         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7561         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7562         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7563         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7564
7565         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7566 };
7567 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7568
7569 static const struct dev_pm_ops e1000_pm_ops = {
7570 #ifdef CONFIG_PM_SLEEP
7571         .suspend        = e1000e_pm_suspend,
7572         .resume         = e1000e_pm_resume,
7573         .freeze         = e1000e_pm_freeze,
7574         .thaw           = e1000e_pm_thaw,
7575         .poweroff       = e1000e_pm_suspend,
7576         .restore        = e1000e_pm_resume,
7577 #endif
7578         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7579                            e1000e_pm_runtime_idle)
7580 };
7581
7582 /* PCI Device API Driver */
7583 static struct pci_driver e1000_driver = {
7584         .name     = e1000e_driver_name,
7585         .id_table = e1000_pci_tbl,
7586         .probe    = e1000_probe,
7587         .remove   = e1000_remove,
7588         .driver   = {
7589                 .pm = &e1000_pm_ops,
7590         },
7591         .shutdown = e1000_shutdown,
7592         .err_handler = &e1000_err_handler
7593 };
7594
7595 /**
7596  * e1000_init_module - Driver Registration Routine
7597  *
7598  * e1000_init_module is the first routine called when the driver is
7599  * loaded. All it does is register with the PCI subsystem.
7600  **/
7601 static int __init e1000_init_module(void)
7602 {
7603         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7604                 e1000e_driver_version);
7605         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7606
7607         return pci_register_driver(&e1000_driver);
7608 }
7609 module_init(e1000_init_module);
7610
7611 /**
7612  * e1000_exit_module - Driver Exit Cleanup Routine
7613  *
7614  * e1000_exit_module is called just before the driver is removed
7615  * from memory.
7616  **/
7617 static void __exit e1000_exit_module(void)
7618 {
7619         pci_unregister_driver(&e1000_driver);
7620 }
7621 module_exit(e1000_exit_module);
7622
7623 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7624 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7625 MODULE_LICENSE("GPL");
7626 MODULE_VERSION(DRV_VERSION);
7627
7628 /* netdev.c */