Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81         /* General Registers */
82         {E1000_CTRL, "CTRL"},
83         {E1000_STATUS, "STATUS"},
84         {E1000_CTRL_EXT, "CTRL_EXT"},
85
86         /* Interrupt Registers */
87         {E1000_ICR, "ICR"},
88
89         /* Rx Registers */
90         {E1000_RCTL, "RCTL"},
91         {E1000_RDLEN(0), "RDLEN"},
92         {E1000_RDH(0), "RDH"},
93         {E1000_RDT(0), "RDT"},
94         {E1000_RDTR, "RDTR"},
95         {E1000_RXDCTL(0), "RXDCTL"},
96         {E1000_ERT, "ERT"},
97         {E1000_RDBAL(0), "RDBAL"},
98         {E1000_RDBAH(0), "RDBAH"},
99         {E1000_RDFH, "RDFH"},
100         {E1000_RDFT, "RDFT"},
101         {E1000_RDFHS, "RDFHS"},
102         {E1000_RDFTS, "RDFTS"},
103         {E1000_RDFPC, "RDFPC"},
104
105         /* Tx Registers */
106         {E1000_TCTL, "TCTL"},
107         {E1000_TDBAL(0), "TDBAL"},
108         {E1000_TDBAH(0), "TDBAH"},
109         {E1000_TDLEN(0), "TDLEN"},
110         {E1000_TDH(0), "TDH"},
111         {E1000_TDT(0), "TDT"},
112         {E1000_TIDV, "TIDV"},
113         {E1000_TXDCTL(0), "TXDCTL"},
114         {E1000_TADV, "TADV"},
115         {E1000_TARC(0), "TARC"},
116         {E1000_TDFH, "TDFH"},
117         {E1000_TDFT, "TDFT"},
118         {E1000_TDFHS, "TDFHS"},
119         {E1000_TDFTS, "TDFTS"},
120         {E1000_TDFPC, "TDFPC"},
121
122         /* List Terminator */
123         {0, NULL}
124 };
125
126 /**
127  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
128  * @hw: pointer to the HW structure
129  *
130  * When updating the MAC CSR registers, the Manageability Engine (ME) could
131  * be accessing the registers at the same time.  Normally, this is handled in
132  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
133  * accesses later than it should which could result in the register to have
134  * an incorrect value.  Workaround this by checking the FWSM register which
135  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
136  * and try again a number of times.
137  **/
138 s32 __ew32_prepare(struct e1000_hw *hw)
139 {
140         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
141
142         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
143                 udelay(50);
144
145         return i;
146 }
147
148 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
149 {
150         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
151                 __ew32_prepare(hw);
152
153         writel(val, hw->hw_addr + reg);
154 }
155
156 /**
157  * e1000_regdump - register printout routine
158  * @hw: pointer to the HW structure
159  * @reginfo: pointer to the register info table
160  **/
161 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
162 {
163         int n = 0;
164         char rname[16];
165         u32 regs[8];
166
167         switch (reginfo->ofs) {
168         case E1000_RXDCTL(0):
169                 for (n = 0; n < 2; n++)
170                         regs[n] = __er32(hw, E1000_RXDCTL(n));
171                 break;
172         case E1000_TXDCTL(0):
173                 for (n = 0; n < 2; n++)
174                         regs[n] = __er32(hw, E1000_TXDCTL(n));
175                 break;
176         case E1000_TARC(0):
177                 for (n = 0; n < 2; n++)
178                         regs[n] = __er32(hw, E1000_TARC(n));
179                 break;
180         default:
181                 pr_info("%-15s %08x\n",
182                         reginfo->name, __er32(hw, reginfo->ofs));
183                 return;
184         }
185
186         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
187         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
188 }
189
190 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
191                                  struct e1000_buffer *bi)
192 {
193         int i;
194         struct e1000_ps_page *ps_page;
195
196         for (i = 0; i < adapter->rx_ps_pages; i++) {
197                 ps_page = &bi->ps_pages[i];
198
199                 if (ps_page->page) {
200                         pr_info("packet dump for ps_page %d:\n", i);
201                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
202                                        16, 1, page_address(ps_page->page),
203                                        PAGE_SIZE, true);
204                 }
205         }
206 }
207
208 /**
209  * e1000e_dump - Print registers, Tx-ring and Rx-ring
210  * @adapter: board private structure
211  **/
212 static void e1000e_dump(struct e1000_adapter *adapter)
213 {
214         struct net_device *netdev = adapter->netdev;
215         struct e1000_hw *hw = &adapter->hw;
216         struct e1000_reg_info *reginfo;
217         struct e1000_ring *tx_ring = adapter->tx_ring;
218         struct e1000_tx_desc *tx_desc;
219         struct my_u0 {
220                 __le64 a;
221                 __le64 b;
222         } *u0;
223         struct e1000_buffer *buffer_info;
224         struct e1000_ring *rx_ring = adapter->rx_ring;
225         union e1000_rx_desc_packet_split *rx_desc_ps;
226         union e1000_rx_desc_extended *rx_desc;
227         struct my_u1 {
228                 __le64 a;
229                 __le64 b;
230                 __le64 c;
231                 __le64 d;
232         } *u1;
233         u32 staterr;
234         int i = 0;
235
236         if (!netif_msg_hw(adapter))
237                 return;
238
239         /* Print netdevice Info */
240         if (netdev) {
241                 dev_info(&adapter->pdev->dev, "Net device Info\n");
242                 pr_info("Device Name     state            trans_start      last_rx\n");
243                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
244                         netdev->state, netdev->trans_start, netdev->last_rx);
245         }
246
247         /* Print Registers */
248         dev_info(&adapter->pdev->dev, "Register Dump\n");
249         pr_info(" Register Name   Value\n");
250         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
251              reginfo->name; reginfo++) {
252                 e1000_regdump(hw, reginfo);
253         }
254
255         /* Print Tx Ring Summary */
256         if (!netdev || !netif_running(netdev))
257                 return;
258
259         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
260         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
261         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
262         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
263                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
264                 (unsigned long long)buffer_info->dma,
265                 buffer_info->length,
266                 buffer_info->next_to_watch,
267                 (unsigned long long)buffer_info->time_stamp);
268
269         /* Print Tx Ring */
270         if (!netif_msg_tx_done(adapter))
271                 goto rx_ring_summary;
272
273         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
274
275         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
276          *
277          * Legacy Transmit Descriptor
278          *   +--------------------------------------------------------------+
279          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
280          *   +--------------------------------------------------------------+
281          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
282          *   +--------------------------------------------------------------+
283          *   63       48 47        36 35    32 31     24 23    16 15        0
284          *
285          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
286          *   63      48 47    40 39       32 31             16 15    8 7      0
287          *   +----------------------------------------------------------------+
288          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
289          *   +----------------------------------------------------------------+
290          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
291          *   +----------------------------------------------------------------+
292          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
293          *
294          * Extended Data Descriptor (DTYP=0x1)
295          *   +----------------------------------------------------------------+
296          * 0 |                     Buffer Address [63:0]                      |
297          *   +----------------------------------------------------------------+
298          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
299          *   +----------------------------------------------------------------+
300          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
301          */
302         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
303         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
304         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
305         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
306                 const char *next_desc;
307                 tx_desc = E1000_TX_DESC(*tx_ring, i);
308                 buffer_info = &tx_ring->buffer_info[i];
309                 u0 = (struct my_u0 *)tx_desc;
310                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
311                         next_desc = " NTC/U";
312                 else if (i == tx_ring->next_to_use)
313                         next_desc = " NTU";
314                 else if (i == tx_ring->next_to_clean)
315                         next_desc = " NTC";
316                 else
317                         next_desc = "";
318                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
319                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
320                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
321                         i,
322                         (unsigned long long)le64_to_cpu(u0->a),
323                         (unsigned long long)le64_to_cpu(u0->b),
324                         (unsigned long long)buffer_info->dma,
325                         buffer_info->length, buffer_info->next_to_watch,
326                         (unsigned long long)buffer_info->time_stamp,
327                         buffer_info->skb, next_desc);
328
329                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
330                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
331                                        16, 1, buffer_info->skb->data,
332                                        buffer_info->skb->len, true);
333         }
334
335         /* Print Rx Ring Summary */
336 rx_ring_summary:
337         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
338         pr_info("Queue [NTU] [NTC]\n");
339         pr_info(" %5d %5X %5X\n",
340                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
341
342         /* Print Rx Ring */
343         if (!netif_msg_rx_status(adapter))
344                 return;
345
346         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
347         switch (adapter->rx_ps_pages) {
348         case 1:
349         case 2:
350         case 3:
351                 /* [Extended] Packet Split Receive Descriptor Format
352                  *
353                  *    +-----------------------------------------------------+
354                  *  0 |                Buffer Address 0 [63:0]              |
355                  *    +-----------------------------------------------------+
356                  *  8 |                Buffer Address 1 [63:0]              |
357                  *    +-----------------------------------------------------+
358                  * 16 |                Buffer Address 2 [63:0]              |
359                  *    +-----------------------------------------------------+
360                  * 24 |                Buffer Address 3 [63:0]              |
361                  *    +-----------------------------------------------------+
362                  */
363                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
364                 /* [Extended] Receive Descriptor (Write-Back) Format
365                  *
366                  *   63       48 47    32 31     13 12    8 7    4 3        0
367                  *   +------------------------------------------------------+
368                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
369                  *   | Checksum | Ident  |         | Queue |      |  Type   |
370                  *   +------------------------------------------------------+
371                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
372                  *   +------------------------------------------------------+
373                  *   63       48 47    32 31            20 19               0
374                  */
375                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
376                 for (i = 0; i < rx_ring->count; i++) {
377                         const char *next_desc;
378                         buffer_info = &rx_ring->buffer_info[i];
379                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
380                         u1 = (struct my_u1 *)rx_desc_ps;
381                         staterr =
382                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
383
384                         if (i == rx_ring->next_to_use)
385                                 next_desc = " NTU";
386                         else if (i == rx_ring->next_to_clean)
387                                 next_desc = " NTC";
388                         else
389                                 next_desc = "";
390
391                         if (staterr & E1000_RXD_STAT_DD) {
392                                 /* Descriptor Done */
393                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
394                                         "RWB", i,
395                                         (unsigned long long)le64_to_cpu(u1->a),
396                                         (unsigned long long)le64_to_cpu(u1->b),
397                                         (unsigned long long)le64_to_cpu(u1->c),
398                                         (unsigned long long)le64_to_cpu(u1->d),
399                                         buffer_info->skb, next_desc);
400                         } else {
401                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
402                                         "R  ", i,
403                                         (unsigned long long)le64_to_cpu(u1->a),
404                                         (unsigned long long)le64_to_cpu(u1->b),
405                                         (unsigned long long)le64_to_cpu(u1->c),
406                                         (unsigned long long)le64_to_cpu(u1->d),
407                                         (unsigned long long)buffer_info->dma,
408                                         buffer_info->skb, next_desc);
409
410                                 if (netif_msg_pktdata(adapter))
411                                         e1000e_dump_ps_pages(adapter,
412                                                              buffer_info);
413                         }
414                 }
415                 break;
416         default:
417         case 0:
418                 /* Extended Receive Descriptor (Read) Format
419                  *
420                  *   +-----------------------------------------------------+
421                  * 0 |                Buffer Address [63:0]                |
422                  *   +-----------------------------------------------------+
423                  * 8 |                      Reserved                       |
424                  *   +-----------------------------------------------------+
425                  */
426                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
427                 /* Extended Receive Descriptor (Write-Back) Format
428                  *
429                  *   63       48 47    32 31    24 23            4 3        0
430                  *   +------------------------------------------------------+
431                  *   |     RSS Hash      |        |               |         |
432                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
433                  *   | Packet   | IP     |        |               |  Type   |
434                  *   | Checksum | Ident  |        |               |         |
435                  *   +------------------------------------------------------+
436                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
437                  *   +------------------------------------------------------+
438                  *   63       48 47    32 31            20 19               0
439                  */
440                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
441
442                 for (i = 0; i < rx_ring->count; i++) {
443                         const char *next_desc;
444
445                         buffer_info = &rx_ring->buffer_info[i];
446                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
447                         u1 = (struct my_u1 *)rx_desc;
448                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
449
450                         if (i == rx_ring->next_to_use)
451                                 next_desc = " NTU";
452                         else if (i == rx_ring->next_to_clean)
453                                 next_desc = " NTC";
454                         else
455                                 next_desc = "";
456
457                         if (staterr & E1000_RXD_STAT_DD) {
458                                 /* Descriptor Done */
459                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
460                                         "RWB", i,
461                                         (unsigned long long)le64_to_cpu(u1->a),
462                                         (unsigned long long)le64_to_cpu(u1->b),
463                                         buffer_info->skb, next_desc);
464                         } else {
465                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
466                                         "R  ", i,
467                                         (unsigned long long)le64_to_cpu(u1->a),
468                                         (unsigned long long)le64_to_cpu(u1->b),
469                                         (unsigned long long)buffer_info->dma,
470                                         buffer_info->skb, next_desc);
471
472                                 if (netif_msg_pktdata(adapter) &&
473                                     buffer_info->skb)
474                                         print_hex_dump(KERN_INFO, "",
475                                                        DUMP_PREFIX_ADDRESS, 16,
476                                                        1,
477                                                        buffer_info->skb->data,
478                                                        adapter->rx_buffer_len,
479                                                        true);
480                         }
481                 }
482         }
483 }
484
485 /**
486  * e1000_desc_unused - calculate if we have unused descriptors
487  **/
488 static int e1000_desc_unused(struct e1000_ring *ring)
489 {
490         if (ring->next_to_clean > ring->next_to_use)
491                 return ring->next_to_clean - ring->next_to_use - 1;
492
493         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
494 }
495
496 /**
497  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
498  * @adapter: board private structure
499  * @hwtstamps: time stamp structure to update
500  * @systim: unsigned 64bit system time value.
501  *
502  * Convert the system time value stored in the RX/TXSTMP registers into a
503  * hwtstamp which can be used by the upper level time stamping functions.
504  *
505  * The 'systim_lock' spinlock is used to protect the consistency of the
506  * system time value. This is needed because reading the 64 bit time
507  * value involves reading two 32 bit registers. The first read latches the
508  * value.
509  **/
510 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
511                                       struct skb_shared_hwtstamps *hwtstamps,
512                                       u64 systim)
513 {
514         u64 ns;
515         unsigned long flags;
516
517         spin_lock_irqsave(&adapter->systim_lock, flags);
518         ns = timecounter_cyc2time(&adapter->tc, systim);
519         spin_unlock_irqrestore(&adapter->systim_lock, flags);
520
521         memset(hwtstamps, 0, sizeof(*hwtstamps));
522         hwtstamps->hwtstamp = ns_to_ktime(ns);
523 }
524
525 /**
526  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
527  * @adapter: board private structure
528  * @status: descriptor extended error and status field
529  * @skb: particular skb to include time stamp
530  *
531  * If the time stamp is valid, convert it into the timecounter ns value
532  * and store that result into the shhwtstamps structure which is passed
533  * up the network stack.
534  **/
535 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
536                                struct sk_buff *skb)
537 {
538         struct e1000_hw *hw = &adapter->hw;
539         u64 rxstmp;
540
541         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
542             !(status & E1000_RXDEXT_STATERR_TST) ||
543             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
544                 return;
545
546         /* The Rx time stamp registers contain the time stamp.  No other
547          * received packet will be time stamped until the Rx time stamp
548          * registers are read.  Because only one packet can be time stamped
549          * at a time, the register values must belong to this packet and
550          * therefore none of the other additional attributes need to be
551          * compared.
552          */
553         rxstmp = (u64)er32(RXSTMPL);
554         rxstmp |= (u64)er32(RXSTMPH) << 32;
555         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
556
557         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
558 }
559
560 /**
561  * e1000_receive_skb - helper function to handle Rx indications
562  * @adapter: board private structure
563  * @staterr: descriptor extended error and status field as written by hardware
564  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
565  * @skb: pointer to sk_buff to be indicated to stack
566  **/
567 static void e1000_receive_skb(struct e1000_adapter *adapter,
568                               struct net_device *netdev, struct sk_buff *skb,
569                               u32 staterr, __le16 vlan)
570 {
571         u16 tag = le16_to_cpu(vlan);
572
573         e1000e_rx_hwtstamp(adapter, staterr, skb);
574
575         skb->protocol = eth_type_trans(skb, netdev);
576
577         if (staterr & E1000_RXD_STAT_VP)
578                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
579
580         napi_gro_receive(&adapter->napi, skb);
581 }
582
583 /**
584  * e1000_rx_checksum - Receive Checksum Offload
585  * @adapter: board private structure
586  * @status_err: receive descriptor status and error fields
587  * @csum: receive descriptor csum field
588  * @sk_buff: socket buffer with received data
589  **/
590 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
591                               struct sk_buff *skb)
592 {
593         u16 status = (u16)status_err;
594         u8 errors = (u8)(status_err >> 24);
595
596         skb_checksum_none_assert(skb);
597
598         /* Rx checksum disabled */
599         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
600                 return;
601
602         /* Ignore Checksum bit is set */
603         if (status & E1000_RXD_STAT_IXSM)
604                 return;
605
606         /* TCP/UDP checksum error bit or IP checksum error bit is set */
607         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
608                 /* let the stack verify checksum errors */
609                 adapter->hw_csum_err++;
610                 return;
611         }
612
613         /* TCP/UDP Checksum has not been calculated */
614         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
615                 return;
616
617         /* It must be a TCP or UDP packet with a valid checksum */
618         skb->ip_summed = CHECKSUM_UNNECESSARY;
619         adapter->hw_csum_good++;
620 }
621
622 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
623 {
624         struct e1000_adapter *adapter = rx_ring->adapter;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 ret_val = __ew32_prepare(hw);
627
628         writel(i, rx_ring->tail);
629
630         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
631                 u32 rctl = er32(RCTL);
632
633                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
634                 e_err("ME firmware caused invalid RDT - resetting\n");
635                 schedule_work(&adapter->reset_task);
636         }
637 }
638
639 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
640 {
641         struct e1000_adapter *adapter = tx_ring->adapter;
642         struct e1000_hw *hw = &adapter->hw;
643         s32 ret_val = __ew32_prepare(hw);
644
645         writel(i, tx_ring->tail);
646
647         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
648                 u32 tctl = er32(TCTL);
649
650                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
651                 e_err("ME firmware caused invalid TDT - resetting\n");
652                 schedule_work(&adapter->reset_task);
653         }
654 }
655
656 /**
657  * e1000_alloc_rx_buffers - Replace used receive buffers
658  * @rx_ring: Rx descriptor ring
659  **/
660 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
661                                    int cleaned_count, gfp_t gfp)
662 {
663         struct e1000_adapter *adapter = rx_ring->adapter;
664         struct net_device *netdev = adapter->netdev;
665         struct pci_dev *pdev = adapter->pdev;
666         union e1000_rx_desc_extended *rx_desc;
667         struct e1000_buffer *buffer_info;
668         struct sk_buff *skb;
669         unsigned int i;
670         unsigned int bufsz = adapter->rx_buffer_len;
671
672         i = rx_ring->next_to_use;
673         buffer_info = &rx_ring->buffer_info[i];
674
675         while (cleaned_count--) {
676                 skb = buffer_info->skb;
677                 if (skb) {
678                         skb_trim(skb, 0);
679                         goto map_skb;
680                 }
681
682                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
683                 if (!skb) {
684                         /* Better luck next round */
685                         adapter->alloc_rx_buff_failed++;
686                         break;
687                 }
688
689                 buffer_info->skb = skb;
690 map_skb:
691                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
692                                                   adapter->rx_buffer_len,
693                                                   DMA_FROM_DEVICE);
694                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
695                         dev_err(&pdev->dev, "Rx DMA map failed\n");
696                         adapter->rx_dma_failed++;
697                         break;
698                 }
699
700                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
701                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
702
703                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
704                         /* Force memory writes to complete before letting h/w
705                          * know there are new descriptors to fetch.  (Only
706                          * applicable for weak-ordered memory model archs,
707                          * such as IA-64).
708                          */
709                         wmb();
710                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
711                                 e1000e_update_rdt_wa(rx_ring, i);
712                         else
713                                 writel(i, rx_ring->tail);
714                 }
715                 i++;
716                 if (i == rx_ring->count)
717                         i = 0;
718                 buffer_info = &rx_ring->buffer_info[i];
719         }
720
721         rx_ring->next_to_use = i;
722 }
723
724 /**
725  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
726  * @rx_ring: Rx descriptor ring
727  **/
728 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
729                                       int cleaned_count, gfp_t gfp)
730 {
731         struct e1000_adapter *adapter = rx_ring->adapter;
732         struct net_device *netdev = adapter->netdev;
733         struct pci_dev *pdev = adapter->pdev;
734         union e1000_rx_desc_packet_split *rx_desc;
735         struct e1000_buffer *buffer_info;
736         struct e1000_ps_page *ps_page;
737         struct sk_buff *skb;
738         unsigned int i, j;
739
740         i = rx_ring->next_to_use;
741         buffer_info = &rx_ring->buffer_info[i];
742
743         while (cleaned_count--) {
744                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
745
746                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
747                         ps_page = &buffer_info->ps_pages[j];
748                         if (j >= adapter->rx_ps_pages) {
749                                 /* all unused desc entries get hw null ptr */
750                                 rx_desc->read.buffer_addr[j + 1] =
751                                     ~cpu_to_le64(0);
752                                 continue;
753                         }
754                         if (!ps_page->page) {
755                                 ps_page->page = alloc_page(gfp);
756                                 if (!ps_page->page) {
757                                         adapter->alloc_rx_buff_failed++;
758                                         goto no_buffers;
759                                 }
760                                 ps_page->dma = dma_map_page(&pdev->dev,
761                                                             ps_page->page,
762                                                             0, PAGE_SIZE,
763                                                             DMA_FROM_DEVICE);
764                                 if (dma_mapping_error(&pdev->dev,
765                                                       ps_page->dma)) {
766                                         dev_err(&adapter->pdev->dev,
767                                                 "Rx DMA page map failed\n");
768                                         adapter->rx_dma_failed++;
769                                         goto no_buffers;
770                                 }
771                         }
772                         /* Refresh the desc even if buffer_addrs
773                          * didn't change because each write-back
774                          * erases this info.
775                          */
776                         rx_desc->read.buffer_addr[j + 1] =
777                             cpu_to_le64(ps_page->dma);
778                 }
779
780                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
781                                                   gfp);
782
783                 if (!skb) {
784                         adapter->alloc_rx_buff_failed++;
785                         break;
786                 }
787
788                 buffer_info->skb = skb;
789                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
790                                                   adapter->rx_ps_bsize0,
791                                                   DMA_FROM_DEVICE);
792                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
793                         dev_err(&pdev->dev, "Rx DMA map failed\n");
794                         adapter->rx_dma_failed++;
795                         /* cleanup skb */
796                         dev_kfree_skb_any(skb);
797                         buffer_info->skb = NULL;
798                         break;
799                 }
800
801                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
802
803                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
804                         /* Force memory writes to complete before letting h/w
805                          * know there are new descriptors to fetch.  (Only
806                          * applicable for weak-ordered memory model archs,
807                          * such as IA-64).
808                          */
809                         wmb();
810                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
811                                 e1000e_update_rdt_wa(rx_ring, i << 1);
812                         else
813                                 writel(i << 1, rx_ring->tail);
814                 }
815
816                 i++;
817                 if (i == rx_ring->count)
818                         i = 0;
819                 buffer_info = &rx_ring->buffer_info[i];
820         }
821
822 no_buffers:
823         rx_ring->next_to_use = i;
824 }
825
826 /**
827  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
828  * @rx_ring: Rx descriptor ring
829  * @cleaned_count: number of buffers to allocate this pass
830  **/
831
832 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
833                                          int cleaned_count, gfp_t gfp)
834 {
835         struct e1000_adapter *adapter = rx_ring->adapter;
836         struct net_device *netdev = adapter->netdev;
837         struct pci_dev *pdev = adapter->pdev;
838         union e1000_rx_desc_extended *rx_desc;
839         struct e1000_buffer *buffer_info;
840         struct sk_buff *skb;
841         unsigned int i;
842         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
843
844         i = rx_ring->next_to_use;
845         buffer_info = &rx_ring->buffer_info[i];
846
847         while (cleaned_count--) {
848                 skb = buffer_info->skb;
849                 if (skb) {
850                         skb_trim(skb, 0);
851                         goto check_page;
852                 }
853
854                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
855                 if (unlikely(!skb)) {
856                         /* Better luck next round */
857                         adapter->alloc_rx_buff_failed++;
858                         break;
859                 }
860
861                 buffer_info->skb = skb;
862 check_page:
863                 /* allocate a new page if necessary */
864                 if (!buffer_info->page) {
865                         buffer_info->page = alloc_page(gfp);
866                         if (unlikely(!buffer_info->page)) {
867                                 adapter->alloc_rx_buff_failed++;
868                                 break;
869                         }
870                 }
871
872                 if (!buffer_info->dma) {
873                         buffer_info->dma = dma_map_page(&pdev->dev,
874                                                         buffer_info->page, 0,
875                                                         PAGE_SIZE,
876                                                         DMA_FROM_DEVICE);
877                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
878                                 adapter->alloc_rx_buff_failed++;
879                                 break;
880                         }
881                 }
882
883                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
884                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
885
886                 if (unlikely(++i == rx_ring->count))
887                         i = 0;
888                 buffer_info = &rx_ring->buffer_info[i];
889         }
890
891         if (likely(rx_ring->next_to_use != i)) {
892                 rx_ring->next_to_use = i;
893                 if (unlikely(i-- == 0))
894                         i = (rx_ring->count - 1);
895
896                 /* Force memory writes to complete before letting h/w
897                  * know there are new descriptors to fetch.  (Only
898                  * applicable for weak-ordered memory model archs,
899                  * such as IA-64).
900                  */
901                 wmb();
902                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
903                         e1000e_update_rdt_wa(rx_ring, i);
904                 else
905                         writel(i, rx_ring->tail);
906         }
907 }
908
909 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
910                                  struct sk_buff *skb)
911 {
912         if (netdev->features & NETIF_F_RXHASH)
913                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
914 }
915
916 /**
917  * e1000_clean_rx_irq - Send received data up the network stack
918  * @rx_ring: Rx descriptor ring
919  *
920  * the return value indicates whether actual cleaning was done, there
921  * is no guarantee that everything was cleaned
922  **/
923 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
924                                int work_to_do)
925 {
926         struct e1000_adapter *adapter = rx_ring->adapter;
927         struct net_device *netdev = adapter->netdev;
928         struct pci_dev *pdev = adapter->pdev;
929         struct e1000_hw *hw = &adapter->hw;
930         union e1000_rx_desc_extended *rx_desc, *next_rxd;
931         struct e1000_buffer *buffer_info, *next_buffer;
932         u32 length, staterr;
933         unsigned int i;
934         int cleaned_count = 0;
935         bool cleaned = false;
936         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
937
938         i = rx_ring->next_to_clean;
939         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
940         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
941         buffer_info = &rx_ring->buffer_info[i];
942
943         while (staterr & E1000_RXD_STAT_DD) {
944                 struct sk_buff *skb;
945
946                 if (*work_done >= work_to_do)
947                         break;
948                 (*work_done)++;
949                 rmb();  /* read descriptor and rx_buffer_info after status DD */
950
951                 skb = buffer_info->skb;
952                 buffer_info->skb = NULL;
953
954                 prefetch(skb->data - NET_IP_ALIGN);
955
956                 i++;
957                 if (i == rx_ring->count)
958                         i = 0;
959                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
960                 prefetch(next_rxd);
961
962                 next_buffer = &rx_ring->buffer_info[i];
963
964                 cleaned = true;
965                 cleaned_count++;
966                 dma_unmap_single(&pdev->dev, buffer_info->dma,
967                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
968                 buffer_info->dma = 0;
969
970                 length = le16_to_cpu(rx_desc->wb.upper.length);
971
972                 /* !EOP means multiple descriptors were used to store a single
973                  * packet, if that's the case we need to toss it.  In fact, we
974                  * need to toss every packet with the EOP bit clear and the
975                  * next frame that _does_ have the EOP bit set, as it is by
976                  * definition only a frame fragment
977                  */
978                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
979                         adapter->flags2 |= FLAG2_IS_DISCARDING;
980
981                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
982                         /* All receives must fit into a single buffer */
983                         e_dbg("Receive packet consumed multiple buffers\n");
984                         /* recycle */
985                         buffer_info->skb = skb;
986                         if (staterr & E1000_RXD_STAT_EOP)
987                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
988                         goto next_desc;
989                 }
990
991                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
992                              !(netdev->features & NETIF_F_RXALL))) {
993                         /* recycle */
994                         buffer_info->skb = skb;
995                         goto next_desc;
996                 }
997
998                 /* adjust length to remove Ethernet CRC */
999                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1000                         /* If configured to store CRC, don't subtract FCS,
1001                          * but keep the FCS bytes out of the total_rx_bytes
1002                          * counter
1003                          */
1004                         if (netdev->features & NETIF_F_RXFCS)
1005                                 total_rx_bytes -= 4;
1006                         else
1007                                 length -= 4;
1008                 }
1009
1010                 total_rx_bytes += length;
1011                 total_rx_packets++;
1012
1013                 /* code added for copybreak, this should improve
1014                  * performance for small packets with large amounts
1015                  * of reassembly being done in the stack
1016                  */
1017                 if (length < copybreak) {
1018                         struct sk_buff *new_skb =
1019                             netdev_alloc_skb_ip_align(netdev, length);
1020                         if (new_skb) {
1021                                 skb_copy_to_linear_data_offset(new_skb,
1022                                                                -NET_IP_ALIGN,
1023                                                                (skb->data -
1024                                                                 NET_IP_ALIGN),
1025                                                                (length +
1026                                                                 NET_IP_ALIGN));
1027                                 /* save the skb in buffer_info as good */
1028                                 buffer_info->skb = skb;
1029                                 skb = new_skb;
1030                         }
1031                         /* else just continue with the old one */
1032                 }
1033                 /* end copybreak code */
1034                 skb_put(skb, length);
1035
1036                 /* Receive Checksum Offload */
1037                 e1000_rx_checksum(adapter, staterr, skb);
1038
1039                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1040
1041                 e1000_receive_skb(adapter, netdev, skb, staterr,
1042                                   rx_desc->wb.upper.vlan);
1043
1044 next_desc:
1045                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1046
1047                 /* return some buffers to hardware, one at a time is too slow */
1048                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1049                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1050                                               GFP_ATOMIC);
1051                         cleaned_count = 0;
1052                 }
1053
1054                 /* use prefetched values */
1055                 rx_desc = next_rxd;
1056                 buffer_info = next_buffer;
1057
1058                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1059         }
1060         rx_ring->next_to_clean = i;
1061
1062         cleaned_count = e1000_desc_unused(rx_ring);
1063         if (cleaned_count)
1064                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1065
1066         adapter->total_rx_bytes += total_rx_bytes;
1067         adapter->total_rx_packets += total_rx_packets;
1068         return cleaned;
1069 }
1070
1071 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1072                             struct e1000_buffer *buffer_info)
1073 {
1074         struct e1000_adapter *adapter = tx_ring->adapter;
1075
1076         if (buffer_info->dma) {
1077                 if (buffer_info->mapped_as_page)
1078                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1079                                        buffer_info->length, DMA_TO_DEVICE);
1080                 else
1081                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1082                                          buffer_info->length, DMA_TO_DEVICE);
1083                 buffer_info->dma = 0;
1084         }
1085         if (buffer_info->skb) {
1086                 dev_kfree_skb_any(buffer_info->skb);
1087                 buffer_info->skb = NULL;
1088         }
1089         buffer_info->time_stamp = 0;
1090 }
1091
1092 static void e1000_print_hw_hang(struct work_struct *work)
1093 {
1094         struct e1000_adapter *adapter = container_of(work,
1095                                                      struct e1000_adapter,
1096                                                      print_hang_task);
1097         struct net_device *netdev = adapter->netdev;
1098         struct e1000_ring *tx_ring = adapter->tx_ring;
1099         unsigned int i = tx_ring->next_to_clean;
1100         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1101         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1102         struct e1000_hw *hw = &adapter->hw;
1103         u16 phy_status, phy_1000t_status, phy_ext_status;
1104         u16 pci_status;
1105
1106         if (test_bit(__E1000_DOWN, &adapter->state))
1107                 return;
1108
1109         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1110                 /* May be block on write-back, flush and detect again
1111                  * flush pending descriptor writebacks to memory
1112                  */
1113                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1114                 /* execute the writes immediately */
1115                 e1e_flush();
1116                 /* Due to rare timing issues, write to TIDV again to ensure
1117                  * the write is successful
1118                  */
1119                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120                 /* execute the writes immediately */
1121                 e1e_flush();
1122                 adapter->tx_hang_recheck = true;
1123                 return;
1124         }
1125         adapter->tx_hang_recheck = false;
1126
1127         if (er32(TDH(0)) == er32(TDT(0))) {
1128                 e_dbg("false hang detected, ignoring\n");
1129                 return;
1130         }
1131
1132         /* Real hang detected */
1133         netif_stop_queue(netdev);
1134
1135         e1e_rphy(hw, MII_BMSR, &phy_status);
1136         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1137         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1138
1139         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1140
1141         /* detected Hardware unit hang */
1142         e_err("Detected Hardware Unit Hang:\n"
1143               "  TDH                  <%x>\n"
1144               "  TDT                  <%x>\n"
1145               "  next_to_use          <%x>\n"
1146               "  next_to_clean        <%x>\n"
1147               "buffer_info[next_to_clean]:\n"
1148               "  time_stamp           <%lx>\n"
1149               "  next_to_watch        <%x>\n"
1150               "  jiffies              <%lx>\n"
1151               "  next_to_watch.status <%x>\n"
1152               "MAC Status             <%x>\n"
1153               "PHY Status             <%x>\n"
1154               "PHY 1000BASE-T Status  <%x>\n"
1155               "PHY Extended Status    <%x>\n"
1156               "PCI Status             <%x>\n",
1157               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1158               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1159               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1160               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1161
1162         e1000e_dump(adapter);
1163
1164         /* Suggest workaround for known h/w issue */
1165         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1166                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1167 }
1168
1169 /**
1170  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1171  * @work: pointer to work struct
1172  *
1173  * This work function polls the TSYNCTXCTL valid bit to determine when a
1174  * timestamp has been taken for the current stored skb.  The timestamp must
1175  * be for this skb because only one such packet is allowed in the queue.
1176  */
1177 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1178 {
1179         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1180                                                      tx_hwtstamp_work);
1181         struct e1000_hw *hw = &adapter->hw;
1182
1183         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1184                 struct skb_shared_hwtstamps shhwtstamps;
1185                 u64 txstmp;
1186
1187                 txstmp = er32(TXSTMPL);
1188                 txstmp |= (u64)er32(TXSTMPH) << 32;
1189
1190                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1191
1192                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1193                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1194                 adapter->tx_hwtstamp_skb = NULL;
1195         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1196                               + adapter->tx_timeout_factor * HZ)) {
1197                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1198                 adapter->tx_hwtstamp_skb = NULL;
1199                 adapter->tx_hwtstamp_timeouts++;
1200                 e_warn("clearing Tx timestamp hang\n");
1201         } else {
1202                 /* reschedule to check later */
1203                 schedule_work(&adapter->tx_hwtstamp_work);
1204         }
1205 }
1206
1207 /**
1208  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1209  * @tx_ring: Tx descriptor ring
1210  *
1211  * the return value indicates whether actual cleaning was done, there
1212  * is no guarantee that everything was cleaned
1213  **/
1214 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1215 {
1216         struct e1000_adapter *adapter = tx_ring->adapter;
1217         struct net_device *netdev = adapter->netdev;
1218         struct e1000_hw *hw = &adapter->hw;
1219         struct e1000_tx_desc *tx_desc, *eop_desc;
1220         struct e1000_buffer *buffer_info;
1221         unsigned int i, eop;
1222         unsigned int count = 0;
1223         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1224         unsigned int bytes_compl = 0, pkts_compl = 0;
1225
1226         i = tx_ring->next_to_clean;
1227         eop = tx_ring->buffer_info[i].next_to_watch;
1228         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1229
1230         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1231                (count < tx_ring->count)) {
1232                 bool cleaned = false;
1233
1234                 rmb();          /* read buffer_info after eop_desc */
1235                 for (; !cleaned; count++) {
1236                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1237                         buffer_info = &tx_ring->buffer_info[i];
1238                         cleaned = (i == eop);
1239
1240                         if (cleaned) {
1241                                 total_tx_packets += buffer_info->segs;
1242                                 total_tx_bytes += buffer_info->bytecount;
1243                                 if (buffer_info->skb) {
1244                                         bytes_compl += buffer_info->skb->len;
1245                                         pkts_compl++;
1246                                 }
1247                         }
1248
1249                         e1000_put_txbuf(tx_ring, buffer_info);
1250                         tx_desc->upper.data = 0;
1251
1252                         i++;
1253                         if (i == tx_ring->count)
1254                                 i = 0;
1255                 }
1256
1257                 if (i == tx_ring->next_to_use)
1258                         break;
1259                 eop = tx_ring->buffer_info[i].next_to_watch;
1260                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1261         }
1262
1263         tx_ring->next_to_clean = i;
1264
1265         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1266
1267 #define TX_WAKE_THRESHOLD 32
1268         if (count && netif_carrier_ok(netdev) &&
1269             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1270                 /* Make sure that anybody stopping the queue after this
1271                  * sees the new next_to_clean.
1272                  */
1273                 smp_mb();
1274
1275                 if (netif_queue_stopped(netdev) &&
1276                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1277                         netif_wake_queue(netdev);
1278                         ++adapter->restart_queue;
1279                 }
1280         }
1281
1282         if (adapter->detect_tx_hung) {
1283                 /* Detect a transmit hang in hardware, this serializes the
1284                  * check with the clearing of time_stamp and movement of i
1285                  */
1286                 adapter->detect_tx_hung = false;
1287                 if (tx_ring->buffer_info[i].time_stamp &&
1288                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1289                                + (adapter->tx_timeout_factor * HZ)) &&
1290                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1291                         schedule_work(&adapter->print_hang_task);
1292                 else
1293                         adapter->tx_hang_recheck = false;
1294         }
1295         adapter->total_tx_bytes += total_tx_bytes;
1296         adapter->total_tx_packets += total_tx_packets;
1297         return count < tx_ring->count;
1298 }
1299
1300 /**
1301  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1302  * @rx_ring: Rx descriptor ring
1303  *
1304  * the return value indicates whether actual cleaning was done, there
1305  * is no guarantee that everything was cleaned
1306  **/
1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308                                   int work_to_do)
1309 {
1310         struct e1000_adapter *adapter = rx_ring->adapter;
1311         struct e1000_hw *hw = &adapter->hw;
1312         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313         struct net_device *netdev = adapter->netdev;
1314         struct pci_dev *pdev = adapter->pdev;
1315         struct e1000_buffer *buffer_info, *next_buffer;
1316         struct e1000_ps_page *ps_page;
1317         struct sk_buff *skb;
1318         unsigned int i, j;
1319         u32 length, staterr;
1320         int cleaned_count = 0;
1321         bool cleaned = false;
1322         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323
1324         i = rx_ring->next_to_clean;
1325         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327         buffer_info = &rx_ring->buffer_info[i];
1328
1329         while (staterr & E1000_RXD_STAT_DD) {
1330                 if (*work_done >= work_to_do)
1331                         break;
1332                 (*work_done)++;
1333                 skb = buffer_info->skb;
1334                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1335
1336                 /* in the packet split case this is header only */
1337                 prefetch(skb->data - NET_IP_ALIGN);
1338
1339                 i++;
1340                 if (i == rx_ring->count)
1341                         i = 0;
1342                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343                 prefetch(next_rxd);
1344
1345                 next_buffer = &rx_ring->buffer_info[i];
1346
1347                 cleaned = true;
1348                 cleaned_count++;
1349                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1350                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351                 buffer_info->dma = 0;
1352
1353                 /* see !EOP comment in other Rx routine */
1354                 if (!(staterr & E1000_RXD_STAT_EOP))
1355                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1356
1357                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359                         dev_kfree_skb_irq(skb);
1360                         if (staterr & E1000_RXD_STAT_EOP)
1361                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362                         goto next_desc;
1363                 }
1364
1365                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366                              !(netdev->features & NETIF_F_RXALL))) {
1367                         dev_kfree_skb_irq(skb);
1368                         goto next_desc;
1369                 }
1370
1371                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1372
1373                 if (!length) {
1374                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1375                         dev_kfree_skb_irq(skb);
1376                         goto next_desc;
1377                 }
1378
1379                 /* Good Receive */
1380                 skb_put(skb, length);
1381
1382                 {
1383                         /* this looks ugly, but it seems compiler issues make
1384                          * it more efficient than reusing j
1385                          */
1386                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387
1388                         /* page alloc/put takes too long and effects small
1389                          * packet throughput, so unsplit small packets and
1390                          * save the alloc/put only valid in softirq (napi)
1391                          * context to call kmap_*
1392                          */
1393                         if (l1 && (l1 <= copybreak) &&
1394                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1395                                 u8 *vaddr;
1396
1397                                 ps_page = &buffer_info->ps_pages[0];
1398
1399                                 /* there is no documentation about how to call
1400                                  * kmap_atomic, so we can't hold the mapping
1401                                  * very long
1402                                  */
1403                                 dma_sync_single_for_cpu(&pdev->dev,
1404                                                         ps_page->dma,
1405                                                         PAGE_SIZE,
1406                                                         DMA_FROM_DEVICE);
1407                                 vaddr = kmap_atomic(ps_page->page);
1408                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1409                                 kunmap_atomic(vaddr);
1410                                 dma_sync_single_for_device(&pdev->dev,
1411                                                            ps_page->dma,
1412                                                            PAGE_SIZE,
1413                                                            DMA_FROM_DEVICE);
1414
1415                                 /* remove the CRC */
1416                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417                                         if (!(netdev->features & NETIF_F_RXFCS))
1418                                                 l1 -= 4;
1419                                 }
1420
1421                                 skb_put(skb, l1);
1422                                 goto copydone;
1423                         }       /* if */
1424                 }
1425
1426                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428                         if (!length)
1429                                 break;
1430
1431                         ps_page = &buffer_info->ps_pages[j];
1432                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433                                        DMA_FROM_DEVICE);
1434                         ps_page->dma = 0;
1435                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436                         ps_page->page = NULL;
1437                         skb->len += length;
1438                         skb->data_len += length;
1439                         skb->truesize += PAGE_SIZE;
1440                 }
1441
1442                 /* strip the ethernet crc, problem is we're using pages now so
1443                  * this whole operation can get a little cpu intensive
1444                  */
1445                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446                         if (!(netdev->features & NETIF_F_RXFCS))
1447                                 pskb_trim(skb, skb->len - 4);
1448                 }
1449
1450 copydone:
1451                 total_rx_bytes += skb->len;
1452                 total_rx_packets++;
1453
1454                 e1000_rx_checksum(adapter, staterr, skb);
1455
1456                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457
1458                 if (rx_desc->wb.upper.header_status &
1459                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460                         adapter->rx_hdr_split++;
1461
1462                 e1000_receive_skb(adapter, netdev, skb, staterr,
1463                                   rx_desc->wb.middle.vlan);
1464
1465 next_desc:
1466                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467                 buffer_info->skb = NULL;
1468
1469                 /* return some buffers to hardware, one at a time is too slow */
1470                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472                                               GFP_ATOMIC);
1473                         cleaned_count = 0;
1474                 }
1475
1476                 /* use prefetched values */
1477                 rx_desc = next_rxd;
1478                 buffer_info = next_buffer;
1479
1480                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481         }
1482         rx_ring->next_to_clean = i;
1483
1484         cleaned_count = e1000_desc_unused(rx_ring);
1485         if (cleaned_count)
1486                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487
1488         adapter->total_rx_bytes += total_rx_bytes;
1489         adapter->total_rx_packets += total_rx_packets;
1490         return cleaned;
1491 }
1492
1493 /**
1494  * e1000_consume_page - helper function
1495  **/
1496 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1497                                u16 length)
1498 {
1499         bi->page = NULL;
1500         skb->len += length;
1501         skb->data_len += length;
1502         skb->truesize += PAGE_SIZE;
1503 }
1504
1505 /**
1506  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1507  * @adapter: board private structure
1508  *
1509  * the return value indicates whether actual cleaning was done, there
1510  * is no guarantee that everything was cleaned
1511  **/
1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513                                      int work_to_do)
1514 {
1515         struct e1000_adapter *adapter = rx_ring->adapter;
1516         struct net_device *netdev = adapter->netdev;
1517         struct pci_dev *pdev = adapter->pdev;
1518         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519         struct e1000_buffer *buffer_info, *next_buffer;
1520         u32 length, staterr;
1521         unsigned int i;
1522         int cleaned_count = 0;
1523         bool cleaned = false;
1524         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525         struct skb_shared_info *shinfo;
1526
1527         i = rx_ring->next_to_clean;
1528         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530         buffer_info = &rx_ring->buffer_info[i];
1531
1532         while (staterr & E1000_RXD_STAT_DD) {
1533                 struct sk_buff *skb;
1534
1535                 if (*work_done >= work_to_do)
1536                         break;
1537                 (*work_done)++;
1538                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1539
1540                 skb = buffer_info->skb;
1541                 buffer_info->skb = NULL;
1542
1543                 ++i;
1544                 if (i == rx_ring->count)
1545                         i = 0;
1546                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547                 prefetch(next_rxd);
1548
1549                 next_buffer = &rx_ring->buffer_info[i];
1550
1551                 cleaned = true;
1552                 cleaned_count++;
1553                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554                                DMA_FROM_DEVICE);
1555                 buffer_info->dma = 0;
1556
1557                 length = le16_to_cpu(rx_desc->wb.upper.length);
1558
1559                 /* errors is only valid for DD + EOP descriptors */
1560                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562                               !(netdev->features & NETIF_F_RXALL)))) {
1563                         /* recycle both page and skb */
1564                         buffer_info->skb = skb;
1565                         /* an error means any chain goes out the window too */
1566                         if (rx_ring->rx_skb_top)
1567                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568                         rx_ring->rx_skb_top = NULL;
1569                         goto next_desc;
1570                 }
1571 #define rxtop (rx_ring->rx_skb_top)
1572                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1573                         /* this descriptor is only the beginning (or middle) */
1574                         if (!rxtop) {
1575                                 /* this is the beginning of a chain */
1576                                 rxtop = skb;
1577                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578                                                    0, length);
1579                         } else {
1580                                 /* this is the middle of a chain */
1581                                 shinfo = skb_shinfo(rxtop);
1582                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583                                                    buffer_info->page, 0,
1584                                                    length);
1585                                 /* re-use the skb, only consumed the page */
1586                                 buffer_info->skb = skb;
1587                         }
1588                         e1000_consume_page(buffer_info, rxtop, length);
1589                         goto next_desc;
1590                 } else {
1591                         if (rxtop) {
1592                                 /* end of the chain */
1593                                 shinfo = skb_shinfo(rxtop);
1594                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595                                                    buffer_info->page, 0,
1596                                                    length);
1597                                 /* re-use the current skb, we only consumed the
1598                                  * page
1599                                  */
1600                                 buffer_info->skb = skb;
1601                                 skb = rxtop;
1602                                 rxtop = NULL;
1603                                 e1000_consume_page(buffer_info, skb, length);
1604                         } else {
1605                                 /* no chain, got EOP, this buf is the packet
1606                                  * copybreak to save the put_page/alloc_page
1607                                  */
1608                                 if (length <= copybreak &&
1609                                     skb_tailroom(skb) >= length) {
1610                                         u8 *vaddr;
1611                                         vaddr = kmap_atomic(buffer_info->page);
1612                                         memcpy(skb_tail_pointer(skb), vaddr,
1613                                                length);
1614                                         kunmap_atomic(vaddr);
1615                                         /* re-use the page, so don't erase
1616                                          * buffer_info->page
1617                                          */
1618                                         skb_put(skb, length);
1619                                 } else {
1620                                         skb_fill_page_desc(skb, 0,
1621                                                            buffer_info->page, 0,
1622                                                            length);
1623                                         e1000_consume_page(buffer_info, skb,
1624                                                            length);
1625                                 }
1626                         }
1627                 }
1628
1629                 /* Receive Checksum Offload */
1630                 e1000_rx_checksum(adapter, staterr, skb);
1631
1632                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633
1634                 /* probably a little skewed due to removing CRC */
1635                 total_rx_bytes += skb->len;
1636                 total_rx_packets++;
1637
1638                 /* eth type trans needs skb->data to point to something */
1639                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1640                         e_err("pskb_may_pull failed.\n");
1641                         dev_kfree_skb_irq(skb);
1642                         goto next_desc;
1643                 }
1644
1645                 e1000_receive_skb(adapter, netdev, skb, staterr,
1646                                   rx_desc->wb.upper.vlan);
1647
1648 next_desc:
1649                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650
1651                 /* return some buffers to hardware, one at a time is too slow */
1652                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654                                               GFP_ATOMIC);
1655                         cleaned_count = 0;
1656                 }
1657
1658                 /* use prefetched values */
1659                 rx_desc = next_rxd;
1660                 buffer_info = next_buffer;
1661
1662                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663         }
1664         rx_ring->next_to_clean = i;
1665
1666         cleaned_count = e1000_desc_unused(rx_ring);
1667         if (cleaned_count)
1668                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669
1670         adapter->total_rx_bytes += total_rx_bytes;
1671         adapter->total_rx_packets += total_rx_packets;
1672         return cleaned;
1673 }
1674
1675 /**
1676  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677  * @rx_ring: Rx descriptor ring
1678  **/
1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681         struct e1000_adapter *adapter = rx_ring->adapter;
1682         struct e1000_buffer *buffer_info;
1683         struct e1000_ps_page *ps_page;
1684         struct pci_dev *pdev = adapter->pdev;
1685         unsigned int i, j;
1686
1687         /* Free all the Rx ring sk_buffs */
1688         for (i = 0; i < rx_ring->count; i++) {
1689                 buffer_info = &rx_ring->buffer_info[i];
1690                 if (buffer_info->dma) {
1691                         if (adapter->clean_rx == e1000_clean_rx_irq)
1692                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1693                                                  adapter->rx_buffer_len,
1694                                                  DMA_FROM_DEVICE);
1695                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1697                                                PAGE_SIZE, DMA_FROM_DEVICE);
1698                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1700                                                  adapter->rx_ps_bsize0,
1701                                                  DMA_FROM_DEVICE);
1702                         buffer_info->dma = 0;
1703                 }
1704
1705                 if (buffer_info->page) {
1706                         put_page(buffer_info->page);
1707                         buffer_info->page = NULL;
1708                 }
1709
1710                 if (buffer_info->skb) {
1711                         dev_kfree_skb(buffer_info->skb);
1712                         buffer_info->skb = NULL;
1713                 }
1714
1715                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716                         ps_page = &buffer_info->ps_pages[j];
1717                         if (!ps_page->page)
1718                                 break;
1719                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720                                        DMA_FROM_DEVICE);
1721                         ps_page->dma = 0;
1722                         put_page(ps_page->page);
1723                         ps_page->page = NULL;
1724                 }
1725         }
1726
1727         /* there also may be some cached data from a chained receive */
1728         if (rx_ring->rx_skb_top) {
1729                 dev_kfree_skb(rx_ring->rx_skb_top);
1730                 rx_ring->rx_skb_top = NULL;
1731         }
1732
1733         /* Zero out the descriptor ring */
1734         memset(rx_ring->desc, 0, rx_ring->size);
1735
1736         rx_ring->next_to_clean = 0;
1737         rx_ring->next_to_use = 0;
1738         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739
1740         writel(0, rx_ring->head);
1741         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1742                 e1000e_update_rdt_wa(rx_ring, 0);
1743         else
1744                 writel(0, rx_ring->tail);
1745 }
1746
1747 static void e1000e_downshift_workaround(struct work_struct *work)
1748 {
1749         struct e1000_adapter *adapter = container_of(work,
1750                                                      struct e1000_adapter,
1751                                                      downshift_task);
1752
1753         if (test_bit(__E1000_DOWN, &adapter->state))
1754                 return;
1755
1756         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1757 }
1758
1759 /**
1760  * e1000_intr_msi - Interrupt Handler
1761  * @irq: interrupt number
1762  * @data: pointer to a network interface device structure
1763  **/
1764 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1765 {
1766         struct net_device *netdev = data;
1767         struct e1000_adapter *adapter = netdev_priv(netdev);
1768         struct e1000_hw *hw = &adapter->hw;
1769         u32 icr = er32(ICR);
1770
1771         /* read ICR disables interrupts using IAM */
1772         if (icr & E1000_ICR_LSC) {
1773                 hw->mac.get_link_status = true;
1774                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1775                  * disconnect (LSC) before accessing any PHY registers
1776                  */
1777                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1778                     (!(er32(STATUS) & E1000_STATUS_LU)))
1779                         schedule_work(&adapter->downshift_task);
1780
1781                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1782                  * link down event; disable receives here in the ISR and reset
1783                  * adapter in watchdog
1784                  */
1785                 if (netif_carrier_ok(netdev) &&
1786                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1787                         /* disable receives */
1788                         u32 rctl = er32(RCTL);
1789
1790                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1791                         adapter->flags |= FLAG_RESTART_NOW;
1792                 }
1793                 /* guard against interrupt when we're going down */
1794                 if (!test_bit(__E1000_DOWN, &adapter->state))
1795                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1796         }
1797
1798         /* Reset on uncorrectable ECC error */
1799         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1800                 u32 pbeccsts = er32(PBECCSTS);
1801
1802                 adapter->corr_errors +=
1803                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1804                 adapter->uncorr_errors +=
1805                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1806                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1807
1808                 /* Do the reset outside of interrupt context */
1809                 schedule_work(&adapter->reset_task);
1810
1811                 /* return immediately since reset is imminent */
1812                 return IRQ_HANDLED;
1813         }
1814
1815         if (napi_schedule_prep(&adapter->napi)) {
1816                 adapter->total_tx_bytes = 0;
1817                 adapter->total_tx_packets = 0;
1818                 adapter->total_rx_bytes = 0;
1819                 adapter->total_rx_packets = 0;
1820                 __napi_schedule(&adapter->napi);
1821         }
1822
1823         return IRQ_HANDLED;
1824 }
1825
1826 /**
1827  * e1000_intr - Interrupt Handler
1828  * @irq: interrupt number
1829  * @data: pointer to a network interface device structure
1830  **/
1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1832 {
1833         struct net_device *netdev = data;
1834         struct e1000_adapter *adapter = netdev_priv(netdev);
1835         struct e1000_hw *hw = &adapter->hw;
1836         u32 rctl, icr = er32(ICR);
1837
1838         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1839                 return IRQ_NONE;        /* Not our interrupt */
1840
1841         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1842          * not set, then the adapter didn't send an interrupt
1843          */
1844         if (!(icr & E1000_ICR_INT_ASSERTED))
1845                 return IRQ_NONE;
1846
1847         /* Interrupt Auto-Mask...upon reading ICR,
1848          * interrupts are masked.  No need for the
1849          * IMC write
1850          */
1851
1852         if (icr & E1000_ICR_LSC) {
1853                 hw->mac.get_link_status = true;
1854                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1855                  * disconnect (LSC) before accessing any PHY registers
1856                  */
1857                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1858                     (!(er32(STATUS) & E1000_STATUS_LU)))
1859                         schedule_work(&adapter->downshift_task);
1860
1861                 /* 80003ES2LAN workaround--
1862                  * For packet buffer work-around on link down event;
1863                  * disable receives here in the ISR and
1864                  * reset adapter in watchdog
1865                  */
1866                 if (netif_carrier_ok(netdev) &&
1867                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1868                         /* disable receives */
1869                         rctl = er32(RCTL);
1870                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871                         adapter->flags |= FLAG_RESTART_NOW;
1872                 }
1873                 /* guard against interrupt when we're going down */
1874                 if (!test_bit(__E1000_DOWN, &adapter->state))
1875                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1876         }
1877
1878         /* Reset on uncorrectable ECC error */
1879         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1880                 u32 pbeccsts = er32(PBECCSTS);
1881
1882                 adapter->corr_errors +=
1883                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1884                 adapter->uncorr_errors +=
1885                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1886                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1887
1888                 /* Do the reset outside of interrupt context */
1889                 schedule_work(&adapter->reset_task);
1890
1891                 /* return immediately since reset is imminent */
1892                 return IRQ_HANDLED;
1893         }
1894
1895         if (napi_schedule_prep(&adapter->napi)) {
1896                 adapter->total_tx_bytes = 0;
1897                 adapter->total_tx_packets = 0;
1898                 adapter->total_rx_bytes = 0;
1899                 adapter->total_rx_packets = 0;
1900                 __napi_schedule(&adapter->napi);
1901         }
1902
1903         return IRQ_HANDLED;
1904 }
1905
1906 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1907 {
1908         struct net_device *netdev = data;
1909         struct e1000_adapter *adapter = netdev_priv(netdev);
1910         struct e1000_hw *hw = &adapter->hw;
1911         u32 icr = er32(ICR);
1912
1913         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1914                 if (!test_bit(__E1000_DOWN, &adapter->state))
1915                         ew32(IMS, E1000_IMS_OTHER);
1916                 return IRQ_NONE;
1917         }
1918
1919         if (icr & adapter->eiac_mask)
1920                 ew32(ICS, (icr & adapter->eiac_mask));
1921
1922         if (icr & E1000_ICR_OTHER) {
1923                 if (!(icr & E1000_ICR_LSC))
1924                         goto no_link_interrupt;
1925                 hw->mac.get_link_status = true;
1926                 /* guard against interrupt when we're going down */
1927                 if (!test_bit(__E1000_DOWN, &adapter->state))
1928                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1929         }
1930
1931 no_link_interrupt:
1932         if (!test_bit(__E1000_DOWN, &adapter->state))
1933                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1934
1935         return IRQ_HANDLED;
1936 }
1937
1938 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1939 {
1940         struct net_device *netdev = data;
1941         struct e1000_adapter *adapter = netdev_priv(netdev);
1942         struct e1000_hw *hw = &adapter->hw;
1943         struct e1000_ring *tx_ring = adapter->tx_ring;
1944
1945         adapter->total_tx_bytes = 0;
1946         adapter->total_tx_packets = 0;
1947
1948         if (!e1000_clean_tx_irq(tx_ring))
1949                 /* Ring was not completely cleaned, so fire another interrupt */
1950                 ew32(ICS, tx_ring->ims_val);
1951
1952         return IRQ_HANDLED;
1953 }
1954
1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1956 {
1957         struct net_device *netdev = data;
1958         struct e1000_adapter *adapter = netdev_priv(netdev);
1959         struct e1000_ring *rx_ring = adapter->rx_ring;
1960
1961         /* Write the ITR value calculated at the end of the
1962          * previous interrupt.
1963          */
1964         if (rx_ring->set_itr) {
1965                 writel(1000000000 / (rx_ring->itr_val * 256),
1966                        rx_ring->itr_register);
1967                 rx_ring->set_itr = 0;
1968         }
1969
1970         if (napi_schedule_prep(&adapter->napi)) {
1971                 adapter->total_rx_bytes = 0;
1972                 adapter->total_rx_packets = 0;
1973                 __napi_schedule(&adapter->napi);
1974         }
1975         return IRQ_HANDLED;
1976 }
1977
1978 /**
1979  * e1000_configure_msix - Configure MSI-X hardware
1980  *
1981  * e1000_configure_msix sets up the hardware to properly
1982  * generate MSI-X interrupts.
1983  **/
1984 static void e1000_configure_msix(struct e1000_adapter *adapter)
1985 {
1986         struct e1000_hw *hw = &adapter->hw;
1987         struct e1000_ring *rx_ring = adapter->rx_ring;
1988         struct e1000_ring *tx_ring = adapter->tx_ring;
1989         int vector = 0;
1990         u32 ctrl_ext, ivar = 0;
1991
1992         adapter->eiac_mask = 0;
1993
1994         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1995         if (hw->mac.type == e1000_82574) {
1996                 u32 rfctl = er32(RFCTL);
1997
1998                 rfctl |= E1000_RFCTL_ACK_DIS;
1999                 ew32(RFCTL, rfctl);
2000         }
2001
2002         /* Configure Rx vector */
2003         rx_ring->ims_val = E1000_IMS_RXQ0;
2004         adapter->eiac_mask |= rx_ring->ims_val;
2005         if (rx_ring->itr_val)
2006                 writel(1000000000 / (rx_ring->itr_val * 256),
2007                        rx_ring->itr_register);
2008         else
2009                 writel(1, rx_ring->itr_register);
2010         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2011
2012         /* Configure Tx vector */
2013         tx_ring->ims_val = E1000_IMS_TXQ0;
2014         vector++;
2015         if (tx_ring->itr_val)
2016                 writel(1000000000 / (tx_ring->itr_val * 256),
2017                        tx_ring->itr_register);
2018         else
2019                 writel(1, tx_ring->itr_register);
2020         adapter->eiac_mask |= tx_ring->ims_val;
2021         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2022
2023         /* set vector for Other Causes, e.g. link changes */
2024         vector++;
2025         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2026         if (rx_ring->itr_val)
2027                 writel(1000000000 / (rx_ring->itr_val * 256),
2028                        hw->hw_addr + E1000_EITR_82574(vector));
2029         else
2030                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2031
2032         /* Cause Tx interrupts on every write back */
2033         ivar |= (1 << 31);
2034
2035         ew32(IVAR, ivar);
2036
2037         /* enable MSI-X PBA support */
2038         ctrl_ext = er32(CTRL_EXT);
2039         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2040
2041         /* Auto-Mask Other interrupts upon ICR read */
2042         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2043         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2044         ew32(CTRL_EXT, ctrl_ext);
2045         e1e_flush();
2046 }
2047
2048 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2049 {
2050         if (adapter->msix_entries) {
2051                 pci_disable_msix(adapter->pdev);
2052                 kfree(adapter->msix_entries);
2053                 adapter->msix_entries = NULL;
2054         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2055                 pci_disable_msi(adapter->pdev);
2056                 adapter->flags &= ~FLAG_MSI_ENABLED;
2057         }
2058 }
2059
2060 /**
2061  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2062  *
2063  * Attempt to configure interrupts using the best available
2064  * capabilities of the hardware and kernel.
2065  **/
2066 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2067 {
2068         int err;
2069         int i;
2070
2071         switch (adapter->int_mode) {
2072         case E1000E_INT_MODE_MSIX:
2073                 if (adapter->flags & FLAG_HAS_MSIX) {
2074                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2075                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2076                                                         sizeof(struct
2077                                                                msix_entry),
2078                                                         GFP_KERNEL);
2079                         if (adapter->msix_entries) {
2080                                 struct e1000_adapter *a = adapter;
2081
2082                                 for (i = 0; i < adapter->num_vectors; i++)
2083                                         adapter->msix_entries[i].entry = i;
2084
2085                                 err = pci_enable_msix_range(a->pdev,
2086                                                             a->msix_entries,
2087                                                             a->num_vectors,
2088                                                             a->num_vectors);
2089                                 if (err > 0)
2090                                         return;
2091                         }
2092                         /* MSI-X failed, so fall through and try MSI */
2093                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2094                         e1000e_reset_interrupt_capability(adapter);
2095                 }
2096                 adapter->int_mode = E1000E_INT_MODE_MSI;
2097                 /* Fall through */
2098         case E1000E_INT_MODE_MSI:
2099                 if (!pci_enable_msi(adapter->pdev)) {
2100                         adapter->flags |= FLAG_MSI_ENABLED;
2101                 } else {
2102                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2103                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2104                 }
2105                 /* Fall through */
2106         case E1000E_INT_MODE_LEGACY:
2107                 /* Don't do anything; this is the system default */
2108                 break;
2109         }
2110
2111         /* store the number of vectors being used */
2112         adapter->num_vectors = 1;
2113 }
2114
2115 /**
2116  * e1000_request_msix - Initialize MSI-X interrupts
2117  *
2118  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2119  * kernel.
2120  **/
2121 static int e1000_request_msix(struct e1000_adapter *adapter)
2122 {
2123         struct net_device *netdev = adapter->netdev;
2124         int err = 0, vector = 0;
2125
2126         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127                 snprintf(adapter->rx_ring->name,
2128                          sizeof(adapter->rx_ring->name) - 1,
2129                          "%s-rx-0", netdev->name);
2130         else
2131                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2132         err = request_irq(adapter->msix_entries[vector].vector,
2133                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2134                           netdev);
2135         if (err)
2136                 return err;
2137         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2138             E1000_EITR_82574(vector);
2139         adapter->rx_ring->itr_val = adapter->itr;
2140         vector++;
2141
2142         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2143                 snprintf(adapter->tx_ring->name,
2144                          sizeof(adapter->tx_ring->name) - 1,
2145                          "%s-tx-0", netdev->name);
2146         else
2147                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2148         err = request_irq(adapter->msix_entries[vector].vector,
2149                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2150                           netdev);
2151         if (err)
2152                 return err;
2153         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2154             E1000_EITR_82574(vector);
2155         adapter->tx_ring->itr_val = adapter->itr;
2156         vector++;
2157
2158         err = request_irq(adapter->msix_entries[vector].vector,
2159                           e1000_msix_other, 0, netdev->name, netdev);
2160         if (err)
2161                 return err;
2162
2163         e1000_configure_msix(adapter);
2164
2165         return 0;
2166 }
2167
2168 /**
2169  * e1000_request_irq - initialize interrupts
2170  *
2171  * Attempts to configure interrupts using the best available
2172  * capabilities of the hardware and kernel.
2173  **/
2174 static int e1000_request_irq(struct e1000_adapter *adapter)
2175 {
2176         struct net_device *netdev = adapter->netdev;
2177         int err;
2178
2179         if (adapter->msix_entries) {
2180                 err = e1000_request_msix(adapter);
2181                 if (!err)
2182                         return err;
2183                 /* fall back to MSI */
2184                 e1000e_reset_interrupt_capability(adapter);
2185                 adapter->int_mode = E1000E_INT_MODE_MSI;
2186                 e1000e_set_interrupt_capability(adapter);
2187         }
2188         if (adapter->flags & FLAG_MSI_ENABLED) {
2189                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2190                                   netdev->name, netdev);
2191                 if (!err)
2192                         return err;
2193
2194                 /* fall back to legacy interrupt */
2195                 e1000e_reset_interrupt_capability(adapter);
2196                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2197         }
2198
2199         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2200                           netdev->name, netdev);
2201         if (err)
2202                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2203
2204         return err;
2205 }
2206
2207 static void e1000_free_irq(struct e1000_adapter *adapter)
2208 {
2209         struct net_device *netdev = adapter->netdev;
2210
2211         if (adapter->msix_entries) {
2212                 int vector = 0;
2213
2214                 free_irq(adapter->msix_entries[vector].vector, netdev);
2215                 vector++;
2216
2217                 free_irq(adapter->msix_entries[vector].vector, netdev);
2218                 vector++;
2219
2220                 /* Other Causes interrupt vector */
2221                 free_irq(adapter->msix_entries[vector].vector, netdev);
2222                 return;
2223         }
2224
2225         free_irq(adapter->pdev->irq, netdev);
2226 }
2227
2228 /**
2229  * e1000_irq_disable - Mask off interrupt generation on the NIC
2230  **/
2231 static void e1000_irq_disable(struct e1000_adapter *adapter)
2232 {
2233         struct e1000_hw *hw = &adapter->hw;
2234
2235         ew32(IMC, ~0);
2236         if (adapter->msix_entries)
2237                 ew32(EIAC_82574, 0);
2238         e1e_flush();
2239
2240         if (adapter->msix_entries) {
2241                 int i;
2242
2243                 for (i = 0; i < adapter->num_vectors; i++)
2244                         synchronize_irq(adapter->msix_entries[i].vector);
2245         } else {
2246                 synchronize_irq(adapter->pdev->irq);
2247         }
2248 }
2249
2250 /**
2251  * e1000_irq_enable - Enable default interrupt generation settings
2252  **/
2253 static void e1000_irq_enable(struct e1000_adapter *adapter)
2254 {
2255         struct e1000_hw *hw = &adapter->hw;
2256
2257         if (adapter->msix_entries) {
2258                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2259                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2260         } else if (hw->mac.type == e1000_pch_lpt) {
2261                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262         } else {
2263                 ew32(IMS, IMS_ENABLE_MASK);
2264         }
2265         e1e_flush();
2266 }
2267
2268 /**
2269  * e1000e_get_hw_control - get control of the h/w from f/w
2270  * @adapter: address of board private structure
2271  *
2272  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273  * For ASF and Pass Through versions of f/w this means that
2274  * the driver is loaded. For AMT version (only with 82573)
2275  * of the f/w this means that the network i/f is open.
2276  **/
2277 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278 {
2279         struct e1000_hw *hw = &adapter->hw;
2280         u32 ctrl_ext;
2281         u32 swsm;
2282
2283         /* Let firmware know the driver has taken over */
2284         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285                 swsm = er32(SWSM);
2286                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288                 ctrl_ext = er32(CTRL_EXT);
2289                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290         }
2291 }
2292
2293 /**
2294  * e1000e_release_hw_control - release control of the h/w to f/w
2295  * @adapter: address of board private structure
2296  *
2297  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298  * For ASF and Pass Through versions of f/w this means that the
2299  * driver is no longer loaded. For AMT version (only with 82573) i
2300  * of the f/w this means that the network i/f is closed.
2301  *
2302  **/
2303 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304 {
2305         struct e1000_hw *hw = &adapter->hw;
2306         u32 ctrl_ext;
2307         u32 swsm;
2308
2309         /* Let firmware taken over control of h/w */
2310         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311                 swsm = er32(SWSM);
2312                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314                 ctrl_ext = er32(CTRL_EXT);
2315                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316         }
2317 }
2318
2319 /**
2320  * e1000_alloc_ring_dma - allocate memory for a ring structure
2321  **/
2322 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323                                 struct e1000_ring *ring)
2324 {
2325         struct pci_dev *pdev = adapter->pdev;
2326
2327         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328                                         GFP_KERNEL);
2329         if (!ring->desc)
2330                 return -ENOMEM;
2331
2332         return 0;
2333 }
2334
2335 /**
2336  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337  * @tx_ring: Tx descriptor ring
2338  *
2339  * Return 0 on success, negative on failure
2340  **/
2341 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342 {
2343         struct e1000_adapter *adapter = tx_ring->adapter;
2344         int err = -ENOMEM, size;
2345
2346         size = sizeof(struct e1000_buffer) * tx_ring->count;
2347         tx_ring->buffer_info = vzalloc(size);
2348         if (!tx_ring->buffer_info)
2349                 goto err;
2350
2351         /* round up to nearest 4K */
2352         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353         tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355         err = e1000_alloc_ring_dma(adapter, tx_ring);
2356         if (err)
2357                 goto err;
2358
2359         tx_ring->next_to_use = 0;
2360         tx_ring->next_to_clean = 0;
2361
2362         return 0;
2363 err:
2364         vfree(tx_ring->buffer_info);
2365         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366         return err;
2367 }
2368
2369 /**
2370  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371  * @rx_ring: Rx descriptor ring
2372  *
2373  * Returns 0 on success, negative on failure
2374  **/
2375 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376 {
2377         struct e1000_adapter *adapter = rx_ring->adapter;
2378         struct e1000_buffer *buffer_info;
2379         int i, size, desc_len, err = -ENOMEM;
2380
2381         size = sizeof(struct e1000_buffer) * rx_ring->count;
2382         rx_ring->buffer_info = vzalloc(size);
2383         if (!rx_ring->buffer_info)
2384                 goto err;
2385
2386         for (i = 0; i < rx_ring->count; i++) {
2387                 buffer_info = &rx_ring->buffer_info[i];
2388                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389                                                 sizeof(struct e1000_ps_page),
2390                                                 GFP_KERNEL);
2391                 if (!buffer_info->ps_pages)
2392                         goto err_pages;
2393         }
2394
2395         desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397         /* Round up to nearest 4K */
2398         rx_ring->size = rx_ring->count * desc_len;
2399         rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401         err = e1000_alloc_ring_dma(adapter, rx_ring);
2402         if (err)
2403                 goto err_pages;
2404
2405         rx_ring->next_to_clean = 0;
2406         rx_ring->next_to_use = 0;
2407         rx_ring->rx_skb_top = NULL;
2408
2409         return 0;
2410
2411 err_pages:
2412         for (i = 0; i < rx_ring->count; i++) {
2413                 buffer_info = &rx_ring->buffer_info[i];
2414                 kfree(buffer_info->ps_pages);
2415         }
2416 err:
2417         vfree(rx_ring->buffer_info);
2418         e_err("Unable to allocate memory for the receive descriptor ring\n");
2419         return err;
2420 }
2421
2422 /**
2423  * e1000_clean_tx_ring - Free Tx Buffers
2424  * @tx_ring: Tx descriptor ring
2425  **/
2426 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427 {
2428         struct e1000_adapter *adapter = tx_ring->adapter;
2429         struct e1000_buffer *buffer_info;
2430         unsigned long size;
2431         unsigned int i;
2432
2433         for (i = 0; i < tx_ring->count; i++) {
2434                 buffer_info = &tx_ring->buffer_info[i];
2435                 e1000_put_txbuf(tx_ring, buffer_info);
2436         }
2437
2438         netdev_reset_queue(adapter->netdev);
2439         size = sizeof(struct e1000_buffer) * tx_ring->count;
2440         memset(tx_ring->buffer_info, 0, size);
2441
2442         memset(tx_ring->desc, 0, tx_ring->size);
2443
2444         tx_ring->next_to_use = 0;
2445         tx_ring->next_to_clean = 0;
2446
2447         writel(0, tx_ring->head);
2448         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2449                 e1000e_update_tdt_wa(tx_ring, 0);
2450         else
2451                 writel(0, tx_ring->tail);
2452 }
2453
2454 /**
2455  * e1000e_free_tx_resources - Free Tx Resources per Queue
2456  * @tx_ring: Tx descriptor ring
2457  *
2458  * Free all transmit software resources
2459  **/
2460 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2461 {
2462         struct e1000_adapter *adapter = tx_ring->adapter;
2463         struct pci_dev *pdev = adapter->pdev;
2464
2465         e1000_clean_tx_ring(tx_ring);
2466
2467         vfree(tx_ring->buffer_info);
2468         tx_ring->buffer_info = NULL;
2469
2470         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2471                           tx_ring->dma);
2472         tx_ring->desc = NULL;
2473 }
2474
2475 /**
2476  * e1000e_free_rx_resources - Free Rx Resources
2477  * @rx_ring: Rx descriptor ring
2478  *
2479  * Free all receive software resources
2480  **/
2481 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2482 {
2483         struct e1000_adapter *adapter = rx_ring->adapter;
2484         struct pci_dev *pdev = adapter->pdev;
2485         int i;
2486
2487         e1000_clean_rx_ring(rx_ring);
2488
2489         for (i = 0; i < rx_ring->count; i++)
2490                 kfree(rx_ring->buffer_info[i].ps_pages);
2491
2492         vfree(rx_ring->buffer_info);
2493         rx_ring->buffer_info = NULL;
2494
2495         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2496                           rx_ring->dma);
2497         rx_ring->desc = NULL;
2498 }
2499
2500 /**
2501  * e1000_update_itr - update the dynamic ITR value based on statistics
2502  * @adapter: pointer to adapter
2503  * @itr_setting: current adapter->itr
2504  * @packets: the number of packets during this measurement interval
2505  * @bytes: the number of bytes during this measurement interval
2506  *
2507  *      Stores a new ITR value based on packets and byte
2508  *      counts during the last interrupt.  The advantage of per interrupt
2509  *      computation is faster updates and more accurate ITR for the current
2510  *      traffic pattern.  Constants in this function were computed
2511  *      based on theoretical maximum wire speed and thresholds were set based
2512  *      on testing data as well as attempting to minimize response time
2513  *      while increasing bulk throughput.  This functionality is controlled
2514  *      by the InterruptThrottleRate module parameter.
2515  **/
2516 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2517 {
2518         unsigned int retval = itr_setting;
2519
2520         if (packets == 0)
2521                 return itr_setting;
2522
2523         switch (itr_setting) {
2524         case lowest_latency:
2525                 /* handle TSO and jumbo frames */
2526                 if (bytes / packets > 8000)
2527                         retval = bulk_latency;
2528                 else if ((packets < 5) && (bytes > 512))
2529                         retval = low_latency;
2530                 break;
2531         case low_latency:       /* 50 usec aka 20000 ints/s */
2532                 if (bytes > 10000) {
2533                         /* this if handles the TSO accounting */
2534                         if (bytes / packets > 8000)
2535                                 retval = bulk_latency;
2536                         else if ((packets < 10) || ((bytes / packets) > 1200))
2537                                 retval = bulk_latency;
2538                         else if ((packets > 35))
2539                                 retval = lowest_latency;
2540                 } else if (bytes / packets > 2000) {
2541                         retval = bulk_latency;
2542                 } else if (packets <= 2 && bytes < 512) {
2543                         retval = lowest_latency;
2544                 }
2545                 break;
2546         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2547                 if (bytes > 25000) {
2548                         if (packets > 35)
2549                                 retval = low_latency;
2550                 } else if (bytes < 6000) {
2551                         retval = low_latency;
2552                 }
2553                 break;
2554         }
2555
2556         return retval;
2557 }
2558
2559 static void e1000_set_itr(struct e1000_adapter *adapter)
2560 {
2561         u16 current_itr;
2562         u32 new_itr = adapter->itr;
2563
2564         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565         if (adapter->link_speed != SPEED_1000) {
2566                 current_itr = 0;
2567                 new_itr = 4000;
2568                 goto set_itr_now;
2569         }
2570
2571         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2572                 new_itr = 0;
2573                 goto set_itr_now;
2574         }
2575
2576         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2577                                            adapter->total_tx_packets,
2578                                            adapter->total_tx_bytes);
2579         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2581                 adapter->tx_itr = low_latency;
2582
2583         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2584                                            adapter->total_rx_packets,
2585                                            adapter->total_rx_bytes);
2586         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2588                 adapter->rx_itr = low_latency;
2589
2590         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2591
2592         /* counts and packets in update_itr are dependent on these numbers */
2593         switch (current_itr) {
2594         case lowest_latency:
2595                 new_itr = 70000;
2596                 break;
2597         case low_latency:
2598                 new_itr = 20000;        /* aka hwitr = ~200 */
2599                 break;
2600         case bulk_latency:
2601                 new_itr = 4000;
2602                 break;
2603         default:
2604                 break;
2605         }
2606
2607 set_itr_now:
2608         if (new_itr != adapter->itr) {
2609                 /* this attempts to bias the interrupt rate towards Bulk
2610                  * by adding intermediate steps when interrupt rate is
2611                  * increasing
2612                  */
2613                 new_itr = new_itr > adapter->itr ?
2614                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2615                 adapter->itr = new_itr;
2616                 adapter->rx_ring->itr_val = new_itr;
2617                 if (adapter->msix_entries)
2618                         adapter->rx_ring->set_itr = 1;
2619                 else
2620                         e1000e_write_itr(adapter, new_itr);
2621         }
2622 }
2623
2624 /**
2625  * e1000e_write_itr - write the ITR value to the appropriate registers
2626  * @adapter: address of board private structure
2627  * @itr: new ITR value to program
2628  *
2629  * e1000e_write_itr determines if the adapter is in MSI-X mode
2630  * and, if so, writes the EITR registers with the ITR value.
2631  * Otherwise, it writes the ITR value into the ITR register.
2632  **/
2633 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2634 {
2635         struct e1000_hw *hw = &adapter->hw;
2636         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2637
2638         if (adapter->msix_entries) {
2639                 int vector;
2640
2641                 for (vector = 0; vector < adapter->num_vectors; vector++)
2642                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2643         } else {
2644                 ew32(ITR, new_itr);
2645         }
2646 }
2647
2648 /**
2649  * e1000_alloc_queues - Allocate memory for all rings
2650  * @adapter: board private structure to initialize
2651  **/
2652 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2653 {
2654         int size = sizeof(struct e1000_ring);
2655
2656         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2657         if (!adapter->tx_ring)
2658                 goto err;
2659         adapter->tx_ring->count = adapter->tx_ring_count;
2660         adapter->tx_ring->adapter = adapter;
2661
2662         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2663         if (!adapter->rx_ring)
2664                 goto err;
2665         adapter->rx_ring->count = adapter->rx_ring_count;
2666         adapter->rx_ring->adapter = adapter;
2667
2668         return 0;
2669 err:
2670         e_err("Unable to allocate memory for queues\n");
2671         kfree(adapter->rx_ring);
2672         kfree(adapter->tx_ring);
2673         return -ENOMEM;
2674 }
2675
2676 /**
2677  * e1000e_poll - NAPI Rx polling callback
2678  * @napi: struct associated with this polling callback
2679  * @weight: number of packets driver is allowed to process this poll
2680  **/
2681 static int e1000e_poll(struct napi_struct *napi, int weight)
2682 {
2683         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2684                                                      napi);
2685         struct e1000_hw *hw = &adapter->hw;
2686         struct net_device *poll_dev = adapter->netdev;
2687         int tx_cleaned = 1, work_done = 0;
2688
2689         adapter = netdev_priv(poll_dev);
2690
2691         if (!adapter->msix_entries ||
2692             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2693                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2694
2695         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2696
2697         if (!tx_cleaned)
2698                 work_done = weight;
2699
2700         /* If weight not fully consumed, exit the polling mode */
2701         if (work_done < weight) {
2702                 if (adapter->itr_setting & 3)
2703                         e1000_set_itr(adapter);
2704                 napi_complete(napi);
2705                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2706                         if (adapter->msix_entries)
2707                                 ew32(IMS, adapter->rx_ring->ims_val);
2708                         else
2709                                 e1000_irq_enable(adapter);
2710                 }
2711         }
2712
2713         return work_done;
2714 }
2715
2716 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2717                                  __always_unused __be16 proto, u16 vid)
2718 {
2719         struct e1000_adapter *adapter = netdev_priv(netdev);
2720         struct e1000_hw *hw = &adapter->hw;
2721         u32 vfta, index;
2722
2723         /* don't update vlan cookie if already programmed */
2724         if ((adapter->hw.mng_cookie.status &
2725              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2726             (vid == adapter->mng_vlan_id))
2727                 return 0;
2728
2729         /* add VID to filter table */
2730         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2731                 index = (vid >> 5) & 0x7F;
2732                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2733                 vfta |= (1 << (vid & 0x1F));
2734                 hw->mac.ops.write_vfta(hw, index, vfta);
2735         }
2736
2737         set_bit(vid, adapter->active_vlans);
2738
2739         return 0;
2740 }
2741
2742 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2743                                   __always_unused __be16 proto, u16 vid)
2744 {
2745         struct e1000_adapter *adapter = netdev_priv(netdev);
2746         struct e1000_hw *hw = &adapter->hw;
2747         u32 vfta, index;
2748
2749         if ((adapter->hw.mng_cookie.status &
2750              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2751             (vid == adapter->mng_vlan_id)) {
2752                 /* release control to f/w */
2753                 e1000e_release_hw_control(adapter);
2754                 return 0;
2755         }
2756
2757         /* remove VID from filter table */
2758         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759                 index = (vid >> 5) & 0x7F;
2760                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2761                 vfta &= ~(1 << (vid & 0x1F));
2762                 hw->mac.ops.write_vfta(hw, index, vfta);
2763         }
2764
2765         clear_bit(vid, adapter->active_vlans);
2766
2767         return 0;
2768 }
2769
2770 /**
2771  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2772  * @adapter: board private structure to initialize
2773  **/
2774 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2775 {
2776         struct net_device *netdev = adapter->netdev;
2777         struct e1000_hw *hw = &adapter->hw;
2778         u32 rctl;
2779
2780         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2781                 /* disable VLAN receive filtering */
2782                 rctl = er32(RCTL);
2783                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2784                 ew32(RCTL, rctl);
2785
2786                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2787                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2788                                                adapter->mng_vlan_id);
2789                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2790                 }
2791         }
2792 }
2793
2794 /**
2795  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2796  * @adapter: board private structure to initialize
2797  **/
2798 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2799 {
2800         struct e1000_hw *hw = &adapter->hw;
2801         u32 rctl;
2802
2803         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2804                 /* enable VLAN receive filtering */
2805                 rctl = er32(RCTL);
2806                 rctl |= E1000_RCTL_VFE;
2807                 rctl &= ~E1000_RCTL_CFIEN;
2808                 ew32(RCTL, rctl);
2809         }
2810 }
2811
2812 /**
2813  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2814  * @adapter: board private structure to initialize
2815  **/
2816 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2817 {
2818         struct e1000_hw *hw = &adapter->hw;
2819         u32 ctrl;
2820
2821         /* disable VLAN tag insert/strip */
2822         ctrl = er32(CTRL);
2823         ctrl &= ~E1000_CTRL_VME;
2824         ew32(CTRL, ctrl);
2825 }
2826
2827 /**
2828  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2829  * @adapter: board private structure to initialize
2830  **/
2831 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2832 {
2833         struct e1000_hw *hw = &adapter->hw;
2834         u32 ctrl;
2835
2836         /* enable VLAN tag insert/strip */
2837         ctrl = er32(CTRL);
2838         ctrl |= E1000_CTRL_VME;
2839         ew32(CTRL, ctrl);
2840 }
2841
2842 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2843 {
2844         struct net_device *netdev = adapter->netdev;
2845         u16 vid = adapter->hw.mng_cookie.vlan_id;
2846         u16 old_vid = adapter->mng_vlan_id;
2847
2848         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2849                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2850                 adapter->mng_vlan_id = vid;
2851         }
2852
2853         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2854                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2855 }
2856
2857 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2858 {
2859         u16 vid;
2860
2861         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2862
2863         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2864             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2865 }
2866
2867 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2868 {
2869         struct e1000_hw *hw = &adapter->hw;
2870         u32 manc, manc2h, mdef, i, j;
2871
2872         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2873                 return;
2874
2875         manc = er32(MANC);
2876
2877         /* enable receiving management packets to the host. this will probably
2878          * generate destination unreachable messages from the host OS, but
2879          * the packets will be handled on SMBUS
2880          */
2881         manc |= E1000_MANC_EN_MNG2HOST;
2882         manc2h = er32(MANC2H);
2883
2884         switch (hw->mac.type) {
2885         default:
2886                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2887                 break;
2888         case e1000_82574:
2889         case e1000_82583:
2890                 /* Check if IPMI pass-through decision filter already exists;
2891                  * if so, enable it.
2892                  */
2893                 for (i = 0, j = 0; i < 8; i++) {
2894                         mdef = er32(MDEF(i));
2895
2896                         /* Ignore filters with anything other than IPMI ports */
2897                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2898                                 continue;
2899
2900                         /* Enable this decision filter in MANC2H */
2901                         if (mdef)
2902                                 manc2h |= (1 << i);
2903
2904                         j |= mdef;
2905                 }
2906
2907                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2908                         break;
2909
2910                 /* Create new decision filter in an empty filter */
2911                 for (i = 0, j = 0; i < 8; i++)
2912                         if (er32(MDEF(i)) == 0) {
2913                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2914                                                E1000_MDEF_PORT_664));
2915                                 manc2h |= (1 << 1);
2916                                 j++;
2917                                 break;
2918                         }
2919
2920                 if (!j)
2921                         e_warn("Unable to create IPMI pass-through filter\n");
2922                 break;
2923         }
2924
2925         ew32(MANC2H, manc2h);
2926         ew32(MANC, manc);
2927 }
2928
2929 /**
2930  * e1000_configure_tx - Configure Transmit Unit after Reset
2931  * @adapter: board private structure
2932  *
2933  * Configure the Tx unit of the MAC after a reset.
2934  **/
2935 static void e1000_configure_tx(struct e1000_adapter *adapter)
2936 {
2937         struct e1000_hw *hw = &adapter->hw;
2938         struct e1000_ring *tx_ring = adapter->tx_ring;
2939         u64 tdba;
2940         u32 tdlen, tctl, tarc;
2941
2942         /* Setup the HW Tx Head and Tail descriptor pointers */
2943         tdba = tx_ring->dma;
2944         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2945         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2946         ew32(TDBAH(0), (tdba >> 32));
2947         ew32(TDLEN(0), tdlen);
2948         ew32(TDH(0), 0);
2949         ew32(TDT(0), 0);
2950         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2951         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2952
2953         /* Set the Tx Interrupt Delay register */
2954         ew32(TIDV, adapter->tx_int_delay);
2955         /* Tx irq moderation */
2956         ew32(TADV, adapter->tx_abs_int_delay);
2957
2958         if (adapter->flags2 & FLAG2_DMA_BURST) {
2959                 u32 txdctl = er32(TXDCTL(0));
2960
2961                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962                             E1000_TXDCTL_WTHRESH);
2963                 /* set up some performance related parameters to encourage the
2964                  * hardware to use the bus more efficiently in bursts, depends
2965                  * on the tx_int_delay to be enabled,
2966                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967                  * hthresh = 1 ==> prefetch when one or more available
2968                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969                  * BEWARE: this seems to work but should be considered first if
2970                  * there are Tx hangs or other Tx related bugs
2971                  */
2972                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973                 ew32(TXDCTL(0), txdctl);
2974         }
2975         /* erratum work around: set txdctl the same for both queues */
2976         ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978         /* Program the Transmit Control Register */
2979         tctl = er32(TCTL);
2980         tctl &= ~E1000_TCTL_CT;
2981         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985                 tarc = er32(TARC(0));
2986                 /* set the speed mode bit, we'll clear it if we're not at
2987                  * gigabit link later
2988                  */
2989 #define SPEED_MODE_BIT (1 << 21)
2990                 tarc |= SPEED_MODE_BIT;
2991                 ew32(TARC(0), tarc);
2992         }
2993
2994         /* errata: program both queues to unweighted RR */
2995         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996                 tarc = er32(TARC(0));
2997                 tarc |= 1;
2998                 ew32(TARC(0), tarc);
2999                 tarc = er32(TARC(1));
3000                 tarc |= 1;
3001                 ew32(TARC(1), tarc);
3002         }
3003
3004         /* Setup Transmit Descriptor Settings for eop descriptor */
3005         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007         /* only set IDE if we are delaying interrupts using the timers */
3008         if (adapter->tx_int_delay)
3009                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011         /* enable Report Status bit */
3012         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014         ew32(TCTL, tctl);
3015
3016         hw->mac.ops.config_collision_dist(hw);
3017 }
3018
3019 /**
3020  * e1000_setup_rctl - configure the receive control registers
3021  * @adapter: Board private structure
3022  **/
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 rctl, rfctl;
3029         u32 pages = 0;
3030
3031         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032          * If jumbo frames not set, program related MAC/PHY registers
3033          * to h/w defaults
3034          */
3035         if (hw->mac.type >= e1000_pch2lan) {
3036                 s32 ret_val;
3037
3038                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040                 else
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043                 if (ret_val)
3044                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045         }
3046
3047         /* Program MC offset vector base */
3048         rctl = er32(RCTL);
3049         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054         /* Do not Store bad packets */
3055         rctl &= ~E1000_RCTL_SBP;
3056
3057         /* Enable Long Packet receive */
3058         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059                 rctl &= ~E1000_RCTL_LPE;
3060         else
3061                 rctl |= E1000_RCTL_LPE;
3062
3063         /* Some systems expect that the CRC is included in SMBUS traffic. The
3064          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065          * host memory when this is enabled
3066          */
3067         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068                 rctl |= E1000_RCTL_SECRC;
3069
3070         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072                 u16 phy_data;
3073
3074                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075                 phy_data &= 0xfff8;
3076                 phy_data |= (1 << 2);
3077                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079                 e1e_rphy(hw, 22, &phy_data);
3080                 phy_data &= 0x0fff;
3081                 phy_data |= (1 << 14);
3082                 e1e_wphy(hw, 0x10, 0x2823);
3083                 e1e_wphy(hw, 0x11, 0x0003);
3084                 e1e_wphy(hw, 22, phy_data);
3085         }
3086
3087         /* Setup buffer sizes */
3088         rctl &= ~E1000_RCTL_SZ_4096;
3089         rctl |= E1000_RCTL_BSEX;
3090         switch (adapter->rx_buffer_len) {
3091         case 2048:
3092         default:
3093                 rctl |= E1000_RCTL_SZ_2048;
3094                 rctl &= ~E1000_RCTL_BSEX;
3095                 break;
3096         case 4096:
3097                 rctl |= E1000_RCTL_SZ_4096;
3098                 break;
3099         case 8192:
3100                 rctl |= E1000_RCTL_SZ_8192;
3101                 break;
3102         case 16384:
3103                 rctl |= E1000_RCTL_SZ_16384;
3104                 break;
3105         }
3106
3107         /* Enable Extended Status in all Receive Descriptors */
3108         rfctl = er32(RFCTL);
3109         rfctl |= E1000_RFCTL_EXTEN;
3110         ew32(RFCTL, rfctl);
3111
3112         /* 82571 and greater support packet-split where the protocol
3113          * header is placed in skb->data and the packet data is
3114          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115          * In the case of a non-split, skb->data is linearly filled,
3116          * followed by the page buffers.  Therefore, skb->data is
3117          * sized to hold the largest protocol header.
3118          *
3119          * allocations using alloc_page take too long for regular MTU
3120          * so only enable packet split for jumbo frames
3121          *
3122          * Using pages when the page size is greater than 16k wastes
3123          * a lot of memory, since we allocate 3 pages at all times
3124          * per packet.
3125          */
3126         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128                 adapter->rx_ps_pages = pages;
3129         else
3130                 adapter->rx_ps_pages = 0;
3131
3132         if (adapter->rx_ps_pages) {
3133                 u32 psrctl = 0;
3134
3135                 /* Enable Packet split descriptors */
3136                 rctl |= E1000_RCTL_DTYP_PS;
3137
3138                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140                 switch (adapter->rx_ps_pages) {
3141                 case 3:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143                         /* fall-through */
3144                 case 2:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146                         /* fall-through */
3147                 case 1:
3148                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149                         break;
3150                 }
3151
3152                 ew32(PSRCTL, psrctl);
3153         }
3154
3155         /* This is useful for sniffing bad packets. */
3156         if (adapter->netdev->features & NETIF_F_RXALL) {
3157                 /* UPE and MPE will be handled by normal PROMISC logic
3158                  * in e1000e_set_rx_mode
3159                  */
3160                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3161                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3162                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3163
3164                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3165                           E1000_RCTL_DPF |      /* Allow filtered pause */
3166                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3167                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168                  * and that breaks VLANs.
3169                  */
3170         }
3171
3172         ew32(RCTL, rctl);
3173         /* just started the receive unit, no need to restart */
3174         adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct e1000_ring *rx_ring = adapter->rx_ring;
3187         u64 rdba;
3188         u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190         if (adapter->rx_ps_pages) {
3191                 /* this is a 32 byte descriptor */
3192                 rdlen = rx_ring->count *
3193                     sizeof(union e1000_rx_desc_packet_split);
3194                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200         } else {
3201                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202                 adapter->clean_rx = e1000_clean_rx_irq;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204         }
3205
3206         /* disable receives while setting up the descriptors */
3207         rctl = er32(RCTL);
3208         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210         e1e_flush();
3211         usleep_range(10000, 20000);
3212
3213         if (adapter->flags2 & FLAG2_DMA_BURST) {
3214                 /* set the writeback threshold (only takes effect if the RDTR
3215                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3216                  * enable prefetching of 0x20 Rx descriptors
3217                  * granularity = 01
3218                  * wthresh = 04,
3219                  * hthresh = 04,
3220                  * pthresh = 0x20
3221                  */
3222                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224
3225                 /* override the delay timers for enabling bursting, only if
3226                  * the value was not set by the user via module options
3227                  */
3228                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3229                         adapter->rx_int_delay = BURST_RDTR;
3230                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3231                         adapter->rx_abs_int_delay = BURST_RADV;
3232         }
3233
3234         /* set the Receive Delay Timer Register */
3235         ew32(RDTR, adapter->rx_int_delay);
3236
3237         /* irq moderation */
3238         ew32(RADV, adapter->rx_abs_int_delay);
3239         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3240                 e1000e_write_itr(adapter, adapter->itr);
3241
3242         ctrl_ext = er32(CTRL_EXT);
3243         /* Auto-Mask interrupts upon ICR access */
3244         ctrl_ext |= E1000_CTRL_EXT_IAME;
3245         ew32(IAM, 0xffffffff);
3246         ew32(CTRL_EXT, ctrl_ext);
3247         e1e_flush();
3248
3249         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3250          * the Base and Length of the Rx Descriptor Ring
3251          */
3252         rdba = rx_ring->dma;
3253         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3254         ew32(RDBAH(0), (rdba >> 32));
3255         ew32(RDLEN(0), rdlen);
3256         ew32(RDH(0), 0);
3257         ew32(RDT(0), 0);
3258         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3259         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3260
3261         /* Enable Receive Checksum Offload for TCP and UDP */
3262         rxcsum = er32(RXCSUM);
3263         if (adapter->netdev->features & NETIF_F_RXCSUM)
3264                 rxcsum |= E1000_RXCSUM_TUOFL;
3265         else
3266                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3267         ew32(RXCSUM, rxcsum);
3268
3269         /* With jumbo frames, excessive C-state transition latencies result
3270          * in dropped transactions.
3271          */
3272         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3273                 u32 lat =
3274                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3275                      adapter->max_frame_size) * 8 / 1000;
3276
3277                 if (adapter->flags & FLAG_IS_ICH) {
3278                         u32 rxdctl = er32(RXDCTL(0));
3279
3280                         ew32(RXDCTL(0), rxdctl | 0x3);
3281                 }
3282
3283                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3284         } else {
3285                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3286                                       PM_QOS_DEFAULT_VALUE);
3287         }
3288
3289         /* Enable Receives */
3290         ew32(RCTL, rctl);
3291 }
3292
3293 /**
3294  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295  * @netdev: network interface device structure
3296  *
3297  * Writes multicast address list to the MTA hash table.
3298  * Returns: -ENOMEM on failure
3299  *                0 on no addresses written
3300  *                X on writing X addresses to MTA
3301  */
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3303 {
3304         struct e1000_adapter *adapter = netdev_priv(netdev);
3305         struct e1000_hw *hw = &adapter->hw;
3306         struct netdev_hw_addr *ha;
3307         u8 *mta_list;
3308         int i;
3309
3310         if (netdev_mc_empty(netdev)) {
3311                 /* nothing to program, so clear mc list */
3312                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313                 return 0;
3314         }
3315
3316         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3317         if (!mta_list)
3318                 return -ENOMEM;
3319
3320         /* update_mc_addr_list expects a packed array of only addresses. */
3321         i = 0;
3322         netdev_for_each_mc_addr(ha, netdev)
3323             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3324
3325         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326         kfree(mta_list);
3327
3328         return netdev_mc_count(netdev);
3329 }
3330
3331 /**
3332  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333  * @netdev: network interface device structure
3334  *
3335  * Writes unicast address list to the RAR table.
3336  * Returns: -ENOMEM on failure/insufficient address space
3337  *                0 on no addresses written
3338  *                X on writing X addresses to the RAR table
3339  **/
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3341 {
3342         struct e1000_adapter *adapter = netdev_priv(netdev);
3343         struct e1000_hw *hw = &adapter->hw;
3344         unsigned int rar_entries;
3345         int count = 0;
3346
3347         rar_entries = hw->mac.ops.rar_get_count(hw);
3348
3349         /* save a rar entry for our hardware address */
3350         rar_entries--;
3351
3352         /* save a rar entry for the LAA workaround */
3353         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354                 rar_entries--;
3355
3356         /* return ENOMEM indicating insufficient memory for addresses */
3357         if (netdev_uc_count(netdev) > rar_entries)
3358                 return -ENOMEM;
3359
3360         if (!netdev_uc_empty(netdev) && rar_entries) {
3361                 struct netdev_hw_addr *ha;
3362
3363                 /* write the addresses in reverse order to avoid write
3364                  * combining
3365                  */
3366                 netdev_for_each_uc_addr(ha, netdev) {
3367                         int rval;
3368
3369                         if (!rar_entries)
3370                                 break;
3371                         rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372                         if (rval < 0)
3373                                 return -ENOMEM;
3374                         count++;
3375                 }
3376         }
3377
3378         /* zero out the remaining RAR entries not used above */
3379         for (; rar_entries > 0; rar_entries--) {
3380                 ew32(RAH(rar_entries), 0);
3381                 ew32(RAL(rar_entries), 0);
3382         }
3383         e1e_flush();
3384
3385         return count;
3386 }
3387
3388 /**
3389  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390  * @netdev: network interface device structure
3391  *
3392  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393  * address list or the network interface flags are updated.  This routine is
3394  * responsible for configuring the hardware for proper unicast, multicast,
3395  * promiscuous mode, and all-multi behavior.
3396  **/
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3398 {
3399         struct e1000_adapter *adapter = netdev_priv(netdev);
3400         struct e1000_hw *hw = &adapter->hw;
3401         u32 rctl;
3402
3403         if (pm_runtime_suspended(netdev->dev.parent))
3404                 return;
3405
3406         /* Check for Promiscuous and All Multicast modes */
3407         rctl = er32(RCTL);
3408
3409         /* clear the affected bits */
3410         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3411
3412         if (netdev->flags & IFF_PROMISC) {
3413                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414                 /* Do not hardware filter VLANs in promisc mode */
3415                 e1000e_vlan_filter_disable(adapter);
3416         } else {
3417                 int count;
3418
3419                 if (netdev->flags & IFF_ALLMULTI) {
3420                         rctl |= E1000_RCTL_MPE;
3421                 } else {
3422                         /* Write addresses to the MTA, if the attempt fails
3423                          * then we should just turn on promiscuous mode so
3424                          * that we can at least receive multicast traffic
3425                          */
3426                         count = e1000e_write_mc_addr_list(netdev);
3427                         if (count < 0)
3428                                 rctl |= E1000_RCTL_MPE;
3429                 }
3430                 e1000e_vlan_filter_enable(adapter);
3431                 /* Write addresses to available RAR registers, if there is not
3432                  * sufficient space to store all the addresses then enable
3433                  * unicast promiscuous mode
3434                  */
3435                 count = e1000e_write_uc_addr_list(netdev);
3436                 if (count < 0)
3437                         rctl |= E1000_RCTL_UPE;
3438         }
3439
3440         ew32(RCTL, rctl);
3441
3442         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443                 e1000e_vlan_strip_enable(adapter);
3444         else
3445                 e1000e_vlan_strip_disable(adapter);
3446 }
3447
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3449 {
3450         struct e1000_hw *hw = &adapter->hw;
3451         u32 mrqc, rxcsum;
3452         int i;
3453         static const u32 rsskey[10] = {
3454                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3455                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3456         };
3457
3458         /* Fill out hash function seed */
3459         for (i = 0; i < 10; i++)
3460                 ew32(RSSRK(i), rsskey[i]);
3461
3462         /* Direct all traffic to queue 0 */
3463         for (i = 0; i < 32; i++)
3464                 ew32(RETA(i), 0);
3465
3466         /* Disable raw packet checksumming so that RSS hash is placed in
3467          * descriptor on writeback.
3468          */
3469         rxcsum = er32(RXCSUM);
3470         rxcsum |= E1000_RXCSUM_PCSD;
3471
3472         ew32(RXCSUM, rxcsum);
3473
3474         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476                 E1000_MRQC_RSS_FIELD_IPV6 |
3477                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479
3480         ew32(MRQC, mrqc);
3481 }
3482
3483 /**
3484  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485  * @adapter: board private structure
3486  * @timinca: pointer to returned time increment attributes
3487  *
3488  * Get attributes for incrementing the System Time Register SYSTIML/H at
3489  * the default base frequency, and set the cyclecounter shift value.
3490  **/
3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492 {
3493         struct e1000_hw *hw = &adapter->hw;
3494         u32 incvalue, incperiod, shift;
3495
3496         /* Make sure clock is enabled on I217 before checking the frequency */
3497         if ((hw->mac.type == e1000_pch_lpt) &&
3498             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3499             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3500                 u32 fextnvm7 = er32(FEXTNVM7);
3501
3502                 if (!(fextnvm7 & (1 << 0))) {
3503                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3504                         e1e_flush();
3505                 }
3506         }
3507
3508         switch (hw->mac.type) {
3509         case e1000_pch2lan:
3510         case e1000_pch_lpt:
3511                 /* On I217, the clock frequency is 25MHz or 96MHz as
3512                  * indicated by the System Clock Frequency Indication
3513                  */
3514                 if ((hw->mac.type != e1000_pch_lpt) ||
3515                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3516                         /* Stable 96MHz frequency */
3517                         incperiod = INCPERIOD_96MHz;
3518                         incvalue = INCVALUE_96MHz;
3519                         shift = INCVALUE_SHIFT_96MHz;
3520                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3521                         break;
3522                 }
3523                 /* fall-through */
3524         case e1000_82574:
3525         case e1000_82583:
3526                 /* Stable 25MHz frequency */
3527                 incperiod = INCPERIOD_25MHz;
3528                 incvalue = INCVALUE_25MHz;
3529                 shift = INCVALUE_SHIFT_25MHz;
3530                 adapter->cc.shift = shift;
3531                 break;
3532         default:
3533                 return -EINVAL;
3534         }
3535
3536         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3537                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3538
3539         return 0;
3540 }
3541
3542 /**
3543  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3544  * @adapter: board private structure
3545  *
3546  * Outgoing time stamping can be enabled and disabled. Play nice and
3547  * disable it when requested, although it shouldn't cause any overhead
3548  * when no packet needs it. At most one packet in the queue may be
3549  * marked for time stamping, otherwise it would be impossible to tell
3550  * for sure to which packet the hardware time stamp belongs.
3551  *
3552  * Incoming time stamping has to be configured via the hardware filters.
3553  * Not all combinations are supported, in particular event type has to be
3554  * specified. Matching the kind of event packet is not supported, with the
3555  * exception of "all V2 events regardless of level 2 or 4".
3556  **/
3557 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3558                                   struct hwtstamp_config *config)
3559 {
3560         struct e1000_hw *hw = &adapter->hw;
3561         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3562         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3563         u32 rxmtrl = 0;
3564         u16 rxudp = 0;
3565         bool is_l4 = false;
3566         bool is_l2 = false;
3567         u32 regval;
3568         s32 ret_val;
3569
3570         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3571                 return -EINVAL;
3572
3573         /* flags reserved for future extensions - must be zero */
3574         if (config->flags)
3575                 return -EINVAL;
3576
3577         switch (config->tx_type) {
3578         case HWTSTAMP_TX_OFF:
3579                 tsync_tx_ctl = 0;
3580                 break;
3581         case HWTSTAMP_TX_ON:
3582                 break;
3583         default:
3584                 return -ERANGE;
3585         }
3586
3587         switch (config->rx_filter) {
3588         case HWTSTAMP_FILTER_NONE:
3589                 tsync_rx_ctl = 0;
3590                 break;
3591         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3592                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3593                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3594                 is_l4 = true;
3595                 break;
3596         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3597                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3598                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3599                 is_l4 = true;
3600                 break;
3601         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3602                 /* Also time stamps V2 L2 Path Delay Request/Response */
3603                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3604                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3605                 is_l2 = true;
3606                 break;
3607         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3608                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3609                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3610                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3611                 is_l2 = true;
3612                 break;
3613         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3614                 /* Hardware cannot filter just V2 L4 Sync messages;
3615                  * fall-through to V2 (both L2 and L4) Sync.
3616                  */
3617         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3618                 /* Also time stamps V2 Path Delay Request/Response. */
3619                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3620                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3621                 is_l2 = true;
3622                 is_l4 = true;
3623                 break;
3624         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3625                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3626                  * fall-through to V2 (both L2 and L4) Delay Request.
3627                  */
3628         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3629                 /* Also time stamps V2 Path Delay Request/Response. */
3630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3631                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3632                 is_l2 = true;
3633                 is_l4 = true;
3634                 break;
3635         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3636         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3637                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3638                  * fall-through to all V2 (both L2 and L4) Events.
3639                  */
3640         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3641                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3642                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3643                 is_l2 = true;
3644                 is_l4 = true;
3645                 break;
3646         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3647                 /* For V1, the hardware can only filter Sync messages or
3648                  * Delay Request messages but not both so fall-through to
3649                  * time stamp all packets.
3650                  */
3651         case HWTSTAMP_FILTER_ALL:
3652                 is_l2 = true;
3653                 is_l4 = true;
3654                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3655                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3656                 break;
3657         default:
3658                 return -ERANGE;
3659         }
3660
3661         adapter->hwtstamp_config = *config;
3662
3663         /* enable/disable Tx h/w time stamping */
3664         regval = er32(TSYNCTXCTL);
3665         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3666         regval |= tsync_tx_ctl;
3667         ew32(TSYNCTXCTL, regval);
3668         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3669             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3670                 e_err("Timesync Tx Control register not set as expected\n");
3671                 return -EAGAIN;
3672         }
3673
3674         /* enable/disable Rx h/w time stamping */
3675         regval = er32(TSYNCRXCTL);
3676         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3677         regval |= tsync_rx_ctl;
3678         ew32(TSYNCRXCTL, regval);
3679         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3680                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3681             (regval & (E1000_TSYNCRXCTL_ENABLED |
3682                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3683                 e_err("Timesync Rx Control register not set as expected\n");
3684                 return -EAGAIN;
3685         }
3686
3687         /* L2: define ethertype filter for time stamped packets */
3688         if (is_l2)
3689                 rxmtrl |= ETH_P_1588;
3690
3691         /* define which PTP packets get time stamped */
3692         ew32(RXMTRL, rxmtrl);
3693
3694         /* Filter by destination port */
3695         if (is_l4) {
3696                 rxudp = PTP_EV_PORT;
3697                 cpu_to_be16s(&rxudp);
3698         }
3699         ew32(RXUDP, rxudp);
3700
3701         e1e_flush();
3702
3703         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3704         er32(RXSTMPH);
3705         er32(TXSTMPH);
3706
3707         /* Get and set the System Time Register SYSTIM base frequency */
3708         ret_val = e1000e_get_base_timinca(adapter, &regval);
3709         if (ret_val)
3710                 return ret_val;
3711         ew32(TIMINCA, regval);
3712
3713         /* reset the ns time counter */
3714         timecounter_init(&adapter->tc, &adapter->cc,
3715                          ktime_to_ns(ktime_get_real()));
3716
3717         return 0;
3718 }
3719
3720 /**
3721  * e1000_configure - configure the hardware for Rx and Tx
3722  * @adapter: private board structure
3723  **/
3724 static void e1000_configure(struct e1000_adapter *adapter)
3725 {
3726         struct e1000_ring *rx_ring = adapter->rx_ring;
3727
3728         e1000e_set_rx_mode(adapter->netdev);
3729
3730         e1000_restore_vlan(adapter);
3731         e1000_init_manageability_pt(adapter);
3732
3733         e1000_configure_tx(adapter);
3734
3735         if (adapter->netdev->features & NETIF_F_RXHASH)
3736                 e1000e_setup_rss_hash(adapter);
3737         e1000_setup_rctl(adapter);
3738         e1000_configure_rx(adapter);
3739         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3740 }
3741
3742 /**
3743  * e1000e_power_up_phy - restore link in case the phy was powered down
3744  * @adapter: address of board private structure
3745  *
3746  * The phy may be powered down to save power and turn off link when the
3747  * driver is unloaded and wake on lan is not enabled (among others)
3748  * *** this routine MUST be followed by a call to e1000e_reset ***
3749  **/
3750 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3751 {
3752         if (adapter->hw.phy.ops.power_up)
3753                 adapter->hw.phy.ops.power_up(&adapter->hw);
3754
3755         adapter->hw.mac.ops.setup_link(&adapter->hw);
3756 }
3757
3758 /**
3759  * e1000_power_down_phy - Power down the PHY
3760  *
3761  * Power down the PHY so no link is implied when interface is down.
3762  * The PHY cannot be powered down if management or WoL is active.
3763  */
3764 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3765 {
3766         if (adapter->hw.phy.ops.power_down)
3767                 adapter->hw.phy.ops.power_down(&adapter->hw);
3768 }
3769
3770 /**
3771  * e1000e_reset - bring the hardware into a known good state
3772  *
3773  * This function boots the hardware and enables some settings that
3774  * require a configuration cycle of the hardware - those cannot be
3775  * set/changed during runtime. After reset the device needs to be
3776  * properly configured for Rx, Tx etc.
3777  */
3778 void e1000e_reset(struct e1000_adapter *adapter)
3779 {
3780         struct e1000_mac_info *mac = &adapter->hw.mac;
3781         struct e1000_fc_info *fc = &adapter->hw.fc;
3782         struct e1000_hw *hw = &adapter->hw;
3783         u32 tx_space, min_tx_space, min_rx_space;
3784         u32 pba = adapter->pba;
3785         u16 hwm;
3786
3787         /* reset Packet Buffer Allocation to default */
3788         ew32(PBA, pba);
3789
3790         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3791                 /* To maintain wire speed transmits, the Tx FIFO should be
3792                  * large enough to accommodate two full transmit packets,
3793                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3794                  * the Rx FIFO should be large enough to accommodate at least
3795                  * one full receive packet and is similarly rounded up and
3796                  * expressed in KB.
3797                  */
3798                 pba = er32(PBA);
3799                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3800                 tx_space = pba >> 16;
3801                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3802                 pba &= 0xffff;
3803                 /* the Tx fifo also stores 16 bytes of information about the Tx
3804                  * but don't include ethernet FCS because hardware appends it
3805                  */
3806                 min_tx_space = (adapter->max_frame_size +
3807                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3808                 min_tx_space = ALIGN(min_tx_space, 1024);
3809                 min_tx_space >>= 10;
3810                 /* software strips receive CRC, so leave room for it */
3811                 min_rx_space = adapter->max_frame_size;
3812                 min_rx_space = ALIGN(min_rx_space, 1024);
3813                 min_rx_space >>= 10;
3814
3815                 /* If current Tx allocation is less than the min Tx FIFO size,
3816                  * and the min Tx FIFO size is less than the current Rx FIFO
3817                  * allocation, take space away from current Rx allocation
3818                  */
3819                 if ((tx_space < min_tx_space) &&
3820                     ((min_tx_space - tx_space) < pba)) {
3821                         pba -= min_tx_space - tx_space;
3822
3823                         /* if short on Rx space, Rx wins and must trump Tx
3824                          * adjustment
3825                          */
3826                         if (pba < min_rx_space)
3827                                 pba = min_rx_space;
3828                 }
3829
3830                 ew32(PBA, pba);
3831         }
3832
3833         /* flow control settings
3834          *
3835          * The high water mark must be low enough to fit one full frame
3836          * (or the size used for early receive) above it in the Rx FIFO.
3837          * Set it to the lower of:
3838          * - 90% of the Rx FIFO size, and
3839          * - the full Rx FIFO size minus one full frame
3840          */
3841         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3842                 fc->pause_time = 0xFFFF;
3843         else
3844                 fc->pause_time = E1000_FC_PAUSE_TIME;
3845         fc->send_xon = true;
3846         fc->current_mode = fc->requested_mode;
3847
3848         switch (hw->mac.type) {
3849         case e1000_ich9lan:
3850         case e1000_ich10lan:
3851                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3852                         pba = 14;
3853                         ew32(PBA, pba);
3854                         fc->high_water = 0x2800;
3855                         fc->low_water = fc->high_water - 8;
3856                         break;
3857                 }
3858                 /* fall-through */
3859         default:
3860                 hwm = min(((pba << 10) * 9 / 10),
3861                           ((pba << 10) - adapter->max_frame_size));
3862
3863                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3864                 fc->low_water = fc->high_water - 8;
3865                 break;
3866         case e1000_pchlan:
3867                 /* Workaround PCH LOM adapter hangs with certain network
3868                  * loads.  If hangs persist, try disabling Tx flow control.
3869                  */
3870                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3871                         fc->high_water = 0x3500;
3872                         fc->low_water = 0x1500;
3873                 } else {
3874                         fc->high_water = 0x5000;
3875                         fc->low_water = 0x3000;
3876                 }
3877                 fc->refresh_time = 0x1000;
3878                 break;
3879         case e1000_pch2lan:
3880         case e1000_pch_lpt:
3881                 fc->refresh_time = 0x0400;
3882
3883                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3884                         fc->high_water = 0x05C20;
3885                         fc->low_water = 0x05048;
3886                         fc->pause_time = 0x0650;
3887                         break;
3888                 }
3889
3890                 pba = 14;
3891                 ew32(PBA, pba);
3892                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3893                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3894                 break;
3895         }
3896
3897         /* Alignment of Tx data is on an arbitrary byte boundary with the
3898          * maximum size per Tx descriptor limited only to the transmit
3899          * allocation of the packet buffer minus 96 bytes with an upper
3900          * limit of 24KB due to receive synchronization limitations.
3901          */
3902         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3903                                        24 << 10);
3904
3905         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3906          * fit in receive buffer.
3907          */
3908         if (adapter->itr_setting & 0x3) {
3909                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3910                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3911                                 dev_info(&adapter->pdev->dev,
3912                                          "Interrupt Throttle Rate off\n");
3913                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3914                                 e1000e_write_itr(adapter, 0);
3915                         }
3916                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3917                         dev_info(&adapter->pdev->dev,
3918                                  "Interrupt Throttle Rate on\n");
3919                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3920                         adapter->itr = 20000;
3921                         e1000e_write_itr(adapter, adapter->itr);
3922                 }
3923         }
3924
3925         /* Allow time for pending master requests to run */
3926         mac->ops.reset_hw(hw);
3927
3928         /* For parts with AMT enabled, let the firmware know
3929          * that the network interface is in control
3930          */
3931         if (adapter->flags & FLAG_HAS_AMT)
3932                 e1000e_get_hw_control(adapter);
3933
3934         ew32(WUC, 0);
3935
3936         if (mac->ops.init_hw(hw))
3937                 e_err("Hardware Error\n");
3938
3939         e1000_update_mng_vlan(adapter);
3940
3941         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3942         ew32(VET, ETH_P_8021Q);
3943
3944         e1000e_reset_adaptive(hw);
3945
3946         /* initialize systim and reset the ns time counter */
3947         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3948
3949         /* Set EEE advertisement as appropriate */
3950         if (adapter->flags2 & FLAG2_HAS_EEE) {
3951                 s32 ret_val;
3952                 u16 adv_addr;
3953
3954                 switch (hw->phy.type) {
3955                 case e1000_phy_82579:
3956                         adv_addr = I82579_EEE_ADVERTISEMENT;
3957                         break;
3958                 case e1000_phy_i217:
3959                         adv_addr = I217_EEE_ADVERTISEMENT;
3960                         break;
3961                 default:
3962                         dev_err(&adapter->pdev->dev,
3963                                 "Invalid PHY type setting EEE advertisement\n");
3964                         return;
3965                 }
3966
3967                 ret_val = hw->phy.ops.acquire(hw);
3968                 if (ret_val) {
3969                         dev_err(&adapter->pdev->dev,
3970                                 "EEE advertisement - unable to acquire PHY\n");
3971                         return;
3972                 }
3973
3974                 e1000_write_emi_reg_locked(hw, adv_addr,
3975                                            hw->dev_spec.ich8lan.eee_disable ?
3976                                            0 : adapter->eee_advert);
3977
3978                 hw->phy.ops.release(hw);
3979         }
3980
3981         if (!netif_running(adapter->netdev) &&
3982             !test_bit(__E1000_TESTING, &adapter->state))
3983                 e1000_power_down_phy(adapter);
3984
3985         e1000_get_phy_info(hw);
3986
3987         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3988             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3989                 u16 phy_data = 0;
3990                 /* speed up time to link by disabling smart power down, ignore
3991                  * the return value of this function because there is nothing
3992                  * different we would do if it failed
3993                  */
3994                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3995                 phy_data &= ~IGP02E1000_PM_SPD;
3996                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3997         }
3998 }
3999
4000 int e1000e_up(struct e1000_adapter *adapter)
4001 {
4002         struct e1000_hw *hw = &adapter->hw;
4003
4004         /* hardware has been reset, we need to reload some things */
4005         e1000_configure(adapter);
4006
4007         clear_bit(__E1000_DOWN, &adapter->state);
4008
4009         if (adapter->msix_entries)
4010                 e1000_configure_msix(adapter);
4011         e1000_irq_enable(adapter);
4012
4013         netif_start_queue(adapter->netdev);
4014
4015         /* fire a link change interrupt to start the watchdog */
4016         if (adapter->msix_entries)
4017                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4018         else
4019                 ew32(ICS, E1000_ICS_LSC);
4020
4021         return 0;
4022 }
4023
4024 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4025 {
4026         struct e1000_hw *hw = &adapter->hw;
4027
4028         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4029                 return;
4030
4031         /* flush pending descriptor writebacks to memory */
4032         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4033         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4034
4035         /* execute the writes immediately */
4036         e1e_flush();
4037
4038         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4039          * write is successful
4040          */
4041         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4042         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4043
4044         /* execute the writes immediately */
4045         e1e_flush();
4046 }
4047
4048 static void e1000e_update_stats(struct e1000_adapter *adapter);
4049
4050 /**
4051  * e1000e_down - quiesce the device and optionally reset the hardware
4052  * @adapter: board private structure
4053  * @reset: boolean flag to reset the hardware or not
4054  */
4055 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4056 {
4057         struct net_device *netdev = adapter->netdev;
4058         struct e1000_hw *hw = &adapter->hw;
4059         u32 tctl, rctl;
4060
4061         /* signal that we're down so the interrupt handler does not
4062          * reschedule our watchdog timer
4063          */
4064         set_bit(__E1000_DOWN, &adapter->state);
4065
4066         /* disable receives in the hardware */
4067         rctl = er32(RCTL);
4068         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4069                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4070         /* flush and sleep below */
4071
4072         netif_stop_queue(netdev);
4073
4074         /* disable transmits in the hardware */
4075         tctl = er32(TCTL);
4076         tctl &= ~E1000_TCTL_EN;
4077         ew32(TCTL, tctl);
4078
4079         /* flush both disables and wait for them to finish */
4080         e1e_flush();
4081         usleep_range(10000, 20000);
4082
4083         e1000_irq_disable(adapter);
4084
4085         napi_synchronize(&adapter->napi);
4086
4087         del_timer_sync(&adapter->watchdog_timer);
4088         del_timer_sync(&adapter->phy_info_timer);
4089
4090         netif_carrier_off(netdev);
4091
4092         spin_lock(&adapter->stats64_lock);
4093         e1000e_update_stats(adapter);
4094         spin_unlock(&adapter->stats64_lock);
4095
4096         e1000e_flush_descriptors(adapter);
4097         e1000_clean_tx_ring(adapter->tx_ring);
4098         e1000_clean_rx_ring(adapter->rx_ring);
4099
4100         adapter->link_speed = 0;
4101         adapter->link_duplex = 0;
4102
4103         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4104         if ((hw->mac.type >= e1000_pch2lan) &&
4105             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4106             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4107                 e_dbg("failed to disable jumbo frame workaround mode\n");
4108
4109         if (reset && !pci_channel_offline(adapter->pdev))
4110                 e1000e_reset(adapter);
4111 }
4112
4113 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4114 {
4115         might_sleep();
4116         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4117                 usleep_range(1000, 2000);
4118         e1000e_down(adapter, true);
4119         e1000e_up(adapter);
4120         clear_bit(__E1000_RESETTING, &adapter->state);
4121 }
4122
4123 /**
4124  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4125  * @cc: cyclecounter structure
4126  **/
4127 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4128 {
4129         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4130                                                      cc);
4131         struct e1000_hw *hw = &adapter->hw;
4132         cycle_t systim, systim_next;
4133
4134         /* latch SYSTIMH on read of SYSTIML */
4135         systim = (cycle_t)er32(SYSTIML);
4136         systim |= (cycle_t)er32(SYSTIMH) << 32;
4137
4138         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4139                 u64 incvalue, time_delta, rem, temp;
4140                 int i;
4141
4142                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4143                  * check to see that the time is incrementing at a reasonable
4144                  * rate and is a multiple of incvalue
4145                  */
4146                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4147                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4148                         /* latch SYSTIMH on read of SYSTIML */
4149                         systim_next = (cycle_t)er32(SYSTIML);
4150                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4151
4152                         time_delta = systim_next - systim;
4153                         temp = time_delta;
4154                         rem = do_div(temp, incvalue);
4155
4156                         systim = systim_next;
4157
4158                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4159                             (rem == 0))
4160                                 break;
4161                 }
4162         }
4163         return systim;
4164 }
4165
4166 /**
4167  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4168  * @adapter: board private structure to initialize
4169  *
4170  * e1000_sw_init initializes the Adapter private data structure.
4171  * Fields are initialized based on PCI device information and
4172  * OS network device settings (MTU size).
4173  **/
4174 static int e1000_sw_init(struct e1000_adapter *adapter)
4175 {
4176         struct net_device *netdev = adapter->netdev;
4177
4178         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4179         adapter->rx_ps_bsize0 = 128;
4180         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4181         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4182         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4183         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4184
4185         spin_lock_init(&adapter->stats64_lock);
4186
4187         e1000e_set_interrupt_capability(adapter);
4188
4189         if (e1000_alloc_queues(adapter))
4190                 return -ENOMEM;
4191
4192         /* Setup hardware time stamping cyclecounter */
4193         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4194                 adapter->cc.read = e1000e_cyclecounter_read;
4195                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4196                 adapter->cc.mult = 1;
4197                 /* cc.shift set in e1000e_get_base_tininca() */
4198
4199                 spin_lock_init(&adapter->systim_lock);
4200                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4201         }
4202
4203         /* Explicitly disable IRQ since the NIC can be in any state. */
4204         e1000_irq_disable(adapter);
4205
4206         set_bit(__E1000_DOWN, &adapter->state);
4207         return 0;
4208 }
4209
4210 /**
4211  * e1000_intr_msi_test - Interrupt Handler
4212  * @irq: interrupt number
4213  * @data: pointer to a network interface device structure
4214  **/
4215 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4216 {
4217         struct net_device *netdev = data;
4218         struct e1000_adapter *adapter = netdev_priv(netdev);
4219         struct e1000_hw *hw = &adapter->hw;
4220         u32 icr = er32(ICR);
4221
4222         e_dbg("icr is %08X\n", icr);
4223         if (icr & E1000_ICR_RXSEQ) {
4224                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4225                 /* Force memory writes to complete before acknowledging the
4226                  * interrupt is handled.
4227                  */
4228                 wmb();
4229         }
4230
4231         return IRQ_HANDLED;
4232 }
4233
4234 /**
4235  * e1000_test_msi_interrupt - Returns 0 for successful test
4236  * @adapter: board private struct
4237  *
4238  * code flow taken from tg3.c
4239  **/
4240 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4241 {
4242         struct net_device *netdev = adapter->netdev;
4243         struct e1000_hw *hw = &adapter->hw;
4244         int err;
4245
4246         /* poll_enable hasn't been called yet, so don't need disable */
4247         /* clear any pending events */
4248         er32(ICR);
4249
4250         /* free the real vector and request a test handler */
4251         e1000_free_irq(adapter);
4252         e1000e_reset_interrupt_capability(adapter);
4253
4254         /* Assume that the test fails, if it succeeds then the test
4255          * MSI irq handler will unset this flag
4256          */
4257         adapter->flags |= FLAG_MSI_TEST_FAILED;
4258
4259         err = pci_enable_msi(adapter->pdev);
4260         if (err)
4261                 goto msi_test_failed;
4262
4263         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4264                           netdev->name, netdev);
4265         if (err) {
4266                 pci_disable_msi(adapter->pdev);
4267                 goto msi_test_failed;
4268         }
4269
4270         /* Force memory writes to complete before enabling and firing an
4271          * interrupt.
4272          */
4273         wmb();
4274
4275         e1000_irq_enable(adapter);
4276
4277         /* fire an unusual interrupt on the test handler */
4278         ew32(ICS, E1000_ICS_RXSEQ);
4279         e1e_flush();
4280         msleep(100);
4281
4282         e1000_irq_disable(adapter);
4283
4284         rmb();                  /* read flags after interrupt has been fired */
4285
4286         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4287                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4288                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4289         } else {
4290                 e_dbg("MSI interrupt test succeeded!\n");
4291         }
4292
4293         free_irq(adapter->pdev->irq, netdev);
4294         pci_disable_msi(adapter->pdev);
4295
4296 msi_test_failed:
4297         e1000e_set_interrupt_capability(adapter);
4298         return e1000_request_irq(adapter);
4299 }
4300
4301 /**
4302  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4303  * @adapter: board private struct
4304  *
4305  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4306  **/
4307 static int e1000_test_msi(struct e1000_adapter *adapter)
4308 {
4309         int err;
4310         u16 pci_cmd;
4311
4312         if (!(adapter->flags & FLAG_MSI_ENABLED))
4313                 return 0;
4314
4315         /* disable SERR in case the MSI write causes a master abort */
4316         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4317         if (pci_cmd & PCI_COMMAND_SERR)
4318                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4319                                       pci_cmd & ~PCI_COMMAND_SERR);
4320
4321         err = e1000_test_msi_interrupt(adapter);
4322
4323         /* re-enable SERR */
4324         if (pci_cmd & PCI_COMMAND_SERR) {
4325                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4326                 pci_cmd |= PCI_COMMAND_SERR;
4327                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4328         }
4329
4330         return err;
4331 }
4332
4333 /**
4334  * e1000_open - Called when a network interface is made active
4335  * @netdev: network interface device structure
4336  *
4337  * Returns 0 on success, negative value on failure
4338  *
4339  * The open entry point is called when a network interface is made
4340  * active by the system (IFF_UP).  At this point all resources needed
4341  * for transmit and receive operations are allocated, the interrupt
4342  * handler is registered with the OS, the watchdog timer is started,
4343  * and the stack is notified that the interface is ready.
4344  **/
4345 static int e1000_open(struct net_device *netdev)
4346 {
4347         struct e1000_adapter *adapter = netdev_priv(netdev);
4348         struct e1000_hw *hw = &adapter->hw;
4349         struct pci_dev *pdev = adapter->pdev;
4350         int err;
4351
4352         /* disallow open during test */
4353         if (test_bit(__E1000_TESTING, &adapter->state))
4354                 return -EBUSY;
4355
4356         pm_runtime_get_sync(&pdev->dev);
4357
4358         netif_carrier_off(netdev);
4359
4360         /* allocate transmit descriptors */
4361         err = e1000e_setup_tx_resources(adapter->tx_ring);
4362         if (err)
4363                 goto err_setup_tx;
4364
4365         /* allocate receive descriptors */
4366         err = e1000e_setup_rx_resources(adapter->rx_ring);
4367         if (err)
4368                 goto err_setup_rx;
4369
4370         /* If AMT is enabled, let the firmware know that the network
4371          * interface is now open and reset the part to a known state.
4372          */
4373         if (adapter->flags & FLAG_HAS_AMT) {
4374                 e1000e_get_hw_control(adapter);
4375                 e1000e_reset(adapter);
4376         }
4377
4378         e1000e_power_up_phy(adapter);
4379
4380         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4381         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4382                 e1000_update_mng_vlan(adapter);
4383
4384         /* DMA latency requirement to workaround jumbo issue */
4385         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4386                            PM_QOS_DEFAULT_VALUE);
4387
4388         /* before we allocate an interrupt, we must be ready to handle it.
4389          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4390          * as soon as we call pci_request_irq, so we have to setup our
4391          * clean_rx handler before we do so.
4392          */
4393         e1000_configure(adapter);
4394
4395         err = e1000_request_irq(adapter);
4396         if (err)
4397                 goto err_req_irq;
4398
4399         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4400          * ignore e1000e MSI messages, which means we need to test our MSI
4401          * interrupt now
4402          */
4403         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4404                 err = e1000_test_msi(adapter);
4405                 if (err) {
4406                         e_err("Interrupt allocation failed\n");
4407                         goto err_req_irq;
4408                 }
4409         }
4410
4411         /* From here on the code is the same as e1000e_up() */
4412         clear_bit(__E1000_DOWN, &adapter->state);
4413
4414         napi_enable(&adapter->napi);
4415
4416         e1000_irq_enable(adapter);
4417
4418         adapter->tx_hang_recheck = false;
4419         netif_start_queue(netdev);
4420
4421         hw->mac.get_link_status = true;
4422         pm_runtime_put(&pdev->dev);
4423
4424         /* fire a link status change interrupt to start the watchdog */
4425         if (adapter->msix_entries)
4426                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4427         else
4428                 ew32(ICS, E1000_ICS_LSC);
4429
4430         return 0;
4431
4432 err_req_irq:
4433         e1000e_release_hw_control(adapter);
4434         e1000_power_down_phy(adapter);
4435         e1000e_free_rx_resources(adapter->rx_ring);
4436 err_setup_rx:
4437         e1000e_free_tx_resources(adapter->tx_ring);
4438 err_setup_tx:
4439         e1000e_reset(adapter);
4440         pm_runtime_put_sync(&pdev->dev);
4441
4442         return err;
4443 }
4444
4445 /**
4446  * e1000_close - Disables a network interface
4447  * @netdev: network interface device structure
4448  *
4449  * Returns 0, this is not allowed to fail
4450  *
4451  * The close entry point is called when an interface is de-activated
4452  * by the OS.  The hardware is still under the drivers control, but
4453  * needs to be disabled.  A global MAC reset is issued to stop the
4454  * hardware, and all transmit and receive resources are freed.
4455  **/
4456 static int e1000_close(struct net_device *netdev)
4457 {
4458         struct e1000_adapter *adapter = netdev_priv(netdev);
4459         struct pci_dev *pdev = adapter->pdev;
4460         int count = E1000_CHECK_RESET_COUNT;
4461
4462         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4463                 usleep_range(10000, 20000);
4464
4465         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4466
4467         pm_runtime_get_sync(&pdev->dev);
4468
4469         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4470                 e1000e_down(adapter, true);
4471                 e1000_free_irq(adapter);
4472
4473                 /* Link status message must follow this format */
4474                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4475         }
4476
4477         napi_disable(&adapter->napi);
4478
4479         e1000e_free_tx_resources(adapter->tx_ring);
4480         e1000e_free_rx_resources(adapter->rx_ring);
4481
4482         /* kill manageability vlan ID if supported, but not if a vlan with
4483          * the same ID is registered on the host OS (let 8021q kill it)
4484          */
4485         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4486                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4487                                        adapter->mng_vlan_id);
4488
4489         /* If AMT is enabled, let the firmware know that the network
4490          * interface is now closed
4491          */
4492         if ((adapter->flags & FLAG_HAS_AMT) &&
4493             !test_bit(__E1000_TESTING, &adapter->state))
4494                 e1000e_release_hw_control(adapter);
4495
4496         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4497
4498         pm_runtime_put_sync(&pdev->dev);
4499
4500         return 0;
4501 }
4502
4503 /**
4504  * e1000_set_mac - Change the Ethernet Address of the NIC
4505  * @netdev: network interface device structure
4506  * @p: pointer to an address structure
4507  *
4508  * Returns 0 on success, negative on failure
4509  **/
4510 static int e1000_set_mac(struct net_device *netdev, void *p)
4511 {
4512         struct e1000_adapter *adapter = netdev_priv(netdev);
4513         struct e1000_hw *hw = &adapter->hw;
4514         struct sockaddr *addr = p;
4515
4516         if (!is_valid_ether_addr(addr->sa_data))
4517                 return -EADDRNOTAVAIL;
4518
4519         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4520         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4521
4522         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4523
4524         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4525                 /* activate the work around */
4526                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4527
4528                 /* Hold a copy of the LAA in RAR[14] This is done so that
4529                  * between the time RAR[0] gets clobbered  and the time it
4530                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4531                  * of the RARs and no incoming packets directed to this port
4532                  * are dropped. Eventually the LAA will be in RAR[0] and
4533                  * RAR[14]
4534                  */
4535                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4536                                     adapter->hw.mac.rar_entry_count - 1);
4537         }
4538
4539         return 0;
4540 }
4541
4542 /**
4543  * e1000e_update_phy_task - work thread to update phy
4544  * @work: pointer to our work struct
4545  *
4546  * this worker thread exists because we must acquire a
4547  * semaphore to read the phy, which we could msleep while
4548  * waiting for it, and we can't msleep in a timer.
4549  **/
4550 static void e1000e_update_phy_task(struct work_struct *work)
4551 {
4552         struct e1000_adapter *adapter = container_of(work,
4553                                                      struct e1000_adapter,
4554                                                      update_phy_task);
4555         struct e1000_hw *hw = &adapter->hw;
4556
4557         if (test_bit(__E1000_DOWN, &adapter->state))
4558                 return;
4559
4560         e1000_get_phy_info(hw);
4561
4562         /* Enable EEE on 82579 after link up */
4563         if (hw->phy.type >= e1000_phy_82579)
4564                 e1000_set_eee_pchlan(hw);
4565 }
4566
4567 /**
4568  * e1000_update_phy_info - timre call-back to update PHY info
4569  * @data: pointer to adapter cast into an unsigned long
4570  *
4571  * Need to wait a few seconds after link up to get diagnostic information from
4572  * the phy
4573  **/
4574 static void e1000_update_phy_info(unsigned long data)
4575 {
4576         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4577
4578         if (test_bit(__E1000_DOWN, &adapter->state))
4579                 return;
4580
4581         schedule_work(&adapter->update_phy_task);
4582 }
4583
4584 /**
4585  * e1000e_update_phy_stats - Update the PHY statistics counters
4586  * @adapter: board private structure
4587  *
4588  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4589  **/
4590 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4591 {
4592         struct e1000_hw *hw = &adapter->hw;
4593         s32 ret_val;
4594         u16 phy_data;
4595
4596         ret_val = hw->phy.ops.acquire(hw);
4597         if (ret_val)
4598                 return;
4599
4600         /* A page set is expensive so check if already on desired page.
4601          * If not, set to the page with the PHY status registers.
4602          */
4603         hw->phy.addr = 1;
4604         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4605                                            &phy_data);
4606         if (ret_val)
4607                 goto release;
4608         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4609                 ret_val = hw->phy.ops.set_page(hw,
4610                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4611                 if (ret_val)
4612                         goto release;
4613         }
4614
4615         /* Single Collision Count */
4616         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4617         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4618         if (!ret_val)
4619                 adapter->stats.scc += phy_data;
4620
4621         /* Excessive Collision Count */
4622         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4623         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4624         if (!ret_val)
4625                 adapter->stats.ecol += phy_data;
4626
4627         /* Multiple Collision Count */
4628         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4629         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4630         if (!ret_val)
4631                 adapter->stats.mcc += phy_data;
4632
4633         /* Late Collision Count */
4634         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4635         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4636         if (!ret_val)
4637                 adapter->stats.latecol += phy_data;
4638
4639         /* Collision Count - also used for adaptive IFS */
4640         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4641         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4642         if (!ret_val)
4643                 hw->mac.collision_delta = phy_data;
4644
4645         /* Defer Count */
4646         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4647         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4648         if (!ret_val)
4649                 adapter->stats.dc += phy_data;
4650
4651         /* Transmit with no CRS */
4652         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4653         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4654         if (!ret_val)
4655                 adapter->stats.tncrs += phy_data;
4656
4657 release:
4658         hw->phy.ops.release(hw);
4659 }
4660
4661 /**
4662  * e1000e_update_stats - Update the board statistics counters
4663  * @adapter: board private structure
4664  **/
4665 static void e1000e_update_stats(struct e1000_adapter *adapter)
4666 {
4667         struct net_device *netdev = adapter->netdev;
4668         struct e1000_hw *hw = &adapter->hw;
4669         struct pci_dev *pdev = adapter->pdev;
4670
4671         /* Prevent stats update while adapter is being reset, or if the pci
4672          * connection is down.
4673          */
4674         if (adapter->link_speed == 0)
4675                 return;
4676         if (pci_channel_offline(pdev))
4677                 return;
4678
4679         adapter->stats.crcerrs += er32(CRCERRS);
4680         adapter->stats.gprc += er32(GPRC);
4681         adapter->stats.gorc += er32(GORCL);
4682         er32(GORCH);            /* Clear gorc */
4683         adapter->stats.bprc += er32(BPRC);
4684         adapter->stats.mprc += er32(MPRC);
4685         adapter->stats.roc += er32(ROC);
4686
4687         adapter->stats.mpc += er32(MPC);
4688
4689         /* Half-duplex statistics */
4690         if (adapter->link_duplex == HALF_DUPLEX) {
4691                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4692                         e1000e_update_phy_stats(adapter);
4693                 } else {
4694                         adapter->stats.scc += er32(SCC);
4695                         adapter->stats.ecol += er32(ECOL);
4696                         adapter->stats.mcc += er32(MCC);
4697                         adapter->stats.latecol += er32(LATECOL);
4698                         adapter->stats.dc += er32(DC);
4699
4700                         hw->mac.collision_delta = er32(COLC);
4701
4702                         if ((hw->mac.type != e1000_82574) &&
4703                             (hw->mac.type != e1000_82583))
4704                                 adapter->stats.tncrs += er32(TNCRS);
4705                 }
4706                 adapter->stats.colc += hw->mac.collision_delta;
4707         }
4708
4709         adapter->stats.xonrxc += er32(XONRXC);
4710         adapter->stats.xontxc += er32(XONTXC);
4711         adapter->stats.xoffrxc += er32(XOFFRXC);
4712         adapter->stats.xofftxc += er32(XOFFTXC);
4713         adapter->stats.gptc += er32(GPTC);
4714         adapter->stats.gotc += er32(GOTCL);
4715         er32(GOTCH);            /* Clear gotc */
4716         adapter->stats.rnbc += er32(RNBC);
4717         adapter->stats.ruc += er32(RUC);
4718
4719         adapter->stats.mptc += er32(MPTC);
4720         adapter->stats.bptc += er32(BPTC);
4721
4722         /* used for adaptive IFS */
4723
4724         hw->mac.tx_packet_delta = er32(TPT);
4725         adapter->stats.tpt += hw->mac.tx_packet_delta;
4726
4727         adapter->stats.algnerrc += er32(ALGNERRC);
4728         adapter->stats.rxerrc += er32(RXERRC);
4729         adapter->stats.cexterr += er32(CEXTERR);
4730         adapter->stats.tsctc += er32(TSCTC);
4731         adapter->stats.tsctfc += er32(TSCTFC);
4732
4733         /* Fill out the OS statistics structure */
4734         netdev->stats.multicast = adapter->stats.mprc;
4735         netdev->stats.collisions = adapter->stats.colc;
4736
4737         /* Rx Errors */
4738
4739         /* RLEC on some newer hardware can be incorrect so build
4740          * our own version based on RUC and ROC
4741          */
4742         netdev->stats.rx_errors = adapter->stats.rxerrc +
4743             adapter->stats.crcerrs + adapter->stats.algnerrc +
4744             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4745         netdev->stats.rx_length_errors = adapter->stats.ruc +
4746             adapter->stats.roc;
4747         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4748         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4749         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4750
4751         /* Tx Errors */
4752         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4753         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4754         netdev->stats.tx_window_errors = adapter->stats.latecol;
4755         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4756
4757         /* Tx Dropped needs to be maintained elsewhere */
4758
4759         /* Management Stats */
4760         adapter->stats.mgptc += er32(MGTPTC);
4761         adapter->stats.mgprc += er32(MGTPRC);
4762         adapter->stats.mgpdc += er32(MGTPDC);
4763
4764         /* Correctable ECC Errors */
4765         if (hw->mac.type == e1000_pch_lpt) {
4766                 u32 pbeccsts = er32(PBECCSTS);
4767
4768                 adapter->corr_errors +=
4769                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4770                 adapter->uncorr_errors +=
4771                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4772                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4773         }
4774 }
4775
4776 /**
4777  * e1000_phy_read_status - Update the PHY register status snapshot
4778  * @adapter: board private structure
4779  **/
4780 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4781 {
4782         struct e1000_hw *hw = &adapter->hw;
4783         struct e1000_phy_regs *phy = &adapter->phy_regs;
4784
4785         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4786             (er32(STATUS) & E1000_STATUS_LU) &&
4787             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4788                 int ret_val;
4789
4790                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4791                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4792                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4793                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4794                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4795                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4796                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4797                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4798                 if (ret_val)
4799                         e_warn("Error reading PHY register\n");
4800         } else {
4801                 /* Do not read PHY registers if link is not up
4802                  * Set values to typical power-on defaults
4803                  */
4804                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4805                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4806                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4807                              BMSR_ERCAP);
4808                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4809                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4810                 phy->lpa = 0;
4811                 phy->expansion = EXPANSION_ENABLENPAGE;
4812                 phy->ctrl1000 = ADVERTISE_1000FULL;
4813                 phy->stat1000 = 0;
4814                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4815         }
4816 }
4817
4818 static void e1000_print_link_info(struct e1000_adapter *adapter)
4819 {
4820         struct e1000_hw *hw = &adapter->hw;
4821         u32 ctrl = er32(CTRL);
4822
4823         /* Link status message must follow this format for user tools */
4824         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4825                 adapter->netdev->name, adapter->link_speed,
4826                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4827                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4828                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4829                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4830 }
4831
4832 static bool e1000e_has_link(struct e1000_adapter *adapter)
4833 {
4834         struct e1000_hw *hw = &adapter->hw;
4835         bool link_active = false;
4836         s32 ret_val = 0;
4837
4838         /* get_link_status is set on LSC (link status) interrupt or
4839          * Rx sequence error interrupt.  get_link_status will stay
4840          * false until the check_for_link establishes link
4841          * for copper adapters ONLY
4842          */
4843         switch (hw->phy.media_type) {
4844         case e1000_media_type_copper:
4845                 if (hw->mac.get_link_status) {
4846                         ret_val = hw->mac.ops.check_for_link(hw);
4847                         link_active = !hw->mac.get_link_status;
4848                 } else {
4849                         link_active = true;
4850                 }
4851                 break;
4852         case e1000_media_type_fiber:
4853                 ret_val = hw->mac.ops.check_for_link(hw);
4854                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4855                 break;
4856         case e1000_media_type_internal_serdes:
4857                 ret_val = hw->mac.ops.check_for_link(hw);
4858                 link_active = adapter->hw.mac.serdes_has_link;
4859                 break;
4860         default:
4861         case e1000_media_type_unknown:
4862                 break;
4863         }
4864
4865         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4866             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4867                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4868                 e_info("Gigabit has been disabled, downgrading speed\n");
4869         }
4870
4871         return link_active;
4872 }
4873
4874 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4875 {
4876         /* make sure the receive unit is started */
4877         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4878             (adapter->flags & FLAG_RESTART_NOW)) {
4879                 struct e1000_hw *hw = &adapter->hw;
4880                 u32 rctl = er32(RCTL);
4881
4882                 ew32(RCTL, rctl | E1000_RCTL_EN);
4883                 adapter->flags &= ~FLAG_RESTART_NOW;
4884         }
4885 }
4886
4887 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4888 {
4889         struct e1000_hw *hw = &adapter->hw;
4890
4891         /* With 82574 controllers, PHY needs to be checked periodically
4892          * for hung state and reset, if two calls return true
4893          */
4894         if (e1000_check_phy_82574(hw))
4895                 adapter->phy_hang_count++;
4896         else
4897                 adapter->phy_hang_count = 0;
4898
4899         if (adapter->phy_hang_count > 1) {
4900                 adapter->phy_hang_count = 0;
4901                 e_dbg("PHY appears hung - resetting\n");
4902                 schedule_work(&adapter->reset_task);
4903         }
4904 }
4905
4906 /**
4907  * e1000_watchdog - Timer Call-back
4908  * @data: pointer to adapter cast into an unsigned long
4909  **/
4910 static void e1000_watchdog(unsigned long data)
4911 {
4912         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4913
4914         /* Do the rest outside of interrupt context */
4915         schedule_work(&adapter->watchdog_task);
4916
4917         /* TODO: make this use queue_delayed_work() */
4918 }
4919
4920 static void e1000_watchdog_task(struct work_struct *work)
4921 {
4922         struct e1000_adapter *adapter = container_of(work,
4923                                                      struct e1000_adapter,
4924                                                      watchdog_task);
4925         struct net_device *netdev = adapter->netdev;
4926         struct e1000_mac_info *mac = &adapter->hw.mac;
4927         struct e1000_phy_info *phy = &adapter->hw.phy;
4928         struct e1000_ring *tx_ring = adapter->tx_ring;
4929         struct e1000_hw *hw = &adapter->hw;
4930         u32 link, tctl;
4931
4932         if (test_bit(__E1000_DOWN, &adapter->state))
4933                 return;
4934
4935         link = e1000e_has_link(adapter);
4936         if ((netif_carrier_ok(netdev)) && link) {
4937                 /* Cancel scheduled suspend requests. */
4938                 pm_runtime_resume(netdev->dev.parent);
4939
4940                 e1000e_enable_receives(adapter);
4941                 goto link_up;
4942         }
4943
4944         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4945             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4946                 e1000_update_mng_vlan(adapter);
4947
4948         if (link) {
4949                 if (!netif_carrier_ok(netdev)) {
4950                         bool txb2b = true;
4951
4952                         /* Cancel scheduled suspend requests. */
4953                         pm_runtime_resume(netdev->dev.parent);
4954
4955                         /* update snapshot of PHY registers on LSC */
4956                         e1000_phy_read_status(adapter);
4957                         mac->ops.get_link_up_info(&adapter->hw,
4958                                                   &adapter->link_speed,
4959                                                   &adapter->link_duplex);
4960                         e1000_print_link_info(adapter);
4961
4962                         /* check if SmartSpeed worked */
4963                         e1000e_check_downshift(hw);
4964                         if (phy->speed_downgraded)
4965                                 netdev_warn(netdev,
4966                                             "Link Speed was downgraded by SmartSpeed\n");
4967
4968                         /* On supported PHYs, check for duplex mismatch only
4969                          * if link has autonegotiated at 10/100 half
4970                          */
4971                         if ((hw->phy.type == e1000_phy_igp_3 ||
4972                              hw->phy.type == e1000_phy_bm) &&
4973                             hw->mac.autoneg &&
4974                             (adapter->link_speed == SPEED_10 ||
4975                              adapter->link_speed == SPEED_100) &&
4976                             (adapter->link_duplex == HALF_DUPLEX)) {
4977                                 u16 autoneg_exp;
4978
4979                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4980
4981                                 if (!(autoneg_exp & EXPANSION_NWAY))
4982                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4983                         }
4984
4985                         /* adjust timeout factor according to speed/duplex */
4986                         adapter->tx_timeout_factor = 1;
4987                         switch (adapter->link_speed) {
4988                         case SPEED_10:
4989                                 txb2b = false;
4990                                 adapter->tx_timeout_factor = 16;
4991                                 break;
4992                         case SPEED_100:
4993                                 txb2b = false;
4994                                 adapter->tx_timeout_factor = 10;
4995                                 break;
4996                         }
4997
4998                         /* workaround: re-program speed mode bit after
4999                          * link-up event
5000                          */
5001                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5002                             !txb2b) {
5003                                 u32 tarc0;
5004
5005                                 tarc0 = er32(TARC(0));
5006                                 tarc0 &= ~SPEED_MODE_BIT;
5007                                 ew32(TARC(0), tarc0);
5008                         }
5009
5010                         /* disable TSO for pcie and 10/100 speeds, to avoid
5011                          * some hardware issues
5012                          */
5013                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5014                                 switch (adapter->link_speed) {
5015                                 case SPEED_10:
5016                                 case SPEED_100:
5017                                         e_info("10/100 speed: disabling TSO\n");
5018                                         netdev->features &= ~NETIF_F_TSO;
5019                                         netdev->features &= ~NETIF_F_TSO6;
5020                                         break;
5021                                 case SPEED_1000:
5022                                         netdev->features |= NETIF_F_TSO;
5023                                         netdev->features |= NETIF_F_TSO6;
5024                                         break;
5025                                 default:
5026                                         /* oops */
5027                                         break;
5028                                 }
5029                         }
5030
5031                         /* enable transmits in the hardware, need to do this
5032                          * after setting TARC(0)
5033                          */
5034                         tctl = er32(TCTL);
5035                         tctl |= E1000_TCTL_EN;
5036                         ew32(TCTL, tctl);
5037
5038                         /* Perform any post-link-up configuration before
5039                          * reporting link up.
5040                          */
5041                         if (phy->ops.cfg_on_link_up)
5042                                 phy->ops.cfg_on_link_up(hw);
5043
5044                         netif_carrier_on(netdev);
5045
5046                         if (!test_bit(__E1000_DOWN, &adapter->state))
5047                                 mod_timer(&adapter->phy_info_timer,
5048                                           round_jiffies(jiffies + 2 * HZ));
5049                 }
5050         } else {
5051                 if (netif_carrier_ok(netdev)) {
5052                         adapter->link_speed = 0;
5053                         adapter->link_duplex = 0;
5054                         /* Link status message must follow this format */
5055                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5056                         netif_carrier_off(netdev);
5057                         if (!test_bit(__E1000_DOWN, &adapter->state))
5058                                 mod_timer(&adapter->phy_info_timer,
5059                                           round_jiffies(jiffies + 2 * HZ));
5060
5061                         /* 8000ES2LAN requires a Rx packet buffer work-around
5062                          * on link down event; reset the controller to flush
5063                          * the Rx packet buffer.
5064                          */
5065                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5066                                 adapter->flags |= FLAG_RESTART_NOW;
5067                         else
5068                                 pm_schedule_suspend(netdev->dev.parent,
5069                                                     LINK_TIMEOUT);
5070                 }
5071         }
5072
5073 link_up:
5074         spin_lock(&adapter->stats64_lock);
5075         e1000e_update_stats(adapter);
5076
5077         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5078         adapter->tpt_old = adapter->stats.tpt;
5079         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5080         adapter->colc_old = adapter->stats.colc;
5081
5082         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5083         adapter->gorc_old = adapter->stats.gorc;
5084         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5085         adapter->gotc_old = adapter->stats.gotc;
5086         spin_unlock(&adapter->stats64_lock);
5087
5088         /* If the link is lost the controller stops DMA, but
5089          * if there is queued Tx work it cannot be done.  So
5090          * reset the controller to flush the Tx packet buffers.
5091          */
5092         if (!netif_carrier_ok(netdev) &&
5093             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5094                 adapter->flags |= FLAG_RESTART_NOW;
5095
5096         /* If reset is necessary, do it outside of interrupt context. */
5097         if (adapter->flags & FLAG_RESTART_NOW) {
5098                 schedule_work(&adapter->reset_task);
5099                 /* return immediately since reset is imminent */
5100                 return;
5101         }
5102
5103         e1000e_update_adaptive(&adapter->hw);
5104
5105         /* Simple mode for Interrupt Throttle Rate (ITR) */
5106         if (adapter->itr_setting == 4) {
5107                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5108                  * Total asymmetrical Tx or Rx gets ITR=8000;
5109                  * everyone else is between 2000-8000.
5110                  */
5111                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5112                 u32 dif = (adapter->gotc > adapter->gorc ?
5113                            adapter->gotc - adapter->gorc :
5114                            adapter->gorc - adapter->gotc) / 10000;
5115                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5116
5117                 e1000e_write_itr(adapter, itr);
5118         }
5119
5120         /* Cause software interrupt to ensure Rx ring is cleaned */
5121         if (adapter->msix_entries)
5122                 ew32(ICS, adapter->rx_ring->ims_val);
5123         else
5124                 ew32(ICS, E1000_ICS_RXDMT0);
5125
5126         /* flush pending descriptors to memory before detecting Tx hang */
5127         e1000e_flush_descriptors(adapter);
5128
5129         /* Force detection of hung controller every watchdog period */
5130         adapter->detect_tx_hung = true;
5131
5132         /* With 82571 controllers, LAA may be overwritten due to controller
5133          * reset from the other port. Set the appropriate LAA in RAR[0]
5134          */
5135         if (e1000e_get_laa_state_82571(hw))
5136                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5137
5138         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5139                 e1000e_check_82574_phy_workaround(adapter);
5140
5141         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5142         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5143                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5144                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5145                         er32(RXSTMPH);
5146                         adapter->rx_hwtstamp_cleared++;
5147                 } else {
5148                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5149                 }
5150         }
5151
5152         /* Reset the timer */
5153         if (!test_bit(__E1000_DOWN, &adapter->state))
5154                 mod_timer(&adapter->watchdog_timer,
5155                           round_jiffies(jiffies + 2 * HZ));
5156 }
5157
5158 #define E1000_TX_FLAGS_CSUM             0x00000001
5159 #define E1000_TX_FLAGS_VLAN             0x00000002
5160 #define E1000_TX_FLAGS_TSO              0x00000004
5161 #define E1000_TX_FLAGS_IPV4             0x00000008
5162 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5163 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5164 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5165 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5166
5167 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5168                      __be16 protocol)
5169 {
5170         struct e1000_context_desc *context_desc;
5171         struct e1000_buffer *buffer_info;
5172         unsigned int i;
5173         u32 cmd_length = 0;
5174         u16 ipcse = 0, mss;
5175         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5176         int err;
5177
5178         if (!skb_is_gso(skb))
5179                 return 0;
5180
5181         err = skb_cow_head(skb, 0);
5182         if (err < 0)
5183                 return err;
5184
5185         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5186         mss = skb_shinfo(skb)->gso_size;
5187         if (protocol == htons(ETH_P_IP)) {
5188                 struct iphdr *iph = ip_hdr(skb);
5189                 iph->tot_len = 0;
5190                 iph->check = 0;
5191                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5192                                                          0, IPPROTO_TCP, 0);
5193                 cmd_length = E1000_TXD_CMD_IP;
5194                 ipcse = skb_transport_offset(skb) - 1;
5195         } else if (skb_is_gso_v6(skb)) {
5196                 ipv6_hdr(skb)->payload_len = 0;
5197                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5198                                                        &ipv6_hdr(skb)->daddr,
5199                                                        0, IPPROTO_TCP, 0);
5200                 ipcse = 0;
5201         }
5202         ipcss = skb_network_offset(skb);
5203         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5204         tucss = skb_transport_offset(skb);
5205         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5206
5207         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5208                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5209
5210         i = tx_ring->next_to_use;
5211         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5212         buffer_info = &tx_ring->buffer_info[i];
5213
5214         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5215         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5216         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5217         context_desc->upper_setup.tcp_fields.tucss = tucss;
5218         context_desc->upper_setup.tcp_fields.tucso = tucso;
5219         context_desc->upper_setup.tcp_fields.tucse = 0;
5220         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5221         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5222         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5223
5224         buffer_info->time_stamp = jiffies;
5225         buffer_info->next_to_watch = i;
5226
5227         i++;
5228         if (i == tx_ring->count)
5229                 i = 0;
5230         tx_ring->next_to_use = i;
5231
5232         return 1;
5233 }
5234
5235 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5236                           __be16 protocol)
5237 {
5238         struct e1000_adapter *adapter = tx_ring->adapter;
5239         struct e1000_context_desc *context_desc;
5240         struct e1000_buffer *buffer_info;
5241         unsigned int i;
5242         u8 css;
5243         u32 cmd_len = E1000_TXD_CMD_DEXT;
5244
5245         if (skb->ip_summed != CHECKSUM_PARTIAL)
5246                 return false;
5247
5248         switch (protocol) {
5249         case cpu_to_be16(ETH_P_IP):
5250                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5251                         cmd_len |= E1000_TXD_CMD_TCP;
5252                 break;
5253         case cpu_to_be16(ETH_P_IPV6):
5254                 /* XXX not handling all IPV6 headers */
5255                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5256                         cmd_len |= E1000_TXD_CMD_TCP;
5257                 break;
5258         default:
5259                 if (unlikely(net_ratelimit()))
5260                         e_warn("checksum_partial proto=%x!\n",
5261                                be16_to_cpu(protocol));
5262                 break;
5263         }
5264
5265         css = skb_checksum_start_offset(skb);
5266
5267         i = tx_ring->next_to_use;
5268         buffer_info = &tx_ring->buffer_info[i];
5269         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5270
5271         context_desc->lower_setup.ip_config = 0;
5272         context_desc->upper_setup.tcp_fields.tucss = css;
5273         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5274         context_desc->upper_setup.tcp_fields.tucse = 0;
5275         context_desc->tcp_seg_setup.data = 0;
5276         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5277
5278         buffer_info->time_stamp = jiffies;
5279         buffer_info->next_to_watch = i;
5280
5281         i++;
5282         if (i == tx_ring->count)
5283                 i = 0;
5284         tx_ring->next_to_use = i;
5285
5286         return true;
5287 }
5288
5289 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5290                         unsigned int first, unsigned int max_per_txd,
5291                         unsigned int nr_frags)
5292 {
5293         struct e1000_adapter *adapter = tx_ring->adapter;
5294         struct pci_dev *pdev = adapter->pdev;
5295         struct e1000_buffer *buffer_info;
5296         unsigned int len = skb_headlen(skb);
5297         unsigned int offset = 0, size, count = 0, i;
5298         unsigned int f, bytecount, segs;
5299
5300         i = tx_ring->next_to_use;
5301
5302         while (len) {
5303                 buffer_info = &tx_ring->buffer_info[i];
5304                 size = min(len, max_per_txd);
5305
5306                 buffer_info->length = size;
5307                 buffer_info->time_stamp = jiffies;
5308                 buffer_info->next_to_watch = i;
5309                 buffer_info->dma = dma_map_single(&pdev->dev,
5310                                                   skb->data + offset,
5311                                                   size, DMA_TO_DEVICE);
5312                 buffer_info->mapped_as_page = false;
5313                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5314                         goto dma_error;
5315
5316                 len -= size;
5317                 offset += size;
5318                 count++;
5319
5320                 if (len) {
5321                         i++;
5322                         if (i == tx_ring->count)
5323                                 i = 0;
5324                 }
5325         }
5326
5327         for (f = 0; f < nr_frags; f++) {
5328                 const struct skb_frag_struct *frag;
5329
5330                 frag = &skb_shinfo(skb)->frags[f];
5331                 len = skb_frag_size(frag);
5332                 offset = 0;
5333
5334                 while (len) {
5335                         i++;
5336                         if (i == tx_ring->count)
5337                                 i = 0;
5338
5339                         buffer_info = &tx_ring->buffer_info[i];
5340                         size = min(len, max_per_txd);
5341
5342                         buffer_info->length = size;
5343                         buffer_info->time_stamp = jiffies;
5344                         buffer_info->next_to_watch = i;
5345                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5346                                                             offset, size,
5347                                                             DMA_TO_DEVICE);
5348                         buffer_info->mapped_as_page = true;
5349                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5350                                 goto dma_error;
5351
5352                         len -= size;
5353                         offset += size;
5354                         count++;
5355                 }
5356         }
5357
5358         segs = skb_shinfo(skb)->gso_segs ? : 1;
5359         /* multiply data chunks by size of headers */
5360         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5361
5362         tx_ring->buffer_info[i].skb = skb;
5363         tx_ring->buffer_info[i].segs = segs;
5364         tx_ring->buffer_info[i].bytecount = bytecount;
5365         tx_ring->buffer_info[first].next_to_watch = i;
5366
5367         return count;
5368
5369 dma_error:
5370         dev_err(&pdev->dev, "Tx DMA map failed\n");
5371         buffer_info->dma = 0;
5372         if (count)
5373                 count--;
5374
5375         while (count--) {
5376                 if (i == 0)
5377                         i += tx_ring->count;
5378                 i--;
5379                 buffer_info = &tx_ring->buffer_info[i];
5380                 e1000_put_txbuf(tx_ring, buffer_info);
5381         }
5382
5383         return 0;
5384 }
5385
5386 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5387 {
5388         struct e1000_adapter *adapter = tx_ring->adapter;
5389         struct e1000_tx_desc *tx_desc = NULL;
5390         struct e1000_buffer *buffer_info;
5391         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5392         unsigned int i;
5393
5394         if (tx_flags & E1000_TX_FLAGS_TSO) {
5395                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5396                     E1000_TXD_CMD_TSE;
5397                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5398
5399                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5400                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5401         }
5402
5403         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5404                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5405                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5406         }
5407
5408         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5409                 txd_lower |= E1000_TXD_CMD_VLE;
5410                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5411         }
5412
5413         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5414                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5415
5416         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5417                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5418                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5419         }
5420
5421         i = tx_ring->next_to_use;
5422
5423         do {
5424                 buffer_info = &tx_ring->buffer_info[i];
5425                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5426                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5427                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5428                                                   buffer_info->length);
5429                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5430
5431                 i++;
5432                 if (i == tx_ring->count)
5433                         i = 0;
5434         } while (--count > 0);
5435
5436         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5437
5438         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5439         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5440                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5441
5442         /* Force memory writes to complete before letting h/w
5443          * know there are new descriptors to fetch.  (Only
5444          * applicable for weak-ordered memory model archs,
5445          * such as IA-64).
5446          */
5447         wmb();
5448
5449         tx_ring->next_to_use = i;
5450
5451         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5452                 e1000e_update_tdt_wa(tx_ring, i);
5453         else
5454                 writel(i, tx_ring->tail);
5455
5456         /* we need this if more than one processor can write to our tail
5457          * at a time, it synchronizes IO on IA64/Altix systems
5458          */
5459         mmiowb();
5460 }
5461
5462 #define MINIMUM_DHCP_PACKET_SIZE 282
5463 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5464                                     struct sk_buff *skb)
5465 {
5466         struct e1000_hw *hw = &adapter->hw;
5467         u16 length, offset;
5468
5469         if (vlan_tx_tag_present(skb) &&
5470             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5471               (adapter->hw.mng_cookie.status &
5472                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5473                 return 0;
5474
5475         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5476                 return 0;
5477
5478         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5479                 return 0;
5480
5481         {
5482                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5483                 struct udphdr *udp;
5484
5485                 if (ip->protocol != IPPROTO_UDP)
5486                         return 0;
5487
5488                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5489                 if (ntohs(udp->dest) != 67)
5490                         return 0;
5491
5492                 offset = (u8 *)udp + 8 - skb->data;
5493                 length = skb->len - offset;
5494                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5495         }
5496
5497         return 0;
5498 }
5499
5500 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5501 {
5502         struct e1000_adapter *adapter = tx_ring->adapter;
5503
5504         netif_stop_queue(adapter->netdev);
5505         /* Herbert's original patch had:
5506          *  smp_mb__after_netif_stop_queue();
5507          * but since that doesn't exist yet, just open code it.
5508          */
5509         smp_mb();
5510
5511         /* We need to check again in a case another CPU has just
5512          * made room available.
5513          */
5514         if (e1000_desc_unused(tx_ring) < size)
5515                 return -EBUSY;
5516
5517         /* A reprieve! */
5518         netif_start_queue(adapter->netdev);
5519         ++adapter->restart_queue;
5520         return 0;
5521 }
5522
5523 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5524 {
5525         BUG_ON(size > tx_ring->count);
5526
5527         if (e1000_desc_unused(tx_ring) >= size)
5528                 return 0;
5529         return __e1000_maybe_stop_tx(tx_ring, size);
5530 }
5531
5532 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5533                                     struct net_device *netdev)
5534 {
5535         struct e1000_adapter *adapter = netdev_priv(netdev);
5536         struct e1000_ring *tx_ring = adapter->tx_ring;
5537         unsigned int first;
5538         unsigned int tx_flags = 0;
5539         unsigned int len = skb_headlen(skb);
5540         unsigned int nr_frags;
5541         unsigned int mss;
5542         int count = 0;
5543         int tso;
5544         unsigned int f;
5545         __be16 protocol = vlan_get_protocol(skb);
5546
5547         if (test_bit(__E1000_DOWN, &adapter->state)) {
5548                 dev_kfree_skb_any(skb);
5549                 return NETDEV_TX_OK;
5550         }
5551
5552         if (skb->len <= 0) {
5553                 dev_kfree_skb_any(skb);
5554                 return NETDEV_TX_OK;
5555         }
5556
5557         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5558          * pad skb in order to meet this minimum size requirement
5559          */
5560         if (unlikely(skb->len < 17)) {
5561                 if (skb_pad(skb, 17 - skb->len))
5562                         return NETDEV_TX_OK;
5563                 skb->len = 17;
5564                 skb_set_tail_pointer(skb, 17);
5565         }
5566
5567         mss = skb_shinfo(skb)->gso_size;
5568         if (mss) {
5569                 u8 hdr_len;
5570
5571                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5572                  * points to just header, pull a few bytes of payload from
5573                  * frags into skb->data
5574                  */
5575                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5576                 /* we do this workaround for ES2LAN, but it is un-necessary,
5577                  * avoiding it could save a lot of cycles
5578                  */
5579                 if (skb->data_len && (hdr_len == len)) {
5580                         unsigned int pull_size;
5581
5582                         pull_size = min_t(unsigned int, 4, skb->data_len);
5583                         if (!__pskb_pull_tail(skb, pull_size)) {
5584                                 e_err("__pskb_pull_tail failed.\n");
5585                                 dev_kfree_skb_any(skb);
5586                                 return NETDEV_TX_OK;
5587                         }
5588                         len = skb_headlen(skb);
5589                 }
5590         }
5591
5592         /* reserve a descriptor for the offload context */
5593         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5594                 count++;
5595         count++;
5596
5597         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5598
5599         nr_frags = skb_shinfo(skb)->nr_frags;
5600         for (f = 0; f < nr_frags; f++)
5601                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5602                                       adapter->tx_fifo_limit);
5603
5604         if (adapter->hw.mac.tx_pkt_filtering)
5605                 e1000_transfer_dhcp_info(adapter, skb);
5606
5607         /* need: count + 2 desc gap to keep tail from touching
5608          * head, otherwise try next time
5609          */
5610         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5611                 return NETDEV_TX_BUSY;
5612
5613         if (vlan_tx_tag_present(skb)) {
5614                 tx_flags |= E1000_TX_FLAGS_VLAN;
5615                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5616         }
5617
5618         first = tx_ring->next_to_use;
5619
5620         tso = e1000_tso(tx_ring, skb, protocol);
5621         if (tso < 0) {
5622                 dev_kfree_skb_any(skb);
5623                 return NETDEV_TX_OK;
5624         }
5625
5626         if (tso)
5627                 tx_flags |= E1000_TX_FLAGS_TSO;
5628         else if (e1000_tx_csum(tx_ring, skb, protocol))
5629                 tx_flags |= E1000_TX_FLAGS_CSUM;
5630
5631         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5632          * 82571 hardware supports TSO capabilities for IPv6 as well...
5633          * no longer assume, we must.
5634          */
5635         if (protocol == htons(ETH_P_IP))
5636                 tx_flags |= E1000_TX_FLAGS_IPV4;
5637
5638         if (unlikely(skb->no_fcs))
5639                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5640
5641         /* if count is 0 then mapping error has occurred */
5642         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5643                              nr_frags);
5644         if (count) {
5645                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5646                              !adapter->tx_hwtstamp_skb)) {
5647                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5648                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5649                         adapter->tx_hwtstamp_skb = skb_get(skb);
5650                         adapter->tx_hwtstamp_start = jiffies;
5651                         schedule_work(&adapter->tx_hwtstamp_work);
5652                 } else {
5653                         skb_tx_timestamp(skb);
5654                 }
5655
5656                 netdev_sent_queue(netdev, skb->len);
5657                 e1000_tx_queue(tx_ring, tx_flags, count);
5658                 /* Make sure there is space in the ring for the next send. */
5659                 e1000_maybe_stop_tx(tx_ring,
5660                                     (MAX_SKB_FRAGS *
5661                                      DIV_ROUND_UP(PAGE_SIZE,
5662                                                   adapter->tx_fifo_limit) + 2));
5663         } else {
5664                 dev_kfree_skb_any(skb);
5665                 tx_ring->buffer_info[first].time_stamp = 0;
5666                 tx_ring->next_to_use = first;
5667         }
5668
5669         return NETDEV_TX_OK;
5670 }
5671
5672 /**
5673  * e1000_tx_timeout - Respond to a Tx Hang
5674  * @netdev: network interface device structure
5675  **/
5676 static void e1000_tx_timeout(struct net_device *netdev)
5677 {
5678         struct e1000_adapter *adapter = netdev_priv(netdev);
5679
5680         /* Do the reset outside of interrupt context */
5681         adapter->tx_timeout_count++;
5682         schedule_work(&adapter->reset_task);
5683 }
5684
5685 static void e1000_reset_task(struct work_struct *work)
5686 {
5687         struct e1000_adapter *adapter;
5688         adapter = container_of(work, struct e1000_adapter, reset_task);
5689
5690         /* don't run the task if already down */
5691         if (test_bit(__E1000_DOWN, &adapter->state))
5692                 return;
5693
5694         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5695                 e1000e_dump(adapter);
5696                 e_err("Reset adapter unexpectedly\n");
5697         }
5698         e1000e_reinit_locked(adapter);
5699 }
5700
5701 /**
5702  * e1000_get_stats64 - Get System Network Statistics
5703  * @netdev: network interface device structure
5704  * @stats: rtnl_link_stats64 pointer
5705  *
5706  * Returns the address of the device statistics structure.
5707  **/
5708 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5709                                              struct rtnl_link_stats64 *stats)
5710 {
5711         struct e1000_adapter *adapter = netdev_priv(netdev);
5712
5713         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5714         spin_lock(&adapter->stats64_lock);
5715         e1000e_update_stats(adapter);
5716         /* Fill out the OS statistics structure */
5717         stats->rx_bytes = adapter->stats.gorc;
5718         stats->rx_packets = adapter->stats.gprc;
5719         stats->tx_bytes = adapter->stats.gotc;
5720         stats->tx_packets = adapter->stats.gptc;
5721         stats->multicast = adapter->stats.mprc;
5722         stats->collisions = adapter->stats.colc;
5723
5724         /* Rx Errors */
5725
5726         /* RLEC on some newer hardware can be incorrect so build
5727          * our own version based on RUC and ROC
5728          */
5729         stats->rx_errors = adapter->stats.rxerrc +
5730             adapter->stats.crcerrs + adapter->stats.algnerrc +
5731             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5732         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5733         stats->rx_crc_errors = adapter->stats.crcerrs;
5734         stats->rx_frame_errors = adapter->stats.algnerrc;
5735         stats->rx_missed_errors = adapter->stats.mpc;
5736
5737         /* Tx Errors */
5738         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5739         stats->tx_aborted_errors = adapter->stats.ecol;
5740         stats->tx_window_errors = adapter->stats.latecol;
5741         stats->tx_carrier_errors = adapter->stats.tncrs;
5742
5743         /* Tx Dropped needs to be maintained elsewhere */
5744
5745         spin_unlock(&adapter->stats64_lock);
5746         return stats;
5747 }
5748
5749 /**
5750  * e1000_change_mtu - Change the Maximum Transfer Unit
5751  * @netdev: network interface device structure
5752  * @new_mtu: new value for maximum frame size
5753  *
5754  * Returns 0 on success, negative on failure
5755  **/
5756 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5757 {
5758         struct e1000_adapter *adapter = netdev_priv(netdev);
5759         int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5760
5761         /* Jumbo frame support */
5762         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5763             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5764                 e_err("Jumbo Frames not supported.\n");
5765                 return -EINVAL;
5766         }
5767
5768         /* Supported frame sizes */
5769         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5770             (max_frame > adapter->max_hw_frame_size)) {
5771                 e_err("Unsupported MTU setting\n");
5772                 return -EINVAL;
5773         }
5774
5775         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5776         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5777             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5778             (new_mtu > ETH_DATA_LEN)) {
5779                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5780                 return -EINVAL;
5781         }
5782
5783         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5784                 usleep_range(1000, 2000);
5785         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5786         adapter->max_frame_size = max_frame;
5787         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5788         netdev->mtu = new_mtu;
5789
5790         pm_runtime_get_sync(netdev->dev.parent);
5791
5792         if (netif_running(netdev))
5793                 e1000e_down(adapter, true);
5794
5795         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5796          * means we reserve 2 more, this pushes us to allocate from the next
5797          * larger slab size.
5798          * i.e. RXBUFFER_2048 --> size-4096 slab
5799          * However with the new *_jumbo_rx* routines, jumbo receives will use
5800          * fragmented skbs
5801          */
5802
5803         if (max_frame <= 2048)
5804                 adapter->rx_buffer_len = 2048;
5805         else
5806                 adapter->rx_buffer_len = 4096;
5807
5808         /* adjust allocation if LPE protects us, and we aren't using SBP */
5809         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5810             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5811                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5812                     + ETH_FCS_LEN;
5813
5814         if (netif_running(netdev))
5815                 e1000e_up(adapter);
5816         else
5817                 e1000e_reset(adapter);
5818
5819         pm_runtime_put_sync(netdev->dev.parent);
5820
5821         clear_bit(__E1000_RESETTING, &adapter->state);
5822
5823         return 0;
5824 }
5825
5826 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5827                            int cmd)
5828 {
5829         struct e1000_adapter *adapter = netdev_priv(netdev);
5830         struct mii_ioctl_data *data = if_mii(ifr);
5831
5832         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5833                 return -EOPNOTSUPP;
5834
5835         switch (cmd) {
5836         case SIOCGMIIPHY:
5837                 data->phy_id = adapter->hw.phy.addr;
5838                 break;
5839         case SIOCGMIIREG:
5840                 e1000_phy_read_status(adapter);
5841
5842                 switch (data->reg_num & 0x1F) {
5843                 case MII_BMCR:
5844                         data->val_out = adapter->phy_regs.bmcr;
5845                         break;
5846                 case MII_BMSR:
5847                         data->val_out = adapter->phy_regs.bmsr;
5848                         break;
5849                 case MII_PHYSID1:
5850                         data->val_out = (adapter->hw.phy.id >> 16);
5851                         break;
5852                 case MII_PHYSID2:
5853                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5854                         break;
5855                 case MII_ADVERTISE:
5856                         data->val_out = adapter->phy_regs.advertise;
5857                         break;
5858                 case MII_LPA:
5859                         data->val_out = adapter->phy_regs.lpa;
5860                         break;
5861                 case MII_EXPANSION:
5862                         data->val_out = adapter->phy_regs.expansion;
5863                         break;
5864                 case MII_CTRL1000:
5865                         data->val_out = adapter->phy_regs.ctrl1000;
5866                         break;
5867                 case MII_STAT1000:
5868                         data->val_out = adapter->phy_regs.stat1000;
5869                         break;
5870                 case MII_ESTATUS:
5871                         data->val_out = adapter->phy_regs.estatus;
5872                         break;
5873                 default:
5874                         return -EIO;
5875                 }
5876                 break;
5877         case SIOCSMIIREG:
5878         default:
5879                 return -EOPNOTSUPP;
5880         }
5881         return 0;
5882 }
5883
5884 /**
5885  * e1000e_hwtstamp_ioctl - control hardware time stamping
5886  * @netdev: network interface device structure
5887  * @ifreq: interface request
5888  *
5889  * Outgoing time stamping can be enabled and disabled. Play nice and
5890  * disable it when requested, although it shouldn't cause any overhead
5891  * when no packet needs it. At most one packet in the queue may be
5892  * marked for time stamping, otherwise it would be impossible to tell
5893  * for sure to which packet the hardware time stamp belongs.
5894  *
5895  * Incoming time stamping has to be configured via the hardware filters.
5896  * Not all combinations are supported, in particular event type has to be
5897  * specified. Matching the kind of event packet is not supported, with the
5898  * exception of "all V2 events regardless of level 2 or 4".
5899  **/
5900 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5901 {
5902         struct e1000_adapter *adapter = netdev_priv(netdev);
5903         struct hwtstamp_config config;
5904         int ret_val;
5905
5906         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5907                 return -EFAULT;
5908
5909         ret_val = e1000e_config_hwtstamp(adapter, &config);
5910         if (ret_val)
5911                 return ret_val;
5912
5913         switch (config.rx_filter) {
5914         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5915         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5916         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5917         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5918         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5919         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5920                 /* With V2 type filters which specify a Sync or Delay Request,
5921                  * Path Delay Request/Response messages are also time stamped
5922                  * by hardware so notify the caller the requested packets plus
5923                  * some others are time stamped.
5924                  */
5925                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5926                 break;
5927         default:
5928                 break;
5929         }
5930
5931         return copy_to_user(ifr->ifr_data, &config,
5932                             sizeof(config)) ? -EFAULT : 0;
5933 }
5934
5935 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5936 {
5937         struct e1000_adapter *adapter = netdev_priv(netdev);
5938
5939         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5940                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5941 }
5942
5943 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5944 {
5945         switch (cmd) {
5946         case SIOCGMIIPHY:
5947         case SIOCGMIIREG:
5948         case SIOCSMIIREG:
5949                 return e1000_mii_ioctl(netdev, ifr, cmd);
5950         case SIOCSHWTSTAMP:
5951                 return e1000e_hwtstamp_set(netdev, ifr);
5952         case SIOCGHWTSTAMP:
5953                 return e1000e_hwtstamp_get(netdev, ifr);
5954         default:
5955                 return -EOPNOTSUPP;
5956         }
5957 }
5958
5959 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5960 {
5961         struct e1000_hw *hw = &adapter->hw;
5962         u32 i, mac_reg, wuc;
5963         u16 phy_reg, wuc_enable;
5964         int retval;
5965
5966         /* copy MAC RARs to PHY RARs */
5967         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5968
5969         retval = hw->phy.ops.acquire(hw);
5970         if (retval) {
5971                 e_err("Could not acquire PHY\n");
5972                 return retval;
5973         }
5974
5975         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5976         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5977         if (retval)
5978                 goto release;
5979
5980         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5981         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5982                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5983                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5984                                            (u16)(mac_reg & 0xFFFF));
5985                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5986                                            (u16)((mac_reg >> 16) & 0xFFFF));
5987         }
5988
5989         /* configure PHY Rx Control register */
5990         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5991         mac_reg = er32(RCTL);
5992         if (mac_reg & E1000_RCTL_UPE)
5993                 phy_reg |= BM_RCTL_UPE;
5994         if (mac_reg & E1000_RCTL_MPE)
5995                 phy_reg |= BM_RCTL_MPE;
5996         phy_reg &= ~(BM_RCTL_MO_MASK);
5997         if (mac_reg & E1000_RCTL_MO_3)
5998                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5999                             << BM_RCTL_MO_SHIFT);
6000         if (mac_reg & E1000_RCTL_BAM)
6001                 phy_reg |= BM_RCTL_BAM;
6002         if (mac_reg & E1000_RCTL_PMCF)
6003                 phy_reg |= BM_RCTL_PMCF;
6004         mac_reg = er32(CTRL);
6005         if (mac_reg & E1000_CTRL_RFCE)
6006                 phy_reg |= BM_RCTL_RFCE;
6007         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6008
6009         wuc = E1000_WUC_PME_EN;
6010         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6011                 wuc |= E1000_WUC_APME;
6012
6013         /* enable PHY wakeup in MAC register */
6014         ew32(WUFC, wufc);
6015         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6016                    E1000_WUC_PME_STATUS | wuc));
6017
6018         /* configure and enable PHY wakeup in PHY registers */
6019         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6020         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6021
6022         /* activate PHY wakeup */
6023         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6024         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6025         if (retval)
6026                 e_err("Could not set PHY Host Wakeup bit\n");
6027 release:
6028         hw->phy.ops.release(hw);
6029
6030         return retval;
6031 }
6032
6033 static void e1000e_flush_lpic(struct pci_dev *pdev)
6034 {
6035         struct net_device *netdev = pci_get_drvdata(pdev);
6036         struct e1000_adapter *adapter = netdev_priv(netdev);
6037         struct e1000_hw *hw = &adapter->hw;
6038         u32 ret_val;
6039
6040         pm_runtime_get_sync(netdev->dev.parent);
6041
6042         ret_val = hw->phy.ops.acquire(hw);
6043         if (ret_val)
6044                 goto fl_out;
6045
6046         pr_info("EEE TX LPI TIMER: %08X\n",
6047                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6048
6049         hw->phy.ops.release(hw);
6050
6051 fl_out:
6052         pm_runtime_put_sync(netdev->dev.parent);
6053 }
6054
6055 static int e1000e_pm_freeze(struct device *dev)
6056 {
6057         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6058         struct e1000_adapter *adapter = netdev_priv(netdev);
6059
6060         netif_device_detach(netdev);
6061
6062         if (netif_running(netdev)) {
6063                 int count = E1000_CHECK_RESET_COUNT;
6064
6065                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6066                         usleep_range(10000, 20000);
6067
6068                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6069
6070                 /* Quiesce the device without resetting the hardware */
6071                 e1000e_down(adapter, false);
6072                 e1000_free_irq(adapter);
6073         }
6074         e1000e_reset_interrupt_capability(adapter);
6075
6076         /* Allow time for pending master requests to run */
6077         e1000e_disable_pcie_master(&adapter->hw);
6078
6079         return 0;
6080 }
6081
6082 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6083 {
6084         struct net_device *netdev = pci_get_drvdata(pdev);
6085         struct e1000_adapter *adapter = netdev_priv(netdev);
6086         struct e1000_hw *hw = &adapter->hw;
6087         u32 ctrl, ctrl_ext, rctl, status;
6088         /* Runtime suspend should only enable wakeup for link changes */
6089         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6090         int retval = 0;
6091
6092         status = er32(STATUS);
6093         if (status & E1000_STATUS_LU)
6094                 wufc &= ~E1000_WUFC_LNKC;
6095
6096         if (wufc) {
6097                 e1000_setup_rctl(adapter);
6098                 e1000e_set_rx_mode(netdev);
6099
6100                 /* turn on all-multi mode if wake on multicast is enabled */
6101                 if (wufc & E1000_WUFC_MC) {
6102                         rctl = er32(RCTL);
6103                         rctl |= E1000_RCTL_MPE;
6104                         ew32(RCTL, rctl);
6105                 }
6106
6107                 ctrl = er32(CTRL);
6108                 ctrl |= E1000_CTRL_ADVD3WUC;
6109                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6110                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6111                 ew32(CTRL, ctrl);
6112
6113                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6114                     adapter->hw.phy.media_type ==
6115                     e1000_media_type_internal_serdes) {
6116                         /* keep the laser running in D3 */
6117                         ctrl_ext = er32(CTRL_EXT);
6118                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6119                         ew32(CTRL_EXT, ctrl_ext);
6120                 }
6121
6122                 if (!runtime)
6123                         e1000e_power_up_phy(adapter);
6124
6125                 if (adapter->flags & FLAG_IS_ICH)
6126                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6127
6128                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6129                         /* enable wakeup by the PHY */
6130                         retval = e1000_init_phy_wakeup(adapter, wufc);
6131                         if (retval)
6132                                 return retval;
6133                 } else {
6134                         /* enable wakeup by the MAC */
6135                         ew32(WUFC, wufc);
6136                         ew32(WUC, E1000_WUC_PME_EN);
6137                 }
6138         } else {
6139                 ew32(WUC, 0);
6140                 ew32(WUFC, 0);
6141
6142                 e1000_power_down_phy(adapter);
6143         }
6144
6145         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6146                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6147         } else if (hw->mac.type == e1000_pch_lpt) {
6148                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6149                         /* ULP does not support wake from unicast, multicast
6150                          * or broadcast.
6151                          */
6152                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6153
6154                 if (retval)
6155                         return retval;
6156         }
6157
6158
6159         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6160          * would have already happened in close and is redundant.
6161          */
6162         e1000e_release_hw_control(adapter);
6163
6164         pci_clear_master(pdev);
6165
6166         /* The pci-e switch on some quad port adapters will report a
6167          * correctable error when the MAC transitions from D0 to D3.  To
6168          * prevent this we need to mask off the correctable errors on the
6169          * downstream port of the pci-e switch.
6170          *
6171          * We don't have the associated upstream bridge while assigning
6172          * the PCI device into guest. For example, the KVM on power is
6173          * one of the cases.
6174          */
6175         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6176                 struct pci_dev *us_dev = pdev->bus->self;
6177                 u16 devctl;
6178
6179                 if (!us_dev)
6180                         return 0;
6181
6182                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6183                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6184                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6185
6186                 pci_save_state(pdev);
6187                 pci_prepare_to_sleep(pdev);
6188
6189                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6190         }
6191
6192         return 0;
6193 }
6194
6195 /**
6196  * e1000e_disable_aspm - Disable ASPM states
6197  * @pdev: pointer to PCI device struct
6198  * @state: bit-mask of ASPM states to disable
6199  *
6200  * Some devices *must* have certain ASPM states disabled per hardware errata.
6201  **/
6202 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6203 {
6204         struct pci_dev *parent = pdev->bus->self;
6205         u16 aspm_dis_mask = 0;
6206         u16 pdev_aspmc, parent_aspmc;
6207
6208         switch (state) {
6209         case PCIE_LINK_STATE_L0S:
6210         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6211                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6212                 /* fall-through - can't have L1 without L0s */
6213         case PCIE_LINK_STATE_L1:
6214                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6215                 break;
6216         default:
6217                 return;
6218         }
6219
6220         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6221         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6222
6223         if (parent) {
6224                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6225                                           &parent_aspmc);
6226                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6227         }
6228
6229         /* Nothing to do if the ASPM states to be disabled already are */
6230         if (!(pdev_aspmc & aspm_dis_mask) &&
6231             (!parent || !(parent_aspmc & aspm_dis_mask)))
6232                 return;
6233
6234         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6235                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6236                  "L0s" : "",
6237                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6238                  "L1" : "");
6239
6240 #ifdef CONFIG_PCIEASPM
6241         pci_disable_link_state_locked(pdev, state);
6242
6243         /* Double-check ASPM control.  If not disabled by the above, the
6244          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6245          * not enabled); override by writing PCI config space directly.
6246          */
6247         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6248         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6249
6250         if (!(aspm_dis_mask & pdev_aspmc))
6251                 return;
6252 #endif
6253
6254         /* Both device and parent should have the same ASPM setting.
6255          * Disable ASPM in downstream component first and then upstream.
6256          */
6257         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6258
6259         if (parent)
6260                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6261                                            aspm_dis_mask);
6262 }
6263
6264 #ifdef CONFIG_PM
6265 static int __e1000_resume(struct pci_dev *pdev)
6266 {
6267         struct net_device *netdev = pci_get_drvdata(pdev);
6268         struct e1000_adapter *adapter = netdev_priv(netdev);
6269         struct e1000_hw *hw = &adapter->hw;
6270         u16 aspm_disable_flag = 0;
6271
6272         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6273                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6274         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6275                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6276         if (aspm_disable_flag)
6277                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6278
6279         pci_set_master(pdev);
6280
6281         if (hw->mac.type >= e1000_pch2lan)
6282                 e1000_resume_workarounds_pchlan(&adapter->hw);
6283
6284         e1000e_power_up_phy(adapter);
6285
6286         /* report the system wakeup cause from S3/S4 */
6287         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6288                 u16 phy_data;
6289
6290                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6291                 if (phy_data) {
6292                         e_info("PHY Wakeup cause - %s\n",
6293                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6294                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6295                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6296                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6297                                phy_data & E1000_WUS_LNKC ?
6298                                "Link Status Change" : "other");
6299                 }
6300                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6301         } else {
6302                 u32 wus = er32(WUS);
6303
6304                 if (wus) {
6305                         e_info("MAC Wakeup cause - %s\n",
6306                                wus & E1000_WUS_EX ? "Unicast Packet" :
6307                                wus & E1000_WUS_MC ? "Multicast Packet" :
6308                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6309                                wus & E1000_WUS_MAG ? "Magic Packet" :
6310                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6311                                "other");
6312                 }
6313                 ew32(WUS, ~0);
6314         }
6315
6316         e1000e_reset(adapter);
6317
6318         e1000_init_manageability_pt(adapter);
6319
6320         /* If the controller has AMT, do not set DRV_LOAD until the interface
6321          * is up.  For all other cases, let the f/w know that the h/w is now
6322          * under the control of the driver.
6323          */
6324         if (!(adapter->flags & FLAG_HAS_AMT))
6325                 e1000e_get_hw_control(adapter);
6326
6327         return 0;
6328 }
6329
6330 #ifdef CONFIG_PM_SLEEP
6331 static int e1000e_pm_thaw(struct device *dev)
6332 {
6333         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6334         struct e1000_adapter *adapter = netdev_priv(netdev);
6335
6336         e1000e_set_interrupt_capability(adapter);
6337         if (netif_running(netdev)) {
6338                 u32 err = e1000_request_irq(adapter);
6339
6340                 if (err)
6341                         return err;
6342
6343                 e1000e_up(adapter);
6344         }
6345
6346         netif_device_attach(netdev);
6347
6348         return 0;
6349 }
6350
6351 static int e1000e_pm_suspend(struct device *dev)
6352 {
6353         struct pci_dev *pdev = to_pci_dev(dev);
6354
6355         e1000e_flush_lpic(pdev);
6356
6357         e1000e_pm_freeze(dev);
6358
6359         return __e1000_shutdown(pdev, false);
6360 }
6361
6362 static int e1000e_pm_resume(struct device *dev)
6363 {
6364         struct pci_dev *pdev = to_pci_dev(dev);
6365         int rc;
6366
6367         rc = __e1000_resume(pdev);
6368         if (rc)
6369                 return rc;
6370
6371         return e1000e_pm_thaw(dev);
6372 }
6373 #endif /* CONFIG_PM_SLEEP */
6374
6375 #ifdef CONFIG_PM_RUNTIME
6376 static int e1000e_pm_runtime_idle(struct device *dev)
6377 {
6378         struct pci_dev *pdev = to_pci_dev(dev);
6379         struct net_device *netdev = pci_get_drvdata(pdev);
6380         struct e1000_adapter *adapter = netdev_priv(netdev);
6381         u16 eee_lp;
6382
6383         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6384
6385         if (!e1000e_has_link(adapter)) {
6386                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6387                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6388         }
6389
6390         return -EBUSY;
6391 }
6392
6393 static int e1000e_pm_runtime_resume(struct device *dev)
6394 {
6395         struct pci_dev *pdev = to_pci_dev(dev);
6396         struct net_device *netdev = pci_get_drvdata(pdev);
6397         struct e1000_adapter *adapter = netdev_priv(netdev);
6398         int rc;
6399
6400         rc = __e1000_resume(pdev);
6401         if (rc)
6402                 return rc;
6403
6404         if (netdev->flags & IFF_UP)
6405                 rc = e1000e_up(adapter);
6406
6407         return rc;
6408 }
6409
6410 static int e1000e_pm_runtime_suspend(struct device *dev)
6411 {
6412         struct pci_dev *pdev = to_pci_dev(dev);
6413         struct net_device *netdev = pci_get_drvdata(pdev);
6414         struct e1000_adapter *adapter = netdev_priv(netdev);
6415
6416         if (netdev->flags & IFF_UP) {
6417                 int count = E1000_CHECK_RESET_COUNT;
6418
6419                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6420                         usleep_range(10000, 20000);
6421
6422                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6423
6424                 /* Down the device without resetting the hardware */
6425                 e1000e_down(adapter, false);
6426         }
6427
6428         if (__e1000_shutdown(pdev, true)) {
6429                 e1000e_pm_runtime_resume(dev);
6430                 return -EBUSY;
6431         }
6432
6433         return 0;
6434 }
6435 #endif /* CONFIG_PM_RUNTIME */
6436 #endif /* CONFIG_PM */
6437
6438 static void e1000_shutdown(struct pci_dev *pdev)
6439 {
6440         e1000e_flush_lpic(pdev);
6441
6442         e1000e_pm_freeze(&pdev->dev);
6443
6444         __e1000_shutdown(pdev, false);
6445 }
6446
6447 #ifdef CONFIG_NET_POLL_CONTROLLER
6448
6449 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6450 {
6451         struct net_device *netdev = data;
6452         struct e1000_adapter *adapter = netdev_priv(netdev);
6453
6454         if (adapter->msix_entries) {
6455                 int vector, msix_irq;
6456
6457                 vector = 0;
6458                 msix_irq = adapter->msix_entries[vector].vector;
6459                 disable_irq(msix_irq);
6460                 e1000_intr_msix_rx(msix_irq, netdev);
6461                 enable_irq(msix_irq);
6462
6463                 vector++;
6464                 msix_irq = adapter->msix_entries[vector].vector;
6465                 disable_irq(msix_irq);
6466                 e1000_intr_msix_tx(msix_irq, netdev);
6467                 enable_irq(msix_irq);
6468
6469                 vector++;
6470                 msix_irq = adapter->msix_entries[vector].vector;
6471                 disable_irq(msix_irq);
6472                 e1000_msix_other(msix_irq, netdev);
6473                 enable_irq(msix_irq);
6474         }
6475
6476         return IRQ_HANDLED;
6477 }
6478
6479 /**
6480  * e1000_netpoll
6481  * @netdev: network interface device structure
6482  *
6483  * Polling 'interrupt' - used by things like netconsole to send skbs
6484  * without having to re-enable interrupts. It's not called while
6485  * the interrupt routine is executing.
6486  */
6487 static void e1000_netpoll(struct net_device *netdev)
6488 {
6489         struct e1000_adapter *adapter = netdev_priv(netdev);
6490
6491         switch (adapter->int_mode) {
6492         case E1000E_INT_MODE_MSIX:
6493                 e1000_intr_msix(adapter->pdev->irq, netdev);
6494                 break;
6495         case E1000E_INT_MODE_MSI:
6496                 disable_irq(adapter->pdev->irq);
6497                 e1000_intr_msi(adapter->pdev->irq, netdev);
6498                 enable_irq(adapter->pdev->irq);
6499                 break;
6500         default:                /* E1000E_INT_MODE_LEGACY */
6501                 disable_irq(adapter->pdev->irq);
6502                 e1000_intr(adapter->pdev->irq, netdev);
6503                 enable_irq(adapter->pdev->irq);
6504                 break;
6505         }
6506 }
6507 #endif
6508
6509 /**
6510  * e1000_io_error_detected - called when PCI error is detected
6511  * @pdev: Pointer to PCI device
6512  * @state: The current pci connection state
6513  *
6514  * This function is called after a PCI bus error affecting
6515  * this device has been detected.
6516  */
6517 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6518                                                 pci_channel_state_t state)
6519 {
6520         struct net_device *netdev = pci_get_drvdata(pdev);
6521         struct e1000_adapter *adapter = netdev_priv(netdev);
6522
6523         netif_device_detach(netdev);
6524
6525         if (state == pci_channel_io_perm_failure)
6526                 return PCI_ERS_RESULT_DISCONNECT;
6527
6528         if (netif_running(netdev))
6529                 e1000e_down(adapter, true);
6530         pci_disable_device(pdev);
6531
6532         /* Request a slot slot reset. */
6533         return PCI_ERS_RESULT_NEED_RESET;
6534 }
6535
6536 /**
6537  * e1000_io_slot_reset - called after the pci bus has been reset.
6538  * @pdev: Pointer to PCI device
6539  *
6540  * Restart the card from scratch, as if from a cold-boot. Implementation
6541  * resembles the first-half of the e1000e_pm_resume routine.
6542  */
6543 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6544 {
6545         struct net_device *netdev = pci_get_drvdata(pdev);
6546         struct e1000_adapter *adapter = netdev_priv(netdev);
6547         struct e1000_hw *hw = &adapter->hw;
6548         u16 aspm_disable_flag = 0;
6549         int err;
6550         pci_ers_result_t result;
6551
6552         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6553                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6554         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6555                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6556         if (aspm_disable_flag)
6557                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6558
6559         err = pci_enable_device_mem(pdev);
6560         if (err) {
6561                 dev_err(&pdev->dev,
6562                         "Cannot re-enable PCI device after reset.\n");
6563                 result = PCI_ERS_RESULT_DISCONNECT;
6564         } else {
6565                 pdev->state_saved = true;
6566                 pci_restore_state(pdev);
6567                 pci_set_master(pdev);
6568
6569                 pci_enable_wake(pdev, PCI_D3hot, 0);
6570                 pci_enable_wake(pdev, PCI_D3cold, 0);
6571
6572                 e1000e_reset(adapter);
6573                 ew32(WUS, ~0);
6574                 result = PCI_ERS_RESULT_RECOVERED;
6575         }
6576
6577         pci_cleanup_aer_uncorrect_error_status(pdev);
6578
6579         return result;
6580 }
6581
6582 /**
6583  * e1000_io_resume - called when traffic can start flowing again.
6584  * @pdev: Pointer to PCI device
6585  *
6586  * This callback is called when the error recovery driver tells us that
6587  * its OK to resume normal operation. Implementation resembles the
6588  * second-half of the e1000e_pm_resume routine.
6589  */
6590 static void e1000_io_resume(struct pci_dev *pdev)
6591 {
6592         struct net_device *netdev = pci_get_drvdata(pdev);
6593         struct e1000_adapter *adapter = netdev_priv(netdev);
6594
6595         e1000_init_manageability_pt(adapter);
6596
6597         if (netif_running(netdev)) {
6598                 if (e1000e_up(adapter)) {
6599                         dev_err(&pdev->dev,
6600                                 "can't bring device back up after reset\n");
6601                         return;
6602                 }
6603         }
6604
6605         netif_device_attach(netdev);
6606
6607         /* If the controller has AMT, do not set DRV_LOAD until the interface
6608          * is up.  For all other cases, let the f/w know that the h/w is now
6609          * under the control of the driver.
6610          */
6611         if (!(adapter->flags & FLAG_HAS_AMT))
6612                 e1000e_get_hw_control(adapter);
6613 }
6614
6615 static void e1000_print_device_info(struct e1000_adapter *adapter)
6616 {
6617         struct e1000_hw *hw = &adapter->hw;
6618         struct net_device *netdev = adapter->netdev;
6619         u32 ret_val;
6620         u8 pba_str[E1000_PBANUM_LENGTH];
6621
6622         /* print bus type/speed/width info */
6623         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6624                /* bus width */
6625                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6626                 "Width x1"),
6627                /* MAC address */
6628                netdev->dev_addr);
6629         e_info("Intel(R) PRO/%s Network Connection\n",
6630                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6631         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6632                                                 E1000_PBANUM_LENGTH);
6633         if (ret_val)
6634                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6635         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6636                hw->mac.type, hw->phy.type, pba_str);
6637 }
6638
6639 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6640 {
6641         struct e1000_hw *hw = &adapter->hw;
6642         int ret_val;
6643         u16 buf = 0;
6644
6645         if (hw->mac.type != e1000_82573)
6646                 return;
6647
6648         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6649         le16_to_cpus(&buf);
6650         if (!ret_val && (!(buf & (1 << 0)))) {
6651                 /* Deep Smart Power Down (DSPD) */
6652                 dev_warn(&adapter->pdev->dev,
6653                          "Warning: detected DSPD enabled in EEPROM\n");
6654         }
6655 }
6656
6657 static int e1000_set_features(struct net_device *netdev,
6658                               netdev_features_t features)
6659 {
6660         struct e1000_adapter *adapter = netdev_priv(netdev);
6661         netdev_features_t changed = features ^ netdev->features;
6662
6663         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6664                 adapter->flags |= FLAG_TSO_FORCE;
6665
6666         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6667                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6668                          NETIF_F_RXALL)))
6669                 return 0;
6670
6671         if (changed & NETIF_F_RXFCS) {
6672                 if (features & NETIF_F_RXFCS) {
6673                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6674                 } else {
6675                         /* We need to take it back to defaults, which might mean
6676                          * stripping is still disabled at the adapter level.
6677                          */
6678                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6679                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6680                         else
6681                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6682                 }
6683         }
6684
6685         netdev->features = features;
6686
6687         if (netif_running(netdev))
6688                 e1000e_reinit_locked(adapter);
6689         else
6690                 e1000e_reset(adapter);
6691
6692         return 0;
6693 }
6694
6695 static const struct net_device_ops e1000e_netdev_ops = {
6696         .ndo_open               = e1000_open,
6697         .ndo_stop               = e1000_close,
6698         .ndo_start_xmit         = e1000_xmit_frame,
6699         .ndo_get_stats64        = e1000e_get_stats64,
6700         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6701         .ndo_set_mac_address    = e1000_set_mac,
6702         .ndo_change_mtu         = e1000_change_mtu,
6703         .ndo_do_ioctl           = e1000_ioctl,
6704         .ndo_tx_timeout         = e1000_tx_timeout,
6705         .ndo_validate_addr      = eth_validate_addr,
6706
6707         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6708         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6709 #ifdef CONFIG_NET_POLL_CONTROLLER
6710         .ndo_poll_controller    = e1000_netpoll,
6711 #endif
6712         .ndo_set_features = e1000_set_features,
6713 };
6714
6715 /**
6716  * e1000_probe - Device Initialization Routine
6717  * @pdev: PCI device information struct
6718  * @ent: entry in e1000_pci_tbl
6719  *
6720  * Returns 0 on success, negative on failure
6721  *
6722  * e1000_probe initializes an adapter identified by a pci_dev structure.
6723  * The OS initialization, configuring of the adapter private structure,
6724  * and a hardware reset occur.
6725  **/
6726 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6727 {
6728         struct net_device *netdev;
6729         struct e1000_adapter *adapter;
6730         struct e1000_hw *hw;
6731         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6732         resource_size_t mmio_start, mmio_len;
6733         resource_size_t flash_start, flash_len;
6734         static int cards_found;
6735         u16 aspm_disable_flag = 0;
6736         int bars, i, err, pci_using_dac;
6737         u16 eeprom_data = 0;
6738         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6739         s32 rval = 0;
6740
6741         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6742                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6743         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6744                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6745         if (aspm_disable_flag)
6746                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6747
6748         err = pci_enable_device_mem(pdev);
6749         if (err)
6750                 return err;
6751
6752         pci_using_dac = 0;
6753         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6754         if (!err) {
6755                 pci_using_dac = 1;
6756         } else {
6757                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6758                 if (err) {
6759                         dev_err(&pdev->dev,
6760                                 "No usable DMA configuration, aborting\n");
6761                         goto err_dma;
6762                 }
6763         }
6764
6765         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6766         err = pci_request_selected_regions_exclusive(pdev, bars,
6767                                                      e1000e_driver_name);
6768         if (err)
6769                 goto err_pci_reg;
6770
6771         /* AER (Advanced Error Reporting) hooks */
6772         pci_enable_pcie_error_reporting(pdev);
6773
6774         pci_set_master(pdev);
6775         /* PCI config space info */
6776         err = pci_save_state(pdev);
6777         if (err)
6778                 goto err_alloc_etherdev;
6779
6780         err = -ENOMEM;
6781         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6782         if (!netdev)
6783                 goto err_alloc_etherdev;
6784
6785         SET_NETDEV_DEV(netdev, &pdev->dev);
6786
6787         netdev->irq = pdev->irq;
6788
6789         pci_set_drvdata(pdev, netdev);
6790         adapter = netdev_priv(netdev);
6791         hw = &adapter->hw;
6792         adapter->netdev = netdev;
6793         adapter->pdev = pdev;
6794         adapter->ei = ei;
6795         adapter->pba = ei->pba;
6796         adapter->flags = ei->flags;
6797         adapter->flags2 = ei->flags2;
6798         adapter->hw.adapter = adapter;
6799         adapter->hw.mac.type = ei->mac;
6800         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6801         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6802
6803         mmio_start = pci_resource_start(pdev, 0);
6804         mmio_len = pci_resource_len(pdev, 0);
6805
6806         err = -EIO;
6807         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6808         if (!adapter->hw.hw_addr)
6809                 goto err_ioremap;
6810
6811         if ((adapter->flags & FLAG_HAS_FLASH) &&
6812             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6813                 flash_start = pci_resource_start(pdev, 1);
6814                 flash_len = pci_resource_len(pdev, 1);
6815                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6816                 if (!adapter->hw.flash_address)
6817                         goto err_flashmap;
6818         }
6819
6820         /* Set default EEE advertisement */
6821         if (adapter->flags2 & FLAG2_HAS_EEE)
6822                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6823
6824         /* construct the net_device struct */
6825         netdev->netdev_ops = &e1000e_netdev_ops;
6826         e1000e_set_ethtool_ops(netdev);
6827         netdev->watchdog_timeo = 5 * HZ;
6828         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6829         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6830
6831         netdev->mem_start = mmio_start;
6832         netdev->mem_end = mmio_start + mmio_len;
6833
6834         adapter->bd_number = cards_found++;
6835
6836         e1000e_check_options(adapter);
6837
6838         /* setup adapter struct */
6839         err = e1000_sw_init(adapter);
6840         if (err)
6841                 goto err_sw_init;
6842
6843         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6844         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6845         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6846
6847         err = ei->get_variants(adapter);
6848         if (err)
6849                 goto err_hw_init;
6850
6851         if ((adapter->flags & FLAG_IS_ICH) &&
6852             (adapter->flags & FLAG_READ_ONLY_NVM))
6853                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6854
6855         hw->mac.ops.get_bus_info(&adapter->hw);
6856
6857         adapter->hw.phy.autoneg_wait_to_complete = 0;
6858
6859         /* Copper options */
6860         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6861                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6862                 adapter->hw.phy.disable_polarity_correction = 0;
6863                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6864         }
6865
6866         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6867                 dev_info(&pdev->dev,
6868                          "PHY reset is blocked due to SOL/IDER session.\n");
6869
6870         /* Set initial default active device features */
6871         netdev->features = (NETIF_F_SG |
6872                             NETIF_F_HW_VLAN_CTAG_RX |
6873                             NETIF_F_HW_VLAN_CTAG_TX |
6874                             NETIF_F_TSO |
6875                             NETIF_F_TSO6 |
6876                             NETIF_F_RXHASH |
6877                             NETIF_F_RXCSUM |
6878                             NETIF_F_HW_CSUM);
6879
6880         /* Set user-changeable features (subset of all device features) */
6881         netdev->hw_features = netdev->features;
6882         netdev->hw_features |= NETIF_F_RXFCS;
6883         netdev->priv_flags |= IFF_SUPP_NOFCS;
6884         netdev->hw_features |= NETIF_F_RXALL;
6885
6886         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6887                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6888
6889         netdev->vlan_features |= (NETIF_F_SG |
6890                                   NETIF_F_TSO |
6891                                   NETIF_F_TSO6 |
6892                                   NETIF_F_HW_CSUM);
6893
6894         netdev->priv_flags |= IFF_UNICAST_FLT;
6895
6896         if (pci_using_dac) {
6897                 netdev->features |= NETIF_F_HIGHDMA;
6898                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6899         }
6900
6901         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6902                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6903
6904         /* before reading the NVM, reset the controller to
6905          * put the device in a known good starting state
6906          */
6907         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6908
6909         /* systems with ASPM and others may see the checksum fail on the first
6910          * attempt. Let's give it a few tries
6911          */
6912         for (i = 0;; i++) {
6913                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6914                         break;
6915                 if (i == 2) {
6916                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6917                         err = -EIO;
6918                         goto err_eeprom;
6919                 }
6920         }
6921
6922         e1000_eeprom_checks(adapter);
6923
6924         /* copy the MAC address */
6925         if (e1000e_read_mac_addr(&adapter->hw))
6926                 dev_err(&pdev->dev,
6927                         "NVM Read Error while reading MAC address\n");
6928
6929         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6930
6931         if (!is_valid_ether_addr(netdev->dev_addr)) {
6932                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6933                         netdev->dev_addr);
6934                 err = -EIO;
6935                 goto err_eeprom;
6936         }
6937
6938         init_timer(&adapter->watchdog_timer);
6939         adapter->watchdog_timer.function = e1000_watchdog;
6940         adapter->watchdog_timer.data = (unsigned long)adapter;
6941
6942         init_timer(&adapter->phy_info_timer);
6943         adapter->phy_info_timer.function = e1000_update_phy_info;
6944         adapter->phy_info_timer.data = (unsigned long)adapter;
6945
6946         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6947         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6948         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6949         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6950         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6951
6952         /* Initialize link parameters. User can change them with ethtool */
6953         adapter->hw.mac.autoneg = 1;
6954         adapter->fc_autoneg = true;
6955         adapter->hw.fc.requested_mode = e1000_fc_default;
6956         adapter->hw.fc.current_mode = e1000_fc_default;
6957         adapter->hw.phy.autoneg_advertised = 0x2f;
6958
6959         /* Initial Wake on LAN setting - If APM wake is enabled in
6960          * the EEPROM, enable the ACPI Magic Packet filter
6961          */
6962         if (adapter->flags & FLAG_APME_IN_WUC) {
6963                 /* APME bit in EEPROM is mapped to WUC.APME */
6964                 eeprom_data = er32(WUC);
6965                 eeprom_apme_mask = E1000_WUC_APME;
6966                 if ((hw->mac.type > e1000_ich10lan) &&
6967                     (eeprom_data & E1000_WUC_PHY_WAKE))
6968                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6969         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6970                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6971                     (adapter->hw.bus.func == 1))
6972                         rval = e1000_read_nvm(&adapter->hw,
6973                                               NVM_INIT_CONTROL3_PORT_B,
6974                                               1, &eeprom_data);
6975                 else
6976                         rval = e1000_read_nvm(&adapter->hw,
6977                                               NVM_INIT_CONTROL3_PORT_A,
6978                                               1, &eeprom_data);
6979         }
6980
6981         /* fetch WoL from EEPROM */
6982         if (rval)
6983                 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
6984         else if (eeprom_data & eeprom_apme_mask)
6985                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6986
6987         /* now that we have the eeprom settings, apply the special cases
6988          * where the eeprom may be wrong or the board simply won't support
6989          * wake on lan on a particular port
6990          */
6991         if (!(adapter->flags & FLAG_HAS_WOL))
6992                 adapter->eeprom_wol = 0;
6993
6994         /* initialize the wol settings based on the eeprom settings */
6995         adapter->wol = adapter->eeprom_wol;
6996
6997         /* make sure adapter isn't asleep if manageability is enabled */
6998         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6999             (hw->mac.ops.check_mng_mode(hw)))
7000                 device_wakeup_enable(&pdev->dev);
7001
7002         /* save off EEPROM version number */
7003         rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7004
7005         if (rval) {
7006                 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7007                 adapter->eeprom_vers = 0;
7008         }
7009
7010         /* reset the hardware with the new settings */
7011         e1000e_reset(adapter);
7012
7013         /* If the controller has AMT, do not set DRV_LOAD until the interface
7014          * is up.  For all other cases, let the f/w know that the h/w is now
7015          * under the control of the driver.
7016          */
7017         if (!(adapter->flags & FLAG_HAS_AMT))
7018                 e1000e_get_hw_control(adapter);
7019
7020         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7021         err = register_netdev(netdev);
7022         if (err)
7023                 goto err_register;
7024
7025         /* carrier off reporting is important to ethtool even BEFORE open */
7026         netif_carrier_off(netdev);
7027
7028         /* init PTP hardware clock */
7029         e1000e_ptp_init(adapter);
7030
7031         e1000_print_device_info(adapter);
7032
7033         if (pci_dev_run_wake(pdev))
7034                 pm_runtime_put_noidle(&pdev->dev);
7035
7036         return 0;
7037
7038 err_register:
7039         if (!(adapter->flags & FLAG_HAS_AMT))
7040                 e1000e_release_hw_control(adapter);
7041 err_eeprom:
7042         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7043                 e1000_phy_hw_reset(&adapter->hw);
7044 err_hw_init:
7045         kfree(adapter->tx_ring);
7046         kfree(adapter->rx_ring);
7047 err_sw_init:
7048         if (adapter->hw.flash_address)
7049                 iounmap(adapter->hw.flash_address);
7050         e1000e_reset_interrupt_capability(adapter);
7051 err_flashmap:
7052         iounmap(adapter->hw.hw_addr);
7053 err_ioremap:
7054         free_netdev(netdev);
7055 err_alloc_etherdev:
7056         pci_release_selected_regions(pdev,
7057                                      pci_select_bars(pdev, IORESOURCE_MEM));
7058 err_pci_reg:
7059 err_dma:
7060         pci_disable_device(pdev);
7061         return err;
7062 }
7063
7064 /**
7065  * e1000_remove - Device Removal Routine
7066  * @pdev: PCI device information struct
7067  *
7068  * e1000_remove is called by the PCI subsystem to alert the driver
7069  * that it should release a PCI device.  The could be caused by a
7070  * Hot-Plug event, or because the driver is going to be removed from
7071  * memory.
7072  **/
7073 static void e1000_remove(struct pci_dev *pdev)
7074 {
7075         struct net_device *netdev = pci_get_drvdata(pdev);
7076         struct e1000_adapter *adapter = netdev_priv(netdev);
7077         bool down = test_bit(__E1000_DOWN, &adapter->state);
7078
7079         e1000e_ptp_remove(adapter);
7080
7081         /* The timers may be rescheduled, so explicitly disable them
7082          * from being rescheduled.
7083          */
7084         if (!down)
7085                 set_bit(__E1000_DOWN, &adapter->state);
7086         del_timer_sync(&adapter->watchdog_timer);
7087         del_timer_sync(&adapter->phy_info_timer);
7088
7089         cancel_work_sync(&adapter->reset_task);
7090         cancel_work_sync(&adapter->watchdog_task);
7091         cancel_work_sync(&adapter->downshift_task);
7092         cancel_work_sync(&adapter->update_phy_task);
7093         cancel_work_sync(&adapter->print_hang_task);
7094
7095         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7096                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7097                 if (adapter->tx_hwtstamp_skb) {
7098                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7099                         adapter->tx_hwtstamp_skb = NULL;
7100                 }
7101         }
7102
7103         /* Don't lie to e1000_close() down the road. */
7104         if (!down)
7105                 clear_bit(__E1000_DOWN, &adapter->state);
7106         unregister_netdev(netdev);
7107
7108         if (pci_dev_run_wake(pdev))
7109                 pm_runtime_get_noresume(&pdev->dev);
7110
7111         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7112          * would have already happened in close and is redundant.
7113          */
7114         e1000e_release_hw_control(adapter);
7115
7116         e1000e_reset_interrupt_capability(adapter);
7117         kfree(adapter->tx_ring);
7118         kfree(adapter->rx_ring);
7119
7120         iounmap(adapter->hw.hw_addr);
7121         if (adapter->hw.flash_address)
7122                 iounmap(adapter->hw.flash_address);
7123         pci_release_selected_regions(pdev,
7124                                      pci_select_bars(pdev, IORESOURCE_MEM));
7125
7126         free_netdev(netdev);
7127
7128         /* AER disable */
7129         pci_disable_pcie_error_reporting(pdev);
7130
7131         pci_disable_device(pdev);
7132 }
7133
7134 /* PCI Error Recovery (ERS) */
7135 static const struct pci_error_handlers e1000_err_handler = {
7136         .error_detected = e1000_io_error_detected,
7137         .slot_reset = e1000_io_slot_reset,
7138         .resume = e1000_io_resume,
7139 };
7140
7141 static const struct pci_device_id e1000_pci_tbl[] = {
7142         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7143         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7146           board_82571 },
7147         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7150         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7151         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7152
7153         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7154         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7155         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7156         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7157
7158         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7159         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7160         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7161
7162         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7163         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7164         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7165
7166         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7167           board_80003es2lan },
7168         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7169           board_80003es2lan },
7170         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7171           board_80003es2lan },
7172         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7173           board_80003es2lan },
7174
7175         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7176         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7177         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7178         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7179         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7180         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7181         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7182         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7183
7184         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7185         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7186         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7187         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7188         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7189         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7190         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7191         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7192         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7193
7194         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7195         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7196         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7197
7198         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7199         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7200         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7201
7202         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7203         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7204         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7205         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7206
7207         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7208         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7209
7210         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7211         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7212         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7213         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7214         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7215         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7216         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7217         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7218
7219         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7220 };
7221 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7222
7223 static const struct dev_pm_ops e1000_pm_ops = {
7224 #ifdef CONFIG_PM_SLEEP
7225         .suspend        = e1000e_pm_suspend,
7226         .resume         = e1000e_pm_resume,
7227         .freeze         = e1000e_pm_freeze,
7228         .thaw           = e1000e_pm_thaw,
7229         .poweroff       = e1000e_pm_suspend,
7230         .restore        = e1000e_pm_resume,
7231 #endif
7232         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7233                            e1000e_pm_runtime_idle)
7234 };
7235
7236 /* PCI Device API Driver */
7237 static struct pci_driver e1000_driver = {
7238         .name     = e1000e_driver_name,
7239         .id_table = e1000_pci_tbl,
7240         .probe    = e1000_probe,
7241         .remove   = e1000_remove,
7242         .driver   = {
7243                 .pm = &e1000_pm_ops,
7244         },
7245         .shutdown = e1000_shutdown,
7246         .err_handler = &e1000_err_handler
7247 };
7248
7249 /**
7250  * e1000_init_module - Driver Registration Routine
7251  *
7252  * e1000_init_module is the first routine called when the driver is
7253  * loaded. All it does is register with the PCI subsystem.
7254  **/
7255 static int __init e1000_init_module(void)
7256 {
7257         int ret;
7258
7259         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7260                 e1000e_driver_version);
7261         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7262         ret = pci_register_driver(&e1000_driver);
7263
7264         return ret;
7265 }
7266 module_init(e1000_init_module);
7267
7268 /**
7269  * e1000_exit_module - Driver Exit Cleanup Routine
7270  *
7271  * e1000_exit_module is called just before the driver is removed
7272  * from memory.
7273  **/
7274 static void __exit e1000_exit_module(void)
7275 {
7276         pci_unregister_driver(&e1000_driver);
7277 }
7278 module_exit(e1000_exit_module);
7279
7280 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7281 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7282 MODULE_LICENSE("GPL");
7283 MODULE_VERSION(DRV_VERSION);
7284
7285 /* netdev.c */