Merge branch 'mlx5-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mellanox...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13         char stat_string[ETH_GSTRING_LEN];
14         int type;
15         int sizeof_stat;
16         int stat_offset;
17 };
18
19 #define E1000_STAT(m)           E1000_STATS, \
20                                 sizeof(((struct e1000_adapter *)0)->m), \
21                                 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
23                                 sizeof(((struct net_device *)0)->m), \
24                                 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27         { "rx_packets", E1000_STAT(stats.gprc) },
28         { "tx_packets", E1000_STAT(stats.gptc) },
29         { "rx_bytes", E1000_STAT(stats.gorcl) },
30         { "tx_bytes", E1000_STAT(stats.gotcl) },
31         { "rx_broadcast", E1000_STAT(stats.bprc) },
32         { "tx_broadcast", E1000_STAT(stats.bptc) },
33         { "rx_multicast", E1000_STAT(stats.mprc) },
34         { "tx_multicast", E1000_STAT(stats.mptc) },
35         { "rx_errors", E1000_STAT(stats.rxerrc) },
36         { "tx_errors", E1000_STAT(stats.txerrc) },
37         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38         { "multicast", E1000_STAT(stats.mprc) },
39         { "collisions", E1000_STAT(stats.colc) },
40         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45         { "rx_missed_errors", E1000_STAT(stats.mpc) },
46         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50         { "tx_window_errors", E1000_STAT(stats.latecol) },
51         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52         { "tx_deferred_ok", E1000_STAT(stats.dc) },
53         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56         { "tx_restart_queue", E1000_STAT(restart_queue) },
57         { "rx_long_length_errors", E1000_STAT(stats.roc) },
58         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70         { "tx_smbus", E1000_STAT(stats.mgptc) },
71         { "rx_smbus", E1000_STAT(stats.mgprc) },
72         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79         "Register test  (offline)", "Eeprom test    (offline)",
80         "Interrupt test (offline)", "Loopback test  (offline)",
81         "Link test   (on/offline)"
82 };
83
84 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
85
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87                                     struct ethtool_link_ksettings *cmd)
88 {
89         struct e1000_adapter *adapter = netdev_priv(netdev);
90         struct e1000_hw *hw = &adapter->hw;
91         u32 supported, advertising;
92
93         if (hw->media_type == e1000_media_type_copper) {
94                 supported = (SUPPORTED_10baseT_Half |
95                              SUPPORTED_10baseT_Full |
96                              SUPPORTED_100baseT_Half |
97                              SUPPORTED_100baseT_Full |
98                              SUPPORTED_1000baseT_Full|
99                              SUPPORTED_Autoneg |
100                              SUPPORTED_TP);
101                 advertising = ADVERTISED_TP;
102
103                 if (hw->autoneg == 1) {
104                         advertising |= ADVERTISED_Autoneg;
105                         /* the e1000 autoneg seems to match ethtool nicely */
106                         advertising |= hw->autoneg_advertised;
107                 }
108
109                 cmd->base.port = PORT_TP;
110                 cmd->base.phy_address = hw->phy_addr;
111         } else {
112                 supported   = (SUPPORTED_1000baseT_Full |
113                                SUPPORTED_FIBRE |
114                                SUPPORTED_Autoneg);
115
116                 advertising = (ADVERTISED_1000baseT_Full |
117                                ADVERTISED_FIBRE |
118                                ADVERTISED_Autoneg);
119
120                 cmd->base.port = PORT_FIBRE;
121         }
122
123         if (er32(STATUS) & E1000_STATUS_LU) {
124                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125                                            &adapter->link_duplex);
126                 cmd->base.speed = adapter->link_speed;
127
128                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129                  * and HALF_DUPLEX != DUPLEX_HALF
130                  */
131                 if (adapter->link_duplex == FULL_DUPLEX)
132                         cmd->base.duplex = DUPLEX_FULL;
133                 else
134                         cmd->base.duplex = DUPLEX_HALF;
135         } else {
136                 cmd->base.speed = SPEED_UNKNOWN;
137                 cmd->base.duplex = DUPLEX_UNKNOWN;
138         }
139
140         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143         /* MDI-X => 1; MDI => 0 */
144         if ((hw->media_type == e1000_media_type_copper) &&
145             netif_carrier_ok(netdev))
146                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147                                      ETH_TP_MDI_X : ETH_TP_MDI);
148         else
149                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151         if (hw->mdix == AUTO_ALL_MODES)
152                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153         else
154                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157                                                 supported);
158         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159                                                 advertising);
160
161         return 0;
162 }
163
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165                                     const struct ethtool_link_ksettings *cmd)
166 {
167         struct e1000_adapter *adapter = netdev_priv(netdev);
168         struct e1000_hw *hw = &adapter->hw;
169         u32 advertising;
170
171         ethtool_convert_link_mode_to_legacy_u32(&advertising,
172                                                 cmd->link_modes.advertising);
173
174         /* MDI setting is only allowed when autoneg enabled because
175          * some hardware doesn't allow MDI setting when speed or
176          * duplex is forced.
177          */
178         if (cmd->base.eth_tp_mdix_ctrl) {
179                 if (hw->media_type != e1000_media_type_copper)
180                         return -EOPNOTSUPP;
181
182                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
184                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185                         return -EINVAL;
186                 }
187         }
188
189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190                 msleep(1);
191
192         if (cmd->base.autoneg == AUTONEG_ENABLE) {
193                 hw->autoneg = 1;
194                 if (hw->media_type == e1000_media_type_fiber)
195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                                  ADVERTISED_FIBRE |
197                                                  ADVERTISED_Autoneg;
198                 else
199                         hw->autoneg_advertised = advertising |
200                                                  ADVERTISED_TP |
201                                                  ADVERTISED_Autoneg;
202         } else {
203                 u32 speed = cmd->base.speed;
204                 /* calling this overrides forced MDI setting */
205                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206                         clear_bit(__E1000_RESETTING, &adapter->flags);
207                         return -EINVAL;
208                 }
209         }
210
211         /* MDI-X => 2; MDI => 1; Auto => 3 */
212         if (cmd->base.eth_tp_mdix_ctrl) {
213                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214                         hw->mdix = AUTO_ALL_MODES;
215                 else
216                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217         }
218
219         /* reset the link */
220
221         if (netif_running(adapter->netdev)) {
222                 e1000_down(adapter);
223                 e1000_up(adapter);
224         } else {
225                 e1000_reset(adapter);
226         }
227         clear_bit(__E1000_RESETTING, &adapter->flags);
228         return 0;
229 }
230
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234
235         /* If the link is not reported up to netdev, interrupts are disabled,
236          * and so the physical link state may have changed since we last
237          * looked. Set get_link_status to make sure that the true link
238          * state is interrogated, rather than pulling a cached and possibly
239          * stale link state from the driver.
240          */
241         if (!netif_carrier_ok(netdev))
242                 adapter->hw.get_link_status = 1;
243
244         return e1000_has_link(adapter);
245 }
246
247 static void e1000_get_pauseparam(struct net_device *netdev,
248                                  struct ethtool_pauseparam *pause)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         pause->autoneg =
254                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256         if (hw->fc == E1000_FC_RX_PAUSE) {
257                 pause->rx_pause = 1;
258         } else if (hw->fc == E1000_FC_TX_PAUSE) {
259                 pause->tx_pause = 1;
260         } else if (hw->fc == E1000_FC_FULL) {
261                 pause->rx_pause = 1;
262                 pause->tx_pause = 1;
263         }
264 }
265
266 static int e1000_set_pauseparam(struct net_device *netdev,
267                                 struct ethtool_pauseparam *pause)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         struct e1000_hw *hw = &adapter->hw;
271         int retval = 0;
272
273         adapter->fc_autoneg = pause->autoneg;
274
275         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276                 msleep(1);
277
278         if (pause->rx_pause && pause->tx_pause)
279                 hw->fc = E1000_FC_FULL;
280         else if (pause->rx_pause && !pause->tx_pause)
281                 hw->fc = E1000_FC_RX_PAUSE;
282         else if (!pause->rx_pause && pause->tx_pause)
283                 hw->fc = E1000_FC_TX_PAUSE;
284         else if (!pause->rx_pause && !pause->tx_pause)
285                 hw->fc = E1000_FC_NONE;
286
287         hw->original_fc = hw->fc;
288
289         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290                 if (netif_running(adapter->netdev)) {
291                         e1000_down(adapter);
292                         e1000_up(adapter);
293                 } else {
294                         e1000_reset(adapter);
295                 }
296         } else
297                 retval = ((hw->media_type == e1000_media_type_fiber) ?
298                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300         clear_bit(__E1000_RESETTING, &adapter->flags);
301         return retval;
302 }
303
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307
308         return adapter->msg_enable;
309 }
310
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314
315         adapter->msg_enable = data;
316 }
317
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321         return E1000_REGS_LEN * sizeof(u32);
322 }
323
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325                            void *p)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328         struct e1000_hw *hw = &adapter->hw;
329         u32 *regs_buff = p;
330         u16 phy_data;
331
332         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336         regs_buff[0]  = er32(CTRL);
337         regs_buff[1]  = er32(STATUS);
338
339         regs_buff[2]  = er32(RCTL);
340         regs_buff[3]  = er32(RDLEN);
341         regs_buff[4]  = er32(RDH);
342         regs_buff[5]  = er32(RDT);
343         regs_buff[6]  = er32(RDTR);
344
345         regs_buff[7]  = er32(TCTL);
346         regs_buff[8]  = er32(TDLEN);
347         regs_buff[9]  = er32(TDH);
348         regs_buff[10] = er32(TDT);
349         regs_buff[11] = er32(TIDV);
350
351         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352         if (hw->phy_type == e1000_phy_igp) {
353                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354                                     IGP01E1000_PHY_AGC_A);
355                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357                 regs_buff[13] = (u32)phy_data; /* cable length */
358                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359                                     IGP01E1000_PHY_AGC_B);
360                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362                 regs_buff[14] = (u32)phy_data; /* cable length */
363                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364                                     IGP01E1000_PHY_AGC_C);
365                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367                 regs_buff[15] = (u32)phy_data; /* cable length */
368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369                                     IGP01E1000_PHY_AGC_D);
370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372                 regs_buff[16] = (u32)phy_data; /* cable length */
373                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[18] = (u32)phy_data; /* cable polarity */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_PCS_INIT_REG);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[19] = (u32)phy_data; /* cable polarity */
383                 regs_buff[20] = 0; /* polarity correction enabled (always) */
384                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385                 regs_buff[23] = regs_buff[18]; /* mdix mode */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387         } else {
388                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389                 regs_buff[13] = (u32)phy_data; /* cable length */
390                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395                 regs_buff[18] = regs_buff[13]; /* cable polarity */
396                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397                 regs_buff[20] = regs_buff[17]; /* polarity correction */
398                 /* phy receive errors */
399                 regs_buff[22] = adapter->phy_stats.receive_errors;
400                 regs_buff[23] = regs_buff[13]; /* mdix mode */
401         }
402         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406         if (hw->mac_type >= e1000_82540 &&
407             hw->media_type == e1000_media_type_copper) {
408                 regs_buff[26] = er32(MANC);
409         }
410 }
411
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414         struct e1000_adapter *adapter = netdev_priv(netdev);
415         struct e1000_hw *hw = &adapter->hw;
416
417         return hw->eeprom.word_size * 2;
418 }
419
420 static int e1000_get_eeprom(struct net_device *netdev,
421                             struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423         struct e1000_adapter *adapter = netdev_priv(netdev);
424         struct e1000_hw *hw = &adapter->hw;
425         u16 *eeprom_buff;
426         int first_word, last_word;
427         int ret_val = 0;
428         u16 i;
429
430         if (eeprom->len == 0)
431                 return -EINVAL;
432
433         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435         first_word = eeprom->offset >> 1;
436         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439                                     GFP_KERNEL);
440         if (!eeprom_buff)
441                 return -ENOMEM;
442
443         if (hw->eeprom.type == e1000_eeprom_spi)
444                 ret_val = e1000_read_eeprom(hw, first_word,
445                                             last_word - first_word + 1,
446                                             eeprom_buff);
447         else {
448                 for (i = 0; i < last_word - first_word + 1; i++) {
449                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450                                                     &eeprom_buff[i]);
451                         if (ret_val)
452                                 break;
453                 }
454         }
455
456         /* Device's eeprom is always little-endian, word addressable */
457         for (i = 0; i < last_word - first_word + 1; i++)
458                 le16_to_cpus(&eeprom_buff[i]);
459
460         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461                eeprom->len);
462         kfree(eeprom_buff);
463
464         return ret_val;
465 }
466
467 static int e1000_set_eeprom(struct net_device *netdev,
468                             struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470         struct e1000_adapter *adapter = netdev_priv(netdev);
471         struct e1000_hw *hw = &adapter->hw;
472         u16 *eeprom_buff;
473         void *ptr;
474         int max_len, first_word, last_word, ret_val = 0;
475         u16 i;
476
477         if (eeprom->len == 0)
478                 return -EOPNOTSUPP;
479
480         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481                 return -EFAULT;
482
483         max_len = hw->eeprom.word_size * 2;
484
485         first_word = eeprom->offset >> 1;
486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488         if (!eeprom_buff)
489                 return -ENOMEM;
490
491         ptr = (void *)eeprom_buff;
492
493         if (eeprom->offset & 1) {
494                 /* need read/modify/write of first changed EEPROM word
495                  * only the second byte of the word is being modified
496                  */
497                 ret_val = e1000_read_eeprom(hw, first_word, 1,
498                                             &eeprom_buff[0]);
499                 ptr++;
500         }
501         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502                 /* need read/modify/write of last changed EEPROM word
503                  * only the first byte of the word is being modified
504                  */
505                 ret_val = e1000_read_eeprom(hw, last_word, 1,
506                                             &eeprom_buff[last_word - first_word]);
507         }
508
509         /* Device's eeprom is always little-endian, word addressable */
510         for (i = 0; i < last_word - first_word + 1; i++)
511                 le16_to_cpus(&eeprom_buff[i]);
512
513         memcpy(ptr, bytes, eeprom->len);
514
515         for (i = 0; i < last_word - first_word + 1; i++)
516                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518         ret_val = e1000_write_eeprom(hw, first_word,
519                                      last_word - first_word + 1, eeprom_buff);
520
521         /* Update the checksum over the first part of the EEPROM if needed */
522         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523                 e1000_update_eeprom_checksum(hw);
524
525         kfree(eeprom_buff);
526         return ret_val;
527 }
528
529 static void e1000_get_drvinfo(struct net_device *netdev,
530                               struct ethtool_drvinfo *drvinfo)
531 {
532         struct e1000_adapter *adapter = netdev_priv(netdev);
533
534         strlcpy(drvinfo->driver,  e1000_driver_name,
535                 sizeof(drvinfo->driver));
536         strlcpy(drvinfo->version, e1000_driver_version,
537                 sizeof(drvinfo->version));
538
539         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
540                 sizeof(drvinfo->bus_info));
541 }
542
543 static void e1000_get_ringparam(struct net_device *netdev,
544                                 struct ethtool_ringparam *ring)
545 {
546         struct e1000_adapter *adapter = netdev_priv(netdev);
547         struct e1000_hw *hw = &adapter->hw;
548         e1000_mac_type mac_type = hw->mac_type;
549         struct e1000_tx_ring *txdr = adapter->tx_ring;
550         struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553                 E1000_MAX_82544_RXD;
554         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555                 E1000_MAX_82544_TXD;
556         ring->rx_pending = rxdr->count;
557         ring->tx_pending = txdr->count;
558 }
559
560 static int e1000_set_ringparam(struct net_device *netdev,
561                                struct ethtool_ringparam *ring)
562 {
563         struct e1000_adapter *adapter = netdev_priv(netdev);
564         struct e1000_hw *hw = &adapter->hw;
565         e1000_mac_type mac_type = hw->mac_type;
566         struct e1000_tx_ring *txdr, *tx_old;
567         struct e1000_rx_ring *rxdr, *rx_old;
568         int i, err;
569
570         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
571                 return -EINVAL;
572
573         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
574                 msleep(1);
575
576         if (netif_running(adapter->netdev))
577                 e1000_down(adapter);
578
579         tx_old = adapter->tx_ring;
580         rx_old = adapter->rx_ring;
581
582         err = -ENOMEM;
583         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
584                        GFP_KERNEL);
585         if (!txdr)
586                 goto err_alloc_tx;
587
588         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
589                        GFP_KERNEL);
590         if (!rxdr)
591                 goto err_alloc_rx;
592
593         adapter->tx_ring = txdr;
594         adapter->rx_ring = rxdr;
595
596         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
597         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
598                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
599         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
600         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
601         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
602                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
603         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
604
605         for (i = 0; i < adapter->num_tx_queues; i++)
606                 txdr[i].count = txdr->count;
607         for (i = 0; i < adapter->num_rx_queues; i++)
608                 rxdr[i].count = rxdr->count;
609
610         if (netif_running(adapter->netdev)) {
611                 /* Try to get new resources before deleting old */
612                 err = e1000_setup_all_rx_resources(adapter);
613                 if (err)
614                         goto err_setup_rx;
615                 err = e1000_setup_all_tx_resources(adapter);
616                 if (err)
617                         goto err_setup_tx;
618
619                 /* save the new, restore the old in order to free it,
620                  * then restore the new back again
621                  */
622
623                 adapter->rx_ring = rx_old;
624                 adapter->tx_ring = tx_old;
625                 e1000_free_all_rx_resources(adapter);
626                 e1000_free_all_tx_resources(adapter);
627                 adapter->rx_ring = rxdr;
628                 adapter->tx_ring = txdr;
629                 err = e1000_up(adapter);
630                 if (err)
631                         goto err_setup;
632         }
633         kfree(tx_old);
634         kfree(rx_old);
635
636         clear_bit(__E1000_RESETTING, &adapter->flags);
637         return 0;
638 err_setup_tx:
639         e1000_free_all_rx_resources(adapter);
640 err_setup_rx:
641         adapter->rx_ring = rx_old;
642         adapter->tx_ring = tx_old;
643         kfree(rxdr);
644 err_alloc_rx:
645         kfree(txdr);
646 err_alloc_tx:
647         if (netif_running(adapter->netdev))
648                 e1000_up(adapter);
649 err_setup:
650         clear_bit(__E1000_RESETTING, &adapter->flags);
651         return err;
652 }
653
654 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
655                              u32 mask, u32 write)
656 {
657         struct e1000_hw *hw = &adapter->hw;
658         static const u32 test[] = {
659                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
660         };
661         u8 __iomem *address = hw->hw_addr + reg;
662         u32 read;
663         int i;
664
665         for (i = 0; i < ARRAY_SIZE(test); i++) {
666                 writel(write & test[i], address);
667                 read = readl(address);
668                 if (read != (write & test[i] & mask)) {
669                         e_err(drv, "pattern test reg %04X failed: "
670                               "got 0x%08X expected 0x%08X\n",
671                               reg, read, (write & test[i] & mask));
672                         *data = reg;
673                         return true;
674                 }
675         }
676         return false;
677 }
678
679 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
680                               u32 mask, u32 write)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         u8 __iomem *address = hw->hw_addr + reg;
684         u32 read;
685
686         writel(write & mask, address);
687         read = readl(address);
688         if ((read & mask) != (write & mask)) {
689                 e_err(drv, "set/check reg %04X test failed: "
690                       "got 0x%08X expected 0x%08X\n",
691                       reg, (read & mask), (write & mask));
692                 *data = reg;
693                 return true;
694         }
695         return false;
696 }
697
698 #define REG_PATTERN_TEST(reg, mask, write)                           \
699         do {                                                         \
700                 if (reg_pattern_test(adapter, data,                  \
701                              (hw->mac_type >= e1000_82543)   \
702                              ? E1000_##reg : E1000_82542_##reg,      \
703                              mask, write))                           \
704                         return 1;                                    \
705         } while (0)
706
707 #define REG_SET_AND_CHECK(reg, mask, write)                          \
708         do {                                                         \
709                 if (reg_set_and_check(adapter, data,                 \
710                               (hw->mac_type >= e1000_82543)  \
711                               ? E1000_##reg : E1000_82542_##reg,     \
712                               mask, write))                          \
713                         return 1;                                    \
714         } while (0)
715
716 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
717 {
718         u32 value, before, after;
719         u32 i, toggle;
720         struct e1000_hw *hw = &adapter->hw;
721
722         /* The status register is Read Only, so a write should fail.
723          * Some bits that get toggled are ignored.
724          */
725
726         /* there are several bits on newer hardware that are r/w */
727         toggle = 0xFFFFF833;
728
729         before = er32(STATUS);
730         value = (er32(STATUS) & toggle);
731         ew32(STATUS, toggle);
732         after = er32(STATUS) & toggle;
733         if (value != after) {
734                 e_err(drv, "failed STATUS register test got: "
735                       "0x%08X expected: 0x%08X\n", after, value);
736                 *data = 1;
737                 return 1;
738         }
739         /* restore previous status */
740         ew32(STATUS, before);
741
742         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
743         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
744         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
745         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
746
747         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
748         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
749         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
750         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
751         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
752         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
753         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
754         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
755         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
756         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
757
758         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
759
760         before = 0x06DFB3FE;
761         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
762         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
763
764         if (hw->mac_type >= e1000_82543) {
765                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
767                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
768                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
769                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
770                 value = E1000_RAR_ENTRIES;
771                 for (i = 0; i < value; i++) {
772                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
773                                          0x8003FFFF, 0xFFFFFFFF);
774                 }
775         } else {
776                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
777                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
778                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
779                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
780         }
781
782         value = E1000_MC_TBL_SIZE;
783         for (i = 0; i < value; i++)
784                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
785
786         *data = 0;
787         return 0;
788 }
789
790 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
791 {
792         struct e1000_hw *hw = &adapter->hw;
793         u16 temp;
794         u16 checksum = 0;
795         u16 i;
796
797         *data = 0;
798         /* Read and add up the contents of the EEPROM */
799         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
800                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
801                         *data = 1;
802                         break;
803                 }
804                 checksum += temp;
805         }
806
807         /* If Checksum is not Correct return error else test passed */
808         if ((checksum != (u16)EEPROM_SUM) && !(*data))
809                 *data = 2;
810
811         return *data;
812 }
813
814 static irqreturn_t e1000_test_intr(int irq, void *data)
815 {
816         struct net_device *netdev = (struct net_device *)data;
817         struct e1000_adapter *adapter = netdev_priv(netdev);
818         struct e1000_hw *hw = &adapter->hw;
819
820         adapter->test_icr |= er32(ICR);
821
822         return IRQ_HANDLED;
823 }
824
825 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
826 {
827         struct net_device *netdev = adapter->netdev;
828         u32 mask, i = 0;
829         bool shared_int = true;
830         u32 irq = adapter->pdev->irq;
831         struct e1000_hw *hw = &adapter->hw;
832
833         *data = 0;
834
835         /* NOTE: we don't test MSI interrupts here, yet
836          * Hook up test interrupt handler just for this test
837          */
838         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
839                          netdev))
840                 shared_int = false;
841         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
842                              netdev->name, netdev)) {
843                 *data = 1;
844                 return -1;
845         }
846         e_info(hw, "testing %s interrupt\n", (shared_int ?
847                "shared" : "unshared"));
848
849         /* Disable all the interrupts */
850         ew32(IMC, 0xFFFFFFFF);
851         E1000_WRITE_FLUSH();
852         msleep(10);
853
854         /* Test each interrupt */
855         for (; i < 10; i++) {
856                 /* Interrupt to test */
857                 mask = 1 << i;
858
859                 if (!shared_int) {
860                         /* Disable the interrupt to be reported in
861                          * the cause register and then force the same
862                          * interrupt and see if one gets posted.  If
863                          * an interrupt was posted to the bus, the
864                          * test failed.
865                          */
866                         adapter->test_icr = 0;
867                         ew32(IMC, mask);
868                         ew32(ICS, mask);
869                         E1000_WRITE_FLUSH();
870                         msleep(10);
871
872                         if (adapter->test_icr & mask) {
873                                 *data = 3;
874                                 break;
875                         }
876                 }
877
878                 /* Enable the interrupt to be reported in
879                  * the cause register and then force the same
880                  * interrupt and see if one gets posted.  If
881                  * an interrupt was not posted to the bus, the
882                  * test failed.
883                  */
884                 adapter->test_icr = 0;
885                 ew32(IMS, mask);
886                 ew32(ICS, mask);
887                 E1000_WRITE_FLUSH();
888                 msleep(10);
889
890                 if (!(adapter->test_icr & mask)) {
891                         *data = 4;
892                         break;
893                 }
894
895                 if (!shared_int) {
896                         /* Disable the other interrupts to be reported in
897                          * the cause register and then force the other
898                          * interrupts and see if any get posted.  If
899                          * an interrupt was posted to the bus, the
900                          * test failed.
901                          */
902                         adapter->test_icr = 0;
903                         ew32(IMC, ~mask & 0x00007FFF);
904                         ew32(ICS, ~mask & 0x00007FFF);
905                         E1000_WRITE_FLUSH();
906                         msleep(10);
907
908                         if (adapter->test_icr) {
909                                 *data = 5;
910                                 break;
911                         }
912                 }
913         }
914
915         /* Disable all the interrupts */
916         ew32(IMC, 0xFFFFFFFF);
917         E1000_WRITE_FLUSH();
918         msleep(10);
919
920         /* Unhook test interrupt handler */
921         free_irq(irq, netdev);
922
923         return *data;
924 }
925
926 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
927 {
928         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
929         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
930         struct pci_dev *pdev = adapter->pdev;
931         int i;
932
933         if (txdr->desc && txdr->buffer_info) {
934                 for (i = 0; i < txdr->count; i++) {
935                         if (txdr->buffer_info[i].dma)
936                                 dma_unmap_single(&pdev->dev,
937                                                  txdr->buffer_info[i].dma,
938                                                  txdr->buffer_info[i].length,
939                                                  DMA_TO_DEVICE);
940                         if (txdr->buffer_info[i].skb)
941                                 dev_kfree_skb(txdr->buffer_info[i].skb);
942                 }
943         }
944
945         if (rxdr->desc && rxdr->buffer_info) {
946                 for (i = 0; i < rxdr->count; i++) {
947                         if (rxdr->buffer_info[i].dma)
948                                 dma_unmap_single(&pdev->dev,
949                                                  rxdr->buffer_info[i].dma,
950                                                  E1000_RXBUFFER_2048,
951                                                  DMA_FROM_DEVICE);
952                         kfree(rxdr->buffer_info[i].rxbuf.data);
953                 }
954         }
955
956         if (txdr->desc) {
957                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
958                                   txdr->dma);
959                 txdr->desc = NULL;
960         }
961         if (rxdr->desc) {
962                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
963                                   rxdr->dma);
964                 rxdr->desc = NULL;
965         }
966
967         kfree(txdr->buffer_info);
968         txdr->buffer_info = NULL;
969         kfree(rxdr->buffer_info);
970         rxdr->buffer_info = NULL;
971 }
972
973 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
974 {
975         struct e1000_hw *hw = &adapter->hw;
976         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978         struct pci_dev *pdev = adapter->pdev;
979         u32 rctl;
980         int i, ret_val;
981
982         /* Setup Tx descriptor ring and Tx buffers */
983
984         if (!txdr->count)
985                 txdr->count = E1000_DEFAULT_TXD;
986
987         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
988                                     GFP_KERNEL);
989         if (!txdr->buffer_info) {
990                 ret_val = 1;
991                 goto err_nomem;
992         }
993
994         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995         txdr->size = ALIGN(txdr->size, 4096);
996         txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
997                                          GFP_KERNEL);
998         if (!txdr->desc) {
999                 ret_val = 2;
1000                 goto err_nomem;
1001         }
1002         txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005         ew32(TDBAH, ((u64)txdr->dma >> 32));
1006         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007         ew32(TDH, 0);
1008         ew32(TDT, 0);
1009         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013         for (i = 0; i < txdr->count; i++) {
1014                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015                 struct sk_buff *skb;
1016                 unsigned int size = 1024;
1017
1018                 skb = alloc_skb(size, GFP_KERNEL);
1019                 if (!skb) {
1020                         ret_val = 3;
1021                         goto err_nomem;
1022                 }
1023                 skb_put(skb, size);
1024                 txdr->buffer_info[i].skb = skb;
1025                 txdr->buffer_info[i].length = skb->len;
1026                 txdr->buffer_info[i].dma =
1027                         dma_map_single(&pdev->dev, skb->data, skb->len,
1028                                        DMA_TO_DEVICE);
1029                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030                         ret_val = 4;
1031                         goto err_nomem;
1032                 }
1033                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034                 tx_desc->lower.data = cpu_to_le32(skb->len);
1035                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036                                                    E1000_TXD_CMD_IFCS |
1037                                                    E1000_TXD_CMD_RPS);
1038                 tx_desc->upper.data = 0;
1039         }
1040
1041         /* Setup Rx descriptor ring and Rx buffers */
1042
1043         if (!rxdr->count)
1044                 rxdr->count = E1000_DEFAULT_RXD;
1045
1046         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047                                     GFP_KERNEL);
1048         if (!rxdr->buffer_info) {
1049                 ret_val = 5;
1050                 goto err_nomem;
1051         }
1052
1053         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054         rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055                                          GFP_KERNEL);
1056         if (!rxdr->desc) {
1057                 ret_val = 6;
1058                 goto err_nomem;
1059         }
1060         rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062         rctl = er32(RCTL);
1063         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066         ew32(RDLEN, rxdr->size);
1067         ew32(RDH, 0);
1068         ew32(RDT, 0);
1069         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072         ew32(RCTL, rctl);
1073
1074         for (i = 0; i < rxdr->count; i++) {
1075                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076                 u8 *buf;
1077
1078                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079                               GFP_KERNEL);
1080                 if (!buf) {
1081                         ret_val = 7;
1082                         goto err_nomem;
1083                 }
1084                 rxdr->buffer_info[i].rxbuf.data = buf;
1085
1086                 rxdr->buffer_info[i].dma =
1087                         dma_map_single(&pdev->dev,
1088                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1089                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091                         ret_val = 8;
1092                         goto err_nomem;
1093                 }
1094                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095         }
1096
1097         return 0;
1098
1099 err_nomem:
1100         e1000_free_desc_rings(adapter);
1101         return ret_val;
1102 }
1103
1104 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105 {
1106         struct e1000_hw *hw = &adapter->hw;
1107
1108         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109         e1000_write_phy_reg(hw, 29, 0x001F);
1110         e1000_write_phy_reg(hw, 30, 0x8FFC);
1111         e1000_write_phy_reg(hw, 29, 0x001A);
1112         e1000_write_phy_reg(hw, 30, 0x8FF0);
1113 }
1114
1115 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116 {
1117         struct e1000_hw *hw = &adapter->hw;
1118         u16 phy_reg;
1119
1120         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1121          * Extended PHY Specific Control Register to 25MHz clock.  This
1122          * value defaults back to a 2.5MHz clock when the PHY is reset.
1123          */
1124         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1127
1128         /* In addition, because of the s/w reset above, we need to enable
1129          * CRS on TX.  This must be set for both full and half duplex
1130          * operation.
1131          */
1132         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1135 }
1136
1137 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         u32 ctrl_reg;
1141         u16 phy_reg;
1142
1143         /* Setup the Device Control Register for PHY loopback test. */
1144
1145         ctrl_reg = er32(CTRL);
1146         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1147                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1148                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1149                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1150                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1151
1152         ew32(CTRL, ctrl_reg);
1153
1154         /* Read the PHY Specific Control Register (0x10) */
1155         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156
1157         /* Clear Auto-Crossover bits in PHY Specific Control Register
1158          * (bits 6:5).
1159          */
1160         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162
1163         /* Perform software reset on the PHY */
1164         e1000_phy_reset(hw);
1165
1166         /* Have to setup TX_CLK and TX_CRS after software reset */
1167         e1000_phy_reset_clk_and_crs(adapter);
1168
1169         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170
1171         /* Wait for reset to complete. */
1172         udelay(500);
1173
1174         /* Have to setup TX_CLK and TX_CRS after software reset */
1175         e1000_phy_reset_clk_and_crs(adapter);
1176
1177         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178         e1000_phy_disable_receiver(adapter);
1179
1180         /* Set the loopback bit in the PHY control register. */
1181         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182         phy_reg |= MII_CR_LOOPBACK;
1183         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184
1185         /* Setup TX_CLK and TX_CRS one more time. */
1186         e1000_phy_reset_clk_and_crs(adapter);
1187
1188         /* Check Phy Configuration */
1189         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190         if (phy_reg != 0x4100)
1191                 return 9;
1192
1193         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194         if (phy_reg != 0x0070)
1195                 return 10;
1196
1197         e1000_read_phy_reg(hw, 29, &phy_reg);
1198         if (phy_reg != 0x001A)
1199                 return 11;
1200
1201         return 0;
1202 }
1203
1204 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205 {
1206         struct e1000_hw *hw = &adapter->hw;
1207         u32 ctrl_reg = 0;
1208         u32 stat_reg = 0;
1209
1210         hw->autoneg = false;
1211
1212         if (hw->phy_type == e1000_phy_m88) {
1213                 /* Auto-MDI/MDIX Off */
1214                 e1000_write_phy_reg(hw,
1215                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1216                 /* reset to update Auto-MDI/MDIX */
1217                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218                 /* autoneg off */
1219                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220         }
1221
1222         ctrl_reg = er32(CTRL);
1223
1224         /* force 1000, set loopback */
1225         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226
1227         /* Now set up the MAC to the same speed/duplex as the PHY. */
1228         ctrl_reg = er32(CTRL);
1229         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233                         E1000_CTRL_FD); /* Force Duplex to FULL */
1234
1235         if (hw->media_type == e1000_media_type_copper &&
1236             hw->phy_type == e1000_phy_m88)
1237                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238         else {
1239                 /* Set the ILOS bit on the fiber Nic is half
1240                  * duplex link is detected.
1241                  */
1242                 stat_reg = er32(STATUS);
1243                 if ((stat_reg & E1000_STATUS_FD) == 0)
1244                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245         }
1246
1247         ew32(CTRL, ctrl_reg);
1248
1249         /* Disable the receiver on the PHY so when a cable is plugged in, the
1250          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251          */
1252         if (hw->phy_type == e1000_phy_m88)
1253                 e1000_phy_disable_receiver(adapter);
1254
1255         udelay(500);
1256
1257         return 0;
1258 }
1259
1260 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261 {
1262         struct e1000_hw *hw = &adapter->hw;
1263         u16 phy_reg = 0;
1264         u16 count = 0;
1265
1266         switch (hw->mac_type) {
1267         case e1000_82543:
1268                 if (hw->media_type == e1000_media_type_copper) {
1269                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1270                          * Some PHY registers get corrupted at random, so
1271                          * attempt this 10 times.
1272                          */
1273                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1274                                count++ < 10);
1275                         if (count < 11)
1276                                 return 0;
1277                 }
1278                 break;
1279
1280         case e1000_82544:
1281         case e1000_82540:
1282         case e1000_82545:
1283         case e1000_82545_rev_3:
1284         case e1000_82546:
1285         case e1000_82546_rev_3:
1286         case e1000_82541:
1287         case e1000_82541_rev_2:
1288         case e1000_82547:
1289         case e1000_82547_rev_2:
1290                 return e1000_integrated_phy_loopback(adapter);
1291         default:
1292                 /* Default PHY loopback work is to read the MII
1293                  * control register and assert bit 14 (loopback mode).
1294                  */
1295                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296                 phy_reg |= MII_CR_LOOPBACK;
1297                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298                 return 0;
1299         }
1300
1301         return 8;
1302 }
1303
1304 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305 {
1306         struct e1000_hw *hw = &adapter->hw;
1307         u32 rctl;
1308
1309         if (hw->media_type == e1000_media_type_fiber ||
1310             hw->media_type == e1000_media_type_internal_serdes) {
1311                 switch (hw->mac_type) {
1312                 case e1000_82545:
1313                 case e1000_82546:
1314                 case e1000_82545_rev_3:
1315                 case e1000_82546_rev_3:
1316                         return e1000_set_phy_loopback(adapter);
1317                 default:
1318                         rctl = er32(RCTL);
1319                         rctl |= E1000_RCTL_LBM_TCVR;
1320                         ew32(RCTL, rctl);
1321                         return 0;
1322                 }
1323         } else if (hw->media_type == e1000_media_type_copper) {
1324                 return e1000_set_phy_loopback(adapter);
1325         }
1326
1327         return 7;
1328 }
1329
1330 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331 {
1332         struct e1000_hw *hw = &adapter->hw;
1333         u32 rctl;
1334         u16 phy_reg;
1335
1336         rctl = er32(RCTL);
1337         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338         ew32(RCTL, rctl);
1339
1340         switch (hw->mac_type) {
1341         case e1000_82545:
1342         case e1000_82546:
1343         case e1000_82545_rev_3:
1344         case e1000_82546_rev_3:
1345         default:
1346                 hw->autoneg = true;
1347                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348                 if (phy_reg & MII_CR_LOOPBACK) {
1349                         phy_reg &= ~MII_CR_LOOPBACK;
1350                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351                         e1000_phy_reset(hw);
1352                 }
1353                 break;
1354         }
1355 }
1356
1357 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358                                       unsigned int frame_size)
1359 {
1360         memset(skb->data, 0xFF, frame_size);
1361         frame_size &= ~1;
1362         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1364         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1365 }
1366
1367 static int e1000_check_lbtest_frame(const unsigned char *data,
1368                                     unsigned int frame_size)
1369 {
1370         frame_size &= ~1;
1371         if (*(data + 3) == 0xFF) {
1372                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1374                         return 0;
1375                 }
1376         }
1377         return 13;
1378 }
1379
1380 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381 {
1382         struct e1000_hw *hw = &adapter->hw;
1383         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385         struct pci_dev *pdev = adapter->pdev;
1386         int i, j, k, l, lc, good_cnt, ret_val = 0;
1387         unsigned long time;
1388
1389         ew32(RDT, rxdr->count - 1);
1390
1391         /* Calculate the loop count based on the largest descriptor ring
1392          * The idea is to wrap the largest ring a number of times using 64
1393          * send/receive pairs during each loop
1394          */
1395
1396         if (rxdr->count <= txdr->count)
1397                 lc = ((txdr->count / 64) * 2) + 1;
1398         else
1399                 lc = ((rxdr->count / 64) * 2) + 1;
1400
1401         k = l = 0;
1402         for (j = 0; j <= lc; j++) { /* loop count loop */
1403                 for (i = 0; i < 64; i++) { /* send the packets */
1404                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405                                                   1024);
1406                         dma_sync_single_for_device(&pdev->dev,
1407                                                    txdr->buffer_info[k].dma,
1408                                                    txdr->buffer_info[k].length,
1409                                                    DMA_TO_DEVICE);
1410                         if (unlikely(++k == txdr->count))
1411                                 k = 0;
1412                 }
1413                 ew32(TDT, k);
1414                 E1000_WRITE_FLUSH();
1415                 msleep(200);
1416                 time = jiffies; /* set the start time for the receive */
1417                 good_cnt = 0;
1418                 do { /* receive the sent packets */
1419                         dma_sync_single_for_cpu(&pdev->dev,
1420                                                 rxdr->buffer_info[l].dma,
1421                                                 E1000_RXBUFFER_2048,
1422                                                 DMA_FROM_DEVICE);
1423
1424                         ret_val = e1000_check_lbtest_frame(
1425                                         rxdr->buffer_info[l].rxbuf.data +
1426                                         NET_SKB_PAD + NET_IP_ALIGN,
1427                                         1024);
1428                         if (!ret_val)
1429                                 good_cnt++;
1430                         if (unlikely(++l == rxdr->count))
1431                                 l = 0;
1432                         /* time + 20 msecs (200 msecs on 2.4) is more than
1433                          * enough time to complete the receives, if it's
1434                          * exceeded, break and error off
1435                          */
1436                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438                 if (good_cnt != 64) {
1439                         ret_val = 13; /* ret_val is the same as mis-compare */
1440                         break;
1441                 }
1442                 if (time_after_eq(jiffies, time + 2)) {
1443                         ret_val = 14; /* error code for time out error */
1444                         break;
1445                 }
1446         } /* end loop count loop */
1447         return ret_val;
1448 }
1449
1450 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451 {
1452         *data = e1000_setup_desc_rings(adapter);
1453         if (*data)
1454                 goto out;
1455         *data = e1000_setup_loopback_test(adapter);
1456         if (*data)
1457                 goto err_loopback;
1458         *data = e1000_run_loopback_test(adapter);
1459         e1000_loopback_cleanup(adapter);
1460
1461 err_loopback:
1462         e1000_free_desc_rings(adapter);
1463 out:
1464         return *data;
1465 }
1466
1467 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468 {
1469         struct e1000_hw *hw = &adapter->hw;
1470         *data = 0;
1471         if (hw->media_type == e1000_media_type_internal_serdes) {
1472                 int i = 0;
1473
1474                 hw->serdes_has_link = false;
1475
1476                 /* On some blade server designs, link establishment
1477                  * could take as long as 2-3 minutes
1478                  */
1479                 do {
1480                         e1000_check_for_link(hw);
1481                         if (hw->serdes_has_link)
1482                                 return *data;
1483                         msleep(20);
1484                 } while (i++ < 3750);
1485
1486                 *data = 1;
1487         } else {
1488                 e1000_check_for_link(hw);
1489                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1490                         msleep(4000);
1491
1492                 if (!(er32(STATUS) & E1000_STATUS_LU))
1493                         *data = 1;
1494         }
1495         return *data;
1496 }
1497
1498 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499 {
1500         switch (sset) {
1501         case ETH_SS_TEST:
1502                 return E1000_TEST_LEN;
1503         case ETH_SS_STATS:
1504                 return E1000_STATS_LEN;
1505         default:
1506                 return -EOPNOTSUPP;
1507         }
1508 }
1509
1510 static void e1000_diag_test(struct net_device *netdev,
1511                             struct ethtool_test *eth_test, u64 *data)
1512 {
1513         struct e1000_adapter *adapter = netdev_priv(netdev);
1514         struct e1000_hw *hw = &adapter->hw;
1515         bool if_running = netif_running(netdev);
1516
1517         set_bit(__E1000_TESTING, &adapter->flags);
1518         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519                 /* Offline tests */
1520
1521                 /* save speed, duplex, autoneg settings */
1522                 u16 autoneg_advertised = hw->autoneg_advertised;
1523                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1524                 u8 autoneg = hw->autoneg;
1525
1526                 e_info(hw, "offline testing starting\n");
1527
1528                 /* Link test performed before hardware reset so autoneg doesn't
1529                  * interfere with test result
1530                  */
1531                 if (e1000_link_test(adapter, &data[4]))
1532                         eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534                 if (if_running)
1535                         /* indicate we're in test mode */
1536                         e1000_close(netdev);
1537                 else
1538                         e1000_reset(adapter);
1539
1540                 if (e1000_reg_test(adapter, &data[0]))
1541                         eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543                 e1000_reset(adapter);
1544                 if (e1000_eeprom_test(adapter, &data[1]))
1545                         eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547                 e1000_reset(adapter);
1548                 if (e1000_intr_test(adapter, &data[2]))
1549                         eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551                 e1000_reset(adapter);
1552                 /* make sure the phy is powered up */
1553                 e1000_power_up_phy(adapter);
1554                 if (e1000_loopback_test(adapter, &data[3]))
1555                         eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557                 /* restore speed, duplex, autoneg settings */
1558                 hw->autoneg_advertised = autoneg_advertised;
1559                 hw->forced_speed_duplex = forced_speed_duplex;
1560                 hw->autoneg = autoneg;
1561
1562                 e1000_reset(adapter);
1563                 clear_bit(__E1000_TESTING, &adapter->flags);
1564                 if (if_running)
1565                         e1000_open(netdev);
1566         } else {
1567                 e_info(hw, "online testing starting\n");
1568                 /* Online tests */
1569                 if (e1000_link_test(adapter, &data[4]))
1570                         eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572                 /* Online tests aren't run; pass by default */
1573                 data[0] = 0;
1574                 data[1] = 0;
1575                 data[2] = 0;
1576                 data[3] = 0;
1577
1578                 clear_bit(__E1000_TESTING, &adapter->flags);
1579         }
1580         msleep_interruptible(4 * 1000);
1581 }
1582
1583 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584                                struct ethtool_wolinfo *wol)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587         int retval = 1; /* fail by default */
1588
1589         switch (hw->device_id) {
1590         case E1000_DEV_ID_82542:
1591         case E1000_DEV_ID_82543GC_FIBER:
1592         case E1000_DEV_ID_82543GC_COPPER:
1593         case E1000_DEV_ID_82544EI_FIBER:
1594         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595         case E1000_DEV_ID_82545EM_FIBER:
1596         case E1000_DEV_ID_82545EM_COPPER:
1597         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598         case E1000_DEV_ID_82546GB_PCIE:
1599                 /* these don't support WoL at all */
1600                 wol->supported = 0;
1601                 break;
1602         case E1000_DEV_ID_82546EB_FIBER:
1603         case E1000_DEV_ID_82546GB_FIBER:
1604                 /* Wake events not supported on port B */
1605                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606                         wol->supported = 0;
1607                         break;
1608                 }
1609                 /* return success for non excluded adapter ports */
1610                 retval = 0;
1611                 break;
1612         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613                 /* quad port adapters only support WoL on port A */
1614                 if (!adapter->quad_port_a) {
1615                         wol->supported = 0;
1616                         break;
1617                 }
1618                 /* return success for non excluded adapter ports */
1619                 retval = 0;
1620                 break;
1621         default:
1622                 /* dual port cards only support WoL on port A from now on
1623                  * unless it was enabled in the eeprom for port B
1624                  * so exclude FUNC_1 ports from having WoL enabled
1625                  */
1626                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627                     !adapter->eeprom_wol) {
1628                         wol->supported = 0;
1629                         break;
1630                 }
1631
1632                 retval = 0;
1633         }
1634
1635         return retval;
1636 }
1637
1638 static void e1000_get_wol(struct net_device *netdev,
1639                           struct ethtool_wolinfo *wol)
1640 {
1641         struct e1000_adapter *adapter = netdev_priv(netdev);
1642         struct e1000_hw *hw = &adapter->hw;
1643
1644         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645         wol->wolopts = 0;
1646
1647         /* this function will set ->supported = 0 and return 1 if wol is not
1648          * supported by this hardware
1649          */
1650         if (e1000_wol_exclusion(adapter, wol) ||
1651             !device_can_wakeup(&adapter->pdev->dev))
1652                 return;
1653
1654         /* apply any specific unsupported masks here */
1655         switch (hw->device_id) {
1656         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657                 /* KSP3 does not support UCAST wake-ups */
1658                 wol->supported &= ~WAKE_UCAST;
1659
1660                 if (adapter->wol & E1000_WUFC_EX)
1661                         e_err(drv, "Interface does not support directed "
1662                               "(unicast) frame wake-up packets\n");
1663                 break;
1664         default:
1665                 break;
1666         }
1667
1668         if (adapter->wol & E1000_WUFC_EX)
1669                 wol->wolopts |= WAKE_UCAST;
1670         if (adapter->wol & E1000_WUFC_MC)
1671                 wol->wolopts |= WAKE_MCAST;
1672         if (adapter->wol & E1000_WUFC_BC)
1673                 wol->wolopts |= WAKE_BCAST;
1674         if (adapter->wol & E1000_WUFC_MAG)
1675                 wol->wolopts |= WAKE_MAGIC;
1676 }
1677
1678 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679 {
1680         struct e1000_adapter *adapter = netdev_priv(netdev);
1681         struct e1000_hw *hw = &adapter->hw;
1682
1683         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684                 return -EOPNOTSUPP;
1685
1686         if (e1000_wol_exclusion(adapter, wol) ||
1687             !device_can_wakeup(&adapter->pdev->dev))
1688                 return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690         switch (hw->device_id) {
1691         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692                 if (wol->wolopts & WAKE_UCAST) {
1693                         e_err(drv, "Interface does not support directed "
1694                               "(unicast) frame wake-up packets\n");
1695                         return -EOPNOTSUPP;
1696                 }
1697                 break;
1698         default:
1699                 break;
1700         }
1701
1702         /* these settings will always override what we currently have */
1703         adapter->wol = 0;
1704
1705         if (wol->wolopts & WAKE_UCAST)
1706                 adapter->wol |= E1000_WUFC_EX;
1707         if (wol->wolopts & WAKE_MCAST)
1708                 adapter->wol |= E1000_WUFC_MC;
1709         if (wol->wolopts & WAKE_BCAST)
1710                 adapter->wol |= E1000_WUFC_BC;
1711         if (wol->wolopts & WAKE_MAGIC)
1712                 adapter->wol |= E1000_WUFC_MAG;
1713
1714         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715
1716         return 0;
1717 }
1718
1719 static int e1000_set_phys_id(struct net_device *netdev,
1720                              enum ethtool_phys_id_state state)
1721 {
1722         struct e1000_adapter *adapter = netdev_priv(netdev);
1723         struct e1000_hw *hw = &adapter->hw;
1724
1725         switch (state) {
1726         case ETHTOOL_ID_ACTIVE:
1727                 e1000_setup_led(hw);
1728                 return 2;
1729
1730         case ETHTOOL_ID_ON:
1731                 e1000_led_on(hw);
1732                 break;
1733
1734         case ETHTOOL_ID_OFF:
1735                 e1000_led_off(hw);
1736                 break;
1737
1738         case ETHTOOL_ID_INACTIVE:
1739                 e1000_cleanup_led(hw);
1740         }
1741
1742         return 0;
1743 }
1744
1745 static int e1000_get_coalesce(struct net_device *netdev,
1746                               struct ethtool_coalesce *ec)
1747 {
1748         struct e1000_adapter *adapter = netdev_priv(netdev);
1749
1750         if (adapter->hw.mac_type < e1000_82545)
1751                 return -EOPNOTSUPP;
1752
1753         if (adapter->itr_setting <= 4)
1754                 ec->rx_coalesce_usecs = adapter->itr_setting;
1755         else
1756                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1757
1758         return 0;
1759 }
1760
1761 static int e1000_set_coalesce(struct net_device *netdev,
1762                               struct ethtool_coalesce *ec)
1763 {
1764         struct e1000_adapter *adapter = netdev_priv(netdev);
1765         struct e1000_hw *hw = &adapter->hw;
1766
1767         if (hw->mac_type < e1000_82545)
1768                 return -EOPNOTSUPP;
1769
1770         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1771             ((ec->rx_coalesce_usecs > 4) &&
1772              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1773             (ec->rx_coalesce_usecs == 2))
1774                 return -EINVAL;
1775
1776         if (ec->rx_coalesce_usecs == 4) {
1777                 adapter->itr = adapter->itr_setting = 4;
1778         } else if (ec->rx_coalesce_usecs <= 3) {
1779                 adapter->itr = 20000;
1780                 adapter->itr_setting = ec->rx_coalesce_usecs;
1781         } else {
1782                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1783                 adapter->itr_setting = adapter->itr & ~3;
1784         }
1785
1786         if (adapter->itr_setting != 0)
1787                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1788         else
1789                 ew32(ITR, 0);
1790
1791         return 0;
1792 }
1793
1794 static int e1000_nway_reset(struct net_device *netdev)
1795 {
1796         struct e1000_adapter *adapter = netdev_priv(netdev);
1797
1798         if (netif_running(netdev))
1799                 e1000_reinit_locked(adapter);
1800         return 0;
1801 }
1802
1803 static void e1000_get_ethtool_stats(struct net_device *netdev,
1804                                     struct ethtool_stats *stats, u64 *data)
1805 {
1806         struct e1000_adapter *adapter = netdev_priv(netdev);
1807         int i;
1808         const struct e1000_stats *stat = e1000_gstrings_stats;
1809
1810         e1000_update_stats(adapter);
1811         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1812                 char *p;
1813
1814                 switch (stat->type) {
1815                 case NETDEV_STATS:
1816                         p = (char *)netdev + stat->stat_offset;
1817                         break;
1818                 case E1000_STATS:
1819                         p = (char *)adapter + stat->stat_offset;
1820                         break;
1821                 default:
1822                         netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1823                                          stat->type, i);
1824                         continue;
1825                 }
1826
1827                 if (stat->sizeof_stat == sizeof(u64))
1828                         data[i] = *(u64 *)p;
1829                 else
1830                         data[i] = *(u32 *)p;
1831         }
1832 /* BUG_ON(i != E1000_STATS_LEN); */
1833 }
1834
1835 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1836                               u8 *data)
1837 {
1838         u8 *p = data;
1839         int i;
1840
1841         switch (stringset) {
1842         case ETH_SS_TEST:
1843                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1844                 break;
1845         case ETH_SS_STATS:
1846                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1847                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1848                                ETH_GSTRING_LEN);
1849                         p += ETH_GSTRING_LEN;
1850                 }
1851                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1852                 break;
1853         }
1854 }
1855
1856 static const struct ethtool_ops e1000_ethtool_ops = {
1857         .get_drvinfo            = e1000_get_drvinfo,
1858         .get_regs_len           = e1000_get_regs_len,
1859         .get_regs               = e1000_get_regs,
1860         .get_wol                = e1000_get_wol,
1861         .set_wol                = e1000_set_wol,
1862         .get_msglevel           = e1000_get_msglevel,
1863         .set_msglevel           = e1000_set_msglevel,
1864         .nway_reset             = e1000_nway_reset,
1865         .get_link               = e1000_get_link,
1866         .get_eeprom_len         = e1000_get_eeprom_len,
1867         .get_eeprom             = e1000_get_eeprom,
1868         .set_eeprom             = e1000_set_eeprom,
1869         .get_ringparam          = e1000_get_ringparam,
1870         .set_ringparam          = e1000_set_ringparam,
1871         .get_pauseparam         = e1000_get_pauseparam,
1872         .set_pauseparam         = e1000_set_pauseparam,
1873         .self_test              = e1000_diag_test,
1874         .get_strings            = e1000_get_strings,
1875         .set_phys_id            = e1000_set_phys_id,
1876         .get_ethtool_stats      = e1000_get_ethtool_stats,
1877         .get_sset_count         = e1000_get_sset_count,
1878         .get_coalesce           = e1000_get_coalesce,
1879         .set_coalesce           = e1000_set_coalesce,
1880         .get_ts_info            = ethtool_op_get_ts_info,
1881         .get_link_ksettings     = e1000_get_link_ksettings,
1882         .set_link_ksettings     = e1000_set_link_ksettings,
1883 };
1884
1885 void e1000_set_ethtool_ops(struct net_device *netdev)
1886 {
1887         netdev->ethtool_ops = &e1000_ethtool_ops;
1888 }