Merge tag 'trace-v5.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42
43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
44                             int send_sz, dma_addr_t dma, int frag_end,
45                             int buf_num, enum hns_desc_type type, int mtu)
46 {
47         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49         struct iphdr *iphdr;
50         struct ipv6hdr *ipv6hdr;
51         struct sk_buff *skb;
52         __be16 protocol;
53         u8 bn_pid = 0;
54         u8 rrcfv = 0;
55         u8 ip_offset = 0;
56         u8 tvsvsn = 0;
57         u16 mss = 0;
58         u8 l4_len = 0;
59         u16 paylen = 0;
60
61         desc_cb->priv = priv;
62         desc_cb->length = size;
63         desc_cb->dma = dma;
64         desc_cb->type = type;
65
66         desc->addr = cpu_to_le64(dma);
67         desc->tx.send_size = cpu_to_le16((u16)send_sz);
68
69         /* config bd buffer end */
70         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73         /* fill port_id in the tx bd for sending management pkts */
74         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76
77         if (type == DESC_TYPE_SKB) {
78                 skb = (struct sk_buff *)priv;
79
80                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
81                         skb_reset_mac_len(skb);
82                         protocol = skb->protocol;
83                         ip_offset = ETH_HLEN;
84
85                         if (protocol == htons(ETH_P_8021Q)) {
86                                 ip_offset += VLAN_HLEN;
87                                 protocol = vlan_get_protocol(skb);
88                                 skb->protocol = protocol;
89                         }
90
91                         if (skb->protocol == htons(ETH_P_IP)) {
92                                 iphdr = ip_hdr(skb);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95
96                                 /* check for tcp/udp header */
97                                 if (iphdr->protocol == IPPROTO_TCP &&
98                                     skb_is_gso(skb)) {
99                                         hnae_set_bit(tvsvsn,
100                                                      HNSV2_TXD_TSE_B, 1);
101                                         l4_len = tcp_hdrlen(skb);
102                                         mss = skb_shinfo(skb)->gso_size;
103                                         paylen = skb->len - SKB_TMP_LEN(skb);
104                                 }
105                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
106                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107                                 ipv6hdr = ipv6_hdr(skb);
108                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109
110                                 /* check for tcp/udp header */
111                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113                                         hnae_set_bit(tvsvsn,
114                                                      HNSV2_TXD_TSE_B, 1);
115                                         l4_len = tcp_hdrlen(skb);
116                                         mss = skb_shinfo(skb)->gso_size;
117                                         paylen = skb->len - SKB_TMP_LEN(skb);
118                                 }
119                         }
120                         desc->tx.ip_offset = ip_offset;
121                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122                         desc->tx.mss = cpu_to_le16(mss);
123                         desc->tx.l4_len = l4_len;
124                         desc->tx.paylen = cpu_to_le16(paylen);
125                 }
126         }
127
128         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129
130         desc->tx.bn_pid = bn_pid;
131         desc->tx.ra_ri_cs_fe_vld = rrcfv;
132
133         ring_ptr_move_fw(ring, next_to_use);
134 }
135
136 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
137                          int size, dma_addr_t dma, int frag_end,
138                          int buf_num, enum hns_desc_type type, int mtu)
139 {
140         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
141                         buf_num, type, mtu);
142 }
143
144 static const struct acpi_device_id hns_enet_acpi_match[] = {
145         { "HISI00C1", 0 },
146         { "HISI00C2", 0 },
147         { },
148 };
149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
150
151 static void fill_desc(struct hnae_ring *ring, void *priv,
152                       int size, dma_addr_t dma, int frag_end,
153                       int buf_num, enum hns_desc_type type, int mtu)
154 {
155         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
156         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
157         struct sk_buff *skb;
158         __be16 protocol;
159         u32 ip_offset;
160         u32 asid_bufnum_pid = 0;
161         u32 flag_ipoffset = 0;
162
163         desc_cb->priv = priv;
164         desc_cb->length = size;
165         desc_cb->dma = dma;
166         desc_cb->type = type;
167
168         desc->addr = cpu_to_le64(dma);
169         desc->tx.send_size = cpu_to_le16((u16)size);
170
171         /*config bd buffer end */
172         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
173
174         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
175
176         if (type == DESC_TYPE_SKB) {
177                 skb = (struct sk_buff *)priv;
178
179                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
180                         protocol = skb->protocol;
181                         ip_offset = ETH_HLEN;
182
183                         /*if it is a SW VLAN check the next protocol*/
184                         if (protocol == htons(ETH_P_8021Q)) {
185                                 ip_offset += VLAN_HLEN;
186                                 protocol = vlan_get_protocol(skb);
187                                 skb->protocol = protocol;
188                         }
189
190                         if (skb->protocol == htons(ETH_P_IP)) {
191                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
192                                 /* check for tcp/udp header */
193                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
194
195                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
196                                 /* ipv6 has not l3 cs, check for L4 header */
197                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
198                         }
199
200                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
201                 }
202         }
203
204         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
205
206         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
207         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
208
209         ring_ptr_move_fw(ring, next_to_use);
210 }
211
212 static void unfill_desc(struct hnae_ring *ring)
213 {
214         ring_ptr_move_bw(ring, next_to_use);
215 }
216
217 static int hns_nic_maybe_stop_tx(
218         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
219 {
220         struct sk_buff *skb = *out_skb;
221         struct sk_buff *new_skb = NULL;
222         int buf_num;
223
224         /* no. of segments (plus a header) */
225         buf_num = skb_shinfo(skb)->nr_frags + 1;
226
227         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
228                 if (ring_space(ring) < 1)
229                         return -EBUSY;
230
231                 new_skb = skb_copy(skb, GFP_ATOMIC);
232                 if (!new_skb)
233                         return -ENOMEM;
234
235                 dev_kfree_skb_any(skb);
236                 *out_skb = new_skb;
237                 buf_num = 1;
238         } else if (buf_num > ring_space(ring)) {
239                 return -EBUSY;
240         }
241
242         *bnum = buf_num;
243         return 0;
244 }
245
246 static int hns_nic_maybe_stop_tso(
247         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
248 {
249         int i;
250         int size;
251         int buf_num;
252         int frag_num;
253         struct sk_buff *skb = *out_skb;
254         struct sk_buff *new_skb = NULL;
255         struct skb_frag_struct *frag;
256
257         size = skb_headlen(skb);
258         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259
260         frag_num = skb_shinfo(skb)->nr_frags;
261         for (i = 0; i < frag_num; i++) {
262                 frag = &skb_shinfo(skb)->frags[i];
263                 size = skb_frag_size(frag);
264                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
265         }
266
267         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
268                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
269                 if (ring_space(ring) < buf_num)
270                         return -EBUSY;
271                 /* manual split the send packet */
272                 new_skb = skb_copy(skb, GFP_ATOMIC);
273                 if (!new_skb)
274                         return -ENOMEM;
275                 dev_kfree_skb_any(skb);
276                 *out_skb = new_skb;
277
278         } else if (ring_space(ring) < buf_num) {
279                 return -EBUSY;
280         }
281
282         *bnum = buf_num;
283         return 0;
284 }
285
286 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
287                           int size, dma_addr_t dma, int frag_end,
288                           int buf_num, enum hns_desc_type type, int mtu)
289 {
290         int frag_buf_num;
291         int sizeoflast;
292         int k;
293
294         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
295         sizeoflast = size % BD_MAX_SEND_SIZE;
296         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
297
298         /* when the frag size is bigger than hardware, split this frag */
299         for (k = 0; k < frag_buf_num; k++)
300                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
301                                 (k == frag_buf_num - 1) ?
302                                         sizeoflast : BD_MAX_SEND_SIZE,
303                                 dma + BD_MAX_SEND_SIZE * k,
304                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
305                                 buf_num,
306                                 (type == DESC_TYPE_SKB && !k) ?
307                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
308                                 mtu);
309 }
310
311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
312                                 struct sk_buff *skb,
313                                 struct hns_nic_ring_data *ring_data)
314 {
315         struct hns_nic_priv *priv = netdev_priv(ndev);
316         struct hnae_ring *ring = ring_data->ring;
317         struct device *dev = ring_to_dev(ring);
318         struct netdev_queue *dev_queue;
319         struct skb_frag_struct *frag;
320         int buf_num;
321         int seg_num;
322         dma_addr_t dma;
323         int size, next_to_use;
324         int i;
325
326         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
327         case -EBUSY:
328                 ring->stats.tx_busy++;
329                 goto out_net_tx_busy;
330         case -ENOMEM:
331                 ring->stats.sw_err_cnt++;
332                 netdev_err(ndev, "no memory to xmit!\n");
333                 goto out_err_tx_ok;
334         default:
335                 break;
336         }
337
338         /* no. of segments (plus a header) */
339         seg_num = skb_shinfo(skb)->nr_frags + 1;
340         next_to_use = ring->next_to_use;
341
342         /* fill the first part */
343         size = skb_headlen(skb);
344         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
345         if (dma_mapping_error(dev, dma)) {
346                 netdev_err(ndev, "TX head DMA map failed\n");
347                 ring->stats.sw_err_cnt++;
348                 goto out_err_tx_ok;
349         }
350         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
351                             buf_num, DESC_TYPE_SKB, ndev->mtu);
352
353         /* fill the fragments */
354         for (i = 1; i < seg_num; i++) {
355                 frag = &skb_shinfo(skb)->frags[i - 1];
356                 size = skb_frag_size(frag);
357                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
358                 if (dma_mapping_error(dev, dma)) {
359                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
360                         ring->stats.sw_err_cnt++;
361                         goto out_map_frag_fail;
362                 }
363                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
364                                     seg_num - 1 == i ? 1 : 0, buf_num,
365                                     DESC_TYPE_PAGE, ndev->mtu);
366         }
367
368         /*complete translate all packets*/
369         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
370         netdev_tx_sent_queue(dev_queue, skb->len);
371
372         netif_trans_update(ndev);
373         ndev->stats.tx_bytes += skb->len;
374         ndev->stats.tx_packets++;
375
376         wmb(); /* commit all data before submit */
377         assert(skb->queue_mapping < priv->ae_handle->q_num);
378         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
379         ring->stats.tx_pkts++;
380         ring->stats.tx_bytes += skb->len;
381
382         return NETDEV_TX_OK;
383
384 out_map_frag_fail:
385
386         while (ring->next_to_use != next_to_use) {
387                 unfill_desc(ring);
388                 if (ring->next_to_use != next_to_use)
389                         dma_unmap_page(dev,
390                                        ring->desc_cb[ring->next_to_use].dma,
391                                        ring->desc_cb[ring->next_to_use].length,
392                                        DMA_TO_DEVICE);
393                 else
394                         dma_unmap_single(dev,
395                                          ring->desc_cb[next_to_use].dma,
396                                          ring->desc_cb[next_to_use].length,
397                                          DMA_TO_DEVICE);
398         }
399
400 out_err_tx_ok:
401
402         dev_kfree_skb_any(skb);
403         return NETDEV_TX_OK;
404
405 out_net_tx_busy:
406
407         netif_stop_subqueue(ndev, skb->queue_mapping);
408
409         /* Herbert's original patch had:
410          *  smp_mb__after_netif_stop_queue();
411          * but since that doesn't exist yet, just open code it.
412          */
413         smp_mb();
414         return NETDEV_TX_BUSY;
415 }
416
417 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
418                                struct hnae_ring *ring, int pull_len,
419                                struct hnae_desc_cb *desc_cb)
420 {
421         struct hnae_desc *desc;
422         u32 truesize;
423         int size;
424         int last_offset;
425         bool twobufs;
426
427         twobufs = ((PAGE_SIZE < 8192) &&
428                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
429
430         desc = &ring->desc[ring->next_to_clean];
431         size = le16_to_cpu(desc->rx.size);
432
433         if (twobufs) {
434                 truesize = hnae_buf_size(ring);
435         } else {
436                 truesize = ALIGN(size, L1_CACHE_BYTES);
437                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
438         }
439
440         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
441                         size - pull_len, truesize);
442
443          /* avoid re-using remote pages,flag default unreuse */
444         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
445                 return;
446
447         if (twobufs) {
448                 /* if we are only owner of page we can reuse it */
449                 if (likely(page_count(desc_cb->priv) == 1)) {
450                         /* flip page offset to other buffer */
451                         desc_cb->page_offset ^= truesize;
452
453                         desc_cb->reuse_flag = 1;
454                         /* bump ref count on page before it is given*/
455                         get_page(desc_cb->priv);
456                 }
457                 return;
458         }
459
460         /* move offset up to the next cache line */
461         desc_cb->page_offset += truesize;
462
463         if (desc_cb->page_offset <= last_offset) {
464                 desc_cb->reuse_flag = 1;
465                 /* bump ref count on page before it is given*/
466                 get_page(desc_cb->priv);
467         }
468 }
469
470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
471 {
472         *out_bnum = hnae_get_field(bnum_flag,
473                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
474 }
475
476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
477 {
478         *out_bnum = hnae_get_field(bnum_flag,
479                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
480 }
481
482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
483                                 struct sk_buff *skb, u32 flag)
484 {
485         struct net_device *netdev = ring_data->napi.dev;
486         u32 l3id;
487         u32 l4id;
488
489         /* check if RX checksum offload is enabled */
490         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
491                 return;
492
493         /* In hardware, we only support checksum for the following protocols:
494          * 1) IPv4,
495          * 2) TCP(over IPv4 or IPv6),
496          * 3) UDP(over IPv4 or IPv6),
497          * 4) SCTP(over IPv4 or IPv6)
498          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
499          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
500          *
501          * Hardware limitation:
502          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
503          * Error" bit (which usually can be used to indicate whether checksum
504          * was calculated by the hardware and if there was any error encountered
505          * during checksum calculation).
506          *
507          * Software workaround:
508          * We do get info within the RX descriptor about the kind of L3/L4
509          * protocol coming in the packet and the error status. These errors
510          * might not just be checksum errors but could be related to version,
511          * length of IPv4, UDP, TCP etc.
512          * Because there is no-way of knowing if it is a L3/L4 error due to bad
513          * checksum or any other L3/L4 error, we will not (cannot) convey
514          * checksum status for such cases to upper stack and will not maintain
515          * the RX L3/L4 checksum counters as well.
516          */
517
518         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
519         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
520
521         /*  check L3 protocol for which checksum is supported */
522         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
523                 return;
524
525         /* check for any(not just checksum)flagged L3 protocol errors */
526         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
527                 return;
528
529         /* we do not support checksum of fragmented packets */
530         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
531                 return;
532
533         /*  check L4 protocol for which checksum is supported */
534         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
535             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
536             (l4id != HNS_RX_FLAG_L4ID_SCTP))
537                 return;
538
539         /* check for any(not just checksum)flagged L4 protocol errors */
540         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
541                 return;
542
543         /* now, this has to be a packet with valid RX checksum */
544         skb->ip_summed = CHECKSUM_UNNECESSARY;
545 }
546
547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
548                                struct sk_buff **out_skb, int *out_bnum)
549 {
550         struct hnae_ring *ring = ring_data->ring;
551         struct net_device *ndev = ring_data->napi.dev;
552         struct hns_nic_priv *priv = netdev_priv(ndev);
553         struct sk_buff *skb;
554         struct hnae_desc *desc;
555         struct hnae_desc_cb *desc_cb;
556         unsigned char *va;
557         int bnum, length, i;
558         int pull_len;
559         u32 bnum_flag;
560
561         desc = &ring->desc[ring->next_to_clean];
562         desc_cb = &ring->desc_cb[ring->next_to_clean];
563
564         prefetch(desc);
565
566         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
567
568         /* prefetch first cache line of first page */
569         prefetch(va);
570 #if L1_CACHE_BYTES < 128
571         prefetch(va + L1_CACHE_BYTES);
572 #endif
573
574         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
575                                         HNS_RX_HEAD_SIZE);
576         if (unlikely(!skb)) {
577                 netdev_err(ndev, "alloc rx skb fail\n");
578                 ring->stats.sw_err_cnt++;
579                 return -ENOMEM;
580         }
581
582         prefetchw(skb->data);
583         length = le16_to_cpu(desc->rx.pkt_len);
584         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
585         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
586         *out_bnum = bnum;
587
588         if (length <= HNS_RX_HEAD_SIZE) {
589                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
590
591                 /* we can reuse buffer as-is, just make sure it is local */
592                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
593                         desc_cb->reuse_flag = 1;
594                 else /* this page cannot be reused so discard it */
595                         put_page(desc_cb->priv);
596
597                 ring_ptr_move_fw(ring, next_to_clean);
598
599                 if (unlikely(bnum != 1)) { /* check err*/
600                         *out_bnum = 1;
601                         goto out_bnum_err;
602                 }
603         } else {
604                 ring->stats.seg_pkt_cnt++;
605
606                 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
607                 memcpy(__skb_put(skb, pull_len), va,
608                        ALIGN(pull_len, sizeof(long)));
609
610                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
611                 ring_ptr_move_fw(ring, next_to_clean);
612
613                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
614                         *out_bnum = 1;
615                         goto out_bnum_err;
616                 }
617                 for (i = 1; i < bnum; i++) {
618                         desc = &ring->desc[ring->next_to_clean];
619                         desc_cb = &ring->desc_cb[ring->next_to_clean];
620
621                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
622                         ring_ptr_move_fw(ring, next_to_clean);
623                 }
624         }
625
626         /* check except process, free skb and jump the desc */
627         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
628 out_bnum_err:
629                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
630                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
631                            bnum, ring->max_desc_num_per_pkt,
632                            length, (int)MAX_SKB_FRAGS,
633                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
634                 ring->stats.err_bd_num++;
635                 dev_kfree_skb_any(skb);
636                 return -EDOM;
637         }
638
639         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
640
641         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
642                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
643                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
644                 ring->stats.non_vld_descs++;
645                 dev_kfree_skb_any(skb);
646                 return -EINVAL;
647         }
648
649         if (unlikely((!desc->rx.pkt_len) ||
650                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
651                 ring->stats.err_pkt_len++;
652                 dev_kfree_skb_any(skb);
653                 return -EFAULT;
654         }
655
656         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
657                 ring->stats.l2_err++;
658                 dev_kfree_skb_any(skb);
659                 return -EFAULT;
660         }
661
662         ring->stats.rx_pkts++;
663         ring->stats.rx_bytes += skb->len;
664
665         /* indicate to upper stack if our hardware has already calculated
666          * the RX checksum
667          */
668         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
669
670         return 0;
671 }
672
673 static void
674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
675 {
676         int i, ret;
677         struct hnae_desc_cb res_cbs;
678         struct hnae_desc_cb *desc_cb;
679         struct hnae_ring *ring = ring_data->ring;
680         struct net_device *ndev = ring_data->napi.dev;
681
682         for (i = 0; i < cleand_count; i++) {
683                 desc_cb = &ring->desc_cb[ring->next_to_use];
684                 if (desc_cb->reuse_flag) {
685                         ring->stats.reuse_pg_cnt++;
686                         hnae_reuse_buffer(ring, ring->next_to_use);
687                 } else {
688                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
689                         if (ret) {
690                                 ring->stats.sw_err_cnt++;
691                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
692                                 break;
693                         }
694                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
695                 }
696
697                 ring_ptr_move_fw(ring, next_to_use);
698         }
699
700         wmb(); /* make all data has been write before submit */
701         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
702 }
703
704 /* return error number for error or number of desc left to take
705  */
706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
707                               struct sk_buff *skb)
708 {
709         struct net_device *ndev = ring_data->napi.dev;
710
711         skb->protocol = eth_type_trans(skb, ndev);
712         (void)napi_gro_receive(&ring_data->napi, skb);
713 }
714
715 static int hns_desc_unused(struct hnae_ring *ring)
716 {
717         int ntc = ring->next_to_clean;
718         int ntu = ring->next_to_use;
719
720         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
721 }
722
723 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
724 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
725
726 #define HNS_COAL_BDNUM                  3
727
728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
729 {
730         bool coal_enable = ring->q->handle->coal_adapt_en;
731
732         if (coal_enable &&
733             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
734                 return HNS_COAL_BDNUM;
735         else
736                 return 0;
737 }
738
739 static void hns_update_rx_rate(struct hnae_ring *ring)
740 {
741         bool coal_enable = ring->q->handle->coal_adapt_en;
742         u32 time_passed_ms;
743         u64 total_bytes;
744
745         if (!coal_enable ||
746             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
747                 return;
748
749         /* ring->stats.rx_bytes overflowed */
750         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
751                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
752                 ring->coal_last_jiffies = jiffies;
753                 return;
754         }
755
756         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
757         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
758         do_div(total_bytes, time_passed_ms);
759         ring->coal_rx_rate = total_bytes >> 10;
760
761         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
762         ring->coal_last_jiffies = jiffies;
763 }
764
765 /**
766  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
767  **/
768 static u32 smooth_alg(u32 new_param, u32 old_param)
769 {
770         u32 gap = (new_param > old_param) ? new_param - old_param
771                                           : old_param - new_param;
772
773         if (gap > 8)
774                 gap >>= 3;
775
776         if (new_param > old_param)
777                 return old_param + gap;
778         else
779                 return old_param - gap;
780 }
781
782 /**
783  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
784  * @ring_data: pointer to hns_nic_ring_data
785  **/
786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
787 {
788         struct hnae_ring *ring = ring_data->ring;
789         struct hnae_handle *handle = ring->q->handle;
790         u32 new_coal_param, old_coal_param = ring->coal_param;
791
792         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
793                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
794         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
795                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
796         else
797                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
798
799         if (new_coal_param == old_coal_param &&
800             new_coal_param == handle->coal_param)
801                 return;
802
803         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
804         ring->coal_param = new_coal_param;
805
806         /**
807          * Because all ring in one port has one coalesce param, when one ring
808          * calculate its own coalesce param, it cannot write to hardware at
809          * once. There are three conditions as follows:
810          *       1. current ring's coalesce param is larger than the hardware.
811          *       2. or ring which adapt last time can change again.
812          *       3. timeout.
813          */
814         if (new_coal_param == handle->coal_param) {
815                 handle->coal_last_jiffies = jiffies;
816                 handle->coal_ring_idx = ring_data->queue_index;
817         } else if (new_coal_param > handle->coal_param ||
818                    handle->coal_ring_idx == ring_data->queue_index ||
819                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
820                 handle->dev->ops->set_coalesce_usecs(handle,
821                                         new_coal_param);
822                 handle->dev->ops->set_coalesce_frames(handle,
823                                         1, new_coal_param);
824                 handle->coal_param = new_coal_param;
825                 handle->coal_ring_idx = ring_data->queue_index;
826                 handle->coal_last_jiffies = jiffies;
827         }
828 }
829
830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
831                                int budget, void *v)
832 {
833         struct hnae_ring *ring = ring_data->ring;
834         struct sk_buff *skb;
835         int num, bnum;
836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
837         int recv_pkts, recv_bds, clean_count, err;
838         int unused_count = hns_desc_unused(ring);
839
840         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
841         rmb(); /* make sure num taken effect before the other data is touched */
842
843         recv_pkts = 0, recv_bds = 0, clean_count = 0;
844         num -= unused_count;
845
846         while (recv_pkts < budget && recv_bds < num) {
847                 /* reuse or realloc buffers */
848                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
849                         hns_nic_alloc_rx_buffers(ring_data,
850                                                  clean_count + unused_count);
851                         clean_count = 0;
852                         unused_count = hns_desc_unused(ring);
853                 }
854
855                 /* poll one pkt */
856                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
857                 if (unlikely(!skb)) /* this fault cannot be repaired */
858                         goto out;
859
860                 recv_bds += bnum;
861                 clean_count += bnum;
862                 if (unlikely(err)) {  /* do jump the err */
863                         recv_pkts++;
864                         continue;
865                 }
866
867                 /* do update ip stack process*/
868                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
869                                                         ring_data, skb);
870                 recv_pkts++;
871         }
872
873 out:
874         /* make all data has been write before submit */
875         if (clean_count + unused_count > 0)
876                 hns_nic_alloc_rx_buffers(ring_data,
877                                          clean_count + unused_count);
878
879         return recv_pkts;
880 }
881
882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
883 {
884         struct hnae_ring *ring = ring_data->ring;
885         int num = 0;
886         bool rx_stopped;
887
888         hns_update_rx_rate(ring);
889
890         /* for hardware bug fixed */
891         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
892         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893
894         if (num <= hns_coal_rx_bdnum(ring)) {
895                 if (ring->q->handle->coal_adapt_en)
896                         hns_nic_adpt_coalesce(ring_data);
897
898                 rx_stopped = true;
899         } else {
900                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
901                         ring_data->ring, 1);
902
903                 rx_stopped = false;
904         }
905
906         return rx_stopped;
907 }
908
909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
910 {
911         struct hnae_ring *ring = ring_data->ring;
912         int num;
913
914         hns_update_rx_rate(ring);
915         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
916
917         if (num <= hns_coal_rx_bdnum(ring)) {
918                 if (ring->q->handle->coal_adapt_en)
919                         hns_nic_adpt_coalesce(ring_data);
920
921                 return true;
922         }
923
924         return false;
925 }
926
927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
928                                             int *bytes, int *pkts)
929 {
930         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
931
932         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
933         (*bytes) += desc_cb->length;
934         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
935         hnae_free_buffer_detach(ring, ring->next_to_clean);
936
937         ring_ptr_move_fw(ring, next_to_clean);
938 }
939
940 static int is_valid_clean_head(struct hnae_ring *ring, int h)
941 {
942         int u = ring->next_to_use;
943         int c = ring->next_to_clean;
944
945         if (unlikely(h > ring->desc_num))
946                 return 0;
947
948         assert(u > 0 && u < ring->desc_num);
949         assert(c > 0 && c < ring->desc_num);
950         assert(u != c && h != c); /* must be checked before call this func */
951
952         return u > c ? (h > c && h <= u) : (h > c || h <= u);
953 }
954
955 /* netif_tx_lock will turn down the performance, set only when necessary */
956 #ifdef CONFIG_NET_POLL_CONTROLLER
957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
959 #else
960 #define NETIF_TX_LOCK(ring)
961 #define NETIF_TX_UNLOCK(ring)
962 #endif
963
964 /* reclaim all desc in one budget
965  * return error or number of desc left
966  */
967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
968                                int budget, void *v)
969 {
970         struct hnae_ring *ring = ring_data->ring;
971         struct net_device *ndev = ring_data->napi.dev;
972         struct netdev_queue *dev_queue;
973         struct hns_nic_priv *priv = netdev_priv(ndev);
974         int head;
975         int bytes, pkts;
976
977         NETIF_TX_LOCK(ring);
978
979         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
980         rmb(); /* make sure head is ready before touch any data */
981
982         if (is_ring_empty(ring) || head == ring->next_to_clean) {
983                 NETIF_TX_UNLOCK(ring);
984                 return 0; /* no data to poll */
985         }
986
987         if (!is_valid_clean_head(ring, head)) {
988                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989                            ring->next_to_use, ring->next_to_clean);
990                 ring->stats.io_err_cnt++;
991                 NETIF_TX_UNLOCK(ring);
992                 return -EIO;
993         }
994
995         bytes = 0;
996         pkts = 0;
997         while (head != ring->next_to_clean) {
998                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
999                 /* issue prefetch for next Tx descriptor */
1000                 prefetch(&ring->desc_cb[ring->next_to_clean]);
1001         }
1002
1003         NETIF_TX_UNLOCK(ring);
1004
1005         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007
1008         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009                 netif_carrier_on(ndev);
1010
1011         if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013                 /* Make sure that anybody stopping the queue after this
1014                  * sees the new next_to_clean.
1015                  */
1016                 smp_mb();
1017                 if (netif_tx_queue_stopped(dev_queue) &&
1018                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019                         netif_tx_wake_queue(dev_queue);
1020                         ring->stats.restart_queue++;
1021                 }
1022         }
1023         return 0;
1024 }
1025
1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028         struct hnae_ring *ring = ring_data->ring;
1029         int head;
1030
1031         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032
1033         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034
1035         if (head != ring->next_to_clean) {
1036                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037                         ring_data->ring, 1);
1038
1039                 return false;
1040         } else {
1041                 return true;
1042         }
1043 }
1044
1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047         struct hnae_ring *ring = ring_data->ring;
1048         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049
1050         if (head == ring->next_to_clean)
1051                 return true;
1052         else
1053                 return false;
1054 }
1055
1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058         struct hnae_ring *ring = ring_data->ring;
1059         struct net_device *ndev = ring_data->napi.dev;
1060         struct netdev_queue *dev_queue;
1061         int head;
1062         int bytes, pkts;
1063
1064         NETIF_TX_LOCK(ring);
1065
1066         head = ring->next_to_use; /* ntu :soft setted ring position*/
1067         bytes = 0;
1068         pkts = 0;
1069         while (head != ring->next_to_clean)
1070                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1071
1072         NETIF_TX_UNLOCK(ring);
1073
1074         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1075         netdev_tx_reset_queue(dev_queue);
1076 }
1077
1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1079 {
1080         int clean_complete = 0;
1081         struct hns_nic_ring_data *ring_data =
1082                 container_of(napi, struct hns_nic_ring_data, napi);
1083         struct hnae_ring *ring = ring_data->ring;
1084
1085 try_again:
1086         clean_complete += ring_data->poll_one(
1087                                 ring_data, budget - clean_complete,
1088                                 ring_data->ex_process);
1089
1090         if (clean_complete < budget) {
1091                 if (ring_data->fini_process(ring_data)) {
1092                         napi_complete(napi);
1093                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1094                 } else {
1095                         goto try_again;
1096                 }
1097         }
1098
1099         return clean_complete;
1100 }
1101
1102 static irqreturn_t hns_irq_handle(int irq, void *dev)
1103 {
1104         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1105
1106         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1107                 ring_data->ring, 1);
1108         napi_schedule(&ring_data->napi);
1109
1110         return IRQ_HANDLED;
1111 }
1112
1113 /**
1114  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1115  *@ndev: net device
1116  */
1117 static void hns_nic_adjust_link(struct net_device *ndev)
1118 {
1119         struct hns_nic_priv *priv = netdev_priv(ndev);
1120         struct hnae_handle *h = priv->ae_handle;
1121         int state = 1;
1122
1123         /* If there is no phy, do not need adjust link */
1124         if (ndev->phydev) {
1125                 /* When phy link down, do nothing */
1126                 if (ndev->phydev->link == 0)
1127                         return;
1128
1129                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1130                                                   ndev->phydev->duplex)) {
1131                         /* because Hi161X chip don't support to change gmac
1132                          * speed and duplex with traffic. Delay 200ms to
1133                          * make sure there is no more data in chip FIFO.
1134                          */
1135                         netif_carrier_off(ndev);
1136                         msleep(200);
1137                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1138                                                  ndev->phydev->duplex);
1139                         netif_carrier_on(ndev);
1140                 }
1141         }
1142
1143         state = state && h->dev->ops->get_status(h);
1144
1145         if (state != priv->link) {
1146                 if (state) {
1147                         netif_carrier_on(ndev);
1148                         netif_tx_wake_all_queues(ndev);
1149                         netdev_info(ndev, "link up\n");
1150                 } else {
1151                         netif_carrier_off(ndev);
1152                         netdev_info(ndev, "link down\n");
1153                 }
1154                 priv->link = state;
1155         }
1156 }
1157
1158 /**
1159  *hns_nic_init_phy - init phy
1160  *@ndev: net device
1161  *@h: ae handle
1162  * Return 0 on success, negative on failure
1163  */
1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1165 {
1166         __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1167         struct phy_device *phy_dev = h->phy_dev;
1168         int ret;
1169
1170         if (!h->phy_dev)
1171                 return 0;
1172
1173         ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1174         linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1175         linkmode_copy(phy_dev->advertising, phy_dev->supported);
1176
1177         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1178                 phy_dev->autoneg = false;
1179
1180         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1181                 phy_dev->dev_flags = 0;
1182
1183                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1184                                          h->phy_if);
1185         } else {
1186                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1187         }
1188         if (unlikely(ret))
1189                 return -ENODEV;
1190
1191         return 0;
1192 }
1193
1194 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1195 {
1196         struct hns_nic_priv *priv = netdev_priv(netdev);
1197         struct hnae_handle *h = priv->ae_handle;
1198
1199         napi_enable(&priv->ring_data[idx].napi);
1200
1201         enable_irq(priv->ring_data[idx].ring->irq);
1202         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1203
1204         return 0;
1205 }
1206
1207 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1208 {
1209         struct hns_nic_priv *priv = netdev_priv(ndev);
1210         struct hnae_handle *h = priv->ae_handle;
1211         struct sockaddr *mac_addr = p;
1212         int ret;
1213
1214         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1215                 return -EADDRNOTAVAIL;
1216
1217         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1218         if (ret) {
1219                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1220                 return ret;
1221         }
1222
1223         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1224
1225         return 0;
1226 }
1227
1228 static void hns_nic_update_stats(struct net_device *netdev)
1229 {
1230         struct hns_nic_priv *priv = netdev_priv(netdev);
1231         struct hnae_handle *h = priv->ae_handle;
1232
1233         h->dev->ops->update_stats(h, &netdev->stats);
1234 }
1235
1236 /* set mac addr if it is configed. or leave it to the AE driver */
1237 static void hns_init_mac_addr(struct net_device *ndev)
1238 {
1239         struct hns_nic_priv *priv = netdev_priv(ndev);
1240
1241         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1242                 eth_hw_addr_random(ndev);
1243                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1244                          ndev->dev_addr);
1245         }
1246 }
1247
1248 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1249 {
1250         struct hns_nic_priv *priv = netdev_priv(netdev);
1251         struct hnae_handle *h = priv->ae_handle;
1252
1253         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1254         disable_irq(priv->ring_data[idx].ring->irq);
1255
1256         napi_disable(&priv->ring_data[idx].napi);
1257 }
1258
1259 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1260                                       struct hnae_ring *ring, cpumask_t *mask)
1261 {
1262         int cpu;
1263
1264         /* Diffrent irq banlance between 16core and 32core.
1265          * The cpu mask set by ring index according to the ring flag
1266          * which indicate the ring is tx or rx.
1267          */
1268         if (q_num == num_possible_cpus()) {
1269                 if (is_tx_ring(ring))
1270                         cpu = ring_idx;
1271                 else
1272                         cpu = ring_idx - q_num;
1273         } else {
1274                 if (is_tx_ring(ring))
1275                         cpu = ring_idx * 2;
1276                 else
1277                         cpu = (ring_idx - q_num) * 2 + 1;
1278         }
1279
1280         cpumask_clear(mask);
1281         cpumask_set_cpu(cpu, mask);
1282
1283         return cpu;
1284 }
1285
1286 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1287 {
1288         int i;
1289
1290         for (i = 0; i < q_num * 2; i++) {
1291                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1292                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1293                                               NULL);
1294                         free_irq(priv->ring_data[i].ring->irq,
1295                                  &priv->ring_data[i]);
1296                         priv->ring_data[i].ring->irq_init_flag =
1297                                 RCB_IRQ_NOT_INITED;
1298                 }
1299         }
1300 }
1301
1302 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1303 {
1304         struct hnae_handle *h = priv->ae_handle;
1305         struct hns_nic_ring_data *rd;
1306         int i;
1307         int ret;
1308         int cpu;
1309
1310         for (i = 0; i < h->q_num * 2; i++) {
1311                 rd = &priv->ring_data[i];
1312
1313                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1314                         break;
1315
1316                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1317                          "%s-%s%d", priv->netdev->name,
1318                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1319
1320                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1321
1322                 ret = request_irq(rd->ring->irq,
1323                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1324                 if (ret) {
1325                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1326                                    rd->ring->irq);
1327                         goto out_free_irq;
1328                 }
1329                 disable_irq(rd->ring->irq);
1330
1331                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1332                                                  rd->ring, &rd->mask);
1333
1334                 if (cpu_online(cpu))
1335                         irq_set_affinity_hint(rd->ring->irq,
1336                                               &rd->mask);
1337
1338                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1339         }
1340
1341         return 0;
1342
1343 out_free_irq:
1344         hns_nic_free_irq(h->q_num, priv);
1345         return ret;
1346 }
1347
1348 static int hns_nic_net_up(struct net_device *ndev)
1349 {
1350         struct hns_nic_priv *priv = netdev_priv(ndev);
1351         struct hnae_handle *h = priv->ae_handle;
1352         int i, j;
1353         int ret;
1354
1355         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1356                 return 0;
1357
1358         ret = hns_nic_init_irq(priv);
1359         if (ret != 0) {
1360                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1361                 return ret;
1362         }
1363
1364         for (i = 0; i < h->q_num * 2; i++) {
1365                 ret = hns_nic_ring_open(ndev, i);
1366                 if (ret)
1367                         goto out_has_some_queues;
1368         }
1369
1370         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1371         if (ret)
1372                 goto out_set_mac_addr_err;
1373
1374         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1375         if (ret)
1376                 goto out_start_err;
1377
1378         if (ndev->phydev)
1379                 phy_start(ndev->phydev);
1380
1381         clear_bit(NIC_STATE_DOWN, &priv->state);
1382         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1383
1384         return 0;
1385
1386 out_start_err:
1387         netif_stop_queue(ndev);
1388 out_set_mac_addr_err:
1389 out_has_some_queues:
1390         for (j = i - 1; j >= 0; j--)
1391                 hns_nic_ring_close(ndev, j);
1392
1393         hns_nic_free_irq(h->q_num, priv);
1394         set_bit(NIC_STATE_DOWN, &priv->state);
1395
1396         return ret;
1397 }
1398
1399 static void hns_nic_net_down(struct net_device *ndev)
1400 {
1401         int i;
1402         struct hnae_ae_ops *ops;
1403         struct hns_nic_priv *priv = netdev_priv(ndev);
1404
1405         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1406                 return;
1407
1408         (void)del_timer_sync(&priv->service_timer);
1409         netif_tx_stop_all_queues(ndev);
1410         netif_carrier_off(ndev);
1411         netif_tx_disable(ndev);
1412         priv->link = 0;
1413
1414         if (ndev->phydev)
1415                 phy_stop(ndev->phydev);
1416
1417         ops = priv->ae_handle->dev->ops;
1418
1419         if (ops->stop)
1420                 ops->stop(priv->ae_handle);
1421
1422         netif_tx_stop_all_queues(ndev);
1423
1424         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1425                 hns_nic_ring_close(ndev, i);
1426                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1427
1428                 /* clean tx buffers*/
1429                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1430         }
1431 }
1432
1433 void hns_nic_net_reset(struct net_device *ndev)
1434 {
1435         struct hns_nic_priv *priv = netdev_priv(ndev);
1436         struct hnae_handle *handle = priv->ae_handle;
1437
1438         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1439                 usleep_range(1000, 2000);
1440
1441         (void)hnae_reinit_handle(handle);
1442
1443         clear_bit(NIC_STATE_RESETTING, &priv->state);
1444 }
1445
1446 void hns_nic_net_reinit(struct net_device *netdev)
1447 {
1448         struct hns_nic_priv *priv = netdev_priv(netdev);
1449         enum hnae_port_type type = priv->ae_handle->port_type;
1450
1451         netif_trans_update(priv->netdev);
1452         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1453                 usleep_range(1000, 2000);
1454
1455         hns_nic_net_down(netdev);
1456
1457         /* Only do hns_nic_net_reset in debug mode
1458          * because of hardware limitation.
1459          */
1460         if (type == HNAE_PORT_DEBUG)
1461                 hns_nic_net_reset(netdev);
1462
1463         (void)hns_nic_net_up(netdev);
1464         clear_bit(NIC_STATE_REINITING, &priv->state);
1465 }
1466
1467 static int hns_nic_net_open(struct net_device *ndev)
1468 {
1469         struct hns_nic_priv *priv = netdev_priv(ndev);
1470         struct hnae_handle *h = priv->ae_handle;
1471         int ret;
1472
1473         if (test_bit(NIC_STATE_TESTING, &priv->state))
1474                 return -EBUSY;
1475
1476         priv->link = 0;
1477         netif_carrier_off(ndev);
1478
1479         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1480         if (ret < 0) {
1481                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1482                            ret);
1483                 return ret;
1484         }
1485
1486         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1487         if (ret < 0) {
1488                 netdev_err(ndev,
1489                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1490                 return ret;
1491         }
1492
1493         ret = hns_nic_net_up(ndev);
1494         if (ret) {
1495                 netdev_err(ndev,
1496                            "hns net up fail, ret=%d!\n", ret);
1497                 return ret;
1498         }
1499
1500         return 0;
1501 }
1502
1503 static int hns_nic_net_stop(struct net_device *ndev)
1504 {
1505         hns_nic_net_down(ndev);
1506
1507         return 0;
1508 }
1509
1510 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1511 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1512 static void hns_nic_net_timeout(struct net_device *ndev)
1513 {
1514         struct hns_nic_priv *priv = netdev_priv(ndev);
1515
1516         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1517                 ndev->watchdog_timeo *= 2;
1518                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1519                             ndev->watchdog_timeo);
1520         } else {
1521                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1522                 hns_tx_timeout_reset(priv);
1523         }
1524 }
1525
1526 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1527                             int cmd)
1528 {
1529         struct phy_device *phy_dev = netdev->phydev;
1530
1531         if (!netif_running(netdev))
1532                 return -EINVAL;
1533
1534         if (!phy_dev)
1535                 return -ENOTSUPP;
1536
1537         return phy_mii_ioctl(phy_dev, ifr, cmd);
1538 }
1539
1540 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1541                                     struct net_device *ndev)
1542 {
1543         struct hns_nic_priv *priv = netdev_priv(ndev);
1544
1545         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1546
1547         return hns_nic_net_xmit_hw(ndev, skb,
1548                                    &tx_ring_data(priv, skb->queue_mapping));
1549 }
1550
1551 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1552                                   struct sk_buff *skb)
1553 {
1554         dev_kfree_skb_any(skb);
1555 }
1556
1557 #define HNS_LB_TX_RING  0
1558 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1559 {
1560         struct sk_buff *skb;
1561         struct ethhdr *ethhdr;
1562         int frame_len;
1563
1564         /* allocate test skb */
1565         skb = alloc_skb(64, GFP_KERNEL);
1566         if (!skb)
1567                 return NULL;
1568
1569         skb_put(skb, 64);
1570         skb->dev = ndev;
1571         memset(skb->data, 0xFF, skb->len);
1572
1573         /* must be tcp/ip package */
1574         ethhdr = (struct ethhdr *)skb->data;
1575         ethhdr->h_proto = htons(ETH_P_IP);
1576
1577         frame_len = skb->len & (~1ul);
1578         memset(&skb->data[frame_len / 2], 0xAA,
1579                frame_len / 2 - 1);
1580
1581         skb->queue_mapping = HNS_LB_TX_RING;
1582
1583         return skb;
1584 }
1585
1586 static int hns_enable_serdes_lb(struct net_device *ndev)
1587 {
1588         struct hns_nic_priv *priv = netdev_priv(ndev);
1589         struct hnae_handle *h = priv->ae_handle;
1590         struct hnae_ae_ops *ops = h->dev->ops;
1591         int speed, duplex;
1592         int ret;
1593
1594         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1595         if (ret)
1596                 return ret;
1597
1598         ret = ops->start ? ops->start(h) : 0;
1599         if (ret)
1600                 return ret;
1601
1602         /* link adjust duplex*/
1603         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1604                 speed = 1000;
1605         else
1606                 speed = 10000;
1607         duplex = 1;
1608
1609         ops->adjust_link(h, speed, duplex);
1610
1611         /* wait h/w ready */
1612         mdelay(300);
1613
1614         return 0;
1615 }
1616
1617 static void hns_disable_serdes_lb(struct net_device *ndev)
1618 {
1619         struct hns_nic_priv *priv = netdev_priv(ndev);
1620         struct hnae_handle *h = priv->ae_handle;
1621         struct hnae_ae_ops *ops = h->dev->ops;
1622
1623         ops->stop(h);
1624         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1625 }
1626
1627 /**
1628  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1629  *function as follows:
1630  *    1. if one rx ring has found the page_offset is not equal 0 between head
1631  *       and tail, it means that the chip fetched the wrong descs for the ring
1632  *       which buffer size is 4096.
1633  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1634  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1635  *       recieving all packages and it will fetch new descriptions.
1636  *    4. recover to the original state.
1637  *
1638  *@ndev: net device
1639  */
1640 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1641 {
1642         struct hns_nic_priv *priv = netdev_priv(ndev);
1643         struct hnae_handle *h = priv->ae_handle;
1644         struct hnae_ae_ops *ops = h->dev->ops;
1645         struct hns_nic_ring_data *rd;
1646         struct hnae_ring *ring;
1647         struct sk_buff *skb;
1648         u32 *org_indir;
1649         u32 *cur_indir;
1650         int indir_size;
1651         int head, tail;
1652         int fetch_num;
1653         int i, j;
1654         bool found;
1655         int retry_times;
1656         int ret = 0;
1657
1658         /* alloc indir memory */
1659         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1660         org_indir = kzalloc(indir_size, GFP_KERNEL);
1661         if (!org_indir)
1662                 return -ENOMEM;
1663
1664         /* store the orginal indirection */
1665         ops->get_rss(h, org_indir, NULL, NULL);
1666
1667         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1668         if (!cur_indir) {
1669                 ret = -ENOMEM;
1670                 goto cur_indir_alloc_err;
1671         }
1672
1673         /* set loopback */
1674         if (hns_enable_serdes_lb(ndev)) {
1675                 ret = -EINVAL;
1676                 goto enable_serdes_lb_err;
1677         }
1678
1679         /* foreach every rx ring to clear fetch desc */
1680         for (i = 0; i < h->q_num; i++) {
1681                 ring = &h->qs[i]->rx_ring;
1682                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1683                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1684                 found = false;
1685                 fetch_num = ring_dist(ring, head, tail);
1686
1687                 while (head != tail) {
1688                         if (ring->desc_cb[head].page_offset != 0) {
1689                                 found = true;
1690                                 break;
1691                         }
1692
1693                         head++;
1694                         if (head == ring->desc_num)
1695                                 head = 0;
1696                 }
1697
1698                 if (found) {
1699                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1700                                 cur_indir[j] = i;
1701                         ops->set_rss(h, cur_indir, NULL, 0);
1702
1703                         for (j = 0; j < fetch_num; j++) {
1704                                 /* alloc one skb and init */
1705                                 skb = hns_assemble_skb(ndev);
1706                                 if (!skb)
1707                                         goto out;
1708                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1709                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1710
1711                                 retry_times = 0;
1712                                 while (retry_times++ < 10) {
1713                                         mdelay(10);
1714                                         /* clean rx */
1715                                         rd = &rx_ring_data(priv, i);
1716                                         if (rd->poll_one(rd, fetch_num,
1717                                                          hns_nic_drop_rx_fetch))
1718                                                 break;
1719                                 }
1720
1721                                 retry_times = 0;
1722                                 while (retry_times++ < 10) {
1723                                         mdelay(10);
1724                                         /* clean tx ring 0 send package */
1725                                         rd = &tx_ring_data(priv,
1726                                                            HNS_LB_TX_RING);
1727                                         if (rd->poll_one(rd, fetch_num, NULL))
1728                                                 break;
1729                                 }
1730                         }
1731                 }
1732         }
1733
1734 out:
1735         /* restore everything */
1736         ops->set_rss(h, org_indir, NULL, 0);
1737         hns_disable_serdes_lb(ndev);
1738 enable_serdes_lb_err:
1739         kfree(cur_indir);
1740 cur_indir_alloc_err:
1741         kfree(org_indir);
1742
1743         return ret;
1744 }
1745
1746 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1747 {
1748         struct hns_nic_priv *priv = netdev_priv(ndev);
1749         struct hnae_handle *h = priv->ae_handle;
1750         bool if_running = netif_running(ndev);
1751         int ret;
1752
1753         /* MTU < 68 is an error and causes problems on some kernels */
1754         if (new_mtu < 68)
1755                 return -EINVAL;
1756
1757         /* MTU no change */
1758         if (new_mtu == ndev->mtu)
1759                 return 0;
1760
1761         if (!h->dev->ops->set_mtu)
1762                 return -ENOTSUPP;
1763
1764         if (if_running) {
1765                 (void)hns_nic_net_stop(ndev);
1766                 msleep(100);
1767         }
1768
1769         if (priv->enet_ver != AE_VERSION_1 &&
1770             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1771             new_mtu > BD_SIZE_2048_MAX_MTU) {
1772                 /* update desc */
1773                 hnae_reinit_all_ring_desc(h);
1774
1775                 /* clear the package which the chip has fetched */
1776                 ret = hns_nic_clear_all_rx_fetch(ndev);
1777
1778                 /* the page offset must be consist with desc */
1779                 hnae_reinit_all_ring_page_off(h);
1780
1781                 if (ret) {
1782                         netdev_err(ndev, "clear the fetched desc fail\n");
1783                         goto out;
1784                 }
1785         }
1786
1787         ret = h->dev->ops->set_mtu(h, new_mtu);
1788         if (ret) {
1789                 netdev_err(ndev, "set mtu fail, return value %d\n",
1790                            ret);
1791                 goto out;
1792         }
1793
1794         /* finally, set new mtu to netdevice */
1795         ndev->mtu = new_mtu;
1796
1797 out:
1798         if (if_running) {
1799                 if (hns_nic_net_open(ndev)) {
1800                         netdev_err(ndev, "hns net open fail\n");
1801                         ret = -EINVAL;
1802                 }
1803         }
1804
1805         return ret;
1806 }
1807
1808 static int hns_nic_set_features(struct net_device *netdev,
1809                                 netdev_features_t features)
1810 {
1811         struct hns_nic_priv *priv = netdev_priv(netdev);
1812
1813         switch (priv->enet_ver) {
1814         case AE_VERSION_1:
1815                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1816                         netdev_info(netdev, "enet v1 do not support tso!\n");
1817                 break;
1818         default:
1819                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1820                         priv->ops.fill_desc = fill_tso_desc;
1821                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1822                         /* The chip only support 7*4096 */
1823                         netif_set_gso_max_size(netdev, 7 * 4096);
1824                 } else {
1825                         priv->ops.fill_desc = fill_v2_desc;
1826                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1827                 }
1828                 break;
1829         }
1830         netdev->features = features;
1831         return 0;
1832 }
1833
1834 static netdev_features_t hns_nic_fix_features(
1835                 struct net_device *netdev, netdev_features_t features)
1836 {
1837         struct hns_nic_priv *priv = netdev_priv(netdev);
1838
1839         switch (priv->enet_ver) {
1840         case AE_VERSION_1:
1841                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1842                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1843                 break;
1844         default:
1845                 break;
1846         }
1847         return features;
1848 }
1849
1850 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1851 {
1852         struct hns_nic_priv *priv = netdev_priv(netdev);
1853         struct hnae_handle *h = priv->ae_handle;
1854
1855         if (h->dev->ops->add_uc_addr)
1856                 return h->dev->ops->add_uc_addr(h, addr);
1857
1858         return 0;
1859 }
1860
1861 static int hns_nic_uc_unsync(struct net_device *netdev,
1862                              const unsigned char *addr)
1863 {
1864         struct hns_nic_priv *priv = netdev_priv(netdev);
1865         struct hnae_handle *h = priv->ae_handle;
1866
1867         if (h->dev->ops->rm_uc_addr)
1868                 return h->dev->ops->rm_uc_addr(h, addr);
1869
1870         return 0;
1871 }
1872
1873 /**
1874  * nic_set_multicast_list - set mutl mac address
1875  * @netdev: net device
1876  * @p: mac address
1877  *
1878  * return void
1879  */
1880 static void hns_set_multicast_list(struct net_device *ndev)
1881 {
1882         struct hns_nic_priv *priv = netdev_priv(ndev);
1883         struct hnae_handle *h = priv->ae_handle;
1884         struct netdev_hw_addr *ha = NULL;
1885
1886         if (!h) {
1887                 netdev_err(ndev, "hnae handle is null\n");
1888                 return;
1889         }
1890
1891         if (h->dev->ops->clr_mc_addr)
1892                 if (h->dev->ops->clr_mc_addr(h))
1893                         netdev_err(ndev, "clear multicast address fail\n");
1894
1895         if (h->dev->ops->set_mc_addr) {
1896                 netdev_for_each_mc_addr(ha, ndev)
1897                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1898                                 netdev_err(ndev, "set multicast fail\n");
1899         }
1900 }
1901
1902 static void hns_nic_set_rx_mode(struct net_device *ndev)
1903 {
1904         struct hns_nic_priv *priv = netdev_priv(ndev);
1905         struct hnae_handle *h = priv->ae_handle;
1906
1907         if (h->dev->ops->set_promisc_mode) {
1908                 if (ndev->flags & IFF_PROMISC)
1909                         h->dev->ops->set_promisc_mode(h, 1);
1910                 else
1911                         h->dev->ops->set_promisc_mode(h, 0);
1912         }
1913
1914         hns_set_multicast_list(ndev);
1915
1916         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1917                 netdev_err(ndev, "sync uc address fail\n");
1918 }
1919
1920 static void hns_nic_get_stats64(struct net_device *ndev,
1921                                 struct rtnl_link_stats64 *stats)
1922 {
1923         int idx = 0;
1924         u64 tx_bytes = 0;
1925         u64 rx_bytes = 0;
1926         u64 tx_pkts = 0;
1927         u64 rx_pkts = 0;
1928         struct hns_nic_priv *priv = netdev_priv(ndev);
1929         struct hnae_handle *h = priv->ae_handle;
1930
1931         for (idx = 0; idx < h->q_num; idx++) {
1932                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1933                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1934                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1935                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1936         }
1937
1938         stats->tx_bytes = tx_bytes;
1939         stats->tx_packets = tx_pkts;
1940         stats->rx_bytes = rx_bytes;
1941         stats->rx_packets = rx_pkts;
1942
1943         stats->rx_errors = ndev->stats.rx_errors;
1944         stats->multicast = ndev->stats.multicast;
1945         stats->rx_length_errors = ndev->stats.rx_length_errors;
1946         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1947         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1948
1949         stats->tx_errors = ndev->stats.tx_errors;
1950         stats->rx_dropped = ndev->stats.rx_dropped;
1951         stats->tx_dropped = ndev->stats.tx_dropped;
1952         stats->collisions = ndev->stats.collisions;
1953         stats->rx_over_errors = ndev->stats.rx_over_errors;
1954         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1955         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1956         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1957         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1958         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1959         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1960         stats->tx_window_errors = ndev->stats.tx_window_errors;
1961         stats->rx_compressed = ndev->stats.rx_compressed;
1962         stats->tx_compressed = ndev->stats.tx_compressed;
1963 }
1964
1965 static u16
1966 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1967                      struct net_device *sb_dev,
1968                      select_queue_fallback_t fallback)
1969 {
1970         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1971         struct hns_nic_priv *priv = netdev_priv(ndev);
1972
1973         /* fix hardware broadcast/multicast packets queue loopback */
1974         if (!AE_IS_VER1(priv->enet_ver) &&
1975             is_multicast_ether_addr(eth_hdr->h_dest))
1976                 return 0;
1977         else
1978                 return fallback(ndev, skb, NULL);
1979 }
1980
1981 static const struct net_device_ops hns_nic_netdev_ops = {
1982         .ndo_open = hns_nic_net_open,
1983         .ndo_stop = hns_nic_net_stop,
1984         .ndo_start_xmit = hns_nic_net_xmit,
1985         .ndo_tx_timeout = hns_nic_net_timeout,
1986         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1987         .ndo_change_mtu = hns_nic_change_mtu,
1988         .ndo_do_ioctl = hns_nic_do_ioctl,
1989         .ndo_set_features = hns_nic_set_features,
1990         .ndo_fix_features = hns_nic_fix_features,
1991         .ndo_get_stats64 = hns_nic_get_stats64,
1992         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1993         .ndo_select_queue = hns_nic_select_queue,
1994 };
1995
1996 static void hns_nic_update_link_status(struct net_device *netdev)
1997 {
1998         struct hns_nic_priv *priv = netdev_priv(netdev);
1999
2000         struct hnae_handle *h = priv->ae_handle;
2001
2002         if (h->phy_dev) {
2003                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2004                         return;
2005
2006                 (void)genphy_read_status(h->phy_dev);
2007         }
2008         hns_nic_adjust_link(netdev);
2009 }
2010
2011 /* for dumping key regs*/
2012 static void hns_nic_dump(struct hns_nic_priv *priv)
2013 {
2014         struct hnae_handle *h = priv->ae_handle;
2015         struct hnae_ae_ops *ops = h->dev->ops;
2016         u32 *data, reg_num, i;
2017
2018         if (ops->get_regs_len && ops->get_regs) {
2019                 reg_num = ops->get_regs_len(priv->ae_handle);
2020                 reg_num = (reg_num + 3ul) & ~3ul;
2021                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2022                 if (data) {
2023                         ops->get_regs(priv->ae_handle, data);
2024                         for (i = 0; i < reg_num; i += 4)
2025                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2026                                         i, data[i], data[i + 1],
2027                                         data[i + 2], data[i + 3]);
2028                         kfree(data);
2029                 }
2030         }
2031
2032         for (i = 0; i < h->q_num; i++) {
2033                 pr_info("tx_queue%d_next_to_clean:%d\n",
2034                         i, h->qs[i]->tx_ring.next_to_clean);
2035                 pr_info("tx_queue%d_next_to_use:%d\n",
2036                         i, h->qs[i]->tx_ring.next_to_use);
2037                 pr_info("rx_queue%d_next_to_clean:%d\n",
2038                         i, h->qs[i]->rx_ring.next_to_clean);
2039                 pr_info("rx_queue%d_next_to_use:%d\n",
2040                         i, h->qs[i]->rx_ring.next_to_use);
2041         }
2042 }
2043
2044 /* for resetting subtask */
2045 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2046 {
2047         enum hnae_port_type type = priv->ae_handle->port_type;
2048
2049         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2050                 return;
2051         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2052
2053         /* If we're already down, removing or resetting, just bail */
2054         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2055             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2056             test_bit(NIC_STATE_RESETTING, &priv->state))
2057                 return;
2058
2059         hns_nic_dump(priv);
2060         netdev_info(priv->netdev, "try to reset %s port!\n",
2061                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2062
2063         rtnl_lock();
2064         /* put off any impending NetWatchDogTimeout */
2065         netif_trans_update(priv->netdev);
2066         hns_nic_net_reinit(priv->netdev);
2067
2068         rtnl_unlock();
2069 }
2070
2071 /* for doing service complete*/
2072 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2073 {
2074         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2075         /* make sure to commit the things */
2076         smp_mb__before_atomic();
2077         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2078 }
2079
2080 static void hns_nic_service_task(struct work_struct *work)
2081 {
2082         struct hns_nic_priv *priv
2083                 = container_of(work, struct hns_nic_priv, service_task);
2084         struct hnae_handle *h = priv->ae_handle;
2085
2086         hns_nic_reset_subtask(priv);
2087         hns_nic_update_link_status(priv->netdev);
2088         h->dev->ops->update_led_status(h);
2089         hns_nic_update_stats(priv->netdev);
2090
2091         hns_nic_service_event_complete(priv);
2092 }
2093
2094 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2095 {
2096         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2097             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2098             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2099                 (void)schedule_work(&priv->service_task);
2100 }
2101
2102 static void hns_nic_service_timer(struct timer_list *t)
2103 {
2104         struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2105
2106         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2107
2108         hns_nic_task_schedule(priv);
2109 }
2110
2111 /**
2112  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2113  * @priv: driver private struct
2114  **/
2115 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2116 {
2117         /* Do the reset outside of interrupt context */
2118         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2119                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2120                 netdev_warn(priv->netdev,
2121                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2122                             priv->tx_timeout_count, priv->state);
2123                 priv->tx_timeout_count++;
2124                 hns_nic_task_schedule(priv);
2125         }
2126 }
2127
2128 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2129 {
2130         struct hnae_handle *h = priv->ae_handle;
2131         struct hns_nic_ring_data *rd;
2132         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2133         int i;
2134
2135         if (h->q_num > NIC_MAX_Q_PER_VF) {
2136                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2137                 return -EINVAL;
2138         }
2139
2140         priv->ring_data = kzalloc(array3_size(h->q_num,
2141                                               sizeof(*priv->ring_data), 2),
2142                                   GFP_KERNEL);
2143         if (!priv->ring_data)
2144                 return -ENOMEM;
2145
2146         for (i = 0; i < h->q_num; i++) {
2147                 rd = &priv->ring_data[i];
2148                 rd->queue_index = i;
2149                 rd->ring = &h->qs[i]->tx_ring;
2150                 rd->poll_one = hns_nic_tx_poll_one;
2151                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2152                         hns_nic_tx_fini_pro_v2;
2153
2154                 netif_napi_add(priv->netdev, &rd->napi,
2155                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2156                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2157         }
2158         for (i = h->q_num; i < h->q_num * 2; i++) {
2159                 rd = &priv->ring_data[i];
2160                 rd->queue_index = i - h->q_num;
2161                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2162                 rd->poll_one = hns_nic_rx_poll_one;
2163                 rd->ex_process = hns_nic_rx_up_pro;
2164                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2165                         hns_nic_rx_fini_pro_v2;
2166
2167                 netif_napi_add(priv->netdev, &rd->napi,
2168                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2169                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2170         }
2171
2172         return 0;
2173 }
2174
2175 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2176 {
2177         struct hnae_handle *h = priv->ae_handle;
2178         int i;
2179
2180         for (i = 0; i < h->q_num * 2; i++) {
2181                 netif_napi_del(&priv->ring_data[i].napi);
2182                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2183                         (void)irq_set_affinity_hint(
2184                                 priv->ring_data[i].ring->irq,
2185                                 NULL);
2186                         free_irq(priv->ring_data[i].ring->irq,
2187                                  &priv->ring_data[i]);
2188                 }
2189
2190                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2191         }
2192         kfree(priv->ring_data);
2193 }
2194
2195 static void hns_nic_set_priv_ops(struct net_device *netdev)
2196 {
2197         struct hns_nic_priv *priv = netdev_priv(netdev);
2198         struct hnae_handle *h = priv->ae_handle;
2199
2200         if (AE_IS_VER1(priv->enet_ver)) {
2201                 priv->ops.fill_desc = fill_desc;
2202                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2203                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2204         } else {
2205                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2206                 if ((netdev->features & NETIF_F_TSO) ||
2207                     (netdev->features & NETIF_F_TSO6)) {
2208                         priv->ops.fill_desc = fill_tso_desc;
2209                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2210                         /* This chip only support 7*4096 */
2211                         netif_set_gso_max_size(netdev, 7 * 4096);
2212                 } else {
2213                         priv->ops.fill_desc = fill_v2_desc;
2214                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2215                 }
2216                 /* enable tso when init
2217                  * control tso on/off through TSE bit in bd
2218                  */
2219                 h->dev->ops->set_tso_stats(h, 1);
2220         }
2221 }
2222
2223 static int hns_nic_try_get_ae(struct net_device *ndev)
2224 {
2225         struct hns_nic_priv *priv = netdev_priv(ndev);
2226         struct hnae_handle *h;
2227         int ret;
2228
2229         h = hnae_get_handle(&priv->netdev->dev,
2230                             priv->fwnode, priv->port_id, NULL);
2231         if (IS_ERR_OR_NULL(h)) {
2232                 ret = -ENODEV;
2233                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2234                 goto out;
2235         }
2236         priv->ae_handle = h;
2237
2238         ret = hns_nic_init_phy(ndev, h);
2239         if (ret) {
2240                 dev_err(priv->dev, "probe phy device fail!\n");
2241                 goto out_init_phy;
2242         }
2243
2244         ret = hns_nic_init_ring_data(priv);
2245         if (ret) {
2246                 ret = -ENOMEM;
2247                 goto out_init_ring_data;
2248         }
2249
2250         hns_nic_set_priv_ops(ndev);
2251
2252         ret = register_netdev(ndev);
2253         if (ret) {
2254                 dev_err(priv->dev, "probe register netdev fail!\n");
2255                 goto out_reg_ndev_fail;
2256         }
2257         return 0;
2258
2259 out_reg_ndev_fail:
2260         hns_nic_uninit_ring_data(priv);
2261         priv->ring_data = NULL;
2262 out_init_phy:
2263 out_init_ring_data:
2264         hnae_put_handle(priv->ae_handle);
2265         priv->ae_handle = NULL;
2266 out:
2267         return ret;
2268 }
2269
2270 static int hns_nic_notifier_action(struct notifier_block *nb,
2271                                    unsigned long action, void *data)
2272 {
2273         struct hns_nic_priv *priv =
2274                 container_of(nb, struct hns_nic_priv, notifier_block);
2275
2276         assert(action == HNAE_AE_REGISTER);
2277
2278         if (!hns_nic_try_get_ae(priv->netdev)) {
2279                 hnae_unregister_notifier(&priv->notifier_block);
2280                 priv->notifier_block.notifier_call = NULL;
2281         }
2282         return 0;
2283 }
2284
2285 static int hns_nic_dev_probe(struct platform_device *pdev)
2286 {
2287         struct device *dev = &pdev->dev;
2288         struct net_device *ndev;
2289         struct hns_nic_priv *priv;
2290         u32 port_id;
2291         int ret;
2292
2293         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2294         if (!ndev)
2295                 return -ENOMEM;
2296
2297         platform_set_drvdata(pdev, ndev);
2298
2299         priv = netdev_priv(ndev);
2300         priv->dev = dev;
2301         priv->netdev = ndev;
2302
2303         if (dev_of_node(dev)) {
2304                 struct device_node *ae_node;
2305
2306                 if (of_device_is_compatible(dev->of_node,
2307                                             "hisilicon,hns-nic-v1"))
2308                         priv->enet_ver = AE_VERSION_1;
2309                 else
2310                         priv->enet_ver = AE_VERSION_2;
2311
2312                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2313                 if (!ae_node) {
2314                         ret = -ENODEV;
2315                         dev_err(dev, "not find ae-handle\n");
2316                         goto out_read_prop_fail;
2317                 }
2318                 priv->fwnode = &ae_node->fwnode;
2319         } else if (is_acpi_node(dev->fwnode)) {
2320                 struct fwnode_reference_args args;
2321
2322                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2323                         priv->enet_ver = AE_VERSION_1;
2324                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2325                         priv->enet_ver = AE_VERSION_2;
2326                 else
2327                         return -ENXIO;
2328
2329                 /* try to find port-idx-in-ae first */
2330                 ret = acpi_node_get_property_reference(dev->fwnode,
2331                                                        "ae-handle", 0, &args);
2332                 if (ret) {
2333                         dev_err(dev, "not find ae-handle\n");
2334                         goto out_read_prop_fail;
2335                 }
2336                 if (!is_acpi_device_node(args.fwnode)) {
2337                         ret = -EINVAL;
2338                         goto out_read_prop_fail;
2339                 }
2340                 priv->fwnode = args.fwnode;
2341         } else {
2342                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2343                 return -ENXIO;
2344         }
2345
2346         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2347         if (ret) {
2348                 /* only for old code compatible */
2349                 ret = device_property_read_u32(dev, "port-id", &port_id);
2350                 if (ret)
2351                         goto out_read_prop_fail;
2352                 /* for old dts, we need to caculate the port offset */
2353                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2354                         : port_id - HNS_SRV_OFFSET;
2355         }
2356         priv->port_id = port_id;
2357
2358         hns_init_mac_addr(ndev);
2359
2360         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2361         ndev->priv_flags |= IFF_UNICAST_FLT;
2362         ndev->netdev_ops = &hns_nic_netdev_ops;
2363         hns_ethtool_set_ops(ndev);
2364
2365         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2366                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2367                 NETIF_F_GRO;
2368         ndev->vlan_features |=
2369                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2370         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2371
2372         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2373         ndev->min_mtu = MAC_MIN_MTU;
2374         switch (priv->enet_ver) {
2375         case AE_VERSION_2:
2376                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2377                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2378                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2379                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2380                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2381                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2382                 break;
2383         default:
2384                 ndev->max_mtu = MAC_MAX_MTU -
2385                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2386                 break;
2387         }
2388
2389         SET_NETDEV_DEV(ndev, dev);
2390
2391         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2392                 dev_dbg(dev, "set mask to 64bit\n");
2393         else
2394                 dev_err(dev, "set mask to 64bit fail!\n");
2395
2396         /* carrier off reporting is important to ethtool even BEFORE open */
2397         netif_carrier_off(ndev);
2398
2399         timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2400         INIT_WORK(&priv->service_task, hns_nic_service_task);
2401
2402         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2403         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2404         set_bit(NIC_STATE_DOWN, &priv->state);
2405
2406         if (hns_nic_try_get_ae(priv->netdev)) {
2407                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2408                 ret = hnae_register_notifier(&priv->notifier_block);
2409                 if (ret) {
2410                         dev_err(dev, "register notifier fail!\n");
2411                         goto out_notify_fail;
2412                 }
2413                 dev_dbg(dev, "has not handle, register notifier!\n");
2414         }
2415
2416         return 0;
2417
2418 out_notify_fail:
2419         (void)cancel_work_sync(&priv->service_task);
2420 out_read_prop_fail:
2421         /* safe for ACPI FW */
2422         of_node_put(to_of_node(priv->fwnode));
2423         free_netdev(ndev);
2424         return ret;
2425 }
2426
2427 static int hns_nic_dev_remove(struct platform_device *pdev)
2428 {
2429         struct net_device *ndev = platform_get_drvdata(pdev);
2430         struct hns_nic_priv *priv = netdev_priv(ndev);
2431
2432         if (ndev->reg_state != NETREG_UNINITIALIZED)
2433                 unregister_netdev(ndev);
2434
2435         if (priv->ring_data)
2436                 hns_nic_uninit_ring_data(priv);
2437         priv->ring_data = NULL;
2438
2439         if (ndev->phydev)
2440                 phy_disconnect(ndev->phydev);
2441
2442         if (!IS_ERR_OR_NULL(priv->ae_handle))
2443                 hnae_put_handle(priv->ae_handle);
2444         priv->ae_handle = NULL;
2445         if (priv->notifier_block.notifier_call)
2446                 hnae_unregister_notifier(&priv->notifier_block);
2447         priv->notifier_block.notifier_call = NULL;
2448
2449         set_bit(NIC_STATE_REMOVING, &priv->state);
2450         (void)cancel_work_sync(&priv->service_task);
2451
2452         /* safe for ACPI FW */
2453         of_node_put(to_of_node(priv->fwnode));
2454
2455         free_netdev(ndev);
2456         return 0;
2457 }
2458
2459 static const struct of_device_id hns_enet_of_match[] = {
2460         {.compatible = "hisilicon,hns-nic-v1",},
2461         {.compatible = "hisilicon,hns-nic-v2",},
2462         {},
2463 };
2464
2465 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2466
2467 static struct platform_driver hns_nic_dev_driver = {
2468         .driver = {
2469                 .name = "hns-nic",
2470                 .of_match_table = hns_enet_of_match,
2471                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2472         },
2473         .probe = hns_nic_dev_probe,
2474         .remove = hns_nic_dev_remove,
2475 };
2476
2477 module_platform_driver(hns_nic_dev_driver);
2478
2479 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2480 MODULE_AUTHOR("Hisilicon, Inc.");
2481 MODULE_LICENSE("GPL");
2482 MODULE_ALIAS("platform:hns-nic");