Merge tag 'nfs-for-4.20-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[sfrench/cifs-2.6.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61                  "Freescale bitmapped debugging message enable value");
62
63 #define RX_RING_SIZE    32
64 #define TX_RING_SIZE    64
65
66 #ifdef CONFIG_NET_POLL_CONTROLLER
67 static void fs_enet_netpoll(struct net_device *dev);
68 #endif
69
70 static void fs_set_multicast_list(struct net_device *dev)
71 {
72         struct fs_enet_private *fep = netdev_priv(dev);
73
74         (*fep->ops->set_multicast_list)(dev);
75 }
76
77 static void skb_align(struct sk_buff *skb, int align)
78 {
79         int off = ((unsigned long)skb->data) & (align - 1);
80
81         if (off)
82                 skb_reserve(skb, align - off);
83 }
84
85 /* NAPI function */
86 static int fs_enet_napi(struct napi_struct *napi, int budget)
87 {
88         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89         struct net_device *dev = fep->ndev;
90         const struct fs_platform_info *fpi = fep->fpi;
91         cbd_t __iomem *bdp;
92         struct sk_buff *skb, *skbn;
93         int received = 0;
94         u16 pkt_len, sc;
95         int curidx;
96         int dirtyidx, do_wake, do_restart;
97         int tx_left = TX_RING_SIZE;
98
99         spin_lock(&fep->tx_lock);
100         bdp = fep->dirty_tx;
101
102         /* clear status bits for napi*/
103         (*fep->ops->napi_clear_event)(dev);
104
105         do_wake = do_restart = 0;
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107                 dirtyidx = bdp - fep->tx_bd_base;
108
109                 if (fep->tx_free == fep->tx_ring)
110                         break;
111
112                 skb = fep->tx_skbuff[dirtyidx];
113
114                 /*
115                  * Check for errors.
116                  */
117                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119
120                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
121                                 dev->stats.tx_heartbeat_errors++;
122                         if (sc & BD_ENET_TX_LC) /* Late collision */
123                                 dev->stats.tx_window_errors++;
124                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
125                                 dev->stats.tx_aborted_errors++;
126                         if (sc & BD_ENET_TX_UN) /* Underrun */
127                                 dev->stats.tx_fifo_errors++;
128                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
129                                 dev->stats.tx_carrier_errors++;
130
131                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132                                 dev->stats.tx_errors++;
133                                 do_restart = 1;
134                         }
135                 } else
136                         dev->stats.tx_packets++;
137
138                 if (sc & BD_ENET_TX_READY) {
139                         dev_warn(fep->dev,
140                                  "HEY! Enet xmit interrupt and TX_READY.\n");
141                 }
142
143                 /*
144                  * Deferred means some collisions occurred during transmit,
145                  * but we eventually sent the packet OK.
146                  */
147                 if (sc & BD_ENET_TX_DEF)
148                         dev->stats.collisions++;
149
150                 /* unmap */
151                 if (fep->mapped_as_page[dirtyidx])
152                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154                 else
155                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157
158                 /*
159                  * Free the sk buffer associated with this last transmit.
160                  */
161                 if (skb) {
162                         dev_kfree_skb(skb);
163                         fep->tx_skbuff[dirtyidx] = NULL;
164                 }
165
166                 /*
167                  * Update pointer to next buffer descriptor to be transmitted.
168                  */
169                 if ((sc & BD_ENET_TX_WRAP) == 0)
170                         bdp++;
171                 else
172                         bdp = fep->tx_bd_base;
173
174                 /*
175                  * Since we have freed up a buffer, the ring is no longer
176                  * full.
177                  */
178                 if (++fep->tx_free == MAX_SKB_FRAGS)
179                         do_wake = 1;
180                 tx_left--;
181         }
182
183         fep->dirty_tx = bdp;
184
185         if (do_restart)
186                 (*fep->ops->tx_restart)(dev);
187
188         spin_unlock(&fep->tx_lock);
189
190         if (do_wake)
191                 netif_wake_queue(dev);
192
193         /*
194          * First, grab all of the stats for the incoming packet.
195          * These get messed up if we get called due to a busy condition.
196          */
197         bdp = fep->cur_rx;
198
199         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200                received < budget) {
201                 curidx = bdp - fep->rx_bd_base;
202
203                 /*
204                  * Since we have allocated space to hold a complete frame,
205                  * the last indicator should be set.
206                  */
207                 if ((sc & BD_ENET_RX_LAST) == 0)
208                         dev_warn(fep->dev, "rcv is not +last\n");
209
210                 /*
211                  * Check for errors.
212                  */
213                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215                         dev->stats.rx_errors++;
216                         /* Frame too long or too short. */
217                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218                                 dev->stats.rx_length_errors++;
219                         /* Frame alignment */
220                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221                                 dev->stats.rx_frame_errors++;
222                         /* CRC Error */
223                         if (sc & BD_ENET_RX_CR)
224                                 dev->stats.rx_crc_errors++;
225                         /* FIFO overrun */
226                         if (sc & BD_ENET_RX_OV)
227                                 dev->stats.rx_crc_errors++;
228
229                         skbn = fep->rx_skbuff[curidx];
230                 } else {
231                         skb = fep->rx_skbuff[curidx];
232
233                         /*
234                          * Process the incoming frame.
235                          */
236                         dev->stats.rx_packets++;
237                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238                         dev->stats.rx_bytes += pkt_len + 4;
239
240                         if (pkt_len <= fpi->rx_copybreak) {
241                                 /* +2 to make IP header L1 cache aligned */
242                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243                                 if (skbn != NULL) {
244                                         skb_reserve(skbn, 2);   /* align IP header */
245                                         skb_copy_from_linear_data(skb,
246                                                       skbn->data, pkt_len);
247                                         swap(skb, skbn);
248                                         dma_sync_single_for_cpu(fep->dev,
249                                                 CBDR_BUFADDR(bdp),
250                                                 L1_CACHE_ALIGN(pkt_len),
251                                                 DMA_FROM_DEVICE);
252                                 }
253                         } else {
254                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255
256                                 if (skbn) {
257                                         dma_addr_t dma;
258
259                                         skb_align(skbn, ENET_RX_ALIGN);
260
261                                         dma_unmap_single(fep->dev,
262                                                 CBDR_BUFADDR(bdp),
263                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264                                                 DMA_FROM_DEVICE);
265
266                                         dma = dma_map_single(fep->dev,
267                                                 skbn->data,
268                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269                                                 DMA_FROM_DEVICE);
270                                         CBDW_BUFADDR(bdp, dma);
271                                 }
272                         }
273
274                         if (skbn != NULL) {
275                                 skb_put(skb, pkt_len);  /* Make room */
276                                 skb->protocol = eth_type_trans(skb, dev);
277                                 received++;
278                                 netif_receive_skb(skb);
279                         } else {
280                                 dev->stats.rx_dropped++;
281                                 skbn = skb;
282                         }
283                 }
284
285                 fep->rx_skbuff[curidx] = skbn;
286                 CBDW_DATLEN(bdp, 0);
287                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288
289                 /*
290                  * Update BD pointer to next entry.
291                  */
292                 if ((sc & BD_ENET_RX_WRAP) == 0)
293                         bdp++;
294                 else
295                         bdp = fep->rx_bd_base;
296
297                 (*fep->ops->rx_bd_done)(dev);
298         }
299
300         fep->cur_rx = bdp;
301
302         if (received < budget && tx_left) {
303                 /* done */
304                 napi_complete_done(napi, received);
305                 (*fep->ops->napi_enable)(dev);
306
307                 return received;
308         }
309
310         return budget;
311 }
312
313 /*
314  * The interrupt handler.
315  * This is called from the MPC core interrupt.
316  */
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
319 {
320         struct net_device *dev = dev_id;
321         struct fs_enet_private *fep;
322         const struct fs_platform_info *fpi;
323         u32 int_events;
324         u32 int_clr_events;
325         int nr, napi_ok;
326         int handled;
327
328         fep = netdev_priv(dev);
329         fpi = fep->fpi;
330
331         nr = 0;
332         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333                 nr++;
334
335                 int_clr_events = int_events;
336                 int_clr_events &= ~fep->ev_napi;
337
338                 (*fep->ops->clear_int_events)(dev, int_clr_events);
339
340                 if (int_events & fep->ev_err)
341                         (*fep->ops->ev_error)(dev, int_events);
342
343                 if (int_events & fep->ev) {
344                         napi_ok = napi_schedule_prep(&fep->napi);
345
346                         (*fep->ops->napi_disable)(dev);
347                         (*fep->ops->clear_int_events)(dev, fep->ev_napi);
348
349                         /* NOTE: it is possible for FCCs in NAPI mode    */
350                         /* to submit a spurious interrupt while in poll  */
351                         if (napi_ok)
352                                 __napi_schedule(&fep->napi);
353                 }
354
355         }
356
357         handled = nr > 0;
358         return IRQ_RETVAL(handled);
359 }
360
361 void fs_init_bds(struct net_device *dev)
362 {
363         struct fs_enet_private *fep = netdev_priv(dev);
364         cbd_t __iomem *bdp;
365         struct sk_buff *skb;
366         int i;
367
368         fs_cleanup_bds(dev);
369
370         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371         fep->tx_free = fep->tx_ring;
372         fep->cur_rx = fep->rx_bd_base;
373
374         /*
375          * Initialize the receive buffer descriptors.
376          */
377         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379                 if (skb == NULL)
380                         break;
381
382                 skb_align(skb, ENET_RX_ALIGN);
383                 fep->rx_skbuff[i] = skb;
384                 CBDW_BUFADDR(bdp,
385                         dma_map_single(fep->dev, skb->data,
386                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387                                 DMA_FROM_DEVICE));
388                 CBDW_DATLEN(bdp, 0);    /* zero */
389                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391         }
392         /*
393          * if we failed, fillup remainder
394          */
395         for (; i < fep->rx_ring; i++, bdp++) {
396                 fep->rx_skbuff[i] = NULL;
397                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398         }
399
400         /*
401          * ...and the same for transmit.
402          */
403         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404                 fep->tx_skbuff[i] = NULL;
405                 CBDW_BUFADDR(bdp, 0);
406                 CBDW_DATLEN(bdp, 0);
407                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408         }
409 }
410
411 void fs_cleanup_bds(struct net_device *dev)
412 {
413         struct fs_enet_private *fep = netdev_priv(dev);
414         struct sk_buff *skb;
415         cbd_t __iomem *bdp;
416         int i;
417
418         /*
419          * Reset SKB transmit buffers.
420          */
421         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422                 if ((skb = fep->tx_skbuff[i]) == NULL)
423                         continue;
424
425                 /* unmap */
426                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427                                 skb->len, DMA_TO_DEVICE);
428
429                 fep->tx_skbuff[i] = NULL;
430                 dev_kfree_skb(skb);
431         }
432
433         /*
434          * Reset SKB receive buffers
435          */
436         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437                 if ((skb = fep->rx_skbuff[i]) == NULL)
438                         continue;
439
440                 /* unmap */
441                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443                         DMA_FROM_DEVICE);
444
445                 fep->rx_skbuff[i] = NULL;
446
447                 dev_kfree_skb(skb);
448         }
449 }
450
451 /**********************************************************************************/
452
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
454 /*
455  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456  */
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458                                                struct sk_buff *skb)
459 {
460         struct sk_buff *new_skb;
461
462         if (skb_linearize(skb))
463                 return NULL;
464
465         /* Alloc new skb */
466         new_skb = netdev_alloc_skb(dev, skb->len + 4);
467         if (!new_skb)
468                 return NULL;
469
470         /* Make sure new skb is properly aligned */
471         skb_align(new_skb, 4);
472
473         /* Copy data to new skb ... */
474         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475         skb_put(new_skb, skb->len);
476
477         /* ... and free an old one */
478         dev_kfree_skb_any(skb);
479
480         return new_skb;
481 }
482 #endif
483
484 static netdev_tx_t
485 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
486 {
487         struct fs_enet_private *fep = netdev_priv(dev);
488         cbd_t __iomem *bdp;
489         int curidx;
490         u16 sc;
491         int nr_frags;
492         skb_frag_t *frag;
493         int len;
494 #ifdef CONFIG_FS_ENET_MPC5121_FEC
495         int is_aligned = 1;
496         int i;
497
498         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
499                 is_aligned = 0;
500         } else {
501                 nr_frags = skb_shinfo(skb)->nr_frags;
502                 frag = skb_shinfo(skb)->frags;
503                 for (i = 0; i < nr_frags; i++, frag++) {
504                         if (!IS_ALIGNED(frag->page_offset, 4)) {
505                                 is_aligned = 0;
506                                 break;
507                         }
508                 }
509         }
510
511         if (!is_aligned) {
512                 skb = tx_skb_align_workaround(dev, skb);
513                 if (!skb) {
514                         /*
515                          * We have lost packet due to memory allocation error
516                          * in tx_skb_align_workaround(). Hopefully original
517                          * skb is still valid, so try transmit it later.
518                          */
519                         return NETDEV_TX_BUSY;
520                 }
521         }
522 #endif
523
524         spin_lock(&fep->tx_lock);
525
526         /*
527          * Fill in a Tx ring entry
528          */
529         bdp = fep->cur_tx;
530
531         nr_frags = skb_shinfo(skb)->nr_frags;
532         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
533                 netif_stop_queue(dev);
534                 spin_unlock(&fep->tx_lock);
535
536                 /*
537                  * Ooops.  All transmit buffers are full.  Bail out.
538                  * This should not happen, since the tx queue should be stopped.
539                  */
540                 dev_warn(fep->dev, "tx queue full!.\n");
541                 return NETDEV_TX_BUSY;
542         }
543
544         curidx = bdp - fep->tx_bd_base;
545
546         len = skb->len;
547         dev->stats.tx_bytes += len;
548         if (nr_frags)
549                 len -= skb->data_len;
550         fep->tx_free -= nr_frags + 1;
551         /*
552          * Push the data cache so the CPM does not get stale memory data.
553          */
554         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
555                                 skb->data, len, DMA_TO_DEVICE));
556         CBDW_DATLEN(bdp, len);
557
558         fep->mapped_as_page[curidx] = 0;
559         frag = skb_shinfo(skb)->frags;
560         while (nr_frags) {
561                 CBDC_SC(bdp,
562                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
563                         BD_ENET_TX_TC);
564                 CBDS_SC(bdp, BD_ENET_TX_READY);
565
566                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
567                         bdp++, curidx++;
568                 else
569                         bdp = fep->tx_bd_base, curidx = 0;
570
571                 len = skb_frag_size(frag);
572                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
573                                                    DMA_TO_DEVICE));
574                 CBDW_DATLEN(bdp, len);
575
576                 fep->tx_skbuff[curidx] = NULL;
577                 fep->mapped_as_page[curidx] = 1;
578
579                 frag++;
580                 nr_frags--;
581         }
582
583         /* Trigger transmission start */
584         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
585              BD_ENET_TX_LAST | BD_ENET_TX_TC;
586
587         /* note that while FEC does not have this bit
588          * it marks it as available for software use
589          * yay for hw reuse :) */
590         if (skb->len <= 60)
591                 sc |= BD_ENET_TX_PAD;
592         CBDC_SC(bdp, BD_ENET_TX_STATS);
593         CBDS_SC(bdp, sc);
594
595         /* Save skb pointer. */
596         fep->tx_skbuff[curidx] = skb;
597
598         /* If this was the last BD in the ring, start at the beginning again. */
599         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
600                 bdp++;
601         else
602                 bdp = fep->tx_bd_base;
603         fep->cur_tx = bdp;
604
605         if (fep->tx_free < MAX_SKB_FRAGS)
606                 netif_stop_queue(dev);
607
608         skb_tx_timestamp(skb);
609
610         (*fep->ops->tx_kickstart)(dev);
611
612         spin_unlock(&fep->tx_lock);
613
614         return NETDEV_TX_OK;
615 }
616
617 static void fs_timeout_work(struct work_struct *work)
618 {
619         struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
620                                                    timeout_work);
621         struct net_device *dev = fep->ndev;
622         unsigned long flags;
623         int wake = 0;
624
625         dev->stats.tx_errors++;
626
627         spin_lock_irqsave(&fep->lock, flags);
628
629         if (dev->flags & IFF_UP) {
630                 phy_stop(dev->phydev);
631                 (*fep->ops->stop)(dev);
632                 (*fep->ops->restart)(dev);
633         }
634
635         phy_start(dev->phydev);
636         wake = fep->tx_free >= MAX_SKB_FRAGS &&
637                !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
638         spin_unlock_irqrestore(&fep->lock, flags);
639
640         if (wake)
641                 netif_wake_queue(dev);
642 }
643
644 static void fs_timeout(struct net_device *dev)
645 {
646         struct fs_enet_private *fep = netdev_priv(dev);
647
648         schedule_work(&fep->timeout_work);
649 }
650
651 /*-----------------------------------------------------------------------------
652  *  generic link-change handler - should be sufficient for most cases
653  *-----------------------------------------------------------------------------*/
654 static void generic_adjust_link(struct  net_device *dev)
655 {
656         struct fs_enet_private *fep = netdev_priv(dev);
657         struct phy_device *phydev = dev->phydev;
658         int new_state = 0;
659
660         if (phydev->link) {
661                 /* adjust to duplex mode */
662                 if (phydev->duplex != fep->oldduplex) {
663                         new_state = 1;
664                         fep->oldduplex = phydev->duplex;
665                 }
666
667                 if (phydev->speed != fep->oldspeed) {
668                         new_state = 1;
669                         fep->oldspeed = phydev->speed;
670                 }
671
672                 if (!fep->oldlink) {
673                         new_state = 1;
674                         fep->oldlink = 1;
675                 }
676
677                 if (new_state)
678                         fep->ops->restart(dev);
679         } else if (fep->oldlink) {
680                 new_state = 1;
681                 fep->oldlink = 0;
682                 fep->oldspeed = 0;
683                 fep->oldduplex = -1;
684         }
685
686         if (new_state && netif_msg_link(fep))
687                 phy_print_status(phydev);
688 }
689
690
691 static void fs_adjust_link(struct net_device *dev)
692 {
693         struct fs_enet_private *fep = netdev_priv(dev);
694         unsigned long flags;
695
696         spin_lock_irqsave(&fep->lock, flags);
697
698         if(fep->ops->adjust_link)
699                 fep->ops->adjust_link(dev);
700         else
701                 generic_adjust_link(dev);
702
703         spin_unlock_irqrestore(&fep->lock, flags);
704 }
705
706 static int fs_init_phy(struct net_device *dev)
707 {
708         struct fs_enet_private *fep = netdev_priv(dev);
709         struct phy_device *phydev;
710         phy_interface_t iface;
711
712         fep->oldlink = 0;
713         fep->oldspeed = 0;
714         fep->oldduplex = -1;
715
716         iface = fep->fpi->use_rmii ?
717                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718
719         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720                                 iface);
721         if (!phydev) {
722                 dev_err(&dev->dev, "Could not attach to PHY\n");
723                 return -ENODEV;
724         }
725
726         return 0;
727 }
728
729 static int fs_enet_open(struct net_device *dev)
730 {
731         struct fs_enet_private *fep = netdev_priv(dev);
732         int r;
733         int err;
734
735         /* to initialize the fep->cur_rx,... */
736         /* not doing this, will cause a crash in fs_enet_napi */
737         fs_init_bds(fep->ndev);
738
739         napi_enable(&fep->napi);
740
741         /* Install our interrupt handler. */
742         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
743                         "fs_enet-mac", dev);
744         if (r != 0) {
745                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
746                 napi_disable(&fep->napi);
747                 return -EINVAL;
748         }
749
750         err = fs_init_phy(dev);
751         if (err) {
752                 free_irq(fep->interrupt, dev);
753                 napi_disable(&fep->napi);
754                 return err;
755         }
756         phy_start(dev->phydev);
757
758         netif_start_queue(dev);
759
760         return 0;
761 }
762
763 static int fs_enet_close(struct net_device *dev)
764 {
765         struct fs_enet_private *fep = netdev_priv(dev);
766         unsigned long flags;
767
768         netif_stop_queue(dev);
769         netif_carrier_off(dev);
770         napi_disable(&fep->napi);
771         cancel_work_sync(&fep->timeout_work);
772         phy_stop(dev->phydev);
773
774         spin_lock_irqsave(&fep->lock, flags);
775         spin_lock(&fep->tx_lock);
776         (*fep->ops->stop)(dev);
777         spin_unlock(&fep->tx_lock);
778         spin_unlock_irqrestore(&fep->lock, flags);
779
780         /* release any irqs */
781         phy_disconnect(dev->phydev);
782         free_irq(fep->interrupt, dev);
783
784         return 0;
785 }
786
787 /*************************************************************************/
788
789 static void fs_get_drvinfo(struct net_device *dev,
790                             struct ethtool_drvinfo *info)
791 {
792         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
793         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
794 }
795
796 static int fs_get_regs_len(struct net_device *dev)
797 {
798         struct fs_enet_private *fep = netdev_priv(dev);
799
800         return (*fep->ops->get_regs_len)(dev);
801 }
802
803 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
804                          void *p)
805 {
806         struct fs_enet_private *fep = netdev_priv(dev);
807         unsigned long flags;
808         int r, len;
809
810         len = regs->len;
811
812         spin_lock_irqsave(&fep->lock, flags);
813         r = (*fep->ops->get_regs)(dev, p, &len);
814         spin_unlock_irqrestore(&fep->lock, flags);
815
816         if (r == 0)
817                 regs->version = 0;
818 }
819
820 static u32 fs_get_msglevel(struct net_device *dev)
821 {
822         struct fs_enet_private *fep = netdev_priv(dev);
823         return fep->msg_enable;
824 }
825
826 static void fs_set_msglevel(struct net_device *dev, u32 value)
827 {
828         struct fs_enet_private *fep = netdev_priv(dev);
829         fep->msg_enable = value;
830 }
831
832 static int fs_get_tunable(struct net_device *dev,
833                           const struct ethtool_tunable *tuna, void *data)
834 {
835         struct fs_enet_private *fep = netdev_priv(dev);
836         struct fs_platform_info *fpi = fep->fpi;
837         int ret = 0;
838
839         switch (tuna->id) {
840         case ETHTOOL_RX_COPYBREAK:
841                 *(u32 *)data = fpi->rx_copybreak;
842                 break;
843         default:
844                 ret = -EINVAL;
845                 break;
846         }
847
848         return ret;
849 }
850
851 static int fs_set_tunable(struct net_device *dev,
852                           const struct ethtool_tunable *tuna, const void *data)
853 {
854         struct fs_enet_private *fep = netdev_priv(dev);
855         struct fs_platform_info *fpi = fep->fpi;
856         int ret = 0;
857
858         switch (tuna->id) {
859         case ETHTOOL_RX_COPYBREAK:
860                 fpi->rx_copybreak = *(u32 *)data;
861                 break;
862         default:
863                 ret = -EINVAL;
864                 break;
865         }
866
867         return ret;
868 }
869
870 static const struct ethtool_ops fs_ethtool_ops = {
871         .get_drvinfo = fs_get_drvinfo,
872         .get_regs_len = fs_get_regs_len,
873         .nway_reset = phy_ethtool_nway_reset,
874         .get_link = ethtool_op_get_link,
875         .get_msglevel = fs_get_msglevel,
876         .set_msglevel = fs_set_msglevel,
877         .get_regs = fs_get_regs,
878         .get_ts_info = ethtool_op_get_ts_info,
879         .get_link_ksettings = phy_ethtool_get_link_ksettings,
880         .set_link_ksettings = phy_ethtool_set_link_ksettings,
881         .get_tunable = fs_get_tunable,
882         .set_tunable = fs_set_tunable,
883 };
884
885 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
886 {
887         if (!netif_running(dev))
888                 return -EINVAL;
889
890         return phy_mii_ioctl(dev->phydev, rq, cmd);
891 }
892
893 extern int fs_mii_connect(struct net_device *dev);
894 extern void fs_mii_disconnect(struct net_device *dev);
895
896 /**************************************************************************************/
897
898 #ifdef CONFIG_FS_ENET_HAS_FEC
899 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
900 #else
901 #define IS_FEC(match) 0
902 #endif
903
904 static const struct net_device_ops fs_enet_netdev_ops = {
905         .ndo_open               = fs_enet_open,
906         .ndo_stop               = fs_enet_close,
907         .ndo_start_xmit         = fs_enet_start_xmit,
908         .ndo_tx_timeout         = fs_timeout,
909         .ndo_set_rx_mode        = fs_set_multicast_list,
910         .ndo_do_ioctl           = fs_ioctl,
911         .ndo_validate_addr      = eth_validate_addr,
912         .ndo_set_mac_address    = eth_mac_addr,
913 #ifdef CONFIG_NET_POLL_CONTROLLER
914         .ndo_poll_controller    = fs_enet_netpoll,
915 #endif
916 };
917
918 static const struct of_device_id fs_enet_match[];
919 static int fs_enet_probe(struct platform_device *ofdev)
920 {
921         const struct of_device_id *match;
922         struct net_device *ndev;
923         struct fs_enet_private *fep;
924         struct fs_platform_info *fpi;
925         const u32 *data;
926         struct clk *clk;
927         int err;
928         const u8 *mac_addr;
929         const char *phy_connection_type;
930         int privsize, len, ret = -ENODEV;
931
932         match = of_match_device(fs_enet_match, &ofdev->dev);
933         if (!match)
934                 return -EINVAL;
935
936         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
937         if (!fpi)
938                 return -ENOMEM;
939
940         if (!IS_FEC(match)) {
941                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
942                 if (!data || len != 4)
943                         goto out_free_fpi;
944
945                 fpi->cp_command = *data;
946         }
947
948         fpi->rx_ring = RX_RING_SIZE;
949         fpi->tx_ring = TX_RING_SIZE;
950         fpi->rx_copybreak = 240;
951         fpi->napi_weight = 17;
952         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
953         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
954                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
955                 if (err)
956                         goto out_free_fpi;
957
958                 /* In the case of a fixed PHY, the DT node associated
959                  * to the PHY is the Ethernet MAC DT node.
960                  */
961                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
962         }
963
964         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
965                 phy_connection_type = of_get_property(ofdev->dev.of_node,
966                                                 "phy-connection-type", NULL);
967                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
968                         fpi->use_rmii = 1;
969         }
970
971         /* make clock lookup non-fatal (the driver is shared among platforms),
972          * but require enable to succeed when a clock was specified/found,
973          * keep a reference to the clock upon successful acquisition
974          */
975         clk = devm_clk_get(&ofdev->dev, "per");
976         if (!IS_ERR(clk)) {
977                 ret = clk_prepare_enable(clk);
978                 if (ret)
979                         goto out_deregister_fixed_link;
980
981                 fpi->clk_per = clk;
982         }
983
984         privsize = sizeof(*fep) +
985                    sizeof(struct sk_buff **) *
986                      (fpi->rx_ring + fpi->tx_ring) +
987                    sizeof(char) * fpi->tx_ring;
988
989         ndev = alloc_etherdev(privsize);
990         if (!ndev) {
991                 ret = -ENOMEM;
992                 goto out_put;
993         }
994
995         SET_NETDEV_DEV(ndev, &ofdev->dev);
996         platform_set_drvdata(ofdev, ndev);
997
998         fep = netdev_priv(ndev);
999         fep->dev = &ofdev->dev;
1000         fep->ndev = ndev;
1001         fep->fpi = fpi;
1002         fep->ops = match->data;
1003
1004         ret = fep->ops->setup_data(ndev);
1005         if (ret)
1006                 goto out_free_dev;
1007
1008         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1009         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1010         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1011                                        fpi->tx_ring);
1012
1013         spin_lock_init(&fep->lock);
1014         spin_lock_init(&fep->tx_lock);
1015
1016         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1017         if (mac_addr)
1018                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1019
1020         ret = fep->ops->allocate_bd(ndev);
1021         if (ret)
1022                 goto out_cleanup_data;
1023
1024         fep->rx_bd_base = fep->ring_base;
1025         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026
1027         fep->tx_ring = fpi->tx_ring;
1028         fep->rx_ring = fpi->rx_ring;
1029
1030         ndev->netdev_ops = &fs_enet_netdev_ops;
1031         ndev->watchdog_timeo = 2 * HZ;
1032         INIT_WORK(&fep->timeout_work, fs_timeout_work);
1033         netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1034
1035         ndev->ethtool_ops = &fs_ethtool_ops;
1036
1037         netif_carrier_off(ndev);
1038
1039         ndev->features |= NETIF_F_SG;
1040
1041         ret = register_netdev(ndev);
1042         if (ret)
1043                 goto out_free_bd;
1044
1045         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046
1047         return 0;
1048
1049 out_free_bd:
1050         fep->ops->free_bd(ndev);
1051 out_cleanup_data:
1052         fep->ops->cleanup_data(ndev);
1053 out_free_dev:
1054         free_netdev(ndev);
1055 out_put:
1056         if (fpi->clk_per)
1057                 clk_disable_unprepare(fpi->clk_per);
1058 out_deregister_fixed_link:
1059         of_node_put(fpi->phy_node);
1060         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1061                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1062 out_free_fpi:
1063         kfree(fpi);
1064         return ret;
1065 }
1066
1067 static int fs_enet_remove(struct platform_device *ofdev)
1068 {
1069         struct net_device *ndev = platform_get_drvdata(ofdev);
1070         struct fs_enet_private *fep = netdev_priv(ndev);
1071
1072         unregister_netdev(ndev);
1073
1074         fep->ops->free_bd(ndev);
1075         fep->ops->cleanup_data(ndev);
1076         dev_set_drvdata(fep->dev, NULL);
1077         of_node_put(fep->fpi->phy_node);
1078         if (fep->fpi->clk_per)
1079                 clk_disable_unprepare(fep->fpi->clk_per);
1080         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1081                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1082         free_netdev(ndev);
1083         return 0;
1084 }
1085
1086 static const struct of_device_id fs_enet_match[] = {
1087 #ifdef CONFIG_FS_ENET_HAS_SCC
1088         {
1089                 .compatible = "fsl,cpm1-scc-enet",
1090                 .data = (void *)&fs_scc_ops,
1091         },
1092         {
1093                 .compatible = "fsl,cpm2-scc-enet",
1094                 .data = (void *)&fs_scc_ops,
1095         },
1096 #endif
1097 #ifdef CONFIG_FS_ENET_HAS_FCC
1098         {
1099                 .compatible = "fsl,cpm2-fcc-enet",
1100                 .data = (void *)&fs_fcc_ops,
1101         },
1102 #endif
1103 #ifdef CONFIG_FS_ENET_HAS_FEC
1104 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1105         {
1106                 .compatible = "fsl,mpc5121-fec",
1107                 .data = (void *)&fs_fec_ops,
1108         },
1109         {
1110                 .compatible = "fsl,mpc5125-fec",
1111                 .data = (void *)&fs_fec_ops,
1112         },
1113 #else
1114         {
1115                 .compatible = "fsl,pq1-fec-enet",
1116                 .data = (void *)&fs_fec_ops,
1117         },
1118 #endif
1119 #endif
1120         {}
1121 };
1122 MODULE_DEVICE_TABLE(of, fs_enet_match);
1123
1124 static struct platform_driver fs_enet_driver = {
1125         .driver = {
1126                 .name = "fs_enet",
1127                 .of_match_table = fs_enet_match,
1128         },
1129         .probe = fs_enet_probe,
1130         .remove = fs_enet_remove,
1131 };
1132
1133 #ifdef CONFIG_NET_POLL_CONTROLLER
1134 static void fs_enet_netpoll(struct net_device *dev)
1135 {
1136        disable_irq(dev->irq);
1137        fs_enet_interrupt(dev->irq, dev);
1138        enable_irq(dev->irq);
1139 }
1140 #endif
1141
1142 module_platform_driver(fs_enet_driver);