Merge tag 'for-linus-20190125' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <linux/phy_fixed.h>
55 #include <soc/fsl/bman.h>
56 #include <soc/fsl/qman.h>
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
129 #define DPAA_SGT_SIZE 256
130
131 /* Values for the L3R field of the FM Parse Results
132  */
133 /* L3 Type field: First IP Present IPv4 */
134 #define FM_L3_PARSE_RESULT_IPV4 0x8000
135 /* L3 Type field: First IP Present IPv6 */
136 #define FM_L3_PARSE_RESULT_IPV6 0x4000
137 /* Values for the L4R field of the FM Parse Results */
138 /* L4 Type field: UDP */
139 #define FM_L4_PARSE_RESULT_UDP  0x40
140 /* L4 Type field: TCP */
141 #define FM_L4_PARSE_RESULT_TCP  0x20
142
143 /* FD status field indicating whether the FM Parser has attempted to validate
144  * the L4 csum of the frame.
145  * Note that having this bit set doesn't necessarily imply that the checksum
146  * is valid. One would have to check the parse results to find that out.
147  */
148 #define FM_FD_STAT_L4CV         0x00000004
149
150 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153 #define FSL_DPAA_BPID_INV               0xff
154 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
155 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
156
157 #define DPAA_TX_PRIV_DATA_SIZE  16
158 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159 #define DPAA_TIME_STAMP_SIZE 8
160 #define DPAA_HASH_RESULTS_SIZE 8
161 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162                                         dpaa_rx_extra_headroom)
163
164 #define DPAA_ETH_PCD_RXQ_NUM    128
165
166 #define DPAA_ENQUEUE_RETRIES    100000
167
168 enum port_type {RX, TX};
169
170 struct fm_port_fqs {
171         struct dpaa_fq *tx_defq;
172         struct dpaa_fq *tx_errq;
173         struct dpaa_fq *rx_defq;
174         struct dpaa_fq *rx_errq;
175         struct dpaa_fq *rx_pcdq;
176 };
177
178 /* All the dpa bps in use at any moment */
179 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181 /* The raw buffer size must be cacheline aligned */
182 #define DPAA_BP_RAW_SIZE 4096
183 /* When using more than one buffer pool, the raw sizes are as follows:
184  * 1 bp: 4KB
185  * 2 bp: 2KB, 4KB
186  * 3 bp: 1KB, 2KB, 4KB
187  * 4 bp: 1KB, 2KB, 4KB, 8KB
188  */
189 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
190 {
191         size_t res = DPAA_BP_RAW_SIZE / 4;
192         u8 i;
193
194         for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
195                 res *= 2;
196         return res;
197 }
198
199 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
200  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
201  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
202  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
203  * alignment.
204  */
205 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
206
207 static int dpaa_max_frm;
208
209 static int dpaa_rx_extra_headroom;
210
211 #define dpaa_get_max_mtu()      \
212         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
213
214 static int dpaa_netdev_init(struct net_device *net_dev,
215                             const struct net_device_ops *dpaa_ops,
216                             u16 tx_timeout)
217 {
218         struct dpaa_priv *priv = netdev_priv(net_dev);
219         struct device *dev = net_dev->dev.parent;
220         struct dpaa_percpu_priv *percpu_priv;
221         const u8 *mac_addr;
222         int i, err;
223
224         /* Although we access another CPU's private data here
225          * we do it at initialization so it is safe
226          */
227         for_each_possible_cpu(i) {
228                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
229                 percpu_priv->net_dev = net_dev;
230         }
231
232         net_dev->netdev_ops = dpaa_ops;
233         mac_addr = priv->mac_dev->addr;
234
235         net_dev->mem_start = priv->mac_dev->res->start;
236         net_dev->mem_end = priv->mac_dev->res->end;
237
238         net_dev->min_mtu = ETH_MIN_MTU;
239         net_dev->max_mtu = dpaa_get_max_mtu();
240
241         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
242                                  NETIF_F_LLTX | NETIF_F_RXHASH);
243
244         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
245         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
246          * For conformity, we'll still declare GSO explicitly.
247          */
248         net_dev->features |= NETIF_F_GSO;
249         net_dev->features |= NETIF_F_RXCSUM;
250
251         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
252         /* we do not want shared skbs on TX */
253         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
254
255         net_dev->features |= net_dev->hw_features;
256         net_dev->vlan_features = net_dev->features;
257
258         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
259         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
260
261         net_dev->ethtool_ops = &dpaa_ethtool_ops;
262
263         net_dev->needed_headroom = priv->tx_headroom;
264         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
265
266         /* start without the RUNNING flag, phylib controls it later */
267         netif_carrier_off(net_dev);
268
269         err = register_netdev(net_dev);
270         if (err < 0) {
271                 dev_err(dev, "register_netdev() = %d\n", err);
272                 return err;
273         }
274
275         return 0;
276 }
277
278 static int dpaa_stop(struct net_device *net_dev)
279 {
280         struct mac_device *mac_dev;
281         struct dpaa_priv *priv;
282         int i, err, error;
283
284         priv = netdev_priv(net_dev);
285         mac_dev = priv->mac_dev;
286
287         netif_tx_stop_all_queues(net_dev);
288         /* Allow the Fman (Tx) port to process in-flight frames before we
289          * try switching it off.
290          */
291         usleep_range(5000, 10000);
292
293         err = mac_dev->stop(mac_dev);
294         if (err < 0)
295                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
296                           err);
297
298         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
299                 error = fman_port_disable(mac_dev->port[i]);
300                 if (error)
301                         err = error;
302         }
303
304         if (net_dev->phydev)
305                 phy_disconnect(net_dev->phydev);
306         net_dev->phydev = NULL;
307
308         return err;
309 }
310
311 static void dpaa_tx_timeout(struct net_device *net_dev)
312 {
313         struct dpaa_percpu_priv *percpu_priv;
314         const struct dpaa_priv  *priv;
315
316         priv = netdev_priv(net_dev);
317         percpu_priv = this_cpu_ptr(priv->percpu_priv);
318
319         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
320                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
321
322         percpu_priv->stats.tx_errors++;
323 }
324
325 /* Calculates the statistics for the given device by adding the statistics
326  * collected by each CPU.
327  */
328 static void dpaa_get_stats64(struct net_device *net_dev,
329                              struct rtnl_link_stats64 *s)
330 {
331         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
332         struct dpaa_priv *priv = netdev_priv(net_dev);
333         struct dpaa_percpu_priv *percpu_priv;
334         u64 *netstats = (u64 *)s;
335         u64 *cpustats;
336         int i, j;
337
338         for_each_possible_cpu(i) {
339                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
340
341                 cpustats = (u64 *)&percpu_priv->stats;
342
343                 /* add stats from all CPUs */
344                 for (j = 0; j < numstats; j++)
345                         netstats[j] += cpustats[j];
346         }
347 }
348
349 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
350                          void *type_data)
351 {
352         struct dpaa_priv *priv = netdev_priv(net_dev);
353         struct tc_mqprio_qopt *mqprio = type_data;
354         u8 num_tc;
355         int i;
356
357         if (type != TC_SETUP_QDISC_MQPRIO)
358                 return -EOPNOTSUPP;
359
360         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
361         num_tc = mqprio->num_tc;
362
363         if (num_tc == priv->num_tc)
364                 return 0;
365
366         if (!num_tc) {
367                 netdev_reset_tc(net_dev);
368                 goto out;
369         }
370
371         if (num_tc > DPAA_TC_NUM) {
372                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
373                            DPAA_TC_NUM);
374                 return -EINVAL;
375         }
376
377         netdev_set_num_tc(net_dev, num_tc);
378
379         for (i = 0; i < num_tc; i++)
380                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
381                                     i * DPAA_TC_TXQ_NUM);
382
383 out:
384         priv->num_tc = num_tc ? : 1;
385         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
386         return 0;
387 }
388
389 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
390 {
391         struct dpaa_eth_data *eth_data;
392         struct device *dpaa_dev;
393         struct mac_device *mac_dev;
394
395         dpaa_dev = &pdev->dev;
396         eth_data = dpaa_dev->platform_data;
397         if (!eth_data) {
398                 dev_err(dpaa_dev, "eth_data missing\n");
399                 return ERR_PTR(-ENODEV);
400         }
401         mac_dev = eth_data->mac_dev;
402         if (!mac_dev) {
403                 dev_err(dpaa_dev, "mac_dev missing\n");
404                 return ERR_PTR(-EINVAL);
405         }
406
407         return mac_dev;
408 }
409
410 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
411 {
412         const struct dpaa_priv *priv;
413         struct mac_device *mac_dev;
414         struct sockaddr old_addr;
415         int err;
416
417         priv = netdev_priv(net_dev);
418
419         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
420
421         err = eth_mac_addr(net_dev, addr);
422         if (err < 0) {
423                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
424                 return err;
425         }
426
427         mac_dev = priv->mac_dev;
428
429         err = mac_dev->change_addr(mac_dev->fman_mac,
430                                    (enet_addr_t *)net_dev->dev_addr);
431         if (err < 0) {
432                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
433                           err);
434                 /* reverting to previous address */
435                 eth_mac_addr(net_dev, &old_addr);
436
437                 return err;
438         }
439
440         return 0;
441 }
442
443 static void dpaa_set_rx_mode(struct net_device *net_dev)
444 {
445         const struct dpaa_priv  *priv;
446         int err;
447
448         priv = netdev_priv(net_dev);
449
450         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
451                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
452                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
453                                                  priv->mac_dev->promisc);
454                 if (err < 0)
455                         netif_err(priv, drv, net_dev,
456                                   "mac_dev->set_promisc() = %d\n",
457                                   err);
458         }
459
460         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
461                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
462                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
463                                                   priv->mac_dev->allmulti);
464                 if (err < 0)
465                         netif_err(priv, drv, net_dev,
466                                   "mac_dev->set_allmulti() = %d\n",
467                                   err);
468         }
469
470         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471         if (err < 0)
472                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473                           err);
474 }
475
476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479                 return NULL;
480
481         return dpaa_bp_array[bpid];
482 }
483
484 /* checks if this bpool is already allocated */
485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487         if (dpaa_bpid2pool(bpid)) {
488                 atomic_inc(&dpaa_bp_array[bpid]->refs);
489                 return true;
490         }
491
492         return false;
493 }
494
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498         dpaa_bp_array[bpid] = dpaa_bp;
499         atomic_set(&dpaa_bp->refs, 1);
500 }
501
502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504         int err;
505
506         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508                        __func__);
509                 return -EINVAL;
510         }
511
512         /* If the pool is already specified, we only create one per bpid */
513         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514             dpaa_bpid2pool_use(dpaa_bp->bpid))
515                 return 0;
516
517         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518                 dpaa_bp->pool = bman_new_pool();
519                 if (!dpaa_bp->pool) {
520                         pr_err("%s: bman_new_pool() failed\n",
521                                __func__);
522                         return -ENODEV;
523                 }
524
525                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526         }
527
528         if (dpaa_bp->seed_cb) {
529                 err = dpaa_bp->seed_cb(dpaa_bp);
530                 if (err)
531                         goto pool_seed_failed;
532         }
533
534         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536         return 0;
537
538 pool_seed_failed:
539         pr_err("%s: pool seeding failed\n", __func__);
540         bman_free_pool(dpaa_bp->pool);
541
542         return err;
543 }
544
545 /* remove and free all the buffers from the given buffer pool */
546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548         u8 num = 8;
549         int ret;
550
551         do {
552                 struct bm_buffer bmb[8];
553                 int i;
554
555                 ret = bman_acquire(bp->pool, bmb, num);
556                 if (ret < 0) {
557                         if (num == 8) {
558                                 /* we have less than 8 buffers left;
559                                  * drain them one by one
560                                  */
561                                 num = 1;
562                                 ret = 1;
563                                 continue;
564                         } else {
565                                 /* Pool is fully drained */
566                                 break;
567                         }
568                 }
569
570                 if (bp->free_buf_cb)
571                         for (i = 0; i < num; i++)
572                                 bp->free_buf_cb(bp, &bmb[i]);
573         } while (ret > 0);
574 }
575
576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580         /* the mapping between bpid and dpaa_bp is done very late in the
581          * allocation procedure; if something failed before the mapping, the bp
582          * was not configured, therefore we don't need the below instructions
583          */
584         if (!bp)
585                 return;
586
587         if (!atomic_dec_and_test(&bp->refs))
588                 return;
589
590         if (bp->free_buf_cb)
591                 dpaa_bp_drain(bp);
592
593         dpaa_bp_array[bp->bpid] = NULL;
594         bman_free_pool(bp->pool);
595 }
596
597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599         int i;
600
601         for (i = 0; i < DPAA_BPS_NUM; i++)
602                 dpaa_bp_free(priv->dpaa_bps[i]);
603 }
604
605 /* Use multiple WQs for FQ assignment:
606  *      - Tx Confirmation queues go to WQ1.
607  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608  *        to be scheduled, in case there are many more FQs in WQ6).
609  *      - Rx Default goes to WQ6.
610  *      - Tx queues go to different WQs depending on their priority. Equal
611  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612  *        WQ0 (highest priority).
613  * This ensures that Tx-confirmed buffers are timely released. In particular,
614  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615  * are greatly outnumbered by other FQs in the system, while
616  * dequeue scheduling is round-robin.
617  */
618 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619 {
620         switch (fq->fq_type) {
621         case FQ_TYPE_TX_CONFIRM:
622         case FQ_TYPE_TX_CONF_MQ:
623                 fq->wq = 1;
624                 break;
625         case FQ_TYPE_RX_ERROR:
626         case FQ_TYPE_TX_ERROR:
627                 fq->wq = 5;
628                 break;
629         case FQ_TYPE_RX_DEFAULT:
630         case FQ_TYPE_RX_PCD:
631                 fq->wq = 6;
632                 break;
633         case FQ_TYPE_TX:
634                 switch (idx / DPAA_TC_TXQ_NUM) {
635                 case 0:
636                         /* Low priority (best effort) */
637                         fq->wq = 6;
638                         break;
639                 case 1:
640                         /* Medium priority */
641                         fq->wq = 2;
642                         break;
643                 case 2:
644                         /* High priority */
645                         fq->wq = 1;
646                         break;
647                 case 3:
648                         /* Very high priority */
649                         fq->wq = 0;
650                         break;
651                 default:
652                         WARN(1, "Too many TX FQs: more than %d!\n",
653                              DPAA_ETH_TXQ_NUM);
654                 }
655                 break;
656         default:
657                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
658                      fq->fq_type, fq->fqid);
659         }
660 }
661
662 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
663                                      u32 start, u32 count,
664                                      struct list_head *list,
665                                      enum dpaa_fq_type fq_type)
666 {
667         struct dpaa_fq *dpaa_fq;
668         int i;
669
670         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
671                                GFP_KERNEL);
672         if (!dpaa_fq)
673                 return NULL;
674
675         for (i = 0; i < count; i++) {
676                 dpaa_fq[i].fq_type = fq_type;
677                 dpaa_fq[i].fqid = start ? start + i : 0;
678                 list_add_tail(&dpaa_fq[i].list, list);
679         }
680
681         for (i = 0; i < count; i++)
682                 dpaa_assign_wq(dpaa_fq + i, i);
683
684         return dpaa_fq;
685 }
686
687 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
688                               struct fm_port_fqs *port_fqs)
689 {
690         struct dpaa_fq *dpaa_fq;
691         u32 fq_base, fq_base_aligned, i;
692
693         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
694         if (!dpaa_fq)
695                 goto fq_alloc_failed;
696
697         port_fqs->rx_errq = &dpaa_fq[0];
698
699         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
700         if (!dpaa_fq)
701                 goto fq_alloc_failed;
702
703         port_fqs->rx_defq = &dpaa_fq[0];
704
705         /* the PCD FQIDs range needs to be aligned for correct operation */
706         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
707                 goto fq_alloc_failed;
708
709         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
710
711         for (i = fq_base; i < fq_base_aligned; i++)
712                 qman_release_fqid(i);
713
714         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
715              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
716                 qman_release_fqid(i);
717
718         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
719                                 list, FQ_TYPE_RX_PCD);
720         if (!dpaa_fq)
721                 goto fq_alloc_failed;
722
723         port_fqs->rx_pcdq = &dpaa_fq[0];
724
725         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
726                 goto fq_alloc_failed;
727
728         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
729         if (!dpaa_fq)
730                 goto fq_alloc_failed;
731
732         port_fqs->tx_errq = &dpaa_fq[0];
733
734         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
735         if (!dpaa_fq)
736                 goto fq_alloc_failed;
737
738         port_fqs->tx_defq = &dpaa_fq[0];
739
740         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
741                 goto fq_alloc_failed;
742
743         return 0;
744
745 fq_alloc_failed:
746         dev_err(dev, "dpaa_fq_alloc() failed\n");
747         return -ENOMEM;
748 }
749
750 static u32 rx_pool_channel;
751 static DEFINE_SPINLOCK(rx_pool_channel_init);
752
753 static int dpaa_get_channel(void)
754 {
755         spin_lock(&rx_pool_channel_init);
756         if (!rx_pool_channel) {
757                 u32 pool;
758                 int ret;
759
760                 ret = qman_alloc_pool(&pool);
761
762                 if (!ret)
763                         rx_pool_channel = pool;
764         }
765         spin_unlock(&rx_pool_channel_init);
766         if (!rx_pool_channel)
767                 return -ENOMEM;
768         return rx_pool_channel;
769 }
770
771 static void dpaa_release_channel(void)
772 {
773         qman_release_pool(rx_pool_channel);
774 }
775
776 static void dpaa_eth_add_channel(u16 channel)
777 {
778         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
779         const cpumask_t *cpus = qman_affine_cpus();
780         struct qman_portal *portal;
781         int cpu;
782
783         for_each_cpu(cpu, cpus) {
784                 portal = qman_get_affine_portal(cpu);
785                 qman_p_static_dequeue_add(portal, pool);
786         }
787 }
788
789 /* Congestion group state change notification callback.
790  * Stops the device's egress queues while they are congested and
791  * wakes them upon exiting congested state.
792  * Also updates some CGR-related stats.
793  */
794 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
795                            int congested)
796 {
797         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
798                 struct dpaa_priv, cgr_data.cgr);
799
800         if (congested) {
801                 priv->cgr_data.congestion_start_jiffies = jiffies;
802                 netif_tx_stop_all_queues(priv->net_dev);
803                 priv->cgr_data.cgr_congested_count++;
804         } else {
805                 priv->cgr_data.congested_jiffies +=
806                         (jiffies - priv->cgr_data.congestion_start_jiffies);
807                 netif_tx_wake_all_queues(priv->net_dev);
808         }
809 }
810
811 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
812 {
813         struct qm_mcc_initcgr initcgr;
814         u32 cs_th;
815         int err;
816
817         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
818         if (err < 0) {
819                 if (netif_msg_drv(priv))
820                         pr_err("%s: Error %d allocating CGR ID\n",
821                                __func__, err);
822                 goto out_error;
823         }
824         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
825
826         /* Enable Congestion State Change Notifications and CS taildrop */
827         memset(&initcgr, 0, sizeof(initcgr));
828         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
829         initcgr.cgr.cscn_en = QM_CGR_EN;
830
831         /* Set different thresholds based on the MAC speed.
832          * This may turn suboptimal if the MAC is reconfigured at a speed
833          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
834          * In such cases, we ought to reconfigure the threshold, too.
835          */
836         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
837                 cs_th = DPAA_CS_THRESHOLD_10G;
838         else
839                 cs_th = DPAA_CS_THRESHOLD_1G;
840         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
841
842         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
843         initcgr.cgr.cstd_en = QM_CGR_EN;
844
845         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
846                               &initcgr);
847         if (err < 0) {
848                 if (netif_msg_drv(priv))
849                         pr_err("%s: Error %d creating CGR with ID %d\n",
850                                __func__, err, priv->cgr_data.cgr.cgrid);
851                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
852                 goto out_error;
853         }
854         if (netif_msg_drv(priv))
855                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
856                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
857                          priv->cgr_data.cgr.chan);
858
859 out_error:
860         return err;
861 }
862
863 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
864                                       struct dpaa_fq *fq,
865                                       const struct qman_fq *template)
866 {
867         fq->fq_base = *template;
868         fq->net_dev = priv->net_dev;
869
870         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
871         fq->channel = priv->channel;
872 }
873
874 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
875                                      struct dpaa_fq *fq,
876                                      struct fman_port *port,
877                                      const struct qman_fq *template)
878 {
879         fq->fq_base = *template;
880         fq->net_dev = priv->net_dev;
881
882         if (port) {
883                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
884                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
885         } else {
886                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
887         }
888 }
889
890 static void dpaa_fq_setup(struct dpaa_priv *priv,
891                           const struct dpaa_fq_cbs *fq_cbs,
892                           struct fman_port *tx_port)
893 {
894         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
895         const cpumask_t *affine_cpus = qman_affine_cpus();
896         u16 channels[NR_CPUS];
897         struct dpaa_fq *fq;
898
899         for_each_cpu(cpu, affine_cpus)
900                 channels[num_portals++] = qman_affine_channel(cpu);
901
902         if (num_portals == 0)
903                 dev_err(priv->net_dev->dev.parent,
904                         "No Qman software (affine) channels found");
905
906         /* Initialize each FQ in the list */
907         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
908                 switch (fq->fq_type) {
909                 case FQ_TYPE_RX_DEFAULT:
910                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
911                         break;
912                 case FQ_TYPE_RX_ERROR:
913                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
914                         break;
915                 case FQ_TYPE_RX_PCD:
916                         if (!num_portals)
917                                 continue;
918                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
919                         fq->channel = channels[portal_cnt++ % num_portals];
920                         break;
921                 case FQ_TYPE_TX:
922                         dpaa_setup_egress(priv, fq, tx_port,
923                                           &fq_cbs->egress_ern);
924                         /* If we have more Tx queues than the number of cores,
925                          * just ignore the extra ones.
926                          */
927                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
928                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
929                         break;
930                 case FQ_TYPE_TX_CONF_MQ:
931                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
932                         /* fall through */
933                 case FQ_TYPE_TX_CONFIRM:
934                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
935                         break;
936                 case FQ_TYPE_TX_ERROR:
937                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
938                         break;
939                 default:
940                         dev_warn(priv->net_dev->dev.parent,
941                                  "Unknown FQ type detected!\n");
942                         break;
943                 }
944         }
945
946          /* Make sure all CPUs receive a corresponding Tx queue. */
947         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
948                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
949                         if (fq->fq_type != FQ_TYPE_TX)
950                                 continue;
951                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
952                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
953                                 break;
954                 }
955         }
956 }
957
958 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
959                                    struct qman_fq *tx_fq)
960 {
961         int i;
962
963         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
964                 if (priv->egress_fqs[i] == tx_fq)
965                         return i;
966
967         return -EINVAL;
968 }
969
970 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
971 {
972         const struct dpaa_priv  *priv;
973         struct qman_fq *confq = NULL;
974         struct qm_mcc_initfq initfq;
975         struct device *dev;
976         struct qman_fq *fq;
977         int queue_id;
978         int err;
979
980         priv = netdev_priv(dpaa_fq->net_dev);
981         dev = dpaa_fq->net_dev->dev.parent;
982
983         if (dpaa_fq->fqid == 0)
984                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
985
986         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
987
988         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
989         if (err) {
990                 dev_err(dev, "qman_create_fq() failed\n");
991                 return err;
992         }
993         fq = &dpaa_fq->fq_base;
994
995         if (dpaa_fq->init) {
996                 memset(&initfq, 0, sizeof(initfq));
997
998                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
999                 /* Note: we may get to keep an empty FQ in cache */
1000                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1001
1002                 /* Try to reduce the number of portal interrupts for
1003                  * Tx Confirmation FQs.
1004                  */
1005                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1006                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1007
1008                 /* FQ placement */
1009                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1010
1011                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1012
1013                 /* Put all egress queues in a congestion group of their own.
1014                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
1015                  * rather than Tx - but they nonetheless account for the
1016                  * memory footprint on behalf of egress traffic. We therefore
1017                  * place them in the netdev's CGR, along with the Tx FQs.
1018                  */
1019                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1020                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1021                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1022                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1023                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1024                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1025                         /* Set a fixed overhead accounting, in an attempt to
1026                          * reduce the impact of fixed-size skb shells and the
1027                          * driver's needed headroom on system memory. This is
1028                          * especially the case when the egress traffic is
1029                          * composed of small datagrams.
1030                          * Unfortunately, QMan's OAL value is capped to an
1031                          * insufficient value, but even that is better than
1032                          * no overhead accounting at all.
1033                          */
1034                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1035                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1036                         qm_fqd_set_oal(&initfq.fqd,
1037                                        min(sizeof(struct sk_buff) +
1038                                        priv->tx_headroom,
1039                                        (size_t)FSL_QMAN_MAX_OAL));
1040                 }
1041
1042                 if (td_enable) {
1043                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1044                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1045                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1046                 }
1047
1048                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1049                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1050                         if (queue_id >= 0)
1051                                 confq = priv->conf_fqs[queue_id];
1052                         if (confq) {
1053                                 initfq.we_mask |=
1054                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1055                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1056                          *           A2V=1 (contextA A2 field is valid)
1057                          *           A0V=1 (contextA A0 field is valid)
1058                          *           B0V=1 (contextB field is valid)
1059                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1060                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1061                          */
1062                                 qm_fqd_context_a_set64(&initfq.fqd,
1063                                                        0x1e00000080000000ULL);
1064                         }
1065                 }
1066
1067                 /* Put all the ingress queues in our "ingress CGR". */
1068                 if (priv->use_ingress_cgr &&
1069                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1070                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1071                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1072                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1073                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1074                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1075                         /* Set a fixed overhead accounting, just like for the
1076                          * egress CGR.
1077                          */
1078                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1079                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1080                         qm_fqd_set_oal(&initfq.fqd,
1081                                        min(sizeof(struct sk_buff) +
1082                                        priv->tx_headroom,
1083                                        (size_t)FSL_QMAN_MAX_OAL));
1084                 }
1085
1086                 /* Initialization common to all ingress queues */
1087                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1088                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1089                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1090                                                 QM_FQCTRL_CTXASTASHING);
1091                         initfq.fqd.context_a.stashing.exclusive =
1092                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1093                                 QM_STASHING_EXCL_ANNOTATION;
1094                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1095                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1096                                                          64));
1097                 }
1098
1099                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1100                 if (err < 0) {
1101                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1102                                 qman_fq_fqid(fq), err);
1103                         qman_destroy_fq(fq);
1104                         return err;
1105                 }
1106         }
1107
1108         dpaa_fq->fqid = qman_fq_fqid(fq);
1109
1110         return 0;
1111 }
1112
1113 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1114 {
1115         const struct dpaa_priv  *priv;
1116         struct dpaa_fq *dpaa_fq;
1117         int err, error;
1118
1119         err = 0;
1120
1121         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1122         priv = netdev_priv(dpaa_fq->net_dev);
1123
1124         if (dpaa_fq->init) {
1125                 err = qman_retire_fq(fq, NULL);
1126                 if (err < 0 && netif_msg_drv(priv))
1127                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1128                                 qman_fq_fqid(fq), err);
1129
1130                 error = qman_oos_fq(fq);
1131                 if (error < 0 && netif_msg_drv(priv)) {
1132                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1133                                 qman_fq_fqid(fq), error);
1134                         if (err >= 0)
1135                                 err = error;
1136                 }
1137         }
1138
1139         qman_destroy_fq(fq);
1140         list_del(&dpaa_fq->list);
1141
1142         return err;
1143 }
1144
1145 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1146 {
1147         struct dpaa_fq *dpaa_fq, *tmp;
1148         int err, error;
1149
1150         err = 0;
1151         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1152                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1153                 if (error < 0 && err >= 0)
1154                         err = error;
1155         }
1156
1157         return err;
1158 }
1159
1160 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1161                                  struct dpaa_fq *defq,
1162                                  struct dpaa_buffer_layout *buf_layout)
1163 {
1164         struct fman_buffer_prefix_content buf_prefix_content;
1165         struct fman_port_params params;
1166         int err;
1167
1168         memset(&params, 0, sizeof(params));
1169         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1170
1171         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1172         buf_prefix_content.pass_prs_result = true;
1173         buf_prefix_content.pass_hash_result = true;
1174         buf_prefix_content.pass_time_stamp = true;
1175         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1176
1177         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1178         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1179
1180         err = fman_port_config(port, &params);
1181         if (err) {
1182                 pr_err("%s: fman_port_config failed\n", __func__);
1183                 return err;
1184         }
1185
1186         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1187         if (err) {
1188                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1189                        __func__);
1190                 return err;
1191         }
1192
1193         err = fman_port_init(port);
1194         if (err)
1195                 pr_err("%s: fm_port_init failed\n", __func__);
1196
1197         return err;
1198 }
1199
1200 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1201                                  size_t count, struct dpaa_fq *errq,
1202                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1203                                  struct dpaa_buffer_layout *buf_layout)
1204 {
1205         struct fman_buffer_prefix_content buf_prefix_content;
1206         struct fman_port_rx_params *rx_p;
1207         struct fman_port_params params;
1208         int i, err;
1209
1210         memset(&params, 0, sizeof(params));
1211         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1212
1213         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1214         buf_prefix_content.pass_prs_result = true;
1215         buf_prefix_content.pass_hash_result = true;
1216         buf_prefix_content.pass_time_stamp = true;
1217         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1218
1219         rx_p = &params.specific_params.rx_params;
1220         rx_p->err_fqid = errq->fqid;
1221         rx_p->dflt_fqid = defq->fqid;
1222         if (pcdq) {
1223                 rx_p->pcd_base_fqid = pcdq->fqid;
1224                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1225         }
1226
1227         count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1228         rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1229         for (i = 0; i < count; i++) {
1230                 rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1231                 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1232         }
1233
1234         err = fman_port_config(port, &params);
1235         if (err) {
1236                 pr_err("%s: fman_port_config failed\n", __func__);
1237                 return err;
1238         }
1239
1240         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1241         if (err) {
1242                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1243                        __func__);
1244                 return err;
1245         }
1246
1247         err = fman_port_init(port);
1248         if (err)
1249                 pr_err("%s: fm_port_init failed\n", __func__);
1250
1251         return err;
1252 }
1253
1254 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1255                                struct dpaa_bp **bps, size_t count,
1256                                struct fm_port_fqs *port_fqs,
1257                                struct dpaa_buffer_layout *buf_layout,
1258                                struct device *dev)
1259 {
1260         struct fman_port *rxport = mac_dev->port[RX];
1261         struct fman_port *txport = mac_dev->port[TX];
1262         int err;
1263
1264         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1265                                     port_fqs->tx_defq, &buf_layout[TX]);
1266         if (err)
1267                 return err;
1268
1269         err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1270                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1271                                     &buf_layout[RX]);
1272
1273         return err;
1274 }
1275
1276 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1277                              struct bm_buffer *bmb, int cnt)
1278 {
1279         int err;
1280
1281         err = bman_release(dpaa_bp->pool, bmb, cnt);
1282         /* Should never occur, address anyway to avoid leaking the buffers */
1283         if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1284                 while (cnt-- > 0)
1285                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1286
1287         return cnt;
1288 }
1289
1290 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1291 {
1292         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1293         struct dpaa_bp *dpaa_bp;
1294         int i = 0, j;
1295
1296         memset(bmb, 0, sizeof(bmb));
1297
1298         do {
1299                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1300                 if (!dpaa_bp)
1301                         return;
1302
1303                 j = 0;
1304                 do {
1305                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1306
1307                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1308
1309                         j++; i++;
1310                 } while (j < ARRAY_SIZE(bmb) &&
1311                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1312                                 sgt[i - 1].bpid == sgt[i].bpid);
1313
1314                 dpaa_bman_release(dpaa_bp, bmb, j);
1315         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1316 }
1317
1318 static void dpaa_fd_release(const struct net_device *net_dev,
1319                             const struct qm_fd *fd)
1320 {
1321         struct qm_sg_entry *sgt;
1322         struct dpaa_bp *dpaa_bp;
1323         struct bm_buffer bmb;
1324         dma_addr_t addr;
1325         void *vaddr;
1326
1327         bmb.data = 0;
1328         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1329
1330         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1331         if (!dpaa_bp)
1332                 return;
1333
1334         if (qm_fd_get_format(fd) == qm_fd_sg) {
1335                 vaddr = phys_to_virt(qm_fd_addr(fd));
1336                 sgt = vaddr + qm_fd_get_offset(fd);
1337
1338                 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1339                                  DMA_FROM_DEVICE);
1340
1341                 dpaa_release_sgt_members(sgt);
1342
1343                 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1344                                       DMA_FROM_DEVICE);
1345                 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1346                         dev_err(dpaa_bp->dev, "DMA mapping failed");
1347                         return;
1348                 }
1349                 bm_buffer_set64(&bmb, addr);
1350         }
1351
1352         dpaa_bman_release(dpaa_bp, &bmb, 1);
1353 }
1354
1355 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1356                       const union qm_mr_entry *msg)
1357 {
1358         switch (msg->ern.rc & QM_MR_RC_MASK) {
1359         case QM_MR_RC_CGR_TAILDROP:
1360                 percpu_priv->ern_cnt.cg_tdrop++;
1361                 break;
1362         case QM_MR_RC_WRED:
1363                 percpu_priv->ern_cnt.wred++;
1364                 break;
1365         case QM_MR_RC_ERROR:
1366                 percpu_priv->ern_cnt.err_cond++;
1367                 break;
1368         case QM_MR_RC_ORPWINDOW_EARLY:
1369                 percpu_priv->ern_cnt.early_window++;
1370                 break;
1371         case QM_MR_RC_ORPWINDOW_LATE:
1372                 percpu_priv->ern_cnt.late_window++;
1373                 break;
1374         case QM_MR_RC_FQ_TAILDROP:
1375                 percpu_priv->ern_cnt.fq_tdrop++;
1376                 break;
1377         case QM_MR_RC_ORPWINDOW_RETIRED:
1378                 percpu_priv->ern_cnt.fq_retired++;
1379                 break;
1380         case QM_MR_RC_ORP_ZERO:
1381                 percpu_priv->ern_cnt.orp_zero++;
1382                 break;
1383         }
1384 }
1385
1386 /* Turn on HW checksum computation for this outgoing frame.
1387  * If the current protocol is not something we support in this regard
1388  * (or if the stack has already computed the SW checksum), we do nothing.
1389  *
1390  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1391  * otherwise.
1392  *
1393  * Note that this function may modify the fd->cmd field and the skb data buffer
1394  * (the Parse Results area).
1395  */
1396 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1397                                struct sk_buff *skb,
1398                                struct qm_fd *fd,
1399                                char *parse_results)
1400 {
1401         struct fman_prs_result *parse_result;
1402         u16 ethertype = ntohs(skb->protocol);
1403         struct ipv6hdr *ipv6h = NULL;
1404         struct iphdr *iph;
1405         int retval = 0;
1406         u8 l4_proto;
1407
1408         if (skb->ip_summed != CHECKSUM_PARTIAL)
1409                 return 0;
1410
1411         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1412          * L4 alone from the FM configuration anyway.
1413          */
1414
1415         /* Fill in some fields of the Parse Results array, so the FMan
1416          * can find them as if they came from the FMan Parser.
1417          */
1418         parse_result = (struct fman_prs_result *)parse_results;
1419
1420         /* If we're dealing with VLAN, get the real Ethernet type */
1421         if (ethertype == ETH_P_8021Q) {
1422                 /* We can't always assume the MAC header is set correctly
1423                  * by the stack, so reset to beginning of skb->data
1424                  */
1425                 skb_reset_mac_header(skb);
1426                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1427         }
1428
1429         /* Fill in the relevant L3 parse result fields
1430          * and read the L4 protocol type
1431          */
1432         switch (ethertype) {
1433         case ETH_P_IP:
1434                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1435                 iph = ip_hdr(skb);
1436                 WARN_ON(!iph);
1437                 l4_proto = iph->protocol;
1438                 break;
1439         case ETH_P_IPV6:
1440                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1441                 ipv6h = ipv6_hdr(skb);
1442                 WARN_ON(!ipv6h);
1443                 l4_proto = ipv6h->nexthdr;
1444                 break;
1445         default:
1446                 /* We shouldn't even be here */
1447                 if (net_ratelimit())
1448                         netif_alert(priv, tx_err, priv->net_dev,
1449                                     "Can't compute HW csum for L3 proto 0x%x\n",
1450                                     ntohs(skb->protocol));
1451                 retval = -EIO;
1452                 goto return_error;
1453         }
1454
1455         /* Fill in the relevant L4 parse result fields */
1456         switch (l4_proto) {
1457         case IPPROTO_UDP:
1458                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1459                 break;
1460         case IPPROTO_TCP:
1461                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1462                 break;
1463         default:
1464                 if (net_ratelimit())
1465                         netif_alert(priv, tx_err, priv->net_dev,
1466                                     "Can't compute HW csum for L4 proto 0x%x\n",
1467                                     l4_proto);
1468                 retval = -EIO;
1469                 goto return_error;
1470         }
1471
1472         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1473         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1474         parse_result->l4_off = (u8)skb_transport_offset(skb);
1475
1476         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1477         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1478
1479         /* On P1023 and similar platforms fd->cmd interpretation could
1480          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1481          * is not set so we do not need to check; in the future, if/when
1482          * using context_a we need to check this bit
1483          */
1484
1485 return_error:
1486         return retval;
1487 }
1488
1489 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1490 {
1491         struct device *dev = dpaa_bp->dev;
1492         struct bm_buffer bmb[8];
1493         dma_addr_t addr;
1494         void *new_buf;
1495         u8 i;
1496
1497         for (i = 0; i < 8; i++) {
1498                 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1499                 if (unlikely(!new_buf)) {
1500                         dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1501                                 dpaa_bp->raw_size);
1502                         goto release_previous_buffs;
1503                 }
1504                 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1505
1506                 addr = dma_map_single(dev, new_buf,
1507                                       dpaa_bp->size, DMA_FROM_DEVICE);
1508                 if (unlikely(dma_mapping_error(dev, addr))) {
1509                         dev_err(dpaa_bp->dev, "DMA map failed");
1510                         goto release_previous_buffs;
1511                 }
1512
1513                 bmb[i].data = 0;
1514                 bm_buffer_set64(&bmb[i], addr);
1515         }
1516
1517 release_bufs:
1518         return dpaa_bman_release(dpaa_bp, bmb, i);
1519
1520 release_previous_buffs:
1521         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1522
1523         bm_buffer_set64(&bmb[i], 0);
1524         /* Avoid releasing a completely null buffer; bman_release() requires
1525          * at least one buffer.
1526          */
1527         if (likely(i))
1528                 goto release_bufs;
1529
1530         return 0;
1531 }
1532
1533 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1534 {
1535         int i;
1536
1537         /* Give each CPU an allotment of "config_count" buffers */
1538         for_each_possible_cpu(i) {
1539                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1540                 int j;
1541
1542                 /* Although we access another CPU's counters here
1543                  * we do it at boot time so it is safe
1544                  */
1545                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1546                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1547         }
1548         return 0;
1549 }
1550
1551 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1552  * REFILL_THRESHOLD.
1553  */
1554 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1555 {
1556         int count = *countptr;
1557         int new_bufs;
1558
1559         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1560                 do {
1561                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1562                         if (unlikely(!new_bufs)) {
1563                                 /* Avoid looping forever if we've temporarily
1564                                  * run out of memory. We'll try again at the
1565                                  * next NAPI cycle.
1566                                  */
1567                                 break;
1568                         }
1569                         count += new_bufs;
1570                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1571
1572                 *countptr = count;
1573                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1574                         return -ENOMEM;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1581 {
1582         struct dpaa_bp *dpaa_bp;
1583         int *countptr;
1584         int res, i;
1585
1586         for (i = 0; i < DPAA_BPS_NUM; i++) {
1587                 dpaa_bp = priv->dpaa_bps[i];
1588                 if (!dpaa_bp)
1589                         return -EINVAL;
1590                 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1591                 res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1592                 if (res)
1593                         return res;
1594         }
1595         return 0;
1596 }
1597
1598 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1599  * either contiguous frames or scatter/gather ones.
1600  * Skb freeing is not handled here.
1601  *
1602  * This function may be called on error paths in the Tx function, so guard
1603  * against cases when not all fd relevant fields were filled in.
1604  *
1605  * Return the skb backpointer, since for S/G frames the buffer containing it
1606  * gets freed here.
1607  */
1608 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1609                                           const struct qm_fd *fd)
1610 {
1611         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1612         struct device *dev = priv->net_dev->dev.parent;
1613         struct skb_shared_hwtstamps shhwtstamps;
1614         dma_addr_t addr = qm_fd_addr(fd);
1615         const struct qm_sg_entry *sgt;
1616         struct sk_buff **skbh, *skb;
1617         int nr_frags, i;
1618         u64 ns;
1619
1620         skbh = (struct sk_buff **)phys_to_virt(addr);
1621         skb = *skbh;
1622
1623         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1624                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1625
1626                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], (void *)skbh,
1627                                           &ns)) {
1628                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1629                         skb_tstamp_tx(skb, &shhwtstamps);
1630                 } else {
1631                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1632                 }
1633         }
1634
1635         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1636                 nr_frags = skb_shinfo(skb)->nr_frags;
1637                 dma_unmap_single(dev, addr,
1638                                  qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1639                                  dma_dir);
1640
1641                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1642                  * it's from lowmem.
1643                  */
1644                 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1645
1646                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1647                 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1648                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1649
1650                 /* remaining pages were mapped with skb_frag_dma_map() */
1651                 for (i = 1; i < nr_frags; i++) {
1652                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1653
1654                         dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1655                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1656                 }
1657
1658                 /* Free the page frag that we allocated on Tx */
1659                 skb_free_frag(phys_to_virt(addr));
1660         } else {
1661                 dma_unmap_single(dev, addr,
1662                                  skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1663         }
1664
1665         return skb;
1666 }
1667
1668 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1669 {
1670         /* The parser has run and performed L4 checksum validation.
1671          * We know there were no parser errors (and implicitly no
1672          * L4 csum error), otherwise we wouldn't be here.
1673          */
1674         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1675             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1676                 return CHECKSUM_UNNECESSARY;
1677
1678         /* We're here because either the parser didn't run or the L4 checksum
1679          * was not verified. This may include the case of a UDP frame with
1680          * checksum zero or an L4 proto other than TCP/UDP
1681          */
1682         return CHECKSUM_NONE;
1683 }
1684
1685 /* Build a linear skb around the received buffer.
1686  * We are guaranteed there is enough room at the end of the data buffer to
1687  * accommodate the shared info area of the skb.
1688  */
1689 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1690                                         const struct qm_fd *fd)
1691 {
1692         ssize_t fd_off = qm_fd_get_offset(fd);
1693         dma_addr_t addr = qm_fd_addr(fd);
1694         struct dpaa_bp *dpaa_bp;
1695         struct sk_buff *skb;
1696         void *vaddr;
1697
1698         vaddr = phys_to_virt(addr);
1699         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1700
1701         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1702         if (!dpaa_bp)
1703                 goto free_buffer;
1704
1705         skb = build_skb(vaddr, dpaa_bp->size +
1706                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1707         if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1708                 goto free_buffer;
1709         WARN_ON(fd_off != priv->rx_headroom);
1710         skb_reserve(skb, fd_off);
1711         skb_put(skb, qm_fd_get_length(fd));
1712
1713         skb->ip_summed = rx_csum_offload(priv, fd);
1714
1715         return skb;
1716
1717 free_buffer:
1718         skb_free_frag(vaddr);
1719         return NULL;
1720 }
1721
1722 /* Build an skb with the data of the first S/G entry in the linear portion and
1723  * the rest of the frame as skb fragments.
1724  *
1725  * The page fragment holding the S/G Table is recycled here.
1726  */
1727 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1728                                     const struct qm_fd *fd)
1729 {
1730         ssize_t fd_off = qm_fd_get_offset(fd);
1731         dma_addr_t addr = qm_fd_addr(fd);
1732         const struct qm_sg_entry *sgt;
1733         struct page *page, *head_page;
1734         struct dpaa_bp *dpaa_bp;
1735         void *vaddr, *sg_vaddr;
1736         int frag_off, frag_len;
1737         struct sk_buff *skb;
1738         dma_addr_t sg_addr;
1739         int page_offset;
1740         unsigned int sz;
1741         int *count_ptr;
1742         int i;
1743
1744         vaddr = phys_to_virt(addr);
1745         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1746
1747         /* Iterate through the SGT entries and add data buffers to the skb */
1748         sgt = vaddr + fd_off;
1749         skb = NULL;
1750         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1751                 /* Extension bit is not supported */
1752                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1753
1754                 sg_addr = qm_sg_addr(&sgt[i]);
1755                 sg_vaddr = phys_to_virt(sg_addr);
1756                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1757                                     SMP_CACHE_BYTES));
1758
1759                 /* We may use multiple Rx pools */
1760                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1761                 if (!dpaa_bp)
1762                         goto free_buffers;
1763
1764                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1765                 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1766                                  DMA_FROM_DEVICE);
1767                 if (!skb) {
1768                         sz = dpaa_bp->size +
1769                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1770                         skb = build_skb(sg_vaddr, sz);
1771                         if (WARN_ON(!skb))
1772                                 goto free_buffers;
1773
1774                         skb->ip_summed = rx_csum_offload(priv, fd);
1775
1776                         /* Make sure forwarded skbs will have enough space
1777                          * on Tx, if extra headers are added.
1778                          */
1779                         WARN_ON(fd_off != priv->rx_headroom);
1780                         skb_reserve(skb, fd_off);
1781                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1782                 } else {
1783                         /* Not the first S/G entry; all data from buffer will
1784                          * be added in an skb fragment; fragment index is offset
1785                          * by one since first S/G entry was incorporated in the
1786                          * linear part of the skb.
1787                          *
1788                          * Caution: 'page' may be a tail page.
1789                          */
1790                         page = virt_to_page(sg_vaddr);
1791                         head_page = virt_to_head_page(sg_vaddr);
1792
1793                         /* Compute offset in (possibly tail) page */
1794                         page_offset = ((unsigned long)sg_vaddr &
1795                                         (PAGE_SIZE - 1)) +
1796                                 (page_address(page) - page_address(head_page));
1797                         /* page_offset only refers to the beginning of sgt[i];
1798                          * but the buffer itself may have an internal offset.
1799                          */
1800                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1801                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1802                         /* skb_add_rx_frag() does no checking on the page; if
1803                          * we pass it a tail page, we'll end up with
1804                          * bad page accounting and eventually with segafults.
1805                          */
1806                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1807                                         frag_len, dpaa_bp->size);
1808                 }
1809                 /* Update the pool count for the current {cpu x bpool} */
1810                 (*count_ptr)--;
1811
1812                 if (qm_sg_entry_is_final(&sgt[i]))
1813                         break;
1814         }
1815         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1816
1817         /* free the SG table buffer */
1818         skb_free_frag(vaddr);
1819
1820         return skb;
1821
1822 free_buffers:
1823         /* compensate sw bpool counter changes */
1824         for (i--; i >= 0; i--) {
1825                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1826                 if (dpaa_bp) {
1827                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1828                         (*count_ptr)++;
1829                 }
1830         }
1831         /* free all the SG entries */
1832         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1833                 sg_addr = qm_sg_addr(&sgt[i]);
1834                 sg_vaddr = phys_to_virt(sg_addr);
1835                 skb_free_frag(sg_vaddr);
1836                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1837                 if (dpaa_bp) {
1838                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1839                         (*count_ptr)--;
1840                 }
1841
1842                 if (qm_sg_entry_is_final(&sgt[i]))
1843                         break;
1844         }
1845         /* free the SGT fragment */
1846         skb_free_frag(vaddr);
1847
1848         return NULL;
1849 }
1850
1851 static int skb_to_contig_fd(struct dpaa_priv *priv,
1852                             struct sk_buff *skb, struct qm_fd *fd,
1853                             int *offset)
1854 {
1855         struct net_device *net_dev = priv->net_dev;
1856         struct device *dev = net_dev->dev.parent;
1857         enum dma_data_direction dma_dir;
1858         unsigned char *buffer_start;
1859         struct sk_buff **skbh;
1860         dma_addr_t addr;
1861         int err;
1862
1863         /* We are guaranteed to have at least tx_headroom bytes
1864          * available, so just use that for offset.
1865          */
1866         fd->bpid = FSL_DPAA_BPID_INV;
1867         buffer_start = skb->data - priv->tx_headroom;
1868         dma_dir = DMA_TO_DEVICE;
1869
1870         skbh = (struct sk_buff **)buffer_start;
1871         *skbh = skb;
1872
1873         /* Enable L3/L4 hardware checksum computation.
1874          *
1875          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1876          * need to write into the skb.
1877          */
1878         err = dpaa_enable_tx_csum(priv, skb, fd,
1879                                   ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1880         if (unlikely(err < 0)) {
1881                 if (net_ratelimit())
1882                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1883                                   err);
1884                 return err;
1885         }
1886
1887         /* Fill in the rest of the FD fields */
1888         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1889         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1890
1891         /* Map the entire buffer size that may be seen by FMan, but no more */
1892         addr = dma_map_single(dev, skbh,
1893                               skb_tail_pointer(skb) - buffer_start, dma_dir);
1894         if (unlikely(dma_mapping_error(dev, addr))) {
1895                 if (net_ratelimit())
1896                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1897                 return -EINVAL;
1898         }
1899         qm_fd_addr_set64(fd, addr);
1900
1901         return 0;
1902 }
1903
1904 static int skb_to_sg_fd(struct dpaa_priv *priv,
1905                         struct sk_buff *skb, struct qm_fd *fd)
1906 {
1907         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1908         const int nr_frags = skb_shinfo(skb)->nr_frags;
1909         struct net_device *net_dev = priv->net_dev;
1910         struct device *dev = net_dev->dev.parent;
1911         struct qm_sg_entry *sgt;
1912         struct sk_buff **skbh;
1913         int i, j, err, sz;
1914         void *buffer_start;
1915         skb_frag_t *frag;
1916         dma_addr_t addr;
1917         size_t frag_len;
1918         void *sgt_buf;
1919
1920         /* get a page frag to store the SGTable */
1921         sz = SKB_DATA_ALIGN(priv->tx_headroom + DPAA_SGT_SIZE);
1922         sgt_buf = netdev_alloc_frag(sz);
1923         if (unlikely(!sgt_buf)) {
1924                 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1925                            sz);
1926                 return -ENOMEM;
1927         }
1928
1929         /* Enable L3/L4 hardware checksum computation.
1930          *
1931          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1932          * need to write into the skb.
1933          */
1934         err = dpaa_enable_tx_csum(priv, skb, fd,
1935                                   sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1936         if (unlikely(err < 0)) {
1937                 if (net_ratelimit())
1938                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1939                                   err);
1940                 goto csum_failed;
1941         }
1942
1943         /* SGT[0] is used by the linear part */
1944         sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1945         frag_len = skb_headlen(skb);
1946         qm_sg_entry_set_len(&sgt[0], frag_len);
1947         sgt[0].bpid = FSL_DPAA_BPID_INV;
1948         sgt[0].offset = 0;
1949         addr = dma_map_single(dev, skb->data,
1950                               skb_headlen(skb), dma_dir);
1951         if (unlikely(dma_mapping_error(dev, addr))) {
1952                 dev_err(dev, "DMA mapping failed");
1953                 err = -EINVAL;
1954                 goto sg0_map_failed;
1955         }
1956         qm_sg_entry_set64(&sgt[0], addr);
1957
1958         /* populate the rest of SGT entries */
1959         for (i = 0; i < nr_frags; i++) {
1960                 frag = &skb_shinfo(skb)->frags[i];
1961                 frag_len = frag->size;
1962                 WARN_ON(!skb_frag_page(frag));
1963                 addr = skb_frag_dma_map(dev, frag, 0,
1964                                         frag_len, dma_dir);
1965                 if (unlikely(dma_mapping_error(dev, addr))) {
1966                         dev_err(dev, "DMA mapping failed");
1967                         err = -EINVAL;
1968                         goto sg_map_failed;
1969                 }
1970
1971                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1972                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1973                 sgt[i + 1].offset = 0;
1974
1975                 /* keep the offset in the address */
1976                 qm_sg_entry_set64(&sgt[i + 1], addr);
1977         }
1978
1979         /* Set the final bit in the last used entry of the SGT */
1980         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1981
1982         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1983
1984         /* DMA map the SGT page */
1985         buffer_start = (void *)sgt - priv->tx_headroom;
1986         skbh = (struct sk_buff **)buffer_start;
1987         *skbh = skb;
1988
1989         addr = dma_map_single(dev, buffer_start,
1990                               priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1991         if (unlikely(dma_mapping_error(dev, addr))) {
1992                 dev_err(dev, "DMA mapping failed");
1993                 err = -EINVAL;
1994                 goto sgt_map_failed;
1995         }
1996
1997         fd->bpid = FSL_DPAA_BPID_INV;
1998         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1999         qm_fd_addr_set64(fd, addr);
2000
2001         return 0;
2002
2003 sgt_map_failed:
2004 sg_map_failed:
2005         for (j = 0; j < i; j++)
2006                 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
2007                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
2008 sg0_map_failed:
2009 csum_failed:
2010         skb_free_frag(sgt_buf);
2011
2012         return err;
2013 }
2014
2015 static inline int dpaa_xmit(struct dpaa_priv *priv,
2016                             struct rtnl_link_stats64 *percpu_stats,
2017                             int queue,
2018                             struct qm_fd *fd)
2019 {
2020         struct qman_fq *egress_fq;
2021         int err, i;
2022
2023         egress_fq = priv->egress_fqs[queue];
2024         if (fd->bpid == FSL_DPAA_BPID_INV)
2025                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2026
2027         /* Trace this Tx fd */
2028         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2029
2030         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2031                 err = qman_enqueue(egress_fq, fd);
2032                 if (err != -EBUSY)
2033                         break;
2034         }
2035
2036         if (unlikely(err < 0)) {
2037                 percpu_stats->tx_fifo_errors++;
2038                 return err;
2039         }
2040
2041         percpu_stats->tx_packets++;
2042         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2043
2044         return 0;
2045 }
2046
2047 static netdev_tx_t
2048 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2049 {
2050         const int queue_mapping = skb_get_queue_mapping(skb);
2051         bool nonlinear = skb_is_nonlinear(skb);
2052         struct rtnl_link_stats64 *percpu_stats;
2053         struct dpaa_percpu_priv *percpu_priv;
2054         struct netdev_queue *txq;
2055         struct dpaa_priv *priv;
2056         struct qm_fd fd;
2057         int offset = 0;
2058         int err = 0;
2059
2060         priv = netdev_priv(net_dev);
2061         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2062         percpu_stats = &percpu_priv->stats;
2063
2064         qm_fd_clear_fd(&fd);
2065
2066         if (!nonlinear) {
2067                 /* We're going to store the skb backpointer at the beginning
2068                  * of the data buffer, so we need a privately owned skb
2069                  *
2070                  * We've made sure skb is not shared in dev->priv_flags,
2071                  * we need to verify the skb head is not cloned
2072                  */
2073                 if (skb_cow_head(skb, priv->tx_headroom))
2074                         goto enomem;
2075
2076                 WARN_ON(skb_is_nonlinear(skb));
2077         }
2078
2079         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2080          * make sure we don't feed FMan with more fragments than it supports.
2081          */
2082         if (unlikely(nonlinear &&
2083                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2084                 /* If the egress skb contains more fragments than we support
2085                  * we have no choice but to linearize it ourselves.
2086                  */
2087                 if (__skb_linearize(skb))
2088                         goto enomem;
2089
2090                 nonlinear = skb_is_nonlinear(skb);
2091         }
2092
2093         if (nonlinear) {
2094                 /* Just create a S/G fd based on the skb */
2095                 err = skb_to_sg_fd(priv, skb, &fd);
2096                 percpu_priv->tx_frag_skbuffs++;
2097         } else {
2098                 /* Create a contig FD from this skb */
2099                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2100         }
2101         if (unlikely(err < 0))
2102                 goto skb_to_fd_failed;
2103
2104         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2105
2106         /* LLTX requires to do our own update of trans_start */
2107         txq->trans_start = jiffies;
2108
2109         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2110                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2111                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2112         }
2113
2114         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2115                 return NETDEV_TX_OK;
2116
2117         dpaa_cleanup_tx_fd(priv, &fd);
2118 skb_to_fd_failed:
2119 enomem:
2120         percpu_stats->tx_errors++;
2121         dev_kfree_skb(skb);
2122         return NETDEV_TX_OK;
2123 }
2124
2125 static void dpaa_rx_error(struct net_device *net_dev,
2126                           const struct dpaa_priv *priv,
2127                           struct dpaa_percpu_priv *percpu_priv,
2128                           const struct qm_fd *fd,
2129                           u32 fqid)
2130 {
2131         if (net_ratelimit())
2132                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2133                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2134
2135         percpu_priv->stats.rx_errors++;
2136
2137         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2138                 percpu_priv->rx_errors.dme++;
2139         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2140                 percpu_priv->rx_errors.fpe++;
2141         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2142                 percpu_priv->rx_errors.fse++;
2143         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2144                 percpu_priv->rx_errors.phe++;
2145
2146         dpaa_fd_release(net_dev, fd);
2147 }
2148
2149 static void dpaa_tx_error(struct net_device *net_dev,
2150                           const struct dpaa_priv *priv,
2151                           struct dpaa_percpu_priv *percpu_priv,
2152                           const struct qm_fd *fd,
2153                           u32 fqid)
2154 {
2155         struct sk_buff *skb;
2156
2157         if (net_ratelimit())
2158                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2159                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2160
2161         percpu_priv->stats.tx_errors++;
2162
2163         skb = dpaa_cleanup_tx_fd(priv, fd);
2164         dev_kfree_skb(skb);
2165 }
2166
2167 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2168 {
2169         struct dpaa_napi_portal *np =
2170                         container_of(napi, struct dpaa_napi_portal, napi);
2171
2172         int cleaned = qman_p_poll_dqrr(np->p, budget);
2173
2174         if (cleaned < budget) {
2175                 napi_complete_done(napi, cleaned);
2176                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2177
2178         } else if (np->down) {
2179                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2180         }
2181
2182         return cleaned;
2183 }
2184
2185 static void dpaa_tx_conf(struct net_device *net_dev,
2186                          const struct dpaa_priv *priv,
2187                          struct dpaa_percpu_priv *percpu_priv,
2188                          const struct qm_fd *fd,
2189                          u32 fqid)
2190 {
2191         struct sk_buff  *skb;
2192
2193         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2194                 if (net_ratelimit())
2195                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2196                                    be32_to_cpu(fd->status) &
2197                                    FM_FD_STAT_TX_ERRORS);
2198
2199                 percpu_priv->stats.tx_errors++;
2200         }
2201
2202         percpu_priv->tx_confirm++;
2203
2204         skb = dpaa_cleanup_tx_fd(priv, fd);
2205
2206         consume_skb(skb);
2207 }
2208
2209 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2210                                          struct qman_portal *portal)
2211 {
2212         if (unlikely(in_irq() || !in_serving_softirq())) {
2213                 /* Disable QMan IRQ and invoke NAPI */
2214                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2215
2216                 percpu_priv->np.p = portal;
2217                 napi_schedule(&percpu_priv->np.napi);
2218                 percpu_priv->in_interrupt++;
2219                 return 1;
2220         }
2221         return 0;
2222 }
2223
2224 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2225                                               struct qman_fq *fq,
2226                                               const struct qm_dqrr_entry *dq)
2227 {
2228         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2229         struct dpaa_percpu_priv *percpu_priv;
2230         struct net_device *net_dev;
2231         struct dpaa_bp *dpaa_bp;
2232         struct dpaa_priv *priv;
2233
2234         net_dev = dpaa_fq->net_dev;
2235         priv = netdev_priv(net_dev);
2236         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2237         if (!dpaa_bp)
2238                 return qman_cb_dqrr_consume;
2239
2240         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2241
2242         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2243                 return qman_cb_dqrr_stop;
2244
2245         dpaa_eth_refill_bpools(priv);
2246         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2247
2248         return qman_cb_dqrr_consume;
2249 }
2250
2251 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2252                                                 struct qman_fq *fq,
2253                                                 const struct qm_dqrr_entry *dq)
2254 {
2255         struct skb_shared_hwtstamps *shhwtstamps;
2256         struct rtnl_link_stats64 *percpu_stats;
2257         struct dpaa_percpu_priv *percpu_priv;
2258         const struct qm_fd *fd = &dq->fd;
2259         dma_addr_t addr = qm_fd_addr(fd);
2260         enum qm_fd_format fd_format;
2261         struct net_device *net_dev;
2262         u32 fd_status, hash_offset;
2263         struct dpaa_bp *dpaa_bp;
2264         struct dpaa_priv *priv;
2265         unsigned int skb_len;
2266         struct sk_buff *skb;
2267         int *count_ptr;
2268         void *vaddr;
2269         u64 ns;
2270
2271         fd_status = be32_to_cpu(fd->status);
2272         fd_format = qm_fd_get_format(fd);
2273         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2274         priv = netdev_priv(net_dev);
2275         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2276         if (!dpaa_bp)
2277                 return qman_cb_dqrr_consume;
2278
2279         /* Trace the Rx fd */
2280         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2281
2282         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2283         percpu_stats = &percpu_priv->stats;
2284
2285         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2286                 return qman_cb_dqrr_stop;
2287
2288         /* Make sure we didn't run out of buffers */
2289         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2290                 /* Unable to refill the buffer pool due to insufficient
2291                  * system memory. Just release the frame back into the pool,
2292                  * otherwise we'll soon end up with an empty buffer pool.
2293                  */
2294                 dpaa_fd_release(net_dev, &dq->fd);
2295                 return qman_cb_dqrr_consume;
2296         }
2297
2298         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2299                 if (net_ratelimit())
2300                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2301                                    fd_status & FM_FD_STAT_RX_ERRORS);
2302
2303                 percpu_stats->rx_errors++;
2304                 dpaa_fd_release(net_dev, fd);
2305                 return qman_cb_dqrr_consume;
2306         }
2307
2308         dpaa_bp = dpaa_bpid2pool(fd->bpid);
2309         if (!dpaa_bp)
2310                 return qman_cb_dqrr_consume;
2311
2312         dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2313
2314         /* prefetch the first 64 bytes of the frame or the SGT start */
2315         vaddr = phys_to_virt(addr);
2316         prefetch(vaddr + qm_fd_get_offset(fd));
2317
2318         /* The only FD types that we may receive are contig and S/G */
2319         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2320
2321         /* Account for either the contig buffer or the SGT buffer (depending on
2322          * which case we were in) having been removed from the pool.
2323          */
2324         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2325         (*count_ptr)--;
2326
2327         if (likely(fd_format == qm_fd_contig))
2328                 skb = contig_fd_to_skb(priv, fd);
2329         else
2330                 skb = sg_fd_to_skb(priv, fd);
2331         if (!skb)
2332                 return qman_cb_dqrr_consume;
2333
2334         if (priv->rx_tstamp) {
2335                 shhwtstamps = skb_hwtstamps(skb);
2336                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2337
2338                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2339                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
2340                 else
2341                         dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2342         }
2343
2344         skb->protocol = eth_type_trans(skb, net_dev);
2345
2346         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2347             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2348                                               &hash_offset)) {
2349                 enum pkt_hash_types type;
2350
2351                 /* if L4 exists, it was used in the hash generation */
2352                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2353                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2354                 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2355                              type);
2356         }
2357
2358         skb_len = skb->len;
2359
2360         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2361                 percpu_stats->rx_dropped++;
2362                 return qman_cb_dqrr_consume;
2363         }
2364
2365         percpu_stats->rx_packets++;
2366         percpu_stats->rx_bytes += skb_len;
2367
2368         return qman_cb_dqrr_consume;
2369 }
2370
2371 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2372                                                 struct qman_fq *fq,
2373                                                 const struct qm_dqrr_entry *dq)
2374 {
2375         struct dpaa_percpu_priv *percpu_priv;
2376         struct net_device *net_dev;
2377         struct dpaa_priv *priv;
2378
2379         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2380         priv = netdev_priv(net_dev);
2381
2382         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2383
2384         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2385                 return qman_cb_dqrr_stop;
2386
2387         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2388
2389         return qman_cb_dqrr_consume;
2390 }
2391
2392 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2393                                                struct qman_fq *fq,
2394                                                const struct qm_dqrr_entry *dq)
2395 {
2396         struct dpaa_percpu_priv *percpu_priv;
2397         struct net_device *net_dev;
2398         struct dpaa_priv *priv;
2399
2400         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2401         priv = netdev_priv(net_dev);
2402
2403         /* Trace the fd */
2404         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2405
2406         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2407
2408         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2409                 return qman_cb_dqrr_stop;
2410
2411         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2412
2413         return qman_cb_dqrr_consume;
2414 }
2415
2416 static void egress_ern(struct qman_portal *portal,
2417                        struct qman_fq *fq,
2418                        const union qm_mr_entry *msg)
2419 {
2420         const struct qm_fd *fd = &msg->ern.fd;
2421         struct dpaa_percpu_priv *percpu_priv;
2422         const struct dpaa_priv *priv;
2423         struct net_device *net_dev;
2424         struct sk_buff *skb;
2425
2426         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2427         priv = netdev_priv(net_dev);
2428         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2429
2430         percpu_priv->stats.tx_dropped++;
2431         percpu_priv->stats.tx_fifo_errors++;
2432         count_ern(percpu_priv, msg);
2433
2434         skb = dpaa_cleanup_tx_fd(priv, fd);
2435         dev_kfree_skb_any(skb);
2436 }
2437
2438 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2439         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2440         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2441         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2442         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2443         .egress_ern = { .cb = { .ern = egress_ern } }
2444 };
2445
2446 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2447 {
2448         struct dpaa_percpu_priv *percpu_priv;
2449         int i;
2450
2451         for_each_possible_cpu(i) {
2452                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2453
2454                 percpu_priv->np.down = 0;
2455                 napi_enable(&percpu_priv->np.napi);
2456         }
2457 }
2458
2459 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2460 {
2461         struct dpaa_percpu_priv *percpu_priv;
2462         int i;
2463
2464         for_each_possible_cpu(i) {
2465                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2466
2467                 percpu_priv->np.down = 1;
2468                 napi_disable(&percpu_priv->np.napi);
2469         }
2470 }
2471
2472 static void dpaa_adjust_link(struct net_device *net_dev)
2473 {
2474         struct mac_device *mac_dev;
2475         struct dpaa_priv *priv;
2476
2477         priv = netdev_priv(net_dev);
2478         mac_dev = priv->mac_dev;
2479         mac_dev->adjust_link(mac_dev);
2480 }
2481
2482 static int dpaa_phy_init(struct net_device *net_dev)
2483 {
2484         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2485         struct mac_device *mac_dev;
2486         struct phy_device *phy_dev;
2487         struct dpaa_priv *priv;
2488
2489         priv = netdev_priv(net_dev);
2490         mac_dev = priv->mac_dev;
2491
2492         phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2493                                  &dpaa_adjust_link, 0,
2494                                  mac_dev->phy_if);
2495         if (!phy_dev) {
2496                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2497                 return -ENODEV;
2498         }
2499
2500         /* Remove any features not supported by the controller */
2501         ethtool_convert_legacy_u32_to_link_mode(mask, mac_dev->if_support);
2502         linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2503
2504         phy_support_asym_pause(phy_dev);
2505
2506         mac_dev->phy_dev = phy_dev;
2507         net_dev->phydev = phy_dev;
2508
2509         return 0;
2510 }
2511
2512 static int dpaa_open(struct net_device *net_dev)
2513 {
2514         struct mac_device *mac_dev;
2515         struct dpaa_priv *priv;
2516         int err, i;
2517
2518         priv = netdev_priv(net_dev);
2519         mac_dev = priv->mac_dev;
2520         dpaa_eth_napi_enable(priv);
2521
2522         err = dpaa_phy_init(net_dev);
2523         if (err)
2524                 goto phy_init_failed;
2525
2526         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2527                 err = fman_port_enable(mac_dev->port[i]);
2528                 if (err)
2529                         goto mac_start_failed;
2530         }
2531
2532         err = priv->mac_dev->start(mac_dev);
2533         if (err < 0) {
2534                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2535                 goto mac_start_failed;
2536         }
2537
2538         netif_tx_start_all_queues(net_dev);
2539
2540         return 0;
2541
2542 mac_start_failed:
2543         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2544                 fman_port_disable(mac_dev->port[i]);
2545
2546 phy_init_failed:
2547         dpaa_eth_napi_disable(priv);
2548
2549         return err;
2550 }
2551
2552 static int dpaa_eth_stop(struct net_device *net_dev)
2553 {
2554         struct dpaa_priv *priv;
2555         int err;
2556
2557         err = dpaa_stop(net_dev);
2558
2559         priv = netdev_priv(net_dev);
2560         dpaa_eth_napi_disable(priv);
2561
2562         return err;
2563 }
2564
2565 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2566 {
2567         struct dpaa_priv *priv = netdev_priv(dev);
2568         struct hwtstamp_config config;
2569
2570         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2571                 return -EFAULT;
2572
2573         switch (config.tx_type) {
2574         case HWTSTAMP_TX_OFF:
2575                 /* Couldn't disable rx/tx timestamping separately.
2576                  * Do nothing here.
2577                  */
2578                 priv->tx_tstamp = false;
2579                 break;
2580         case HWTSTAMP_TX_ON:
2581                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2582                 priv->tx_tstamp = true;
2583                 break;
2584         default:
2585                 return -ERANGE;
2586         }
2587
2588         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2589                 /* Couldn't disable rx/tx timestamping separately.
2590                  * Do nothing here.
2591                  */
2592                 priv->rx_tstamp = false;
2593         } else {
2594                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2595                 priv->rx_tstamp = true;
2596                 /* TS is set for all frame types, not only those requested */
2597                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2598         }
2599
2600         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2601                         -EFAULT : 0;
2602 }
2603
2604 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2605 {
2606         int ret = -EINVAL;
2607
2608         if (cmd == SIOCGMIIREG) {
2609                 if (net_dev->phydev)
2610                         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2611         }
2612
2613         if (cmd == SIOCSHWTSTAMP)
2614                 return dpaa_ts_ioctl(net_dev, rq, cmd);
2615
2616         return ret;
2617 }
2618
2619 static const struct net_device_ops dpaa_ops = {
2620         .ndo_open = dpaa_open,
2621         .ndo_start_xmit = dpaa_start_xmit,
2622         .ndo_stop = dpaa_eth_stop,
2623         .ndo_tx_timeout = dpaa_tx_timeout,
2624         .ndo_get_stats64 = dpaa_get_stats64,
2625         .ndo_change_carrier = fixed_phy_change_carrier,
2626         .ndo_set_mac_address = dpaa_set_mac_address,
2627         .ndo_validate_addr = eth_validate_addr,
2628         .ndo_set_rx_mode = dpaa_set_rx_mode,
2629         .ndo_do_ioctl = dpaa_ioctl,
2630         .ndo_setup_tc = dpaa_setup_tc,
2631 };
2632
2633 static int dpaa_napi_add(struct net_device *net_dev)
2634 {
2635         struct dpaa_priv *priv = netdev_priv(net_dev);
2636         struct dpaa_percpu_priv *percpu_priv;
2637         int cpu;
2638
2639         for_each_possible_cpu(cpu) {
2640                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2641
2642                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2643                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2644         }
2645
2646         return 0;
2647 }
2648
2649 static void dpaa_napi_del(struct net_device *net_dev)
2650 {
2651         struct dpaa_priv *priv = netdev_priv(net_dev);
2652         struct dpaa_percpu_priv *percpu_priv;
2653         int cpu;
2654
2655         for_each_possible_cpu(cpu) {
2656                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2657
2658                 netif_napi_del(&percpu_priv->np.napi);
2659         }
2660 }
2661
2662 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2663                                    struct bm_buffer *bmb)
2664 {
2665         dma_addr_t addr = bm_buf_addr(bmb);
2666
2667         dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2668
2669         skb_free_frag(phys_to_virt(addr));
2670 }
2671
2672 /* Alloc the dpaa_bp struct and configure default values */
2673 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2674 {
2675         struct dpaa_bp *dpaa_bp;
2676
2677         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2678         if (!dpaa_bp)
2679                 return ERR_PTR(-ENOMEM);
2680
2681         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2682         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2683         if (!dpaa_bp->percpu_count)
2684                 return ERR_PTR(-ENOMEM);
2685
2686         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2687
2688         dpaa_bp->seed_cb = dpaa_bp_seed;
2689         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2690
2691         return dpaa_bp;
2692 }
2693
2694 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2695  * We won't be sending congestion notifications to FMan; for now, we just use
2696  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2697  * before they reach our ingress queues and eat up memory.
2698  */
2699 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2700 {
2701         struct qm_mcc_initcgr initcgr;
2702         u32 cs_th;
2703         int err;
2704
2705         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2706         if (err < 0) {
2707                 if (netif_msg_drv(priv))
2708                         pr_err("Error %d allocating CGR ID\n", err);
2709                 goto out_error;
2710         }
2711
2712         /* Enable CS TD, but disable Congestion State Change Notifications. */
2713         memset(&initcgr, 0, sizeof(initcgr));
2714         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2715         initcgr.cgr.cscn_en = QM_CGR_EN;
2716         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2717         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2718
2719         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2720         initcgr.cgr.cstd_en = QM_CGR_EN;
2721
2722         /* This CGR will be associated with the SWP affined to the current CPU.
2723          * However, we'll place all our ingress FQs in it.
2724          */
2725         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2726                               &initcgr);
2727         if (err < 0) {
2728                 if (netif_msg_drv(priv))
2729                         pr_err("Error %d creating ingress CGR with ID %d\n",
2730                                err, priv->ingress_cgr.cgrid);
2731                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2732                 goto out_error;
2733         }
2734         if (netif_msg_drv(priv))
2735                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2736                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2737
2738         priv->use_ingress_cgr = true;
2739
2740 out_error:
2741         return err;
2742 }
2743
2744 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2745 {
2746         u16 headroom;
2747
2748         /* The frame headroom must accommodate:
2749          * - the driver private data area
2750          * - parse results, hash results, timestamp if selected
2751          * If either hash results or time stamp are selected, both will
2752          * be copied to/from the frame headroom, as TS is located between PR and
2753          * HR in the IC and IC copy size has a granularity of 16bytes
2754          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2755          *
2756          * Also make sure the headroom is a multiple of data_align bytes
2757          */
2758         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2759                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2760
2761         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2762                                               DPAA_FD_DATA_ALIGNMENT) :
2763                                         headroom;
2764 }
2765
2766 static int dpaa_eth_probe(struct platform_device *pdev)
2767 {
2768         struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2769         struct net_device *net_dev = NULL;
2770         struct dpaa_fq *dpaa_fq, *tmp;
2771         struct dpaa_priv *priv = NULL;
2772         struct fm_port_fqs port_fqs;
2773         struct mac_device *mac_dev;
2774         int err = 0, i, channel;
2775         struct device *dev;
2776
2777         /* device used for DMA mapping */
2778         dev = pdev->dev.parent;
2779         err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2780         if (err) {
2781                 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2782                 return err;
2783         }
2784
2785         /* Allocate this early, so we can store relevant information in
2786          * the private area
2787          */
2788         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2789         if (!net_dev) {
2790                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2791                 return -ENOMEM;
2792         }
2793
2794         /* Do this here, so we can be verbose early */
2795         SET_NETDEV_DEV(net_dev, dev);
2796         dev_set_drvdata(dev, net_dev);
2797
2798         priv = netdev_priv(net_dev);
2799         priv->net_dev = net_dev;
2800
2801         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2802
2803         mac_dev = dpaa_mac_dev_get(pdev);
2804         if (IS_ERR(mac_dev)) {
2805                 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2806                 err = PTR_ERR(mac_dev);
2807                 goto free_netdev;
2808         }
2809
2810         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2811          * we choose conservatively and let the user explicitly set a higher
2812          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2813          * in the same LAN.
2814          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2815          * start with the maximum allowed.
2816          */
2817         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2818
2819         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2820                    net_dev->mtu);
2821
2822         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2823         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2824
2825         /* bp init */
2826         for (i = 0; i < DPAA_BPS_NUM; i++) {
2827                 dpaa_bps[i] = dpaa_bp_alloc(dev);
2828                 if (IS_ERR(dpaa_bps[i])) {
2829                         err = PTR_ERR(dpaa_bps[i]);
2830                         goto free_dpaa_bps;
2831                 }
2832                 /* the raw size of the buffers used for reception */
2833                 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2834                 /* avoid runtime computations by keeping the usable size here */
2835                 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2836                 dpaa_bps[i]->dev = dev;
2837
2838                 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2839                 if (err < 0)
2840                         goto free_dpaa_bps;
2841                 priv->dpaa_bps[i] = dpaa_bps[i];
2842         }
2843
2844         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2845
2846         memset(&port_fqs, 0, sizeof(port_fqs));
2847
2848         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2849         if (err < 0) {
2850                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2851                 goto free_dpaa_bps;
2852         }
2853
2854         priv->mac_dev = mac_dev;
2855
2856         channel = dpaa_get_channel();
2857         if (channel < 0) {
2858                 dev_err(dev, "dpaa_get_channel() failed\n");
2859                 err = channel;
2860                 goto free_dpaa_bps;
2861         }
2862
2863         priv->channel = (u16)channel;
2864
2865         /* Walk the CPUs with affine portals
2866          * and add this pool channel to each's dequeue mask.
2867          */
2868         dpaa_eth_add_channel(priv->channel);
2869
2870         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2871
2872         /* Create a congestion group for this netdev, with
2873          * dynamically-allocated CGR ID.
2874          * Must be executed after probing the MAC, but before
2875          * assigning the egress FQs to the CGRs.
2876          */
2877         err = dpaa_eth_cgr_init(priv);
2878         if (err < 0) {
2879                 dev_err(dev, "Error initializing CGR\n");
2880                 goto free_dpaa_bps;
2881         }
2882
2883         err = dpaa_ingress_cgr_init(priv);
2884         if (err < 0) {
2885                 dev_err(dev, "Error initializing ingress CGR\n");
2886                 goto delete_egress_cgr;
2887         }
2888
2889         /* Add the FQs to the interface, and make them active */
2890         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2891                 err = dpaa_fq_init(dpaa_fq, false);
2892                 if (err < 0)
2893                         goto free_dpaa_fqs;
2894         }
2895
2896         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2897         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2898
2899         /* All real interfaces need their ports initialized */
2900         err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2901                                   &priv->buf_layout[0], dev);
2902         if (err)
2903                 goto free_dpaa_fqs;
2904
2905         /* Rx traffic distribution based on keygen hashing defaults to on */
2906         priv->keygen_in_use = true;
2907
2908         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2909         if (!priv->percpu_priv) {
2910                 dev_err(dev, "devm_alloc_percpu() failed\n");
2911                 err = -ENOMEM;
2912                 goto free_dpaa_fqs;
2913         }
2914
2915         priv->num_tc = 1;
2916         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2917
2918         /* Initialize NAPI */
2919         err = dpaa_napi_add(net_dev);
2920         if (err < 0)
2921                 goto delete_dpaa_napi;
2922
2923         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2924         if (err < 0)
2925                 goto delete_dpaa_napi;
2926
2927         dpaa_eth_sysfs_init(&net_dev->dev);
2928
2929         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2930                    net_dev->name);
2931
2932         return 0;
2933
2934 delete_dpaa_napi:
2935         dpaa_napi_del(net_dev);
2936 free_dpaa_fqs:
2937         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2938         qman_delete_cgr_safe(&priv->ingress_cgr);
2939         qman_release_cgrid(priv->ingress_cgr.cgrid);
2940 delete_egress_cgr:
2941         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2942         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2943 free_dpaa_bps:
2944         dpaa_bps_free(priv);
2945 free_netdev:
2946         dev_set_drvdata(dev, NULL);
2947         free_netdev(net_dev);
2948
2949         return err;
2950 }
2951
2952 static int dpaa_remove(struct platform_device *pdev)
2953 {
2954         struct net_device *net_dev;
2955         struct dpaa_priv *priv;
2956         struct device *dev;
2957         int err;
2958
2959         dev = pdev->dev.parent;
2960         net_dev = dev_get_drvdata(dev);
2961
2962         priv = netdev_priv(net_dev);
2963
2964         dpaa_eth_sysfs_remove(dev);
2965
2966         dev_set_drvdata(dev, NULL);
2967         unregister_netdev(net_dev);
2968
2969         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2970
2971         qman_delete_cgr_safe(&priv->ingress_cgr);
2972         qman_release_cgrid(priv->ingress_cgr.cgrid);
2973         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2974         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2975
2976         dpaa_napi_del(net_dev);
2977
2978         dpaa_bps_free(priv);
2979
2980         free_netdev(net_dev);
2981
2982         return err;
2983 }
2984
2985 static const struct platform_device_id dpaa_devtype[] = {
2986         {
2987                 .name = "dpaa-ethernet",
2988                 .driver_data = 0,
2989         }, {
2990         }
2991 };
2992 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2993
2994 static struct platform_driver dpaa_driver = {
2995         .driver = {
2996                 .name = KBUILD_MODNAME,
2997         },
2998         .id_table = dpaa_devtype,
2999         .probe = dpaa_eth_probe,
3000         .remove = dpaa_remove
3001 };
3002
3003 static int __init dpaa_load(void)
3004 {
3005         int err;
3006
3007         pr_debug("FSL DPAA Ethernet driver\n");
3008
3009         /* initialize dpaa_eth mirror values */
3010         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3011         dpaa_max_frm = fman_get_max_frm();
3012
3013         err = platform_driver_register(&dpaa_driver);
3014         if (err < 0)
3015                 pr_err("Error, platform_driver_register() = %d\n", err);
3016
3017         return err;
3018 }
3019 module_init(dpaa_load);
3020
3021 static void __exit dpaa_unload(void)
3022 {
3023         platform_driver_unregister(&dpaa_driver);
3024
3025         /* Only one channel is used and needs to be released after all
3026          * interfaces are removed
3027          */
3028         dpaa_release_channel();
3029 }
3030 module_exit(dpaa_unload);
3031
3032 MODULE_LICENSE("Dual BSD/GPL");
3033 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");