Merge tag 'tag-chrome-platform-fixes-for-v5.3-rc6' of git://git.kernel.org/pub/scm...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "srq.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104         static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118                 { 0, } \
119         }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186
187 static void link_report(struct net_device *dev)
188 {
189         if (!netif_carrier_ok(dev))
190                 netdev_info(dev, "link down\n");
191         else {
192                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193
194                 const char *s;
195                 const struct port_info *p = netdev_priv(dev);
196
197                 switch (p->link_cfg.speed) {
198                 case 100:
199                         s = "100Mbps";
200                         break;
201                 case 1000:
202                         s = "1Gbps";
203                         break;
204                 case 10000:
205                         s = "10Gbps";
206                         break;
207                 case 25000:
208                         s = "25Gbps";
209                         break;
210                 case 40000:
211                         s = "40Gbps";
212                         break;
213                 case 50000:
214                         s = "50Gbps";
215                         break;
216                 case 100000:
217                         s = "100Gbps";
218                         break;
219                 default:
220                         pr_info("%s: unsupported speed: %d\n",
221                                 dev->name, p->link_cfg.speed);
222                         return;
223                 }
224
225                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
226                             fc[p->link_cfg.fc]);
227         }
228 }
229
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
233 {
234         struct port_info *pi = netdev_priv(dev);
235         struct adapter *adap = pi->adapter;
236         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
237         int i;
238
239         /* We use a simple mapping of Port TX Queue Index to DCB
240          * Priority when we're enabling DCB.
241          */
242         for (i = 0; i < pi->nqsets; i++, txq++) {
243                 u32 name, value;
244                 int err;
245
246                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
247                         FW_PARAMS_PARAM_X_V(
248                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250                 value = enable ? i : 0xffffffff;
251
252                 /* Since we can be called while atomic (from "interrupt
253                  * level") we need to issue the Set Parameters Commannd
254                  * without sleeping (timeout < 0).
255                  */
256                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
257                                             &name, &value,
258                                             -FW_CMD_MAX_TIMEOUT);
259
260                 if (err)
261                         dev_err(adap->pdev_dev,
262                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263                                 enable ? "set" : "unset", pi->port_id, i, -err);
264                 else
265                         txq->dcb_prio = enable ? value : 0;
266         }
267 }
268
269 int cxgb4_dcb_enabled(const struct net_device *dev)
270 {
271         struct port_info *pi = netdev_priv(dev);
272
273         if (!pi->dcb.enabled)
274                 return 0;
275
276         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
278 }
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280
281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
282 {
283         struct net_device *dev = adapter->port[port_id];
284
285         /* Skip changes from disabled ports. */
286         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
287                 if (link_stat)
288                         netif_carrier_on(dev);
289                 else {
290 #ifdef CONFIG_CHELSIO_T4_DCB
291                         if (cxgb4_dcb_enabled(dev)) {
292                                 cxgb4_dcb_reset(dev);
293                                 dcb_tx_queue_prio_enable(dev, false);
294                         }
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296                         netif_carrier_off(dev);
297                 }
298
299                 link_report(dev);
300         }
301 }
302
303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
304 {
305         static const char *mod_str[] = {
306                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
307         };
308
309         struct net_device *dev = adap->port[port_id];
310         struct port_info *pi = netdev_priv(dev);
311
312         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313                 netdev_info(dev, "port module unplugged\n");
314         else if (pi->mod_type < ARRAY_SIZE(mod_str))
315                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317                 netdev_info(dev, "%s: unsupported port module inserted\n",
318                             dev->name);
319         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320                 netdev_info(dev, "%s: unknown port module inserted\n",
321                             dev->name);
322         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
324         else
325                 netdev_info(dev, "%s: unknown module type %d inserted\n",
326                             dev->name, pi->mod_type);
327
328         /* If the interface is running, then we'll need any "sticky" Link
329          * Parameters redone with a new Transceiver Module.
330          */
331         pi->link_cfg.redo_l1cfg = netif_running(dev);
332 }
333
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
337
338 /*
339  * usecs to sleep while draining the dbfifo
340  */
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344                  "usecs to sleep while draining the dbfifo");
345
346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
347 {
348         struct adapter *adap = pi->adapter;
349         u64 vec = 0;
350         bool ucast = false;
351         struct hash_mac_addr *entry;
352
353         /* Calculate the hash vector for the updated list and program it */
354         list_for_each_entry(entry, &adap->mac_hlist, list) {
355                 ucast |= is_unicast_ether_addr(entry->addr);
356                 vec |= (1ULL << hash_mac_addr(entry->addr));
357         }
358         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
359                                 vec, false);
360 }
361
362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
363 {
364         struct port_info *pi = netdev_priv(netdev);
365         struct adapter *adap = pi->adapter;
366         int ret;
367         u64 mhash = 0;
368         u64 uhash = 0;
369         /* idx stores the index of allocated filters,
370          * its size should be modified based on the number of
371          * MAC addresses that we allocate filters for
372          */
373
374         u16 idx[1] = {};
375         bool free = false;
376         bool ucast = is_unicast_ether_addr(mac_addr);
377         const u8 *maclist[1] = {mac_addr};
378         struct hash_mac_addr *new_entry;
379
380         ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
381                                    idx, ucast ? &uhash : &mhash, false);
382         if (ret < 0)
383                 goto out;
384         /* if hash != 0, then add the addr to hash addr list
385          * so on the end we will calculate the hash for the
386          * list and program it
387          */
388         if (uhash || mhash) {
389                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
390                 if (!new_entry)
391                         return -ENOMEM;
392                 ether_addr_copy(new_entry->addr, mac_addr);
393                 list_add_tail(&new_entry->list, &adap->mac_hlist);
394                 ret = cxgb4_set_addr_hash(pi);
395         }
396 out:
397         return ret < 0 ? ret : 0;
398 }
399
400 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
401 {
402         struct port_info *pi = netdev_priv(netdev);
403         struct adapter *adap = pi->adapter;
404         int ret;
405         const u8 *maclist[1] = {mac_addr};
406         struct hash_mac_addr *entry, *tmp;
407
408         /* If the MAC address to be removed is in the hash addr
409          * list, delete it from the list and update hash vector
410          */
411         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
412                 if (ether_addr_equal(entry->addr, mac_addr)) {
413                         list_del(&entry->list);
414                         kfree(entry);
415                         return cxgb4_set_addr_hash(pi);
416                 }
417         }
418
419         ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
420         return ret < 0 ? -EINVAL : 0;
421 }
422
423 /*
424  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
425  * If @mtu is -1 it is left unchanged.
426  */
427 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
428 {
429         struct port_info *pi = netdev_priv(dev);
430         struct adapter *adapter = pi->adapter;
431
432         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
433         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434
435         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
436                              (dev->flags & IFF_PROMISC) ? 1 : 0,
437                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
438                              sleep_ok);
439 }
440
441 /**
442  *      cxgb4_change_mac - Update match filter for a MAC address.
443  *      @pi: the port_info
444  *      @viid: the VI id
445  *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
446  *                 or -1
447  *      @addr: the new MAC address value
448  *      @persist: whether a new MAC allocation should be persistent
449  *      @add_smt: if true also add the address to the HW SMT
450  *
451  *      Modifies an MPS filter and sets it to the new MAC address if
452  *      @tcam_idx >= 0, or adds the MAC address to a new filter if
453  *      @tcam_idx < 0. In the latter case the address is added persistently
454  *      if @persist is %true.
455  *      Addresses are programmed to hash region, if tcam runs out of entries.
456  *
457  */
458 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
459                      int *tcam_idx, const u8 *addr, bool persist,
460                      u8 *smt_idx)
461 {
462         struct adapter *adapter = pi->adapter;
463         struct hash_mac_addr *entry, *new_entry;
464         int ret;
465
466         ret = t4_change_mac(adapter, adapter->mbox, viid,
467                             *tcam_idx, addr, persist, smt_idx);
468         /* We ran out of TCAM entries. try programming hash region. */
469         if (ret == -ENOMEM) {
470                 /* If the MAC address to be updated is in the hash addr
471                  * list, update it from the list
472                  */
473                 list_for_each_entry(entry, &adapter->mac_hlist, list) {
474                         if (entry->iface_mac) {
475                                 ether_addr_copy(entry->addr, addr);
476                                 goto set_hash;
477                         }
478                 }
479                 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
480                 if (!new_entry)
481                         return -ENOMEM;
482                 ether_addr_copy(new_entry->addr, addr);
483                 new_entry->iface_mac = true;
484                 list_add_tail(&new_entry->list, &adapter->mac_hlist);
485 set_hash:
486                 ret = cxgb4_set_addr_hash(pi);
487         } else if (ret >= 0) {
488                 *tcam_idx = ret;
489                 ret = 0;
490         }
491
492         return ret;
493 }
494
495 /*
496  *      link_start - enable a port
497  *      @dev: the port to enable
498  *
499  *      Performs the MAC and PHY actions needed to enable a port.
500  */
501 static int link_start(struct net_device *dev)
502 {
503         int ret;
504         struct port_info *pi = netdev_priv(dev);
505         unsigned int mb = pi->adapter->pf;
506
507         /*
508          * We do not set address filters and promiscuity here, the stack does
509          * that step explicitly.
510          */
511         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
512                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
513         if (ret == 0)
514                 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
515                                             dev->dev_addr, true, &pi->smt_idx);
516         if (ret == 0)
517                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
518                                     &pi->link_cfg);
519         if (ret == 0) {
520                 local_bh_disable();
521                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
522                                           true, CXGB4_DCB_ENABLED);
523                 local_bh_enable();
524         }
525
526         return ret;
527 }
528
529 #ifdef CONFIG_CHELSIO_T4_DCB
530 /* Handle a Data Center Bridging update message from the firmware. */
531 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
532 {
533         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
534         struct net_device *dev = adap->port[adap->chan_map[port]];
535         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
536         int new_dcb_enabled;
537
538         cxgb4_dcb_handle_fw_update(adap, pcmd);
539         new_dcb_enabled = cxgb4_dcb_enabled(dev);
540
541         /* If the DCB has become enabled or disabled on the port then we're
542          * going to need to set up/tear down DCB Priority parameters for the
543          * TX Queues associated with the port.
544          */
545         if (new_dcb_enabled != old_dcb_enabled)
546                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
547 }
548 #endif /* CONFIG_CHELSIO_T4_DCB */
549
550 /* Response queue handler for the FW event queue.
551  */
552 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
553                           const struct pkt_gl *gl)
554 {
555         u8 opcode = ((const struct rss_header *)rsp)->opcode;
556
557         rsp++;                                          /* skip RSS header */
558
559         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
560          */
561         if (unlikely(opcode == CPL_FW4_MSG &&
562            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
563                 rsp++;
564                 opcode = ((const struct rss_header *)rsp)->opcode;
565                 rsp++;
566                 if (opcode != CPL_SGE_EGR_UPDATE) {
567                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
568                                 , opcode);
569                         goto out;
570                 }
571         }
572
573         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
574                 const struct cpl_sge_egr_update *p = (void *)rsp;
575                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
576                 struct sge_txq *txq;
577
578                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
579                 txq->restarts++;
580                 if (txq->q_type == CXGB4_TXQ_ETH) {
581                         struct sge_eth_txq *eq;
582
583                         eq = container_of(txq, struct sge_eth_txq, q);
584                         t4_sge_eth_txq_egress_update(q->adap, eq, -1);
585                 } else {
586                         struct sge_uld_txq *oq;
587
588                         oq = container_of(txq, struct sge_uld_txq, q);
589                         tasklet_schedule(&oq->qresume_tsk);
590                 }
591         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
592                 const struct cpl_fw6_msg *p = (void *)rsp;
593
594 #ifdef CONFIG_CHELSIO_T4_DCB
595                 const struct fw_port_cmd *pcmd = (const void *)p->data;
596                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
597                 unsigned int action =
598                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
599
600                 if (cmd == FW_PORT_CMD &&
601                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
602                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
603                         int port = FW_PORT_CMD_PORTID_G(
604                                         be32_to_cpu(pcmd->op_to_portid));
605                         struct net_device *dev;
606                         int dcbxdis, state_input;
607
608                         dev = q->adap->port[q->adap->chan_map[port]];
609                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
610                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
611                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
612                                & FW_PORT_CMD_DCBXDIS32_F));
613                         state_input = (dcbxdis
614                                        ? CXGB4_DCB_INPUT_FW_DISABLED
615                                        : CXGB4_DCB_INPUT_FW_ENABLED);
616
617                         cxgb4_dcb_state_fsm(dev, state_input);
618                 }
619
620                 if (cmd == FW_PORT_CMD &&
621                     action == FW_PORT_ACTION_L2_DCB_CFG)
622                         dcb_rpl(q->adap, pcmd);
623                 else
624 #endif
625                         if (p->type == 0)
626                                 t4_handle_fw_rpl(q->adap, p->data);
627         } else if (opcode == CPL_L2T_WRITE_RPL) {
628                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
629
630                 do_l2t_write_rpl(q->adap, p);
631         } else if (opcode == CPL_SMT_WRITE_RPL) {
632                 const struct cpl_smt_write_rpl *p = (void *)rsp;
633
634                 do_smt_write_rpl(q->adap, p);
635         } else if (opcode == CPL_SET_TCB_RPL) {
636                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
637
638                 filter_rpl(q->adap, p);
639         } else if (opcode == CPL_ACT_OPEN_RPL) {
640                 const struct cpl_act_open_rpl *p = (void *)rsp;
641
642                 hash_filter_rpl(q->adap, p);
643         } else if (opcode == CPL_ABORT_RPL_RSS) {
644                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
645
646                 hash_del_filter_rpl(q->adap, p);
647         } else if (opcode == CPL_SRQ_TABLE_RPL) {
648                 const struct cpl_srq_table_rpl *p = (void *)rsp;
649
650                 do_srq_table_rpl(q->adap, p);
651         } else
652                 dev_err(q->adap->pdev_dev,
653                         "unexpected CPL %#x on FW event queue\n", opcode);
654 out:
655         return 0;
656 }
657
658 static void disable_msi(struct adapter *adapter)
659 {
660         if (adapter->flags & CXGB4_USING_MSIX) {
661                 pci_disable_msix(adapter->pdev);
662                 adapter->flags &= ~CXGB4_USING_MSIX;
663         } else if (adapter->flags & CXGB4_USING_MSI) {
664                 pci_disable_msi(adapter->pdev);
665                 adapter->flags &= ~CXGB4_USING_MSI;
666         }
667 }
668
669 /*
670  * Interrupt handler for non-data events used with MSI-X.
671  */
672 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
673 {
674         struct adapter *adap = cookie;
675         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
676
677         if (v & PFSW_F) {
678                 adap->swintr = 1;
679                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
680         }
681         if (adap->flags & CXGB4_MASTER_PF)
682                 t4_slow_intr_handler(adap);
683         return IRQ_HANDLED;
684 }
685
686 /*
687  * Name the MSI-X interrupts.
688  */
689 static void name_msix_vecs(struct adapter *adap)
690 {
691         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
692
693         /* non-data interrupts */
694         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
695
696         /* FW events */
697         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
698                  adap->port[0]->name);
699
700         /* Ethernet queues */
701         for_each_port(adap, j) {
702                 struct net_device *d = adap->port[j];
703                 const struct port_info *pi = netdev_priv(d);
704
705                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
706                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
707                                  d->name, i);
708         }
709 }
710
711 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
712                        cpumask_var_t *aff_mask, int idx)
713 {
714         int rv;
715
716         if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
717                 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
718                 return -ENOMEM;
719         }
720
721         cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
722                         *aff_mask);
723
724         rv = irq_set_affinity_hint(vec, *aff_mask);
725         if (rv)
726                 dev_warn(adap->pdev_dev,
727                          "irq_set_affinity_hint %u failed %d\n",
728                          vec, rv);
729
730         return 0;
731 }
732
733 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
734 {
735         irq_set_affinity_hint(vec, NULL);
736         free_cpumask_var(aff_mask);
737 }
738
739 static int request_msix_queue_irqs(struct adapter *adap)
740 {
741         struct sge *s = &adap->sge;
742         struct msix_info *minfo;
743         int err, ethqidx;
744         int msi_index = 2;
745
746         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
747                           adap->msix_info[1].desc, &s->fw_evtq);
748         if (err)
749                 return err;
750
751         for_each_ethrxq(s, ethqidx) {
752                 minfo = &adap->msix_info[msi_index];
753                 err = request_irq(minfo->vec,
754                                   t4_sge_intr_msix, 0,
755                                   minfo->desc,
756                                   &s->ethrxq[ethqidx].rspq);
757                 if (err)
758                         goto unwind;
759
760                 cxgb4_set_msix_aff(adap, minfo->vec,
761                                    &minfo->aff_mask, ethqidx);
762                 msi_index++;
763         }
764         return 0;
765
766 unwind:
767         while (--ethqidx >= 0) {
768                 msi_index--;
769                 minfo = &adap->msix_info[msi_index];
770                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
771                 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
772         }
773         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
774         return err;
775 }
776
777 static void free_msix_queue_irqs(struct adapter *adap)
778 {
779         struct sge *s = &adap->sge;
780         struct msix_info *minfo;
781         int i, msi_index = 2;
782
783         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
784         for_each_ethrxq(s, i) {
785                 minfo = &adap->msix_info[msi_index++];
786                 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
787                 free_irq(minfo->vec, &s->ethrxq[i].rspq);
788         }
789 }
790
791 static int setup_ppod_edram(struct adapter *adap)
792 {
793         unsigned int param, val;
794         int ret;
795
796         /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
797          * if firmware supports ppod edram feature or not. If firmware
798          * returns 1, then driver can enable this feature by sending
799          * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
800          * enable ppod edram feature.
801          */
802         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
803                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
804
805         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
806         if (ret < 0) {
807                 dev_warn(adap->pdev_dev,
808                          "querying PPOD_EDRAM support failed: %d\n",
809                          ret);
810                 return -1;
811         }
812
813         if (val != 1)
814                 return -1;
815
816         ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
817         if (ret < 0) {
818                 dev_err(adap->pdev_dev,
819                         "setting PPOD_EDRAM failed: %d\n", ret);
820                 return -1;
821         }
822         return 0;
823 }
824
825 /**
826  *      cxgb4_write_rss - write the RSS table for a given port
827  *      @pi: the port
828  *      @queues: array of queue indices for RSS
829  *
830  *      Sets up the portion of the HW RSS table for the port's VI to distribute
831  *      packets to the Rx queues in @queues.
832  *      Should never be called before setting up sge eth rx queues
833  */
834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836         u16 *rss;
837         int i, err;
838         struct adapter *adapter = pi->adapter;
839         const struct sge_eth_rxq *rxq;
840
841         rxq = &adapter->sge.ethrxq[pi->first_qset];
842         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
843         if (!rss)
844                 return -ENOMEM;
845
846         /* map the queue indices to queue ids */
847         for (i = 0; i < pi->rss_size; i++, queues++)
848                 rss[i] = rxq[*queues].rspq.abs_id;
849
850         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851                                   pi->rss_size, rss, pi->rss_size);
852         /* If Tunnel All Lookup isn't specified in the global RSS
853          * Configuration, then we need to specify a default Ingress
854          * Queue for any ingress packets which aren't hashed.  We'll
855          * use our first ingress queue ...
856          */
857         if (!err)
858                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864                                        rss[0]);
865         kfree(rss);
866         return err;
867 }
868
869 /**
870  *      setup_rss - configure RSS
871  *      @adap: the adapter
872  *
873  *      Sets up RSS for each port.
874  */
875 static int setup_rss(struct adapter *adap)
876 {
877         int i, j, err;
878
879         for_each_port(adap, i) {
880                 const struct port_info *pi = adap2pinfo(adap, i);
881
882                 /* Fill default values with equal distribution */
883                 for (j = 0; j < pi->rss_size; j++)
884                         pi->rss[j] = j % pi->nqsets;
885
886                 err = cxgb4_write_rss(pi, pi->rss);
887                 if (err)
888                         return err;
889         }
890         return 0;
891 }
892
893 /*
894  * Return the channel of the ingress queue with the given qid.
895  */
896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898         qid -= p->ingr_start;
899         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901
902 /*
903  * Wait until all NAPI handlers are descheduled.
904  */
905 static void quiesce_rx(struct adapter *adap)
906 {
907         int i;
908
909         for (i = 0; i < adap->sge.ingr_sz; i++) {
910                 struct sge_rspq *q = adap->sge.ingr_map[i];
911
912                 if (q && q->handler)
913                         napi_disable(&q->napi);
914         }
915 }
916
917 /* Disable interrupt and napi handler */
918 static void disable_interrupts(struct adapter *adap)
919 {
920         if (adap->flags & CXGB4_FULL_INIT_DONE) {
921                 t4_intr_disable(adap);
922                 if (adap->flags & CXGB4_USING_MSIX) {
923                         free_msix_queue_irqs(adap);
924                         free_irq(adap->msix_info[0].vec, adap);
925                 } else {
926                         free_irq(adap->pdev->irq, adap);
927                 }
928                 quiesce_rx(adap);
929         }
930 }
931
932 /*
933  * Enable NAPI scheduling and interrupt generation for all Rx queues.
934  */
935 static void enable_rx(struct adapter *adap)
936 {
937         int i;
938
939         for (i = 0; i < adap->sge.ingr_sz; i++) {
940                 struct sge_rspq *q = adap->sge.ingr_map[i];
941
942                 if (!q)
943                         continue;
944                 if (q->handler)
945                         napi_enable(&q->napi);
946
947                 /* 0-increment GTS to start the timer and enable interrupts */
948                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
949                              SEINTARM_V(q->intr_params) |
950                              INGRESSQID_V(q->cntxt_id));
951         }
952 }
953
954
955 static int setup_fw_sge_queues(struct adapter *adap)
956 {
957         struct sge *s = &adap->sge;
958         int err = 0;
959
960         bitmap_zero(s->starving_fl, s->egr_sz);
961         bitmap_zero(s->txq_maperr, s->egr_sz);
962
963         if (adap->flags & CXGB4_USING_MSIX)
964                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
965         else {
966                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
967                                        NULL, NULL, NULL, -1);
968                 if (err)
969                         return err;
970                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
971         }
972
973         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
974                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
975         return err;
976 }
977
978 /**
979  *      setup_sge_queues - configure SGE Tx/Rx/response queues
980  *      @adap: the adapter
981  *
982  *      Determines how many sets of SGE queues to use and initializes them.
983  *      We support multiple queue sets per port if we have MSI-X, otherwise
984  *      just one queue set per port.
985  */
986 static int setup_sge_queues(struct adapter *adap)
987 {
988         int err, i, j;
989         struct sge *s = &adap->sge;
990         struct sge_uld_rxq_info *rxq_info = NULL;
991         unsigned int cmplqid = 0;
992
993         if (is_uld(adap))
994                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
995
996         for_each_port(adap, i) {
997                 struct net_device *dev = adap->port[i];
998                 struct port_info *pi = netdev_priv(dev);
999                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1000                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1001
1002                 for (j = 0; j < pi->nqsets; j++, q++) {
1003                         if (adap->msi_idx > 0)
1004                                 adap->msi_idx++;
1005                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1006                                                adap->msi_idx, &q->fl,
1007                                                t4_ethrx_handler,
1008                                                NULL,
1009                                                t4_get_tp_ch_map(adap,
1010                                                                 pi->tx_chan));
1011                         if (err)
1012                                 goto freeout;
1013                         q->rspq.idx = j;
1014                         memset(&q->stats, 0, sizeof(q->stats));
1015                 }
1016
1017                 q = &s->ethrxq[pi->first_qset];
1018                 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1019                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1020                                         netdev_get_tx_queue(dev, j),
1021                                         q->rspq.cntxt_id,
1022                                         !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1023                         if (err)
1024                                 goto freeout;
1025                 }
1026         }
1027
1028         for_each_port(adap, i) {
1029                 /* Note that cmplqid below is 0 if we don't
1030                  * have RDMA queues, and that's the right value.
1031                  */
1032                 if (rxq_info)
1033                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1034
1035                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1036                                             s->fw_evtq.cntxt_id, cmplqid);
1037                 if (err)
1038                         goto freeout;
1039         }
1040
1041         if (!is_t4(adap->params.chip)) {
1042                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1043                                            netdev_get_tx_queue(adap->port[0], 0)
1044                                            , s->fw_evtq.cntxt_id, false);
1045                 if (err)
1046                         goto freeout;
1047         }
1048
1049         t4_write_reg(adap, is_t4(adap->params.chip) ?
1050                                 MPS_TRC_RSS_CONTROL_A :
1051                                 MPS_T5_TRC_RSS_CONTROL_A,
1052                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1053                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1054         return 0;
1055 freeout:
1056         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1057         t4_free_sge_resources(adap);
1058         return err;
1059 }
1060
1061 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1062                              struct net_device *sb_dev)
1063 {
1064         int txq;
1065
1066 #ifdef CONFIG_CHELSIO_T4_DCB
1067         /* If a Data Center Bridging has been successfully negotiated on this
1068          * link then we'll use the skb's priority to map it to a TX Queue.
1069          * The skb's priority is determined via the VLAN Tag Priority Code
1070          * Point field.
1071          */
1072         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1073                 u16 vlan_tci;
1074                 int err;
1075
1076                 err = vlan_get_tag(skb, &vlan_tci);
1077                 if (unlikely(err)) {
1078                         if (net_ratelimit())
1079                                 netdev_warn(dev,
1080                                             "TX Packet without VLAN Tag on DCB Link\n");
1081                         txq = 0;
1082                 } else {
1083                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1084 #ifdef CONFIG_CHELSIO_T4_FCOE
1085                         if (skb->protocol == htons(ETH_P_FCOE))
1086                                 txq = skb->priority & 0x7;
1087 #endif /* CONFIG_CHELSIO_T4_FCOE */
1088                 }
1089                 return txq;
1090         }
1091 #endif /* CONFIG_CHELSIO_T4_DCB */
1092
1093         if (select_queue) {
1094                 txq = (skb_rx_queue_recorded(skb)
1095                         ? skb_get_rx_queue(skb)
1096                         : smp_processor_id());
1097
1098                 while (unlikely(txq >= dev->real_num_tx_queues))
1099                         txq -= dev->real_num_tx_queues;
1100
1101                 return txq;
1102         }
1103
1104         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1105 }
1106
1107 static int closest_timer(const struct sge *s, int time)
1108 {
1109         int i, delta, match = 0, min_delta = INT_MAX;
1110
1111         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1112                 delta = time - s->timer_val[i];
1113                 if (delta < 0)
1114                         delta = -delta;
1115                 if (delta < min_delta) {
1116                         min_delta = delta;
1117                         match = i;
1118                 }
1119         }
1120         return match;
1121 }
1122
1123 static int closest_thres(const struct sge *s, int thres)
1124 {
1125         int i, delta, match = 0, min_delta = INT_MAX;
1126
1127         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1128                 delta = thres - s->counter_val[i];
1129                 if (delta < 0)
1130                         delta = -delta;
1131                 if (delta < min_delta) {
1132                         min_delta = delta;
1133                         match = i;
1134                 }
1135         }
1136         return match;
1137 }
1138
1139 /**
1140  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1141  *      @q: the Rx queue
1142  *      @us: the hold-off time in us, or 0 to disable timer
1143  *      @cnt: the hold-off packet count, or 0 to disable counter
1144  *
1145  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1146  *      one of the two needs to be enabled for the queue to generate interrupts.
1147  */
1148 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1149                                unsigned int us, unsigned int cnt)
1150 {
1151         struct adapter *adap = q->adap;
1152
1153         if ((us | cnt) == 0)
1154                 cnt = 1;
1155
1156         if (cnt) {
1157                 int err;
1158                 u32 v, new_idx;
1159
1160                 new_idx = closest_thres(&adap->sge, cnt);
1161                 if (q->desc && q->pktcnt_idx != new_idx) {
1162                         /* the queue has already been created, update it */
1163                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1164                             FW_PARAMS_PARAM_X_V(
1165                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1166                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1167                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1168                                             &v, &new_idx);
1169                         if (err)
1170                                 return err;
1171                 }
1172                 q->pktcnt_idx = new_idx;
1173         }
1174
1175         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1176         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1177         return 0;
1178 }
1179
1180 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1181 {
1182         const struct port_info *pi = netdev_priv(dev);
1183         netdev_features_t changed = dev->features ^ features;
1184         int err;
1185
1186         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1187                 return 0;
1188
1189         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1190                             -1, -1, -1,
1191                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1192         if (unlikely(err))
1193                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1194         return err;
1195 }
1196
1197 static int setup_debugfs(struct adapter *adap)
1198 {
1199         if (IS_ERR_OR_NULL(adap->debugfs_root))
1200                 return -1;
1201
1202 #ifdef CONFIG_DEBUG_FS
1203         t4_setup_debugfs(adap);
1204 #endif
1205         return 0;
1206 }
1207
1208 /*
1209  * upper-layer driver support
1210  */
1211
1212 /*
1213  * Allocate an active-open TID and set it to the supplied value.
1214  */
1215 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1216 {
1217         int atid = -1;
1218
1219         spin_lock_bh(&t->atid_lock);
1220         if (t->afree) {
1221                 union aopen_entry *p = t->afree;
1222
1223                 atid = (p - t->atid_tab) + t->atid_base;
1224                 t->afree = p->next;
1225                 p->data = data;
1226                 t->atids_in_use++;
1227         }
1228         spin_unlock_bh(&t->atid_lock);
1229         return atid;
1230 }
1231 EXPORT_SYMBOL(cxgb4_alloc_atid);
1232
1233 /*
1234  * Release an active-open TID.
1235  */
1236 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1237 {
1238         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1239
1240         spin_lock_bh(&t->atid_lock);
1241         p->next = t->afree;
1242         t->afree = p;
1243         t->atids_in_use--;
1244         spin_unlock_bh(&t->atid_lock);
1245 }
1246 EXPORT_SYMBOL(cxgb4_free_atid);
1247
1248 /*
1249  * Allocate a server TID and set it to the supplied value.
1250  */
1251 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1252 {
1253         int stid;
1254
1255         spin_lock_bh(&t->stid_lock);
1256         if (family == PF_INET) {
1257                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1258                 if (stid < t->nstids)
1259                         __set_bit(stid, t->stid_bmap);
1260                 else
1261                         stid = -1;
1262         } else {
1263                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1264                 if (stid < 0)
1265                         stid = -1;
1266         }
1267         if (stid >= 0) {
1268                 t->stid_tab[stid].data = data;
1269                 stid += t->stid_base;
1270                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1271                  * This is equivalent to 4 TIDs. With CLIP enabled it
1272                  * needs 2 TIDs.
1273                  */
1274                 if (family == PF_INET6) {
1275                         t->stids_in_use += 2;
1276                         t->v6_stids_in_use += 2;
1277                 } else {
1278                         t->stids_in_use++;
1279                 }
1280         }
1281         spin_unlock_bh(&t->stid_lock);
1282         return stid;
1283 }
1284 EXPORT_SYMBOL(cxgb4_alloc_stid);
1285
1286 /* Allocate a server filter TID and set it to the supplied value.
1287  */
1288 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1289 {
1290         int stid;
1291
1292         spin_lock_bh(&t->stid_lock);
1293         if (family == PF_INET) {
1294                 stid = find_next_zero_bit(t->stid_bmap,
1295                                 t->nstids + t->nsftids, t->nstids);
1296                 if (stid < (t->nstids + t->nsftids))
1297                         __set_bit(stid, t->stid_bmap);
1298                 else
1299                         stid = -1;
1300         } else {
1301                 stid = -1;
1302         }
1303         if (stid >= 0) {
1304                 t->stid_tab[stid].data = data;
1305                 stid -= t->nstids;
1306                 stid += t->sftid_base;
1307                 t->sftids_in_use++;
1308         }
1309         spin_unlock_bh(&t->stid_lock);
1310         return stid;
1311 }
1312 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1313
1314 /* Release a server TID.
1315  */
1316 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1317 {
1318         /* Is it a server filter TID? */
1319         if (t->nsftids && (stid >= t->sftid_base)) {
1320                 stid -= t->sftid_base;
1321                 stid += t->nstids;
1322         } else {
1323                 stid -= t->stid_base;
1324         }
1325
1326         spin_lock_bh(&t->stid_lock);
1327         if (family == PF_INET)
1328                 __clear_bit(stid, t->stid_bmap);
1329         else
1330                 bitmap_release_region(t->stid_bmap, stid, 1);
1331         t->stid_tab[stid].data = NULL;
1332         if (stid < t->nstids) {
1333                 if (family == PF_INET6) {
1334                         t->stids_in_use -= 2;
1335                         t->v6_stids_in_use -= 2;
1336                 } else {
1337                         t->stids_in_use--;
1338                 }
1339         } else {
1340                 t->sftids_in_use--;
1341         }
1342
1343         spin_unlock_bh(&t->stid_lock);
1344 }
1345 EXPORT_SYMBOL(cxgb4_free_stid);
1346
1347 /*
1348  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1349  */
1350 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1351                            unsigned int tid)
1352 {
1353         struct cpl_tid_release *req;
1354
1355         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1356         req = __skb_put(skb, sizeof(*req));
1357         INIT_TP_WR(req, tid);
1358         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1359 }
1360
1361 /*
1362  * Queue a TID release request and if necessary schedule a work queue to
1363  * process it.
1364  */
1365 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1366                                     unsigned int tid)
1367 {
1368         void **p = &t->tid_tab[tid];
1369         struct adapter *adap = container_of(t, struct adapter, tids);
1370
1371         spin_lock_bh(&adap->tid_release_lock);
1372         *p = adap->tid_release_head;
1373         /* Low 2 bits encode the Tx channel number */
1374         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1375         if (!adap->tid_release_task_busy) {
1376                 adap->tid_release_task_busy = true;
1377                 queue_work(adap->workq, &adap->tid_release_task);
1378         }
1379         spin_unlock_bh(&adap->tid_release_lock);
1380 }
1381
1382 /*
1383  * Process the list of pending TID release requests.
1384  */
1385 static void process_tid_release_list(struct work_struct *work)
1386 {
1387         struct sk_buff *skb;
1388         struct adapter *adap;
1389
1390         adap = container_of(work, struct adapter, tid_release_task);
1391
1392         spin_lock_bh(&adap->tid_release_lock);
1393         while (adap->tid_release_head) {
1394                 void **p = adap->tid_release_head;
1395                 unsigned int chan = (uintptr_t)p & 3;
1396                 p = (void *)p - chan;
1397
1398                 adap->tid_release_head = *p;
1399                 *p = NULL;
1400                 spin_unlock_bh(&adap->tid_release_lock);
1401
1402                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1403                                          GFP_KERNEL)))
1404                         schedule_timeout_uninterruptible(1);
1405
1406                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1407                 t4_ofld_send(adap, skb);
1408                 spin_lock_bh(&adap->tid_release_lock);
1409         }
1410         adap->tid_release_task_busy = false;
1411         spin_unlock_bh(&adap->tid_release_lock);
1412 }
1413
1414 /*
1415  * Release a TID and inform HW.  If we are unable to allocate the release
1416  * message we defer to a work queue.
1417  */
1418 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1419                       unsigned short family)
1420 {
1421         struct sk_buff *skb;
1422         struct adapter *adap = container_of(t, struct adapter, tids);
1423
1424         WARN_ON(tid >= t->ntids);
1425
1426         if (t->tid_tab[tid]) {
1427                 t->tid_tab[tid] = NULL;
1428                 atomic_dec(&t->conns_in_use);
1429                 if (t->hash_base && (tid >= t->hash_base)) {
1430                         if (family == AF_INET6)
1431                                 atomic_sub(2, &t->hash_tids_in_use);
1432                         else
1433                                 atomic_dec(&t->hash_tids_in_use);
1434                 } else {
1435                         if (family == AF_INET6)
1436                                 atomic_sub(2, &t->tids_in_use);
1437                         else
1438                                 atomic_dec(&t->tids_in_use);
1439                 }
1440         }
1441
1442         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1443         if (likely(skb)) {
1444                 mk_tid_release(skb, chan, tid);
1445                 t4_ofld_send(adap, skb);
1446         } else
1447                 cxgb4_queue_tid_release(t, chan, tid);
1448 }
1449 EXPORT_SYMBOL(cxgb4_remove_tid);
1450
1451 /*
1452  * Allocate and initialize the TID tables.  Returns 0 on success.
1453  */
1454 static int tid_init(struct tid_info *t)
1455 {
1456         struct adapter *adap = container_of(t, struct adapter, tids);
1457         unsigned int max_ftids = t->nftids + t->nsftids;
1458         unsigned int natids = t->natids;
1459         unsigned int stid_bmap_size;
1460         unsigned int ftid_bmap_size;
1461         size_t size;
1462
1463         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1464         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1465         size = t->ntids * sizeof(*t->tid_tab) +
1466                natids * sizeof(*t->atid_tab) +
1467                t->nstids * sizeof(*t->stid_tab) +
1468                t->nsftids * sizeof(*t->stid_tab) +
1469                stid_bmap_size * sizeof(long) +
1470                max_ftids * sizeof(*t->ftid_tab) +
1471                ftid_bmap_size * sizeof(long);
1472
1473         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1474         if (!t->tid_tab)
1475                 return -ENOMEM;
1476
1477         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1478         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1479         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1480         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1481         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1482         spin_lock_init(&t->stid_lock);
1483         spin_lock_init(&t->atid_lock);
1484         spin_lock_init(&t->ftid_lock);
1485
1486         t->stids_in_use = 0;
1487         t->v6_stids_in_use = 0;
1488         t->sftids_in_use = 0;
1489         t->afree = NULL;
1490         t->atids_in_use = 0;
1491         atomic_set(&t->tids_in_use, 0);
1492         atomic_set(&t->conns_in_use, 0);
1493         atomic_set(&t->hash_tids_in_use, 0);
1494
1495         /* Setup the free list for atid_tab and clear the stid bitmap. */
1496         if (natids) {
1497                 while (--natids)
1498                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1499                 t->afree = t->atid_tab;
1500         }
1501
1502         if (is_offload(adap)) {
1503                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1504                 /* Reserve stid 0 for T4/T5 adapters */
1505                 if (!t->stid_base &&
1506                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1507                         __set_bit(0, t->stid_bmap);
1508         }
1509
1510         bitmap_zero(t->ftid_bmap, t->nftids);
1511         return 0;
1512 }
1513
1514 /**
1515  *      cxgb4_create_server - create an IP server
1516  *      @dev: the device
1517  *      @stid: the server TID
1518  *      @sip: local IP address to bind server to
1519  *      @sport: the server's TCP port
1520  *      @queue: queue to direct messages from this server to
1521  *
1522  *      Create an IP server for the given port and address.
1523  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1524  */
1525 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1526                         __be32 sip, __be16 sport, __be16 vlan,
1527                         unsigned int queue)
1528 {
1529         unsigned int chan;
1530         struct sk_buff *skb;
1531         struct adapter *adap;
1532         struct cpl_pass_open_req *req;
1533         int ret;
1534
1535         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1536         if (!skb)
1537                 return -ENOMEM;
1538
1539         adap = netdev2adap(dev);
1540         req = __skb_put(skb, sizeof(*req));
1541         INIT_TP_WR(req, 0);
1542         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1543         req->local_port = sport;
1544         req->peer_port = htons(0);
1545         req->local_ip = sip;
1546         req->peer_ip = htonl(0);
1547         chan = rxq_to_chan(&adap->sge, queue);
1548         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1549         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1550                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1551         ret = t4_mgmt_tx(adap, skb);
1552         return net_xmit_eval(ret);
1553 }
1554 EXPORT_SYMBOL(cxgb4_create_server);
1555
1556 /*      cxgb4_create_server6 - create an IPv6 server
1557  *      @dev: the device
1558  *      @stid: the server TID
1559  *      @sip: local IPv6 address to bind server to
1560  *      @sport: the server's TCP port
1561  *      @queue: queue to direct messages from this server to
1562  *
1563  *      Create an IPv6 server for the given port and address.
1564  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1565  */
1566 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1567                          const struct in6_addr *sip, __be16 sport,
1568                          unsigned int queue)
1569 {
1570         unsigned int chan;
1571         struct sk_buff *skb;
1572         struct adapter *adap;
1573         struct cpl_pass_open_req6 *req;
1574         int ret;
1575
1576         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1577         if (!skb)
1578                 return -ENOMEM;
1579
1580         adap = netdev2adap(dev);
1581         req = __skb_put(skb, sizeof(*req));
1582         INIT_TP_WR(req, 0);
1583         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1584         req->local_port = sport;
1585         req->peer_port = htons(0);
1586         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1587         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1588         req->peer_ip_hi = cpu_to_be64(0);
1589         req->peer_ip_lo = cpu_to_be64(0);
1590         chan = rxq_to_chan(&adap->sge, queue);
1591         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1592         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1593                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1594         ret = t4_mgmt_tx(adap, skb);
1595         return net_xmit_eval(ret);
1596 }
1597 EXPORT_SYMBOL(cxgb4_create_server6);
1598
1599 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1600                         unsigned int queue, bool ipv6)
1601 {
1602         struct sk_buff *skb;
1603         struct adapter *adap;
1604         struct cpl_close_listsvr_req *req;
1605         int ret;
1606
1607         adap = netdev2adap(dev);
1608
1609         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1610         if (!skb)
1611                 return -ENOMEM;
1612
1613         req = __skb_put(skb, sizeof(*req));
1614         INIT_TP_WR(req, 0);
1615         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1616         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1617                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1618         ret = t4_mgmt_tx(adap, skb);
1619         return net_xmit_eval(ret);
1620 }
1621 EXPORT_SYMBOL(cxgb4_remove_server);
1622
1623 /**
1624  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1625  *      @mtus: the HW MTU table
1626  *      @mtu: the target MTU
1627  *      @idx: index of selected entry in the MTU table
1628  *
1629  *      Returns the index and the value in the HW MTU table that is closest to
1630  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1631  *      table, in which case that smallest available value is selected.
1632  */
1633 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1634                             unsigned int *idx)
1635 {
1636         unsigned int i = 0;
1637
1638         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1639                 ++i;
1640         if (idx)
1641                 *idx = i;
1642         return mtus[i];
1643 }
1644 EXPORT_SYMBOL(cxgb4_best_mtu);
1645
1646 /**
1647  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1648  *     @mtus: the HW MTU table
1649  *     @header_size: Header Size
1650  *     @data_size_max: maximum Data Segment Size
1651  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1652  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1653  *
1654  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1655  *     MTU Table based solely on a Maximum MTU parameter, we break that
1656  *     parameter up into a Header Size and Maximum Data Segment Size, and
1657  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1658  *     the Hardware MTU Table which will result in a Data Segment Size with
1659  *     the requested alignment _and_ that MTU isn't "too far" from the
1660  *     closest MTU, then we'll return that rather than the closest MTU.
1661  */
1662 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1663                                     unsigned short header_size,
1664                                     unsigned short data_size_max,
1665                                     unsigned short data_size_align,
1666                                     unsigned int *mtu_idxp)
1667 {
1668         unsigned short max_mtu = header_size + data_size_max;
1669         unsigned short data_size_align_mask = data_size_align - 1;
1670         int mtu_idx, aligned_mtu_idx;
1671
1672         /* Scan the MTU Table till we find an MTU which is larger than our
1673          * Maximum MTU or we reach the end of the table.  Along the way,
1674          * record the last MTU found, if any, which will result in a Data
1675          * Segment Length matching the requested alignment.
1676          */
1677         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1678                 unsigned short data_size = mtus[mtu_idx] - header_size;
1679
1680                 /* If this MTU minus the Header Size would result in a
1681                  * Data Segment Size of the desired alignment, remember it.
1682                  */
1683                 if ((data_size & data_size_align_mask) == 0)
1684                         aligned_mtu_idx = mtu_idx;
1685
1686                 /* If we're not at the end of the Hardware MTU Table and the
1687                  * next element is larger than our Maximum MTU, drop out of
1688                  * the loop.
1689                  */
1690                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1691                         break;
1692         }
1693
1694         /* If we fell out of the loop because we ran to the end of the table,
1695          * then we just have to use the last [largest] entry.
1696          */
1697         if (mtu_idx == NMTUS)
1698                 mtu_idx--;
1699
1700         /* If we found an MTU which resulted in the requested Data Segment
1701          * Length alignment and that's "not far" from the largest MTU which is
1702          * less than or equal to the maximum MTU, then use that.
1703          */
1704         if (aligned_mtu_idx >= 0 &&
1705             mtu_idx - aligned_mtu_idx <= 1)
1706                 mtu_idx = aligned_mtu_idx;
1707
1708         /* If the caller has passed in an MTU Index pointer, pass the
1709          * MTU Index back.  Return the MTU value.
1710          */
1711         if (mtu_idxp)
1712                 *mtu_idxp = mtu_idx;
1713         return mtus[mtu_idx];
1714 }
1715 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1716
1717 /**
1718  *      cxgb4_port_chan - get the HW channel of a port
1719  *      @dev: the net device for the port
1720  *
1721  *      Return the HW Tx channel of the given port.
1722  */
1723 unsigned int cxgb4_port_chan(const struct net_device *dev)
1724 {
1725         return netdev2pinfo(dev)->tx_chan;
1726 }
1727 EXPORT_SYMBOL(cxgb4_port_chan);
1728
1729 /**
1730  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1731  *      @dev: the net device for the port
1732  *
1733  *      Return the HW RX c-channel of the given port.
1734  */
1735 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1736 {
1737         return netdev2pinfo(dev)->rx_cchan;
1738 }
1739 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1740
1741 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1742 {
1743         struct adapter *adap = netdev2adap(dev);
1744         u32 v1, v2, lp_count, hp_count;
1745
1746         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1747         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1748         if (is_t4(adap->params.chip)) {
1749                 lp_count = LP_COUNT_G(v1);
1750                 hp_count = HP_COUNT_G(v1);
1751         } else {
1752                 lp_count = LP_COUNT_T5_G(v1);
1753                 hp_count = HP_COUNT_T5_G(v2);
1754         }
1755         return lpfifo ? lp_count : hp_count;
1756 }
1757 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1758
1759 /**
1760  *      cxgb4_port_viid - get the VI id of a port
1761  *      @dev: the net device for the port
1762  *
1763  *      Return the VI id of the given port.
1764  */
1765 unsigned int cxgb4_port_viid(const struct net_device *dev)
1766 {
1767         return netdev2pinfo(dev)->viid;
1768 }
1769 EXPORT_SYMBOL(cxgb4_port_viid);
1770
1771 /**
1772  *      cxgb4_port_idx - get the index of a port
1773  *      @dev: the net device for the port
1774  *
1775  *      Return the index of the given port.
1776  */
1777 unsigned int cxgb4_port_idx(const struct net_device *dev)
1778 {
1779         return netdev2pinfo(dev)->port_id;
1780 }
1781 EXPORT_SYMBOL(cxgb4_port_idx);
1782
1783 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1784                          struct tp_tcp_stats *v6)
1785 {
1786         struct adapter *adap = pci_get_drvdata(pdev);
1787
1788         spin_lock(&adap->stats_lock);
1789         t4_tp_get_tcp_stats(adap, v4, v6, false);
1790         spin_unlock(&adap->stats_lock);
1791 }
1792 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1793
1794 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1795                       const unsigned int *pgsz_order)
1796 {
1797         struct adapter *adap = netdev2adap(dev);
1798
1799         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1800         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1801                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1802                      HPZ3_V(pgsz_order[3]));
1803 }
1804 EXPORT_SYMBOL(cxgb4_iscsi_init);
1805
1806 int cxgb4_flush_eq_cache(struct net_device *dev)
1807 {
1808         struct adapter *adap = netdev2adap(dev);
1809
1810         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1811 }
1812 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1813
1814 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1815 {
1816         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1817         __be64 indices;
1818         int ret;
1819
1820         spin_lock(&adap->win0_lock);
1821         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1822                            sizeof(indices), (__be32 *)&indices,
1823                            T4_MEMORY_READ);
1824         spin_unlock(&adap->win0_lock);
1825         if (!ret) {
1826                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1827                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1828         }
1829         return ret;
1830 }
1831
1832 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1833                         u16 size)
1834 {
1835         struct adapter *adap = netdev2adap(dev);
1836         u16 hw_pidx, hw_cidx;
1837         int ret;
1838
1839         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1840         if (ret)
1841                 goto out;
1842
1843         if (pidx != hw_pidx) {
1844                 u16 delta;
1845                 u32 val;
1846
1847                 if (pidx >= hw_pidx)
1848                         delta = pidx - hw_pidx;
1849                 else
1850                         delta = size - hw_pidx + pidx;
1851
1852                 if (is_t4(adap->params.chip))
1853                         val = PIDX_V(delta);
1854                 else
1855                         val = PIDX_T5_V(delta);
1856                 wmb();
1857                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1858                              QID_V(qid) | val);
1859         }
1860 out:
1861         return ret;
1862 }
1863 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1864
1865 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1866 {
1867         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1868         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1869         u32 offset, memtype, memaddr;
1870         struct adapter *adap;
1871         u32 hma_size = 0;
1872         int ret;
1873
1874         adap = netdev2adap(dev);
1875
1876         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1877
1878         /* Figure out where the offset lands in the Memory Type/Address scheme.
1879          * This code assumes that the memory is laid out starting at offset 0
1880          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1881          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1882          * MC0, and some have both MC0 and MC1.
1883          */
1884         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1885         edc0_size = EDRAM0_SIZE_G(size) << 20;
1886         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1887         edc1_size = EDRAM1_SIZE_G(size) << 20;
1888         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1889         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1890
1891         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1892                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1893                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1894         }
1895         edc0_end = edc0_size;
1896         edc1_end = edc0_end + edc1_size;
1897         mc0_end = edc1_end + mc0_size;
1898
1899         if (offset < edc0_end) {
1900                 memtype = MEM_EDC0;
1901                 memaddr = offset;
1902         } else if (offset < edc1_end) {
1903                 memtype = MEM_EDC1;
1904                 memaddr = offset - edc0_end;
1905         } else {
1906                 if (hma_size && (offset < (edc1_end + hma_size))) {
1907                         memtype = MEM_HMA;
1908                         memaddr = offset - edc1_end;
1909                 } else if (offset < mc0_end) {
1910                         memtype = MEM_MC0;
1911                         memaddr = offset - edc1_end;
1912                 } else if (is_t5(adap->params.chip)) {
1913                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1914                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1915                         mc1_end = mc0_end + mc1_size;
1916                         if (offset < mc1_end) {
1917                                 memtype = MEM_MC1;
1918                                 memaddr = offset - mc0_end;
1919                         } else {
1920                                 /* offset beyond the end of any memory */
1921                                 goto err;
1922                         }
1923                 } else {
1924                         /* T4/T6 only has a single memory channel */
1925                         goto err;
1926                 }
1927         }
1928
1929         spin_lock(&adap->win0_lock);
1930         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1931         spin_unlock(&adap->win0_lock);
1932         return ret;
1933
1934 err:
1935         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1936                 stag, offset);
1937         return -EINVAL;
1938 }
1939 EXPORT_SYMBOL(cxgb4_read_tpte);
1940
1941 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1942 {
1943         u32 hi, lo;
1944         struct adapter *adap;
1945
1946         adap = netdev2adap(dev);
1947         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1948         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1949
1950         return ((u64)hi << 32) | (u64)lo;
1951 }
1952 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1953
1954 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1955                          unsigned int qid,
1956                          enum cxgb4_bar2_qtype qtype,
1957                          int user,
1958                          u64 *pbar2_qoffset,
1959                          unsigned int *pbar2_qid)
1960 {
1961         return t4_bar2_sge_qregs(netdev2adap(dev),
1962                                  qid,
1963                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1964                                   ? T4_BAR2_QTYPE_EGRESS
1965                                   : T4_BAR2_QTYPE_INGRESS),
1966                                  user,
1967                                  pbar2_qoffset,
1968                                  pbar2_qid);
1969 }
1970 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1971
1972 static struct pci_driver cxgb4_driver;
1973
1974 static void check_neigh_update(struct neighbour *neigh)
1975 {
1976         const struct device *parent;
1977         const struct net_device *netdev = neigh->dev;
1978
1979         if (is_vlan_dev(netdev))
1980                 netdev = vlan_dev_real_dev(netdev);
1981         parent = netdev->dev.parent;
1982         if (parent && parent->driver == &cxgb4_driver.driver)
1983                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1984 }
1985
1986 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1987                        void *data)
1988 {
1989         switch (event) {
1990         case NETEVENT_NEIGH_UPDATE:
1991                 check_neigh_update(data);
1992                 break;
1993         case NETEVENT_REDIRECT:
1994         default:
1995                 break;
1996         }
1997         return 0;
1998 }
1999
2000 static bool netevent_registered;
2001 static struct notifier_block cxgb4_netevent_nb = {
2002         .notifier_call = netevent_cb
2003 };
2004
2005 static void drain_db_fifo(struct adapter *adap, int usecs)
2006 {
2007         u32 v1, v2, lp_count, hp_count;
2008
2009         do {
2010                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2011                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2012                 if (is_t4(adap->params.chip)) {
2013                         lp_count = LP_COUNT_G(v1);
2014                         hp_count = HP_COUNT_G(v1);
2015                 } else {
2016                         lp_count = LP_COUNT_T5_G(v1);
2017                         hp_count = HP_COUNT_T5_G(v2);
2018                 }
2019
2020                 if (lp_count == 0 && hp_count == 0)
2021                         break;
2022                 set_current_state(TASK_UNINTERRUPTIBLE);
2023                 schedule_timeout(usecs_to_jiffies(usecs));
2024         } while (1);
2025 }
2026
2027 static void disable_txq_db(struct sge_txq *q)
2028 {
2029         unsigned long flags;
2030
2031         spin_lock_irqsave(&q->db_lock, flags);
2032         q->db_disabled = 1;
2033         spin_unlock_irqrestore(&q->db_lock, flags);
2034 }
2035
2036 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2037 {
2038         spin_lock_irq(&q->db_lock);
2039         if (q->db_pidx_inc) {
2040                 /* Make sure that all writes to the TX descriptors
2041                  * are committed before we tell HW about them.
2042                  */
2043                 wmb();
2044                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2045                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2046                 q->db_pidx_inc = 0;
2047         }
2048         q->db_disabled = 0;
2049         spin_unlock_irq(&q->db_lock);
2050 }
2051
2052 static void disable_dbs(struct adapter *adap)
2053 {
2054         int i;
2055
2056         for_each_ethrxq(&adap->sge, i)
2057                 disable_txq_db(&adap->sge.ethtxq[i].q);
2058         if (is_offload(adap)) {
2059                 struct sge_uld_txq_info *txq_info =
2060                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2061
2062                 if (txq_info) {
2063                         for_each_ofldtxq(&adap->sge, i) {
2064                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2065
2066                                 disable_txq_db(&txq->q);
2067                         }
2068                 }
2069         }
2070         for_each_port(adap, i)
2071                 disable_txq_db(&adap->sge.ctrlq[i].q);
2072 }
2073
2074 static void enable_dbs(struct adapter *adap)
2075 {
2076         int i;
2077
2078         for_each_ethrxq(&adap->sge, i)
2079                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2080         if (is_offload(adap)) {
2081                 struct sge_uld_txq_info *txq_info =
2082                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2083
2084                 if (txq_info) {
2085                         for_each_ofldtxq(&adap->sge, i) {
2086                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2087
2088                                 enable_txq_db(adap, &txq->q);
2089                         }
2090                 }
2091         }
2092         for_each_port(adap, i)
2093                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2094 }
2095
2096 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2097 {
2098         enum cxgb4_uld type = CXGB4_ULD_RDMA;
2099
2100         if (adap->uld && adap->uld[type].handle)
2101                 adap->uld[type].control(adap->uld[type].handle, cmd);
2102 }
2103
2104 static void process_db_full(struct work_struct *work)
2105 {
2106         struct adapter *adap;
2107
2108         adap = container_of(work, struct adapter, db_full_task);
2109
2110         drain_db_fifo(adap, dbfifo_drain_delay);
2111         enable_dbs(adap);
2112         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2113         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2114                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2115                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2116                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2117         else
2118                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2119                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2120 }
2121
2122 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2123 {
2124         u16 hw_pidx, hw_cidx;
2125         int ret;
2126
2127         spin_lock_irq(&q->db_lock);
2128         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2129         if (ret)
2130                 goto out;
2131         if (q->db_pidx != hw_pidx) {
2132                 u16 delta;
2133                 u32 val;
2134
2135                 if (q->db_pidx >= hw_pidx)
2136                         delta = q->db_pidx - hw_pidx;
2137                 else
2138                         delta = q->size - hw_pidx + q->db_pidx;
2139
2140                 if (is_t4(adap->params.chip))
2141                         val = PIDX_V(delta);
2142                 else
2143                         val = PIDX_T5_V(delta);
2144                 wmb();
2145                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2146                              QID_V(q->cntxt_id) | val);
2147         }
2148 out:
2149         q->db_disabled = 0;
2150         q->db_pidx_inc = 0;
2151         spin_unlock_irq(&q->db_lock);
2152         if (ret)
2153                 CH_WARN(adap, "DB drop recovery failed.\n");
2154 }
2155
2156 static void recover_all_queues(struct adapter *adap)
2157 {
2158         int i;
2159
2160         for_each_ethrxq(&adap->sge, i)
2161                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2162         if (is_offload(adap)) {
2163                 struct sge_uld_txq_info *txq_info =
2164                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2165                 if (txq_info) {
2166                         for_each_ofldtxq(&adap->sge, i) {
2167                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2168
2169                                 sync_txq_pidx(adap, &txq->q);
2170                         }
2171                 }
2172         }
2173         for_each_port(adap, i)
2174                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2175 }
2176
2177 static void process_db_drop(struct work_struct *work)
2178 {
2179         struct adapter *adap;
2180
2181         adap = container_of(work, struct adapter, db_drop_task);
2182
2183         if (is_t4(adap->params.chip)) {
2184                 drain_db_fifo(adap, dbfifo_drain_delay);
2185                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2186                 drain_db_fifo(adap, dbfifo_drain_delay);
2187                 recover_all_queues(adap);
2188                 drain_db_fifo(adap, dbfifo_drain_delay);
2189                 enable_dbs(adap);
2190                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2191         } else if (is_t5(adap->params.chip)) {
2192                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2193                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2194                 u16 pidx_inc = dropped_db & 0x1fff;
2195                 u64 bar2_qoffset;
2196                 unsigned int bar2_qid;
2197                 int ret;
2198
2199                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2200                                         0, &bar2_qoffset, &bar2_qid);
2201                 if (ret)
2202                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2203                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2204                 else
2205                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2206                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2207
2208                 /* Re-enable BAR2 WC */
2209                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2210         }
2211
2212         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2214 }
2215
2216 void t4_db_full(struct adapter *adap)
2217 {
2218         if (is_t4(adap->params.chip)) {
2219                 disable_dbs(adap);
2220                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2221                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2222                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2223                 queue_work(adap->workq, &adap->db_full_task);
2224         }
2225 }
2226
2227 void t4_db_dropped(struct adapter *adap)
2228 {
2229         if (is_t4(adap->params.chip)) {
2230                 disable_dbs(adap);
2231                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2232         }
2233         queue_work(adap->workq, &adap->db_drop_task);
2234 }
2235
2236 void t4_register_netevent_notifier(void)
2237 {
2238         if (!netevent_registered) {
2239                 register_netevent_notifier(&cxgb4_netevent_nb);
2240                 netevent_registered = true;
2241         }
2242 }
2243
2244 static void detach_ulds(struct adapter *adap)
2245 {
2246         unsigned int i;
2247
2248         mutex_lock(&uld_mutex);
2249         list_del(&adap->list_node);
2250
2251         for (i = 0; i < CXGB4_ULD_MAX; i++)
2252                 if (adap->uld && adap->uld[i].handle)
2253                         adap->uld[i].state_change(adap->uld[i].handle,
2254                                              CXGB4_STATE_DETACH);
2255
2256         if (netevent_registered && list_empty(&adapter_list)) {
2257                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2258                 netevent_registered = false;
2259         }
2260         mutex_unlock(&uld_mutex);
2261 }
2262
2263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2264 {
2265         unsigned int i;
2266
2267         mutex_lock(&uld_mutex);
2268         for (i = 0; i < CXGB4_ULD_MAX; i++)
2269                 if (adap->uld && adap->uld[i].handle)
2270                         adap->uld[i].state_change(adap->uld[i].handle,
2271                                                   new_state);
2272         mutex_unlock(&uld_mutex);
2273 }
2274
2275 #if IS_ENABLED(CONFIG_IPV6)
2276 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2277                                    unsigned long event, void *data)
2278 {
2279         struct inet6_ifaddr *ifa = data;
2280         struct net_device *event_dev = ifa->idev->dev;
2281         const struct device *parent = NULL;
2282 #if IS_ENABLED(CONFIG_BONDING)
2283         struct adapter *adap;
2284 #endif
2285         if (is_vlan_dev(event_dev))
2286                 event_dev = vlan_dev_real_dev(event_dev);
2287 #if IS_ENABLED(CONFIG_BONDING)
2288         if (event_dev->flags & IFF_MASTER) {
2289                 list_for_each_entry(adap, &adapter_list, list_node) {
2290                         switch (event) {
2291                         case NETDEV_UP:
2292                                 cxgb4_clip_get(adap->port[0],
2293                                                (const u32 *)ifa, 1);
2294                                 break;
2295                         case NETDEV_DOWN:
2296                                 cxgb4_clip_release(adap->port[0],
2297                                                    (const u32 *)ifa, 1);
2298                                 break;
2299                         default:
2300                                 break;
2301                         }
2302                 }
2303                 return NOTIFY_OK;
2304         }
2305 #endif
2306
2307         if (event_dev)
2308                 parent = event_dev->dev.parent;
2309
2310         if (parent && parent->driver == &cxgb4_driver.driver) {
2311                 switch (event) {
2312                 case NETDEV_UP:
2313                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2314                         break;
2315                 case NETDEV_DOWN:
2316                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2317                         break;
2318                 default:
2319                         break;
2320                 }
2321         }
2322         return NOTIFY_OK;
2323 }
2324
2325 static bool inet6addr_registered;
2326 static struct notifier_block cxgb4_inet6addr_notifier = {
2327         .notifier_call = cxgb4_inet6addr_handler
2328 };
2329
2330 static void update_clip(const struct adapter *adap)
2331 {
2332         int i;
2333         struct net_device *dev;
2334         int ret;
2335
2336         rcu_read_lock();
2337
2338         for (i = 0; i < MAX_NPORTS; i++) {
2339                 dev = adap->port[i];
2340                 ret = 0;
2341
2342                 if (dev)
2343                         ret = cxgb4_update_root_dev_clip(dev);
2344
2345                 if (ret < 0)
2346                         break;
2347         }
2348         rcu_read_unlock();
2349 }
2350 #endif /* IS_ENABLED(CONFIG_IPV6) */
2351
2352 /**
2353  *      cxgb_up - enable the adapter
2354  *      @adap: adapter being enabled
2355  *
2356  *      Called when the first port is enabled, this function performs the
2357  *      actions necessary to make an adapter operational, such as completing
2358  *      the initialization of HW modules, and enabling interrupts.
2359  *
2360  *      Must be called with the rtnl lock held.
2361  */
2362 static int cxgb_up(struct adapter *adap)
2363 {
2364         int err;
2365
2366         mutex_lock(&uld_mutex);
2367         err = setup_sge_queues(adap);
2368         if (err)
2369                 goto rel_lock;
2370         err = setup_rss(adap);
2371         if (err)
2372                 goto freeq;
2373
2374         if (adap->flags & CXGB4_USING_MSIX) {
2375                 name_msix_vecs(adap);
2376                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2377                                   adap->msix_info[0].desc, adap);
2378                 if (err)
2379                         goto irq_err;
2380                 err = request_msix_queue_irqs(adap);
2381                 if (err) {
2382                         free_irq(adap->msix_info[0].vec, adap);
2383                         goto irq_err;
2384                 }
2385         } else {
2386                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2387                                   (adap->flags & CXGB4_USING_MSI) ? 0
2388                                                                   : IRQF_SHARED,
2389                                   adap->port[0]->name, adap);
2390                 if (err)
2391                         goto irq_err;
2392         }
2393
2394         enable_rx(adap);
2395         t4_sge_start(adap);
2396         t4_intr_enable(adap);
2397         adap->flags |= CXGB4_FULL_INIT_DONE;
2398         mutex_unlock(&uld_mutex);
2399
2400         notify_ulds(adap, CXGB4_STATE_UP);
2401 #if IS_ENABLED(CONFIG_IPV6)
2402         update_clip(adap);
2403 #endif
2404         return err;
2405
2406  irq_err:
2407         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2408  freeq:
2409         t4_free_sge_resources(adap);
2410  rel_lock:
2411         mutex_unlock(&uld_mutex);
2412         return err;
2413 }
2414
2415 static void cxgb_down(struct adapter *adapter)
2416 {
2417         cancel_work_sync(&adapter->tid_release_task);
2418         cancel_work_sync(&adapter->db_full_task);
2419         cancel_work_sync(&adapter->db_drop_task);
2420         adapter->tid_release_task_busy = false;
2421         adapter->tid_release_head = NULL;
2422
2423         t4_sge_stop(adapter);
2424         t4_free_sge_resources(adapter);
2425
2426         adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2427 }
2428
2429 /*
2430  * net_device operations
2431  */
2432 static int cxgb_open(struct net_device *dev)
2433 {
2434         int err;
2435         struct port_info *pi = netdev_priv(dev);
2436         struct adapter *adapter = pi->adapter;
2437
2438         netif_carrier_off(dev);
2439
2440         if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2441                 err = cxgb_up(adapter);
2442                 if (err < 0)
2443                         return err;
2444         }
2445
2446         /* It's possible that the basic port information could have
2447          * changed since we first read it.
2448          */
2449         err = t4_update_port_info(pi);
2450         if (err < 0)
2451                 return err;
2452
2453         err = link_start(dev);
2454         if (!err)
2455                 netif_tx_start_all_queues(dev);
2456         return err;
2457 }
2458
2459 static int cxgb_close(struct net_device *dev)
2460 {
2461         struct port_info *pi = netdev_priv(dev);
2462         struct adapter *adapter = pi->adapter;
2463         int ret;
2464
2465         netif_tx_stop_all_queues(dev);
2466         netif_carrier_off(dev);
2467         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2468                                   false, false, false);
2469 #ifdef CONFIG_CHELSIO_T4_DCB
2470         cxgb4_dcb_reset(dev);
2471         dcb_tx_queue_prio_enable(dev, false);
2472 #endif
2473         return ret;
2474 }
2475
2476 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2477                 __be32 sip, __be16 sport, __be16 vlan,
2478                 unsigned int queue, unsigned char port, unsigned char mask)
2479 {
2480         int ret;
2481         struct filter_entry *f;
2482         struct adapter *adap;
2483         int i;
2484         u8 *val;
2485
2486         adap = netdev2adap(dev);
2487
2488         /* Adjust stid to correct filter index */
2489         stid -= adap->tids.sftid_base;
2490         stid += adap->tids.nftids;
2491
2492         /* Check to make sure the filter requested is writable ...
2493          */
2494         f = &adap->tids.ftid_tab[stid];
2495         ret = writable_filter(f);
2496         if (ret)
2497                 return ret;
2498
2499         /* Clear out any old resources being used by the filter before
2500          * we start constructing the new filter.
2501          */
2502         if (f->valid)
2503                 clear_filter(adap, f);
2504
2505         /* Clear out filter specifications */
2506         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2507         f->fs.val.lport = cpu_to_be16(sport);
2508         f->fs.mask.lport  = ~0;
2509         val = (u8 *)&sip;
2510         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2511                 for (i = 0; i < 4; i++) {
2512                         f->fs.val.lip[i] = val[i];
2513                         f->fs.mask.lip[i] = ~0;
2514                 }
2515                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2516                         f->fs.val.iport = port;
2517                         f->fs.mask.iport = mask;
2518                 }
2519         }
2520
2521         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2522                 f->fs.val.proto = IPPROTO_TCP;
2523                 f->fs.mask.proto = ~0;
2524         }
2525
2526         f->fs.dirsteer = 1;
2527         f->fs.iq = queue;
2528         /* Mark filter as locked */
2529         f->locked = 1;
2530         f->fs.rpttid = 1;
2531
2532         /* Save the actual tid. We need this to get the corresponding
2533          * filter entry structure in filter_rpl.
2534          */
2535         f->tid = stid + adap->tids.ftid_base;
2536         ret = set_filter_wr(adap, stid);
2537         if (ret) {
2538                 clear_filter(adap, f);
2539                 return ret;
2540         }
2541
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(cxgb4_create_server_filter);
2545
2546 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2547                 unsigned int queue, bool ipv6)
2548 {
2549         struct filter_entry *f;
2550         struct adapter *adap;
2551
2552         adap = netdev2adap(dev);
2553
2554         /* Adjust stid to correct filter index */
2555         stid -= adap->tids.sftid_base;
2556         stid += adap->tids.nftids;
2557
2558         f = &adap->tids.ftid_tab[stid];
2559         /* Unlock the filter */
2560         f->locked = 0;
2561
2562         return delete_filter(adap, stid);
2563 }
2564 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2565
2566 static void cxgb_get_stats(struct net_device *dev,
2567                            struct rtnl_link_stats64 *ns)
2568 {
2569         struct port_stats stats;
2570         struct port_info *p = netdev_priv(dev);
2571         struct adapter *adapter = p->adapter;
2572
2573         /* Block retrieving statistics during EEH error
2574          * recovery. Otherwise, the recovery might fail
2575          * and the PCI device will be removed permanently
2576          */
2577         spin_lock(&adapter->stats_lock);
2578         if (!netif_device_present(dev)) {
2579                 spin_unlock(&adapter->stats_lock);
2580                 return;
2581         }
2582         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2583                                  &p->stats_base);
2584         spin_unlock(&adapter->stats_lock);
2585
2586         ns->tx_bytes   = stats.tx_octets;
2587         ns->tx_packets = stats.tx_frames;
2588         ns->rx_bytes   = stats.rx_octets;
2589         ns->rx_packets = stats.rx_frames;
2590         ns->multicast  = stats.rx_mcast_frames;
2591
2592         /* detailed rx_errors */
2593         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2594                                stats.rx_runt;
2595         ns->rx_over_errors   = 0;
2596         ns->rx_crc_errors    = stats.rx_fcs_err;
2597         ns->rx_frame_errors  = stats.rx_symbol_err;
2598         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2599                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2600                                stats.rx_trunc0 + stats.rx_trunc1 +
2601                                stats.rx_trunc2 + stats.rx_trunc3;
2602         ns->rx_missed_errors = 0;
2603
2604         /* detailed tx_errors */
2605         ns->tx_aborted_errors   = 0;
2606         ns->tx_carrier_errors   = 0;
2607         ns->tx_fifo_errors      = 0;
2608         ns->tx_heartbeat_errors = 0;
2609         ns->tx_window_errors    = 0;
2610
2611         ns->tx_errors = stats.tx_error_frames;
2612         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2613                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2614 }
2615
2616 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2617 {
2618         unsigned int mbox;
2619         int ret = 0, prtad, devad;
2620         struct port_info *pi = netdev_priv(dev);
2621         struct adapter *adapter = pi->adapter;
2622         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2623
2624         switch (cmd) {
2625         case SIOCGMIIPHY:
2626                 if (pi->mdio_addr < 0)
2627                         return -EOPNOTSUPP;
2628                 data->phy_id = pi->mdio_addr;
2629                 break;
2630         case SIOCGMIIREG:
2631         case SIOCSMIIREG:
2632                 if (mdio_phy_id_is_c45(data->phy_id)) {
2633                         prtad = mdio_phy_id_prtad(data->phy_id);
2634                         devad = mdio_phy_id_devad(data->phy_id);
2635                 } else if (data->phy_id < 32) {
2636                         prtad = data->phy_id;
2637                         devad = 0;
2638                         data->reg_num &= 0x1f;
2639                 } else
2640                         return -EINVAL;
2641
2642                 mbox = pi->adapter->pf;
2643                 if (cmd == SIOCGMIIREG)
2644                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2645                                          data->reg_num, &data->val_out);
2646                 else
2647                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2648                                          data->reg_num, data->val_in);
2649                 break;
2650         case SIOCGHWTSTAMP:
2651                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2652                                     sizeof(pi->tstamp_config)) ?
2653                         -EFAULT : 0;
2654         case SIOCSHWTSTAMP:
2655                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2656                                    sizeof(pi->tstamp_config)))
2657                         return -EFAULT;
2658
2659                 if (!is_t4(adapter->params.chip)) {
2660                         switch (pi->tstamp_config.tx_type) {
2661                         case HWTSTAMP_TX_OFF:
2662                         case HWTSTAMP_TX_ON:
2663                                 break;
2664                         default:
2665                                 return -ERANGE;
2666                         }
2667
2668                         switch (pi->tstamp_config.rx_filter) {
2669                         case HWTSTAMP_FILTER_NONE:
2670                                 pi->rxtstamp = false;
2671                                 break;
2672                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2673                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2674                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2675                                                          PTP_TS_L4);
2676                                 break;
2677                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2678                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2679                                                          PTP_TS_L2_L4);
2680                                 break;
2681                         case HWTSTAMP_FILTER_ALL:
2682                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2683                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2684                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2685                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2686                                 pi->rxtstamp = true;
2687                                 break;
2688                         default:
2689                                 pi->tstamp_config.rx_filter =
2690                                         HWTSTAMP_FILTER_NONE;
2691                                 return -ERANGE;
2692                         }
2693
2694                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2695                             (pi->tstamp_config.rx_filter ==
2696                                 HWTSTAMP_FILTER_NONE)) {
2697                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2698                                         pi->ptp_enable = false;
2699                         }
2700
2701                         if (pi->tstamp_config.rx_filter !=
2702                                 HWTSTAMP_FILTER_NONE) {
2703                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2704                                                                  pi) >= 0)
2705                                         pi->ptp_enable = true;
2706                         }
2707                 } else {
2708                         /* For T4 Adapters */
2709                         switch (pi->tstamp_config.rx_filter) {
2710                         case HWTSTAMP_FILTER_NONE:
2711                         pi->rxtstamp = false;
2712                         break;
2713                         case HWTSTAMP_FILTER_ALL:
2714                         pi->rxtstamp = true;
2715                         break;
2716                         default:
2717                         pi->tstamp_config.rx_filter =
2718                         HWTSTAMP_FILTER_NONE;
2719                         return -ERANGE;
2720                         }
2721                 }
2722                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2723                                     sizeof(pi->tstamp_config)) ?
2724                         -EFAULT : 0;
2725         default:
2726                 return -EOPNOTSUPP;
2727         }
2728         return ret;
2729 }
2730
2731 static void cxgb_set_rxmode(struct net_device *dev)
2732 {
2733         /* unfortunately we can't return errors to the stack */
2734         set_rxmode(dev, -1, false);
2735 }
2736
2737 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2738 {
2739         int ret;
2740         struct port_info *pi = netdev_priv(dev);
2741
2742         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2743                             -1, -1, -1, true);
2744         if (!ret)
2745                 dev->mtu = new_mtu;
2746         return ret;
2747 }
2748
2749 #ifdef CONFIG_PCI_IOV
2750 static int cxgb4_mgmt_open(struct net_device *dev)
2751 {
2752         /* Turn carrier off since we don't have to transmit anything on this
2753          * interface.
2754          */
2755         netif_carrier_off(dev);
2756         return 0;
2757 }
2758
2759 /* Fill MAC address that will be assigned by the FW */
2760 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2761 {
2762         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2763         unsigned int i, vf, nvfs;
2764         u16 a, b;
2765         int err;
2766         u8 *na;
2767
2768         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2769                                                             PCI_CAP_ID_VPD);
2770         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2771         if (err)
2772                 return;
2773
2774         na = adap->params.vpd.na;
2775         for (i = 0; i < ETH_ALEN; i++)
2776                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2777                               hex2val(na[2 * i + 1]));
2778
2779         a = (hw_addr[0] << 8) | hw_addr[1];
2780         b = (hw_addr[1] << 8) | hw_addr[2];
2781         a ^= b;
2782         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2783         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2784         macaddr[0] = a >> 8;
2785         macaddr[1] = a & 0xff;
2786
2787         for (i = 2; i < 5; i++)
2788                 macaddr[i] = hw_addr[i + 1];
2789
2790         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2791                 vf < nvfs; vf++) {
2792                 macaddr[5] = adap->pf * nvfs + vf;
2793                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2794         }
2795 }
2796
2797 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2798 {
2799         struct port_info *pi = netdev_priv(dev);
2800         struct adapter *adap = pi->adapter;
2801         int ret;
2802
2803         /* verify MAC addr is valid */
2804         if (!is_valid_ether_addr(mac)) {
2805                 dev_err(pi->adapter->pdev_dev,
2806                         "Invalid Ethernet address %pM for VF %d\n",
2807                         mac, vf);
2808                 return -EINVAL;
2809         }
2810
2811         dev_info(pi->adapter->pdev_dev,
2812                  "Setting MAC %pM on VF %d\n", mac, vf);
2813         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2814         if (!ret)
2815                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2816         return ret;
2817 }
2818
2819 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2820                                     int vf, struct ifla_vf_info *ivi)
2821 {
2822         struct port_info *pi = netdev_priv(dev);
2823         struct adapter *adap = pi->adapter;
2824         struct vf_info *vfinfo;
2825
2826         if (vf >= adap->num_vfs)
2827                 return -EINVAL;
2828         vfinfo = &adap->vfinfo[vf];
2829
2830         ivi->vf = vf;
2831         ivi->max_tx_rate = vfinfo->tx_rate;
2832         ivi->min_tx_rate = 0;
2833         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2834         ivi->vlan = vfinfo->vlan;
2835         ivi->linkstate = vfinfo->link_state;
2836         return 0;
2837 }
2838
2839 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2840                                        struct netdev_phys_item_id *ppid)
2841 {
2842         struct port_info *pi = netdev_priv(dev);
2843         unsigned int phy_port_id;
2844
2845         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2846         ppid->id_len = sizeof(phy_port_id);
2847         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2848         return 0;
2849 }
2850
2851 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2852                                   int min_tx_rate, int max_tx_rate)
2853 {
2854         struct port_info *pi = netdev_priv(dev);
2855         struct adapter *adap = pi->adapter;
2856         unsigned int link_ok, speed, mtu;
2857         u32 fw_pfvf, fw_class;
2858         int class_id = vf;
2859         int ret;
2860         u16 pktsize;
2861
2862         if (vf >= adap->num_vfs)
2863                 return -EINVAL;
2864
2865         if (min_tx_rate) {
2866                 dev_err(adap->pdev_dev,
2867                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2868                         min_tx_rate, vf);
2869                 return -EINVAL;
2870         }
2871
2872         if (max_tx_rate == 0) {
2873                 /* unbind VF to to any Traffic Class */
2874                 fw_pfvf =
2875                     (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2876                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2877                 fw_class = 0xffffffff;
2878                 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2879                                     &fw_pfvf, &fw_class);
2880                 if (ret) {
2881                         dev_err(adap->pdev_dev,
2882                                 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2883                                 ret, adap->pf, vf);
2884                         return -EINVAL;
2885                 }
2886                 dev_info(adap->pdev_dev,
2887                          "PF %d VF %d is unbound from TX Rate Limiting\n",
2888                          adap->pf, vf);
2889                 adap->vfinfo[vf].tx_rate = 0;
2890                 return 0;
2891         }
2892
2893         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2894         if (ret != FW_SUCCESS) {
2895                 dev_err(adap->pdev_dev,
2896                         "Failed to get link information for VF %d\n", vf);
2897                 return -EINVAL;
2898         }
2899
2900         if (!link_ok) {
2901                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2902                 return -EINVAL;
2903         }
2904
2905         if (max_tx_rate > speed) {
2906                 dev_err(adap->pdev_dev,
2907                         "Max tx rate %d for VF %d can't be > link-speed %u",
2908                         max_tx_rate, vf, speed);
2909                 return -EINVAL;
2910         }
2911
2912         pktsize = mtu;
2913         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2914         pktsize = pktsize - sizeof(struct ethhdr) - 4;
2915         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2916         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2917         /* configure Traffic Class for rate-limiting */
2918         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2919                               SCHED_CLASS_LEVEL_CL_RL,
2920                               SCHED_CLASS_MODE_CLASS,
2921                               SCHED_CLASS_RATEUNIT_BITS,
2922                               SCHED_CLASS_RATEMODE_ABS,
2923                               pi->tx_chan, class_id, 0,
2924                               max_tx_rate * 1000, 0, pktsize);
2925         if (ret) {
2926                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2927                         ret);
2928                 return -EINVAL;
2929         }
2930         dev_info(adap->pdev_dev,
2931                  "Class %d with MSS %u configured with rate %u\n",
2932                  class_id, pktsize, max_tx_rate);
2933
2934         /* bind VF to configured Traffic Class */
2935         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2936                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2937         fw_class = class_id;
2938         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2939                             &fw_class);
2940         if (ret) {
2941                 dev_err(adap->pdev_dev,
2942                         "Err %d in binding PF %d VF %d to Traffic Class %d\n",
2943                         ret, adap->pf, vf, class_id);
2944                 return -EINVAL;
2945         }
2946         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2947                  adap->pf, vf, class_id);
2948         adap->vfinfo[vf].tx_rate = max_tx_rate;
2949         return 0;
2950 }
2951
2952 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2953                                   u16 vlan, u8 qos, __be16 vlan_proto)
2954 {
2955         struct port_info *pi = netdev_priv(dev);
2956         struct adapter *adap = pi->adapter;
2957         int ret;
2958
2959         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2960                 return -EINVAL;
2961
2962         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2963                 return -EPROTONOSUPPORT;
2964
2965         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2966         if (!ret) {
2967                 adap->vfinfo[vf].vlan = vlan;
2968                 return 0;
2969         }
2970
2971         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2972                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2973         return ret;
2974 }
2975
2976 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
2977                                         int link)
2978 {
2979         struct port_info *pi = netdev_priv(dev);
2980         struct adapter *adap = pi->adapter;
2981         u32 param, val;
2982         int ret = 0;
2983
2984         if (vf >= adap->num_vfs)
2985                 return -EINVAL;
2986
2987         switch (link) {
2988         case IFLA_VF_LINK_STATE_AUTO:
2989                 val = FW_VF_LINK_STATE_AUTO;
2990                 break;
2991
2992         case IFLA_VF_LINK_STATE_ENABLE:
2993                 val = FW_VF_LINK_STATE_ENABLE;
2994                 break;
2995
2996         case IFLA_VF_LINK_STATE_DISABLE:
2997                 val = FW_VF_LINK_STATE_DISABLE;
2998                 break;
2999
3000         default:
3001                 return -EINVAL;
3002         }
3003
3004         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3005                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3006         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3007                             &param, &val);
3008         if (ret) {
3009                 dev_err(adap->pdev_dev,
3010                         "Error %d in setting PF %d VF %d link state\n",
3011                         ret, adap->pf, vf);
3012                 return -EINVAL;
3013         }
3014
3015         adap->vfinfo[vf].link_state = link;
3016         return ret;
3017 }
3018 #endif /* CONFIG_PCI_IOV */
3019
3020 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3021 {
3022         int ret;
3023         struct sockaddr *addr = p;
3024         struct port_info *pi = netdev_priv(dev);
3025
3026         if (!is_valid_ether_addr(addr->sa_data))
3027                 return -EADDRNOTAVAIL;
3028
3029         ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3030                                     addr->sa_data, true, &pi->smt_idx);
3031         if (ret < 0)
3032                 return ret;
3033
3034         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3035         pi->xact_addr_filt = ret;
3036         return 0;
3037 }
3038
3039 #ifdef CONFIG_NET_POLL_CONTROLLER
3040 static void cxgb_netpoll(struct net_device *dev)
3041 {
3042         struct port_info *pi = netdev_priv(dev);
3043         struct adapter *adap = pi->adapter;
3044
3045         if (adap->flags & CXGB4_USING_MSIX) {
3046                 int i;
3047                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3048
3049                 for (i = pi->nqsets; i; i--, rx++)
3050                         t4_sge_intr_msix(0, &rx->rspq);
3051         } else
3052                 t4_intr_handler(adap)(0, adap);
3053 }
3054 #endif
3055
3056 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3057 {
3058         struct port_info *pi = netdev_priv(dev);
3059         struct adapter *adap = pi->adapter;
3060         struct sched_class *e;
3061         struct ch_sched_params p;
3062         struct ch_sched_queue qe;
3063         u32 req_rate;
3064         int err = 0;
3065
3066         if (!can_sched(dev))
3067                 return -ENOTSUPP;
3068
3069         if (index < 0 || index > pi->nqsets - 1)
3070                 return -EINVAL;
3071
3072         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3073                 dev_err(adap->pdev_dev,
3074                         "Failed to rate limit on queue %d. Link Down?\n",
3075                         index);
3076                 return -EINVAL;
3077         }
3078
3079         /* Convert from Mbps to Kbps */
3080         req_rate = rate * 1000;
3081
3082         /* Max rate is 100 Gbps */
3083         if (req_rate > SCHED_MAX_RATE_KBPS) {
3084                 dev_err(adap->pdev_dev,
3085                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3086                         rate, SCHED_MAX_RATE_KBPS / 1000);
3087                 return -ERANGE;
3088         }
3089
3090         /* First unbind the queue from any existing class */
3091         memset(&qe, 0, sizeof(qe));
3092         qe.queue = index;
3093         qe.class = SCHED_CLS_NONE;
3094
3095         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3096         if (err) {
3097                 dev_err(adap->pdev_dev,
3098                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3099                         index, pi->port_id, err);
3100                 return err;
3101         }
3102
3103         /* Queue already unbound */
3104         if (!req_rate)
3105                 return 0;
3106
3107         /* Fetch any available unused or matching scheduling class */
3108         memset(&p, 0, sizeof(p));
3109         p.type = SCHED_CLASS_TYPE_PACKET;
3110         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3111         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3112         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3113         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3114         p.u.params.channel  = pi->tx_chan;
3115         p.u.params.class    = SCHED_CLS_NONE;
3116         p.u.params.minrate  = 0;
3117         p.u.params.maxrate  = req_rate;
3118         p.u.params.weight   = 0;
3119         p.u.params.pktsize  = dev->mtu;
3120
3121         e = cxgb4_sched_class_alloc(dev, &p);
3122         if (!e)
3123                 return -ENOMEM;
3124
3125         /* Bind the queue to a scheduling class */
3126         memset(&qe, 0, sizeof(qe));
3127         qe.queue = index;
3128         qe.class = e->idx;
3129
3130         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3131         if (err)
3132                 dev_err(adap->pdev_dev,
3133                         "Queue rate limiting failed. Err: %d\n", err);
3134         return err;
3135 }
3136
3137 static int cxgb_setup_tc_flower(struct net_device *dev,
3138                                 struct flow_cls_offload *cls_flower)
3139 {
3140         switch (cls_flower->command) {
3141         case FLOW_CLS_REPLACE:
3142                 return cxgb4_tc_flower_replace(dev, cls_flower);
3143         case FLOW_CLS_DESTROY:
3144                 return cxgb4_tc_flower_destroy(dev, cls_flower);
3145         case FLOW_CLS_STATS:
3146                 return cxgb4_tc_flower_stats(dev, cls_flower);
3147         default:
3148                 return -EOPNOTSUPP;
3149         }
3150 }
3151
3152 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3153                                  struct tc_cls_u32_offload *cls_u32)
3154 {
3155         switch (cls_u32->command) {
3156         case TC_CLSU32_NEW_KNODE:
3157         case TC_CLSU32_REPLACE_KNODE:
3158                 return cxgb4_config_knode(dev, cls_u32);
3159         case TC_CLSU32_DELETE_KNODE:
3160                 return cxgb4_delete_knode(dev, cls_u32);
3161         default:
3162                 return -EOPNOTSUPP;
3163         }
3164 }
3165
3166 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3167                                   void *cb_priv)
3168 {
3169         struct net_device *dev = cb_priv;
3170         struct port_info *pi = netdev2pinfo(dev);
3171         struct adapter *adap = netdev2adap(dev);
3172
3173         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3174                 dev_err(adap->pdev_dev,
3175                         "Failed to setup tc on port %d. Link Down?\n",
3176                         pi->port_id);
3177                 return -EINVAL;
3178         }
3179
3180         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3181                 return -EOPNOTSUPP;
3182
3183         switch (type) {
3184         case TC_SETUP_CLSU32:
3185                 return cxgb_setup_tc_cls_u32(dev, type_data);
3186         case TC_SETUP_CLSFLOWER:
3187                 return cxgb_setup_tc_flower(dev, type_data);
3188         default:
3189                 return -EOPNOTSUPP;
3190         }
3191 }
3192
3193 static LIST_HEAD(cxgb_block_cb_list);
3194
3195 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3196                          void *type_data)
3197 {
3198         struct port_info *pi = netdev2pinfo(dev);
3199
3200         switch (type) {
3201         case TC_SETUP_BLOCK:
3202                 return flow_block_cb_setup_simple(type_data,
3203                                                   &cxgb_block_cb_list,
3204                                                   cxgb_setup_tc_block_cb,
3205                                                   pi, dev, true);
3206         default:
3207                 return -EOPNOTSUPP;
3208         }
3209 }
3210
3211 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3212                                 struct udp_tunnel_info *ti)
3213 {
3214         struct port_info *pi = netdev_priv(netdev);
3215         struct adapter *adapter = pi->adapter;
3216         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3217         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3218         int ret = 0, i;
3219
3220         if (chip_ver < CHELSIO_T6)
3221                 return;
3222
3223         switch (ti->type) {
3224         case UDP_TUNNEL_TYPE_VXLAN:
3225                 if (!adapter->vxlan_port_cnt ||
3226                     adapter->vxlan_port != ti->port)
3227                         return; /* Invalid VxLAN destination port */
3228
3229                 adapter->vxlan_port_cnt--;
3230                 if (adapter->vxlan_port_cnt)
3231                         return;
3232
3233                 adapter->vxlan_port = 0;
3234                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3235                 break;
3236         case UDP_TUNNEL_TYPE_GENEVE:
3237                 if (!adapter->geneve_port_cnt ||
3238                     adapter->geneve_port != ti->port)
3239                         return; /* Invalid GENEVE destination port */
3240
3241                 adapter->geneve_port_cnt--;
3242                 if (adapter->geneve_port_cnt)
3243                         return;
3244
3245                 adapter->geneve_port = 0;
3246                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3247                 break;
3248         default:
3249                 return;
3250         }
3251
3252         /* Matchall mac entries can be deleted only after all tunnel ports
3253          * are brought down or removed.
3254          */
3255         if (!adapter->rawf_cnt)
3256                 return;
3257         for_each_port(adapter, i) {
3258                 pi = adap2pinfo(adapter, i);
3259                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3260                                            match_all_mac, match_all_mac,
3261                                            adapter->rawf_start +
3262                                             pi->port_id,
3263                                            1, pi->port_id, false);
3264                 if (ret < 0) {
3265                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3266                                     i);
3267                         return;
3268                 }
3269         }
3270 }
3271
3272 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3273                                 struct udp_tunnel_info *ti)
3274 {
3275         struct port_info *pi = netdev_priv(netdev);
3276         struct adapter *adapter = pi->adapter;
3277         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3278         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3279         int i, ret;
3280
3281         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3282                 return;
3283
3284         switch (ti->type) {
3285         case UDP_TUNNEL_TYPE_VXLAN:
3286                 /* Callback for adding vxlan port can be called with the same
3287                  * port for both IPv4 and IPv6. We should not disable the
3288                  * offloading when the same port for both protocols is added
3289                  * and later one of them is removed.
3290                  */
3291                 if (adapter->vxlan_port_cnt &&
3292                     adapter->vxlan_port == ti->port) {
3293                         adapter->vxlan_port_cnt++;
3294                         return;
3295                 }
3296
3297                 /* We will support only one VxLAN port */
3298                 if (adapter->vxlan_port_cnt) {
3299                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3300                                     be16_to_cpu(adapter->vxlan_port),
3301                                     be16_to_cpu(ti->port));
3302                         return;
3303                 }
3304
3305                 adapter->vxlan_port = ti->port;
3306                 adapter->vxlan_port_cnt = 1;
3307
3308                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3309                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3310                 break;
3311         case UDP_TUNNEL_TYPE_GENEVE:
3312                 if (adapter->geneve_port_cnt &&
3313                     adapter->geneve_port == ti->port) {
3314                         adapter->geneve_port_cnt++;
3315                         return;
3316                 }
3317
3318                 /* We will support only one GENEVE port */
3319                 if (adapter->geneve_port_cnt) {
3320                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3321                                     be16_to_cpu(adapter->geneve_port),
3322                                     be16_to_cpu(ti->port));
3323                         return;
3324                 }
3325
3326                 adapter->geneve_port = ti->port;
3327                 adapter->geneve_port_cnt = 1;
3328
3329                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3330                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3331                 break;
3332         default:
3333                 return;
3334         }
3335
3336         /* Create a 'match all' mac filter entry for inner mac,
3337          * if raw mac interface is supported. Once the linux kernel provides
3338          * driver entry points for adding/deleting the inner mac addresses,
3339          * we will remove this 'match all' entry and fallback to adding
3340          * exact match filters.
3341          */
3342         for_each_port(adapter, i) {
3343                 pi = adap2pinfo(adapter, i);
3344
3345                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3346                                             match_all_mac,
3347                                             match_all_mac,
3348                                             adapter->rawf_start +
3349                                             pi->port_id,
3350                                             1, pi->port_id, false);
3351                 if (ret < 0) {
3352                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3353                                     be16_to_cpu(ti->port));
3354                         cxgb_del_udp_tunnel(netdev, ti);
3355                         return;
3356                 }
3357         }
3358 }
3359
3360 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3361                                              struct net_device *dev,
3362                                              netdev_features_t features)
3363 {
3364         struct port_info *pi = netdev_priv(dev);
3365         struct adapter *adapter = pi->adapter;
3366
3367         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3368                 return features;
3369
3370         /* Check if hw supports offload for this packet */
3371         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3372                 return features;
3373
3374         /* Offload is not supported for this encapsulated packet */
3375         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3376 }
3377
3378 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3379                                            netdev_features_t features)
3380 {
3381         /* Disable GRO, if RX_CSUM is disabled */
3382         if (!(features & NETIF_F_RXCSUM))
3383                 features &= ~NETIF_F_GRO;
3384
3385         return features;
3386 }
3387
3388 static const struct net_device_ops cxgb4_netdev_ops = {
3389         .ndo_open             = cxgb_open,
3390         .ndo_stop             = cxgb_close,
3391         .ndo_start_xmit       = t4_start_xmit,
3392         .ndo_select_queue     = cxgb_select_queue,
3393         .ndo_get_stats64      = cxgb_get_stats,
3394         .ndo_set_rx_mode      = cxgb_set_rxmode,
3395         .ndo_set_mac_address  = cxgb_set_mac_addr,
3396         .ndo_set_features     = cxgb_set_features,
3397         .ndo_validate_addr    = eth_validate_addr,
3398         .ndo_do_ioctl         = cxgb_ioctl,
3399         .ndo_change_mtu       = cxgb_change_mtu,
3400 #ifdef CONFIG_NET_POLL_CONTROLLER
3401         .ndo_poll_controller  = cxgb_netpoll,
3402 #endif
3403 #ifdef CONFIG_CHELSIO_T4_FCOE
3404         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3405         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3406 #endif /* CONFIG_CHELSIO_T4_FCOE */
3407         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3408         .ndo_setup_tc         = cxgb_setup_tc,
3409         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3410         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3411         .ndo_features_check   = cxgb_features_check,
3412         .ndo_fix_features     = cxgb_fix_features,
3413 };
3414
3415 #ifdef CONFIG_PCI_IOV
3416 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3417         .ndo_open               = cxgb4_mgmt_open,
3418         .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3419         .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3420         .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3421         .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3422         .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3423         .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3424 };
3425 #endif
3426
3427 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3428                                    struct ethtool_drvinfo *info)
3429 {
3430         struct adapter *adapter = netdev2adap(dev);
3431
3432         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3433         strlcpy(info->version, cxgb4_driver_version,
3434                 sizeof(info->version));
3435         strlcpy(info->bus_info, pci_name(adapter->pdev),
3436                 sizeof(info->bus_info));
3437 }
3438
3439 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3440         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3441 };
3442
3443 static void notify_fatal_err(struct work_struct *work)
3444 {
3445         struct adapter *adap;
3446
3447         adap = container_of(work, struct adapter, fatal_err_notify_task);
3448         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3449 }
3450
3451 void t4_fatal_err(struct adapter *adap)
3452 {
3453         int port;
3454
3455         if (pci_channel_offline(adap->pdev))
3456                 return;
3457
3458         /* Disable the SGE since ULDs are going to free resources that
3459          * could be exposed to the adapter.  RDMA MWs for example...
3460          */
3461         t4_shutdown_adapter(adap);
3462         for_each_port(adap, port) {
3463                 struct net_device *dev = adap->port[port];
3464
3465                 /* If we get here in very early initialization the network
3466                  * devices may not have been set up yet.
3467                  */
3468                 if (!dev)
3469                         continue;
3470
3471                 netif_tx_stop_all_queues(dev);
3472                 netif_carrier_off(dev);
3473         }
3474         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3475         queue_work(adap->workq, &adap->fatal_err_notify_task);
3476 }
3477
3478 static void setup_memwin(struct adapter *adap)
3479 {
3480         u32 nic_win_base = t4_get_util_window(adap);
3481
3482         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3483 }
3484
3485 static void setup_memwin_rdma(struct adapter *adap)
3486 {
3487         if (adap->vres.ocq.size) {
3488                 u32 start;
3489                 unsigned int sz_kb;
3490
3491                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3492                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3493                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3494                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3495                 t4_write_reg(adap,
3496                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3497                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3498                 t4_write_reg(adap,
3499                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3500                              adap->vres.ocq.start);
3501                 t4_read_reg(adap,
3502                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3503         }
3504 }
3505
3506 /* HMA Definitions */
3507
3508 /* The maximum number of address that can be send in a single FW cmd */
3509 #define HMA_MAX_ADDR_IN_CMD     5
3510
3511 #define HMA_PAGE_SIZE           PAGE_SIZE
3512
3513 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3514
3515 #define HMA_PAGE_ORDER                                  \
3516         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3517         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3518
3519 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3520  * configuration(in units of MB).
3521  */
3522 #define HMA_MIN_TOTAL_SIZE      1
3523 #define HMA_MAX_TOTAL_SIZE                              \
3524         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3525           HMA_MAX_NO_FW_ADDRESS) >> 20)
3526
3527 static void adap_free_hma_mem(struct adapter *adapter)
3528 {
3529         struct scatterlist *iter;
3530         struct page *page;
3531         int i;
3532
3533         if (!adapter->hma.sgt)
3534                 return;
3535
3536         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3537                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3538                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3539                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3540         }
3541
3542         for_each_sg(adapter->hma.sgt->sgl, iter,
3543                     adapter->hma.sgt->orig_nents, i) {
3544                 page = sg_page(iter);
3545                 if (page)
3546                         __free_pages(page, HMA_PAGE_ORDER);
3547         }
3548
3549         kfree(adapter->hma.phy_addr);
3550         sg_free_table(adapter->hma.sgt);
3551         kfree(adapter->hma.sgt);
3552         adapter->hma.sgt = NULL;
3553 }
3554
3555 static int adap_config_hma(struct adapter *adapter)
3556 {
3557         struct scatterlist *sgl, *iter;
3558         struct sg_table *sgt;
3559         struct page *newpage;
3560         unsigned int i, j, k;
3561         u32 param, hma_size;
3562         unsigned int ncmds;
3563         size_t page_size;
3564         u32 page_order;
3565         int node, ret;
3566
3567         /* HMA is supported only for T6+ cards.
3568          * Avoid initializing HMA in kdump kernels.
3569          */
3570         if (is_kdump_kernel() ||
3571             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3572                 return 0;
3573
3574         /* Get the HMA region size required by fw */
3575         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3576                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3577         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3578                               1, &param, &hma_size);
3579         /* An error means card has its own memory or HMA is not supported by
3580          * the firmware. Return without any errors.
3581          */
3582         if (ret || !hma_size)
3583                 return 0;
3584
3585         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3586             hma_size > HMA_MAX_TOTAL_SIZE) {
3587                 dev_err(adapter->pdev_dev,
3588                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3589                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3590                 return -EINVAL;
3591         }
3592
3593         page_size = HMA_PAGE_SIZE;
3594         page_order = HMA_PAGE_ORDER;
3595         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3596         if (unlikely(!adapter->hma.sgt)) {
3597                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3598                 return -ENOMEM;
3599         }
3600         sgt = adapter->hma.sgt;
3601         /* FW returned value will be in MB's
3602          */
3603         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3604         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3605                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3606                 kfree(adapter->hma.sgt);
3607                 adapter->hma.sgt = NULL;
3608                 return -ENOMEM;
3609         }
3610
3611         sgl = adapter->hma.sgt->sgl;
3612         node = dev_to_node(adapter->pdev_dev);
3613         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3614                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3615                                            __GFP_ZERO, page_order);
3616                 if (!newpage) {
3617                         dev_err(adapter->pdev_dev,
3618                                 "Not enough memory for HMA page allocation\n");
3619                         ret = -ENOMEM;
3620                         goto free_hma;
3621                 }
3622                 sg_set_page(iter, newpage, page_size << page_order, 0);
3623         }
3624
3625         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3626                                 DMA_BIDIRECTIONAL);
3627         if (!sgt->nents) {
3628                 dev_err(adapter->pdev_dev,
3629                         "Not enough memory for HMA DMA mapping");
3630                 ret = -ENOMEM;
3631                 goto free_hma;
3632         }
3633         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3634
3635         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3636                                         GFP_KERNEL);
3637         if (unlikely(!adapter->hma.phy_addr))
3638                 goto free_hma;
3639
3640         for_each_sg(sgl, iter, sgt->nents, i) {
3641                 newpage = sg_page(iter);
3642                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3643         }
3644
3645         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3646         /* Pass on the addresses to firmware */
3647         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3648                 struct fw_hma_cmd hma_cmd;
3649                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3650                 u8 soc = 0, eoc = 0;
3651                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3652
3653                 soc = (i == 0) ? 1 : 0;
3654                 eoc = (i == ncmds - 1) ? 1 : 0;
3655
3656                 /* For last cmd, set naddr corresponding to remaining
3657                  * addresses
3658                  */
3659                 if (i == ncmds - 1) {
3660                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3661                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3662                 }
3663                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3664                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3665                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3666                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3667
3668                 hma_cmd.mode_to_pcie_params =
3669                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3670                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3671
3672                 /* HMA cmd size specified in MB's */
3673                 hma_cmd.naddr_size =
3674                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3675                               FW_HMA_CMD_NADDR_V(naddr));
3676
3677                 /* Total Page size specified in units of 4K */
3678                 hma_cmd.addr_size_pkd =
3679                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3680                                 ((page_size << page_order) >> 12));
3681
3682                 /* Fill the 5 addresses */
3683                 for (j = 0; j < naddr; j++) {
3684                         hma_cmd.phy_address[j] =
3685                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3686                 }
3687                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3688                                  sizeof(hma_cmd), &hma_cmd);
3689                 if (ret) {
3690                         dev_err(adapter->pdev_dev,
3691                                 "HMA FW command failed with err %d\n", ret);
3692                         goto free_hma;
3693                 }
3694         }
3695
3696         if (!ret)
3697                 dev_info(adapter->pdev_dev,
3698                          "Reserved %uMB host memory for HMA\n", hma_size);
3699         return ret;
3700
3701 free_hma:
3702         adap_free_hma_mem(adapter);
3703         return ret;
3704 }
3705
3706 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3707 {
3708         u32 v;
3709         int ret;
3710
3711         /* Now that we've successfully configured and initialized the adapter
3712          * can ask the Firmware what resources it has provisioned for us.
3713          */
3714         ret = t4_get_pfres(adap);
3715         if (ret) {
3716                 dev_err(adap->pdev_dev,
3717                         "Unable to retrieve resource provisioning information\n");
3718                 return ret;
3719         }
3720
3721         /* get device capabilities */
3722         memset(c, 0, sizeof(*c));
3723         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3724                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3725         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3726         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3727         if (ret < 0)
3728                 return ret;
3729
3730         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3731                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3732         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3733         if (ret < 0)
3734                 return ret;
3735
3736         ret = t4_config_glbl_rss(adap, adap->pf,
3737                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3738                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3739                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3740         if (ret < 0)
3741                 return ret;
3742
3743         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3744                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3745                           FW_CMD_CAP_PF);
3746         if (ret < 0)
3747                 return ret;
3748
3749         t4_sge_init(adap);
3750
3751         /* tweak some settings */
3752         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3753         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3754         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3755         v = t4_read_reg(adap, TP_PIO_DATA_A);
3756         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3757
3758         /* first 4 Tx modulation queues point to consecutive Tx channels */
3759         adap->params.tp.tx_modq_map = 0xE4;
3760         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3761                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3762
3763         /* associate each Tx modulation queue with consecutive Tx channels */
3764         v = 0x84218421;
3765         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3766                           &v, 1, TP_TX_SCHED_HDR_A);
3767         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3768                           &v, 1, TP_TX_SCHED_FIFO_A);
3769         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3770                           &v, 1, TP_TX_SCHED_PCMD_A);
3771
3772 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3773         if (is_offload(adap)) {
3774                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3775                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3776                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3777                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3778                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3779                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3780                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3781                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3782                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3783                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3784         }
3785
3786         /* get basic stuff going */
3787         return t4_early_init(adap, adap->pf);
3788 }
3789
3790 /*
3791  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3792  */
3793 #define MAX_ATIDS 8192U
3794
3795 /*
3796  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3797  *
3798  * If the firmware we're dealing with has Configuration File support, then
3799  * we use that to perform all configuration
3800  */
3801
3802 /*
3803  * Tweak configuration based on module parameters, etc.  Most of these have
3804  * defaults assigned to them by Firmware Configuration Files (if we're using
3805  * them) but need to be explicitly set if we're using hard-coded
3806  * initialization.  But even in the case of using Firmware Configuration
3807  * Files, we'd like to expose the ability to change these via module
3808  * parameters so these are essentially common tweaks/settings for
3809  * Configuration Files and hard-coded initialization ...
3810  */
3811 static int adap_init0_tweaks(struct adapter *adapter)
3812 {
3813         /*
3814          * Fix up various Host-Dependent Parameters like Page Size, Cache
3815          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3816          * 64B Cache Line Size ...
3817          */
3818         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3819
3820         /*
3821          * Process module parameters which affect early initialization.
3822          */
3823         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3824                 dev_err(&adapter->pdev->dev,
3825                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3826                         rx_dma_offset);
3827                 rx_dma_offset = 2;
3828         }
3829         t4_set_reg_field(adapter, SGE_CONTROL_A,
3830                          PKTSHIFT_V(PKTSHIFT_M),
3831                          PKTSHIFT_V(rx_dma_offset));
3832
3833         /*
3834          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3835          * adds the pseudo header itself.
3836          */
3837         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3838                                CSUM_HAS_PSEUDO_HDR_F, 0);
3839
3840         return 0;
3841 }
3842
3843 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3844  * unto themselves and they contain their own firmware to perform their
3845  * tasks ...
3846  */
3847 static int phy_aq1202_version(const u8 *phy_fw_data,
3848                               size_t phy_fw_size)
3849 {
3850         int offset;
3851
3852         /* At offset 0x8 you're looking for the primary image's
3853          * starting offset which is 3 Bytes wide
3854          *
3855          * At offset 0xa of the primary image, you look for the offset
3856          * of the DRAM segment which is 3 Bytes wide.
3857          *
3858          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3859          * wide
3860          */
3861         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3862         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3863         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3864
3865         offset = le24(phy_fw_data + 0x8) << 12;
3866         offset = le24(phy_fw_data + offset + 0xa);
3867         return be16(phy_fw_data + offset + 0x27e);
3868
3869         #undef be16
3870         #undef le16
3871         #undef le24
3872 }
3873
3874 static struct info_10gbt_phy_fw {
3875         unsigned int phy_fw_id;         /* PCI Device ID */
3876         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3877         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3878         int phy_flash;                  /* Has FLASH for PHY Firmware */
3879 } phy_info_array[] = {
3880         {
3881                 PHY_AQ1202_DEVICEID,
3882                 PHY_AQ1202_FIRMWARE,
3883                 phy_aq1202_version,
3884                 1,
3885         },
3886         {
3887                 PHY_BCM84834_DEVICEID,
3888                 PHY_BCM84834_FIRMWARE,
3889                 NULL,
3890                 0,
3891         },
3892         { 0, NULL, NULL },
3893 };
3894
3895 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3896 {
3897         int i;
3898
3899         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3900                 if (phy_info_array[i].phy_fw_id == devid)
3901                         return &phy_info_array[i];
3902         }
3903         return NULL;
3904 }
3905
3906 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3907  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3908  * we return a negative error number.  If we transfer new firmware we return 1
3909  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3910  */
3911 static int adap_init0_phy(struct adapter *adap)
3912 {
3913         const struct firmware *phyf;
3914         int ret;
3915         struct info_10gbt_phy_fw *phy_info;
3916
3917         /* Use the device ID to determine which PHY file to flash.
3918          */
3919         phy_info = find_phy_info(adap->pdev->device);
3920         if (!phy_info) {
3921                 dev_warn(adap->pdev_dev,
3922                          "No PHY Firmware file found for this PHY\n");
3923                 return -EOPNOTSUPP;
3924         }
3925
3926         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3927          * use that. The adapter firmware provides us with a memory buffer
3928          * where we can load a PHY firmware file from the host if we want to
3929          * override the PHY firmware File in flash.
3930          */
3931         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3932                                       adap->pdev_dev);
3933         if (ret < 0) {
3934                 /* For adapters without FLASH attached to PHY for their
3935                  * firmware, it's obviously a fatal error if we can't get the
3936                  * firmware to the adapter.  For adapters with PHY firmware
3937                  * FLASH storage, it's worth a warning if we can't find the
3938                  * PHY Firmware but we'll neuter the error ...
3939                  */
3940                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3941                         "/lib/firmware/%s, error %d\n",
3942                         phy_info->phy_fw_file, -ret);
3943                 if (phy_info->phy_flash) {
3944                         int cur_phy_fw_ver = 0;
3945
3946                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3947                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3948                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3949                         ret = 0;
3950                 }
3951
3952                 return ret;
3953         }
3954
3955         /* Load PHY Firmware onto adapter.
3956          */
3957         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3958                              phy_info->phy_fw_version,
3959                              (u8 *)phyf->data, phyf->size);
3960         if (ret < 0)
3961                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3962                         -ret);
3963         else if (ret > 0) {
3964                 int new_phy_fw_ver = 0;
3965
3966                 if (phy_info->phy_fw_version)
3967                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3968                                                                   phyf->size);
3969                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3970                          "Firmware /lib/firmware/%s, version %#x\n",
3971                          phy_info->phy_fw_file, new_phy_fw_ver);
3972         }
3973
3974         release_firmware(phyf);
3975
3976         return ret;
3977 }
3978
3979 /*
3980  * Attempt to initialize the adapter via a Firmware Configuration File.
3981  */
3982 static int adap_init0_config(struct adapter *adapter, int reset)
3983 {
3984         char *fw_config_file, fw_config_file_path[256];
3985         u32 finiver, finicsum, cfcsum, param, val;
3986         struct fw_caps_config_cmd caps_cmd;
3987         unsigned long mtype = 0, maddr = 0;
3988         const struct firmware *cf;
3989         char *config_name = NULL;
3990         int config_issued = 0;
3991         int ret;
3992
3993         /*
3994          * Reset device if necessary.
3995          */
3996         if (reset) {
3997                 ret = t4_fw_reset(adapter, adapter->mbox,
3998                                   PIORSTMODE_F | PIORST_F);
3999                 if (ret < 0)
4000                         goto bye;
4001         }
4002
4003         /* If this is a 10Gb/s-BT adapter make sure the chip-external
4004          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4005          * to be performed after any global adapter RESET above since some
4006          * PHYs only have local RAM copies of the PHY firmware.
4007          */
4008         if (is_10gbt_device(adapter->pdev->device)) {
4009                 ret = adap_init0_phy(adapter);
4010                 if (ret < 0)
4011                         goto bye;
4012         }
4013         /*
4014          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4015          * then use that.  Otherwise, use the configuration file stored
4016          * in the adapter flash ...
4017          */
4018         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4019         case CHELSIO_T4:
4020                 fw_config_file = FW4_CFNAME;
4021                 break;
4022         case CHELSIO_T5:
4023                 fw_config_file = FW5_CFNAME;
4024                 break;
4025         case CHELSIO_T6:
4026                 fw_config_file = FW6_CFNAME;
4027                 break;
4028         default:
4029                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4030                        adapter->pdev->device);
4031                 ret = -EINVAL;
4032                 goto bye;
4033         }
4034
4035         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4036         if (ret < 0) {
4037                 config_name = "On FLASH";
4038                 mtype = FW_MEMTYPE_CF_FLASH;
4039                 maddr = t4_flash_cfg_addr(adapter);
4040         } else {
4041                 u32 params[7], val[7];
4042
4043                 sprintf(fw_config_file_path,
4044                         "/lib/firmware/%s", fw_config_file);
4045                 config_name = fw_config_file_path;
4046
4047                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4048                         ret = -ENOMEM;
4049                 else {
4050                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4051                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4052                         ret = t4_query_params(adapter, adapter->mbox,
4053                                               adapter->pf, 0, 1, params, val);
4054                         if (ret == 0) {
4055                                 /*
4056                                  * For t4_memory_rw() below addresses and
4057                                  * sizes have to be in terms of multiples of 4
4058                                  * bytes.  So, if the Configuration File isn't
4059                                  * a multiple of 4 bytes in length we'll have
4060                                  * to write that out separately since we can't
4061                                  * guarantee that the bytes following the
4062                                  * residual byte in the buffer returned by
4063                                  * request_firmware() are zeroed out ...
4064                                  */
4065                                 size_t resid = cf->size & 0x3;
4066                                 size_t size = cf->size & ~0x3;
4067                                 __be32 *data = (__be32 *)cf->data;
4068
4069                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4070                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4071
4072                                 spin_lock(&adapter->win0_lock);
4073                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4074                                                    size, data, T4_MEMORY_WRITE);
4075                                 if (ret == 0 && resid != 0) {
4076                                         union {
4077                                                 __be32 word;
4078                                                 char buf[4];
4079                                         } last;
4080                                         int i;
4081
4082                                         last.word = data[size >> 2];
4083                                         for (i = resid; i < 4; i++)
4084                                                 last.buf[i] = 0;
4085                                         ret = t4_memory_rw(adapter, 0, mtype,
4086                                                            maddr + size,
4087                                                            4, &last.word,
4088                                                            T4_MEMORY_WRITE);
4089                                 }
4090                                 spin_unlock(&adapter->win0_lock);
4091                         }
4092                 }
4093
4094                 release_firmware(cf);
4095                 if (ret)
4096                         goto bye;
4097         }
4098
4099         val = 0;
4100
4101         /* Ofld + Hash filter is supported. Older fw will fail this request and
4102          * it is fine.
4103          */
4104         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4105                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4106         ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4107                             1, &param, &val);
4108
4109         /* FW doesn't know about Hash filter + ofld support,
4110          * it's not a problem, don't return an error.
4111          */
4112         if (ret < 0) {
4113                 dev_warn(adapter->pdev_dev,
4114                          "Hash filter with ofld is not supported by FW\n");
4115         }
4116
4117         /*
4118          * Issue a Capability Configuration command to the firmware to get it
4119          * to parse the Configuration File.  We don't use t4_fw_config_file()
4120          * because we want the ability to modify various features after we've
4121          * processed the configuration file ...
4122          */
4123         memset(&caps_cmd, 0, sizeof(caps_cmd));
4124         caps_cmd.op_to_write =
4125                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4126                       FW_CMD_REQUEST_F |
4127                       FW_CMD_READ_F);
4128         caps_cmd.cfvalid_to_len16 =
4129                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4130                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4131                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4132                       FW_LEN16(caps_cmd));
4133         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4134                          &caps_cmd);
4135
4136         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4137          * Configuration File in FLASH), our last gasp effort is to use the
4138          * Firmware Configuration File which is embedded in the firmware.  A
4139          * very few early versions of the firmware didn't have one embedded
4140          * but we can ignore those.
4141          */
4142         if (ret == -ENOENT) {
4143                 memset(&caps_cmd, 0, sizeof(caps_cmd));
4144                 caps_cmd.op_to_write =
4145                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4146                                         FW_CMD_REQUEST_F |
4147                                         FW_CMD_READ_F);
4148                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4149                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4150                                 sizeof(caps_cmd), &caps_cmd);
4151                 config_name = "Firmware Default";
4152         }
4153
4154         config_issued = 1;
4155         if (ret < 0)
4156                 goto bye;
4157
4158         finiver = ntohl(caps_cmd.finiver);
4159         finicsum = ntohl(caps_cmd.finicsum);
4160         cfcsum = ntohl(caps_cmd.cfcsum);
4161         if (finicsum != cfcsum)
4162                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4163                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4164                          finicsum, cfcsum);
4165
4166         /*
4167          * And now tell the firmware to use the configuration we just loaded.
4168          */
4169         caps_cmd.op_to_write =
4170                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4171                       FW_CMD_REQUEST_F |
4172                       FW_CMD_WRITE_F);
4173         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4174         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4175                          NULL);
4176         if (ret < 0)
4177                 goto bye;
4178
4179         /*
4180          * Tweak configuration based on system architecture, module
4181          * parameters, etc.
4182          */
4183         ret = adap_init0_tweaks(adapter);
4184         if (ret < 0)
4185                 goto bye;
4186
4187         /* We will proceed even if HMA init fails. */
4188         ret = adap_config_hma(adapter);
4189         if (ret)
4190                 dev_err(adapter->pdev_dev,
4191                         "HMA configuration failed with error %d\n", ret);
4192
4193         if (is_t6(adapter->params.chip)) {
4194                 ret = setup_ppod_edram(adapter);
4195                 if (!ret)
4196                         dev_info(adapter->pdev_dev, "Successfully enabled "
4197                                  "ppod edram feature\n");
4198         }
4199
4200         /*
4201          * And finally tell the firmware to initialize itself using the
4202          * parameters from the Configuration File.
4203          */
4204         ret = t4_fw_initialize(adapter, adapter->mbox);
4205         if (ret < 0)
4206                 goto bye;
4207
4208         /* Emit Firmware Configuration File information and return
4209          * successfully.
4210          */
4211         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4212                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4213                  config_name, finiver, cfcsum);
4214         return 0;
4215
4216         /*
4217          * Something bad happened.  Return the error ...  (If the "error"
4218          * is that there's no Configuration File on the adapter we don't
4219          * want to issue a warning since this is fairly common.)
4220          */
4221 bye:
4222         if (config_issued && ret != -ENOENT)
4223                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4224                          config_name, -ret);
4225         return ret;
4226 }
4227
4228 static struct fw_info fw_info_array[] = {
4229         {
4230                 .chip = CHELSIO_T4,
4231                 .fs_name = FW4_CFNAME,
4232                 .fw_mod_name = FW4_FNAME,
4233                 .fw_hdr = {
4234                         .chip = FW_HDR_CHIP_T4,
4235                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4236                         .intfver_nic = FW_INTFVER(T4, NIC),
4237                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4238                         .intfver_ri = FW_INTFVER(T4, RI),
4239                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4240                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4241                 },
4242         }, {
4243                 .chip = CHELSIO_T5,
4244                 .fs_name = FW5_CFNAME,
4245                 .fw_mod_name = FW5_FNAME,
4246                 .fw_hdr = {
4247                         .chip = FW_HDR_CHIP_T5,
4248                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4249                         .intfver_nic = FW_INTFVER(T5, NIC),
4250                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4251                         .intfver_ri = FW_INTFVER(T5, RI),
4252                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4253                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4254                 },
4255         }, {
4256                 .chip = CHELSIO_T6,
4257                 .fs_name = FW6_CFNAME,
4258                 .fw_mod_name = FW6_FNAME,
4259                 .fw_hdr = {
4260                         .chip = FW_HDR_CHIP_T6,
4261                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4262                         .intfver_nic = FW_INTFVER(T6, NIC),
4263                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4264                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4265                         .intfver_ri = FW_INTFVER(T6, RI),
4266                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4267                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4268                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4269                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4270                 },
4271         }
4272
4273 };
4274
4275 static struct fw_info *find_fw_info(int chip)
4276 {
4277         int i;
4278
4279         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4280                 if (fw_info_array[i].chip == chip)
4281                         return &fw_info_array[i];
4282         }
4283         return NULL;
4284 }
4285
4286 /*
4287  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4288  */
4289 static int adap_init0(struct adapter *adap)
4290 {
4291         int ret;
4292         u32 v, port_vec;
4293         enum dev_state state;
4294         u32 params[7], val[7];
4295         struct fw_caps_config_cmd caps_cmd;
4296         int reset = 1;
4297
4298         /* Grab Firmware Device Log parameters as early as possible so we have
4299          * access to it for debugging, etc.
4300          */
4301         ret = t4_init_devlog_params(adap);
4302         if (ret < 0)
4303                 return ret;
4304
4305         /* Contact FW, advertising Master capability */
4306         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4307                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4308         if (ret < 0) {
4309                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4310                         ret);
4311                 return ret;
4312         }
4313         if (ret == adap->mbox)
4314                 adap->flags |= CXGB4_MASTER_PF;
4315
4316         /*
4317          * If we're the Master PF Driver and the device is uninitialized,
4318          * then let's consider upgrading the firmware ...  (We always want
4319          * to check the firmware version number in order to A. get it for
4320          * later reporting and B. to warn if the currently loaded firmware
4321          * is excessively mismatched relative to the driver.)
4322          */
4323
4324         t4_get_version_info(adap);
4325         ret = t4_check_fw_version(adap);
4326         /* If firmware is too old (not supported by driver) force an update. */
4327         if (ret)
4328                 state = DEV_STATE_UNINIT;
4329         if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4330                 struct fw_info *fw_info;
4331                 struct fw_hdr *card_fw;
4332                 const struct firmware *fw;
4333                 const u8 *fw_data = NULL;
4334                 unsigned int fw_size = 0;
4335
4336                 /* This is the firmware whose headers the driver was compiled
4337                  * against
4338                  */
4339                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4340                 if (fw_info == NULL) {
4341                         dev_err(adap->pdev_dev,
4342                                 "unable to get firmware info for chip %d.\n",
4343                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4344                         return -EINVAL;
4345                 }
4346
4347                 /* allocate memory to read the header of the firmware on the
4348                  * card
4349                  */
4350                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4351                 if (!card_fw) {
4352                         ret = -ENOMEM;
4353                         goto bye;
4354                 }
4355
4356                 /* Get FW from from /lib/firmware/ */
4357                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4358                                        adap->pdev_dev);
4359                 if (ret < 0) {
4360                         dev_err(adap->pdev_dev,
4361                                 "unable to load firmware image %s, error %d\n",
4362                                 fw_info->fw_mod_name, ret);
4363                 } else {
4364                         fw_data = fw->data;
4365                         fw_size = fw->size;
4366                 }
4367
4368                 /* upgrade FW logic */
4369                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4370                                  state, &reset);
4371
4372                 /* Cleaning up */
4373                 release_firmware(fw);
4374                 kvfree(card_fw);
4375
4376                 if (ret < 0)
4377                         goto bye;
4378         }
4379
4380         /* If the firmware is initialized already, emit a simply note to that
4381          * effect. Otherwise, it's time to try initializing the adapter.
4382          */
4383         if (state == DEV_STATE_INIT) {
4384                 ret = adap_config_hma(adap);
4385                 if (ret)
4386                         dev_err(adap->pdev_dev,
4387                                 "HMA configuration failed with error %d\n",
4388                                 ret);
4389                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4390                          "Adapter already initialized\n",
4391                          adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4392         } else {
4393                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4394                          "Initializing adapter\n");
4395
4396                 /* Find out whether we're dealing with a version of the
4397                  * firmware which has configuration file support.
4398                  */
4399                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4400                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4401                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4402                                       params, val);
4403
4404                 /* If the firmware doesn't support Configuration Files,
4405                  * return an error.
4406                  */
4407                 if (ret < 0) {
4408                         dev_err(adap->pdev_dev, "firmware doesn't support "
4409                                 "Firmware Configuration Files\n");
4410                         goto bye;
4411                 }
4412
4413                 /* The firmware provides us with a memory buffer where we can
4414                  * load a Configuration File from the host if we want to
4415                  * override the Configuration File in flash.
4416                  */
4417                 ret = adap_init0_config(adap, reset);
4418                 if (ret == -ENOENT) {
4419                         dev_err(adap->pdev_dev, "no Configuration File "
4420                                 "present on adapter.\n");
4421                         goto bye;
4422                 }
4423                 if (ret < 0) {
4424                         dev_err(adap->pdev_dev, "could not initialize "
4425                                 "adapter, error %d\n", -ret);
4426                         goto bye;
4427                 }
4428         }
4429
4430         /* Now that we've successfully configured and initialized the adapter
4431          * (or found it already initialized), we can ask the Firmware what
4432          * resources it has provisioned for us.
4433          */
4434         ret = t4_get_pfres(adap);
4435         if (ret) {
4436                 dev_err(adap->pdev_dev,
4437                         "Unable to retrieve resource provisioning information\n");
4438                 goto bye;
4439         }
4440
4441         /* Grab VPD parameters.  This should be done after we establish a
4442          * connection to the firmware since some of the VPD parameters
4443          * (notably the Core Clock frequency) are retrieved via requests to
4444          * the firmware.  On the other hand, we need these fairly early on
4445          * so we do this right after getting ahold of the firmware.
4446          *
4447          * We need to do this after initializing the adapter because someone
4448          * could have FLASHed a new VPD which won't be read by the firmware
4449          * until we do the RESET ...
4450          */
4451         ret = t4_get_vpd_params(adap, &adap->params.vpd);
4452         if (ret < 0)
4453                 goto bye;
4454
4455         /* Find out what ports are available to us.  Note that we need to do
4456          * this before calling adap_init0_no_config() since it needs nports
4457          * and portvec ...
4458          */
4459         v =
4460             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4461             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4462         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4463         if (ret < 0)
4464                 goto bye;
4465
4466         adap->params.nports = hweight32(port_vec);
4467         adap->params.portvec = port_vec;
4468
4469         /* Give the SGE code a chance to pull in anything that it needs ...
4470          * Note that this must be called after we retrieve our VPD parameters
4471          * in order to know how to convert core ticks to seconds, etc.
4472          */
4473         ret = t4_sge_init(adap);
4474         if (ret < 0)
4475                 goto bye;
4476
4477         /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4478          * indicates that the Firmware and Hardware support this.
4479          */
4480         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4481                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4482         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4483                               1, params, val);
4484
4485         if (!ret) {
4486                 adap->sge.dbqtimer_tick = val[0];
4487                 ret = t4_read_sge_dbqtimers(adap,
4488                                             ARRAY_SIZE(adap->sge.dbqtimer_val),
4489                                             adap->sge.dbqtimer_val);
4490         }
4491
4492         if (!ret)
4493                 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4494
4495         if (is_bypass_device(adap->pdev->device))
4496                 adap->params.bypass = 1;
4497
4498         /*
4499          * Grab some of our basic fundamental operating parameters.
4500          */
4501 #define FW_PARAM_DEV(param) \
4502         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4503         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4504
4505 #define FW_PARAM_PFVF(param) \
4506         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4507         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4508         FW_PARAMS_PARAM_Y_V(0) | \
4509         FW_PARAMS_PARAM_Z_V(0)
4510
4511         params[0] = FW_PARAM_PFVF(EQ_START);
4512         params[1] = FW_PARAM_PFVF(L2T_START);
4513         params[2] = FW_PARAM_PFVF(L2T_END);
4514         params[3] = FW_PARAM_PFVF(FILTER_START);
4515         params[4] = FW_PARAM_PFVF(FILTER_END);
4516         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4517         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4518         if (ret < 0)
4519                 goto bye;
4520         adap->sge.egr_start = val[0];
4521         adap->l2t_start = val[1];
4522         adap->l2t_end = val[2];
4523         adap->tids.ftid_base = val[3];
4524         adap->tids.nftids = val[4] - val[3] + 1;
4525         adap->sge.ingr_start = val[5];
4526
4527         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4528                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4529                  * are reserved for raw mac addresses (rawf = 2, one per port).
4530                  */
4531                 params[0] = FW_PARAM_PFVF(RAWF_START);
4532                 params[1] = FW_PARAM_PFVF(RAWF_END);
4533                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4534                                       params, val);
4535                 if (ret == 0) {
4536                         adap->rawf_start = val[0];
4537                         adap->rawf_cnt = val[1] - val[0] + 1;
4538                 }
4539         }
4540
4541         /* qids (ingress/egress) returned from firmware can be anywhere
4542          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4543          * Hence driver needs to allocate memory for this range to
4544          * store the queue info. Get the highest IQFLINT/EQ index returned
4545          * in FW_EQ_*_CMD.alloc command.
4546          */
4547         params[0] = FW_PARAM_PFVF(EQ_END);
4548         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4549         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4550         if (ret < 0)
4551                 goto bye;
4552         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4553         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4554
4555         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4556                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4557         if (!adap->sge.egr_map) {
4558                 ret = -ENOMEM;
4559                 goto bye;
4560         }
4561
4562         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4563                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4564         if (!adap->sge.ingr_map) {
4565                 ret = -ENOMEM;
4566                 goto bye;
4567         }
4568
4569         /* Allocate the memory for the vaious egress queue bitmaps
4570          * ie starving_fl, txq_maperr and blocked_fl.
4571          */
4572         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4573                                         sizeof(long), GFP_KERNEL);
4574         if (!adap->sge.starving_fl) {
4575                 ret = -ENOMEM;
4576                 goto bye;
4577         }
4578
4579         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4580                                        sizeof(long), GFP_KERNEL);
4581         if (!adap->sge.txq_maperr) {
4582                 ret = -ENOMEM;
4583                 goto bye;
4584         }
4585
4586 #ifdef CONFIG_DEBUG_FS
4587         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4588                                        sizeof(long), GFP_KERNEL);
4589         if (!adap->sge.blocked_fl) {
4590                 ret = -ENOMEM;
4591                 goto bye;
4592         }
4593 #endif
4594
4595         params[0] = FW_PARAM_PFVF(CLIP_START);
4596         params[1] = FW_PARAM_PFVF(CLIP_END);
4597         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4598         if (ret < 0)
4599                 goto bye;
4600         adap->clipt_start = val[0];
4601         adap->clipt_end = val[1];
4602
4603         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4604          * Classes supported by the hardware/firmware so we hard code it here
4605          * for now.
4606          */
4607         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4608
4609         /* query params related to active filter region */
4610         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4611         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4612         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4613         /* If Active filter size is set we enable establishing
4614          * offload connection through firmware work request
4615          */
4616         if ((val[0] != val[1]) && (ret >= 0)) {
4617                 adap->flags |= CXGB4_FW_OFLD_CONN;
4618                 adap->tids.aftid_base = val[0];
4619                 adap->tids.aftid_end = val[1];
4620         }
4621
4622         /* If we're running on newer firmware, let it know that we're
4623          * prepared to deal with encapsulated CPL messages.  Older
4624          * firmware won't understand this and we'll just get
4625          * unencapsulated messages ...
4626          */
4627         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4628         val[0] = 1;
4629         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4630
4631         /*
4632          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4633          * capability.  Earlier versions of the firmware didn't have the
4634          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4635          * permission to use ULPTX MEMWRITE DSGL.
4636          */
4637         if (is_t4(adap->params.chip)) {
4638                 adap->params.ulptx_memwrite_dsgl = false;
4639         } else {
4640                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4641                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4642                                       1, params, val);
4643                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4644         }
4645
4646         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4647         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4648         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4649                               1, params, val);
4650         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4651
4652         /* See if FW supports FW_FILTER2 work request */
4653         if (is_t4(adap->params.chip)) {
4654                 adap->params.filter2_wr_support = 0;
4655         } else {
4656                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4657                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4658                                       1, params, val);
4659                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4660         }
4661
4662         /* Check if FW supports returning vin and smt index.
4663          * If this is not supported, driver will interpret
4664          * these values from viid.
4665          */
4666         params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4667         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4668                               1, params, val);
4669         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4670
4671         /*
4672          * Get device capabilities so we can determine what resources we need
4673          * to manage.
4674          */
4675         memset(&caps_cmd, 0, sizeof(caps_cmd));
4676         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4677                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4678         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4679         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4680                          &caps_cmd);
4681         if (ret < 0)
4682                 goto bye;
4683
4684         /* hash filter has some mandatory register settings to be tested and for
4685          * that it needs to test whether offload is enabled or not, hence
4686          * checking and setting it here.
4687          */
4688         if (caps_cmd.ofldcaps)
4689                 adap->params.offload = 1;
4690
4691         if (caps_cmd.ofldcaps ||
4692             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4693                 /* query offload-related parameters */
4694                 params[0] = FW_PARAM_DEV(NTID);
4695                 params[1] = FW_PARAM_PFVF(SERVER_START);
4696                 params[2] = FW_PARAM_PFVF(SERVER_END);
4697                 params[3] = FW_PARAM_PFVF(TDDP_START);
4698                 params[4] = FW_PARAM_PFVF(TDDP_END);
4699                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4700                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4701                                       params, val);
4702                 if (ret < 0)
4703                         goto bye;
4704                 adap->tids.ntids = val[0];
4705                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4706                 adap->tids.stid_base = val[1];
4707                 adap->tids.nstids = val[2] - val[1] + 1;
4708                 /*
4709                  * Setup server filter region. Divide the available filter
4710                  * region into two parts. Regular filters get 1/3rd and server
4711                  * filters get 2/3rd part. This is only enabled if workarond
4712                  * path is enabled.
4713                  * 1. For regular filters.
4714                  * 2. Server filter: This are special filters which are used
4715                  * to redirect SYN packets to offload queue.
4716                  */
4717                 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4718                         adap->tids.sftid_base = adap->tids.ftid_base +
4719                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4720                         adap->tids.nsftids = adap->tids.nftids -
4721                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4722                         adap->tids.nftids = adap->tids.sftid_base -
4723                                                 adap->tids.ftid_base;
4724                 }
4725                 adap->vres.ddp.start = val[3];
4726                 adap->vres.ddp.size = val[4] - val[3] + 1;
4727                 adap->params.ofldq_wr_cred = val[5];
4728
4729                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4730                         init_hash_filter(adap);
4731                 } else {
4732                         adap->num_ofld_uld += 1;
4733                 }
4734         }
4735         if (caps_cmd.rdmacaps) {
4736                 params[0] = FW_PARAM_PFVF(STAG_START);
4737                 params[1] = FW_PARAM_PFVF(STAG_END);
4738                 params[2] = FW_PARAM_PFVF(RQ_START);
4739                 params[3] = FW_PARAM_PFVF(RQ_END);
4740                 params[4] = FW_PARAM_PFVF(PBL_START);
4741                 params[5] = FW_PARAM_PFVF(PBL_END);
4742                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4743                                       params, val);
4744                 if (ret < 0)
4745                         goto bye;
4746                 adap->vres.stag.start = val[0];
4747                 adap->vres.stag.size = val[1] - val[0] + 1;
4748                 adap->vres.rq.start = val[2];
4749                 adap->vres.rq.size = val[3] - val[2] + 1;
4750                 adap->vres.pbl.start = val[4];
4751                 adap->vres.pbl.size = val[5] - val[4] + 1;
4752
4753                 params[0] = FW_PARAM_PFVF(SRQ_START);
4754                 params[1] = FW_PARAM_PFVF(SRQ_END);
4755                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4756                                       params, val);
4757                 if (!ret) {
4758                         adap->vres.srq.start = val[0];
4759                         adap->vres.srq.size = val[1] - val[0] + 1;
4760                 }
4761                 if (adap->vres.srq.size) {
4762                         adap->srq = t4_init_srq(adap->vres.srq.size);
4763                         if (!adap->srq)
4764                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4765                 }
4766
4767                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4768                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4769                 params[2] = FW_PARAM_PFVF(CQ_START);
4770                 params[3] = FW_PARAM_PFVF(CQ_END);
4771                 params[4] = FW_PARAM_PFVF(OCQ_START);
4772                 params[5] = FW_PARAM_PFVF(OCQ_END);
4773                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4774                                       val);
4775                 if (ret < 0)
4776                         goto bye;
4777                 adap->vres.qp.start = val[0];
4778                 adap->vres.qp.size = val[1] - val[0] + 1;
4779                 adap->vres.cq.start = val[2];
4780                 adap->vres.cq.size = val[3] - val[2] + 1;
4781                 adap->vres.ocq.start = val[4];
4782                 adap->vres.ocq.size = val[5] - val[4] + 1;
4783
4784                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4785                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4786                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4787                                       val);
4788                 if (ret < 0) {
4789                         adap->params.max_ordird_qp = 8;
4790                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4791                         ret = 0;
4792                 } else {
4793                         adap->params.max_ordird_qp = val[0];
4794                         adap->params.max_ird_adapter = val[1];
4795                 }
4796                 dev_info(adap->pdev_dev,
4797                          "max_ordird_qp %d max_ird_adapter %d\n",
4798                          adap->params.max_ordird_qp,
4799                          adap->params.max_ird_adapter);
4800
4801                 /* Enable write_with_immediate if FW supports it */
4802                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4803                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4804                                       val);
4805                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4806
4807                 /* Enable write_cmpl if FW supports it */
4808                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4809                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4810                                       val);
4811                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4812                 adap->num_ofld_uld += 2;
4813         }
4814         if (caps_cmd.iscsicaps) {
4815                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4816                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4817                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4818                                       params, val);
4819                 if (ret < 0)
4820                         goto bye;
4821                 adap->vres.iscsi.start = val[0];
4822                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4823                 if (is_t6(adap->params.chip)) {
4824                         params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
4825                         params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
4826                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4827                                               params, val);
4828                         if (!ret) {
4829                                 adap->vres.ppod_edram.start = val[0];
4830                                 adap->vres.ppod_edram.size =
4831                                         val[1] - val[0] + 1;
4832
4833                                 dev_info(adap->pdev_dev,
4834                                          "ppod edram start 0x%x end 0x%x size 0x%x\n",
4835                                          val[0], val[1],
4836                                          adap->vres.ppod_edram.size);
4837                         }
4838                 }
4839                 /* LIO target and cxgb4i initiaitor */
4840                 adap->num_ofld_uld += 2;
4841         }
4842         if (caps_cmd.cryptocaps) {
4843                 if (ntohs(caps_cmd.cryptocaps) &
4844                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4845                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4846                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4847                                               2, params, val);
4848                         if (ret < 0) {
4849                                 if (ret != -EINVAL)
4850                                         goto bye;
4851                         } else {
4852                                 adap->vres.ncrypto_fc = val[0];
4853                         }
4854                         adap->num_ofld_uld += 1;
4855                 }
4856                 if (ntohs(caps_cmd.cryptocaps) &
4857                     FW_CAPS_CONFIG_TLS_INLINE) {
4858                         params[0] = FW_PARAM_PFVF(TLS_START);
4859                         params[1] = FW_PARAM_PFVF(TLS_END);
4860                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4861                                               2, params, val);
4862                         if (ret < 0)
4863                                 goto bye;
4864                         adap->vres.key.start = val[0];
4865                         adap->vres.key.size = val[1] - val[0] + 1;
4866                         adap->num_uld += 1;
4867                 }
4868                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4869         }
4870 #undef FW_PARAM_PFVF
4871 #undef FW_PARAM_DEV
4872
4873         /* The MTU/MSS Table is initialized by now, so load their values.  If
4874          * we're initializing the adapter, then we'll make any modifications
4875          * we want to the MTU/MSS Table and also initialize the congestion
4876          * parameters.
4877          */
4878         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4879         if (state != DEV_STATE_INIT) {
4880                 int i;
4881
4882                 /* The default MTU Table contains values 1492 and 1500.
4883                  * However, for TCP, it's better to have two values which are
4884                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4885                  * This allows us to have a TCP Data Payload which is a
4886                  * multiple of 8 regardless of what combination of TCP Options
4887                  * are in use (always a multiple of 4 bytes) which is
4888                  * important for performance reasons.  For instance, if no
4889                  * options are in use, then we have a 20-byte IP header and a
4890                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4891                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4892                  * which is not a multiple of 8.  So using an MSS of 1488 in
4893                  * this case results in a TCP Data Payload of 1448 bytes which
4894                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4895                  * Stamps have been negotiated, then an MTU of 1500 bytes
4896                  * results in a TCP Data Payload of 1448 bytes which, as
4897                  * above, is a multiple of 8 bytes ...
4898                  */
4899                 for (i = 0; i < NMTUS; i++)
4900                         if (adap->params.mtus[i] == 1492) {
4901                                 adap->params.mtus[i] = 1488;
4902                                 break;
4903                         }
4904
4905                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4906                              adap->params.b_wnd);
4907         }
4908         t4_init_sge_params(adap);
4909         adap->flags |= CXGB4_FW_OK;
4910         t4_init_tp_params(adap, true);
4911         return 0;
4912
4913         /*
4914          * Something bad happened.  If a command timed out or failed with EIO
4915          * FW does not operate within its spec or something catastrophic
4916          * happened to HW/FW, stop issuing commands.
4917          */
4918 bye:
4919         adap_free_hma_mem(adap);
4920         kfree(adap->sge.egr_map);
4921         kfree(adap->sge.ingr_map);
4922         kfree(adap->sge.starving_fl);
4923         kfree(adap->sge.txq_maperr);
4924 #ifdef CONFIG_DEBUG_FS
4925         kfree(adap->sge.blocked_fl);
4926 #endif
4927         if (ret != -ETIMEDOUT && ret != -EIO)
4928                 t4_fw_bye(adap, adap->mbox);
4929         return ret;
4930 }
4931
4932 /* EEH callbacks */
4933
4934 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4935                                          pci_channel_state_t state)
4936 {
4937         int i;
4938         struct adapter *adap = pci_get_drvdata(pdev);
4939
4940         if (!adap)
4941                 goto out;
4942
4943         rtnl_lock();
4944         adap->flags &= ~CXGB4_FW_OK;
4945         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4946         spin_lock(&adap->stats_lock);
4947         for_each_port(adap, i) {
4948                 struct net_device *dev = adap->port[i];
4949                 if (dev) {
4950                         netif_device_detach(dev);
4951                         netif_carrier_off(dev);
4952                 }
4953         }
4954         spin_unlock(&adap->stats_lock);
4955         disable_interrupts(adap);
4956         if (adap->flags & CXGB4_FULL_INIT_DONE)
4957                 cxgb_down(adap);
4958         rtnl_unlock();
4959         if ((adap->flags & CXGB4_DEV_ENABLED)) {
4960                 pci_disable_device(pdev);
4961                 adap->flags &= ~CXGB4_DEV_ENABLED;
4962         }
4963 out:    return state == pci_channel_io_perm_failure ?
4964                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4965 }
4966
4967 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4968 {
4969         int i, ret;
4970         struct fw_caps_config_cmd c;
4971         struct adapter *adap = pci_get_drvdata(pdev);
4972
4973         if (!adap) {
4974                 pci_restore_state(pdev);
4975                 pci_save_state(pdev);
4976                 return PCI_ERS_RESULT_RECOVERED;
4977         }
4978
4979         if (!(adap->flags & CXGB4_DEV_ENABLED)) {
4980                 if (pci_enable_device(pdev)) {
4981                         dev_err(&pdev->dev, "Cannot reenable PCI "
4982                                             "device after reset\n");
4983                         return PCI_ERS_RESULT_DISCONNECT;
4984                 }
4985                 adap->flags |= CXGB4_DEV_ENABLED;
4986         }
4987
4988         pci_set_master(pdev);
4989         pci_restore_state(pdev);
4990         pci_save_state(pdev);
4991
4992         if (t4_wait_dev_ready(adap->regs) < 0)
4993                 return PCI_ERS_RESULT_DISCONNECT;
4994         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4995                 return PCI_ERS_RESULT_DISCONNECT;
4996         adap->flags |= CXGB4_FW_OK;
4997         if (adap_init1(adap, &c))
4998                 return PCI_ERS_RESULT_DISCONNECT;
4999
5000         for_each_port(adap, i) {
5001                 struct port_info *pi = adap2pinfo(adap, i);
5002                 u8 vivld = 0, vin = 0;
5003
5004                 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5005                                   NULL, NULL, &vivld, &vin);
5006                 if (ret < 0)
5007                         return PCI_ERS_RESULT_DISCONNECT;
5008                 pi->viid = ret;
5009                 pi->xact_addr_filt = -1;
5010                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5011                  * save the returned values.
5012                  */
5013                 if (adap->params.viid_smt_extn_support) {
5014                         pi->vivld = vivld;
5015                         pi->vin = vin;
5016                 } else {
5017                         /* Retrieve the values from VIID */
5018                         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5019                         pi->vin = FW_VIID_VIN_G(pi->viid);
5020                 }
5021         }
5022
5023         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5024                      adap->params.b_wnd);
5025         setup_memwin(adap);
5026         if (cxgb_up(adap))
5027                 return PCI_ERS_RESULT_DISCONNECT;
5028         return PCI_ERS_RESULT_RECOVERED;
5029 }
5030
5031 static void eeh_resume(struct pci_dev *pdev)
5032 {
5033         int i;
5034         struct adapter *adap = pci_get_drvdata(pdev);
5035
5036         if (!adap)
5037                 return;
5038
5039         rtnl_lock();
5040         for_each_port(adap, i) {
5041                 struct net_device *dev = adap->port[i];
5042                 if (dev) {
5043                         if (netif_running(dev)) {
5044                                 link_start(dev);
5045                                 cxgb_set_rxmode(dev);
5046                         }
5047                         netif_device_attach(dev);
5048                 }
5049         }
5050         rtnl_unlock();
5051 }
5052
5053 static const struct pci_error_handlers cxgb4_eeh = {
5054         .error_detected = eeh_err_detected,
5055         .slot_reset     = eeh_slot_reset,
5056         .resume         = eeh_resume,
5057 };
5058
5059 /* Return true if the Link Configuration supports "High Speeds" (those greater
5060  * than 1Gb/s).
5061  */
5062 static inline bool is_x_10g_port(const struct link_config *lc)
5063 {
5064         unsigned int speeds, high_speeds;
5065
5066         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5067         high_speeds = speeds &
5068                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5069
5070         return high_speeds != 0;
5071 }
5072
5073 /*
5074  * Perform default configuration of DMA queues depending on the number and type
5075  * of ports we found and the number of available CPUs.  Most settings can be
5076  * modified by the admin prior to actual use.
5077  */
5078 static int cfg_queues(struct adapter *adap)
5079 {
5080         struct sge *s = &adap->sge;
5081         int i, n10g = 0, qidx = 0;
5082         int niqflint, neq, avail_eth_qsets;
5083         int max_eth_qsets = 32;
5084 #ifndef CONFIG_CHELSIO_T4_DCB
5085         int q10g = 0;
5086 #endif
5087
5088         /* Reduce memory usage in kdump environment, disable all offload.
5089          */
5090         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5091                 adap->params.offload = 0;
5092                 adap->params.crypto = 0;
5093         }
5094
5095         /* Calculate the number of Ethernet Queue Sets available based on
5096          * resources provisioned for us.  We always have an Asynchronous
5097          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5098          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5099          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5100          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5101          *
5102          * Note that we should also take into account all of the various
5103          * Offload Queues.  But, in any situation where we're operating in
5104          * a Resource Constrained Provisioning environment, doing any Offload
5105          * at all is problematic ...
5106          */
5107         niqflint = adap->params.pfres.niqflint - 1;
5108         if (!(adap->flags & CXGB4_USING_MSIX))
5109                 niqflint--;
5110         neq = adap->params.pfres.neq / 2;
5111         avail_eth_qsets = min(niqflint, neq);
5112
5113         if (avail_eth_qsets > max_eth_qsets)
5114                 avail_eth_qsets = max_eth_qsets;
5115
5116         if (avail_eth_qsets < adap->params.nports) {
5117                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5118                         avail_eth_qsets, adap->params.nports);
5119                 return -ENOMEM;
5120         }
5121
5122         /* Count the number of 10Gb/s or better ports */
5123         for_each_port(adap, i)
5124                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5125
5126 #ifdef CONFIG_CHELSIO_T4_DCB
5127         /* For Data Center Bridging support we need to be able to support up
5128          * to 8 Traffic Priorities; each of which will be assigned to its
5129          * own TX Queue in order to prevent Head-Of-Line Blocking.
5130          */
5131         if (adap->params.nports * 8 > avail_eth_qsets) {
5132                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5133                         avail_eth_qsets, adap->params.nports * 8);
5134                 return -ENOMEM;
5135         }
5136
5137         for_each_port(adap, i) {
5138                 struct port_info *pi = adap2pinfo(adap, i);
5139
5140                 pi->first_qset = qidx;
5141                 pi->nqsets = is_kdump_kernel() ? 1 : 8;
5142                 qidx += pi->nqsets;
5143         }
5144 #else /* !CONFIG_CHELSIO_T4_DCB */
5145         /*
5146          * We default to 1 queue per non-10G port and up to # of cores queues
5147          * per 10G port.
5148          */
5149         if (n10g)
5150                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5151         if (q10g > netif_get_num_default_rss_queues())
5152                 q10g = netif_get_num_default_rss_queues();
5153
5154         if (is_kdump_kernel())
5155                 q10g = 1;
5156
5157         for_each_port(adap, i) {
5158                 struct port_info *pi = adap2pinfo(adap, i);
5159
5160                 pi->first_qset = qidx;
5161                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5162                 qidx += pi->nqsets;
5163         }
5164 #endif /* !CONFIG_CHELSIO_T4_DCB */
5165
5166         s->ethqsets = qidx;
5167         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5168
5169         if (is_uld(adap)) {
5170                 /*
5171                  * For offload we use 1 queue/channel if all ports are up to 1G,
5172                  * otherwise we divide all available queues amongst the channels
5173                  * capped by the number of available cores.
5174                  */
5175                 if (n10g) {
5176                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
5177                         s->ofldqsets = roundup(i, adap->params.nports);
5178                 } else {
5179                         s->ofldqsets = adap->params.nports;
5180                 }
5181         }
5182
5183         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5184                 struct sge_eth_rxq *r = &s->ethrxq[i];
5185
5186                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5187                 r->fl.size = 72;
5188         }
5189
5190         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5191                 s->ethtxq[i].q.size = 1024;
5192
5193         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5194                 s->ctrlq[i].q.size = 512;
5195
5196         if (!is_t4(adap->params.chip))
5197                 s->ptptxq.q.size = 8;
5198
5199         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5200         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5201
5202         return 0;
5203 }
5204
5205 /*
5206  * Reduce the number of Ethernet queues across all ports to at most n.
5207  * n provides at least one queue per port.
5208  */
5209 static void reduce_ethqs(struct adapter *adap, int n)
5210 {
5211         int i;
5212         struct port_info *pi;
5213
5214         while (n < adap->sge.ethqsets)
5215                 for_each_port(adap, i) {
5216                         pi = adap2pinfo(adap, i);
5217                         if (pi->nqsets > 1) {
5218                                 pi->nqsets--;
5219                                 adap->sge.ethqsets--;
5220                                 if (adap->sge.ethqsets <= n)
5221                                         break;
5222                         }
5223                 }
5224
5225         n = 0;
5226         for_each_port(adap, i) {
5227                 pi = adap2pinfo(adap, i);
5228                 pi->first_qset = n;
5229                 n += pi->nqsets;
5230         }
5231 }
5232
5233 static int get_msix_info(struct adapter *adap)
5234 {
5235         struct uld_msix_info *msix_info;
5236         unsigned int max_ingq = 0;
5237
5238         if (is_offload(adap))
5239                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5240         if (is_pci_uld(adap))
5241                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5242
5243         if (!max_ingq)
5244                 goto out;
5245
5246         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5247         if (!msix_info)
5248                 return -ENOMEM;
5249
5250         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5251                                                  sizeof(long), GFP_KERNEL);
5252         if (!adap->msix_bmap_ulds.msix_bmap) {
5253                 kfree(msix_info);
5254                 return -ENOMEM;
5255         }
5256         spin_lock_init(&adap->msix_bmap_ulds.lock);
5257         adap->msix_info_ulds = msix_info;
5258 out:
5259         return 0;
5260 }
5261
5262 static void free_msix_info(struct adapter *adap)
5263 {
5264         if (!(adap->num_uld && adap->num_ofld_uld))
5265                 return;
5266
5267         kfree(adap->msix_info_ulds);
5268         kfree(adap->msix_bmap_ulds.msix_bmap);
5269 }
5270
5271 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5272 #define EXTRA_VECS 2
5273
5274 static int enable_msix(struct adapter *adap)
5275 {
5276         int ofld_need = 0, uld_need = 0;
5277         int i, j, want, need, allocated;
5278         struct sge *s = &adap->sge;
5279         unsigned int nchan = adap->params.nports;
5280         struct msix_entry *entries;
5281         int max_ingq = MAX_INGQ;
5282
5283         if (is_pci_uld(adap))
5284                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5285         if (is_offload(adap))
5286                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5287         entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5288                                 GFP_KERNEL);
5289         if (!entries)
5290                 return -ENOMEM;
5291
5292         /* map for msix */
5293         if (get_msix_info(adap)) {
5294                 adap->params.offload = 0;
5295                 adap->params.crypto = 0;
5296         }
5297
5298         for (i = 0; i < max_ingq + 1; ++i)
5299                 entries[i].entry = i;
5300
5301         want = s->max_ethqsets + EXTRA_VECS;
5302         if (is_offload(adap)) {
5303                 want += adap->num_ofld_uld * s->ofldqsets;
5304                 ofld_need = adap->num_ofld_uld * nchan;
5305         }
5306         if (is_pci_uld(adap)) {
5307                 want += adap->num_uld * s->ofldqsets;
5308                 uld_need = adap->num_uld * nchan;
5309         }
5310 #ifdef CONFIG_CHELSIO_T4_DCB
5311         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5312          * each port.
5313          */
5314         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5315 #else
5316         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5317 #endif
5318         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5319         if (allocated < 0) {
5320                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5321                          " not using MSI-X\n");
5322                 kfree(entries);
5323                 return allocated;
5324         }
5325
5326         /* Distribute available vectors to the various queue groups.
5327          * Every group gets its minimum requirement and NIC gets top
5328          * priority for leftovers.
5329          */
5330         i = allocated - EXTRA_VECS - ofld_need - uld_need;
5331         if (i < s->max_ethqsets) {
5332                 s->max_ethqsets = i;
5333                 if (i < s->ethqsets)
5334                         reduce_ethqs(adap, i);
5335         }
5336         if (is_uld(adap)) {
5337                 if (allocated < want)
5338                         s->nqs_per_uld = nchan;
5339                 else
5340                         s->nqs_per_uld = s->ofldqsets;
5341         }
5342
5343         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5344                 adap->msix_info[i].vec = entries[i].vector;
5345         if (is_uld(adap)) {
5346                 for (j = 0 ; i < allocated; ++i, j++) {
5347                         adap->msix_info_ulds[j].vec = entries[i].vector;
5348                         adap->msix_info_ulds[j].idx = i;
5349                 }
5350                 adap->msix_bmap_ulds.mapsize = j;
5351         }
5352         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5353                  "nic %d per uld %d\n",
5354                  allocated, s->max_ethqsets, s->nqs_per_uld);
5355
5356         kfree(entries);
5357         return 0;
5358 }
5359
5360 #undef EXTRA_VECS
5361
5362 static int init_rss(struct adapter *adap)
5363 {
5364         unsigned int i;
5365         int err;
5366
5367         err = t4_init_rss_mode(adap, adap->mbox);
5368         if (err)
5369                 return err;
5370
5371         for_each_port(adap, i) {
5372                 struct port_info *pi = adap2pinfo(adap, i);
5373
5374                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5375                 if (!pi->rss)
5376                         return -ENOMEM;
5377         }
5378         return 0;
5379 }
5380
5381 /* Dump basic information about the adapter */
5382 static void print_adapter_info(struct adapter *adapter)
5383 {
5384         /* Hardware/Firmware/etc. Version/Revision IDs */
5385         t4_dump_version_info(adapter);
5386
5387         /* Software/Hardware configuration */
5388         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5389                  is_offload(adapter) ? "R" : "",
5390                  ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5391                   (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5392                  is_offload(adapter) ? "Offload" : "non-Offload");
5393 }
5394
5395 static void print_port_info(const struct net_device *dev)
5396 {
5397         char buf[80];
5398         char *bufp = buf;
5399         const struct port_info *pi = netdev_priv(dev);
5400         const struct adapter *adap = pi->adapter;
5401
5402         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5403                 bufp += sprintf(bufp, "100M/");
5404         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5405                 bufp += sprintf(bufp, "1G/");
5406         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5407                 bufp += sprintf(bufp, "10G/");
5408         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5409                 bufp += sprintf(bufp, "25G/");
5410         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5411                 bufp += sprintf(bufp, "40G/");
5412         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5413                 bufp += sprintf(bufp, "50G/");
5414         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5415                 bufp += sprintf(bufp, "100G/");
5416         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5417                 bufp += sprintf(bufp, "200G/");
5418         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5419                 bufp += sprintf(bufp, "400G/");
5420         if (bufp != buf)
5421                 --bufp;
5422         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5423
5424         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5425                     dev->name, adap->params.vpd.id, adap->name, buf);
5426 }
5427
5428 /*
5429  * Free the following resources:
5430  * - memory used for tables
5431  * - MSI/MSI-X
5432  * - net devices
5433  * - resources FW is holding for us
5434  */
5435 static void free_some_resources(struct adapter *adapter)
5436 {
5437         unsigned int i;
5438
5439         kvfree(adapter->smt);
5440         kvfree(adapter->l2t);
5441         kvfree(adapter->srq);
5442         t4_cleanup_sched(adapter);
5443         kvfree(adapter->tids.tid_tab);
5444         cxgb4_cleanup_tc_flower(adapter);
5445         cxgb4_cleanup_tc_u32(adapter);
5446         kfree(adapter->sge.egr_map);
5447         kfree(adapter->sge.ingr_map);
5448         kfree(adapter->sge.starving_fl);
5449         kfree(adapter->sge.txq_maperr);
5450 #ifdef CONFIG_DEBUG_FS
5451         kfree(adapter->sge.blocked_fl);
5452 #endif
5453         disable_msi(adapter);
5454
5455         for_each_port(adapter, i)
5456                 if (adapter->port[i]) {
5457                         struct port_info *pi = adap2pinfo(adapter, i);
5458
5459                         if (pi->viid != 0)
5460                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5461                                            0, pi->viid);
5462                         kfree(adap2pinfo(adapter, i)->rss);
5463                         free_netdev(adapter->port[i]);
5464                 }
5465         if (adapter->flags & CXGB4_FW_OK)
5466                 t4_fw_bye(adapter, adapter->pf);
5467 }
5468
5469 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5470 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5471                    NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5472 #define SEGMENT_SIZE 128
5473
5474 static int t4_get_chip_type(struct adapter *adap, int ver)
5475 {
5476         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5477
5478         switch (ver) {
5479         case CHELSIO_T4:
5480                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5481         case CHELSIO_T5:
5482                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5483         case CHELSIO_T6:
5484                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5485         default:
5486                 break;
5487         }
5488         return -EINVAL;
5489 }
5490
5491 #ifdef CONFIG_PCI_IOV
5492 static void cxgb4_mgmt_setup(struct net_device *dev)
5493 {
5494         dev->type = ARPHRD_NONE;
5495         dev->mtu = 0;
5496         dev->hard_header_len = 0;
5497         dev->addr_len = 0;
5498         dev->tx_queue_len = 0;
5499         dev->flags |= IFF_NOARP;
5500         dev->priv_flags |= IFF_NO_QUEUE;
5501
5502         /* Initialize the device structure. */
5503         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5504         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5505 }
5506
5507 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5508 {
5509         struct adapter *adap = pci_get_drvdata(pdev);
5510         int err = 0;
5511         int current_vfs = pci_num_vf(pdev);
5512         u32 pcie_fw;
5513
5514         pcie_fw = readl(adap->regs + PCIE_FW_A);
5515         /* Check if fw is initialized */
5516         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5517                 dev_warn(&pdev->dev, "Device not initialized\n");
5518                 return -EOPNOTSUPP;
5519         }
5520
5521         /* If any of the VF's is already assigned to Guest OS, then
5522          * SRIOV for the same cannot be modified
5523          */
5524         if (current_vfs && pci_vfs_assigned(pdev)) {
5525                 dev_err(&pdev->dev,
5526                         "Cannot modify SR-IOV while VFs are assigned\n");
5527                 return current_vfs;
5528         }
5529         /* Note that the upper-level code ensures that we're never called with
5530          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5531          * it never hurts to code defensively.
5532          */
5533         if (num_vfs != 0 && current_vfs != 0)
5534                 return -EBUSY;
5535
5536         /* Nothing to do for no change. */
5537         if (num_vfs == current_vfs)
5538                 return num_vfs;
5539
5540         /* Disable SRIOV when zero is passed. */
5541         if (!num_vfs) {
5542                 pci_disable_sriov(pdev);
5543                 /* free VF Management Interface */
5544                 unregister_netdev(adap->port[0]);
5545                 free_netdev(adap->port[0]);
5546                 adap->port[0] = NULL;
5547
5548                 /* free VF resources */
5549                 adap->num_vfs = 0;
5550                 kfree(adap->vfinfo);
5551                 adap->vfinfo = NULL;
5552                 return 0;
5553         }
5554
5555         if (!current_vfs) {
5556                 struct fw_pfvf_cmd port_cmd, port_rpl;
5557                 struct net_device *netdev;
5558                 unsigned int pmask, port;
5559                 struct pci_dev *pbridge;
5560                 struct port_info *pi;
5561                 char name[IFNAMSIZ];
5562                 u32 devcap2;
5563                 u16 flags;
5564
5565                 /* If we want to instantiate Virtual Functions, then our
5566                  * parent bridge's PCI-E needs to support Alternative Routing
5567                  * ID (ARI) because our VFs will show up at function offset 8
5568                  * and above.
5569                  */
5570                 pbridge = pdev->bus->self;
5571                 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5572                 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5573
5574                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5575                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5576                         /* Our parent bridge does not support ARI so issue a
5577                          * warning and skip instantiating the VFs.  They
5578                          * won't be reachable.
5579                          */
5580                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5581                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5582                                  PCI_FUNC(pbridge->devfn));
5583                         return -ENOTSUPP;
5584                 }
5585                 memset(&port_cmd, 0, sizeof(port_cmd));
5586                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5587                                                  FW_CMD_REQUEST_F |
5588                                                  FW_CMD_READ_F |
5589                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
5590                                                  FW_PFVF_CMD_VFN_V(0));
5591                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5592                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5593                                  &port_rpl);
5594                 if (err)
5595                         return err;
5596                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5597                 port = ffs(pmask) - 1;
5598                 /* Allocate VF Management Interface. */
5599                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5600                          adap->pf);
5601                 netdev = alloc_netdev(sizeof(struct port_info),
5602                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5603                 if (!netdev)
5604                         return -ENOMEM;
5605
5606                 pi = netdev_priv(netdev);
5607                 pi->adapter = adap;
5608                 pi->lport = port;
5609                 pi->tx_chan = port;
5610                 SET_NETDEV_DEV(netdev, &pdev->dev);
5611
5612                 adap->port[0] = netdev;
5613                 pi->port_id = 0;
5614
5615                 err = register_netdev(adap->port[0]);
5616                 if (err) {
5617                         pr_info("Unable to register VF mgmt netdev %s\n", name);
5618                         free_netdev(adap->port[0]);
5619                         adap->port[0] = NULL;
5620                         return err;
5621                 }
5622                 /* Allocate and set up VF Information. */
5623                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5624                                        sizeof(struct vf_info), GFP_KERNEL);
5625                 if (!adap->vfinfo) {
5626                         unregister_netdev(adap->port[0]);
5627                         free_netdev(adap->port[0]);
5628                         adap->port[0] = NULL;
5629                         return -ENOMEM;
5630                 }
5631                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5632         }
5633         /* Instantiate the requested number of VFs. */
5634         err = pci_enable_sriov(pdev, num_vfs);
5635         if (err) {
5636                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5637                 if (!current_vfs) {
5638                         unregister_netdev(adap->port[0]);
5639                         free_netdev(adap->port[0]);
5640                         adap->port[0] = NULL;
5641                         kfree(adap->vfinfo);
5642                         adap->vfinfo = NULL;
5643                 }
5644                 return err;
5645         }
5646
5647         adap->num_vfs = num_vfs;
5648         return num_vfs;
5649 }
5650 #endif /* CONFIG_PCI_IOV */
5651
5652 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5653 {
5654         struct net_device *netdev;
5655         struct adapter *adapter;
5656         static int adap_idx = 1;
5657         int s_qpp, qpp, num_seg;
5658         struct port_info *pi;
5659         bool highdma = false;
5660         enum chip_type chip;
5661         void __iomem *regs;
5662         int func, chip_ver;
5663         u16 device_id;
5664         int i, err;
5665         u32 whoami;
5666
5667         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5668
5669         err = pci_request_regions(pdev, KBUILD_MODNAME);
5670         if (err) {
5671                 /* Just info, some other driver may have claimed the device. */
5672                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5673                 return err;
5674         }
5675
5676         err = pci_enable_device(pdev);
5677         if (err) {
5678                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5679                 goto out_release_regions;
5680         }
5681
5682         regs = pci_ioremap_bar(pdev, 0);
5683         if (!regs) {
5684                 dev_err(&pdev->dev, "cannot map device registers\n");
5685                 err = -ENOMEM;
5686                 goto out_disable_device;
5687         }
5688
5689         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5690         if (!adapter) {
5691                 err = -ENOMEM;
5692                 goto out_unmap_bar0;
5693         }
5694
5695         adapter->regs = regs;
5696         err = t4_wait_dev_ready(regs);
5697         if (err < 0)
5698                 goto out_free_adapter;
5699
5700         /* We control everything through one PF */
5701         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5702         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5703         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5704         if (chip < 0) {
5705                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5706                 err = chip;
5707                 goto out_free_adapter;
5708         }
5709         chip_ver = CHELSIO_CHIP_VERSION(chip);
5710         func = chip_ver <= CHELSIO_T5 ?
5711                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5712
5713         adapter->pdev = pdev;
5714         adapter->pdev_dev = &pdev->dev;
5715         adapter->name = pci_name(pdev);
5716         adapter->mbox = func;
5717         adapter->pf = func;
5718         adapter->params.chip = chip;
5719         adapter->adap_idx = adap_idx;
5720         adapter->msg_enable = DFLT_MSG_ENABLE;
5721         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5722                                     (sizeof(struct mbox_cmd) *
5723                                      T4_OS_LOG_MBOX_CMDS),
5724                                     GFP_KERNEL);
5725         if (!adapter->mbox_log) {
5726                 err = -ENOMEM;
5727                 goto out_free_adapter;
5728         }
5729         spin_lock_init(&adapter->mbox_lock);
5730         INIT_LIST_HEAD(&adapter->mlist.list);
5731         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5732         pci_set_drvdata(pdev, adapter);
5733
5734         if (func != ent->driver_data) {
5735                 pci_disable_device(pdev);
5736                 pci_save_state(pdev);        /* to restore SR-IOV later */
5737                 return 0;
5738         }
5739
5740         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5741                 highdma = true;
5742                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5743                 if (err) {
5744                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5745                                 "coherent allocations\n");
5746                         goto out_free_adapter;
5747                 }
5748         } else {
5749                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5750                 if (err) {
5751                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5752                         goto out_free_adapter;
5753                 }
5754         }
5755
5756         pci_enable_pcie_error_reporting(pdev);
5757         pci_set_master(pdev);
5758         pci_save_state(pdev);
5759         adap_idx++;
5760         adapter->workq = create_singlethread_workqueue("cxgb4");
5761         if (!adapter->workq) {
5762                 err = -ENOMEM;
5763                 goto out_free_adapter;
5764         }
5765
5766         /* PCI device has been enabled */
5767         adapter->flags |= CXGB4_DEV_ENABLED;
5768         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5769
5770         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5771          * Ingress Packet Data to Free List Buffers in order to allow for
5772          * chipset performance optimizations between the Root Complex and
5773          * Memory Controllers.  (Messages to the associated Ingress Queue
5774          * notifying new Packet Placement in the Free Lists Buffers will be
5775          * send without the Relaxed Ordering Attribute thus guaranteeing that
5776          * all preceding PCIe Transaction Layer Packets will be processed
5777          * first.)  But some Root Complexes have various issues with Upstream
5778          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5779          * The PCIe devices which under the Root Complexes will be cleared the
5780          * Relaxed Ordering bit in the configuration space, So we check our
5781          * PCIe configuration space to see if it's flagged with advice against
5782          * using Relaxed Ordering.
5783          */
5784         if (!pcie_relaxed_ordering_enabled(pdev))
5785                 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
5786
5787         spin_lock_init(&adapter->stats_lock);
5788         spin_lock_init(&adapter->tid_release_lock);
5789         spin_lock_init(&adapter->win0_lock);
5790
5791         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5792         INIT_WORK(&adapter->db_full_task, process_db_full);
5793         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5794         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5795
5796         err = t4_prep_adapter(adapter);
5797         if (err)
5798                 goto out_free_adapter;
5799
5800         if (is_kdump_kernel()) {
5801                 /* Collect hardware state and append to /proc/vmcore */
5802                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5803                 if (err) {
5804                         dev_warn(adapter->pdev_dev,
5805                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
5806                                  err);
5807                         err = 0;
5808                 }
5809         }
5810
5811         if (!is_t4(adapter->params.chip)) {
5812                 s_qpp = (QUEUESPERPAGEPF0_S +
5813                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5814                         adapter->pf);
5815                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5816                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5817                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5818
5819                 /* Each segment size is 128B. Write coalescing is enabled only
5820                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5821                  * queue is less no of segments that can be accommodated in
5822                  * a page size.
5823                  */
5824                 if (qpp > num_seg) {
5825                         dev_err(&pdev->dev,
5826                                 "Incorrect number of egress queues per page\n");
5827                         err = -EINVAL;
5828                         goto out_free_adapter;
5829                 }
5830                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5831                 pci_resource_len(pdev, 2));
5832                 if (!adapter->bar2) {
5833                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5834                         err = -ENOMEM;
5835                         goto out_free_adapter;
5836                 }
5837         }
5838
5839         setup_memwin(adapter);
5840         err = adap_init0(adapter);
5841 #ifdef CONFIG_DEBUG_FS
5842         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5843 #endif
5844         setup_memwin_rdma(adapter);
5845         if (err)
5846                 goto out_unmap_bar;
5847
5848         /* configure SGE_STAT_CFG_A to read WC stats */
5849         if (!is_t4(adapter->params.chip))
5850                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5851                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5852                               T6_STATMODE_V(0)));
5853
5854         /* Initialize hash mac addr list */
5855         INIT_LIST_HEAD(&adapter->mac_hlist);
5856
5857         for_each_port(adapter, i) {
5858                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5859                                            MAX_ETH_QSETS);
5860                 if (!netdev) {
5861                         err = -ENOMEM;
5862                         goto out_free_dev;
5863                 }
5864
5865                 SET_NETDEV_DEV(netdev, &pdev->dev);
5866
5867                 adapter->port[i] = netdev;
5868                 pi = netdev_priv(netdev);
5869                 pi->adapter = adapter;
5870                 pi->xact_addr_filt = -1;
5871                 pi->port_id = i;
5872                 netdev->irq = pdev->irq;
5873
5874                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5875                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5876                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
5877                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5878                         NETIF_F_HW_TC;
5879
5880                 if (chip_ver > CHELSIO_T5) {
5881                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5882                                                    NETIF_F_IPV6_CSUM |
5883                                                    NETIF_F_RXCSUM |
5884                                                    NETIF_F_GSO_UDP_TUNNEL |
5885                                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
5886                                                    NETIF_F_TSO | NETIF_F_TSO6;
5887
5888                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
5889                                                NETIF_F_GSO_UDP_TUNNEL_CSUM |
5890                                                NETIF_F_HW_TLS_RECORD;
5891                 }
5892
5893                 if (highdma)
5894                         netdev->hw_features |= NETIF_F_HIGHDMA;
5895                 netdev->features |= netdev->hw_features;
5896                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5897
5898                 netdev->priv_flags |= IFF_UNICAST_FLT;
5899
5900                 /* MTU range: 81 - 9600 */
5901                 netdev->min_mtu = 81;              /* accommodate SACK */
5902                 netdev->max_mtu = MAX_MTU;
5903
5904                 netdev->netdev_ops = &cxgb4_netdev_ops;
5905 #ifdef CONFIG_CHELSIO_T4_DCB
5906                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5907                 cxgb4_dcb_state_init(netdev);
5908                 cxgb4_dcb_version_init(netdev);
5909 #endif
5910                 cxgb4_set_ethtool_ops(netdev);
5911         }
5912
5913         cxgb4_init_ethtool_dump(adapter);
5914
5915         pci_set_drvdata(pdev, adapter);
5916
5917         if (adapter->flags & CXGB4_FW_OK) {
5918                 err = t4_port_init(adapter, func, func, 0);
5919                 if (err)
5920                         goto out_free_dev;
5921         } else if (adapter->params.nports == 1) {
5922                 /* If we don't have a connection to the firmware -- possibly
5923                  * because of an error -- grab the raw VPD parameters so we
5924                  * can set the proper MAC Address on the debug network
5925                  * interface that we've created.
5926                  */
5927                 u8 hw_addr[ETH_ALEN];
5928                 u8 *na = adapter->params.vpd.na;
5929
5930                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5931                 if (!err) {
5932                         for (i = 0; i < ETH_ALEN; i++)
5933                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5934                                               hex2val(na[2 * i + 1]));
5935                         t4_set_hw_addr(adapter, 0, hw_addr);
5936                 }
5937         }
5938
5939         if (!(adapter->flags & CXGB4_FW_OK))
5940                 goto fw_attach_fail;
5941
5942         /* Configure queues and allocate tables now, they can be needed as
5943          * soon as the first register_netdev completes.
5944          */
5945         err = cfg_queues(adapter);
5946         if (err)
5947                 goto out_free_dev;
5948
5949         adapter->smt = t4_init_smt();
5950         if (!adapter->smt) {
5951                 /* We tolerate a lack of SMT, giving up some functionality */
5952                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5953         }
5954
5955         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5956         if (!adapter->l2t) {
5957                 /* We tolerate a lack of L2T, giving up some functionality */
5958                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5959                 adapter->params.offload = 0;
5960         }
5961
5962 #if IS_ENABLED(CONFIG_IPV6)
5963         if (chip_ver <= CHELSIO_T5 &&
5964             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5965                 /* CLIP functionality is not present in hardware,
5966                  * hence disable all offload features
5967                  */
5968                 dev_warn(&pdev->dev,
5969                          "CLIP not enabled in hardware, continuing\n");
5970                 adapter->params.offload = 0;
5971         } else {
5972                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5973                                                   adapter->clipt_end);
5974                 if (!adapter->clipt) {
5975                         /* We tolerate a lack of clip_table, giving up
5976                          * some functionality
5977                          */
5978                         dev_warn(&pdev->dev,
5979                                  "could not allocate Clip table, continuing\n");
5980                         adapter->params.offload = 0;
5981                 }
5982         }
5983 #endif
5984
5985         for_each_port(adapter, i) {
5986                 pi = adap2pinfo(adapter, i);
5987                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5988                 if (!pi->sched_tbl)
5989                         dev_warn(&pdev->dev,
5990                                  "could not activate scheduling on port %d\n",
5991                                  i);
5992         }
5993
5994         if (tid_init(&adapter->tids) < 0) {
5995                 dev_warn(&pdev->dev, "could not allocate TID table, "
5996                          "continuing\n");
5997                 adapter->params.offload = 0;
5998         } else {
5999                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6000                 if (!adapter->tc_u32)
6001                         dev_warn(&pdev->dev,
6002                                  "could not offload tc u32, continuing\n");
6003
6004                 if (cxgb4_init_tc_flower(adapter))
6005                         dev_warn(&pdev->dev,
6006                                  "could not offload tc flower, continuing\n");
6007         }
6008
6009         if (is_offload(adapter) || is_hashfilter(adapter)) {
6010                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6011                         u32 hash_base, hash_reg;
6012
6013                         if (chip_ver <= CHELSIO_T5) {
6014                                 hash_reg = LE_DB_TID_HASHBASE_A;
6015                                 hash_base = t4_read_reg(adapter, hash_reg);
6016                                 adapter->tids.hash_base = hash_base / 4;
6017                         } else {
6018                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6019                                 hash_base = t4_read_reg(adapter, hash_reg);
6020                                 adapter->tids.hash_base = hash_base;
6021                         }
6022                 }
6023         }
6024
6025         /* See what interrupts we'll be using */
6026         if (msi > 1 && enable_msix(adapter) == 0)
6027                 adapter->flags |= CXGB4_USING_MSIX;
6028         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6029                 adapter->flags |= CXGB4_USING_MSI;
6030                 if (msi > 1)
6031                         free_msix_info(adapter);
6032         }
6033
6034         /* check for PCI Express bandwidth capabiltites */
6035         pcie_print_link_status(pdev);
6036
6037         cxgb4_init_mps_ref_entries(adapter);
6038
6039         err = init_rss(adapter);
6040         if (err)
6041                 goto out_free_dev;
6042
6043         err = setup_fw_sge_queues(adapter);
6044         if (err) {
6045                 dev_err(adapter->pdev_dev,
6046                         "FW sge queue allocation failed, err %d", err);
6047                 goto out_free_dev;
6048         }
6049
6050 fw_attach_fail:
6051         /*
6052          * The card is now ready to go.  If any errors occur during device
6053          * registration we do not fail the whole card but rather proceed only
6054          * with the ports we manage to register successfully.  However we must
6055          * register at least one net device.
6056          */
6057         for_each_port(adapter, i) {
6058                 pi = adap2pinfo(adapter, i);
6059                 adapter->port[i]->dev_port = pi->lport;
6060                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6061                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6062
6063                 netif_carrier_off(adapter->port[i]);
6064
6065                 err = register_netdev(adapter->port[i]);
6066                 if (err)
6067                         break;
6068                 adapter->chan_map[pi->tx_chan] = i;
6069                 print_port_info(adapter->port[i]);
6070         }
6071         if (i == 0) {
6072                 dev_err(&pdev->dev, "could not register any net devices\n");
6073                 goto out_free_dev;
6074         }
6075         if (err) {
6076                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6077                 err = 0;
6078         }
6079
6080         if (cxgb4_debugfs_root) {
6081                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6082                                                            cxgb4_debugfs_root);
6083                 setup_debugfs(adapter);
6084         }
6085
6086         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6087         pdev->needs_freset = 1;
6088
6089         if (is_uld(adapter)) {
6090                 mutex_lock(&uld_mutex);
6091                 list_add_tail(&adapter->list_node, &adapter_list);
6092                 mutex_unlock(&uld_mutex);
6093         }
6094
6095         if (!is_t4(adapter->params.chip))
6096                 cxgb4_ptp_init(adapter);
6097
6098         if (IS_REACHABLE(CONFIG_THERMAL) &&
6099             !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6100                 cxgb4_thermal_init(adapter);
6101
6102         print_adapter_info(adapter);
6103         return 0;
6104
6105  out_free_dev:
6106         t4_free_sge_resources(adapter);
6107         free_some_resources(adapter);
6108         if (adapter->flags & CXGB4_USING_MSIX)
6109                 free_msix_info(adapter);
6110         if (adapter->num_uld || adapter->num_ofld_uld)
6111                 t4_uld_mem_free(adapter);
6112  out_unmap_bar:
6113         if (!is_t4(adapter->params.chip))
6114                 iounmap(adapter->bar2);
6115  out_free_adapter:
6116         if (adapter->workq)
6117                 destroy_workqueue(adapter->workq);
6118
6119         kfree(adapter->mbox_log);
6120         kfree(adapter);
6121  out_unmap_bar0:
6122         iounmap(regs);
6123  out_disable_device:
6124         pci_disable_pcie_error_reporting(pdev);
6125         pci_disable_device(pdev);
6126  out_release_regions:
6127         pci_release_regions(pdev);
6128         return err;
6129 }
6130
6131 static void remove_one(struct pci_dev *pdev)
6132 {
6133         struct adapter *adapter = pci_get_drvdata(pdev);
6134         struct hash_mac_addr *entry, *tmp;
6135
6136         if (!adapter) {
6137                 pci_release_regions(pdev);
6138                 return;
6139         }
6140
6141         /* If we allocated filters, free up state associated with any
6142          * valid filters ...
6143          */
6144         clear_all_filters(adapter);
6145
6146         adapter->flags |= CXGB4_SHUTTING_DOWN;
6147
6148         if (adapter->pf == 4) {
6149                 int i;
6150
6151                 /* Tear down per-adapter Work Queue first since it can contain
6152                  * references to our adapter data structure.
6153                  */
6154                 destroy_workqueue(adapter->workq);
6155
6156                 if (is_uld(adapter)) {
6157                         detach_ulds(adapter);
6158                         t4_uld_clean_up(adapter);
6159                 }
6160
6161                 adap_free_hma_mem(adapter);
6162
6163                 disable_interrupts(adapter);
6164
6165                 cxgb4_free_mps_ref_entries(adapter);
6166
6167                 for_each_port(adapter, i)
6168                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6169                                 unregister_netdev(adapter->port[i]);
6170
6171                 debugfs_remove_recursive(adapter->debugfs_root);
6172
6173                 if (!is_t4(adapter->params.chip))
6174                         cxgb4_ptp_stop(adapter);
6175                 if (IS_REACHABLE(CONFIG_THERMAL))
6176                         cxgb4_thermal_remove(adapter);
6177
6178                 if (adapter->flags & CXGB4_FULL_INIT_DONE)
6179                         cxgb_down(adapter);
6180
6181                 if (adapter->flags & CXGB4_USING_MSIX)
6182                         free_msix_info(adapter);
6183                 if (adapter->num_uld || adapter->num_ofld_uld)
6184                         t4_uld_mem_free(adapter);
6185                 free_some_resources(adapter);
6186                 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6187                                          list) {
6188                         list_del(&entry->list);
6189                         kfree(entry);
6190                 }
6191
6192 #if IS_ENABLED(CONFIG_IPV6)
6193                 t4_cleanup_clip_tbl(adapter);
6194 #endif
6195                 if (!is_t4(adapter->params.chip))
6196                         iounmap(adapter->bar2);
6197         }
6198 #ifdef CONFIG_PCI_IOV
6199         else {
6200                 cxgb4_iov_configure(adapter->pdev, 0);
6201         }
6202 #endif
6203         iounmap(adapter->regs);
6204         pci_disable_pcie_error_reporting(pdev);
6205         if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6206                 pci_disable_device(pdev);
6207                 adapter->flags &= ~CXGB4_DEV_ENABLED;
6208         }
6209         pci_release_regions(pdev);
6210         kfree(adapter->mbox_log);
6211         synchronize_rcu();
6212         kfree(adapter);
6213 }
6214
6215 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6216  * delivery.  This is essentially a stripped down version of the PCI remove()
6217  * function where we do the minimal amount of work necessary to shutdown any
6218  * further activity.
6219  */
6220 static void shutdown_one(struct pci_dev *pdev)
6221 {
6222         struct adapter *adapter = pci_get_drvdata(pdev);
6223
6224         /* As with remove_one() above (see extended comment), we only want do
6225          * do cleanup on PCI Devices which went all the way through init_one()
6226          * ...
6227          */
6228         if (!adapter) {
6229                 pci_release_regions(pdev);
6230                 return;
6231         }
6232
6233         adapter->flags |= CXGB4_SHUTTING_DOWN;
6234
6235         if (adapter->pf == 4) {
6236                 int i;
6237
6238                 for_each_port(adapter, i)
6239                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6240                                 cxgb_close(adapter->port[i]);
6241
6242                 if (is_uld(adapter)) {
6243                         detach_ulds(adapter);
6244                         t4_uld_clean_up(adapter);
6245                 }
6246
6247                 disable_interrupts(adapter);
6248                 disable_msi(adapter);
6249
6250                 t4_sge_stop(adapter);
6251                 if (adapter->flags & CXGB4_FW_OK)
6252                         t4_fw_bye(adapter, adapter->mbox);
6253         }
6254 }
6255
6256 static struct pci_driver cxgb4_driver = {
6257         .name     = KBUILD_MODNAME,
6258         .id_table = cxgb4_pci_tbl,
6259         .probe    = init_one,
6260         .remove   = remove_one,
6261         .shutdown = shutdown_one,
6262 #ifdef CONFIG_PCI_IOV
6263         .sriov_configure = cxgb4_iov_configure,
6264 #endif
6265         .err_handler = &cxgb4_eeh,
6266 };
6267
6268 static int __init cxgb4_init_module(void)
6269 {
6270         int ret;
6271
6272         /* Debugfs support is optional, just warn if this fails */
6273         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6274         if (!cxgb4_debugfs_root)
6275                 pr_warn("could not create debugfs entry, continuing\n");
6276
6277         ret = pci_register_driver(&cxgb4_driver);
6278         if (ret < 0)
6279                 goto err_pci;
6280
6281 #if IS_ENABLED(CONFIG_IPV6)
6282         if (!inet6addr_registered) {
6283                 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6284                 if (ret)
6285                         pci_unregister_driver(&cxgb4_driver);
6286                 else
6287                         inet6addr_registered = true;
6288         }
6289 #endif
6290
6291         if (ret == 0)
6292                 return ret;
6293
6294 err_pci:
6295         debugfs_remove(cxgb4_debugfs_root);
6296
6297         return ret;
6298 }
6299
6300 static void __exit cxgb4_cleanup_module(void)
6301 {
6302 #if IS_ENABLED(CONFIG_IPV6)
6303         if (inet6addr_registered) {
6304                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6305                 inet6addr_registered = false;
6306         }
6307 #endif
6308         pci_unregister_driver(&cxgb4_driver);
6309         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6310 }
6311
6312 module_init(cxgb4_init_module);
6313 module_exit(cxgb4_cleanup_module);