Merge remote-tracking branches 'spi/topic/imx', 'spi/topic/loopback', 'spi/topic...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 #include "cxgb4_ptp.h"
83
84 char cxgb4_driver_name[] = KBUILD_MODNAME;
85
86 #ifdef DRV_VERSION
87 #undef DRV_VERSION
88 #endif
89 #define DRV_VERSION "2.0.0-ko"
90 const char cxgb4_driver_version[] = DRV_VERSION;
91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
92
93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
94                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
95                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
96
97 /* Macros needed to support the PCI Device ID Table ...
98  */
99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
100         static const struct pci_device_id cxgb4_pci_tbl[] = {
101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
102
103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
104  * called for both.
105  */
106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
107
108 #define CH_PCI_ID_TABLE_ENTRY(devid) \
109                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
110
111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
112                 { 0, } \
113         }
114
115 #include "t4_pci_id_tbl.h"
116
117 #define FW4_FNAME "cxgb4/t4fw.bin"
118 #define FW5_FNAME "cxgb4/t5fw.bin"
119 #define FW6_FNAME "cxgb4/t6fw.bin"
120 #define FW4_CFNAME "cxgb4/t4-config.txt"
121 #define FW5_CFNAME "cxgb4/t5-config.txt"
122 #define FW6_CFNAME "cxgb4/t6-config.txt"
123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
125 #define PHY_AQ1202_DEVICEID 0x4409
126 #define PHY_BCM84834_DEVICEID 0x4486
127
128 MODULE_DESCRIPTION(DRV_DESC);
129 MODULE_AUTHOR("Chelsio Communications");
130 MODULE_LICENSE("Dual BSD/GPL");
131 MODULE_VERSION(DRV_VERSION);
132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
133 MODULE_FIRMWARE(FW4_FNAME);
134 MODULE_FIRMWARE(FW5_FNAME);
135 MODULE_FIRMWARE(FW6_FNAME);
136
137 /*
138  * The driver uses the best interrupt scheme available on a platform in the
139  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
140  * of these schemes the driver may consider as follows:
141  *
142  * msi = 2: choose from among all three options
143  * msi = 1: only consider MSI and INTx interrupts
144  * msi = 0: force INTx interrupts
145  */
146 static int msi = 2;
147
148 module_param(msi, int, 0644);
149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
150
151 /*
152  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
153  * offset by 2 bytes in order to have the IP headers line up on 4-byte
154  * boundaries.  This is a requirement for many architectures which will throw
155  * a machine check fault if an attempt is made to access one of the 4-byte IP
156  * header fields on a non-4-byte boundary.  And it's a major performance issue
157  * even on some architectures which allow it like some implementations of the
158  * x86 ISA.  However, some architectures don't mind this and for some very
159  * edge-case performance sensitive applications (like forwarding large volumes
160  * of small packets), setting this DMA offset to 0 will decrease the number of
161  * PCI-E Bus transfers enough to measurably affect performance.
162  */
163 static int rx_dma_offset = 2;
164
165 /* TX Queue select used to determine what algorithm to use for selecting TX
166  * queue. Select between the kernel provided function (select_queue=0) or user
167  * cxgb_select_queue function (select_queue=1)
168  *
169  * Default: select_queue=0
170  */
171 static int select_queue;
172 module_param(select_queue, int, 0644);
173 MODULE_PARM_DESC(select_queue,
174                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
175
176 static struct dentry *cxgb4_debugfs_root;
177
178 LIST_HEAD(adapter_list);
179 DEFINE_MUTEX(uld_mutex);
180
181 static void link_report(struct net_device *dev)
182 {
183         if (!netif_carrier_ok(dev))
184                 netdev_info(dev, "link down\n");
185         else {
186                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
187
188                 const char *s;
189                 const struct port_info *p = netdev_priv(dev);
190
191                 switch (p->link_cfg.speed) {
192                 case 100:
193                         s = "100Mbps";
194                         break;
195                 case 1000:
196                         s = "1Gbps";
197                         break;
198                 case 10000:
199                         s = "10Gbps";
200                         break;
201                 case 25000:
202                         s = "25Gbps";
203                         break;
204                 case 40000:
205                         s = "40Gbps";
206                         break;
207                 case 100000:
208                         s = "100Gbps";
209                         break;
210                 default:
211                         pr_info("%s: unsupported speed: %d\n",
212                                 dev->name, p->link_cfg.speed);
213                         return;
214                 }
215
216                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
217                             fc[p->link_cfg.fc]);
218         }
219 }
220
221 #ifdef CONFIG_CHELSIO_T4_DCB
222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
224 {
225         struct port_info *pi = netdev_priv(dev);
226         struct adapter *adap = pi->adapter;
227         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
228         int i;
229
230         /* We use a simple mapping of Port TX Queue Index to DCB
231          * Priority when we're enabling DCB.
232          */
233         for (i = 0; i < pi->nqsets; i++, txq++) {
234                 u32 name, value;
235                 int err;
236
237                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
238                         FW_PARAMS_PARAM_X_V(
239                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
240                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
241                 value = enable ? i : 0xffffffff;
242
243                 /* Since we can be called while atomic (from "interrupt
244                  * level") we need to issue the Set Parameters Commannd
245                  * without sleeping (timeout < 0).
246                  */
247                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
248                                             &name, &value,
249                                             -FW_CMD_MAX_TIMEOUT);
250
251                 if (err)
252                         dev_err(adap->pdev_dev,
253                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
254                                 enable ? "set" : "unset", pi->port_id, i, -err);
255                 else
256                         txq->dcb_prio = value;
257         }
258 }
259
260 static int cxgb4_dcb_enabled(const struct net_device *dev)
261 {
262         struct port_info *pi = netdev_priv(dev);
263
264         if (!pi->dcb.enabled)
265                 return 0;
266
267         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
268                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
269 }
270 #endif /* CONFIG_CHELSIO_T4_DCB */
271
272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
273 {
274         struct net_device *dev = adapter->port[port_id];
275
276         /* Skip changes from disabled ports. */
277         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
278                 if (link_stat)
279                         netif_carrier_on(dev);
280                 else {
281 #ifdef CONFIG_CHELSIO_T4_DCB
282                         if (cxgb4_dcb_enabled(dev)) {
283                                 cxgb4_dcb_state_init(dev);
284                                 dcb_tx_queue_prio_enable(dev, false);
285                         }
286 #endif /* CONFIG_CHELSIO_T4_DCB */
287                         netif_carrier_off(dev);
288                 }
289
290                 link_report(dev);
291         }
292 }
293
294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
295 {
296         static const char *mod_str[] = {
297                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
298         };
299
300         const struct net_device *dev = adap->port[port_id];
301         const struct port_info *pi = netdev_priv(dev);
302
303         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
304                 netdev_info(dev, "port module unplugged\n");
305         else if (pi->mod_type < ARRAY_SIZE(mod_str))
306                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
307         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
308                 netdev_info(dev, "%s: unsupported port module inserted\n",
309                             dev->name);
310         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
311                 netdev_info(dev, "%s: unknown port module inserted\n",
312                             dev->name);
313         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
314                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
315         else
316                 netdev_info(dev, "%s: unknown module type %d inserted\n",
317                             dev->name, pi->mod_type);
318 }
319
320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
321 module_param(dbfifo_int_thresh, int, 0644);
322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
323
324 /*
325  * usecs to sleep while draining the dbfifo
326  */
327 static int dbfifo_drain_delay = 1000;
328 module_param(dbfifo_drain_delay, int, 0644);
329 MODULE_PARM_DESC(dbfifo_drain_delay,
330                  "usecs to sleep while draining the dbfifo");
331
332 static inline int cxgb4_set_addr_hash(struct port_info *pi)
333 {
334         struct adapter *adap = pi->adapter;
335         u64 vec = 0;
336         bool ucast = false;
337         struct hash_mac_addr *entry;
338
339         /* Calculate the hash vector for the updated list and program it */
340         list_for_each_entry(entry, &adap->mac_hlist, list) {
341                 ucast |= is_unicast_ether_addr(entry->addr);
342                 vec |= (1ULL << hash_mac_addr(entry->addr));
343         }
344         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
345                                 vec, false);
346 }
347
348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
349 {
350         struct port_info *pi = netdev_priv(netdev);
351         struct adapter *adap = pi->adapter;
352         int ret;
353         u64 mhash = 0;
354         u64 uhash = 0;
355         bool free = false;
356         bool ucast = is_unicast_ether_addr(mac_addr);
357         const u8 *maclist[1] = {mac_addr};
358         struct hash_mac_addr *new_entry;
359
360         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
361                                 NULL, ucast ? &uhash : &mhash, false);
362         if (ret < 0)
363                 goto out;
364         /* if hash != 0, then add the addr to hash addr list
365          * so on the end we will calculate the hash for the
366          * list and program it
367          */
368         if (uhash || mhash) {
369                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
370                 if (!new_entry)
371                         return -ENOMEM;
372                 ether_addr_copy(new_entry->addr, mac_addr);
373                 list_add_tail(&new_entry->list, &adap->mac_hlist);
374                 ret = cxgb4_set_addr_hash(pi);
375         }
376 out:
377         return ret < 0 ? ret : 0;
378 }
379
380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
381 {
382         struct port_info *pi = netdev_priv(netdev);
383         struct adapter *adap = pi->adapter;
384         int ret;
385         const u8 *maclist[1] = {mac_addr};
386         struct hash_mac_addr *entry, *tmp;
387
388         /* If the MAC address to be removed is in the hash addr
389          * list, delete it from the list and update hash vector
390          */
391         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
392                 if (ether_addr_equal(entry->addr, mac_addr)) {
393                         list_del(&entry->list);
394                         kfree(entry);
395                         return cxgb4_set_addr_hash(pi);
396                 }
397         }
398
399         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
400         return ret < 0 ? -EINVAL : 0;
401 }
402
403 /*
404  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405  * If @mtu is -1 it is left unchanged.
406  */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409         struct port_info *pi = netdev_priv(dev);
410         struct adapter *adapter = pi->adapter;
411
412         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
414
415         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
416                              (dev->flags & IFF_PROMISC) ? 1 : 0,
417                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
418                              sleep_ok);
419 }
420
421 /**
422  *      link_start - enable a port
423  *      @dev: the port to enable
424  *
425  *      Performs the MAC and PHY actions needed to enable a port.
426  */
427 static int link_start(struct net_device *dev)
428 {
429         int ret;
430         struct port_info *pi = netdev_priv(dev);
431         unsigned int mb = pi->adapter->pf;
432
433         /*
434          * We do not set address filters and promiscuity here, the stack does
435          * that step explicitly.
436          */
437         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439         if (ret == 0) {
440                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
441                                     pi->xact_addr_filt, dev->dev_addr, true,
442                                     true);
443                 if (ret >= 0) {
444                         pi->xact_addr_filt = ret;
445                         ret = 0;
446                 }
447         }
448         if (ret == 0)
449                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450                                     &pi->link_cfg);
451         if (ret == 0) {
452                 local_bh_disable();
453                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454                                           true, CXGB4_DCB_ENABLED);
455                 local_bh_enable();
456         }
457
458         return ret;
459 }
460
461 #ifdef CONFIG_CHELSIO_T4_DCB
462 /* Handle a Data Center Bridging update message from the firmware. */
463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
464 {
465         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
466         struct net_device *dev = adap->port[adap->chan_map[port]];
467         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
468         int new_dcb_enabled;
469
470         cxgb4_dcb_handle_fw_update(adap, pcmd);
471         new_dcb_enabled = cxgb4_dcb_enabled(dev);
472
473         /* If the DCB has become enabled or disabled on the port then we're
474          * going to need to set up/tear down DCB Priority parameters for the
475          * TX Queues associated with the port.
476          */
477         if (new_dcb_enabled != old_dcb_enabled)
478                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
479 }
480 #endif /* CONFIG_CHELSIO_T4_DCB */
481
482 /* Response queue handler for the FW event queue.
483  */
484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
485                           const struct pkt_gl *gl)
486 {
487         u8 opcode = ((const struct rss_header *)rsp)->opcode;
488
489         rsp++;                                          /* skip RSS header */
490
491         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
492          */
493         if (unlikely(opcode == CPL_FW4_MSG &&
494            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
495                 rsp++;
496                 opcode = ((const struct rss_header *)rsp)->opcode;
497                 rsp++;
498                 if (opcode != CPL_SGE_EGR_UPDATE) {
499                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
500                                 , opcode);
501                         goto out;
502                 }
503         }
504
505         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
506                 const struct cpl_sge_egr_update *p = (void *)rsp;
507                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
508                 struct sge_txq *txq;
509
510                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
511                 txq->restarts++;
512                 if (txq->q_type == CXGB4_TXQ_ETH) {
513                         struct sge_eth_txq *eq;
514
515                         eq = container_of(txq, struct sge_eth_txq, q);
516                         netif_tx_wake_queue(eq->txq);
517                 } else {
518                         struct sge_uld_txq *oq;
519
520                         oq = container_of(txq, struct sge_uld_txq, q);
521                         tasklet_schedule(&oq->qresume_tsk);
522                 }
523         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
524                 const struct cpl_fw6_msg *p = (void *)rsp;
525
526 #ifdef CONFIG_CHELSIO_T4_DCB
527                 const struct fw_port_cmd *pcmd = (const void *)p->data;
528                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
529                 unsigned int action =
530                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
531
532                 if (cmd == FW_PORT_CMD &&
533                     action == FW_PORT_ACTION_GET_PORT_INFO) {
534                         int port = FW_PORT_CMD_PORTID_G(
535                                         be32_to_cpu(pcmd->op_to_portid));
536                         struct net_device *dev =
537                                 q->adap->port[q->adap->chan_map[port]];
538                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
539                                             FW_PORT_CMD_DCBXDIS_F)
540                                            ? CXGB4_DCB_INPUT_FW_DISABLED
541                                            : CXGB4_DCB_INPUT_FW_ENABLED);
542
543                         cxgb4_dcb_state_fsm(dev, state_input);
544                 }
545
546                 if (cmd == FW_PORT_CMD &&
547                     action == FW_PORT_ACTION_L2_DCB_CFG)
548                         dcb_rpl(q->adap, pcmd);
549                 else
550 #endif
551                         if (p->type == 0)
552                                 t4_handle_fw_rpl(q->adap, p->data);
553         } else if (opcode == CPL_L2T_WRITE_RPL) {
554                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
555
556                 do_l2t_write_rpl(q->adap, p);
557         } else if (opcode == CPL_SET_TCB_RPL) {
558                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
559
560                 filter_rpl(q->adap, p);
561         } else
562                 dev_err(q->adap->pdev_dev,
563                         "unexpected CPL %#x on FW event queue\n", opcode);
564 out:
565         return 0;
566 }
567
568 static void disable_msi(struct adapter *adapter)
569 {
570         if (adapter->flags & USING_MSIX) {
571                 pci_disable_msix(adapter->pdev);
572                 adapter->flags &= ~USING_MSIX;
573         } else if (adapter->flags & USING_MSI) {
574                 pci_disable_msi(adapter->pdev);
575                 adapter->flags &= ~USING_MSI;
576         }
577 }
578
579 /*
580  * Interrupt handler for non-data events used with MSI-X.
581  */
582 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
583 {
584         struct adapter *adap = cookie;
585         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
586
587         if (v & PFSW_F) {
588                 adap->swintr = 1;
589                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
590         }
591         if (adap->flags & MASTER_PF)
592                 t4_slow_intr_handler(adap);
593         return IRQ_HANDLED;
594 }
595
596 /*
597  * Name the MSI-X interrupts.
598  */
599 static void name_msix_vecs(struct adapter *adap)
600 {
601         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
602
603         /* non-data interrupts */
604         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
605
606         /* FW events */
607         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
608                  adap->port[0]->name);
609
610         /* Ethernet queues */
611         for_each_port(adap, j) {
612                 struct net_device *d = adap->port[j];
613                 const struct port_info *pi = netdev_priv(d);
614
615                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
616                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
617                                  d->name, i);
618         }
619 }
620
621 static int request_msix_queue_irqs(struct adapter *adap)
622 {
623         struct sge *s = &adap->sge;
624         int err, ethqidx;
625         int msi_index = 2;
626
627         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
628                           adap->msix_info[1].desc, &s->fw_evtq);
629         if (err)
630                 return err;
631
632         for_each_ethrxq(s, ethqidx) {
633                 err = request_irq(adap->msix_info[msi_index].vec,
634                                   t4_sge_intr_msix, 0,
635                                   adap->msix_info[msi_index].desc,
636                                   &s->ethrxq[ethqidx].rspq);
637                 if (err)
638                         goto unwind;
639                 msi_index++;
640         }
641         return 0;
642
643 unwind:
644         while (--ethqidx >= 0)
645                 free_irq(adap->msix_info[--msi_index].vec,
646                          &s->ethrxq[ethqidx].rspq);
647         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
648         return err;
649 }
650
651 static void free_msix_queue_irqs(struct adapter *adap)
652 {
653         int i, msi_index = 2;
654         struct sge *s = &adap->sge;
655
656         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
657         for_each_ethrxq(s, i)
658                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
659 }
660
661 /**
662  *      cxgb4_write_rss - write the RSS table for a given port
663  *      @pi: the port
664  *      @queues: array of queue indices for RSS
665  *
666  *      Sets up the portion of the HW RSS table for the port's VI to distribute
667  *      packets to the Rx queues in @queues.
668  *      Should never be called before setting up sge eth rx queues
669  */
670 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671 {
672         u16 *rss;
673         int i, err;
674         struct adapter *adapter = pi->adapter;
675         const struct sge_eth_rxq *rxq;
676
677         rxq = &adapter->sge.ethrxq[pi->first_qset];
678         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
679         if (!rss)
680                 return -ENOMEM;
681
682         /* map the queue indices to queue ids */
683         for (i = 0; i < pi->rss_size; i++, queues++)
684                 rss[i] = rxq[*queues].rspq.abs_id;
685
686         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
687                                   pi->rss_size, rss, pi->rss_size);
688         /* If Tunnel All Lookup isn't specified in the global RSS
689          * Configuration, then we need to specify a default Ingress
690          * Queue for any ingress packets which aren't hashed.  We'll
691          * use our first ingress queue ...
692          */
693         if (!err)
694                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
695                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
696                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
697                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
698                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
699                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
700                                        rss[0]);
701         kfree(rss);
702         return err;
703 }
704
705 /**
706  *      setup_rss - configure RSS
707  *      @adap: the adapter
708  *
709  *      Sets up RSS for each port.
710  */
711 static int setup_rss(struct adapter *adap)
712 {
713         int i, j, err;
714
715         for_each_port(adap, i) {
716                 const struct port_info *pi = adap2pinfo(adap, i);
717
718                 /* Fill default values with equal distribution */
719                 for (j = 0; j < pi->rss_size; j++)
720                         pi->rss[j] = j % pi->nqsets;
721
722                 err = cxgb4_write_rss(pi, pi->rss);
723                 if (err)
724                         return err;
725         }
726         return 0;
727 }
728
729 /*
730  * Return the channel of the ingress queue with the given qid.
731  */
732 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
733 {
734         qid -= p->ingr_start;
735         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
736 }
737
738 /*
739  * Wait until all NAPI handlers are descheduled.
740  */
741 static void quiesce_rx(struct adapter *adap)
742 {
743         int i;
744
745         for (i = 0; i < adap->sge.ingr_sz; i++) {
746                 struct sge_rspq *q = adap->sge.ingr_map[i];
747
748                 if (q && q->handler)
749                         napi_disable(&q->napi);
750         }
751 }
752
753 /* Disable interrupt and napi handler */
754 static void disable_interrupts(struct adapter *adap)
755 {
756         if (adap->flags & FULL_INIT_DONE) {
757                 t4_intr_disable(adap);
758                 if (adap->flags & USING_MSIX) {
759                         free_msix_queue_irqs(adap);
760                         free_irq(adap->msix_info[0].vec, adap);
761                 } else {
762                         free_irq(adap->pdev->irq, adap);
763                 }
764                 quiesce_rx(adap);
765         }
766 }
767
768 /*
769  * Enable NAPI scheduling and interrupt generation for all Rx queues.
770  */
771 static void enable_rx(struct adapter *adap)
772 {
773         int i;
774
775         for (i = 0; i < adap->sge.ingr_sz; i++) {
776                 struct sge_rspq *q = adap->sge.ingr_map[i];
777
778                 if (!q)
779                         continue;
780                 if (q->handler)
781                         napi_enable(&q->napi);
782
783                 /* 0-increment GTS to start the timer and enable interrupts */
784                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
785                              SEINTARM_V(q->intr_params) |
786                              INGRESSQID_V(q->cntxt_id));
787         }
788 }
789
790
791 static int setup_fw_sge_queues(struct adapter *adap)
792 {
793         struct sge *s = &adap->sge;
794         int err = 0;
795
796         bitmap_zero(s->starving_fl, s->egr_sz);
797         bitmap_zero(s->txq_maperr, s->egr_sz);
798
799         if (adap->flags & USING_MSIX)
800                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
801         else {
802                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
803                                        NULL, NULL, NULL, -1);
804                 if (err)
805                         return err;
806                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
807         }
808
809         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
810                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
811         if (err)
812                 t4_free_sge_resources(adap);
813         return err;
814 }
815
816 /**
817  *      setup_sge_queues - configure SGE Tx/Rx/response queues
818  *      @adap: the adapter
819  *
820  *      Determines how many sets of SGE queues to use and initializes them.
821  *      We support multiple queue sets per port if we have MSI-X, otherwise
822  *      just one queue set per port.
823  */
824 static int setup_sge_queues(struct adapter *adap)
825 {
826         int err, i, j;
827         struct sge *s = &adap->sge;
828         struct sge_uld_rxq_info *rxq_info = NULL;
829         unsigned int cmplqid = 0;
830
831         if (is_uld(adap))
832                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
833
834         for_each_port(adap, i) {
835                 struct net_device *dev = adap->port[i];
836                 struct port_info *pi = netdev_priv(dev);
837                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
838                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
839
840                 for (j = 0; j < pi->nqsets; j++, q++) {
841                         if (adap->msi_idx > 0)
842                                 adap->msi_idx++;
843                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
844                                                adap->msi_idx, &q->fl,
845                                                t4_ethrx_handler,
846                                                NULL,
847                                                t4_get_tp_ch_map(adap,
848                                                                 pi->tx_chan));
849                         if (err)
850                                 goto freeout;
851                         q->rspq.idx = j;
852                         memset(&q->stats, 0, sizeof(q->stats));
853                 }
854                 for (j = 0; j < pi->nqsets; j++, t++) {
855                         err = t4_sge_alloc_eth_txq(adap, t, dev,
856                                         netdev_get_tx_queue(dev, j),
857                                         s->fw_evtq.cntxt_id);
858                         if (err)
859                                 goto freeout;
860                 }
861         }
862
863         for_each_port(adap, i) {
864                 /* Note that cmplqid below is 0 if we don't
865                  * have RDMA queues, and that's the right value.
866                  */
867                 if (rxq_info)
868                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
869
870                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
871                                             s->fw_evtq.cntxt_id, cmplqid);
872                 if (err)
873                         goto freeout;
874         }
875
876         if (!is_t4(adap->params.chip)) {
877                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
878                                            netdev_get_tx_queue(adap->port[0], 0)
879                                            , s->fw_evtq.cntxt_id);
880                 if (err)
881                         goto freeout;
882         }
883
884         t4_write_reg(adap, is_t4(adap->params.chip) ?
885                                 MPS_TRC_RSS_CONTROL_A :
886                                 MPS_T5_TRC_RSS_CONTROL_A,
887                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
888                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
889         return 0;
890 freeout:
891         t4_free_sge_resources(adap);
892         return err;
893 }
894
895 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
896                              void *accel_priv, select_queue_fallback_t fallback)
897 {
898         int txq;
899
900 #ifdef CONFIG_CHELSIO_T4_DCB
901         /* If a Data Center Bridging has been successfully negotiated on this
902          * link then we'll use the skb's priority to map it to a TX Queue.
903          * The skb's priority is determined via the VLAN Tag Priority Code
904          * Point field.
905          */
906         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
907                 u16 vlan_tci;
908                 int err;
909
910                 err = vlan_get_tag(skb, &vlan_tci);
911                 if (unlikely(err)) {
912                         if (net_ratelimit())
913                                 netdev_warn(dev,
914                                             "TX Packet without VLAN Tag on DCB Link\n");
915                         txq = 0;
916                 } else {
917                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
918 #ifdef CONFIG_CHELSIO_T4_FCOE
919                         if (skb->protocol == htons(ETH_P_FCOE))
920                                 txq = skb->priority & 0x7;
921 #endif /* CONFIG_CHELSIO_T4_FCOE */
922                 }
923                 return txq;
924         }
925 #endif /* CONFIG_CHELSIO_T4_DCB */
926
927         if (select_queue) {
928                 txq = (skb_rx_queue_recorded(skb)
929                         ? skb_get_rx_queue(skb)
930                         : smp_processor_id());
931
932                 while (unlikely(txq >= dev->real_num_tx_queues))
933                         txq -= dev->real_num_tx_queues;
934
935                 return txq;
936         }
937
938         return fallback(dev, skb) % dev->real_num_tx_queues;
939 }
940
941 static int closest_timer(const struct sge *s, int time)
942 {
943         int i, delta, match = 0, min_delta = INT_MAX;
944
945         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
946                 delta = time - s->timer_val[i];
947                 if (delta < 0)
948                         delta = -delta;
949                 if (delta < min_delta) {
950                         min_delta = delta;
951                         match = i;
952                 }
953         }
954         return match;
955 }
956
957 static int closest_thres(const struct sge *s, int thres)
958 {
959         int i, delta, match = 0, min_delta = INT_MAX;
960
961         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
962                 delta = thres - s->counter_val[i];
963                 if (delta < 0)
964                         delta = -delta;
965                 if (delta < min_delta) {
966                         min_delta = delta;
967                         match = i;
968                 }
969         }
970         return match;
971 }
972
973 /**
974  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
975  *      @q: the Rx queue
976  *      @us: the hold-off time in us, or 0 to disable timer
977  *      @cnt: the hold-off packet count, or 0 to disable counter
978  *
979  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
980  *      one of the two needs to be enabled for the queue to generate interrupts.
981  */
982 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
983                                unsigned int us, unsigned int cnt)
984 {
985         struct adapter *adap = q->adap;
986
987         if ((us | cnt) == 0)
988                 cnt = 1;
989
990         if (cnt) {
991                 int err;
992                 u32 v, new_idx;
993
994                 new_idx = closest_thres(&adap->sge, cnt);
995                 if (q->desc && q->pktcnt_idx != new_idx) {
996                         /* the queue has already been created, update it */
997                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
998                             FW_PARAMS_PARAM_X_V(
999                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1000                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1001                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1002                                             &v, &new_idx);
1003                         if (err)
1004                                 return err;
1005                 }
1006                 q->pktcnt_idx = new_idx;
1007         }
1008
1009         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1010         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1011         return 0;
1012 }
1013
1014 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1015 {
1016         const struct port_info *pi = netdev_priv(dev);
1017         netdev_features_t changed = dev->features ^ features;
1018         int err;
1019
1020         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1021                 return 0;
1022
1023         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1024                             -1, -1, -1,
1025                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1026         if (unlikely(err))
1027                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1028         return err;
1029 }
1030
1031 static int setup_debugfs(struct adapter *adap)
1032 {
1033         if (IS_ERR_OR_NULL(adap->debugfs_root))
1034                 return -1;
1035
1036 #ifdef CONFIG_DEBUG_FS
1037         t4_setup_debugfs(adap);
1038 #endif
1039         return 0;
1040 }
1041
1042 /*
1043  * upper-layer driver support
1044  */
1045
1046 /*
1047  * Allocate an active-open TID and set it to the supplied value.
1048  */
1049 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1050 {
1051         int atid = -1;
1052
1053         spin_lock_bh(&t->atid_lock);
1054         if (t->afree) {
1055                 union aopen_entry *p = t->afree;
1056
1057                 atid = (p - t->atid_tab) + t->atid_base;
1058                 t->afree = p->next;
1059                 p->data = data;
1060                 t->atids_in_use++;
1061         }
1062         spin_unlock_bh(&t->atid_lock);
1063         return atid;
1064 }
1065 EXPORT_SYMBOL(cxgb4_alloc_atid);
1066
1067 /*
1068  * Release an active-open TID.
1069  */
1070 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1071 {
1072         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1073
1074         spin_lock_bh(&t->atid_lock);
1075         p->next = t->afree;
1076         t->afree = p;
1077         t->atids_in_use--;
1078         spin_unlock_bh(&t->atid_lock);
1079 }
1080 EXPORT_SYMBOL(cxgb4_free_atid);
1081
1082 /*
1083  * Allocate a server TID and set it to the supplied value.
1084  */
1085 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1086 {
1087         int stid;
1088
1089         spin_lock_bh(&t->stid_lock);
1090         if (family == PF_INET) {
1091                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1092                 if (stid < t->nstids)
1093                         __set_bit(stid, t->stid_bmap);
1094                 else
1095                         stid = -1;
1096         } else {
1097                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1098                 if (stid < 0)
1099                         stid = -1;
1100         }
1101         if (stid >= 0) {
1102                 t->stid_tab[stid].data = data;
1103                 stid += t->stid_base;
1104                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1105                  * This is equivalent to 4 TIDs. With CLIP enabled it
1106                  * needs 2 TIDs.
1107                  */
1108                 if (family == PF_INET6) {
1109                         t->stids_in_use += 2;
1110                         t->v6_stids_in_use += 2;
1111                 } else {
1112                         t->stids_in_use++;
1113                 }
1114         }
1115         spin_unlock_bh(&t->stid_lock);
1116         return stid;
1117 }
1118 EXPORT_SYMBOL(cxgb4_alloc_stid);
1119
1120 /* Allocate a server filter TID and set it to the supplied value.
1121  */
1122 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1123 {
1124         int stid;
1125
1126         spin_lock_bh(&t->stid_lock);
1127         if (family == PF_INET) {
1128                 stid = find_next_zero_bit(t->stid_bmap,
1129                                 t->nstids + t->nsftids, t->nstids);
1130                 if (stid < (t->nstids + t->nsftids))
1131                         __set_bit(stid, t->stid_bmap);
1132                 else
1133                         stid = -1;
1134         } else {
1135                 stid = -1;
1136         }
1137         if (stid >= 0) {
1138                 t->stid_tab[stid].data = data;
1139                 stid -= t->nstids;
1140                 stid += t->sftid_base;
1141                 t->sftids_in_use++;
1142         }
1143         spin_unlock_bh(&t->stid_lock);
1144         return stid;
1145 }
1146 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1147
1148 /* Release a server TID.
1149  */
1150 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1151 {
1152         /* Is it a server filter TID? */
1153         if (t->nsftids && (stid >= t->sftid_base)) {
1154                 stid -= t->sftid_base;
1155                 stid += t->nstids;
1156         } else {
1157                 stid -= t->stid_base;
1158         }
1159
1160         spin_lock_bh(&t->stid_lock);
1161         if (family == PF_INET)
1162                 __clear_bit(stid, t->stid_bmap);
1163         else
1164                 bitmap_release_region(t->stid_bmap, stid, 1);
1165         t->stid_tab[stid].data = NULL;
1166         if (stid < t->nstids) {
1167                 if (family == PF_INET6) {
1168                         t->stids_in_use -= 2;
1169                         t->v6_stids_in_use -= 2;
1170                 } else {
1171                         t->stids_in_use--;
1172                 }
1173         } else {
1174                 t->sftids_in_use--;
1175         }
1176
1177         spin_unlock_bh(&t->stid_lock);
1178 }
1179 EXPORT_SYMBOL(cxgb4_free_stid);
1180
1181 /*
1182  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1183  */
1184 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1185                            unsigned int tid)
1186 {
1187         struct cpl_tid_release *req;
1188
1189         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1190         req = __skb_put(skb, sizeof(*req));
1191         INIT_TP_WR(req, tid);
1192         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1193 }
1194
1195 /*
1196  * Queue a TID release request and if necessary schedule a work queue to
1197  * process it.
1198  */
1199 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1200                                     unsigned int tid)
1201 {
1202         void **p = &t->tid_tab[tid];
1203         struct adapter *adap = container_of(t, struct adapter, tids);
1204
1205         spin_lock_bh(&adap->tid_release_lock);
1206         *p = adap->tid_release_head;
1207         /* Low 2 bits encode the Tx channel number */
1208         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1209         if (!adap->tid_release_task_busy) {
1210                 adap->tid_release_task_busy = true;
1211                 queue_work(adap->workq, &adap->tid_release_task);
1212         }
1213         spin_unlock_bh(&adap->tid_release_lock);
1214 }
1215
1216 /*
1217  * Process the list of pending TID release requests.
1218  */
1219 static void process_tid_release_list(struct work_struct *work)
1220 {
1221         struct sk_buff *skb;
1222         struct adapter *adap;
1223
1224         adap = container_of(work, struct adapter, tid_release_task);
1225
1226         spin_lock_bh(&adap->tid_release_lock);
1227         while (adap->tid_release_head) {
1228                 void **p = adap->tid_release_head;
1229                 unsigned int chan = (uintptr_t)p & 3;
1230                 p = (void *)p - chan;
1231
1232                 adap->tid_release_head = *p;
1233                 *p = NULL;
1234                 spin_unlock_bh(&adap->tid_release_lock);
1235
1236                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1237                                          GFP_KERNEL)))
1238                         schedule_timeout_uninterruptible(1);
1239
1240                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1241                 t4_ofld_send(adap, skb);
1242                 spin_lock_bh(&adap->tid_release_lock);
1243         }
1244         adap->tid_release_task_busy = false;
1245         spin_unlock_bh(&adap->tid_release_lock);
1246 }
1247
1248 /*
1249  * Release a TID and inform HW.  If we are unable to allocate the release
1250  * message we defer to a work queue.
1251  */
1252 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1253                       unsigned short family)
1254 {
1255         struct sk_buff *skb;
1256         struct adapter *adap = container_of(t, struct adapter, tids);
1257
1258         WARN_ON(tid >= t->ntids);
1259
1260         if (t->tid_tab[tid]) {
1261                 t->tid_tab[tid] = NULL;
1262                 atomic_dec(&t->conns_in_use);
1263                 if (t->hash_base && (tid >= t->hash_base)) {
1264                         if (family == AF_INET6)
1265                                 atomic_sub(2, &t->hash_tids_in_use);
1266                         else
1267                                 atomic_dec(&t->hash_tids_in_use);
1268                 } else {
1269                         if (family == AF_INET6)
1270                                 atomic_sub(2, &t->tids_in_use);
1271                         else
1272                                 atomic_dec(&t->tids_in_use);
1273                 }
1274         }
1275
1276         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1277         if (likely(skb)) {
1278                 mk_tid_release(skb, chan, tid);
1279                 t4_ofld_send(adap, skb);
1280         } else
1281                 cxgb4_queue_tid_release(t, chan, tid);
1282 }
1283 EXPORT_SYMBOL(cxgb4_remove_tid);
1284
1285 /*
1286  * Allocate and initialize the TID tables.  Returns 0 on success.
1287  */
1288 static int tid_init(struct tid_info *t)
1289 {
1290         struct adapter *adap = container_of(t, struct adapter, tids);
1291         unsigned int max_ftids = t->nftids + t->nsftids;
1292         unsigned int natids = t->natids;
1293         unsigned int stid_bmap_size;
1294         unsigned int ftid_bmap_size;
1295         size_t size;
1296
1297         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1298         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1299         size = t->ntids * sizeof(*t->tid_tab) +
1300                natids * sizeof(*t->atid_tab) +
1301                t->nstids * sizeof(*t->stid_tab) +
1302                t->nsftids * sizeof(*t->stid_tab) +
1303                stid_bmap_size * sizeof(long) +
1304                max_ftids * sizeof(*t->ftid_tab) +
1305                ftid_bmap_size * sizeof(long);
1306
1307         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1308         if (!t->tid_tab)
1309                 return -ENOMEM;
1310
1311         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1312         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1313         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1314         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1315         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1316         spin_lock_init(&t->stid_lock);
1317         spin_lock_init(&t->atid_lock);
1318         spin_lock_init(&t->ftid_lock);
1319
1320         t->stids_in_use = 0;
1321         t->v6_stids_in_use = 0;
1322         t->sftids_in_use = 0;
1323         t->afree = NULL;
1324         t->atids_in_use = 0;
1325         atomic_set(&t->tids_in_use, 0);
1326         atomic_set(&t->conns_in_use, 0);
1327         atomic_set(&t->hash_tids_in_use, 0);
1328
1329         /* Setup the free list for atid_tab and clear the stid bitmap. */
1330         if (natids) {
1331                 while (--natids)
1332                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1333                 t->afree = t->atid_tab;
1334         }
1335
1336         if (is_offload(adap)) {
1337                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1338                 /* Reserve stid 0 for T4/T5 adapters */
1339                 if (!t->stid_base &&
1340                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1341                         __set_bit(0, t->stid_bmap);
1342         }
1343
1344         bitmap_zero(t->ftid_bmap, t->nftids);
1345         return 0;
1346 }
1347
1348 /**
1349  *      cxgb4_create_server - create an IP server
1350  *      @dev: the device
1351  *      @stid: the server TID
1352  *      @sip: local IP address to bind server to
1353  *      @sport: the server's TCP port
1354  *      @queue: queue to direct messages from this server to
1355  *
1356  *      Create an IP server for the given port and address.
1357  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1358  */
1359 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1360                         __be32 sip, __be16 sport, __be16 vlan,
1361                         unsigned int queue)
1362 {
1363         unsigned int chan;
1364         struct sk_buff *skb;
1365         struct adapter *adap;
1366         struct cpl_pass_open_req *req;
1367         int ret;
1368
1369         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1370         if (!skb)
1371                 return -ENOMEM;
1372
1373         adap = netdev2adap(dev);
1374         req = __skb_put(skb, sizeof(*req));
1375         INIT_TP_WR(req, 0);
1376         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1377         req->local_port = sport;
1378         req->peer_port = htons(0);
1379         req->local_ip = sip;
1380         req->peer_ip = htonl(0);
1381         chan = rxq_to_chan(&adap->sge, queue);
1382         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1383         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1384                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1385         ret = t4_mgmt_tx(adap, skb);
1386         return net_xmit_eval(ret);
1387 }
1388 EXPORT_SYMBOL(cxgb4_create_server);
1389
1390 /*      cxgb4_create_server6 - create an IPv6 server
1391  *      @dev: the device
1392  *      @stid: the server TID
1393  *      @sip: local IPv6 address to bind server to
1394  *      @sport: the server's TCP port
1395  *      @queue: queue to direct messages from this server to
1396  *
1397  *      Create an IPv6 server for the given port and address.
1398  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1399  */
1400 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1401                          const struct in6_addr *sip, __be16 sport,
1402                          unsigned int queue)
1403 {
1404         unsigned int chan;
1405         struct sk_buff *skb;
1406         struct adapter *adap;
1407         struct cpl_pass_open_req6 *req;
1408         int ret;
1409
1410         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1411         if (!skb)
1412                 return -ENOMEM;
1413
1414         adap = netdev2adap(dev);
1415         req = __skb_put(skb, sizeof(*req));
1416         INIT_TP_WR(req, 0);
1417         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1418         req->local_port = sport;
1419         req->peer_port = htons(0);
1420         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1421         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1422         req->peer_ip_hi = cpu_to_be64(0);
1423         req->peer_ip_lo = cpu_to_be64(0);
1424         chan = rxq_to_chan(&adap->sge, queue);
1425         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1426         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1427                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1428         ret = t4_mgmt_tx(adap, skb);
1429         return net_xmit_eval(ret);
1430 }
1431 EXPORT_SYMBOL(cxgb4_create_server6);
1432
1433 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1434                         unsigned int queue, bool ipv6)
1435 {
1436         struct sk_buff *skb;
1437         struct adapter *adap;
1438         struct cpl_close_listsvr_req *req;
1439         int ret;
1440
1441         adap = netdev2adap(dev);
1442
1443         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1444         if (!skb)
1445                 return -ENOMEM;
1446
1447         req = __skb_put(skb, sizeof(*req));
1448         INIT_TP_WR(req, 0);
1449         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1450         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1451                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1452         ret = t4_mgmt_tx(adap, skb);
1453         return net_xmit_eval(ret);
1454 }
1455 EXPORT_SYMBOL(cxgb4_remove_server);
1456
1457 /**
1458  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1459  *      @mtus: the HW MTU table
1460  *      @mtu: the target MTU
1461  *      @idx: index of selected entry in the MTU table
1462  *
1463  *      Returns the index and the value in the HW MTU table that is closest to
1464  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1465  *      table, in which case that smallest available value is selected.
1466  */
1467 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1468                             unsigned int *idx)
1469 {
1470         unsigned int i = 0;
1471
1472         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1473                 ++i;
1474         if (idx)
1475                 *idx = i;
1476         return mtus[i];
1477 }
1478 EXPORT_SYMBOL(cxgb4_best_mtu);
1479
1480 /**
1481  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1482  *     @mtus: the HW MTU table
1483  *     @header_size: Header Size
1484  *     @data_size_max: maximum Data Segment Size
1485  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1486  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1487  *
1488  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1489  *     MTU Table based solely on a Maximum MTU parameter, we break that
1490  *     parameter up into a Header Size and Maximum Data Segment Size, and
1491  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1492  *     the Hardware MTU Table which will result in a Data Segment Size with
1493  *     the requested alignment _and_ that MTU isn't "too far" from the
1494  *     closest MTU, then we'll return that rather than the closest MTU.
1495  */
1496 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1497                                     unsigned short header_size,
1498                                     unsigned short data_size_max,
1499                                     unsigned short data_size_align,
1500                                     unsigned int *mtu_idxp)
1501 {
1502         unsigned short max_mtu = header_size + data_size_max;
1503         unsigned short data_size_align_mask = data_size_align - 1;
1504         int mtu_idx, aligned_mtu_idx;
1505
1506         /* Scan the MTU Table till we find an MTU which is larger than our
1507          * Maximum MTU or we reach the end of the table.  Along the way,
1508          * record the last MTU found, if any, which will result in a Data
1509          * Segment Length matching the requested alignment.
1510          */
1511         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1512                 unsigned short data_size = mtus[mtu_idx] - header_size;
1513
1514                 /* If this MTU minus the Header Size would result in a
1515                  * Data Segment Size of the desired alignment, remember it.
1516                  */
1517                 if ((data_size & data_size_align_mask) == 0)
1518                         aligned_mtu_idx = mtu_idx;
1519
1520                 /* If we're not at the end of the Hardware MTU Table and the
1521                  * next element is larger than our Maximum MTU, drop out of
1522                  * the loop.
1523                  */
1524                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1525                         break;
1526         }
1527
1528         /* If we fell out of the loop because we ran to the end of the table,
1529          * then we just have to use the last [largest] entry.
1530          */
1531         if (mtu_idx == NMTUS)
1532                 mtu_idx--;
1533
1534         /* If we found an MTU which resulted in the requested Data Segment
1535          * Length alignment and that's "not far" from the largest MTU which is
1536          * less than or equal to the maximum MTU, then use that.
1537          */
1538         if (aligned_mtu_idx >= 0 &&
1539             mtu_idx - aligned_mtu_idx <= 1)
1540                 mtu_idx = aligned_mtu_idx;
1541
1542         /* If the caller has passed in an MTU Index pointer, pass the
1543          * MTU Index back.  Return the MTU value.
1544          */
1545         if (mtu_idxp)
1546                 *mtu_idxp = mtu_idx;
1547         return mtus[mtu_idx];
1548 }
1549 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1550
1551 /**
1552  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1553  *      @chip: chip type
1554  *      @viid: VI id of the given port
1555  *
1556  *      Return the SMT index for this VI.
1557  */
1558 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1559 {
1560         /* In T4/T5, SMT contains 256 SMAC entries organized in
1561          * 128 rows of 2 entries each.
1562          * In T6, SMT contains 256 SMAC entries in 256 rows.
1563          * TODO: The below code needs to be updated when we add support
1564          * for 256 VFs.
1565          */
1566         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1567                 return ((viid & 0x7f) << 1);
1568         else
1569                 return (viid & 0x7f);
1570 }
1571 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1572
1573 /**
1574  *      cxgb4_port_chan - get the HW channel of a port
1575  *      @dev: the net device for the port
1576  *
1577  *      Return the HW Tx channel of the given port.
1578  */
1579 unsigned int cxgb4_port_chan(const struct net_device *dev)
1580 {
1581         return netdev2pinfo(dev)->tx_chan;
1582 }
1583 EXPORT_SYMBOL(cxgb4_port_chan);
1584
1585 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1586 {
1587         struct adapter *adap = netdev2adap(dev);
1588         u32 v1, v2, lp_count, hp_count;
1589
1590         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1591         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1592         if (is_t4(adap->params.chip)) {
1593                 lp_count = LP_COUNT_G(v1);
1594                 hp_count = HP_COUNT_G(v1);
1595         } else {
1596                 lp_count = LP_COUNT_T5_G(v1);
1597                 hp_count = HP_COUNT_T5_G(v2);
1598         }
1599         return lpfifo ? lp_count : hp_count;
1600 }
1601 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1602
1603 /**
1604  *      cxgb4_port_viid - get the VI id of a port
1605  *      @dev: the net device for the port
1606  *
1607  *      Return the VI id of the given port.
1608  */
1609 unsigned int cxgb4_port_viid(const struct net_device *dev)
1610 {
1611         return netdev2pinfo(dev)->viid;
1612 }
1613 EXPORT_SYMBOL(cxgb4_port_viid);
1614
1615 /**
1616  *      cxgb4_port_idx - get the index of a port
1617  *      @dev: the net device for the port
1618  *
1619  *      Return the index of the given port.
1620  */
1621 unsigned int cxgb4_port_idx(const struct net_device *dev)
1622 {
1623         return netdev2pinfo(dev)->port_id;
1624 }
1625 EXPORT_SYMBOL(cxgb4_port_idx);
1626
1627 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1628                          struct tp_tcp_stats *v6)
1629 {
1630         struct adapter *adap = pci_get_drvdata(pdev);
1631
1632         spin_lock(&adap->stats_lock);
1633         t4_tp_get_tcp_stats(adap, v4, v6);
1634         spin_unlock(&adap->stats_lock);
1635 }
1636 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1637
1638 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1639                       const unsigned int *pgsz_order)
1640 {
1641         struct adapter *adap = netdev2adap(dev);
1642
1643         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1644         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1645                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1646                      HPZ3_V(pgsz_order[3]));
1647 }
1648 EXPORT_SYMBOL(cxgb4_iscsi_init);
1649
1650 int cxgb4_flush_eq_cache(struct net_device *dev)
1651 {
1652         struct adapter *adap = netdev2adap(dev);
1653
1654         return t4_sge_ctxt_flush(adap, adap->mbox);
1655 }
1656 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1657
1658 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1659 {
1660         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1661         __be64 indices;
1662         int ret;
1663
1664         spin_lock(&adap->win0_lock);
1665         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1666                            sizeof(indices), (__be32 *)&indices,
1667                            T4_MEMORY_READ);
1668         spin_unlock(&adap->win0_lock);
1669         if (!ret) {
1670                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1671                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1672         }
1673         return ret;
1674 }
1675
1676 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1677                         u16 size)
1678 {
1679         struct adapter *adap = netdev2adap(dev);
1680         u16 hw_pidx, hw_cidx;
1681         int ret;
1682
1683         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1684         if (ret)
1685                 goto out;
1686
1687         if (pidx != hw_pidx) {
1688                 u16 delta;
1689                 u32 val;
1690
1691                 if (pidx >= hw_pidx)
1692                         delta = pidx - hw_pidx;
1693                 else
1694                         delta = size - hw_pidx + pidx;
1695
1696                 if (is_t4(adap->params.chip))
1697                         val = PIDX_V(delta);
1698                 else
1699                         val = PIDX_T5_V(delta);
1700                 wmb();
1701                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1702                              QID_V(qid) | val);
1703         }
1704 out:
1705         return ret;
1706 }
1707 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1708
1709 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1710 {
1711         struct adapter *adap;
1712         u32 offset, memtype, memaddr;
1713         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1714         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1715         int ret;
1716
1717         adap = netdev2adap(dev);
1718
1719         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1720
1721         /* Figure out where the offset lands in the Memory Type/Address scheme.
1722          * This code assumes that the memory is laid out starting at offset 0
1723          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1724          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1725          * MC0, and some have both MC0 and MC1.
1726          */
1727         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1728         edc0_size = EDRAM0_SIZE_G(size) << 20;
1729         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1730         edc1_size = EDRAM1_SIZE_G(size) << 20;
1731         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1732         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1733
1734         edc0_end = edc0_size;
1735         edc1_end = edc0_end + edc1_size;
1736         mc0_end = edc1_end + mc0_size;
1737
1738         if (offset < edc0_end) {
1739                 memtype = MEM_EDC0;
1740                 memaddr = offset;
1741         } else if (offset < edc1_end) {
1742                 memtype = MEM_EDC1;
1743                 memaddr = offset - edc0_end;
1744         } else {
1745                 if (offset < mc0_end) {
1746                         memtype = MEM_MC0;
1747                         memaddr = offset - edc1_end;
1748                 } else if (is_t5(adap->params.chip)) {
1749                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1750                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1751                         mc1_end = mc0_end + mc1_size;
1752                         if (offset < mc1_end) {
1753                                 memtype = MEM_MC1;
1754                                 memaddr = offset - mc0_end;
1755                         } else {
1756                                 /* offset beyond the end of any memory */
1757                                 goto err;
1758                         }
1759                 } else {
1760                         /* T4/T6 only has a single memory channel */
1761                         goto err;
1762                 }
1763         }
1764
1765         spin_lock(&adap->win0_lock);
1766         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1767         spin_unlock(&adap->win0_lock);
1768         return ret;
1769
1770 err:
1771         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1772                 stag, offset);
1773         return -EINVAL;
1774 }
1775 EXPORT_SYMBOL(cxgb4_read_tpte);
1776
1777 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1778 {
1779         u32 hi, lo;
1780         struct adapter *adap;
1781
1782         adap = netdev2adap(dev);
1783         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1784         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1785
1786         return ((u64)hi << 32) | (u64)lo;
1787 }
1788 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1789
1790 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1791                          unsigned int qid,
1792                          enum cxgb4_bar2_qtype qtype,
1793                          int user,
1794                          u64 *pbar2_qoffset,
1795                          unsigned int *pbar2_qid)
1796 {
1797         return t4_bar2_sge_qregs(netdev2adap(dev),
1798                                  qid,
1799                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1800                                   ? T4_BAR2_QTYPE_EGRESS
1801                                   : T4_BAR2_QTYPE_INGRESS),
1802                                  user,
1803                                  pbar2_qoffset,
1804                                  pbar2_qid);
1805 }
1806 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1807
1808 static struct pci_driver cxgb4_driver;
1809
1810 static void check_neigh_update(struct neighbour *neigh)
1811 {
1812         const struct device *parent;
1813         const struct net_device *netdev = neigh->dev;
1814
1815         if (is_vlan_dev(netdev))
1816                 netdev = vlan_dev_real_dev(netdev);
1817         parent = netdev->dev.parent;
1818         if (parent && parent->driver == &cxgb4_driver.driver)
1819                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1820 }
1821
1822 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1823                        void *data)
1824 {
1825         switch (event) {
1826         case NETEVENT_NEIGH_UPDATE:
1827                 check_neigh_update(data);
1828                 break;
1829         case NETEVENT_REDIRECT:
1830         default:
1831                 break;
1832         }
1833         return 0;
1834 }
1835
1836 static bool netevent_registered;
1837 static struct notifier_block cxgb4_netevent_nb = {
1838         .notifier_call = netevent_cb
1839 };
1840
1841 static void drain_db_fifo(struct adapter *adap, int usecs)
1842 {
1843         u32 v1, v2, lp_count, hp_count;
1844
1845         do {
1846                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1847                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1848                 if (is_t4(adap->params.chip)) {
1849                         lp_count = LP_COUNT_G(v1);
1850                         hp_count = HP_COUNT_G(v1);
1851                 } else {
1852                         lp_count = LP_COUNT_T5_G(v1);
1853                         hp_count = HP_COUNT_T5_G(v2);
1854                 }
1855
1856                 if (lp_count == 0 && hp_count == 0)
1857                         break;
1858                 set_current_state(TASK_UNINTERRUPTIBLE);
1859                 schedule_timeout(usecs_to_jiffies(usecs));
1860         } while (1);
1861 }
1862
1863 static void disable_txq_db(struct sge_txq *q)
1864 {
1865         unsigned long flags;
1866
1867         spin_lock_irqsave(&q->db_lock, flags);
1868         q->db_disabled = 1;
1869         spin_unlock_irqrestore(&q->db_lock, flags);
1870 }
1871
1872 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1873 {
1874         spin_lock_irq(&q->db_lock);
1875         if (q->db_pidx_inc) {
1876                 /* Make sure that all writes to the TX descriptors
1877                  * are committed before we tell HW about them.
1878                  */
1879                 wmb();
1880                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1881                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1882                 q->db_pidx_inc = 0;
1883         }
1884         q->db_disabled = 0;
1885         spin_unlock_irq(&q->db_lock);
1886 }
1887
1888 static void disable_dbs(struct adapter *adap)
1889 {
1890         int i;
1891
1892         for_each_ethrxq(&adap->sge, i)
1893                 disable_txq_db(&adap->sge.ethtxq[i].q);
1894         if (is_offload(adap)) {
1895                 struct sge_uld_txq_info *txq_info =
1896                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1897
1898                 if (txq_info) {
1899                         for_each_ofldtxq(&adap->sge, i) {
1900                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1901
1902                                 disable_txq_db(&txq->q);
1903                         }
1904                 }
1905         }
1906         for_each_port(adap, i)
1907                 disable_txq_db(&adap->sge.ctrlq[i].q);
1908 }
1909
1910 static void enable_dbs(struct adapter *adap)
1911 {
1912         int i;
1913
1914         for_each_ethrxq(&adap->sge, i)
1915                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1916         if (is_offload(adap)) {
1917                 struct sge_uld_txq_info *txq_info =
1918                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1919
1920                 if (txq_info) {
1921                         for_each_ofldtxq(&adap->sge, i) {
1922                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1923
1924                                 enable_txq_db(adap, &txq->q);
1925                         }
1926                 }
1927         }
1928         for_each_port(adap, i)
1929                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1930 }
1931
1932 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1933 {
1934         enum cxgb4_uld type = CXGB4_ULD_RDMA;
1935
1936         if (adap->uld && adap->uld[type].handle)
1937                 adap->uld[type].control(adap->uld[type].handle, cmd);
1938 }
1939
1940 static void process_db_full(struct work_struct *work)
1941 {
1942         struct adapter *adap;
1943
1944         adap = container_of(work, struct adapter, db_full_task);
1945
1946         drain_db_fifo(adap, dbfifo_drain_delay);
1947         enable_dbs(adap);
1948         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1949         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1950                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1951                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1952                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1953         else
1954                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1955                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1956 }
1957
1958 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1959 {
1960         u16 hw_pidx, hw_cidx;
1961         int ret;
1962
1963         spin_lock_irq(&q->db_lock);
1964         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1965         if (ret)
1966                 goto out;
1967         if (q->db_pidx != hw_pidx) {
1968                 u16 delta;
1969                 u32 val;
1970
1971                 if (q->db_pidx >= hw_pidx)
1972                         delta = q->db_pidx - hw_pidx;
1973                 else
1974                         delta = q->size - hw_pidx + q->db_pidx;
1975
1976                 if (is_t4(adap->params.chip))
1977                         val = PIDX_V(delta);
1978                 else
1979                         val = PIDX_T5_V(delta);
1980                 wmb();
1981                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1982                              QID_V(q->cntxt_id) | val);
1983         }
1984 out:
1985         q->db_disabled = 0;
1986         q->db_pidx_inc = 0;
1987         spin_unlock_irq(&q->db_lock);
1988         if (ret)
1989                 CH_WARN(adap, "DB drop recovery failed.\n");
1990 }
1991
1992 static void recover_all_queues(struct adapter *adap)
1993 {
1994         int i;
1995
1996         for_each_ethrxq(&adap->sge, i)
1997                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1998         if (is_offload(adap)) {
1999                 struct sge_uld_txq_info *txq_info =
2000                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2001                 if (txq_info) {
2002                         for_each_ofldtxq(&adap->sge, i) {
2003                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2004
2005                                 sync_txq_pidx(adap, &txq->q);
2006                         }
2007                 }
2008         }
2009         for_each_port(adap, i)
2010                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2011 }
2012
2013 static void process_db_drop(struct work_struct *work)
2014 {
2015         struct adapter *adap;
2016
2017         adap = container_of(work, struct adapter, db_drop_task);
2018
2019         if (is_t4(adap->params.chip)) {
2020                 drain_db_fifo(adap, dbfifo_drain_delay);
2021                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2022                 drain_db_fifo(adap, dbfifo_drain_delay);
2023                 recover_all_queues(adap);
2024                 drain_db_fifo(adap, dbfifo_drain_delay);
2025                 enable_dbs(adap);
2026                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2027         } else if (is_t5(adap->params.chip)) {
2028                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2029                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2030                 u16 pidx_inc = dropped_db & 0x1fff;
2031                 u64 bar2_qoffset;
2032                 unsigned int bar2_qid;
2033                 int ret;
2034
2035                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2036                                         0, &bar2_qoffset, &bar2_qid);
2037                 if (ret)
2038                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2039                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2040                 else
2041                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2042                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2043
2044                 /* Re-enable BAR2 WC */
2045                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2046         }
2047
2048         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2049                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2050 }
2051
2052 void t4_db_full(struct adapter *adap)
2053 {
2054         if (is_t4(adap->params.chip)) {
2055                 disable_dbs(adap);
2056                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2057                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2058                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2059                 queue_work(adap->workq, &adap->db_full_task);
2060         }
2061 }
2062
2063 void t4_db_dropped(struct adapter *adap)
2064 {
2065         if (is_t4(adap->params.chip)) {
2066                 disable_dbs(adap);
2067                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2068         }
2069         queue_work(adap->workq, &adap->db_drop_task);
2070 }
2071
2072 void t4_register_netevent_notifier(void)
2073 {
2074         if (!netevent_registered) {
2075                 register_netevent_notifier(&cxgb4_netevent_nb);
2076                 netevent_registered = true;
2077         }
2078 }
2079
2080 static void detach_ulds(struct adapter *adap)
2081 {
2082         unsigned int i;
2083
2084         mutex_lock(&uld_mutex);
2085         list_del(&adap->list_node);
2086
2087         for (i = 0; i < CXGB4_ULD_MAX; i++)
2088                 if (adap->uld && adap->uld[i].handle)
2089                         adap->uld[i].state_change(adap->uld[i].handle,
2090                                              CXGB4_STATE_DETACH);
2091
2092         if (netevent_registered && list_empty(&adapter_list)) {
2093                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2094                 netevent_registered = false;
2095         }
2096         mutex_unlock(&uld_mutex);
2097 }
2098
2099 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2100 {
2101         unsigned int i;
2102
2103         mutex_lock(&uld_mutex);
2104         for (i = 0; i < CXGB4_ULD_MAX; i++)
2105                 if (adap->uld && adap->uld[i].handle)
2106                         adap->uld[i].state_change(adap->uld[i].handle,
2107                                                   new_state);
2108         mutex_unlock(&uld_mutex);
2109 }
2110
2111 #if IS_ENABLED(CONFIG_IPV6)
2112 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2113                                    unsigned long event, void *data)
2114 {
2115         struct inet6_ifaddr *ifa = data;
2116         struct net_device *event_dev = ifa->idev->dev;
2117         const struct device *parent = NULL;
2118 #if IS_ENABLED(CONFIG_BONDING)
2119         struct adapter *adap;
2120 #endif
2121         if (is_vlan_dev(event_dev))
2122                 event_dev = vlan_dev_real_dev(event_dev);
2123 #if IS_ENABLED(CONFIG_BONDING)
2124         if (event_dev->flags & IFF_MASTER) {
2125                 list_for_each_entry(adap, &adapter_list, list_node) {
2126                         switch (event) {
2127                         case NETDEV_UP:
2128                                 cxgb4_clip_get(adap->port[0],
2129                                                (const u32 *)ifa, 1);
2130                                 break;
2131                         case NETDEV_DOWN:
2132                                 cxgb4_clip_release(adap->port[0],
2133                                                    (const u32 *)ifa, 1);
2134                                 break;
2135                         default:
2136                                 break;
2137                         }
2138                 }
2139                 return NOTIFY_OK;
2140         }
2141 #endif
2142
2143         if (event_dev)
2144                 parent = event_dev->dev.parent;
2145
2146         if (parent && parent->driver == &cxgb4_driver.driver) {
2147                 switch (event) {
2148                 case NETDEV_UP:
2149                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2150                         break;
2151                 case NETDEV_DOWN:
2152                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2153                         break;
2154                 default:
2155                         break;
2156                 }
2157         }
2158         return NOTIFY_OK;
2159 }
2160
2161 static bool inet6addr_registered;
2162 static struct notifier_block cxgb4_inet6addr_notifier = {
2163         .notifier_call = cxgb4_inet6addr_handler
2164 };
2165
2166 static void update_clip(const struct adapter *adap)
2167 {
2168         int i;
2169         struct net_device *dev;
2170         int ret;
2171
2172         rcu_read_lock();
2173
2174         for (i = 0; i < MAX_NPORTS; i++) {
2175                 dev = adap->port[i];
2176                 ret = 0;
2177
2178                 if (dev)
2179                         ret = cxgb4_update_root_dev_clip(dev);
2180
2181                 if (ret < 0)
2182                         break;
2183         }
2184         rcu_read_unlock();
2185 }
2186 #endif /* IS_ENABLED(CONFIG_IPV6) */
2187
2188 /**
2189  *      cxgb_up - enable the adapter
2190  *      @adap: adapter being enabled
2191  *
2192  *      Called when the first port is enabled, this function performs the
2193  *      actions necessary to make an adapter operational, such as completing
2194  *      the initialization of HW modules, and enabling interrupts.
2195  *
2196  *      Must be called with the rtnl lock held.
2197  */
2198 static int cxgb_up(struct adapter *adap)
2199 {
2200         int err;
2201
2202         mutex_lock(&uld_mutex);
2203         err = setup_sge_queues(adap);
2204         if (err)
2205                 goto rel_lock;
2206         err = setup_rss(adap);
2207         if (err)
2208                 goto freeq;
2209
2210         if (adap->flags & USING_MSIX) {
2211                 name_msix_vecs(adap);
2212                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2213                                   adap->msix_info[0].desc, adap);
2214                 if (err)
2215                         goto irq_err;
2216                 err = request_msix_queue_irqs(adap);
2217                 if (err) {
2218                         free_irq(adap->msix_info[0].vec, adap);
2219                         goto irq_err;
2220                 }
2221         } else {
2222                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2223                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2224                                   adap->port[0]->name, adap);
2225                 if (err)
2226                         goto irq_err;
2227         }
2228
2229         enable_rx(adap);
2230         t4_sge_start(adap);
2231         t4_intr_enable(adap);
2232         adap->flags |= FULL_INIT_DONE;
2233         mutex_unlock(&uld_mutex);
2234
2235         notify_ulds(adap, CXGB4_STATE_UP);
2236 #if IS_ENABLED(CONFIG_IPV6)
2237         update_clip(adap);
2238 #endif
2239         /* Initialize hash mac addr list*/
2240         INIT_LIST_HEAD(&adap->mac_hlist);
2241         return err;
2242
2243  irq_err:
2244         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2245  freeq:
2246         t4_free_sge_resources(adap);
2247  rel_lock:
2248         mutex_unlock(&uld_mutex);
2249         return err;
2250 }
2251
2252 static void cxgb_down(struct adapter *adapter)
2253 {
2254         cancel_work_sync(&adapter->tid_release_task);
2255         cancel_work_sync(&adapter->db_full_task);
2256         cancel_work_sync(&adapter->db_drop_task);
2257         adapter->tid_release_task_busy = false;
2258         adapter->tid_release_head = NULL;
2259
2260         t4_sge_stop(adapter);
2261         t4_free_sge_resources(adapter);
2262         adapter->flags &= ~FULL_INIT_DONE;
2263 }
2264
2265 /*
2266  * net_device operations
2267  */
2268 static int cxgb_open(struct net_device *dev)
2269 {
2270         int err;
2271         struct port_info *pi = netdev_priv(dev);
2272         struct adapter *adapter = pi->adapter;
2273
2274         netif_carrier_off(dev);
2275
2276         if (!(adapter->flags & FULL_INIT_DONE)) {
2277                 err = cxgb_up(adapter);
2278                 if (err < 0)
2279                         return err;
2280         }
2281
2282         /* It's possible that the basic port information could have
2283          * changed since we first read it.
2284          */
2285         err = t4_update_port_info(pi);
2286         if (err < 0)
2287                 return err;
2288
2289         err = link_start(dev);
2290         if (!err)
2291                 netif_tx_start_all_queues(dev);
2292         return err;
2293 }
2294
2295 static int cxgb_close(struct net_device *dev)
2296 {
2297         struct port_info *pi = netdev_priv(dev);
2298         struct adapter *adapter = pi->adapter;
2299
2300         netif_tx_stop_all_queues(dev);
2301         netif_carrier_off(dev);
2302         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2303 }
2304
2305 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2306                 __be32 sip, __be16 sport, __be16 vlan,
2307                 unsigned int queue, unsigned char port, unsigned char mask)
2308 {
2309         int ret;
2310         struct filter_entry *f;
2311         struct adapter *adap;
2312         int i;
2313         u8 *val;
2314
2315         adap = netdev2adap(dev);
2316
2317         /* Adjust stid to correct filter index */
2318         stid -= adap->tids.sftid_base;
2319         stid += adap->tids.nftids;
2320
2321         /* Check to make sure the filter requested is writable ...
2322          */
2323         f = &adap->tids.ftid_tab[stid];
2324         ret = writable_filter(f);
2325         if (ret)
2326                 return ret;
2327
2328         /* Clear out any old resources being used by the filter before
2329          * we start constructing the new filter.
2330          */
2331         if (f->valid)
2332                 clear_filter(adap, f);
2333
2334         /* Clear out filter specifications */
2335         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2336         f->fs.val.lport = cpu_to_be16(sport);
2337         f->fs.mask.lport  = ~0;
2338         val = (u8 *)&sip;
2339         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2340                 for (i = 0; i < 4; i++) {
2341                         f->fs.val.lip[i] = val[i];
2342                         f->fs.mask.lip[i] = ~0;
2343                 }
2344                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2345                         f->fs.val.iport = port;
2346                         f->fs.mask.iport = mask;
2347                 }
2348         }
2349
2350         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2351                 f->fs.val.proto = IPPROTO_TCP;
2352                 f->fs.mask.proto = ~0;
2353         }
2354
2355         f->fs.dirsteer = 1;
2356         f->fs.iq = queue;
2357         /* Mark filter as locked */
2358         f->locked = 1;
2359         f->fs.rpttid = 1;
2360
2361         /* Save the actual tid. We need this to get the corresponding
2362          * filter entry structure in filter_rpl.
2363          */
2364         f->tid = stid + adap->tids.ftid_base;
2365         ret = set_filter_wr(adap, stid);
2366         if (ret) {
2367                 clear_filter(adap, f);
2368                 return ret;
2369         }
2370
2371         return 0;
2372 }
2373 EXPORT_SYMBOL(cxgb4_create_server_filter);
2374
2375 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2376                 unsigned int queue, bool ipv6)
2377 {
2378         struct filter_entry *f;
2379         struct adapter *adap;
2380
2381         adap = netdev2adap(dev);
2382
2383         /* Adjust stid to correct filter index */
2384         stid -= adap->tids.sftid_base;
2385         stid += adap->tids.nftids;
2386
2387         f = &adap->tids.ftid_tab[stid];
2388         /* Unlock the filter */
2389         f->locked = 0;
2390
2391         return delete_filter(adap, stid);
2392 }
2393 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2394
2395 static void cxgb_get_stats(struct net_device *dev,
2396                            struct rtnl_link_stats64 *ns)
2397 {
2398         struct port_stats stats;
2399         struct port_info *p = netdev_priv(dev);
2400         struct adapter *adapter = p->adapter;
2401
2402         /* Block retrieving statistics during EEH error
2403          * recovery. Otherwise, the recovery might fail
2404          * and the PCI device will be removed permanently
2405          */
2406         spin_lock(&adapter->stats_lock);
2407         if (!netif_device_present(dev)) {
2408                 spin_unlock(&adapter->stats_lock);
2409                 return;
2410         }
2411         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2412                                  &p->stats_base);
2413         spin_unlock(&adapter->stats_lock);
2414
2415         ns->tx_bytes   = stats.tx_octets;
2416         ns->tx_packets = stats.tx_frames;
2417         ns->rx_bytes   = stats.rx_octets;
2418         ns->rx_packets = stats.rx_frames;
2419         ns->multicast  = stats.rx_mcast_frames;
2420
2421         /* detailed rx_errors */
2422         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2423                                stats.rx_runt;
2424         ns->rx_over_errors   = 0;
2425         ns->rx_crc_errors    = stats.rx_fcs_err;
2426         ns->rx_frame_errors  = stats.rx_symbol_err;
2427         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2428                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2429                                stats.rx_trunc0 + stats.rx_trunc1 +
2430                                stats.rx_trunc2 + stats.rx_trunc3;
2431         ns->rx_missed_errors = 0;
2432
2433         /* detailed tx_errors */
2434         ns->tx_aborted_errors   = 0;
2435         ns->tx_carrier_errors   = 0;
2436         ns->tx_fifo_errors      = 0;
2437         ns->tx_heartbeat_errors = 0;
2438         ns->tx_window_errors    = 0;
2439
2440         ns->tx_errors = stats.tx_error_frames;
2441         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2442                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2443 }
2444
2445 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2446 {
2447         unsigned int mbox;
2448         int ret = 0, prtad, devad;
2449         struct port_info *pi = netdev_priv(dev);
2450         struct adapter *adapter = pi->adapter;
2451         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2452
2453         switch (cmd) {
2454         case SIOCGMIIPHY:
2455                 if (pi->mdio_addr < 0)
2456                         return -EOPNOTSUPP;
2457                 data->phy_id = pi->mdio_addr;
2458                 break;
2459         case SIOCGMIIREG:
2460         case SIOCSMIIREG:
2461                 if (mdio_phy_id_is_c45(data->phy_id)) {
2462                         prtad = mdio_phy_id_prtad(data->phy_id);
2463                         devad = mdio_phy_id_devad(data->phy_id);
2464                 } else if (data->phy_id < 32) {
2465                         prtad = data->phy_id;
2466                         devad = 0;
2467                         data->reg_num &= 0x1f;
2468                 } else
2469                         return -EINVAL;
2470
2471                 mbox = pi->adapter->pf;
2472                 if (cmd == SIOCGMIIREG)
2473                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2474                                          data->reg_num, &data->val_out);
2475                 else
2476                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2477                                          data->reg_num, data->val_in);
2478                 break;
2479         case SIOCGHWTSTAMP:
2480                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2481                                     sizeof(pi->tstamp_config)) ?
2482                         -EFAULT : 0;
2483         case SIOCSHWTSTAMP:
2484                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2485                                    sizeof(pi->tstamp_config)))
2486                         return -EFAULT;
2487
2488                 if (!is_t4(adapter->params.chip)) {
2489                         switch (pi->tstamp_config.tx_type) {
2490                         case HWTSTAMP_TX_OFF:
2491                         case HWTSTAMP_TX_ON:
2492                                 break;
2493                         default:
2494                                 return -ERANGE;
2495                         }
2496
2497                         switch (pi->tstamp_config.rx_filter) {
2498                         case HWTSTAMP_FILTER_NONE:
2499                                 pi->rxtstamp = false;
2500                                 break;
2501                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2502                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2503                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2504                                                          PTP_TS_L4);
2505                                 break;
2506                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2507                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2508                                                          PTP_TS_L2_L4);
2509                                 break;
2510                         case HWTSTAMP_FILTER_ALL:
2511                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2512                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2513                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2514                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2515                                 pi->rxtstamp = true;
2516                                 break;
2517                         default:
2518                                 pi->tstamp_config.rx_filter =
2519                                         HWTSTAMP_FILTER_NONE;
2520                                 return -ERANGE;
2521                         }
2522
2523                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2524                             (pi->tstamp_config.rx_filter ==
2525                                 HWTSTAMP_FILTER_NONE)) {
2526                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2527                                         pi->ptp_enable = false;
2528                         }
2529
2530                         if (pi->tstamp_config.rx_filter !=
2531                                 HWTSTAMP_FILTER_NONE) {
2532                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2533                                                                  pi) >= 0)
2534                                         pi->ptp_enable = true;
2535                         }
2536                 } else {
2537                         /* For T4 Adapters */
2538                         switch (pi->tstamp_config.rx_filter) {
2539                         case HWTSTAMP_FILTER_NONE:
2540                         pi->rxtstamp = false;
2541                         break;
2542                         case HWTSTAMP_FILTER_ALL:
2543                         pi->rxtstamp = true;
2544                         break;
2545                         default:
2546                         pi->tstamp_config.rx_filter =
2547                         HWTSTAMP_FILTER_NONE;
2548                         return -ERANGE;
2549                         }
2550                 }
2551                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2552                                     sizeof(pi->tstamp_config)) ?
2553                         -EFAULT : 0;
2554         default:
2555                 return -EOPNOTSUPP;
2556         }
2557         return ret;
2558 }
2559
2560 static void cxgb_set_rxmode(struct net_device *dev)
2561 {
2562         /* unfortunately we can't return errors to the stack */
2563         set_rxmode(dev, -1, false);
2564 }
2565
2566 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2567 {
2568         int ret;
2569         struct port_info *pi = netdev_priv(dev);
2570
2571         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2572                             -1, -1, -1, true);
2573         if (!ret)
2574                 dev->mtu = new_mtu;
2575         return ret;
2576 }
2577
2578 #ifdef CONFIG_PCI_IOV
2579 static int dummy_open(struct net_device *dev)
2580 {
2581         /* Turn carrier off since we don't have to transmit anything on this
2582          * interface.
2583          */
2584         netif_carrier_off(dev);
2585         return 0;
2586 }
2587
2588 /* Fill MAC address that will be assigned by the FW */
2589 static void fill_vf_station_mac_addr(struct adapter *adap)
2590 {
2591         unsigned int i;
2592         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2593         int err;
2594         u8 *na;
2595         u16 a, b;
2596
2597         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2598         if (!err) {
2599                 na = adap->params.vpd.na;
2600                 for (i = 0; i < ETH_ALEN; i++)
2601                         hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2602                                       hex2val(na[2 * i + 1]));
2603                 a = (hw_addr[0] << 8) | hw_addr[1];
2604                 b = (hw_addr[1] << 8) | hw_addr[2];
2605                 a ^= b;
2606                 a |= 0x0200;    /* locally assigned Ethernet MAC address */
2607                 a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2608                 macaddr[0] = a >> 8;
2609                 macaddr[1] = a & 0xff;
2610
2611                 for (i = 2; i < 5; i++)
2612                         macaddr[i] = hw_addr[i + 1];
2613
2614                 for (i = 0; i < adap->num_vfs; i++) {
2615                         macaddr[5] = adap->pf * 16 + i;
2616                         ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2617                 }
2618         }
2619 }
2620
2621 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2622 {
2623         struct port_info *pi = netdev_priv(dev);
2624         struct adapter *adap = pi->adapter;
2625         int ret;
2626
2627         /* verify MAC addr is valid */
2628         if (!is_valid_ether_addr(mac)) {
2629                 dev_err(pi->adapter->pdev_dev,
2630                         "Invalid Ethernet address %pM for VF %d\n",
2631                         mac, vf);
2632                 return -EINVAL;
2633         }
2634
2635         dev_info(pi->adapter->pdev_dev,
2636                  "Setting MAC %pM on VF %d\n", mac, vf);
2637         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2638         if (!ret)
2639                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2640         return ret;
2641 }
2642
2643 static int cxgb_get_vf_config(struct net_device *dev,
2644                               int vf, struct ifla_vf_info *ivi)
2645 {
2646         struct port_info *pi = netdev_priv(dev);
2647         struct adapter *adap = pi->adapter;
2648
2649         if (vf >= adap->num_vfs)
2650                 return -EINVAL;
2651         ivi->vf = vf;
2652         ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2653         ivi->min_tx_rate = 0;
2654         ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2655         return 0;
2656 }
2657
2658 static int cxgb_get_phys_port_id(struct net_device *dev,
2659                                  struct netdev_phys_item_id *ppid)
2660 {
2661         struct port_info *pi = netdev_priv(dev);
2662         unsigned int phy_port_id;
2663
2664         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2665         ppid->id_len = sizeof(phy_port_id);
2666         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2667         return 0;
2668 }
2669
2670 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2671                             int max_tx_rate)
2672 {
2673         struct port_info *pi = netdev_priv(dev);
2674         struct adapter *adap = pi->adapter;
2675         struct fw_port_cmd port_cmd, port_rpl;
2676         u32 link_status, speed = 0;
2677         u32 fw_pfvf, fw_class;
2678         int class_id = vf;
2679         int link_ok, ret;
2680         u16 pktsize;
2681
2682         if (vf >= adap->num_vfs)
2683                 return -EINVAL;
2684
2685         if (min_tx_rate) {
2686                 dev_err(adap->pdev_dev,
2687                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2688                         min_tx_rate, vf);
2689                 return -EINVAL;
2690         }
2691         /* Retrieve link details for VF port */
2692         memset(&port_cmd, 0, sizeof(port_cmd));
2693         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2694                                             FW_CMD_REQUEST_F |
2695                                             FW_CMD_READ_F |
2696                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2697         port_cmd.action_to_len16 =
2698                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
2699                             FW_LEN16(port_cmd));
2700         ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
2701                          &port_rpl);
2702         if (ret != FW_SUCCESS) {
2703                 dev_err(adap->pdev_dev,
2704                         "Failed to get link status for VF %d\n", vf);
2705                 return -EINVAL;
2706         }
2707         link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
2708         link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0;
2709         if (!link_ok) {
2710                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2711                 return -EINVAL;
2712         }
2713         /* Determine link speed */
2714         if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
2715                 speed = 100;
2716         else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
2717                 speed = 1000;
2718         else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
2719                 speed = 10000;
2720         else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
2721                 speed = 25000;
2722         else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
2723                 speed = 40000;
2724         else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
2725                 speed = 100000;
2726
2727         if (max_tx_rate > speed) {
2728                 dev_err(adap->pdev_dev,
2729                         "Max tx rate %d for VF %d can't be > link-speed %u",
2730                         max_tx_rate, vf, speed);
2731                 return -EINVAL;
2732         }
2733         pktsize = be16_to_cpu(port_rpl.u.info.mtu);
2734         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2735         pktsize = pktsize - sizeof(struct ethhdr) - 4;
2736         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2737         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2738         /* configure Traffic Class for rate-limiting */
2739         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2740                               SCHED_CLASS_LEVEL_CL_RL,
2741                               SCHED_CLASS_MODE_CLASS,
2742                               SCHED_CLASS_RATEUNIT_BITS,
2743                               SCHED_CLASS_RATEMODE_ABS,
2744                               pi->port_id, class_id, 0,
2745                               max_tx_rate * 1000, 0, pktsize);
2746         if (ret) {
2747                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2748                         ret);
2749                 return -EINVAL;
2750         }
2751         dev_info(adap->pdev_dev,
2752                  "Class %d with MSS %u configured with rate %u\n",
2753                  class_id, pktsize, max_tx_rate);
2754
2755         /* bind VF to configured Traffic Class */
2756         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2757                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2758         fw_class = class_id;
2759         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2760                             &fw_class);
2761         if (ret) {
2762                 dev_err(adap->pdev_dev,
2763                         "Err %d in binding VF %d to Traffic Class %d\n",
2764                         ret, vf, class_id);
2765                 return -EINVAL;
2766         }
2767         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2768                  adap->pf, vf, class_id);
2769         adap->vfinfo[vf].tx_rate = max_tx_rate;
2770         return 0;
2771 }
2772
2773 #endif
2774
2775 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2776 {
2777         int ret;
2778         struct sockaddr *addr = p;
2779         struct port_info *pi = netdev_priv(dev);
2780
2781         if (!is_valid_ether_addr(addr->sa_data))
2782                 return -EADDRNOTAVAIL;
2783
2784         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2785                             pi->xact_addr_filt, addr->sa_data, true, true);
2786         if (ret < 0)
2787                 return ret;
2788
2789         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2790         pi->xact_addr_filt = ret;
2791         return 0;
2792 }
2793
2794 #ifdef CONFIG_NET_POLL_CONTROLLER
2795 static void cxgb_netpoll(struct net_device *dev)
2796 {
2797         struct port_info *pi = netdev_priv(dev);
2798         struct adapter *adap = pi->adapter;
2799
2800         if (adap->flags & USING_MSIX) {
2801                 int i;
2802                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2803
2804                 for (i = pi->nqsets; i; i--, rx++)
2805                         t4_sge_intr_msix(0, &rx->rspq);
2806         } else
2807                 t4_intr_handler(adap)(0, adap);
2808 }
2809 #endif
2810
2811 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2812 {
2813         struct port_info *pi = netdev_priv(dev);
2814         struct adapter *adap = pi->adapter;
2815         struct sched_class *e;
2816         struct ch_sched_params p;
2817         struct ch_sched_queue qe;
2818         u32 req_rate;
2819         int err = 0;
2820
2821         if (!can_sched(dev))
2822                 return -ENOTSUPP;
2823
2824         if (index < 0 || index > pi->nqsets - 1)
2825                 return -EINVAL;
2826
2827         if (!(adap->flags & FULL_INIT_DONE)) {
2828                 dev_err(adap->pdev_dev,
2829                         "Failed to rate limit on queue %d. Link Down?\n",
2830                         index);
2831                 return -EINVAL;
2832         }
2833
2834         /* Convert from Mbps to Kbps */
2835         req_rate = rate << 10;
2836
2837         /* Max rate is 10 Gbps */
2838         if (req_rate >= SCHED_MAX_RATE_KBPS) {
2839                 dev_err(adap->pdev_dev,
2840                         "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2841                         rate, SCHED_MAX_RATE_KBPS);
2842                 return -ERANGE;
2843         }
2844
2845         /* First unbind the queue from any existing class */
2846         memset(&qe, 0, sizeof(qe));
2847         qe.queue = index;
2848         qe.class = SCHED_CLS_NONE;
2849
2850         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2851         if (err) {
2852                 dev_err(adap->pdev_dev,
2853                         "Unbinding Queue %d on port %d fail. Err: %d\n",
2854                         index, pi->port_id, err);
2855                 return err;
2856         }
2857
2858         /* Queue already unbound */
2859         if (!req_rate)
2860                 return 0;
2861
2862         /* Fetch any available unused or matching scheduling class */
2863         memset(&p, 0, sizeof(p));
2864         p.type = SCHED_CLASS_TYPE_PACKET;
2865         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2866         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2867         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2868         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2869         p.u.params.channel  = pi->tx_chan;
2870         p.u.params.class    = SCHED_CLS_NONE;
2871         p.u.params.minrate  = 0;
2872         p.u.params.maxrate  = req_rate;
2873         p.u.params.weight   = 0;
2874         p.u.params.pktsize  = dev->mtu;
2875
2876         e = cxgb4_sched_class_alloc(dev, &p);
2877         if (!e)
2878                 return -ENOMEM;
2879
2880         /* Bind the queue to a scheduling class */
2881         memset(&qe, 0, sizeof(qe));
2882         qe.queue = index;
2883         qe.class = e->idx;
2884
2885         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2886         if (err)
2887                 dev_err(adap->pdev_dev,
2888                         "Queue rate limiting failed. Err: %d\n", err);
2889         return err;
2890 }
2891
2892 static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
2893                          __be16 proto, struct tc_to_netdev *tc)
2894 {
2895         struct port_info *pi = netdev2pinfo(dev);
2896         struct adapter *adap = netdev2adap(dev);
2897
2898         if (chain_index)
2899                 return -EOPNOTSUPP;
2900
2901         if (!(adap->flags & FULL_INIT_DONE)) {
2902                 dev_err(adap->pdev_dev,
2903                         "Failed to setup tc on port %d. Link Down?\n",
2904                         pi->port_id);
2905                 return -EINVAL;
2906         }
2907
2908         if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2909             tc->type == TC_SETUP_CLSU32) {
2910                 switch (tc->cls_u32->command) {
2911                 case TC_CLSU32_NEW_KNODE:
2912                 case TC_CLSU32_REPLACE_KNODE:
2913                         return cxgb4_config_knode(dev, proto, tc->cls_u32);
2914                 case TC_CLSU32_DELETE_KNODE:
2915                         return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2916                 default:
2917                         return -EOPNOTSUPP;
2918                 }
2919         }
2920
2921         return -EOPNOTSUPP;
2922 }
2923
2924 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2925                                            netdev_features_t features)
2926 {
2927         /* Disable GRO, if RX_CSUM is disabled */
2928         if (!(features & NETIF_F_RXCSUM))
2929                 features &= ~NETIF_F_GRO;
2930
2931         return features;
2932 }
2933
2934 static const struct net_device_ops cxgb4_netdev_ops = {
2935         .ndo_open             = cxgb_open,
2936         .ndo_stop             = cxgb_close,
2937         .ndo_start_xmit       = t4_eth_xmit,
2938         .ndo_select_queue     = cxgb_select_queue,
2939         .ndo_get_stats64      = cxgb_get_stats,
2940         .ndo_set_rx_mode      = cxgb_set_rxmode,
2941         .ndo_set_mac_address  = cxgb_set_mac_addr,
2942         .ndo_set_features     = cxgb_set_features,
2943         .ndo_validate_addr    = eth_validate_addr,
2944         .ndo_do_ioctl         = cxgb_ioctl,
2945         .ndo_change_mtu       = cxgb_change_mtu,
2946 #ifdef CONFIG_NET_POLL_CONTROLLER
2947         .ndo_poll_controller  = cxgb_netpoll,
2948 #endif
2949 #ifdef CONFIG_CHELSIO_T4_FCOE
2950         .ndo_fcoe_enable      = cxgb_fcoe_enable,
2951         .ndo_fcoe_disable     = cxgb_fcoe_disable,
2952 #endif /* CONFIG_CHELSIO_T4_FCOE */
2953         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2954         .ndo_setup_tc         = cxgb_setup_tc,
2955         .ndo_fix_features     = cxgb_fix_features,
2956 };
2957
2958 #ifdef CONFIG_PCI_IOV
2959 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2960         .ndo_open             = dummy_open,
2961         .ndo_set_vf_mac       = cxgb_set_vf_mac,
2962         .ndo_get_vf_config    = cxgb_get_vf_config,
2963         .ndo_set_vf_rate      = cxgb_set_vf_rate,
2964         .ndo_get_phys_port_id = cxgb_get_phys_port_id,
2965 };
2966 #endif
2967
2968 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2969 {
2970         struct adapter *adapter = netdev2adap(dev);
2971
2972         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2973         strlcpy(info->version, cxgb4_driver_version,
2974                 sizeof(info->version));
2975         strlcpy(info->bus_info, pci_name(adapter->pdev),
2976                 sizeof(info->bus_info));
2977 }
2978
2979 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2980         .get_drvinfo       = get_drvinfo,
2981 };
2982
2983 void t4_fatal_err(struct adapter *adap)
2984 {
2985         int port;
2986
2987         if (pci_channel_offline(adap->pdev))
2988                 return;
2989
2990         /* Disable the SGE since ULDs are going to free resources that
2991          * could be exposed to the adapter.  RDMA MWs for example...
2992          */
2993         t4_shutdown_adapter(adap);
2994         for_each_port(adap, port) {
2995                 struct net_device *dev = adap->port[port];
2996
2997                 /* If we get here in very early initialization the network
2998                  * devices may not have been set up yet.
2999                  */
3000                 if (!dev)
3001                         continue;
3002
3003                 netif_tx_stop_all_queues(dev);
3004                 netif_carrier_off(dev);
3005         }
3006         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3007 }
3008
3009 static void setup_memwin(struct adapter *adap)
3010 {
3011         u32 nic_win_base = t4_get_util_window(adap);
3012
3013         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3014 }
3015
3016 static void setup_memwin_rdma(struct adapter *adap)
3017 {
3018         if (adap->vres.ocq.size) {
3019                 u32 start;
3020                 unsigned int sz_kb;
3021
3022                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3023                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3024                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3025                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3026                 t4_write_reg(adap,
3027                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3028                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3029                 t4_write_reg(adap,
3030                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3031                              adap->vres.ocq.start);
3032                 t4_read_reg(adap,
3033                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3034         }
3035 }
3036
3037 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3038 {
3039         u32 v;
3040         int ret;
3041
3042         /* get device capabilities */
3043         memset(c, 0, sizeof(*c));
3044         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3045                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3046         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3047         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3048         if (ret < 0)
3049                 return ret;
3050
3051         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3052                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3053         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3054         if (ret < 0)
3055                 return ret;
3056
3057         ret = t4_config_glbl_rss(adap, adap->pf,
3058                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3059                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3060                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3061         if (ret < 0)
3062                 return ret;
3063
3064         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3065                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3066                           FW_CMD_CAP_PF);
3067         if (ret < 0)
3068                 return ret;
3069
3070         t4_sge_init(adap);
3071
3072         /* tweak some settings */
3073         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3074         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3075         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3076         v = t4_read_reg(adap, TP_PIO_DATA_A);
3077         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3078
3079         /* first 4 Tx modulation queues point to consecutive Tx channels */
3080         adap->params.tp.tx_modq_map = 0xE4;
3081         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3082                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3083
3084         /* associate each Tx modulation queue with consecutive Tx channels */
3085         v = 0x84218421;
3086         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3087                           &v, 1, TP_TX_SCHED_HDR_A);
3088         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3089                           &v, 1, TP_TX_SCHED_FIFO_A);
3090         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3091                           &v, 1, TP_TX_SCHED_PCMD_A);
3092
3093 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3094         if (is_offload(adap)) {
3095                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3096                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3097                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3098                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3099                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3100                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3101                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3102                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3103                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3104                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3105         }
3106
3107         /* get basic stuff going */
3108         return t4_early_init(adap, adap->pf);
3109 }
3110
3111 /*
3112  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3113  */
3114 #define MAX_ATIDS 8192U
3115
3116 /*
3117  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3118  *
3119  * If the firmware we're dealing with has Configuration File support, then
3120  * we use that to perform all configuration
3121  */
3122
3123 /*
3124  * Tweak configuration based on module parameters, etc.  Most of these have
3125  * defaults assigned to them by Firmware Configuration Files (if we're using
3126  * them) but need to be explicitly set if we're using hard-coded
3127  * initialization.  But even in the case of using Firmware Configuration
3128  * Files, we'd like to expose the ability to change these via module
3129  * parameters so these are essentially common tweaks/settings for
3130  * Configuration Files and hard-coded initialization ...
3131  */
3132 static int adap_init0_tweaks(struct adapter *adapter)
3133 {
3134         /*
3135          * Fix up various Host-Dependent Parameters like Page Size, Cache
3136          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3137          * 64B Cache Line Size ...
3138          */
3139         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3140
3141         /*
3142          * Process module parameters which affect early initialization.
3143          */
3144         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3145                 dev_err(&adapter->pdev->dev,
3146                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3147                         rx_dma_offset);
3148                 rx_dma_offset = 2;
3149         }
3150         t4_set_reg_field(adapter, SGE_CONTROL_A,
3151                          PKTSHIFT_V(PKTSHIFT_M),
3152                          PKTSHIFT_V(rx_dma_offset));
3153
3154         /*
3155          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3156          * adds the pseudo header itself.
3157          */
3158         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3159                                CSUM_HAS_PSEUDO_HDR_F, 0);
3160
3161         return 0;
3162 }
3163
3164 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3165  * unto themselves and they contain their own firmware to perform their
3166  * tasks ...
3167  */
3168 static int phy_aq1202_version(const u8 *phy_fw_data,
3169                               size_t phy_fw_size)
3170 {
3171         int offset;
3172
3173         /* At offset 0x8 you're looking for the primary image's
3174          * starting offset which is 3 Bytes wide
3175          *
3176          * At offset 0xa of the primary image, you look for the offset
3177          * of the DRAM segment which is 3 Bytes wide.
3178          *
3179          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3180          * wide
3181          */
3182         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3183         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3184         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3185
3186         offset = le24(phy_fw_data + 0x8) << 12;
3187         offset = le24(phy_fw_data + offset + 0xa);
3188         return be16(phy_fw_data + offset + 0x27e);
3189
3190         #undef be16
3191         #undef le16
3192         #undef le24
3193 }
3194
3195 static struct info_10gbt_phy_fw {
3196         unsigned int phy_fw_id;         /* PCI Device ID */
3197         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3198         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3199         int phy_flash;                  /* Has FLASH for PHY Firmware */
3200 } phy_info_array[] = {
3201         {
3202                 PHY_AQ1202_DEVICEID,
3203                 PHY_AQ1202_FIRMWARE,
3204                 phy_aq1202_version,
3205                 1,
3206         },
3207         {
3208                 PHY_BCM84834_DEVICEID,
3209                 PHY_BCM84834_FIRMWARE,
3210                 NULL,
3211                 0,
3212         },
3213         { 0, NULL, NULL },
3214 };
3215
3216 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3217 {
3218         int i;
3219
3220         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3221                 if (phy_info_array[i].phy_fw_id == devid)
3222                         return &phy_info_array[i];
3223         }
3224         return NULL;
3225 }
3226
3227 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3228  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3229  * we return a negative error number.  If we transfer new firmware we return 1
3230  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3231  */
3232 static int adap_init0_phy(struct adapter *adap)
3233 {
3234         const struct firmware *phyf;
3235         int ret;
3236         struct info_10gbt_phy_fw *phy_info;
3237
3238         /* Use the device ID to determine which PHY file to flash.
3239          */
3240         phy_info = find_phy_info(adap->pdev->device);
3241         if (!phy_info) {
3242                 dev_warn(adap->pdev_dev,
3243                          "No PHY Firmware file found for this PHY\n");
3244                 return -EOPNOTSUPP;
3245         }
3246
3247         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3248          * use that. The adapter firmware provides us with a memory buffer
3249          * where we can load a PHY firmware file from the host if we want to
3250          * override the PHY firmware File in flash.
3251          */
3252         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3253                                       adap->pdev_dev);
3254         if (ret < 0) {
3255                 /* For adapters without FLASH attached to PHY for their
3256                  * firmware, it's obviously a fatal error if we can't get the
3257                  * firmware to the adapter.  For adapters with PHY firmware
3258                  * FLASH storage, it's worth a warning if we can't find the
3259                  * PHY Firmware but we'll neuter the error ...
3260                  */
3261                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3262                         "/lib/firmware/%s, error %d\n",
3263                         phy_info->phy_fw_file, -ret);
3264                 if (phy_info->phy_flash) {
3265                         int cur_phy_fw_ver = 0;
3266
3267                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3268                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3269                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3270                         ret = 0;
3271                 }
3272
3273                 return ret;
3274         }
3275
3276         /* Load PHY Firmware onto adapter.
3277          */
3278         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3279                              phy_info->phy_fw_version,
3280                              (u8 *)phyf->data, phyf->size);
3281         if (ret < 0)
3282                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3283                         -ret);
3284         else if (ret > 0) {
3285                 int new_phy_fw_ver = 0;
3286
3287                 if (phy_info->phy_fw_version)
3288                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3289                                                                   phyf->size);
3290                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3291                          "Firmware /lib/firmware/%s, version %#x\n",
3292                          phy_info->phy_fw_file, new_phy_fw_ver);
3293         }
3294
3295         release_firmware(phyf);
3296
3297         return ret;
3298 }
3299
3300 /*
3301  * Attempt to initialize the adapter via a Firmware Configuration File.
3302  */
3303 static int adap_init0_config(struct adapter *adapter, int reset)
3304 {
3305         struct fw_caps_config_cmd caps_cmd;
3306         const struct firmware *cf;
3307         unsigned long mtype = 0, maddr = 0;
3308         u32 finiver, finicsum, cfcsum;
3309         int ret;
3310         int config_issued = 0;
3311         char *fw_config_file, fw_config_file_path[256];
3312         char *config_name = NULL;
3313
3314         /*
3315          * Reset device if necessary.
3316          */
3317         if (reset) {
3318                 ret = t4_fw_reset(adapter, adapter->mbox,
3319                                   PIORSTMODE_F | PIORST_F);
3320                 if (ret < 0)
3321                         goto bye;
3322         }
3323
3324         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3325          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3326          * to be performed after any global adapter RESET above since some
3327          * PHYs only have local RAM copies of the PHY firmware.
3328          */
3329         if (is_10gbt_device(adapter->pdev->device)) {
3330                 ret = adap_init0_phy(adapter);
3331                 if (ret < 0)
3332                         goto bye;
3333         }
3334         /*
3335          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3336          * then use that.  Otherwise, use the configuration file stored
3337          * in the adapter flash ...
3338          */
3339         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3340         case CHELSIO_T4:
3341                 fw_config_file = FW4_CFNAME;
3342                 break;
3343         case CHELSIO_T5:
3344                 fw_config_file = FW5_CFNAME;
3345                 break;
3346         case CHELSIO_T6:
3347                 fw_config_file = FW6_CFNAME;
3348                 break;
3349         default:
3350                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3351                        adapter->pdev->device);
3352                 ret = -EINVAL;
3353                 goto bye;
3354         }
3355
3356         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3357         if (ret < 0) {
3358                 config_name = "On FLASH";
3359                 mtype = FW_MEMTYPE_CF_FLASH;
3360                 maddr = t4_flash_cfg_addr(adapter);
3361         } else {
3362                 u32 params[7], val[7];
3363
3364                 sprintf(fw_config_file_path,
3365                         "/lib/firmware/%s", fw_config_file);
3366                 config_name = fw_config_file_path;
3367
3368                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3369                         ret = -ENOMEM;
3370                 else {
3371                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3372                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3373                         ret = t4_query_params(adapter, adapter->mbox,
3374                                               adapter->pf, 0, 1, params, val);
3375                         if (ret == 0) {
3376                                 /*
3377                                  * For t4_memory_rw() below addresses and
3378                                  * sizes have to be in terms of multiples of 4
3379                                  * bytes.  So, if the Configuration File isn't
3380                                  * a multiple of 4 bytes in length we'll have
3381                                  * to write that out separately since we can't
3382                                  * guarantee that the bytes following the
3383                                  * residual byte in the buffer returned by
3384                                  * request_firmware() are zeroed out ...
3385                                  */
3386                                 size_t resid = cf->size & 0x3;
3387                                 size_t size = cf->size & ~0x3;
3388                                 __be32 *data = (__be32 *)cf->data;
3389
3390                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3391                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3392
3393                                 spin_lock(&adapter->win0_lock);
3394                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3395                                                    size, data, T4_MEMORY_WRITE);
3396                                 if (ret == 0 && resid != 0) {
3397                                         union {
3398                                                 __be32 word;
3399                                                 char buf[4];
3400                                         } last;
3401                                         int i;
3402
3403                                         last.word = data[size >> 2];
3404                                         for (i = resid; i < 4; i++)
3405                                                 last.buf[i] = 0;
3406                                         ret = t4_memory_rw(adapter, 0, mtype,
3407                                                            maddr + size,
3408                                                            4, &last.word,
3409                                                            T4_MEMORY_WRITE);
3410                                 }
3411                                 spin_unlock(&adapter->win0_lock);
3412                         }
3413                 }
3414
3415                 release_firmware(cf);
3416                 if (ret)
3417                         goto bye;
3418         }
3419
3420         /*
3421          * Issue a Capability Configuration command to the firmware to get it
3422          * to parse the Configuration File.  We don't use t4_fw_config_file()
3423          * because we want the ability to modify various features after we've
3424          * processed the configuration file ...
3425          */
3426         memset(&caps_cmd, 0, sizeof(caps_cmd));
3427         caps_cmd.op_to_write =
3428                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3429                       FW_CMD_REQUEST_F |
3430                       FW_CMD_READ_F);
3431         caps_cmd.cfvalid_to_len16 =
3432                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3433                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3434                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3435                       FW_LEN16(caps_cmd));
3436         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3437                          &caps_cmd);
3438
3439         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3440          * Configuration File in FLASH), our last gasp effort is to use the
3441          * Firmware Configuration File which is embedded in the firmware.  A
3442          * very few early versions of the firmware didn't have one embedded
3443          * but we can ignore those.
3444          */
3445         if (ret == -ENOENT) {
3446                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3447                 caps_cmd.op_to_write =
3448                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3449                                         FW_CMD_REQUEST_F |
3450                                         FW_CMD_READ_F);
3451                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3452                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3453                                 sizeof(caps_cmd), &caps_cmd);
3454                 config_name = "Firmware Default";
3455         }
3456
3457         config_issued = 1;
3458         if (ret < 0)
3459                 goto bye;
3460
3461         finiver = ntohl(caps_cmd.finiver);
3462         finicsum = ntohl(caps_cmd.finicsum);
3463         cfcsum = ntohl(caps_cmd.cfcsum);
3464         if (finicsum != cfcsum)
3465                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3466                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3467                          finicsum, cfcsum);
3468
3469         /*
3470          * And now tell the firmware to use the configuration we just loaded.
3471          */
3472         caps_cmd.op_to_write =
3473                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3474                       FW_CMD_REQUEST_F |
3475                       FW_CMD_WRITE_F);
3476         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3477         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3478                          NULL);
3479         if (ret < 0)
3480                 goto bye;
3481
3482         /*
3483          * Tweak configuration based on system architecture, module
3484          * parameters, etc.
3485          */
3486         ret = adap_init0_tweaks(adapter);
3487         if (ret < 0)
3488                 goto bye;
3489
3490         /*
3491          * And finally tell the firmware to initialize itself using the
3492          * parameters from the Configuration File.
3493          */
3494         ret = t4_fw_initialize(adapter, adapter->mbox);
3495         if (ret < 0)
3496                 goto bye;
3497
3498         /* Emit Firmware Configuration File information and return
3499          * successfully.
3500          */
3501         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3502                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3503                  config_name, finiver, cfcsum);
3504         return 0;
3505
3506         /*
3507          * Something bad happened.  Return the error ...  (If the "error"
3508          * is that there's no Configuration File on the adapter we don't
3509          * want to issue a warning since this is fairly common.)
3510          */
3511 bye:
3512         if (config_issued && ret != -ENOENT)
3513                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3514                          config_name, -ret);
3515         return ret;
3516 }
3517
3518 static struct fw_info fw_info_array[] = {
3519         {
3520                 .chip = CHELSIO_T4,
3521                 .fs_name = FW4_CFNAME,
3522                 .fw_mod_name = FW4_FNAME,
3523                 .fw_hdr = {
3524                         .chip = FW_HDR_CHIP_T4,
3525                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3526                         .intfver_nic = FW_INTFVER(T4, NIC),
3527                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3528                         .intfver_ri = FW_INTFVER(T4, RI),
3529                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3530                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3531                 },
3532         }, {
3533                 .chip = CHELSIO_T5,
3534                 .fs_name = FW5_CFNAME,
3535                 .fw_mod_name = FW5_FNAME,
3536                 .fw_hdr = {
3537                         .chip = FW_HDR_CHIP_T5,
3538                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3539                         .intfver_nic = FW_INTFVER(T5, NIC),
3540                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3541                         .intfver_ri = FW_INTFVER(T5, RI),
3542                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3543                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3544                 },
3545         }, {
3546                 .chip = CHELSIO_T6,
3547                 .fs_name = FW6_CFNAME,
3548                 .fw_mod_name = FW6_FNAME,
3549                 .fw_hdr = {
3550                         .chip = FW_HDR_CHIP_T6,
3551                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3552                         .intfver_nic = FW_INTFVER(T6, NIC),
3553                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3554                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3555                         .intfver_ri = FW_INTFVER(T6, RI),
3556                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3557                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3558                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3559                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3560                 },
3561         }
3562
3563 };
3564
3565 static struct fw_info *find_fw_info(int chip)
3566 {
3567         int i;
3568
3569         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3570                 if (fw_info_array[i].chip == chip)
3571                         return &fw_info_array[i];
3572         }
3573         return NULL;
3574 }
3575
3576 /*
3577  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3578  */
3579 static int adap_init0(struct adapter *adap)
3580 {
3581         int ret;
3582         u32 v, port_vec;
3583         enum dev_state state;
3584         u32 params[7], val[7];
3585         struct fw_caps_config_cmd caps_cmd;
3586         int reset = 1;
3587
3588         /* Grab Firmware Device Log parameters as early as possible so we have
3589          * access to it for debugging, etc.
3590          */
3591         ret = t4_init_devlog_params(adap);
3592         if (ret < 0)
3593                 return ret;
3594
3595         /* Contact FW, advertising Master capability */
3596         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3597                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3598         if (ret < 0) {
3599                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3600                         ret);
3601                 return ret;
3602         }
3603         if (ret == adap->mbox)
3604                 adap->flags |= MASTER_PF;
3605
3606         /*
3607          * If we're the Master PF Driver and the device is uninitialized,
3608          * then let's consider upgrading the firmware ...  (We always want
3609          * to check the firmware version number in order to A. get it for
3610          * later reporting and B. to warn if the currently loaded firmware
3611          * is excessively mismatched relative to the driver.)
3612          */
3613         t4_get_fw_version(adap, &adap->params.fw_vers);
3614         t4_get_bs_version(adap, &adap->params.bs_vers);
3615         t4_get_tp_version(adap, &adap->params.tp_vers);
3616         t4_get_exprom_version(adap, &adap->params.er_vers);
3617
3618         ret = t4_check_fw_version(adap);
3619         /* If firmware is too old (not supported by driver) force an update. */
3620         if (ret)
3621                 state = DEV_STATE_UNINIT;
3622         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3623                 struct fw_info *fw_info;
3624                 struct fw_hdr *card_fw;
3625                 const struct firmware *fw;
3626                 const u8 *fw_data = NULL;
3627                 unsigned int fw_size = 0;
3628
3629                 /* This is the firmware whose headers the driver was compiled
3630                  * against
3631                  */
3632                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3633                 if (fw_info == NULL) {
3634                         dev_err(adap->pdev_dev,
3635                                 "unable to get firmware info for chip %d.\n",
3636                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3637                         return -EINVAL;
3638                 }
3639
3640                 /* allocate memory to read the header of the firmware on the
3641                  * card
3642                  */
3643                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3644
3645                 /* Get FW from from /lib/firmware/ */
3646                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3647                                        adap->pdev_dev);
3648                 if (ret < 0) {
3649                         dev_err(adap->pdev_dev,
3650                                 "unable to load firmware image %s, error %d\n",
3651                                 fw_info->fw_mod_name, ret);
3652                 } else {
3653                         fw_data = fw->data;
3654                         fw_size = fw->size;
3655                 }
3656
3657                 /* upgrade FW logic */
3658                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3659                                  state, &reset);
3660
3661                 /* Cleaning up */
3662                 release_firmware(fw);
3663                 kvfree(card_fw);
3664
3665                 if (ret < 0)
3666                         goto bye;
3667         }
3668
3669         /*
3670          * Grab VPD parameters.  This should be done after we establish a
3671          * connection to the firmware since some of the VPD parameters
3672          * (notably the Core Clock frequency) are retrieved via requests to
3673          * the firmware.  On the other hand, we need these fairly early on
3674          * so we do this right after getting ahold of the firmware.
3675          */
3676         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3677         if (ret < 0)
3678                 goto bye;
3679
3680         /*
3681          * Find out what ports are available to us.  Note that we need to do
3682          * this before calling adap_init0_no_config() since it needs nports
3683          * and portvec ...
3684          */
3685         v =
3686             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3687             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3688         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3689         if (ret < 0)
3690                 goto bye;
3691
3692         adap->params.nports = hweight32(port_vec);
3693         adap->params.portvec = port_vec;
3694
3695         /* If the firmware is initialized already, emit a simply note to that
3696          * effect. Otherwise, it's time to try initializing the adapter.
3697          */
3698         if (state == DEV_STATE_INIT) {
3699                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3700                          "Adapter already initialized\n",
3701                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3702         } else {
3703                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3704                          "Initializing adapter\n");
3705
3706                 /* Find out whether we're dealing with a version of the
3707                  * firmware which has configuration file support.
3708                  */
3709                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3710                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3711                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3712                                       params, val);
3713
3714                 /* If the firmware doesn't support Configuration Files,
3715                  * return an error.
3716                  */
3717                 if (ret < 0) {
3718                         dev_err(adap->pdev_dev, "firmware doesn't support "
3719                                 "Firmware Configuration Files\n");
3720                         goto bye;
3721                 }
3722
3723                 /* The firmware provides us with a memory buffer where we can
3724                  * load a Configuration File from the host if we want to
3725                  * override the Configuration File in flash.
3726                  */
3727                 ret = adap_init0_config(adap, reset);
3728                 if (ret == -ENOENT) {
3729                         dev_err(adap->pdev_dev, "no Configuration File "
3730                                 "present on adapter.\n");
3731                         goto bye;
3732                 }
3733                 if (ret < 0) {
3734                         dev_err(adap->pdev_dev, "could not initialize "
3735                                 "adapter, error %d\n", -ret);
3736                         goto bye;
3737                 }
3738         }
3739
3740         /* Give the SGE code a chance to pull in anything that it needs ...
3741          * Note that this must be called after we retrieve our VPD parameters
3742          * in order to know how to convert core ticks to seconds, etc.
3743          */
3744         ret = t4_sge_init(adap);
3745         if (ret < 0)
3746                 goto bye;
3747
3748         if (is_bypass_device(adap->pdev->device))
3749                 adap->params.bypass = 1;
3750
3751         /*
3752          * Grab some of our basic fundamental operating parameters.
3753          */
3754 #define FW_PARAM_DEV(param) \
3755         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3756         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3757
3758 #define FW_PARAM_PFVF(param) \
3759         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3760         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3761         FW_PARAMS_PARAM_Y_V(0) | \
3762         FW_PARAMS_PARAM_Z_V(0)
3763
3764         params[0] = FW_PARAM_PFVF(EQ_START);
3765         params[1] = FW_PARAM_PFVF(L2T_START);
3766         params[2] = FW_PARAM_PFVF(L2T_END);
3767         params[3] = FW_PARAM_PFVF(FILTER_START);
3768         params[4] = FW_PARAM_PFVF(FILTER_END);
3769         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3770         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3771         if (ret < 0)
3772                 goto bye;
3773         adap->sge.egr_start = val[0];
3774         adap->l2t_start = val[1];
3775         adap->l2t_end = val[2];
3776         adap->tids.ftid_base = val[3];
3777         adap->tids.nftids = val[4] - val[3] + 1;
3778         adap->sge.ingr_start = val[5];
3779
3780         /* qids (ingress/egress) returned from firmware can be anywhere
3781          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3782          * Hence driver needs to allocate memory for this range to
3783          * store the queue info. Get the highest IQFLINT/EQ index returned
3784          * in FW_EQ_*_CMD.alloc command.
3785          */
3786         params[0] = FW_PARAM_PFVF(EQ_END);
3787         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3788         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3789         if (ret < 0)
3790                 goto bye;
3791         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3792         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3793
3794         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3795                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3796         if (!adap->sge.egr_map) {
3797                 ret = -ENOMEM;
3798                 goto bye;
3799         }
3800
3801         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3802                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3803         if (!adap->sge.ingr_map) {
3804                 ret = -ENOMEM;
3805                 goto bye;
3806         }
3807
3808         /* Allocate the memory for the vaious egress queue bitmaps
3809          * ie starving_fl, txq_maperr and blocked_fl.
3810          */
3811         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3812                                         sizeof(long), GFP_KERNEL);
3813         if (!adap->sge.starving_fl) {
3814                 ret = -ENOMEM;
3815                 goto bye;
3816         }
3817
3818         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3819                                        sizeof(long), GFP_KERNEL);
3820         if (!adap->sge.txq_maperr) {
3821                 ret = -ENOMEM;
3822                 goto bye;
3823         }
3824
3825 #ifdef CONFIG_DEBUG_FS
3826         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3827                                        sizeof(long), GFP_KERNEL);
3828         if (!adap->sge.blocked_fl) {
3829                 ret = -ENOMEM;
3830                 goto bye;
3831         }
3832 #endif
3833
3834         params[0] = FW_PARAM_PFVF(CLIP_START);
3835         params[1] = FW_PARAM_PFVF(CLIP_END);
3836         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3837         if (ret < 0)
3838                 goto bye;
3839         adap->clipt_start = val[0];
3840         adap->clipt_end = val[1];
3841
3842         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3843          * Classes supported by the hardware/firmware so we hard code it here
3844          * for now.
3845          */
3846         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3847
3848         /* query params related to active filter region */
3849         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3850         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3851         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3852         /* If Active filter size is set we enable establishing
3853          * offload connection through firmware work request
3854          */
3855         if ((val[0] != val[1]) && (ret >= 0)) {
3856                 adap->flags |= FW_OFLD_CONN;
3857                 adap->tids.aftid_base = val[0];
3858                 adap->tids.aftid_end = val[1];
3859         }
3860
3861         /* If we're running on newer firmware, let it know that we're
3862          * prepared to deal with encapsulated CPL messages.  Older
3863          * firmware won't understand this and we'll just get
3864          * unencapsulated messages ...
3865          */
3866         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3867         val[0] = 1;
3868         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3869
3870         /*
3871          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3872          * capability.  Earlier versions of the firmware didn't have the
3873          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3874          * permission to use ULPTX MEMWRITE DSGL.
3875          */
3876         if (is_t4(adap->params.chip)) {
3877                 adap->params.ulptx_memwrite_dsgl = false;
3878         } else {
3879                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3880                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3881                                       1, params, val);
3882                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3883         }
3884
3885         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3886         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3887         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3888                               1, params, val);
3889         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3890
3891         /*
3892          * Get device capabilities so we can determine what resources we need
3893          * to manage.
3894          */
3895         memset(&caps_cmd, 0, sizeof(caps_cmd));
3896         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3897                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3898         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3899         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3900                          &caps_cmd);
3901         if (ret < 0)
3902                 goto bye;
3903
3904         if (caps_cmd.ofldcaps) {
3905                 /* query offload-related parameters */
3906                 params[0] = FW_PARAM_DEV(NTID);
3907                 params[1] = FW_PARAM_PFVF(SERVER_START);
3908                 params[2] = FW_PARAM_PFVF(SERVER_END);
3909                 params[3] = FW_PARAM_PFVF(TDDP_START);
3910                 params[4] = FW_PARAM_PFVF(TDDP_END);
3911                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3912                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3913                                       params, val);
3914                 if (ret < 0)
3915                         goto bye;
3916                 adap->tids.ntids = val[0];
3917                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3918                 adap->tids.stid_base = val[1];
3919                 adap->tids.nstids = val[2] - val[1] + 1;
3920                 /*
3921                  * Setup server filter region. Divide the available filter
3922                  * region into two parts. Regular filters get 1/3rd and server
3923                  * filters get 2/3rd part. This is only enabled if workarond
3924                  * path is enabled.
3925                  * 1. For regular filters.
3926                  * 2. Server filter: This are special filters which are used
3927                  * to redirect SYN packets to offload queue.
3928                  */
3929                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3930                         adap->tids.sftid_base = adap->tids.ftid_base +
3931                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3932                         adap->tids.nsftids = adap->tids.nftids -
3933                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3934                         adap->tids.nftids = adap->tids.sftid_base -
3935                                                 adap->tids.ftid_base;
3936                 }
3937                 adap->vres.ddp.start = val[3];
3938                 adap->vres.ddp.size = val[4] - val[3] + 1;
3939                 adap->params.ofldq_wr_cred = val[5];
3940
3941                 adap->params.offload = 1;
3942                 adap->num_ofld_uld += 1;
3943         }
3944         if (caps_cmd.rdmacaps) {
3945                 params[0] = FW_PARAM_PFVF(STAG_START);
3946                 params[1] = FW_PARAM_PFVF(STAG_END);
3947                 params[2] = FW_PARAM_PFVF(RQ_START);
3948                 params[3] = FW_PARAM_PFVF(RQ_END);
3949                 params[4] = FW_PARAM_PFVF(PBL_START);
3950                 params[5] = FW_PARAM_PFVF(PBL_END);
3951                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3952                                       params, val);
3953                 if (ret < 0)
3954                         goto bye;
3955                 adap->vres.stag.start = val[0];
3956                 adap->vres.stag.size = val[1] - val[0] + 1;
3957                 adap->vres.rq.start = val[2];
3958                 adap->vres.rq.size = val[3] - val[2] + 1;
3959                 adap->vres.pbl.start = val[4];
3960                 adap->vres.pbl.size = val[5] - val[4] + 1;
3961
3962                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3963                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3964                 params[2] = FW_PARAM_PFVF(CQ_START);
3965                 params[3] = FW_PARAM_PFVF(CQ_END);
3966                 params[4] = FW_PARAM_PFVF(OCQ_START);
3967                 params[5] = FW_PARAM_PFVF(OCQ_END);
3968                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3969                                       val);
3970                 if (ret < 0)
3971                         goto bye;
3972                 adap->vres.qp.start = val[0];
3973                 adap->vres.qp.size = val[1] - val[0] + 1;
3974                 adap->vres.cq.start = val[2];
3975                 adap->vres.cq.size = val[3] - val[2] + 1;
3976                 adap->vres.ocq.start = val[4];
3977                 adap->vres.ocq.size = val[5] - val[4] + 1;
3978
3979                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3980                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3981                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3982                                       val);
3983                 if (ret < 0) {
3984                         adap->params.max_ordird_qp = 8;
3985                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3986                         ret = 0;
3987                 } else {
3988                         adap->params.max_ordird_qp = val[0];
3989                         adap->params.max_ird_adapter = val[1];
3990                 }
3991                 dev_info(adap->pdev_dev,
3992                          "max_ordird_qp %d max_ird_adapter %d\n",
3993                          adap->params.max_ordird_qp,
3994                          adap->params.max_ird_adapter);
3995                 adap->num_ofld_uld += 2;
3996         }
3997         if (caps_cmd.iscsicaps) {
3998                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3999                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4000                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4001                                       params, val);
4002                 if (ret < 0)
4003                         goto bye;
4004                 adap->vres.iscsi.start = val[0];
4005                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4006                 /* LIO target and cxgb4i initiaitor */
4007                 adap->num_ofld_uld += 2;
4008         }
4009         if (caps_cmd.cryptocaps) {
4010                 /* Should query params here...TODO */
4011                 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4012                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4013                                       params, val);
4014                 if (ret < 0) {
4015                         if (ret != -EINVAL)
4016                                 goto bye;
4017                 } else {
4018                         adap->vres.ncrypto_fc = val[0];
4019                 }
4020                 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4021                 adap->num_uld += 1;
4022         }
4023 #undef FW_PARAM_PFVF
4024 #undef FW_PARAM_DEV
4025
4026         /* The MTU/MSS Table is initialized by now, so load their values.  If
4027          * we're initializing the adapter, then we'll make any modifications
4028          * we want to the MTU/MSS Table and also initialize the congestion
4029          * parameters.
4030          */
4031         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4032         if (state != DEV_STATE_INIT) {
4033                 int i;
4034
4035                 /* The default MTU Table contains values 1492 and 1500.
4036                  * However, for TCP, it's better to have two values which are
4037                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4038                  * This allows us to have a TCP Data Payload which is a
4039                  * multiple of 8 regardless of what combination of TCP Options
4040                  * are in use (always a multiple of 4 bytes) which is
4041                  * important for performance reasons.  For instance, if no
4042                  * options are in use, then we have a 20-byte IP header and a
4043                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4044                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4045                  * which is not a multiple of 8.  So using an MSS of 1488 in
4046                  * this case results in a TCP Data Payload of 1448 bytes which
4047                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4048                  * Stamps have been negotiated, then an MTU of 1500 bytes
4049                  * results in a TCP Data Payload of 1448 bytes which, as
4050                  * above, is a multiple of 8 bytes ...
4051                  */
4052                 for (i = 0; i < NMTUS; i++)
4053                         if (adap->params.mtus[i] == 1492) {
4054                                 adap->params.mtus[i] = 1488;
4055                                 break;
4056                         }
4057
4058                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4059                              adap->params.b_wnd);
4060         }
4061         t4_init_sge_params(adap);
4062         adap->flags |= FW_OK;
4063         t4_init_tp_params(adap);
4064         return 0;
4065
4066         /*
4067          * Something bad happened.  If a command timed out or failed with EIO
4068          * FW does not operate within its spec or something catastrophic
4069          * happened to HW/FW, stop issuing commands.
4070          */
4071 bye:
4072         kfree(adap->sge.egr_map);
4073         kfree(adap->sge.ingr_map);
4074         kfree(adap->sge.starving_fl);
4075         kfree(adap->sge.txq_maperr);
4076 #ifdef CONFIG_DEBUG_FS
4077         kfree(adap->sge.blocked_fl);
4078 #endif
4079         if (ret != -ETIMEDOUT && ret != -EIO)
4080                 t4_fw_bye(adap, adap->mbox);
4081         return ret;
4082 }
4083
4084 /* EEH callbacks */
4085
4086 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4087                                          pci_channel_state_t state)
4088 {
4089         int i;
4090         struct adapter *adap = pci_get_drvdata(pdev);
4091
4092         if (!adap)
4093                 goto out;
4094
4095         rtnl_lock();
4096         adap->flags &= ~FW_OK;
4097         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4098         spin_lock(&adap->stats_lock);
4099         for_each_port(adap, i) {
4100                 struct net_device *dev = adap->port[i];
4101                 if (dev) {
4102                         netif_device_detach(dev);
4103                         netif_carrier_off(dev);
4104                 }
4105         }
4106         spin_unlock(&adap->stats_lock);
4107         disable_interrupts(adap);
4108         if (adap->flags & FULL_INIT_DONE)
4109                 cxgb_down(adap);
4110         rtnl_unlock();
4111         if ((adap->flags & DEV_ENABLED)) {
4112                 pci_disable_device(pdev);
4113                 adap->flags &= ~DEV_ENABLED;
4114         }
4115 out:    return state == pci_channel_io_perm_failure ?
4116                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4117 }
4118
4119 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4120 {
4121         int i, ret;
4122         struct fw_caps_config_cmd c;
4123         struct adapter *adap = pci_get_drvdata(pdev);
4124
4125         if (!adap) {
4126                 pci_restore_state(pdev);
4127                 pci_save_state(pdev);
4128                 return PCI_ERS_RESULT_RECOVERED;
4129         }
4130
4131         if (!(adap->flags & DEV_ENABLED)) {
4132                 if (pci_enable_device(pdev)) {
4133                         dev_err(&pdev->dev, "Cannot reenable PCI "
4134                                             "device after reset\n");
4135                         return PCI_ERS_RESULT_DISCONNECT;
4136                 }
4137                 adap->flags |= DEV_ENABLED;
4138         }
4139
4140         pci_set_master(pdev);
4141         pci_restore_state(pdev);
4142         pci_save_state(pdev);
4143         pci_cleanup_aer_uncorrect_error_status(pdev);
4144
4145         if (t4_wait_dev_ready(adap->regs) < 0)
4146                 return PCI_ERS_RESULT_DISCONNECT;
4147         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4148                 return PCI_ERS_RESULT_DISCONNECT;
4149         adap->flags |= FW_OK;
4150         if (adap_init1(adap, &c))
4151                 return PCI_ERS_RESULT_DISCONNECT;
4152
4153         for_each_port(adap, i) {
4154                 struct port_info *p = adap2pinfo(adap, i);
4155
4156                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4157                                   NULL, NULL);
4158                 if (ret < 0)
4159                         return PCI_ERS_RESULT_DISCONNECT;
4160                 p->viid = ret;
4161                 p->xact_addr_filt = -1;
4162         }
4163
4164         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4165                      adap->params.b_wnd);
4166         setup_memwin(adap);
4167         if (cxgb_up(adap))
4168                 return PCI_ERS_RESULT_DISCONNECT;
4169         return PCI_ERS_RESULT_RECOVERED;
4170 }
4171
4172 static void eeh_resume(struct pci_dev *pdev)
4173 {
4174         int i;
4175         struct adapter *adap = pci_get_drvdata(pdev);
4176
4177         if (!adap)
4178                 return;
4179
4180         rtnl_lock();
4181         for_each_port(adap, i) {
4182                 struct net_device *dev = adap->port[i];
4183                 if (dev) {
4184                         if (netif_running(dev)) {
4185                                 link_start(dev);
4186                                 cxgb_set_rxmode(dev);
4187                         }
4188                         netif_device_attach(dev);
4189                 }
4190         }
4191         rtnl_unlock();
4192 }
4193
4194 static const struct pci_error_handlers cxgb4_eeh = {
4195         .error_detected = eeh_err_detected,
4196         .slot_reset     = eeh_slot_reset,
4197         .resume         = eeh_resume,
4198 };
4199
4200 /* Return true if the Link Configuration supports "High Speeds" (those greater
4201  * than 1Gb/s).
4202  */
4203 static inline bool is_x_10g_port(const struct link_config *lc)
4204 {
4205         unsigned int speeds, high_speeds;
4206
4207         speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4208         high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4209
4210         return high_speeds != 0;
4211 }
4212
4213 /*
4214  * Perform default configuration of DMA queues depending on the number and type
4215  * of ports we found and the number of available CPUs.  Most settings can be
4216  * modified by the admin prior to actual use.
4217  */
4218 static void cfg_queues(struct adapter *adap)
4219 {
4220         struct sge *s = &adap->sge;
4221         int i = 0, n10g = 0, qidx = 0;
4222 #ifndef CONFIG_CHELSIO_T4_DCB
4223         int q10g = 0;
4224 #endif
4225
4226         /* Reduce memory usage in kdump environment, disable all offload.
4227          */
4228         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4229                 adap->params.offload = 0;
4230                 adap->params.crypto = 0;
4231         }
4232
4233         n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4234 #ifdef CONFIG_CHELSIO_T4_DCB
4235         /* For Data Center Bridging support we need to be able to support up
4236          * to 8 Traffic Priorities; each of which will be assigned to its
4237          * own TX Queue in order to prevent Head-Of-Line Blocking.
4238          */
4239         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4240                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4241                         MAX_ETH_QSETS, adap->params.nports * 8);
4242                 BUG_ON(1);
4243         }
4244
4245         for_each_port(adap, i) {
4246                 struct port_info *pi = adap2pinfo(adap, i);
4247
4248                 pi->first_qset = qidx;
4249                 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4250                 qidx += pi->nqsets;
4251         }
4252 #else /* !CONFIG_CHELSIO_T4_DCB */
4253         /*
4254          * We default to 1 queue per non-10G port and up to # of cores queues
4255          * per 10G port.
4256          */
4257         if (n10g)
4258                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4259         if (q10g > netif_get_num_default_rss_queues())
4260                 q10g = netif_get_num_default_rss_queues();
4261
4262         if (is_kdump_kernel())
4263                 q10g = 1;
4264
4265         for_each_port(adap, i) {
4266                 struct port_info *pi = adap2pinfo(adap, i);
4267
4268                 pi->first_qset = qidx;
4269                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4270                 qidx += pi->nqsets;
4271         }
4272 #endif /* !CONFIG_CHELSIO_T4_DCB */
4273
4274         s->ethqsets = qidx;
4275         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4276
4277         if (is_uld(adap)) {
4278                 /*
4279                  * For offload we use 1 queue/channel if all ports are up to 1G,
4280                  * otherwise we divide all available queues amongst the channels
4281                  * capped by the number of available cores.
4282                  */
4283                 if (n10g) {
4284                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4285                         s->ofldqsets = roundup(i, adap->params.nports);
4286                 } else {
4287                         s->ofldqsets = adap->params.nports;
4288                 }
4289         }
4290
4291         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4292                 struct sge_eth_rxq *r = &s->ethrxq[i];
4293
4294                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4295                 r->fl.size = 72;
4296         }
4297
4298         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4299                 s->ethtxq[i].q.size = 1024;
4300
4301         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4302                 s->ctrlq[i].q.size = 512;
4303
4304         if (!is_t4(adap->params.chip))
4305                 s->ptptxq.q.size = 8;
4306
4307         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4308         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4309 }
4310
4311 /*
4312  * Reduce the number of Ethernet queues across all ports to at most n.
4313  * n provides at least one queue per port.
4314  */
4315 static void reduce_ethqs(struct adapter *adap, int n)
4316 {
4317         int i;
4318         struct port_info *pi;
4319
4320         while (n < adap->sge.ethqsets)
4321                 for_each_port(adap, i) {
4322                         pi = adap2pinfo(adap, i);
4323                         if (pi->nqsets > 1) {
4324                                 pi->nqsets--;
4325                                 adap->sge.ethqsets--;
4326                                 if (adap->sge.ethqsets <= n)
4327                                         break;
4328                         }
4329                 }
4330
4331         n = 0;
4332         for_each_port(adap, i) {
4333                 pi = adap2pinfo(adap, i);
4334                 pi->first_qset = n;
4335                 n += pi->nqsets;
4336         }
4337 }
4338
4339 static int get_msix_info(struct adapter *adap)
4340 {
4341         struct uld_msix_info *msix_info;
4342         unsigned int max_ingq = 0;
4343
4344         if (is_offload(adap))
4345                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4346         if (is_pci_uld(adap))
4347                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4348
4349         if (!max_ingq)
4350                 goto out;
4351
4352         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4353         if (!msix_info)
4354                 return -ENOMEM;
4355
4356         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4357                                                  sizeof(long), GFP_KERNEL);
4358         if (!adap->msix_bmap_ulds.msix_bmap) {
4359                 kfree(msix_info);
4360                 return -ENOMEM;
4361         }
4362         spin_lock_init(&adap->msix_bmap_ulds.lock);
4363         adap->msix_info_ulds = msix_info;
4364 out:
4365         return 0;
4366 }
4367
4368 static void free_msix_info(struct adapter *adap)
4369 {
4370         if (!(adap->num_uld && adap->num_ofld_uld))
4371                 return;
4372
4373         kfree(adap->msix_info_ulds);
4374         kfree(adap->msix_bmap_ulds.msix_bmap);
4375 }
4376
4377 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4378 #define EXTRA_VECS 2
4379
4380 static int enable_msix(struct adapter *adap)
4381 {
4382         int ofld_need = 0, uld_need = 0;
4383         int i, j, want, need, allocated;
4384         struct sge *s = &adap->sge;
4385         unsigned int nchan = adap->params.nports;
4386         struct msix_entry *entries;
4387         int max_ingq = MAX_INGQ;
4388
4389         if (is_pci_uld(adap))
4390                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4391         if (is_offload(adap))
4392                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4393         entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4394                           GFP_KERNEL);
4395         if (!entries)
4396                 return -ENOMEM;
4397
4398         /* map for msix */
4399         if (get_msix_info(adap)) {
4400                 adap->params.offload = 0;
4401                 adap->params.crypto = 0;
4402         }
4403
4404         for (i = 0; i < max_ingq + 1; ++i)
4405                 entries[i].entry = i;
4406
4407         want = s->max_ethqsets + EXTRA_VECS;
4408         if (is_offload(adap)) {
4409                 want += adap->num_ofld_uld * s->ofldqsets;
4410                 ofld_need = adap->num_ofld_uld * nchan;
4411         }
4412         if (is_pci_uld(adap)) {
4413                 want += adap->num_uld * s->ofldqsets;
4414                 uld_need = adap->num_uld * nchan;
4415         }
4416 #ifdef CONFIG_CHELSIO_T4_DCB
4417         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4418          * each port.
4419          */
4420         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4421 #else
4422         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4423 #endif
4424         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4425         if (allocated < 0) {
4426                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4427                          " not using MSI-X\n");
4428                 kfree(entries);
4429                 return allocated;
4430         }
4431
4432         /* Distribute available vectors to the various queue groups.
4433          * Every group gets its minimum requirement and NIC gets top
4434          * priority for leftovers.
4435          */
4436         i = allocated - EXTRA_VECS - ofld_need - uld_need;
4437         if (i < s->max_ethqsets) {
4438                 s->max_ethqsets = i;
4439                 if (i < s->ethqsets)
4440                         reduce_ethqs(adap, i);
4441         }
4442         if (is_uld(adap)) {
4443                 if (allocated < want)
4444                         s->nqs_per_uld = nchan;
4445                 else
4446                         s->nqs_per_uld = s->ofldqsets;
4447         }
4448
4449         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4450                 adap->msix_info[i].vec = entries[i].vector;
4451         if (is_uld(adap)) {
4452                 for (j = 0 ; i < allocated; ++i, j++) {
4453                         adap->msix_info_ulds[j].vec = entries[i].vector;
4454                         adap->msix_info_ulds[j].idx = i;
4455                 }
4456                 adap->msix_bmap_ulds.mapsize = j;
4457         }
4458         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4459                  "nic %d per uld %d\n",
4460                  allocated, s->max_ethqsets, s->nqs_per_uld);
4461
4462         kfree(entries);
4463         return 0;
4464 }
4465
4466 #undef EXTRA_VECS
4467
4468 static int init_rss(struct adapter *adap)
4469 {
4470         unsigned int i;
4471         int err;
4472
4473         err = t4_init_rss_mode(adap, adap->mbox);
4474         if (err)
4475                 return err;
4476
4477         for_each_port(adap, i) {
4478                 struct port_info *pi = adap2pinfo(adap, i);
4479
4480                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4481                 if (!pi->rss)
4482                         return -ENOMEM;
4483         }
4484         return 0;
4485 }
4486
4487 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4488                                         enum pci_bus_speed *speed,
4489                                         enum pcie_link_width *width)
4490 {
4491         u32 lnkcap1, lnkcap2;
4492         int err1, err2;
4493
4494 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4495
4496         *speed = PCI_SPEED_UNKNOWN;
4497         *width = PCIE_LNK_WIDTH_UNKNOWN;
4498
4499         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4500                                           &lnkcap1);
4501         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4502                                           &lnkcap2);
4503         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4504                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4505                         *speed = PCIE_SPEED_8_0GT;
4506                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4507                         *speed = PCIE_SPEED_5_0GT;
4508                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4509                         *speed = PCIE_SPEED_2_5GT;
4510         }
4511         if (!err1) {
4512                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4513                 if (!lnkcap2) { /* pre-r3.0 */
4514                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4515                                 *speed = PCIE_SPEED_5_0GT;
4516                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4517                                 *speed = PCIE_SPEED_2_5GT;
4518                 }
4519         }
4520
4521         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4522                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4523         return 0;
4524 }
4525
4526 static void cxgb4_check_pcie_caps(struct adapter *adap)
4527 {
4528         enum pcie_link_width width, width_cap;
4529         enum pci_bus_speed speed, speed_cap;
4530
4531 #define PCIE_SPEED_STR(speed) \
4532         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4533          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4534          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4535          "Unknown")
4536
4537         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4538                 dev_warn(adap->pdev_dev,
4539                          "Unable to determine PCIe device BW capabilities\n");
4540                 return;
4541         }
4542
4543         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4544             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4545                 dev_warn(adap->pdev_dev,
4546                          "Unable to determine PCI Express bandwidth.\n");
4547                 return;
4548         }
4549
4550         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4551                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4552         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4553                  width, width_cap);
4554         if (speed < speed_cap || width < width_cap)
4555                 dev_info(adap->pdev_dev,
4556                          "A slot with more lanes and/or higher speed is "
4557                          "suggested for optimal performance.\n");
4558 }
4559
4560 /* Dump basic information about the adapter */
4561 static void print_adapter_info(struct adapter *adapter)
4562 {
4563         /* Device information */
4564         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4565                  adapter->params.vpd.id,
4566                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
4567         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4568                  adapter->params.vpd.sn, adapter->params.vpd.pn);
4569
4570         /* Firmware Version */
4571         if (!adapter->params.fw_vers)
4572                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4573         else
4574                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4575                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4576                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4577                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4578                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4579
4580         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4581          * Firmware, so dev_info() is more appropriate here.)
4582          */
4583         if (!adapter->params.bs_vers)
4584                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4585         else
4586                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4587                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4588                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4589                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4590                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4591
4592         /* TP Microcode Version */
4593         if (!adapter->params.tp_vers)
4594                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4595         else
4596                 dev_info(adapter->pdev_dev,
4597                          "TP Microcode version: %u.%u.%u.%u\n",
4598                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4599                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4600                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4601                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4602
4603         /* Expansion ROM version */
4604         if (!adapter->params.er_vers)
4605                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4606         else
4607                 dev_info(adapter->pdev_dev,
4608                          "Expansion ROM version: %u.%u.%u.%u\n",
4609                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4610                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4611                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4612                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4613
4614         /* Software/Hardware configuration */
4615         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4616                  is_offload(adapter) ? "R" : "",
4617                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
4618                   (adapter->flags & USING_MSI) ? "MSI" : ""),
4619                  is_offload(adapter) ? "Offload" : "non-Offload");
4620 }
4621
4622 static void print_port_info(const struct net_device *dev)
4623 {
4624         char buf[80];
4625         char *bufp = buf;
4626         const char *spd = "";
4627         const struct port_info *pi = netdev_priv(dev);
4628         const struct adapter *adap = pi->adapter;
4629
4630         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4631                 spd = " 2.5 GT/s";
4632         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4633                 spd = " 5 GT/s";
4634         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4635                 spd = " 8 GT/s";
4636
4637         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4638                 bufp += sprintf(bufp, "100M/");
4639         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4640                 bufp += sprintf(bufp, "1G/");
4641         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4642                 bufp += sprintf(bufp, "10G/");
4643         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4644                 bufp += sprintf(bufp, "25G/");
4645         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4646                 bufp += sprintf(bufp, "40G/");
4647         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4648                 bufp += sprintf(bufp, "100G/");
4649         if (bufp != buf)
4650                 --bufp;
4651         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4652
4653         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4654                     dev->name, adap->params.vpd.id, adap->name, buf);
4655 }
4656
4657 /*
4658  * Free the following resources:
4659  * - memory used for tables
4660  * - MSI/MSI-X
4661  * - net devices
4662  * - resources FW is holding for us
4663  */
4664 static void free_some_resources(struct adapter *adapter)
4665 {
4666         unsigned int i;
4667
4668         kvfree(adapter->l2t);
4669         t4_cleanup_sched(adapter);
4670         kvfree(adapter->tids.tid_tab);
4671         cxgb4_cleanup_tc_u32(adapter);
4672         kfree(adapter->sge.egr_map);
4673         kfree(adapter->sge.ingr_map);
4674         kfree(adapter->sge.starving_fl);
4675         kfree(adapter->sge.txq_maperr);
4676 #ifdef CONFIG_DEBUG_FS
4677         kfree(adapter->sge.blocked_fl);
4678 #endif
4679         disable_msi(adapter);
4680
4681         for_each_port(adapter, i)
4682                 if (adapter->port[i]) {
4683                         struct port_info *pi = adap2pinfo(adapter, i);
4684
4685                         if (pi->viid != 0)
4686                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4687                                            0, pi->viid);
4688                         kfree(adap2pinfo(adapter, i)->rss);
4689                         free_netdev(adapter->port[i]);
4690                 }
4691         if (adapter->flags & FW_OK)
4692                 t4_fw_bye(adapter, adapter->pf);
4693 }
4694
4695 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4696 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4697                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4698 #define SEGMENT_SIZE 128
4699
4700 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4701 {
4702         u16 device_id;
4703
4704         /* Retrieve adapter's device ID */
4705         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4706
4707         switch (device_id >> 12) {
4708         case CHELSIO_T4:
4709                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4710         case CHELSIO_T5:
4711                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4712         case CHELSIO_T6:
4713                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4714         default:
4715                 dev_err(&pdev->dev, "Device %d is not supported\n",
4716                         device_id);
4717         }
4718         return -EINVAL;
4719 }
4720
4721 #ifdef CONFIG_PCI_IOV
4722 static void dummy_setup(struct net_device *dev)
4723 {
4724         dev->type = ARPHRD_NONE;
4725         dev->mtu = 0;
4726         dev->hard_header_len = 0;
4727         dev->addr_len = 0;
4728         dev->tx_queue_len = 0;
4729         dev->flags |= IFF_NOARP;
4730         dev->priv_flags |= IFF_NO_QUEUE;
4731
4732         /* Initialize the device structure. */
4733         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4734         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4735         dev->needs_free_netdev = true;
4736 }
4737
4738 static int config_mgmt_dev(struct pci_dev *pdev)
4739 {
4740         struct adapter *adap = pci_get_drvdata(pdev);
4741         struct net_device *netdev;
4742         struct port_info *pi;
4743         char name[IFNAMSIZ];
4744         int err;
4745
4746         snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4747         netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4748                               dummy_setup);
4749         if (!netdev)
4750                 return -ENOMEM;
4751
4752         pi = netdev_priv(netdev);
4753         pi->adapter = adap;
4754         pi->port_id = adap->pf % adap->params.nports;
4755         SET_NETDEV_DEV(netdev, &pdev->dev);
4756
4757         adap->port[0] = netdev;
4758
4759         err = register_netdev(adap->port[0]);
4760         if (err) {
4761                 pr_info("Unable to register VF mgmt netdev %s\n", name);
4762                 free_netdev(adap->port[0]);
4763                 adap->port[0] = NULL;
4764                 return err;
4765         }
4766         return 0;
4767 }
4768
4769 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4770 {
4771         struct adapter *adap = pci_get_drvdata(pdev);
4772         int err = 0;
4773         int current_vfs = pci_num_vf(pdev);
4774         u32 pcie_fw;
4775
4776         pcie_fw = readl(adap->regs + PCIE_FW_A);
4777         /* Check if cxgb4 is the MASTER and fw is initialized */
4778         if (!(pcie_fw & PCIE_FW_INIT_F) ||
4779             !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4780             PCIE_FW_MASTER_G(pcie_fw) != 4) {
4781                 dev_warn(&pdev->dev,
4782                          "cxgb4 driver needs to be MASTER to support SRIOV\n");
4783                 return -EOPNOTSUPP;
4784         }
4785
4786         /* If any of the VF's is already assigned to Guest OS, then
4787          * SRIOV for the same cannot be modified
4788          */
4789         if (current_vfs && pci_vfs_assigned(pdev)) {
4790                 dev_err(&pdev->dev,
4791                         "Cannot modify SR-IOV while VFs are assigned\n");
4792                 num_vfs = current_vfs;
4793                 return num_vfs;
4794         }
4795
4796         /* Disable SRIOV when zero is passed.
4797          * One needs to disable SRIOV before modifying it, else
4798          * stack throws the below warning:
4799          * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4800          */
4801         if (!num_vfs) {
4802                 pci_disable_sriov(pdev);
4803                 if (adap->port[0]) {
4804                         unregister_netdev(adap->port[0]);
4805                         adap->port[0] = NULL;
4806                 }
4807                 /* free VF resources */
4808                 kfree(adap->vfinfo);
4809                 adap->vfinfo = NULL;
4810                 adap->num_vfs = 0;
4811                 return num_vfs;
4812         }
4813
4814         if (num_vfs != current_vfs) {
4815                 err = pci_enable_sriov(pdev, num_vfs);
4816                 if (err)
4817                         return err;
4818
4819                 adap->num_vfs = num_vfs;
4820                 err = config_mgmt_dev(pdev);
4821                 if (err)
4822                         return err;
4823         }
4824
4825         adap->vfinfo = kcalloc(adap->num_vfs,
4826                                sizeof(struct vf_info), GFP_KERNEL);
4827         if (adap->vfinfo)
4828                 fill_vf_station_mac_addr(adap);
4829         return num_vfs;
4830 }
4831 #endif
4832
4833 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4834 {
4835         int func, i, err, s_qpp, qpp, num_seg;
4836         struct port_info *pi;
4837         bool highdma = false;
4838         struct adapter *adapter = NULL;
4839         struct net_device *netdev;
4840         void __iomem *regs;
4841         u32 whoami, pl_rev;
4842         enum chip_type chip;
4843         static int adap_idx = 1;
4844 #ifdef CONFIG_PCI_IOV
4845         u32 v, port_vec;
4846 #endif
4847
4848         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4849
4850         err = pci_request_regions(pdev, KBUILD_MODNAME);
4851         if (err) {
4852                 /* Just info, some other driver may have claimed the device. */
4853                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4854                 return err;
4855         }
4856
4857         err = pci_enable_device(pdev);
4858         if (err) {
4859                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4860                 goto out_release_regions;
4861         }
4862
4863         regs = pci_ioremap_bar(pdev, 0);
4864         if (!regs) {
4865                 dev_err(&pdev->dev, "cannot map device registers\n");
4866                 err = -ENOMEM;
4867                 goto out_disable_device;
4868         }
4869
4870         err = t4_wait_dev_ready(regs);
4871         if (err < 0)
4872                 goto out_unmap_bar0;
4873
4874         /* We control everything through one PF */
4875         whoami = readl(regs + PL_WHOAMI_A);
4876         pl_rev = REV_G(readl(regs + PL_REV_A));
4877         chip = get_chip_type(pdev, pl_rev);
4878         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4879                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4880         if (func != ent->driver_data) {
4881 #ifndef CONFIG_PCI_IOV
4882                 iounmap(regs);
4883 #endif
4884                 pci_disable_device(pdev);
4885                 pci_save_state(pdev);        /* to restore SR-IOV later */
4886                 goto sriov;
4887         }
4888
4889         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4890                 highdma = true;
4891                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4892                 if (err) {
4893                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4894                                 "coherent allocations\n");
4895                         goto out_unmap_bar0;
4896                 }
4897         } else {
4898                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4899                 if (err) {
4900                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4901                         goto out_unmap_bar0;
4902                 }
4903         }
4904
4905         pci_enable_pcie_error_reporting(pdev);
4906         pci_set_master(pdev);
4907         pci_save_state(pdev);
4908
4909         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4910         if (!adapter) {
4911                 err = -ENOMEM;
4912                 goto out_unmap_bar0;
4913         }
4914         adap_idx++;
4915
4916         adapter->workq = create_singlethread_workqueue("cxgb4");
4917         if (!adapter->workq) {
4918                 err = -ENOMEM;
4919                 goto out_free_adapter;
4920         }
4921
4922         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4923                                     (sizeof(struct mbox_cmd) *
4924                                      T4_OS_LOG_MBOX_CMDS),
4925                                     GFP_KERNEL);
4926         if (!adapter->mbox_log) {
4927                 err = -ENOMEM;
4928                 goto out_free_adapter;
4929         }
4930         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4931
4932         /* PCI device has been enabled */
4933         adapter->flags |= DEV_ENABLED;
4934
4935         adapter->regs = regs;
4936         adapter->pdev = pdev;
4937         adapter->pdev_dev = &pdev->dev;
4938         adapter->name = pci_name(pdev);
4939         adapter->mbox = func;
4940         adapter->pf = func;
4941         adapter->msg_enable = DFLT_MSG_ENABLE;
4942         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4943
4944         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
4945          * Ingress Packet Data to Free List Buffers in order to allow for
4946          * chipset performance optimizations between the Root Complex and
4947          * Memory Controllers.  (Messages to the associated Ingress Queue
4948          * notifying new Packet Placement in the Free Lists Buffers will be
4949          * send without the Relaxed Ordering Attribute thus guaranteeing that
4950          * all preceding PCIe Transaction Layer Packets will be processed
4951          * first.)  But some Root Complexes have various issues with Upstream
4952          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
4953          * The PCIe devices which under the Root Complexes will be cleared the
4954          * Relaxed Ordering bit in the configuration space, So we check our
4955          * PCIe configuration space to see if it's flagged with advice against
4956          * using Relaxed Ordering.
4957          */
4958         if (!pcie_relaxed_ordering_enabled(pdev))
4959                 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
4960
4961         spin_lock_init(&adapter->stats_lock);
4962         spin_lock_init(&adapter->tid_release_lock);
4963         spin_lock_init(&adapter->win0_lock);
4964         spin_lock_init(&adapter->mbox_lock);
4965
4966         INIT_LIST_HEAD(&adapter->mlist.list);
4967
4968         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4969         INIT_WORK(&adapter->db_full_task, process_db_full);
4970         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4971
4972         err = t4_prep_adapter(adapter);
4973         if (err)
4974                 goto out_free_adapter;
4975
4976
4977         if (!is_t4(adapter->params.chip)) {
4978                 s_qpp = (QUEUESPERPAGEPF0_S +
4979                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4980                         adapter->pf);
4981                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4982                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4983                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4984
4985                 /* Each segment size is 128B. Write coalescing is enabled only
4986                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4987                  * queue is less no of segments that can be accommodated in
4988                  * a page size.
4989                  */
4990                 if (qpp > num_seg) {
4991                         dev_err(&pdev->dev,
4992                                 "Incorrect number of egress queues per page\n");
4993                         err = -EINVAL;
4994                         goto out_free_adapter;
4995                 }
4996                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4997                 pci_resource_len(pdev, 2));
4998                 if (!adapter->bar2) {
4999                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5000                         err = -ENOMEM;
5001                         goto out_free_adapter;
5002                 }
5003         }
5004
5005         setup_memwin(adapter);
5006         err = adap_init0(adapter);
5007 #ifdef CONFIG_DEBUG_FS
5008         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5009 #endif
5010         setup_memwin_rdma(adapter);
5011         if (err)
5012                 goto out_unmap_bar;
5013
5014         /* configure SGE_STAT_CFG_A to read WC stats */
5015         if (!is_t4(adapter->params.chip))
5016                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5017                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5018                               T6_STATMODE_V(0)));
5019
5020         for_each_port(adapter, i) {
5021                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5022                                            MAX_ETH_QSETS);
5023                 if (!netdev) {
5024                         err = -ENOMEM;
5025                         goto out_free_dev;
5026                 }
5027
5028                 SET_NETDEV_DEV(netdev, &pdev->dev);
5029
5030                 adapter->port[i] = netdev;
5031                 pi = netdev_priv(netdev);
5032                 pi->adapter = adapter;
5033                 pi->xact_addr_filt = -1;
5034                 pi->port_id = i;
5035                 netdev->irq = pdev->irq;
5036
5037                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5038                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5039                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5040                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5041                         NETIF_F_HW_TC;
5042                 if (highdma)
5043                         netdev->hw_features |= NETIF_F_HIGHDMA;
5044                 netdev->features |= netdev->hw_features;
5045                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5046
5047                 netdev->priv_flags |= IFF_UNICAST_FLT;
5048
5049                 /* MTU range: 81 - 9600 */
5050                 netdev->min_mtu = 81;
5051                 netdev->max_mtu = MAX_MTU;
5052
5053                 netdev->netdev_ops = &cxgb4_netdev_ops;
5054 #ifdef CONFIG_CHELSIO_T4_DCB
5055                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5056                 cxgb4_dcb_state_init(netdev);
5057 #endif
5058                 cxgb4_set_ethtool_ops(netdev);
5059         }
5060
5061         pci_set_drvdata(pdev, adapter);
5062
5063         if (adapter->flags & FW_OK) {
5064                 err = t4_port_init(adapter, func, func, 0);
5065                 if (err)
5066                         goto out_free_dev;
5067         } else if (adapter->params.nports == 1) {
5068                 /* If we don't have a connection to the firmware -- possibly
5069                  * because of an error -- grab the raw VPD parameters so we
5070                  * can set the proper MAC Address on the debug network
5071                  * interface that we've created.
5072                  */
5073                 u8 hw_addr[ETH_ALEN];
5074                 u8 *na = adapter->params.vpd.na;
5075
5076                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5077                 if (!err) {
5078                         for (i = 0; i < ETH_ALEN; i++)
5079                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5080                                               hex2val(na[2 * i + 1]));
5081                         t4_set_hw_addr(adapter, 0, hw_addr);
5082                 }
5083         }
5084
5085         /* Configure queues and allocate tables now, they can be needed as
5086          * soon as the first register_netdev completes.
5087          */
5088         cfg_queues(adapter);
5089
5090         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5091         if (!adapter->l2t) {
5092                 /* We tolerate a lack of L2T, giving up some functionality */
5093                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5094                 adapter->params.offload = 0;
5095         }
5096
5097 #if IS_ENABLED(CONFIG_IPV6)
5098         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5099             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5100                 /* CLIP functionality is not present in hardware,
5101                  * hence disable all offload features
5102                  */
5103                 dev_warn(&pdev->dev,
5104                          "CLIP not enabled in hardware, continuing\n");
5105                 adapter->params.offload = 0;
5106         } else {
5107                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5108                                                   adapter->clipt_end);
5109                 if (!adapter->clipt) {
5110                         /* We tolerate a lack of clip_table, giving up
5111                          * some functionality
5112                          */
5113                         dev_warn(&pdev->dev,
5114                                  "could not allocate Clip table, continuing\n");
5115                         adapter->params.offload = 0;
5116                 }
5117         }
5118 #endif
5119
5120         for_each_port(adapter, i) {
5121                 pi = adap2pinfo(adapter, i);
5122                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5123                 if (!pi->sched_tbl)
5124                         dev_warn(&pdev->dev,
5125                                  "could not activate scheduling on port %d\n",
5126                                  i);
5127         }
5128
5129         if (tid_init(&adapter->tids) < 0) {
5130                 dev_warn(&pdev->dev, "could not allocate TID table, "
5131                          "continuing\n");
5132                 adapter->params.offload = 0;
5133         } else {
5134                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5135                 if (!adapter->tc_u32)
5136                         dev_warn(&pdev->dev,
5137                                  "could not offload tc u32, continuing\n");
5138         }
5139
5140         if (is_offload(adapter)) {
5141                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5142                         u32 hash_base, hash_reg;
5143
5144                         if (chip <= CHELSIO_T5) {
5145                                 hash_reg = LE_DB_TID_HASHBASE_A;
5146                                 hash_base = t4_read_reg(adapter, hash_reg);
5147                                 adapter->tids.hash_base = hash_base / 4;
5148                         } else {
5149                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5150                                 hash_base = t4_read_reg(adapter, hash_reg);
5151                                 adapter->tids.hash_base = hash_base;
5152                         }
5153                 }
5154         }
5155
5156         /* See what interrupts we'll be using */
5157         if (msi > 1 && enable_msix(adapter) == 0)
5158                 adapter->flags |= USING_MSIX;
5159         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5160                 adapter->flags |= USING_MSI;
5161                 if (msi > 1)
5162                         free_msix_info(adapter);
5163         }
5164
5165         /* check for PCI Express bandwidth capabiltites */
5166         cxgb4_check_pcie_caps(adapter);
5167
5168         err = init_rss(adapter);
5169         if (err)
5170                 goto out_free_dev;
5171
5172         /*
5173          * The card is now ready to go.  If any errors occur during device
5174          * registration we do not fail the whole card but rather proceed only
5175          * with the ports we manage to register successfully.  However we must
5176          * register at least one net device.
5177          */
5178         for_each_port(adapter, i) {
5179                 pi = adap2pinfo(adapter, i);
5180                 adapter->port[i]->dev_port = pi->lport;
5181                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5182                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5183
5184                 netif_carrier_off(adapter->port[i]);
5185
5186                 err = register_netdev(adapter->port[i]);
5187                 if (err)
5188                         break;
5189                 adapter->chan_map[pi->tx_chan] = i;
5190                 print_port_info(adapter->port[i]);
5191         }
5192         if (i == 0) {
5193                 dev_err(&pdev->dev, "could not register any net devices\n");
5194                 goto out_free_dev;
5195         }
5196         if (err) {
5197                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5198                 err = 0;
5199         }
5200
5201         if (cxgb4_debugfs_root) {
5202                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5203                                                            cxgb4_debugfs_root);
5204                 setup_debugfs(adapter);
5205         }
5206
5207         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5208         pdev->needs_freset = 1;
5209
5210         if (is_uld(adapter)) {
5211                 mutex_lock(&uld_mutex);
5212                 list_add_tail(&adapter->list_node, &adapter_list);
5213                 mutex_unlock(&uld_mutex);
5214         }
5215
5216         if (!is_t4(adapter->params.chip))
5217                 cxgb4_ptp_init(adapter);
5218
5219         print_adapter_info(adapter);
5220         setup_fw_sge_queues(adapter);
5221         return 0;
5222
5223 sriov:
5224 #ifdef CONFIG_PCI_IOV
5225         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5226         if (!adapter) {
5227                 err = -ENOMEM;
5228                 goto free_pci_region;
5229         }
5230
5231         adapter->pdev = pdev;
5232         adapter->pdev_dev = &pdev->dev;
5233         adapter->name = pci_name(pdev);
5234         adapter->mbox = func;
5235         adapter->pf = func;
5236         adapter->regs = regs;
5237         adapter->adap_idx = adap_idx;
5238         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5239                                     (sizeof(struct mbox_cmd) *
5240                                      T4_OS_LOG_MBOX_CMDS),
5241                                     GFP_KERNEL);
5242         if (!adapter->mbox_log) {
5243                 err = -ENOMEM;
5244                 goto free_adapter;
5245         }
5246         spin_lock_init(&adapter->mbox_lock);
5247         INIT_LIST_HEAD(&adapter->mlist.list);
5248
5249         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5250             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5251         err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5252                               &v, &port_vec);
5253         if (err < 0) {
5254                 dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5255                 goto free_mbox_log;
5256         }
5257
5258         adapter->params.nports = hweight32(port_vec);
5259         pci_set_drvdata(pdev, adapter);
5260         return 0;
5261
5262 free_mbox_log:
5263         kfree(adapter->mbox_log);
5264  free_adapter:
5265         kfree(adapter);
5266  free_pci_region:
5267         iounmap(regs);
5268         pci_disable_sriov(pdev);
5269         pci_release_regions(pdev);
5270         return err;
5271 #else
5272         return 0;
5273 #endif
5274
5275  out_free_dev:
5276         free_some_resources(adapter);
5277         if (adapter->flags & USING_MSIX)
5278                 free_msix_info(adapter);
5279         if (adapter->num_uld || adapter->num_ofld_uld)
5280                 t4_uld_mem_free(adapter);
5281  out_unmap_bar:
5282         if (!is_t4(adapter->params.chip))
5283                 iounmap(adapter->bar2);
5284  out_free_adapter:
5285         if (adapter->workq)
5286                 destroy_workqueue(adapter->workq);
5287
5288         kfree(adapter->mbox_log);
5289         kfree(adapter);
5290  out_unmap_bar0:
5291         iounmap(regs);
5292  out_disable_device:
5293         pci_disable_pcie_error_reporting(pdev);
5294         pci_disable_device(pdev);
5295  out_release_regions:
5296         pci_release_regions(pdev);
5297         return err;
5298 }
5299
5300 static void remove_one(struct pci_dev *pdev)
5301 {
5302         struct adapter *adapter = pci_get_drvdata(pdev);
5303
5304         if (!adapter) {
5305                 pci_release_regions(pdev);
5306                 return;
5307         }
5308
5309         if (adapter->pf == 4) {
5310                 int i;
5311
5312                 /* Tear down per-adapter Work Queue first since it can contain
5313                  * references to our adapter data structure.
5314                  */
5315                 destroy_workqueue(adapter->workq);
5316
5317                 if (is_uld(adapter)) {
5318                         detach_ulds(adapter);
5319                         t4_uld_clean_up(adapter);
5320                 }
5321
5322                 disable_interrupts(adapter);
5323
5324                 for_each_port(adapter, i)
5325                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5326                                 unregister_netdev(adapter->port[i]);
5327
5328                 debugfs_remove_recursive(adapter->debugfs_root);
5329
5330                 if (!is_t4(adapter->params.chip))
5331                         cxgb4_ptp_stop(adapter);
5332
5333                 /* If we allocated filters, free up state associated with any
5334                  * valid filters ...
5335                  */
5336                 clear_all_filters(adapter);
5337
5338                 if (adapter->flags & FULL_INIT_DONE)
5339                         cxgb_down(adapter);
5340
5341                 if (adapter->flags & USING_MSIX)
5342                         free_msix_info(adapter);
5343                 if (adapter->num_uld || adapter->num_ofld_uld)
5344                         t4_uld_mem_free(adapter);
5345                 free_some_resources(adapter);
5346 #if IS_ENABLED(CONFIG_IPV6)
5347                 t4_cleanup_clip_tbl(adapter);
5348 #endif
5349                 iounmap(adapter->regs);
5350                 if (!is_t4(adapter->params.chip))
5351                         iounmap(adapter->bar2);
5352                 pci_disable_pcie_error_reporting(pdev);
5353                 if ((adapter->flags & DEV_ENABLED)) {
5354                         pci_disable_device(pdev);
5355                         adapter->flags &= ~DEV_ENABLED;
5356                 }
5357                 pci_release_regions(pdev);
5358                 kfree(adapter->mbox_log);
5359                 synchronize_rcu();
5360                 kfree(adapter);
5361         }
5362 #ifdef CONFIG_PCI_IOV
5363         else {
5364                 if (adapter->port[0])
5365                         unregister_netdev(adapter->port[0]);
5366                 iounmap(adapter->regs);
5367                 kfree(adapter->vfinfo);
5368                 kfree(adapter->mbox_log);
5369                 kfree(adapter);
5370                 pci_disable_sriov(pdev);
5371                 pci_release_regions(pdev);
5372         }
5373 #endif
5374 }
5375
5376 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5377  * delivery.  This is essentially a stripped down version of the PCI remove()
5378  * function where we do the minimal amount of work necessary to shutdown any
5379  * further activity.
5380  */
5381 static void shutdown_one(struct pci_dev *pdev)
5382 {
5383         struct adapter *adapter = pci_get_drvdata(pdev);
5384
5385         /* As with remove_one() above (see extended comment), we only want do
5386          * do cleanup on PCI Devices which went all the way through init_one()
5387          * ...
5388          */
5389         if (!adapter) {
5390                 pci_release_regions(pdev);
5391                 return;
5392         }
5393
5394         if (adapter->pf == 4) {
5395                 int i;
5396
5397                 for_each_port(adapter, i)
5398                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5399                                 cxgb_close(adapter->port[i]);
5400
5401                 if (is_uld(adapter)) {
5402                         detach_ulds(adapter);
5403                         t4_uld_clean_up(adapter);
5404                 }
5405
5406                 disable_interrupts(adapter);
5407                 disable_msi(adapter);
5408
5409                 t4_sge_stop(adapter);
5410                 if (adapter->flags & FW_OK)
5411                         t4_fw_bye(adapter, adapter->mbox);
5412         }
5413 #ifdef CONFIG_PCI_IOV
5414         else {
5415                 if (adapter->port[0])
5416                         unregister_netdev(adapter->port[0]);
5417                 iounmap(adapter->regs);
5418                 kfree(adapter->vfinfo);
5419                 kfree(adapter->mbox_log);
5420                 kfree(adapter);
5421                 pci_disable_sriov(pdev);
5422                 pci_release_regions(pdev);
5423         }
5424 #endif
5425 }
5426
5427 static struct pci_driver cxgb4_driver = {
5428         .name     = KBUILD_MODNAME,
5429         .id_table = cxgb4_pci_tbl,
5430         .probe    = init_one,
5431         .remove   = remove_one,
5432         .shutdown = shutdown_one,
5433 #ifdef CONFIG_PCI_IOV
5434         .sriov_configure = cxgb4_iov_configure,
5435 #endif
5436         .err_handler = &cxgb4_eeh,
5437 };
5438
5439 static int __init cxgb4_init_module(void)
5440 {
5441         int ret;
5442
5443         /* Debugfs support is optional, just warn if this fails */
5444         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5445         if (!cxgb4_debugfs_root)
5446                 pr_warn("could not create debugfs entry, continuing\n");
5447
5448         ret = pci_register_driver(&cxgb4_driver);
5449         if (ret < 0)
5450                 debugfs_remove(cxgb4_debugfs_root);
5451
5452 #if IS_ENABLED(CONFIG_IPV6)
5453         if (!inet6addr_registered) {
5454                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5455                 inet6addr_registered = true;
5456         }
5457 #endif
5458
5459         return ret;
5460 }
5461
5462 static void __exit cxgb4_cleanup_module(void)
5463 {
5464 #if IS_ENABLED(CONFIG_IPV6)
5465         if (inet6addr_registered) {
5466                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5467                 inet6addr_registered = false;
5468         }
5469 #endif
5470         pci_unregister_driver(&cxgb4_driver);
5471         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5472 }
5473
5474 module_init(cxgb4_init_module);
5475 module_exit(cxgb4_cleanup_module);