Merge branch 'for-5.4/ish' into for-linus
[sfrench/cifs-2.6.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_vlan.h>
42 #include <linux/mdio.h>
43 #include <linux/sockios.h>
44 #include <linux/workqueue.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/stringify.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/nospec.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66         MAX_TXQ_ENTRIES = 16384,
67         MAX_CTRL_TXQ_ENTRIES = 1024,
68         MAX_RSPQ_ENTRIES = 16384,
69         MAX_RX_BUFFERS = 16384,
70         MAX_RX_JUMBO_BUFFERS = 16384,
71         MIN_TXQ_ENTRIES = 4,
72         MIN_CTRL_TXQ_ENTRIES = 4,
73         MIN_RSPQ_ENTRIES = 32,
74         MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89         CH_DEVICE(0x20, 0),     /* PE9000 */
90         CH_DEVICE(0x21, 1),     /* T302E */
91         CH_DEVICE(0x22, 2),     /* T310E */
92         CH_DEVICE(0x23, 3),     /* T320X */
93         CH_DEVICE(0x24, 1),     /* T302X */
94         CH_DEVICE(0x25, 3),     /* T320E */
95         CH_DEVICE(0x26, 2),     /* T310X */
96         CH_DEVICE(0x30, 2),     /* T3B10 */
97         CH_DEVICE(0x31, 3),     /* T3B20 */
98         CH_DEVICE(0x32, 1),     /* T3B02 */
99         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
100         CH_DEVICE(0x36, 3),     /* S320E-CR */
101         CH_DEVICE(0x37, 7),     /* N320E-G2 */
102         {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117  * The driver uses the best interrupt scheme available on a platform in the
118  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
119  * of these schemes the driver may consider as follows:
120  *
121  * msi = 2: choose from among all three options
122  * msi = 1: only consider MSI and pin interrupts
123  * msi = 0: force pin interrupts
124  */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131  * The driver enables offload as a default.
132  * To disable it, use ofld_disable = 1.
133  */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141  * We have work elements that we need to cancel when an interface is taken
142  * down.  Normally the work elements would be executed by keventd but that
143  * can deadlock because of linkwatch.  If our close method takes the rtnl
144  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146  * for our work to complete.  Get our own work queue to solve this.
147  */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151  *      link_report - show link status and link speed/duplex
152  *      @p: the port whose settings are to be reported
153  *
154  *      Shows the link status, speed, and duplex of a port.
155  */
156 static void link_report(struct net_device *dev)
157 {
158         if (!netif_carrier_ok(dev))
159                 netdev_info(dev, "link down\n");
160         else {
161                 const char *s = "10Mbps";
162                 const struct port_info *p = netdev_priv(dev);
163
164                 switch (p->link_config.speed) {
165                 case SPEED_10000:
166                         s = "10Gbps";
167                         break;
168                 case SPEED_1000:
169                         s = "1000Mbps";
170                         break;
171                 case SPEED_100:
172                         s = "100Mbps";
173                         break;
174                 }
175
176                 netdev_info(dev, "link up, %s, %s-duplex\n",
177                             s, p->link_config.duplex == DUPLEX_FULL
178                             ? "full" : "half");
179         }
180 }
181
182 static void enable_tx_fifo_drain(struct adapter *adapter,
183                                  struct port_info *pi)
184 {
185         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186                          F_ENDROPPKT);
187         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
192 static void disable_tx_fifo_drain(struct adapter *adapter,
193                                   struct port_info *pi)
194 {
195         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196                          F_ENDROPPKT, 0);
197 }
198
199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201         struct net_device *dev = adap->port[port_id];
202         struct port_info *pi = netdev_priv(dev);
203
204         if (state == netif_carrier_ok(dev))
205                 return;
206
207         if (state) {
208                 struct cmac *mac = &pi->mac;
209
210                 netif_carrier_on(dev);
211
212                 disable_tx_fifo_drain(adap, pi);
213
214                 /* Clear local faults */
215                 t3_xgm_intr_disable(adap, pi->port_id);
216                 t3_read_reg(adap, A_XGM_INT_STATUS +
217                                     pi->mac.offset);
218                 t3_write_reg(adap,
219                              A_XGM_INT_CAUSE + pi->mac.offset,
220                              F_XGM_INT);
221
222                 t3_set_reg_field(adap,
223                                  A_XGM_INT_ENABLE +
224                                  pi->mac.offset,
225                                  F_XGM_INT, F_XGM_INT);
226                 t3_xgm_intr_enable(adap, pi->port_id);
227
228                 t3_mac_enable(mac, MAC_DIRECTION_TX);
229         } else {
230                 netif_carrier_off(dev);
231
232                 /* Flush TX FIFO */
233                 enable_tx_fifo_drain(adap, pi);
234         }
235         link_report(dev);
236 }
237
238 /**
239  *      t3_os_link_changed - handle link status changes
240  *      @adapter: the adapter associated with the link change
241  *      @port_id: the port index whose limk status has changed
242  *      @link_stat: the new status of the link
243  *      @speed: the new speed setting
244  *      @duplex: the new duplex setting
245  *      @pause: the new flow-control setting
246  *
247  *      This is the OS-dependent handler for link status changes.  The OS
248  *      neutral handler takes care of most of the processing for these events,
249  *      then calls this handler for any OS-specific processing.
250  */
251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252                         int speed, int duplex, int pause)
253 {
254         struct net_device *dev = adapter->port[port_id];
255         struct port_info *pi = netdev_priv(dev);
256         struct cmac *mac = &pi->mac;
257
258         /* Skip changes from disabled ports. */
259         if (!netif_running(dev))
260                 return;
261
262         if (link_stat != netif_carrier_ok(dev)) {
263                 if (link_stat) {
264                         disable_tx_fifo_drain(adapter, pi);
265
266                         t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268                         /* Clear local faults */
269                         t3_xgm_intr_disable(adapter, pi->port_id);
270                         t3_read_reg(adapter, A_XGM_INT_STATUS +
271                                     pi->mac.offset);
272                         t3_write_reg(adapter,
273                                      A_XGM_INT_CAUSE + pi->mac.offset,
274                                      F_XGM_INT);
275
276                         t3_set_reg_field(adapter,
277                                          A_XGM_INT_ENABLE + pi->mac.offset,
278                                          F_XGM_INT, F_XGM_INT);
279                         t3_xgm_intr_enable(adapter, pi->port_id);
280
281                         netif_carrier_on(dev);
282                 } else {
283                         netif_carrier_off(dev);
284
285                         t3_xgm_intr_disable(adapter, pi->port_id);
286                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287                         t3_set_reg_field(adapter,
288                                          A_XGM_INT_ENABLE + pi->mac.offset,
289                                          F_XGM_INT, 0);
290
291                         if (is_10G(adapter))
292                                 pi->phy.ops->power_down(&pi->phy, 1);
293
294                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295                         t3_mac_disable(mac, MAC_DIRECTION_RX);
296                         t3_link_start(&pi->phy, mac, &pi->link_config);
297
298                         /* Flush TX FIFO */
299                         enable_tx_fifo_drain(adapter, pi);
300                 }
301
302                 link_report(dev);
303         }
304 }
305
306 /**
307  *      t3_os_phymod_changed - handle PHY module changes
308  *      @phy: the PHY reporting the module change
309  *      @mod_type: new module type
310  *
311  *      This is the OS-dependent handler for PHY module changes.  It is
312  *      invoked when a PHY module is removed or inserted for any OS-specific
313  *      processing.
314  */
315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317         static const char *mod_str[] = {
318                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319         };
320
321         const struct net_device *dev = adap->port[port_id];
322         const struct port_info *pi = netdev_priv(dev);
323
324         if (pi->phy.modtype == phy_modtype_none)
325                 netdev_info(dev, "PHY module unplugged\n");
326         else
327                 netdev_info(dev, "%s PHY module inserted\n",
328                             mod_str[pi->phy.modtype]);
329 }
330
331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333         struct port_info *pi = netdev_priv(dev);
334
335         t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339  *      link_start - enable a port
340  *      @dev: the device to enable
341  *
342  *      Performs the MAC and PHY actions needed to enable a port.
343  */
344 static void link_start(struct net_device *dev)
345 {
346         struct port_info *pi = netdev_priv(dev);
347         struct cmac *mac = &pi->mac;
348
349         t3_mac_reset(mac);
350         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351         t3_mac_set_mtu(mac, dev->mtu);
352         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354         t3_mac_set_rx_mode(mac, dev);
355         t3_link_start(&pi->phy, mac, &pi->link_config);
356         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361         if (adapter->flags & USING_MSIX) {
362                 pci_disable_msix(adapter->pdev);
363                 adapter->flags &= ~USING_MSIX;
364         } else if (adapter->flags & USING_MSI) {
365                 pci_disable_msi(adapter->pdev);
366                 adapter->flags &= ~USING_MSI;
367         }
368 }
369
370 /*
371  * Interrupt handler for asynchronous events used with MSI-X.
372  */
373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375         t3_slow_intr_handler(cookie);
376         return IRQ_HANDLED;
377 }
378
379 /*
380  * Name the MSI-X interrupts.
381  */
382 static void name_msix_vecs(struct adapter *adap)
383 {
384         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387         adap->msix_info[0].desc[n] = 0;
388
389         for_each_port(adap, j) {
390                 struct net_device *d = adap->port[j];
391                 const struct port_info *pi = netdev_priv(d);
392
393                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394                         snprintf(adap->msix_info[msi_idx].desc, n,
395                                  "%s-%d", d->name, pi->first_qset + i);
396                         adap->msix_info[msi_idx].desc[n] = 0;
397                 }
398         }
399 }
400
401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403         int i, j, err, qidx = 0;
404
405         for_each_port(adap, i) {
406                 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408                 for (j = 0; j < nqsets; ++j) {
409                         err = request_irq(adap->msix_info[qidx + 1].vec,
410                                           t3_intr_handler(adap,
411                                                           adap->sge.qs[qidx].
412                                                           rspq.polling), 0,
413                                           adap->msix_info[qidx + 1].desc,
414                                           &adap->sge.qs[qidx]);
415                         if (err) {
416                                 while (--qidx >= 0)
417                                         free_irq(adap->msix_info[qidx + 1].vec,
418                                                  &adap->sge.qs[qidx]);
419                                 return err;
420                         }
421                         qidx++;
422                 }
423         }
424         return 0;
425 }
426
427 static void free_irq_resources(struct adapter *adapter)
428 {
429         if (adapter->flags & USING_MSIX) {
430                 int i, n = 0;
431
432                 free_irq(adapter->msix_info[0].vec, adapter);
433                 for_each_port(adapter, i)
434                         n += adap2pinfo(adapter, i)->nqsets;
435
436                 for (i = 0; i < n; ++i)
437                         free_irq(adapter->msix_info[i + 1].vec,
438                                  &adapter->sge.qs[i]);
439         } else
440                 free_irq(adapter->pdev->irq, adapter);
441 }
442
443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444                               unsigned long n)
445 {
446         int attempts = 10;
447
448         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449                 if (!--attempts)
450                         return -ETIMEDOUT;
451                 msleep(10);
452         }
453         return 0;
454 }
455
456 static int init_tp_parity(struct adapter *adap)
457 {
458         int i;
459         struct sk_buff *skb;
460         struct cpl_set_tcb_field *greq;
461         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463         t3_tp_set_offload_mode(adap, 1);
464
465         for (i = 0; i < 16; i++) {
466                 struct cpl_smt_write_req *req;
467
468                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469                 if (!skb)
470                         skb = adap->nofail_skb;
471                 if (!skb)
472                         goto alloc_skb_fail;
473
474                 req = __skb_put_zero(skb, sizeof(*req));
475                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
476                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
477                 req->mtu_idx = NMTUS - 1;
478                 req->iff = i;
479                 t3_mgmt_tx(adap, skb);
480                 if (skb == adap->nofail_skb) {
481                         await_mgmt_replies(adap, cnt, i + 1);
482                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
483                         if (!adap->nofail_skb)
484                                 goto alloc_skb_fail;
485                 }
486         }
487
488         for (i = 0; i < 2048; i++) {
489                 struct cpl_l2t_write_req *req;
490
491                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
492                 if (!skb)
493                         skb = adap->nofail_skb;
494                 if (!skb)
495                         goto alloc_skb_fail;
496
497                 req = __skb_put_zero(skb, sizeof(*req));
498                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
499                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
500                 req->params = htonl(V_L2T_W_IDX(i));
501                 t3_mgmt_tx(adap, skb);
502                 if (skb == adap->nofail_skb) {
503                         await_mgmt_replies(adap, cnt, 16 + i + 1);
504                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
505                         if (!adap->nofail_skb)
506                                 goto alloc_skb_fail;
507                 }
508         }
509
510         for (i = 0; i < 2048; i++) {
511                 struct cpl_rte_write_req *req;
512
513                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
514                 if (!skb)
515                         skb = adap->nofail_skb;
516                 if (!skb)
517                         goto alloc_skb_fail;
518
519                 req = __skb_put_zero(skb, sizeof(*req));
520                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
521                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
522                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
523                 t3_mgmt_tx(adap, skb);
524                 if (skb == adap->nofail_skb) {
525                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
526                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
527                         if (!adap->nofail_skb)
528                                 goto alloc_skb_fail;
529                 }
530         }
531
532         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
533         if (!skb)
534                 skb = adap->nofail_skb;
535         if (!skb)
536                 goto alloc_skb_fail;
537
538         greq = __skb_put_zero(skb, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE + 1];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585         rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
586
587         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
588                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
589                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
590 }
591
592 static void ring_dbs(struct adapter *adap)
593 {
594         int i, j;
595
596         for (i = 0; i < SGE_QSETS; i++) {
597                 struct sge_qset *qs = &adap->sge.qs[i];
598
599                 if (qs->adap)
600                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
601                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
602         }
603 }
604
605 static void init_napi(struct adapter *adap)
606 {
607         int i;
608
609         for (i = 0; i < SGE_QSETS; i++) {
610                 struct sge_qset *qs = &adap->sge.qs[i];
611
612                 if (qs->adap)
613                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
614                                        64);
615         }
616
617         /*
618          * netif_napi_add() can be called only once per napi_struct because it
619          * adds each new napi_struct to a list.  Be careful not to call it a
620          * second time, e.g., during EEH recovery, by making a note of it.
621          */
622         adap->flags |= NAPI_INIT;
623 }
624
625 /*
626  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
627  * both netdevices representing interfaces and the dummy ones for the extra
628  * queues.
629  */
630 static void quiesce_rx(struct adapter *adap)
631 {
632         int i;
633
634         for (i = 0; i < SGE_QSETS; i++)
635                 if (adap->sge.qs[i].adap)
636                         napi_disable(&adap->sge.qs[i].napi);
637 }
638
639 static void enable_all_napi(struct adapter *adap)
640 {
641         int i;
642         for (i = 0; i < SGE_QSETS; i++)
643                 if (adap->sge.qs[i].adap)
644                         napi_enable(&adap->sge.qs[i].napi);
645 }
646
647 /**
648  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
649  *      @adap: the adapter
650  *
651  *      Determines how many sets of SGE queues to use and initializes them.
652  *      We support multiple queue sets per port if we have MSI-X, otherwise
653  *      just one queue set per port.
654  */
655 static int setup_sge_qsets(struct adapter *adap)
656 {
657         int i, j, err, irq_idx = 0, qset_idx = 0;
658         unsigned int ntxq = SGE_TXQ_PER_SET;
659
660         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
661                 irq_idx = -1;
662
663         for_each_port(adap, i) {
664                 struct net_device *dev = adap->port[i];
665                 struct port_info *pi = netdev_priv(dev);
666
667                 pi->qs = &adap->sge.qs[pi->first_qset];
668                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
669                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
670                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
671                                                              irq_idx,
672                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
673                                 netdev_get_tx_queue(dev, j));
674                         if (err) {
675                                 t3_free_sge_resources(adap);
676                                 return err;
677                         }
678                 }
679         }
680
681         return 0;
682 }
683
684 static ssize_t attr_show(struct device *d, char *buf,
685                          ssize_t(*format) (struct net_device *, char *))
686 {
687         ssize_t len;
688
689         /* Synchronize with ioctls that may shut down the device */
690         rtnl_lock();
691         len = (*format) (to_net_dev(d), buf);
692         rtnl_unlock();
693         return len;
694 }
695
696 static ssize_t attr_store(struct device *d,
697                           const char *buf, size_t len,
698                           ssize_t(*set) (struct net_device *, unsigned int),
699                           unsigned int min_val, unsigned int max_val)
700 {
701         ssize_t ret;
702         unsigned int val;
703
704         if (!capable(CAP_NET_ADMIN))
705                 return -EPERM;
706
707         ret = kstrtouint(buf, 0, &val);
708         if (ret)
709                 return ret;
710         if (val < min_val || val > max_val)
711                 return -EINVAL;
712
713         rtnl_lock();
714         ret = (*set) (to_net_dev(d), val);
715         if (!ret)
716                 ret = len;
717         rtnl_unlock();
718         return ret;
719 }
720
721 #define CXGB3_SHOW(name, val_expr) \
722 static ssize_t format_##name(struct net_device *dev, char *buf) \
723 { \
724         struct port_info *pi = netdev_priv(dev); \
725         struct adapter *adap = pi->adapter; \
726         return sprintf(buf, "%u\n", val_expr); \
727 } \
728 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
729                            char *buf) \
730 { \
731         return attr_show(d, buf, format_##name); \
732 }
733
734 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
735 {
736         struct port_info *pi = netdev_priv(dev);
737         struct adapter *adap = pi->adapter;
738         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
739
740         if (adap->flags & FULL_INIT_DONE)
741                 return -EBUSY;
742         if (val && adap->params.rev == 0)
743                 return -EINVAL;
744         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
745             min_tids)
746                 return -EINVAL;
747         adap->params.mc5.nfilters = val;
748         return 0;
749 }
750
751 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
752                               const char *buf, size_t len)
753 {
754         return attr_store(d, buf, len, set_nfilters, 0, ~0);
755 }
756
757 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
758 {
759         struct port_info *pi = netdev_priv(dev);
760         struct adapter *adap = pi->adapter;
761
762         if (adap->flags & FULL_INIT_DONE)
763                 return -EBUSY;
764         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
765             MC5_MIN_TIDS)
766                 return -EINVAL;
767         adap->params.mc5.nservers = val;
768         return 0;
769 }
770
771 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
772                               const char *buf, size_t len)
773 {
774         return attr_store(d, buf, len, set_nservers, 0, ~0);
775 }
776
777 #define CXGB3_ATTR_R(name, val_expr) \
778 CXGB3_SHOW(name, val_expr) \
779 static DEVICE_ATTR(name, 0444, show_##name, NULL)
780
781 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
782 CXGB3_SHOW(name, val_expr) \
783 static DEVICE_ATTR(name, 0644, show_##name, store_method)
784
785 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
786 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
787 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
788
789 static struct attribute *cxgb3_attrs[] = {
790         &dev_attr_cam_size.attr,
791         &dev_attr_nfilters.attr,
792         &dev_attr_nservers.attr,
793         NULL
794 };
795
796 static const struct attribute_group cxgb3_attr_group = {
797         .attrs = cxgb3_attrs,
798 };
799
800 static ssize_t tm_attr_show(struct device *d,
801                             char *buf, int sched)
802 {
803         struct port_info *pi = netdev_priv(to_net_dev(d));
804         struct adapter *adap = pi->adapter;
805         unsigned int v, addr, bpt, cpt;
806         ssize_t len;
807
808         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
809         rtnl_lock();
810         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
811         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
812         if (sched & 1)
813                 v >>= 16;
814         bpt = (v >> 8) & 0xff;
815         cpt = v & 0xff;
816         if (!cpt)
817                 len = sprintf(buf, "disabled\n");
818         else {
819                 v = (adap->params.vpd.cclk * 1000) / cpt;
820                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
821         }
822         rtnl_unlock();
823         return len;
824 }
825
826 static ssize_t tm_attr_store(struct device *d,
827                              const char *buf, size_t len, int sched)
828 {
829         struct port_info *pi = netdev_priv(to_net_dev(d));
830         struct adapter *adap = pi->adapter;
831         unsigned int val;
832         ssize_t ret;
833
834         if (!capable(CAP_NET_ADMIN))
835                 return -EPERM;
836
837         ret = kstrtouint(buf, 0, &val);
838         if (ret)
839                 return ret;
840         if (val > 10000000)
841                 return -EINVAL;
842
843         rtnl_lock();
844         ret = t3_config_sched(adap, val, sched);
845         if (!ret)
846                 ret = len;
847         rtnl_unlock();
848         return ret;
849 }
850
851 #define TM_ATTR(name, sched) \
852 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
853                            char *buf) \
854 { \
855         return tm_attr_show(d, buf, sched); \
856 } \
857 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
858                             const char *buf, size_t len) \
859 { \
860         return tm_attr_store(d, buf, len, sched); \
861 } \
862 static DEVICE_ATTR(name, 0644, show_##name, store_##name)
863
864 TM_ATTR(sched0, 0);
865 TM_ATTR(sched1, 1);
866 TM_ATTR(sched2, 2);
867 TM_ATTR(sched3, 3);
868 TM_ATTR(sched4, 4);
869 TM_ATTR(sched5, 5);
870 TM_ATTR(sched6, 6);
871 TM_ATTR(sched7, 7);
872
873 static struct attribute *offload_attrs[] = {
874         &dev_attr_sched0.attr,
875         &dev_attr_sched1.attr,
876         &dev_attr_sched2.attr,
877         &dev_attr_sched3.attr,
878         &dev_attr_sched4.attr,
879         &dev_attr_sched5.attr,
880         &dev_attr_sched6.attr,
881         &dev_attr_sched7.attr,
882         NULL
883 };
884
885 static const struct attribute_group offload_attr_group = {
886         .attrs = offload_attrs,
887 };
888
889 /*
890  * Sends an sk_buff to an offload queue driver
891  * after dealing with any active network taps.
892  */
893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895         int ret;
896
897         local_bh_disable();
898         ret = t3_offload_tx(tdev, skb);
899         local_bh_enable();
900         return ret;
901 }
902
903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905         struct cpl_smt_write_req *req;
906         struct port_info *pi = netdev_priv(adapter->port[idx]);
907         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
908
909         if (!skb)
910                 return -ENOMEM;
911
912         req = __skb_put(skb, sizeof(*req));
913         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
914         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
915         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
916         req->iff = idx;
917         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
919         skb->priority = 1;
920         offload_tx(&adapter->tdev, skb);
921         return 0;
922 }
923
924 static int init_smt(struct adapter *adapter)
925 {
926         int i;
927
928         for_each_port(adapter, i)
929             write_smt_entry(adapter, i);
930         return 0;
931 }
932
933 static void init_port_mtus(struct adapter *adapter)
934 {
935         unsigned int mtus = adapter->port[0]->mtu;
936
937         if (adapter->port[1])
938                 mtus |= adapter->port[1]->mtu << 16;
939         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
940 }
941
942 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
943                               int hi, int port)
944 {
945         struct sk_buff *skb;
946         struct mngt_pktsched_wr *req;
947         int ret;
948
949         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
950         if (!skb)
951                 skb = adap->nofail_skb;
952         if (!skb)
953                 return -ENOMEM;
954
955         req = skb_put(skb, sizeof(*req));
956         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
957         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
958         req->sched = sched;
959         req->idx = qidx;
960         req->min = lo;
961         req->max = hi;
962         req->binding = port;
963         ret = t3_mgmt_tx(adap, skb);
964         if (skb == adap->nofail_skb) {
965                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
966                                              GFP_KERNEL);
967                 if (!adap->nofail_skb)
968                         ret = -ENOMEM;
969         }
970
971         return ret;
972 }
973
974 static int bind_qsets(struct adapter *adap)
975 {
976         int i, j, err = 0;
977
978         for_each_port(adap, i) {
979                 const struct port_info *pi = adap2pinfo(adap, i);
980
981                 for (j = 0; j < pi->nqsets; ++j) {
982                         int ret = send_pktsched_cmd(adap, 1,
983                                                     pi->first_qset + j, -1,
984                                                     -1, i);
985                         if (ret)
986                                 err = ret;
987                 }
988         }
989
990         return err;
991 }
992
993 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
994         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
995 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
996 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
997         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
998 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
999 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1000 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1001 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1002 MODULE_FIRMWARE(FW_FNAME);
1003 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1005 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1007 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1008
1009 static inline const char *get_edc_fw_name(int edc_idx)
1010 {
1011         const char *fw_name = NULL;
1012
1013         switch (edc_idx) {
1014         case EDC_OPT_AEL2005:
1015                 fw_name = AEL2005_OPT_EDC_NAME;
1016                 break;
1017         case EDC_TWX_AEL2005:
1018                 fw_name = AEL2005_TWX_EDC_NAME;
1019                 break;
1020         case EDC_TWX_AEL2020:
1021                 fw_name = AEL2020_TWX_EDC_NAME;
1022                 break;
1023         }
1024         return fw_name;
1025 }
1026
1027 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1028 {
1029         struct adapter *adapter = phy->adapter;
1030         const struct firmware *fw;
1031         const char *fw_name;
1032         u32 csum;
1033         const __be32 *p;
1034         u16 *cache = phy->phy_cache;
1035         int i, ret = -EINVAL;
1036
1037         fw_name = get_edc_fw_name(edc_idx);
1038         if (fw_name)
1039                 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1040         if (ret < 0) {
1041                 dev_err(&adapter->pdev->dev,
1042                         "could not upgrade firmware: unable to load %s\n",
1043                         fw_name);
1044                 return ret;
1045         }
1046
1047         /* check size, take checksum in account */
1048         if (fw->size > size + 4) {
1049                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1050                        (unsigned int)fw->size, size + 4);
1051                 ret = -EINVAL;
1052         }
1053
1054         /* compute checksum */
1055         p = (const __be32 *)fw->data;
1056         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1057                 csum += ntohl(p[i]);
1058
1059         if (csum != 0xffffffff) {
1060                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1061                        csum);
1062                 ret = -EINVAL;
1063         }
1064
1065         for (i = 0; i < size / 4 ; i++) {
1066                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1067                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1068         }
1069
1070         release_firmware(fw);
1071
1072         return ret;
1073 }
1074
1075 static int upgrade_fw(struct adapter *adap)
1076 {
1077         int ret;
1078         const struct firmware *fw;
1079         struct device *dev = &adap->pdev->dev;
1080
1081         ret = request_firmware(&fw, FW_FNAME, dev);
1082         if (ret < 0) {
1083                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1084                         FW_FNAME);
1085                 return ret;
1086         }
1087         ret = t3_load_fw(adap, fw->data, fw->size);
1088         release_firmware(fw);
1089
1090         if (ret == 0)
1091                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1092                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1093         else
1094                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1095                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1096
1097         return ret;
1098 }
1099
1100 static inline char t3rev2char(struct adapter *adapter)
1101 {
1102         char rev = 0;
1103
1104         switch(adapter->params.rev) {
1105         case T3_REV_B:
1106         case T3_REV_B2:
1107                 rev = 'b';
1108                 break;
1109         case T3_REV_C:
1110                 rev = 'c';
1111                 break;
1112         }
1113         return rev;
1114 }
1115
1116 static int update_tpsram(struct adapter *adap)
1117 {
1118         const struct firmware *tpsram;
1119         char buf[64];
1120         struct device *dev = &adap->pdev->dev;
1121         int ret;
1122         char rev;
1123
1124         rev = t3rev2char(adap);
1125         if (!rev)
1126                 return 0;
1127
1128         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1129
1130         ret = request_firmware(&tpsram, buf, dev);
1131         if (ret < 0) {
1132                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1133                         buf);
1134                 return ret;
1135         }
1136
1137         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1138         if (ret)
1139                 goto release_tpsram;
1140
1141         ret = t3_set_proto_sram(adap, tpsram->data);
1142         if (ret == 0)
1143                 dev_info(dev,
1144                          "successful update of protocol engine "
1145                          "to %d.%d.%d\n",
1146                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1147         else
1148                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1149                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1150         if (ret)
1151                 dev_err(dev, "loading protocol SRAM failed\n");
1152
1153 release_tpsram:
1154         release_firmware(tpsram);
1155
1156         return ret;
1157 }
1158
1159 /**
1160  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1161  * @adap: the adapter
1162  * @p: the port
1163  *
1164  * Ensures that current Rx processing on any of the queues associated with
1165  * the given port completes before returning.  We do this by acquiring and
1166  * releasing the locks of the response queues associated with the port.
1167  */
1168 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1169 {
1170         int i;
1171
1172         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1173                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1174
1175                 spin_lock_irq(&q->lock);
1176                 spin_unlock_irq(&q->lock);
1177         }
1178 }
1179
1180 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1181 {
1182         struct port_info *pi = netdev_priv(dev);
1183         struct adapter *adapter = pi->adapter;
1184
1185         if (adapter->params.rev > 0) {
1186                 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1187                                   features & NETIF_F_HW_VLAN_CTAG_RX);
1188         } else {
1189                 /* single control for all ports */
1190                 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1191
1192                 for_each_port(adapter, i)
1193                         have_vlans |=
1194                                 adapter->port[i]->features &
1195                                 NETIF_F_HW_VLAN_CTAG_RX;
1196
1197                 t3_set_vlan_accel(adapter, 1, have_vlans);
1198         }
1199         t3_synchronize_rx(adapter, pi);
1200 }
1201
1202 /**
1203  *      cxgb_up - enable the adapter
1204  *      @adapter: adapter being enabled
1205  *
1206  *      Called when the first port is enabled, this function performs the
1207  *      actions necessary to make an adapter operational, such as completing
1208  *      the initialization of HW modules, and enabling interrupts.
1209  *
1210  *      Must be called with the rtnl lock held.
1211  */
1212 static int cxgb_up(struct adapter *adap)
1213 {
1214         int i, err;
1215
1216         if (!(adap->flags & FULL_INIT_DONE)) {
1217                 err = t3_check_fw_version(adap);
1218                 if (err == -EINVAL) {
1219                         err = upgrade_fw(adap);
1220                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1221                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1222                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1223                 }
1224
1225                 err = t3_check_tpsram_version(adap);
1226                 if (err == -EINVAL) {
1227                         err = update_tpsram(adap);
1228                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1229                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1230                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1231                 }
1232
1233                 /*
1234                  * Clear interrupts now to catch errors if t3_init_hw fails.
1235                  * We clear them again later as initialization may trigger
1236                  * conditions that can interrupt.
1237                  */
1238                 t3_intr_clear(adap);
1239
1240                 err = t3_init_hw(adap, 0);
1241                 if (err)
1242                         goto out;
1243
1244                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1245                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1246
1247                 err = setup_sge_qsets(adap);
1248                 if (err)
1249                         goto out;
1250
1251                 for_each_port(adap, i)
1252                         cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1253
1254                 setup_rss(adap);
1255                 if (!(adap->flags & NAPI_INIT))
1256                         init_napi(adap);
1257
1258                 t3_start_sge_timers(adap);
1259                 adap->flags |= FULL_INIT_DONE;
1260         }
1261
1262         t3_intr_clear(adap);
1263
1264         if (adap->flags & USING_MSIX) {
1265                 name_msix_vecs(adap);
1266                 err = request_irq(adap->msix_info[0].vec,
1267                                   t3_async_intr_handler, 0,
1268                                   adap->msix_info[0].desc, adap);
1269                 if (err)
1270                         goto irq_err;
1271
1272                 err = request_msix_data_irqs(adap);
1273                 if (err) {
1274                         free_irq(adap->msix_info[0].vec, adap);
1275                         goto irq_err;
1276                 }
1277         } else if ((err = request_irq(adap->pdev->irq,
1278                                       t3_intr_handler(adap,
1279                                                       adap->sge.qs[0].rspq.
1280                                                       polling),
1281                                       (adap->flags & USING_MSI) ?
1282                                        0 : IRQF_SHARED,
1283                                       adap->name, adap)))
1284                 goto irq_err;
1285
1286         enable_all_napi(adap);
1287         t3_sge_start(adap);
1288         t3_intr_enable(adap);
1289
1290         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1291             is_offload(adap) && init_tp_parity(adap) == 0)
1292                 adap->flags |= TP_PARITY_INIT;
1293
1294         if (adap->flags & TP_PARITY_INIT) {
1295                 t3_write_reg(adap, A_TP_INT_CAUSE,
1296                              F_CMCACHEPERR | F_ARPLUTPERR);
1297                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1298         }
1299
1300         if (!(adap->flags & QUEUES_BOUND)) {
1301                 int ret = bind_qsets(adap);
1302
1303                 if (ret < 0) {
1304                         CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1305                         t3_intr_disable(adap);
1306                         free_irq_resources(adap);
1307                         err = ret;
1308                         goto out;
1309                 }
1310                 adap->flags |= QUEUES_BOUND;
1311         }
1312
1313 out:
1314         return err;
1315 irq_err:
1316         CH_ERR(adap, "request_irq failed, err %d\n", err);
1317         goto out;
1318 }
1319
1320 /*
1321  * Release resources when all the ports and offloading have been stopped.
1322  */
1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325         t3_sge_stop(adapter);
1326         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1327         t3_intr_disable(adapter);
1328         spin_unlock_irq(&adapter->work_lock);
1329
1330         free_irq_resources(adapter);
1331         quiesce_rx(adapter);
1332         t3_sge_stop(adapter);
1333         if (!on_wq)
1334                 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336
1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339         unsigned int timeo;
1340
1341         timeo = adap->params.linkpoll_period ?
1342             (HZ * adap->params.linkpoll_period) / 10 :
1343             adap->params.stats_update_period * HZ;
1344         if (timeo)
1345                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347
1348 static int offload_open(struct net_device *dev)
1349 {
1350         struct port_info *pi = netdev_priv(dev);
1351         struct adapter *adapter = pi->adapter;
1352         struct t3cdev *tdev = dev2t3cdev(dev);
1353         int adap_up = adapter->open_device_map & PORT_MASK;
1354         int err;
1355
1356         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357                 return 0;
1358
1359         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360                 goto out;
1361
1362         t3_tp_set_offload_mode(adapter, 1);
1363         tdev->lldev = adapter->port[0];
1364         err = cxgb3_offload_activate(adapter);
1365         if (err)
1366                 goto out;
1367
1368         init_port_mtus(adapter);
1369         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370                      adapter->params.b_wnd,
1371                      adapter->params.rev == 0 ?
1372                      adapter->port[0]->mtu : 0xffff);
1373         init_smt(adapter);
1374
1375         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377
1378         /* Call back all registered clients */
1379         cxgb3_add_clients(tdev);
1380
1381 out:
1382         /* restore them in case the offload module has changed them */
1383         if (err) {
1384                 t3_tp_set_offload_mode(adapter, 0);
1385                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386                 cxgb3_set_dummy_ops(tdev);
1387         }
1388         return err;
1389 }
1390
1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393         struct adapter *adapter = tdev2adap(tdev);
1394         struct t3c_data *td = T3C_DATA(tdev);
1395
1396         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397                 return 0;
1398
1399         /* Call back all registered clients */
1400         cxgb3_remove_clients(tdev);
1401
1402         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403
1404         /* Flush work scheduled while releasing TIDs */
1405         flush_work(&td->tid_release_task);
1406
1407         tdev->lldev = NULL;
1408         cxgb3_set_dummy_ops(tdev);
1409         t3_tp_set_offload_mode(adapter, 0);
1410         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411
1412         if (!adapter->open_device_map)
1413                 cxgb_down(adapter, 0);
1414
1415         cxgb3_offload_deactivate(adapter);
1416         return 0;
1417 }
1418
1419 static int cxgb_open(struct net_device *dev)
1420 {
1421         struct port_info *pi = netdev_priv(dev);
1422         struct adapter *adapter = pi->adapter;
1423         int other_ports = adapter->open_device_map & PORT_MASK;
1424         int err;
1425
1426         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427                 return err;
1428
1429         set_bit(pi->port_id, &adapter->open_device_map);
1430         if (is_offload(adapter) && !ofld_disable) {
1431                 err = offload_open(dev);
1432                 if (err)
1433                         pr_warn("Could not initialize offload capabilities\n");
1434         }
1435
1436         netif_set_real_num_tx_queues(dev, pi->nqsets);
1437         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438         if (err)
1439                 return err;
1440         link_start(dev);
1441         t3_port_intr_enable(adapter, pi->port_id);
1442         netif_tx_start_all_queues(dev);
1443         if (!other_ports)
1444                 schedule_chk_task(adapter);
1445
1446         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447         return 0;
1448 }
1449
1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452         struct port_info *pi = netdev_priv(dev);
1453         struct adapter *adapter = pi->adapter;
1454
1455         
1456         if (!adapter->open_device_map)
1457                 return 0;
1458
1459         /* Stop link fault interrupts */
1460         t3_xgm_intr_disable(adapter, pi->port_id);
1461         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462
1463         t3_port_intr_disable(adapter, pi->port_id);
1464         netif_tx_stop_all_queues(dev);
1465         pi->phy.ops->power_down(&pi->phy, 1);
1466         netif_carrier_off(dev);
1467         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468
1469         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1470         clear_bit(pi->port_id, &adapter->open_device_map);
1471         spin_unlock_irq(&adapter->work_lock);
1472
1473         if (!(adapter->open_device_map & PORT_MASK))
1474                 cancel_delayed_work_sync(&adapter->adap_check_task);
1475
1476         if (!adapter->open_device_map)
1477                 cxgb_down(adapter, on_wq);
1478
1479         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480         return 0;
1481 }
1482
1483 static int cxgb_close(struct net_device *dev)
1484 {
1485         return __cxgb_close(dev, 0);
1486 }
1487
1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490         struct port_info *pi = netdev_priv(dev);
1491         struct adapter *adapter = pi->adapter;
1492         struct net_device_stats *ns = &dev->stats;
1493         const struct mac_stats *pstats;
1494
1495         spin_lock(&adapter->stats_lock);
1496         pstats = t3_mac_update_stats(&pi->mac);
1497         spin_unlock(&adapter->stats_lock);
1498
1499         ns->tx_bytes = pstats->tx_octets;
1500         ns->tx_packets = pstats->tx_frames;
1501         ns->rx_bytes = pstats->rx_octets;
1502         ns->rx_packets = pstats->rx_frames;
1503         ns->multicast = pstats->rx_mcast_frames;
1504
1505         ns->tx_errors = pstats->tx_underrun;
1506         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508             pstats->rx_fifo_ovfl;
1509
1510         /* detailed rx_errors */
1511         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512         ns->rx_over_errors = 0;
1513         ns->rx_crc_errors = pstats->rx_fcs_errs;
1514         ns->rx_frame_errors = pstats->rx_symbol_errs;
1515         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516         ns->rx_missed_errors = pstats->rx_cong_drops;
1517
1518         /* detailed tx_errors */
1519         ns->tx_aborted_errors = 0;
1520         ns->tx_carrier_errors = 0;
1521         ns->tx_fifo_errors = pstats->tx_underrun;
1522         ns->tx_heartbeat_errors = 0;
1523         ns->tx_window_errors = 0;
1524         return ns;
1525 }
1526
1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529         struct port_info *pi = netdev_priv(dev);
1530         struct adapter *adapter = pi->adapter;
1531
1532         return adapter->msg_enable;
1533 }
1534
1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537         struct port_info *pi = netdev_priv(dev);
1538         struct adapter *adapter = pi->adapter;
1539
1540         adapter->msg_enable = val;
1541 }
1542
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544         "TxOctetsOK         ",
1545         "TxFramesOK         ",
1546         "TxMulticastFramesOK",
1547         "TxBroadcastFramesOK",
1548         "TxPauseFrames      ",
1549         "TxUnderrun         ",
1550         "TxExtUnderrun      ",
1551
1552         "TxFrames64         ",
1553         "TxFrames65To127    ",
1554         "TxFrames128To255   ",
1555         "TxFrames256To511   ",
1556         "TxFrames512To1023  ",
1557         "TxFrames1024To1518 ",
1558         "TxFrames1519ToMax  ",
1559
1560         "RxOctetsOK         ",
1561         "RxFramesOK         ",
1562         "RxMulticastFramesOK",
1563         "RxBroadcastFramesOK",
1564         "RxPauseFrames      ",
1565         "RxFCSErrors        ",
1566         "RxSymbolErrors     ",
1567         "RxShortErrors      ",
1568         "RxJabberErrors     ",
1569         "RxLengthErrors     ",
1570         "RxFIFOoverflow     ",
1571
1572         "RxFrames64         ",
1573         "RxFrames65To127    ",
1574         "RxFrames128To255   ",
1575         "RxFrames256To511   ",
1576         "RxFrames512To1023  ",
1577         "RxFrames1024To1518 ",
1578         "RxFrames1519ToMax  ",
1579
1580         "PhyFIFOErrors      ",
1581         "TSO                ",
1582         "VLANextractions    ",
1583         "VLANinsertions     ",
1584         "TxCsumOffload      ",
1585         "RxCsumGood         ",
1586         "LroAggregated      ",
1587         "LroFlushed         ",
1588         "LroNoDesc          ",
1589         "RxDrops            ",
1590
1591         "CheckTXEnToggled   ",
1592         "CheckResets        ",
1593
1594         "LinkFaults         ",
1595 };
1596
1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599         switch (sset) {
1600         case ETH_SS_STATS:
1601                 return ARRAY_SIZE(stats_strings);
1602         default:
1603                 return -EOPNOTSUPP;
1604         }
1605 }
1606
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608
1609 static int get_regs_len(struct net_device *dev)
1610 {
1611         return T3_REGMAP_SIZE;
1612 }
1613
1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616         return EEPROMSIZE;
1617 }
1618
1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621         struct port_info *pi = netdev_priv(dev);
1622         struct adapter *adapter = pi->adapter;
1623         u32 fw_vers = 0;
1624         u32 tp_vers = 0;
1625
1626         spin_lock(&adapter->stats_lock);
1627         t3_get_fw_version(adapter, &fw_vers);
1628         t3_get_tp_version(adapter, &tp_vers);
1629         spin_unlock(&adapter->stats_lock);
1630
1631         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1633         strlcpy(info->bus_info, pci_name(adapter->pdev),
1634                 sizeof(info->bus_info));
1635         if (fw_vers)
1636                 snprintf(info->fw_version, sizeof(info->fw_version),
1637                          "%s %u.%u.%u TP %u.%u.%u",
1638                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1639                          G_FW_VERSION_MAJOR(fw_vers),
1640                          G_FW_VERSION_MINOR(fw_vers),
1641                          G_FW_VERSION_MICRO(fw_vers),
1642                          G_TP_VERSION_MAJOR(tp_vers),
1643                          G_TP_VERSION_MINOR(tp_vers),
1644                          G_TP_VERSION_MICRO(tp_vers));
1645 }
1646
1647 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1648 {
1649         if (stringset == ETH_SS_STATS)
1650                 memcpy(data, stats_strings, sizeof(stats_strings));
1651 }
1652
1653 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1654                                             struct port_info *p, int idx)
1655 {
1656         int i;
1657         unsigned long tot = 0;
1658
1659         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1660                 tot += adapter->sge.qs[i].port_stats[idx];
1661         return tot;
1662 }
1663
1664 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1665                       u64 *data)
1666 {
1667         struct port_info *pi = netdev_priv(dev);
1668         struct adapter *adapter = pi->adapter;
1669         const struct mac_stats *s;
1670
1671         spin_lock(&adapter->stats_lock);
1672         s = t3_mac_update_stats(&pi->mac);
1673         spin_unlock(&adapter->stats_lock);
1674
1675         *data++ = s->tx_octets;
1676         *data++ = s->tx_frames;
1677         *data++ = s->tx_mcast_frames;
1678         *data++ = s->tx_bcast_frames;
1679         *data++ = s->tx_pause;
1680         *data++ = s->tx_underrun;
1681         *data++ = s->tx_fifo_urun;
1682
1683         *data++ = s->tx_frames_64;
1684         *data++ = s->tx_frames_65_127;
1685         *data++ = s->tx_frames_128_255;
1686         *data++ = s->tx_frames_256_511;
1687         *data++ = s->tx_frames_512_1023;
1688         *data++ = s->tx_frames_1024_1518;
1689         *data++ = s->tx_frames_1519_max;
1690
1691         *data++ = s->rx_octets;
1692         *data++ = s->rx_frames;
1693         *data++ = s->rx_mcast_frames;
1694         *data++ = s->rx_bcast_frames;
1695         *data++ = s->rx_pause;
1696         *data++ = s->rx_fcs_errs;
1697         *data++ = s->rx_symbol_errs;
1698         *data++ = s->rx_short;
1699         *data++ = s->rx_jabber;
1700         *data++ = s->rx_too_long;
1701         *data++ = s->rx_fifo_ovfl;
1702
1703         *data++ = s->rx_frames_64;
1704         *data++ = s->rx_frames_65_127;
1705         *data++ = s->rx_frames_128_255;
1706         *data++ = s->rx_frames_256_511;
1707         *data++ = s->rx_frames_512_1023;
1708         *data++ = s->rx_frames_1024_1518;
1709         *data++ = s->rx_frames_1519_max;
1710
1711         *data++ = pi->phy.fifo_errors;
1712
1713         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1714         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1715         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1716         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1717         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1718         *data++ = 0;
1719         *data++ = 0;
1720         *data++ = 0;
1721         *data++ = s->rx_cong_drops;
1722
1723         *data++ = s->num_toggled;
1724         *data++ = s->num_resets;
1725
1726         *data++ = s->link_faults;
1727 }
1728
1729 static inline void reg_block_dump(struct adapter *ap, void *buf,
1730                                   unsigned int start, unsigned int end)
1731 {
1732         u32 *p = buf + start;
1733
1734         for (; start <= end; start += sizeof(u32))
1735                 *p++ = t3_read_reg(ap, start);
1736 }
1737
1738 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1739                      void *buf)
1740 {
1741         struct port_info *pi = netdev_priv(dev);
1742         struct adapter *ap = pi->adapter;
1743
1744         /*
1745          * Version scheme:
1746          * bits 0..9: chip version
1747          * bits 10..15: chip revision
1748          * bit 31: set for PCIe cards
1749          */
1750         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1751
1752         /*
1753          * We skip the MAC statistics registers because they are clear-on-read.
1754          * Also reading multi-register stats would need to synchronize with the
1755          * periodic mac stats accumulation.  Hard to justify the complexity.
1756          */
1757         memset(buf, 0, T3_REGMAP_SIZE);
1758         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1759         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1760         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1761         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1762         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1763         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1764                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1765         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1766                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1767 }
1768
1769 static int restart_autoneg(struct net_device *dev)
1770 {
1771         struct port_info *p = netdev_priv(dev);
1772
1773         if (!netif_running(dev))
1774                 return -EAGAIN;
1775         if (p->link_config.autoneg != AUTONEG_ENABLE)
1776                 return -EINVAL;
1777         p->phy.ops->autoneg_restart(&p->phy);
1778         return 0;
1779 }
1780
1781 static int set_phys_id(struct net_device *dev,
1782                        enum ethtool_phys_id_state state)
1783 {
1784         struct port_info *pi = netdev_priv(dev);
1785         struct adapter *adapter = pi->adapter;
1786
1787         switch (state) {
1788         case ETHTOOL_ID_ACTIVE:
1789                 return 1;       /* cycle on/off once per second */
1790
1791         case ETHTOOL_ID_OFF:
1792                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1793                 break;
1794
1795         case ETHTOOL_ID_ON:
1796         case ETHTOOL_ID_INACTIVE:
1797                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1798                          F_GPIO0_OUT_VAL);
1799         }
1800
1801         return 0;
1802 }
1803
1804 static int get_link_ksettings(struct net_device *dev,
1805                               struct ethtool_link_ksettings *cmd)
1806 {
1807         struct port_info *p = netdev_priv(dev);
1808         u32 supported;
1809
1810         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1811                                                 p->link_config.supported);
1812         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1813                                                 p->link_config.advertising);
1814
1815         if (netif_carrier_ok(dev)) {
1816                 cmd->base.speed = p->link_config.speed;
1817                 cmd->base.duplex = p->link_config.duplex;
1818         } else {
1819                 cmd->base.speed = SPEED_UNKNOWN;
1820                 cmd->base.duplex = DUPLEX_UNKNOWN;
1821         }
1822
1823         ethtool_convert_link_mode_to_legacy_u32(&supported,
1824                                                 cmd->link_modes.supported);
1825
1826         cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1827         cmd->base.phy_address = p->phy.mdio.prtad;
1828         cmd->base.autoneg = p->link_config.autoneg;
1829         return 0;
1830 }
1831
1832 static int speed_duplex_to_caps(int speed, int duplex)
1833 {
1834         int cap = 0;
1835
1836         switch (speed) {
1837         case SPEED_10:
1838                 if (duplex == DUPLEX_FULL)
1839                         cap = SUPPORTED_10baseT_Full;
1840                 else
1841                         cap = SUPPORTED_10baseT_Half;
1842                 break;
1843         case SPEED_100:
1844                 if (duplex == DUPLEX_FULL)
1845                         cap = SUPPORTED_100baseT_Full;
1846                 else
1847                         cap = SUPPORTED_100baseT_Half;
1848                 break;
1849         case SPEED_1000:
1850                 if (duplex == DUPLEX_FULL)
1851                         cap = SUPPORTED_1000baseT_Full;
1852                 else
1853                         cap = SUPPORTED_1000baseT_Half;
1854                 break;
1855         case SPEED_10000:
1856                 if (duplex == DUPLEX_FULL)
1857                         cap = SUPPORTED_10000baseT_Full;
1858         }
1859         return cap;
1860 }
1861
1862 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1863                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1864                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1865                       ADVERTISED_10000baseT_Full)
1866
1867 static int set_link_ksettings(struct net_device *dev,
1868                               const struct ethtool_link_ksettings *cmd)
1869 {
1870         struct port_info *p = netdev_priv(dev);
1871         struct link_config *lc = &p->link_config;
1872         u32 advertising;
1873
1874         ethtool_convert_link_mode_to_legacy_u32(&advertising,
1875                                                 cmd->link_modes.advertising);
1876
1877         if (!(lc->supported & SUPPORTED_Autoneg)) {
1878                 /*
1879                  * PHY offers a single speed/duplex.  See if that's what's
1880                  * being requested.
1881                  */
1882                 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1883                         u32 speed = cmd->base.speed;
1884                         int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1885                         if (lc->supported & cap)
1886                                 return 0;
1887                 }
1888                 return -EINVAL;
1889         }
1890
1891         if (cmd->base.autoneg == AUTONEG_DISABLE) {
1892                 u32 speed = cmd->base.speed;
1893                 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1894
1895                 if (!(lc->supported & cap) || (speed == SPEED_1000))
1896                         return -EINVAL;
1897                 lc->requested_speed = speed;
1898                 lc->requested_duplex = cmd->base.duplex;
1899                 lc->advertising = 0;
1900         } else {
1901                 advertising &= ADVERTISED_MASK;
1902                 advertising &= lc->supported;
1903                 if (!advertising)
1904                         return -EINVAL;
1905                 lc->requested_speed = SPEED_INVALID;
1906                 lc->requested_duplex = DUPLEX_INVALID;
1907                 lc->advertising = advertising | ADVERTISED_Autoneg;
1908         }
1909         lc->autoneg = cmd->base.autoneg;
1910         if (netif_running(dev))
1911                 t3_link_start(&p->phy, &p->mac, lc);
1912         return 0;
1913 }
1914
1915 static void get_pauseparam(struct net_device *dev,
1916                            struct ethtool_pauseparam *epause)
1917 {
1918         struct port_info *p = netdev_priv(dev);
1919
1920         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1921         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1922         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1923 }
1924
1925 static int set_pauseparam(struct net_device *dev,
1926                           struct ethtool_pauseparam *epause)
1927 {
1928         struct port_info *p = netdev_priv(dev);
1929         struct link_config *lc = &p->link_config;
1930
1931         if (epause->autoneg == AUTONEG_DISABLE)
1932                 lc->requested_fc = 0;
1933         else if (lc->supported & SUPPORTED_Autoneg)
1934                 lc->requested_fc = PAUSE_AUTONEG;
1935         else
1936                 return -EINVAL;
1937
1938         if (epause->rx_pause)
1939                 lc->requested_fc |= PAUSE_RX;
1940         if (epause->tx_pause)
1941                 lc->requested_fc |= PAUSE_TX;
1942         if (lc->autoneg == AUTONEG_ENABLE) {
1943                 if (netif_running(dev))
1944                         t3_link_start(&p->phy, &p->mac, lc);
1945         } else {
1946                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1947                 if (netif_running(dev))
1948                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1949         }
1950         return 0;
1951 }
1952
1953 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1954 {
1955         struct port_info *pi = netdev_priv(dev);
1956         struct adapter *adapter = pi->adapter;
1957         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1958
1959         e->rx_max_pending = MAX_RX_BUFFERS;
1960         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1961         e->tx_max_pending = MAX_TXQ_ENTRIES;
1962
1963         e->rx_pending = q->fl_size;
1964         e->rx_mini_pending = q->rspq_size;
1965         e->rx_jumbo_pending = q->jumbo_size;
1966         e->tx_pending = q->txq_size[0];
1967 }
1968
1969 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1970 {
1971         struct port_info *pi = netdev_priv(dev);
1972         struct adapter *adapter = pi->adapter;
1973         struct qset_params *q;
1974         int i;
1975
1976         if (e->rx_pending > MAX_RX_BUFFERS ||
1977             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1978             e->tx_pending > MAX_TXQ_ENTRIES ||
1979             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1980             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1981             e->rx_pending < MIN_FL_ENTRIES ||
1982             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1983             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1984                 return -EINVAL;
1985
1986         if (adapter->flags & FULL_INIT_DONE)
1987                 return -EBUSY;
1988
1989         q = &adapter->params.sge.qset[pi->first_qset];
1990         for (i = 0; i < pi->nqsets; ++i, ++q) {
1991                 q->rspq_size = e->rx_mini_pending;
1992                 q->fl_size = e->rx_pending;
1993                 q->jumbo_size = e->rx_jumbo_pending;
1994                 q->txq_size[0] = e->tx_pending;
1995                 q->txq_size[1] = e->tx_pending;
1996                 q->txq_size[2] = e->tx_pending;
1997         }
1998         return 0;
1999 }
2000
2001 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2002 {
2003         struct port_info *pi = netdev_priv(dev);
2004         struct adapter *adapter = pi->adapter;
2005         struct qset_params *qsp;
2006         struct sge_qset *qs;
2007         int i;
2008
2009         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2010                 return -EINVAL;
2011
2012         for (i = 0; i < pi->nqsets; i++) {
2013                 qsp = &adapter->params.sge.qset[i];
2014                 qs = &adapter->sge.qs[i];
2015                 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2016                 t3_update_qset_coalesce(qs, qsp);
2017         }
2018
2019         return 0;
2020 }
2021
2022 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2023 {
2024         struct port_info *pi = netdev_priv(dev);
2025         struct adapter *adapter = pi->adapter;
2026         struct qset_params *q = adapter->params.sge.qset;
2027
2028         c->rx_coalesce_usecs = q->coalesce_usecs;
2029         return 0;
2030 }
2031
2032 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2033                       u8 * data)
2034 {
2035         struct port_info *pi = netdev_priv(dev);
2036         struct adapter *adapter = pi->adapter;
2037         int i, err = 0;
2038
2039         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2040         if (!buf)
2041                 return -ENOMEM;
2042
2043         e->magic = EEPROM_MAGIC;
2044         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2045                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2046
2047         if (!err)
2048                 memcpy(data, buf + e->offset, e->len);
2049         kfree(buf);
2050         return err;
2051 }
2052
2053 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2054                       u8 * data)
2055 {
2056         struct port_info *pi = netdev_priv(dev);
2057         struct adapter *adapter = pi->adapter;
2058         u32 aligned_offset, aligned_len;
2059         __le32 *p;
2060         u8 *buf;
2061         int err;
2062
2063         if (eeprom->magic != EEPROM_MAGIC)
2064                 return -EINVAL;
2065
2066         aligned_offset = eeprom->offset & ~3;
2067         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2068
2069         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2070                 buf = kmalloc(aligned_len, GFP_KERNEL);
2071                 if (!buf)
2072                         return -ENOMEM;
2073                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2074                 if (!err && aligned_len > 4)
2075                         err = t3_seeprom_read(adapter,
2076                                               aligned_offset + aligned_len - 4,
2077                                               (__le32 *) & buf[aligned_len - 4]);
2078                 if (err)
2079                         goto out;
2080                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2081         } else
2082                 buf = data;
2083
2084         err = t3_seeprom_wp(adapter, 0);
2085         if (err)
2086                 goto out;
2087
2088         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2089                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2090                 aligned_offset += 4;
2091         }
2092
2093         if (!err)
2094                 err = t3_seeprom_wp(adapter, 1);
2095 out:
2096         if (buf != data)
2097                 kfree(buf);
2098         return err;
2099 }
2100
2101 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2102 {
2103         wol->supported = 0;
2104         wol->wolopts = 0;
2105         memset(&wol->sopass, 0, sizeof(wol->sopass));
2106 }
2107
2108 static const struct ethtool_ops cxgb_ethtool_ops = {
2109         .get_drvinfo = get_drvinfo,
2110         .get_msglevel = get_msglevel,
2111         .set_msglevel = set_msglevel,
2112         .get_ringparam = get_sge_param,
2113         .set_ringparam = set_sge_param,
2114         .get_coalesce = get_coalesce,
2115         .set_coalesce = set_coalesce,
2116         .get_eeprom_len = get_eeprom_len,
2117         .get_eeprom = get_eeprom,
2118         .set_eeprom = set_eeprom,
2119         .get_pauseparam = get_pauseparam,
2120         .set_pauseparam = set_pauseparam,
2121         .get_link = ethtool_op_get_link,
2122         .get_strings = get_strings,
2123         .set_phys_id = set_phys_id,
2124         .nway_reset = restart_autoneg,
2125         .get_sset_count = get_sset_count,
2126         .get_ethtool_stats = get_stats,
2127         .get_regs_len = get_regs_len,
2128         .get_regs = get_regs,
2129         .get_wol = get_wol,
2130         .get_link_ksettings = get_link_ksettings,
2131         .set_link_ksettings = set_link_ksettings,
2132 };
2133
2134 static int in_range(int val, int lo, int hi)
2135 {
2136         return val < 0 || (val <= hi && val >= lo);
2137 }
2138
2139 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2140 {
2141         struct port_info *pi = netdev_priv(dev);
2142         struct adapter *adapter = pi->adapter;
2143         u32 cmd;
2144         int ret;
2145
2146         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2147                 return -EFAULT;
2148
2149         switch (cmd) {
2150         case CHELSIO_SET_QSET_PARAMS:{
2151                 int i;
2152                 struct qset_params *q;
2153                 struct ch_qset_params t;
2154                 int q1 = pi->first_qset;
2155                 int nqsets = pi->nqsets;
2156
2157                 if (!capable(CAP_NET_ADMIN))
2158                         return -EPERM;
2159                 if (copy_from_user(&t, useraddr, sizeof(t)))
2160                         return -EFAULT;
2161                 if (t.cmd != CHELSIO_SET_QSET_PARAMS)
2162                         return -EINVAL;
2163                 if (t.qset_idx >= SGE_QSETS)
2164                         return -EINVAL;
2165                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2166                     !in_range(t.cong_thres, 0, 255) ||
2167                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2168                               MAX_TXQ_ENTRIES) ||
2169                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2170                               MAX_TXQ_ENTRIES) ||
2171                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2172                               MAX_CTRL_TXQ_ENTRIES) ||
2173                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2174                               MAX_RX_BUFFERS) ||
2175                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2176                               MAX_RX_JUMBO_BUFFERS) ||
2177                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2178                               MAX_RSPQ_ENTRIES))
2179                         return -EINVAL;
2180
2181                 if ((adapter->flags & FULL_INIT_DONE) &&
2182                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2183                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2184                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2185                         t.polling >= 0 || t.cong_thres >= 0))
2186                         return -EBUSY;
2187
2188                 /* Allow setting of any available qset when offload enabled */
2189                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2190                         q1 = 0;
2191                         for_each_port(adapter, i) {
2192                                 pi = adap2pinfo(adapter, i);
2193                                 nqsets += pi->first_qset + pi->nqsets;
2194                         }
2195                 }
2196
2197                 if (t.qset_idx < q1)
2198                         return -EINVAL;
2199                 if (t.qset_idx > q1 + nqsets - 1)
2200                         return -EINVAL;
2201
2202                 q = &adapter->params.sge.qset[t.qset_idx];
2203
2204                 if (t.rspq_size >= 0)
2205                         q->rspq_size = t.rspq_size;
2206                 if (t.fl_size[0] >= 0)
2207                         q->fl_size = t.fl_size[0];
2208                 if (t.fl_size[1] >= 0)
2209                         q->jumbo_size = t.fl_size[1];
2210                 if (t.txq_size[0] >= 0)
2211                         q->txq_size[0] = t.txq_size[0];
2212                 if (t.txq_size[1] >= 0)
2213                         q->txq_size[1] = t.txq_size[1];
2214                 if (t.txq_size[2] >= 0)
2215                         q->txq_size[2] = t.txq_size[2];
2216                 if (t.cong_thres >= 0)
2217                         q->cong_thres = t.cong_thres;
2218                 if (t.intr_lat >= 0) {
2219                         struct sge_qset *qs =
2220                                 &adapter->sge.qs[t.qset_idx];
2221
2222                         q->coalesce_usecs = t.intr_lat;
2223                         t3_update_qset_coalesce(qs, q);
2224                 }
2225                 if (t.polling >= 0) {
2226                         if (adapter->flags & USING_MSIX)
2227                                 q->polling = t.polling;
2228                         else {
2229                                 /* No polling with INTx for T3A */
2230                                 if (adapter->params.rev == 0 &&
2231                                         !(adapter->flags & USING_MSI))
2232                                         t.polling = 0;
2233
2234                                 for (i = 0; i < SGE_QSETS; i++) {
2235                                         q = &adapter->params.sge.
2236                                                 qset[i];
2237                                         q->polling = t.polling;
2238                                 }
2239                         }
2240                 }
2241
2242                 if (t.lro >= 0) {
2243                         if (t.lro)
2244                                 dev->wanted_features |= NETIF_F_GRO;
2245                         else
2246                                 dev->wanted_features &= ~NETIF_F_GRO;
2247                         netdev_update_features(dev);
2248                 }
2249
2250                 break;
2251         }
2252         case CHELSIO_GET_QSET_PARAMS:{
2253                 struct qset_params *q;
2254                 struct ch_qset_params t;
2255                 int q1 = pi->first_qset;
2256                 int nqsets = pi->nqsets;
2257                 int i;
2258
2259                 if (copy_from_user(&t, useraddr, sizeof(t)))
2260                         return -EFAULT;
2261
2262                 if (t.cmd != CHELSIO_GET_QSET_PARAMS)
2263                         return -EINVAL;
2264
2265                 /* Display qsets for all ports when offload enabled */
2266                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2267                         q1 = 0;
2268                         for_each_port(adapter, i) {
2269                                 pi = adap2pinfo(adapter, i);
2270                                 nqsets = pi->first_qset + pi->nqsets;
2271                         }
2272                 }
2273
2274                 if (t.qset_idx >= nqsets)
2275                         return -EINVAL;
2276                 t.qset_idx = array_index_nospec(t.qset_idx, nqsets);
2277
2278                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2279                 t.rspq_size = q->rspq_size;
2280                 t.txq_size[0] = q->txq_size[0];
2281                 t.txq_size[1] = q->txq_size[1];
2282                 t.txq_size[2] = q->txq_size[2];
2283                 t.fl_size[0] = q->fl_size;
2284                 t.fl_size[1] = q->jumbo_size;
2285                 t.polling = q->polling;
2286                 t.lro = !!(dev->features & NETIF_F_GRO);
2287                 t.intr_lat = q->coalesce_usecs;
2288                 t.cong_thres = q->cong_thres;
2289                 t.qnum = q1;
2290
2291                 if (adapter->flags & USING_MSIX)
2292                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2293                 else
2294                         t.vector = adapter->pdev->irq;
2295
2296                 if (copy_to_user(useraddr, &t, sizeof(t)))
2297                         return -EFAULT;
2298                 break;
2299         }
2300         case CHELSIO_SET_QSET_NUM:{
2301                 struct ch_reg edata;
2302                 unsigned int i, first_qset = 0, other_qsets = 0;
2303
2304                 if (!capable(CAP_NET_ADMIN))
2305                         return -EPERM;
2306                 if (adapter->flags & FULL_INIT_DONE)
2307                         return -EBUSY;
2308                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2309                         return -EFAULT;
2310                 if (edata.cmd != CHELSIO_SET_QSET_NUM)
2311                         return -EINVAL;
2312                 if (edata.val < 1 ||
2313                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2314                         return -EINVAL;
2315
2316                 for_each_port(adapter, i)
2317                         if (adapter->port[i] && adapter->port[i] != dev)
2318                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2319
2320                 if (edata.val + other_qsets > SGE_QSETS)
2321                         return -EINVAL;
2322
2323                 pi->nqsets = edata.val;
2324
2325                 for_each_port(adapter, i)
2326                         if (adapter->port[i]) {
2327                                 pi = adap2pinfo(adapter, i);
2328                                 pi->first_qset = first_qset;
2329                                 first_qset += pi->nqsets;
2330                         }
2331                 break;
2332         }
2333         case CHELSIO_GET_QSET_NUM:{
2334                 struct ch_reg edata;
2335
2336                 memset(&edata, 0, sizeof(struct ch_reg));
2337
2338                 edata.cmd = CHELSIO_GET_QSET_NUM;
2339                 edata.val = pi->nqsets;
2340                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2341                         return -EFAULT;
2342                 break;
2343         }
2344         case CHELSIO_LOAD_FW:{
2345                 u8 *fw_data;
2346                 struct ch_mem_range t;
2347
2348                 if (!capable(CAP_SYS_RAWIO))
2349                         return -EPERM;
2350                 if (copy_from_user(&t, useraddr, sizeof(t)))
2351                         return -EFAULT;
2352                 if (t.cmd != CHELSIO_LOAD_FW)
2353                         return -EINVAL;
2354                 /* Check t.len sanity ? */
2355                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2356                 if (IS_ERR(fw_data))
2357                         return PTR_ERR(fw_data);
2358
2359                 ret = t3_load_fw(adapter, fw_data, t.len);
2360                 kfree(fw_data);
2361                 if (ret)
2362                         return ret;
2363                 break;
2364         }
2365         case CHELSIO_SETMTUTAB:{
2366                 struct ch_mtus m;
2367                 int i;
2368
2369                 if (!is_offload(adapter))
2370                         return -EOPNOTSUPP;
2371                 if (!capable(CAP_NET_ADMIN))
2372                         return -EPERM;
2373                 if (offload_running(adapter))
2374                         return -EBUSY;
2375                 if (copy_from_user(&m, useraddr, sizeof(m)))
2376                         return -EFAULT;
2377                 if (m.cmd != CHELSIO_SETMTUTAB)
2378                         return -EINVAL;
2379                 if (m.nmtus != NMTUS)
2380                         return -EINVAL;
2381                 if (m.mtus[0] < 81)     /* accommodate SACK */
2382                         return -EINVAL;
2383
2384                 /* MTUs must be in ascending order */
2385                 for (i = 1; i < NMTUS; ++i)
2386                         if (m.mtus[i] < m.mtus[i - 1])
2387                                 return -EINVAL;
2388
2389                 memcpy(adapter->params.mtus, m.mtus,
2390                         sizeof(adapter->params.mtus));
2391                 break;
2392         }
2393         case CHELSIO_GET_PM:{
2394                 struct tp_params *p = &adapter->params.tp;
2395                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2396
2397                 if (!is_offload(adapter))
2398                         return -EOPNOTSUPP;
2399                 m.tx_pg_sz = p->tx_pg_size;
2400                 m.tx_num_pg = p->tx_num_pgs;
2401                 m.rx_pg_sz = p->rx_pg_size;
2402                 m.rx_num_pg = p->rx_num_pgs;
2403                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2404                 if (copy_to_user(useraddr, &m, sizeof(m)))
2405                         return -EFAULT;
2406                 break;
2407         }
2408         case CHELSIO_SET_PM:{
2409                 struct ch_pm m;
2410                 struct tp_params *p = &adapter->params.tp;
2411
2412                 if (!is_offload(adapter))
2413                         return -EOPNOTSUPP;
2414                 if (!capable(CAP_NET_ADMIN))
2415                         return -EPERM;
2416                 if (adapter->flags & FULL_INIT_DONE)
2417                         return -EBUSY;
2418                 if (copy_from_user(&m, useraddr, sizeof(m)))
2419                         return -EFAULT;
2420                 if (m.cmd != CHELSIO_SET_PM)
2421                         return -EINVAL;
2422                 if (!is_power_of_2(m.rx_pg_sz) ||
2423                         !is_power_of_2(m.tx_pg_sz))
2424                         return -EINVAL; /* not power of 2 */
2425                 if (!(m.rx_pg_sz & 0x14000))
2426                         return -EINVAL; /* not 16KB or 64KB */
2427                 if (!(m.tx_pg_sz & 0x1554000))
2428                         return -EINVAL;
2429                 if (m.tx_num_pg == -1)
2430                         m.tx_num_pg = p->tx_num_pgs;
2431                 if (m.rx_num_pg == -1)
2432                         m.rx_num_pg = p->rx_num_pgs;
2433                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2434                         return -EINVAL;
2435                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2436                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2437                         return -EINVAL;
2438                 p->rx_pg_size = m.rx_pg_sz;
2439                 p->tx_pg_size = m.tx_pg_sz;
2440                 p->rx_num_pgs = m.rx_num_pg;
2441                 p->tx_num_pgs = m.tx_num_pg;
2442                 break;
2443         }
2444         case CHELSIO_GET_MEM:{
2445                 struct ch_mem_range t;
2446                 struct mc7 *mem;
2447                 u64 buf[32];
2448
2449                 if (!is_offload(adapter))
2450                         return -EOPNOTSUPP;
2451                 if (!(adapter->flags & FULL_INIT_DONE))
2452                         return -EIO;    /* need the memory controllers */
2453                 if (copy_from_user(&t, useraddr, sizeof(t)))
2454                         return -EFAULT;
2455                 if (t.cmd != CHELSIO_GET_MEM)
2456                         return -EINVAL;
2457                 if ((t.addr & 7) || (t.len & 7))
2458                         return -EINVAL;
2459                 if (t.mem_id == MEM_CM)
2460                         mem = &adapter->cm;
2461                 else if (t.mem_id == MEM_PMRX)
2462                         mem = &adapter->pmrx;
2463                 else if (t.mem_id == MEM_PMTX)
2464                         mem = &adapter->pmtx;
2465                 else
2466                         return -EINVAL;
2467
2468                 /*
2469                  * Version scheme:
2470                  * bits 0..9: chip version
2471                  * bits 10..15: chip revision
2472                  */
2473                 t.version = 3 | (adapter->params.rev << 10);
2474                 if (copy_to_user(useraddr, &t, sizeof(t)))
2475                         return -EFAULT;
2476
2477                 /*
2478                  * Read 256 bytes at a time as len can be large and we don't
2479                  * want to use huge intermediate buffers.
2480                  */
2481                 useraddr += sizeof(t);  /* advance to start of buffer */
2482                 while (t.len) {
2483                         unsigned int chunk =
2484                                 min_t(unsigned int, t.len, sizeof(buf));
2485
2486                         ret =
2487                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2488                                                 buf);
2489                         if (ret)
2490                                 return ret;
2491                         if (copy_to_user(useraddr, buf, chunk))
2492                                 return -EFAULT;
2493                         useraddr += chunk;
2494                         t.addr += chunk;
2495                         t.len -= chunk;
2496                 }
2497                 break;
2498         }
2499         case CHELSIO_SET_TRACE_FILTER:{
2500                 struct ch_trace t;
2501                 const struct trace_params *tp;
2502
2503                 if (!capable(CAP_NET_ADMIN))
2504                         return -EPERM;
2505                 if (!offload_running(adapter))
2506                         return -EAGAIN;
2507                 if (copy_from_user(&t, useraddr, sizeof(t)))
2508                         return -EFAULT;
2509                 if (t.cmd != CHELSIO_SET_TRACE_FILTER)
2510                         return -EINVAL;
2511
2512                 tp = (const struct trace_params *)&t.sip;
2513                 if (t.config_tx)
2514                         t3_config_trace_filter(adapter, tp, 0,
2515                                                 t.invert_match,
2516                                                 t.trace_tx);
2517                 if (t.config_rx)
2518                         t3_config_trace_filter(adapter, tp, 1,
2519                                                 t.invert_match,
2520                                                 t.trace_rx);
2521                 break;
2522         }
2523         default:
2524                 return -EOPNOTSUPP;
2525         }
2526         return 0;
2527 }
2528
2529 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2530 {
2531         struct mii_ioctl_data *data = if_mii(req);
2532         struct port_info *pi = netdev_priv(dev);
2533         struct adapter *adapter = pi->adapter;
2534
2535         switch (cmd) {
2536         case SIOCGMIIREG:
2537         case SIOCSMIIREG:
2538                 /* Convert phy_id from older PRTAD/DEVAD format */
2539                 if (is_10G(adapter) &&
2540                     !mdio_phy_id_is_c45(data->phy_id) &&
2541                     (data->phy_id & 0x1f00) &&
2542                     !(data->phy_id & 0xe0e0))
2543                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2544                                                        data->phy_id & 0x1f);
2545                 /* FALLTHRU */
2546         case SIOCGMIIPHY:
2547                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2548         case SIOCCHIOCTL:
2549                 return cxgb_extension_ioctl(dev, req->ifr_data);
2550         default:
2551                 return -EOPNOTSUPP;
2552         }
2553 }
2554
2555 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2556 {
2557         struct port_info *pi = netdev_priv(dev);
2558         struct adapter *adapter = pi->adapter;
2559         int ret;
2560
2561         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2562                 return ret;
2563         dev->mtu = new_mtu;
2564         init_port_mtus(adapter);
2565         if (adapter->params.rev == 0 && offload_running(adapter))
2566                 t3_load_mtus(adapter, adapter->params.mtus,
2567                              adapter->params.a_wnd, adapter->params.b_wnd,
2568                              adapter->port[0]->mtu);
2569         return 0;
2570 }
2571
2572 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2573 {
2574         struct port_info *pi = netdev_priv(dev);
2575         struct adapter *adapter = pi->adapter;
2576         struct sockaddr *addr = p;
2577
2578         if (!is_valid_ether_addr(addr->sa_data))
2579                 return -EADDRNOTAVAIL;
2580
2581         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2582         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2583         if (offload_running(adapter))
2584                 write_smt_entry(adapter, pi->port_id);
2585         return 0;
2586 }
2587
2588 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2589         netdev_features_t features)
2590 {
2591         /*
2592          * Since there is no support for separate rx/tx vlan accel
2593          * enable/disable make sure tx flag is always in same state as rx.
2594          */
2595         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2596                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2597         else
2598                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2599
2600         return features;
2601 }
2602
2603 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2604 {
2605         netdev_features_t changed = dev->features ^ features;
2606
2607         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2608                 cxgb_vlan_mode(dev, features);
2609
2610         return 0;
2611 }
2612
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
2614 static void cxgb_netpoll(struct net_device *dev)
2615 {
2616         struct port_info *pi = netdev_priv(dev);
2617         struct adapter *adapter = pi->adapter;
2618         int qidx;
2619
2620         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2621                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2622                 void *source;
2623
2624                 if (adapter->flags & USING_MSIX)
2625                         source = qs;
2626                 else
2627                         source = adapter;
2628
2629                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2630         }
2631 }
2632 #endif
2633
2634 /*
2635  * Periodic accumulation of MAC statistics.
2636  */
2637 static void mac_stats_update(struct adapter *adapter)
2638 {
2639         int i;
2640
2641         for_each_port(adapter, i) {
2642                 struct net_device *dev = adapter->port[i];
2643                 struct port_info *p = netdev_priv(dev);
2644
2645                 if (netif_running(dev)) {
2646                         spin_lock(&adapter->stats_lock);
2647                         t3_mac_update_stats(&p->mac);
2648                         spin_unlock(&adapter->stats_lock);
2649                 }
2650         }
2651 }
2652
2653 static void check_link_status(struct adapter *adapter)
2654 {
2655         int i;
2656
2657         for_each_port(adapter, i) {
2658                 struct net_device *dev = adapter->port[i];
2659                 struct port_info *p = netdev_priv(dev);
2660                 int link_fault;
2661
2662                 spin_lock_irq(&adapter->work_lock);
2663                 link_fault = p->link_fault;
2664                 spin_unlock_irq(&adapter->work_lock);
2665
2666                 if (link_fault) {
2667                         t3_link_fault(adapter, i);
2668                         continue;
2669                 }
2670
2671                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2672                         t3_xgm_intr_disable(adapter, i);
2673                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2674
2675                         t3_link_changed(adapter, i);
2676                         t3_xgm_intr_enable(adapter, i);
2677                 }
2678         }
2679 }
2680
2681 static void check_t3b2_mac(struct adapter *adapter)
2682 {
2683         int i;
2684
2685         if (!rtnl_trylock())    /* synchronize with ifdown */
2686                 return;
2687
2688         for_each_port(adapter, i) {
2689                 struct net_device *dev = adapter->port[i];
2690                 struct port_info *p = netdev_priv(dev);
2691                 int status;
2692
2693                 if (!netif_running(dev))
2694                         continue;
2695
2696                 status = 0;
2697                 if (netif_running(dev) && netif_carrier_ok(dev))
2698                         status = t3b2_mac_watchdog_task(&p->mac);
2699                 if (status == 1)
2700                         p->mac.stats.num_toggled++;
2701                 else if (status == 2) {
2702                         struct cmac *mac = &p->mac;
2703
2704                         t3_mac_set_mtu(mac, dev->mtu);
2705                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2706                         cxgb_set_rxmode(dev);
2707                         t3_link_start(&p->phy, mac, &p->link_config);
2708                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2709                         t3_port_intr_enable(adapter, p->port_id);
2710                         p->mac.stats.num_resets++;
2711                 }
2712         }
2713         rtnl_unlock();
2714 }
2715
2716
2717 static void t3_adap_check_task(struct work_struct *work)
2718 {
2719         struct adapter *adapter = container_of(work, struct adapter,
2720                                                adap_check_task.work);
2721         const struct adapter_params *p = &adapter->params;
2722         int port;
2723         unsigned int v, status, reset;
2724
2725         adapter->check_task_cnt++;
2726
2727         check_link_status(adapter);
2728
2729         /* Accumulate MAC stats if needed */
2730         if (!p->linkpoll_period ||
2731             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2732             p->stats_update_period) {
2733                 mac_stats_update(adapter);
2734                 adapter->check_task_cnt = 0;
2735         }
2736
2737         if (p->rev == T3_REV_B2)
2738                 check_t3b2_mac(adapter);
2739
2740         /*
2741          * Scan the XGMAC's to check for various conditions which we want to
2742          * monitor in a periodic polling manner rather than via an interrupt
2743          * condition.  This is used for conditions which would otherwise flood
2744          * the system with interrupts and we only really need to know that the
2745          * conditions are "happening" ...  For each condition we count the
2746          * detection of the condition and reset it for the next polling loop.
2747          */
2748         for_each_port(adapter, port) {
2749                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2750                 u32 cause;
2751
2752                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2753                 reset = 0;
2754                 if (cause & F_RXFIFO_OVERFLOW) {
2755                         mac->stats.rx_fifo_ovfl++;
2756                         reset |= F_RXFIFO_OVERFLOW;
2757                 }
2758
2759                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2760         }
2761
2762         /*
2763          * We do the same as above for FL_EMPTY interrupts.
2764          */
2765         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2766         reset = 0;
2767
2768         if (status & F_FLEMPTY) {
2769                 struct sge_qset *qs = &adapter->sge.qs[0];
2770                 int i = 0;
2771
2772                 reset |= F_FLEMPTY;
2773
2774                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2775                     0xffff;
2776
2777                 while (v) {
2778                         qs->fl[i].empty += (v & 1);
2779                         if (i)
2780                                 qs++;
2781                         i ^= 1;
2782                         v >>= 1;
2783                 }
2784         }
2785
2786         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2787
2788         /* Schedule the next check update if any port is active. */
2789         spin_lock_irq(&adapter->work_lock);
2790         if (adapter->open_device_map & PORT_MASK)
2791                 schedule_chk_task(adapter);
2792         spin_unlock_irq(&adapter->work_lock);
2793 }
2794
2795 static void db_full_task(struct work_struct *work)
2796 {
2797         struct adapter *adapter = container_of(work, struct adapter,
2798                                                db_full_task);
2799
2800         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2801 }
2802
2803 static void db_empty_task(struct work_struct *work)
2804 {
2805         struct adapter *adapter = container_of(work, struct adapter,
2806                                                db_empty_task);
2807
2808         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2809 }
2810
2811 static void db_drop_task(struct work_struct *work)
2812 {
2813         struct adapter *adapter = container_of(work, struct adapter,
2814                                                db_drop_task);
2815         unsigned long delay = 1000;
2816         unsigned short r;
2817
2818         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2819
2820         /*
2821          * Sleep a while before ringing the driver qset dbs.
2822          * The delay is between 1000-2023 usecs.
2823          */
2824         get_random_bytes(&r, 2);
2825         delay += r & 1023;
2826         set_current_state(TASK_UNINTERRUPTIBLE);
2827         schedule_timeout(usecs_to_jiffies(delay));
2828         ring_dbs(adapter);
2829 }
2830
2831 /*
2832  * Processes external (PHY) interrupts in process context.
2833  */
2834 static void ext_intr_task(struct work_struct *work)
2835 {
2836         struct adapter *adapter = container_of(work, struct adapter,
2837                                                ext_intr_handler_task);
2838         int i;
2839
2840         /* Disable link fault interrupts */
2841         for_each_port(adapter, i) {
2842                 struct net_device *dev = adapter->port[i];
2843                 struct port_info *p = netdev_priv(dev);
2844
2845                 t3_xgm_intr_disable(adapter, i);
2846                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2847         }
2848
2849         /* Re-enable link fault interrupts */
2850         t3_phy_intr_handler(adapter);
2851
2852         for_each_port(adapter, i)
2853                 t3_xgm_intr_enable(adapter, i);
2854
2855         /* Now reenable external interrupts */
2856         spin_lock_irq(&adapter->work_lock);
2857         if (adapter->slow_intr_mask) {
2858                 adapter->slow_intr_mask |= F_T3DBG;
2859                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2860                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2861                              adapter->slow_intr_mask);
2862         }
2863         spin_unlock_irq(&adapter->work_lock);
2864 }
2865
2866 /*
2867  * Interrupt-context handler for external (PHY) interrupts.
2868  */
2869 void t3_os_ext_intr_handler(struct adapter *adapter)
2870 {
2871         /*
2872          * Schedule a task to handle external interrupts as they may be slow
2873          * and we use a mutex to protect MDIO registers.  We disable PHY
2874          * interrupts in the meantime and let the task reenable them when
2875          * it's done.
2876          */
2877         spin_lock(&adapter->work_lock);
2878         if (adapter->slow_intr_mask) {
2879                 adapter->slow_intr_mask &= ~F_T3DBG;
2880                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2881                              adapter->slow_intr_mask);
2882                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2883         }
2884         spin_unlock(&adapter->work_lock);
2885 }
2886
2887 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2888 {
2889         struct net_device *netdev = adapter->port[port_id];
2890         struct port_info *pi = netdev_priv(netdev);
2891
2892         spin_lock(&adapter->work_lock);
2893         pi->link_fault = 1;
2894         spin_unlock(&adapter->work_lock);
2895 }
2896
2897 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2898 {
2899         int i, ret = 0;
2900
2901         if (is_offload(adapter) &&
2902             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2903                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2904                 offload_close(&adapter->tdev);
2905         }
2906
2907         /* Stop all ports */
2908         for_each_port(adapter, i) {
2909                 struct net_device *netdev = adapter->port[i];
2910
2911                 if (netif_running(netdev))
2912                         __cxgb_close(netdev, on_wq);
2913         }
2914
2915         /* Stop SGE timers */
2916         t3_stop_sge_timers(adapter);
2917
2918         adapter->flags &= ~FULL_INIT_DONE;
2919
2920         if (reset)
2921                 ret = t3_reset_adapter(adapter);
2922
2923         pci_disable_device(adapter->pdev);
2924
2925         return ret;
2926 }
2927
2928 static int t3_reenable_adapter(struct adapter *adapter)
2929 {
2930         if (pci_enable_device(adapter->pdev)) {
2931                 dev_err(&adapter->pdev->dev,
2932                         "Cannot re-enable PCI device after reset.\n");
2933                 goto err;
2934         }
2935         pci_set_master(adapter->pdev);
2936         pci_restore_state(adapter->pdev);
2937         pci_save_state(adapter->pdev);
2938
2939         /* Free sge resources */
2940         t3_free_sge_resources(adapter);
2941
2942         if (t3_replay_prep_adapter(adapter))
2943                 goto err;
2944
2945         return 0;
2946 err:
2947         return -1;
2948 }
2949
2950 static void t3_resume_ports(struct adapter *adapter)
2951 {
2952         int i;
2953
2954         /* Restart the ports */
2955         for_each_port(adapter, i) {
2956                 struct net_device *netdev = adapter->port[i];
2957
2958                 if (netif_running(netdev)) {
2959                         if (cxgb_open(netdev)) {
2960                                 dev_err(&adapter->pdev->dev,
2961                                         "can't bring device back up"
2962                                         " after reset\n");
2963                                 continue;
2964                         }
2965                 }
2966         }
2967
2968         if (is_offload(adapter) && !ofld_disable)
2969                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2970 }
2971
2972 /*
2973  * processes a fatal error.
2974  * Bring the ports down, reset the chip, bring the ports back up.
2975  */
2976 static void fatal_error_task(struct work_struct *work)
2977 {
2978         struct adapter *adapter = container_of(work, struct adapter,
2979                                                fatal_error_handler_task);
2980         int err = 0;
2981
2982         rtnl_lock();
2983         err = t3_adapter_error(adapter, 1, 1);
2984         if (!err)
2985                 err = t3_reenable_adapter(adapter);
2986         if (!err)
2987                 t3_resume_ports(adapter);
2988
2989         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2990         rtnl_unlock();
2991 }
2992
2993 void t3_fatal_err(struct adapter *adapter)
2994 {
2995         unsigned int fw_status[4];
2996
2997         if (adapter->flags & FULL_INIT_DONE) {
2998                 t3_sge_stop(adapter);
2999                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
3000                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
3001                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
3002                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
3003
3004                 spin_lock(&adapter->work_lock);
3005                 t3_intr_disable(adapter);
3006                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
3007                 spin_unlock(&adapter->work_lock);
3008         }
3009         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
3010         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
3011                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3012                          fw_status[0], fw_status[1],
3013                          fw_status[2], fw_status[3]);
3014 }
3015
3016 /**
3017  * t3_io_error_detected - called when PCI error is detected
3018  * @pdev: Pointer to PCI device
3019  * @state: The current pci connection state
3020  *
3021  * This function is called after a PCI bus error affecting
3022  * this device has been detected.
3023  */
3024 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3025                                              pci_channel_state_t state)
3026 {
3027         struct adapter *adapter = pci_get_drvdata(pdev);
3028
3029         if (state == pci_channel_io_perm_failure)
3030                 return PCI_ERS_RESULT_DISCONNECT;
3031
3032         t3_adapter_error(adapter, 0, 0);
3033
3034         /* Request a slot reset. */
3035         return PCI_ERS_RESULT_NEED_RESET;
3036 }
3037
3038 /**
3039  * t3_io_slot_reset - called after the pci bus has been reset.
3040  * @pdev: Pointer to PCI device
3041  *
3042  * Restart the card from scratch, as if from a cold-boot.
3043  */
3044 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3045 {
3046         struct adapter *adapter = pci_get_drvdata(pdev);
3047
3048         if (!t3_reenable_adapter(adapter))
3049                 return PCI_ERS_RESULT_RECOVERED;
3050
3051         return PCI_ERS_RESULT_DISCONNECT;
3052 }
3053
3054 /**
3055  * t3_io_resume - called when traffic can start flowing again.
3056  * @pdev: Pointer to PCI device
3057  *
3058  * This callback is called when the error recovery driver tells us that
3059  * its OK to resume normal operation.
3060  */
3061 static void t3_io_resume(struct pci_dev *pdev)
3062 {
3063         struct adapter *adapter = pci_get_drvdata(pdev);
3064
3065         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3066                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3067
3068         rtnl_lock();
3069         t3_resume_ports(adapter);
3070         rtnl_unlock();
3071 }
3072
3073 static const struct pci_error_handlers t3_err_handler = {
3074         .error_detected = t3_io_error_detected,
3075         .slot_reset = t3_io_slot_reset,
3076         .resume = t3_io_resume,
3077 };
3078
3079 /*
3080  * Set the number of qsets based on the number of CPUs and the number of ports,
3081  * not to exceed the number of available qsets, assuming there are enough qsets
3082  * per port in HW.
3083  */
3084 static void set_nqsets(struct adapter *adap)
3085 {
3086         int i, j = 0;
3087         int num_cpus = netif_get_num_default_rss_queues();
3088         int hwports = adap->params.nports;
3089         int nqsets = adap->msix_nvectors - 1;
3090
3091         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3092                 if (hwports == 2 &&
3093                     (hwports * nqsets > SGE_QSETS ||
3094                      num_cpus >= nqsets / hwports))
3095                         nqsets /= hwports;
3096                 if (nqsets > num_cpus)
3097                         nqsets = num_cpus;
3098                 if (nqsets < 1 || hwports == 4)
3099                         nqsets = 1;
3100         } else
3101                 nqsets = 1;
3102
3103         for_each_port(adap, i) {
3104                 struct port_info *pi = adap2pinfo(adap, i);
3105
3106                 pi->first_qset = j;
3107                 pi->nqsets = nqsets;
3108                 j = pi->first_qset + nqsets;
3109
3110                 dev_info(&adap->pdev->dev,
3111                          "Port %d using %d queue sets.\n", i, nqsets);
3112         }
3113 }
3114
3115 static int cxgb_enable_msix(struct adapter *adap)
3116 {
3117         struct msix_entry entries[SGE_QSETS + 1];
3118         int vectors;
3119         int i;
3120
3121         vectors = ARRAY_SIZE(entries);
3122         for (i = 0; i < vectors; ++i)
3123                 entries[i].entry = i;
3124
3125         vectors = pci_enable_msix_range(adap->pdev, entries,
3126                                         adap->params.nports + 1, vectors);
3127         if (vectors < 0)
3128                 return vectors;
3129
3130         for (i = 0; i < vectors; ++i)
3131                 adap->msix_info[i].vec = entries[i].vector;
3132         adap->msix_nvectors = vectors;
3133
3134         return 0;
3135 }
3136
3137 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3138 {
3139         static const char *pci_variant[] = {
3140                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3141         };
3142
3143         int i;
3144         char buf[80];
3145
3146         if (is_pcie(adap))
3147                 snprintf(buf, sizeof(buf), "%s x%d",
3148                          pci_variant[adap->params.pci.variant],
3149                          adap->params.pci.width);
3150         else
3151                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3152                          pci_variant[adap->params.pci.variant],
3153                          adap->params.pci.speed, adap->params.pci.width);
3154
3155         for_each_port(adap, i) {
3156                 struct net_device *dev = adap->port[i];
3157                 const struct port_info *pi = netdev_priv(dev);
3158
3159                 if (!test_bit(i, &adap->registered_device_map))
3160                         continue;
3161                 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3162                             ai->desc, pi->phy.desc,
3163                             is_offload(adap) ? "R" : "", adap->params.rev, buf,
3164                             (adap->flags & USING_MSIX) ? " MSI-X" :
3165                             (adap->flags & USING_MSI) ? " MSI" : "");
3166                 if (adap->name == dev->name && adap->params.vpd.mclk)
3167                         pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3168                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3169                                t3_mc7_size(&adap->pmtx) >> 20,
3170                                t3_mc7_size(&adap->pmrx) >> 20,
3171                                adap->params.vpd.sn);
3172         }
3173 }
3174
3175 static const struct net_device_ops cxgb_netdev_ops = {
3176         .ndo_open               = cxgb_open,
3177         .ndo_stop               = cxgb_close,
3178         .ndo_start_xmit         = t3_eth_xmit,
3179         .ndo_get_stats          = cxgb_get_stats,
3180         .ndo_validate_addr      = eth_validate_addr,
3181         .ndo_set_rx_mode        = cxgb_set_rxmode,
3182         .ndo_do_ioctl           = cxgb_ioctl,
3183         .ndo_change_mtu         = cxgb_change_mtu,
3184         .ndo_set_mac_address    = cxgb_set_mac_addr,
3185         .ndo_fix_features       = cxgb_fix_features,
3186         .ndo_set_features       = cxgb_set_features,
3187 #ifdef CONFIG_NET_POLL_CONTROLLER
3188         .ndo_poll_controller    = cxgb_netpoll,
3189 #endif
3190 };
3191
3192 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3193 {
3194         struct port_info *pi = netdev_priv(dev);
3195
3196         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3197         pi->iscsic.mac_addr[3] |= 0x80;
3198 }
3199
3200 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3201 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3202                         NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3203 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3204 {
3205         int i, err, pci_using_dac = 0;
3206         resource_size_t mmio_start, mmio_len;
3207         const struct adapter_info *ai;
3208         struct adapter *adapter = NULL;
3209         struct port_info *pi;
3210
3211         pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3212
3213         if (!cxgb3_wq) {
3214                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3215                 if (!cxgb3_wq) {
3216                         pr_err("cannot initialize work queue\n");
3217                         return -ENOMEM;
3218                 }
3219         }
3220
3221         err = pci_enable_device(pdev);
3222         if (err) {
3223                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3224                 goto out;
3225         }
3226
3227         err = pci_request_regions(pdev, DRV_NAME);
3228         if (err) {
3229                 /* Just info, some other driver may have claimed the device. */
3230                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3231                 goto out_disable_device;
3232         }
3233
3234         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3235                 pci_using_dac = 1;
3236                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3237                 if (err) {
3238                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3239                                "coherent allocations\n");
3240                         goto out_release_regions;
3241                 }
3242         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3243                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3244                 goto out_release_regions;
3245         }
3246
3247         pci_set_master(pdev);
3248         pci_save_state(pdev);
3249
3250         mmio_start = pci_resource_start(pdev, 0);
3251         mmio_len = pci_resource_len(pdev, 0);
3252         ai = t3_get_adapter_info(ent->driver_data);
3253
3254         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3255         if (!adapter) {
3256                 err = -ENOMEM;
3257                 goto out_release_regions;
3258         }
3259
3260         adapter->nofail_skb =
3261                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3262         if (!adapter->nofail_skb) {
3263                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3264                 err = -ENOMEM;
3265                 goto out_free_adapter;
3266         }
3267
3268         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3269         if (!adapter->regs) {
3270                 dev_err(&pdev->dev, "cannot map device registers\n");
3271                 err = -ENOMEM;
3272                 goto out_free_adapter_nofail;
3273         }
3274
3275         adapter->pdev = pdev;
3276         adapter->name = pci_name(pdev);
3277         adapter->msg_enable = dflt_msg_enable;
3278         adapter->mmio_len = mmio_len;
3279
3280         mutex_init(&adapter->mdio_lock);
3281         spin_lock_init(&adapter->work_lock);
3282         spin_lock_init(&adapter->stats_lock);
3283
3284         INIT_LIST_HEAD(&adapter->adapter_list);
3285         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3286         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3287
3288         INIT_WORK(&adapter->db_full_task, db_full_task);
3289         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3290         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3291
3292         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3293
3294         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3295                 struct net_device *netdev;
3296
3297                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3298                 if (!netdev) {
3299                         err = -ENOMEM;
3300                         goto out_free_dev;
3301                 }
3302
3303                 SET_NETDEV_DEV(netdev, &pdev->dev);
3304
3305                 adapter->port[i] = netdev;
3306                 pi = netdev_priv(netdev);
3307                 pi->adapter = adapter;
3308                 pi->port_id = i;
3309                 netif_carrier_off(netdev);
3310                 netdev->irq = pdev->irq;
3311                 netdev->mem_start = mmio_start;
3312                 netdev->mem_end = mmio_start + mmio_len - 1;
3313                 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3314                         NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3315                 netdev->features |= netdev->hw_features |
3316                                     NETIF_F_HW_VLAN_CTAG_TX;
3317                 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3318                 if (pci_using_dac)
3319                         netdev->features |= NETIF_F_HIGHDMA;
3320
3321                 netdev->netdev_ops = &cxgb_netdev_ops;
3322                 netdev->ethtool_ops = &cxgb_ethtool_ops;
3323                 netdev->min_mtu = 81;
3324                 netdev->max_mtu = ETH_MAX_MTU;
3325                 netdev->dev_port = pi->port_id;
3326         }
3327
3328         pci_set_drvdata(pdev, adapter);
3329         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3330                 err = -ENODEV;
3331                 goto out_free_dev;
3332         }
3333
3334         /*
3335          * The card is now ready to go.  If any errors occur during device
3336          * registration we do not fail the whole card but rather proceed only
3337          * with the ports we manage to register successfully.  However we must
3338          * register at least one net device.
3339          */
3340         for_each_port(adapter, i) {
3341                 err = register_netdev(adapter->port[i]);
3342                 if (err)
3343                         dev_warn(&pdev->dev,
3344                                  "cannot register net device %s, skipping\n",
3345                                  adapter->port[i]->name);
3346                 else {
3347                         /*
3348                          * Change the name we use for messages to the name of
3349                          * the first successfully registered interface.
3350                          */
3351                         if (!adapter->registered_device_map)
3352                                 adapter->name = adapter->port[i]->name;
3353
3354                         __set_bit(i, &adapter->registered_device_map);
3355                 }
3356         }
3357         if (!adapter->registered_device_map) {
3358                 dev_err(&pdev->dev, "could not register any net devices\n");
3359                 goto out_free_dev;
3360         }
3361
3362         for_each_port(adapter, i)
3363                 cxgb3_init_iscsi_mac(adapter->port[i]);
3364
3365         /* Driver's ready. Reflect it on LEDs */
3366         t3_led_ready(adapter);
3367
3368         if (is_offload(adapter)) {
3369                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3370                 cxgb3_adapter_ofld(adapter);
3371         }
3372
3373         /* See what interrupts we'll be using */
3374         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3375                 adapter->flags |= USING_MSIX;
3376         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3377                 adapter->flags |= USING_MSI;
3378
3379         set_nqsets(adapter);
3380
3381         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3382                                  &cxgb3_attr_group);
3383         if (err) {
3384                 dev_err(&pdev->dev, "cannot create sysfs group\n");
3385                 goto out_close_led;
3386         }
3387
3388         print_port_info(adapter, ai);
3389         return 0;
3390
3391 out_close_led:
3392         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
3393
3394 out_free_dev:
3395         iounmap(adapter->regs);
3396         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3397                 if (adapter->port[i])
3398                         free_netdev(adapter->port[i]);
3399
3400 out_free_adapter_nofail:
3401         kfree_skb(adapter->nofail_skb);
3402
3403 out_free_adapter:
3404         kfree(adapter);
3405
3406 out_release_regions:
3407         pci_release_regions(pdev);
3408 out_disable_device:
3409         pci_disable_device(pdev);
3410 out:
3411         return err;
3412 }
3413
3414 static void remove_one(struct pci_dev *pdev)
3415 {
3416         struct adapter *adapter = pci_get_drvdata(pdev);
3417
3418         if (adapter) {
3419                 int i;
3420
3421                 t3_sge_stop(adapter);
3422                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3423                                    &cxgb3_attr_group);
3424
3425                 if (is_offload(adapter)) {
3426                         cxgb3_adapter_unofld(adapter);
3427                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3428                                      &adapter->open_device_map))
3429                                 offload_close(&adapter->tdev);
3430                 }
3431
3432                 for_each_port(adapter, i)
3433                     if (test_bit(i, &adapter->registered_device_map))
3434                         unregister_netdev(adapter->port[i]);
3435
3436                 t3_stop_sge_timers(adapter);
3437                 t3_free_sge_resources(adapter);
3438                 cxgb_disable_msi(adapter);
3439
3440                 for_each_port(adapter, i)
3441                         if (adapter->port[i])
3442                                 free_netdev(adapter->port[i]);
3443
3444                 iounmap(adapter->regs);
3445                 kfree_skb(adapter->nofail_skb);
3446                 kfree(adapter);
3447                 pci_release_regions(pdev);
3448                 pci_disable_device(pdev);
3449         }
3450 }
3451
3452 static struct pci_driver driver = {
3453         .name = DRV_NAME,
3454         .id_table = cxgb3_pci_tbl,
3455         .probe = init_one,
3456         .remove = remove_one,
3457         .err_handler = &t3_err_handler,
3458 };
3459
3460 static int __init cxgb3_init_module(void)
3461 {
3462         int ret;
3463
3464         cxgb3_offload_init();
3465
3466         ret = pci_register_driver(&driver);
3467         return ret;
3468 }
3469
3470 static void __exit cxgb3_cleanup_module(void)
3471 {
3472         pci_unregister_driver(&driver);
3473         if (cxgb3_wq)
3474                 destroy_workqueue(cxgb3_wq);
3475 }
3476
3477 module_init(cxgb3_init_module);
3478 module_exit(cxgb3_cleanup_module);