net: thunderx: set tso_hdrs pointer to NULL in nicvf_free_snd_queue
[sfrench/cifs-2.6.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <linux/iommu.h>
14 #include <net/ip.h>
15 #include <net/tso.h>
16
17 #include "nic_reg.h"
18 #include "nic.h"
19 #include "q_struct.h"
20 #include "nicvf_queues.h"
21
22 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
23                                                int size, u64 data);
24 static void nicvf_get_page(struct nicvf *nic)
25 {
26         if (!nic->rb_pageref || !nic->rb_page)
27                 return;
28
29         page_ref_add(nic->rb_page, nic->rb_pageref);
30         nic->rb_pageref = 0;
31 }
32
33 /* Poll a register for a specific value */
34 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
35                           u64 reg, int bit_pos, int bits, int val)
36 {
37         u64 bit_mask;
38         u64 reg_val;
39         int timeout = 10;
40
41         bit_mask = (1ULL << bits) - 1;
42         bit_mask = (bit_mask << bit_pos);
43
44         while (timeout) {
45                 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
46                 if (((reg_val & bit_mask) >> bit_pos) == val)
47                         return 0;
48                 usleep_range(1000, 2000);
49                 timeout--;
50         }
51         netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
52         return 1;
53 }
54
55 /* Allocate memory for a queue's descriptors */
56 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
57                                   int q_len, int desc_size, int align_bytes)
58 {
59         dmem->q_len = q_len;
60         dmem->size = (desc_size * q_len) + align_bytes;
61         /* Save address, need it while freeing */
62         dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
63                                                 &dmem->dma, GFP_KERNEL);
64         if (!dmem->unalign_base)
65                 return -ENOMEM;
66
67         /* Align memory address for 'align_bytes' */
68         dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
69         dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
70         return 0;
71 }
72
73 /* Free queue's descriptor memory */
74 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
75 {
76         if (!dmem)
77                 return;
78
79         dma_free_coherent(&nic->pdev->dev, dmem->size,
80                           dmem->unalign_base, dmem->dma);
81         dmem->unalign_base = NULL;
82         dmem->base = NULL;
83 }
84
85 #define XDP_PAGE_REFCNT_REFILL 256
86
87 /* Allocate a new page or recycle one if possible
88  *
89  * We cannot optimize dma mapping here, since
90  * 1. It's only one RBDR ring for 8 Rx queues.
91  * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
92  *    and not idx into RBDR ring, so can't refer to saved info.
93  * 3. There are multiple receive buffers per page
94  */
95 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
96                                                struct rbdr *rbdr, gfp_t gfp)
97 {
98         int ref_count;
99         struct page *page = NULL;
100         struct pgcache *pgcache, *next;
101
102         /* Check if page is already allocated */
103         pgcache = &rbdr->pgcache[rbdr->pgidx];
104         page = pgcache->page;
105         /* Check if page can be recycled */
106         if (page) {
107                 ref_count = page_ref_count(page);
108                 /* Check if this page has been used once i.e 'put_page'
109                  * called after packet transmission i.e internal ref_count
110                  * and page's ref_count are equal i.e page can be recycled.
111                  */
112                 if (rbdr->is_xdp && (ref_count == pgcache->ref_count))
113                         pgcache->ref_count--;
114                 else
115                         page = NULL;
116
117                 /* In non-XDP mode, page's ref_count needs to be '1' for it
118                  * to be recycled.
119                  */
120                 if (!rbdr->is_xdp && (ref_count != 1))
121                         page = NULL;
122         }
123
124         if (!page) {
125                 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
126                 if (!page)
127                         return NULL;
128
129                 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
130
131                 /* Check for space */
132                 if (rbdr->pgalloc >= rbdr->pgcnt) {
133                         /* Page can still be used */
134                         nic->rb_page = page;
135                         return NULL;
136                 }
137
138                 /* Save the page in page cache */
139                 pgcache->page = page;
140                 pgcache->dma_addr = 0;
141                 pgcache->ref_count = 0;
142                 rbdr->pgalloc++;
143         }
144
145         /* Take additional page references for recycling */
146         if (rbdr->is_xdp) {
147                 /* Since there is single RBDR (i.e single core doing
148                  * page recycling) per 8 Rx queues, in XDP mode adjusting
149                  * page references atomically is the biggest bottleneck, so
150                  * take bunch of references at a time.
151                  *
152                  * So here, below reference counts defer by '1'.
153                  */
154                 if (!pgcache->ref_count) {
155                         pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
156                         page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
157                 }
158         } else {
159                 /* In non-XDP case, single 64K page is divided across multiple
160                  * receive buffers, so cost of recycling is less anyway.
161                  * So we can do with just one extra reference.
162                  */
163                 page_ref_add(page, 1);
164         }
165
166         rbdr->pgidx++;
167         rbdr->pgidx &= (rbdr->pgcnt - 1);
168
169         /* Prefetch refcount of next page in page cache */
170         next = &rbdr->pgcache[rbdr->pgidx];
171         page = next->page;
172         if (page)
173                 prefetch(&page->_refcount);
174
175         return pgcache;
176 }
177
178 /* Allocate buffer for packet reception */
179 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
180                                          gfp_t gfp, u32 buf_len, u64 *rbuf)
181 {
182         struct pgcache *pgcache = NULL;
183
184         /* Check if request can be accomodated in previous allocated page.
185          * But in XDP mode only one buffer per page is permitted.
186          */
187         if (!rbdr->is_xdp && nic->rb_page &&
188             ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
189                 nic->rb_pageref++;
190                 goto ret;
191         }
192
193         nicvf_get_page(nic);
194         nic->rb_page = NULL;
195
196         /* Get new page, either recycled or new one */
197         pgcache = nicvf_alloc_page(nic, rbdr, gfp);
198         if (!pgcache && !nic->rb_page) {
199                 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
200                 return -ENOMEM;
201         }
202
203         nic->rb_page_offset = 0;
204
205         /* Reserve space for header modifications by BPF program */
206         if (rbdr->is_xdp)
207                 buf_len += XDP_PACKET_HEADROOM;
208
209         /* Check if it's recycled */
210         if (pgcache)
211                 nic->rb_page = pgcache->page;
212 ret:
213         if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
214                 *rbuf = pgcache->dma_addr;
215         } else {
216                 /* HW will ensure data coherency, CPU sync not required */
217                 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
218                                                 nic->rb_page_offset, buf_len,
219                                                 DMA_FROM_DEVICE,
220                                                 DMA_ATTR_SKIP_CPU_SYNC);
221                 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
222                         if (!nic->rb_page_offset)
223                                 __free_pages(nic->rb_page, 0);
224                         nic->rb_page = NULL;
225                         return -ENOMEM;
226                 }
227                 if (pgcache)
228                         pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
229                 nic->rb_page_offset += buf_len;
230         }
231
232         return 0;
233 }
234
235 /* Build skb around receive buffer */
236 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
237                                            u64 rb_ptr, int len)
238 {
239         void *data;
240         struct sk_buff *skb;
241
242         data = phys_to_virt(rb_ptr);
243
244         /* Now build an skb to give to stack */
245         skb = build_skb(data, RCV_FRAG_LEN);
246         if (!skb) {
247                 put_page(virt_to_page(data));
248                 return NULL;
249         }
250
251         prefetch(skb->data);
252         return skb;
253 }
254
255 /* Allocate RBDR ring and populate receive buffers */
256 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
257                             int ring_len, int buf_size)
258 {
259         int idx;
260         u64 rbuf;
261         struct rbdr_entry_t *desc;
262         int err;
263
264         err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
265                                      sizeof(struct rbdr_entry_t),
266                                      NICVF_RCV_BUF_ALIGN_BYTES);
267         if (err)
268                 return err;
269
270         rbdr->desc = rbdr->dmem.base;
271         /* Buffer size has to be in multiples of 128 bytes */
272         rbdr->dma_size = buf_size;
273         rbdr->enable = true;
274         rbdr->thresh = RBDR_THRESH;
275         rbdr->head = 0;
276         rbdr->tail = 0;
277
278         /* Initialize page recycling stuff.
279          *
280          * Can't use single buffer per page especially with 64K pages.
281          * On embedded platforms i.e 81xx/83xx available memory itself
282          * is low and minimum ring size of RBDR is 8K, that takes away
283          * lots of memory.
284          *
285          * But for XDP it has to be a single buffer per page.
286          */
287         if (!nic->pnicvf->xdp_prog) {
288                 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
289                 rbdr->is_xdp = false;
290         } else {
291                 rbdr->pgcnt = ring_len;
292                 rbdr->is_xdp = true;
293         }
294         rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
295         rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
296                                 GFP_KERNEL);
297         if (!rbdr->pgcache)
298                 return -ENOMEM;
299         rbdr->pgidx = 0;
300         rbdr->pgalloc = 0;
301
302         nic->rb_page = NULL;
303         for (idx = 0; idx < ring_len; idx++) {
304                 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
305                                              RCV_FRAG_LEN, &rbuf);
306                 if (err) {
307                         /* To free already allocated and mapped ones */
308                         rbdr->tail = idx - 1;
309                         return err;
310                 }
311
312                 desc = GET_RBDR_DESC(rbdr, idx);
313                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
314         }
315
316         nicvf_get_page(nic);
317
318         return 0;
319 }
320
321 /* Free RBDR ring and its receive buffers */
322 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
323 {
324         int head, tail;
325         u64 buf_addr, phys_addr;
326         struct pgcache *pgcache;
327         struct rbdr_entry_t *desc;
328
329         if (!rbdr)
330                 return;
331
332         rbdr->enable = false;
333         if (!rbdr->dmem.base)
334                 return;
335
336         head = rbdr->head;
337         tail = rbdr->tail;
338
339         /* Release page references */
340         while (head != tail) {
341                 desc = GET_RBDR_DESC(rbdr, head);
342                 buf_addr = desc->buf_addr;
343                 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
344                 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
345                                      DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
346                 if (phys_addr)
347                         put_page(virt_to_page(phys_to_virt(phys_addr)));
348                 head++;
349                 head &= (rbdr->dmem.q_len - 1);
350         }
351         /* Release buffer of tail desc */
352         desc = GET_RBDR_DESC(rbdr, tail);
353         buf_addr = desc->buf_addr;
354         phys_addr = nicvf_iova_to_phys(nic, buf_addr);
355         dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
356                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
357         if (phys_addr)
358                 put_page(virt_to_page(phys_to_virt(phys_addr)));
359
360         /* Sync page cache info */
361         smp_rmb();
362
363         /* Release additional page references held for recycling */
364         head = 0;
365         while (head < rbdr->pgcnt) {
366                 pgcache = &rbdr->pgcache[head];
367                 if (pgcache->page && page_ref_count(pgcache->page) != 0) {
368                         if (!rbdr->is_xdp) {
369                                 put_page(pgcache->page);
370                                 continue;
371                         }
372                         page_ref_sub(pgcache->page, pgcache->ref_count - 1);
373                         put_page(pgcache->page);
374                 }
375                 head++;
376         }
377
378         /* Free RBDR ring */
379         nicvf_free_q_desc_mem(nic, &rbdr->dmem);
380 }
381
382 /* Refill receive buffer descriptors with new buffers.
383  */
384 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
385 {
386         struct queue_set *qs = nic->qs;
387         int rbdr_idx = qs->rbdr_cnt;
388         int tail, qcount;
389         int refill_rb_cnt;
390         struct rbdr *rbdr;
391         struct rbdr_entry_t *desc;
392         u64 rbuf;
393         int new_rb = 0;
394
395 refill:
396         if (!rbdr_idx)
397                 return;
398         rbdr_idx--;
399         rbdr = &qs->rbdr[rbdr_idx];
400         /* Check if it's enabled */
401         if (!rbdr->enable)
402                 goto next_rbdr;
403
404         /* Get no of desc's to be refilled */
405         qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
406         qcount &= 0x7FFFF;
407         /* Doorbell can be ringed with a max of ring size minus 1 */
408         if (qcount >= (qs->rbdr_len - 1))
409                 goto next_rbdr;
410         else
411                 refill_rb_cnt = qs->rbdr_len - qcount - 1;
412
413         /* Sync page cache info */
414         smp_rmb();
415
416         /* Start filling descs from tail */
417         tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
418         while (refill_rb_cnt) {
419                 tail++;
420                 tail &= (rbdr->dmem.q_len - 1);
421
422                 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
423                         break;
424
425                 desc = GET_RBDR_DESC(rbdr, tail);
426                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
427                 refill_rb_cnt--;
428                 new_rb++;
429         }
430
431         nicvf_get_page(nic);
432
433         /* make sure all memory stores are done before ringing doorbell */
434         smp_wmb();
435
436         /* Check if buffer allocation failed */
437         if (refill_rb_cnt)
438                 nic->rb_alloc_fail = true;
439         else
440                 nic->rb_alloc_fail = false;
441
442         /* Notify HW */
443         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
444                               rbdr_idx, new_rb);
445 next_rbdr:
446         /* Re-enable RBDR interrupts only if buffer allocation is success */
447         if (!nic->rb_alloc_fail && rbdr->enable &&
448             netif_running(nic->pnicvf->netdev))
449                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
450
451         if (rbdr_idx)
452                 goto refill;
453 }
454
455 /* Alloc rcv buffers in non-atomic mode for better success */
456 void nicvf_rbdr_work(struct work_struct *work)
457 {
458         struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
459
460         nicvf_refill_rbdr(nic, GFP_KERNEL);
461         if (nic->rb_alloc_fail)
462                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
463         else
464                 nic->rb_work_scheduled = false;
465 }
466
467 /* In Softirq context, alloc rcv buffers in atomic mode */
468 void nicvf_rbdr_task(unsigned long data)
469 {
470         struct nicvf *nic = (struct nicvf *)data;
471
472         nicvf_refill_rbdr(nic, GFP_ATOMIC);
473         if (nic->rb_alloc_fail) {
474                 nic->rb_work_scheduled = true;
475                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
476         }
477 }
478
479 /* Initialize completion queue */
480 static int nicvf_init_cmp_queue(struct nicvf *nic,
481                                 struct cmp_queue *cq, int q_len)
482 {
483         int err;
484
485         err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
486                                      NICVF_CQ_BASE_ALIGN_BYTES);
487         if (err)
488                 return err;
489
490         cq->desc = cq->dmem.base;
491         cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
492         nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
493
494         return 0;
495 }
496
497 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
498 {
499         if (!cq)
500                 return;
501         if (!cq->dmem.base)
502                 return;
503
504         nicvf_free_q_desc_mem(nic, &cq->dmem);
505 }
506
507 /* Initialize transmit queue */
508 static int nicvf_init_snd_queue(struct nicvf *nic,
509                                 struct snd_queue *sq, int q_len, int qidx)
510 {
511         int err;
512
513         err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
514                                      NICVF_SQ_BASE_ALIGN_BYTES);
515         if (err)
516                 return err;
517
518         sq->desc = sq->dmem.base;
519         sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
520         if (!sq->skbuff)
521                 return -ENOMEM;
522
523         sq->head = 0;
524         sq->tail = 0;
525         sq->thresh = SND_QUEUE_THRESH;
526
527         /* Check if this SQ is a XDP TX queue */
528         if (nic->sqs_mode)
529                 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
530         if (qidx < nic->pnicvf->xdp_tx_queues) {
531                 /* Alloc memory to save page pointers for XDP_TX */
532                 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
533                 if (!sq->xdp_page)
534                         return -ENOMEM;
535                 sq->xdp_desc_cnt = 0;
536                 sq->xdp_free_cnt = q_len - 1;
537                 sq->is_xdp = true;
538         } else {
539                 sq->xdp_page = NULL;
540                 sq->xdp_desc_cnt = 0;
541                 sq->xdp_free_cnt = 0;
542                 sq->is_xdp = false;
543
544                 atomic_set(&sq->free_cnt, q_len - 1);
545
546                 /* Preallocate memory for TSO segment's header */
547                 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
548                                                   q_len * TSO_HEADER_SIZE,
549                                                   &sq->tso_hdrs_phys,
550                                                   GFP_KERNEL);
551                 if (!sq->tso_hdrs)
552                         return -ENOMEM;
553         }
554
555         return 0;
556 }
557
558 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
559                               int hdr_sqe, u8 subdesc_cnt)
560 {
561         u8 idx;
562         struct sq_gather_subdesc *gather;
563
564         /* Unmap DMA mapped skb data buffers */
565         for (idx = 0; idx < subdesc_cnt; idx++) {
566                 hdr_sqe++;
567                 hdr_sqe &= (sq->dmem.q_len - 1);
568                 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
569                 /* HW will ensure data coherency, CPU sync not required */
570                 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
571                                      gather->size, DMA_TO_DEVICE,
572                                      DMA_ATTR_SKIP_CPU_SYNC);
573         }
574 }
575
576 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
577 {
578         struct sk_buff *skb;
579         struct page *page;
580         struct sq_hdr_subdesc *hdr;
581         struct sq_hdr_subdesc *tso_sqe;
582
583         if (!sq)
584                 return;
585         if (!sq->dmem.base)
586                 return;
587
588         if (sq->tso_hdrs) {
589                 dma_free_coherent(&nic->pdev->dev,
590                                   sq->dmem.q_len * TSO_HEADER_SIZE,
591                                   sq->tso_hdrs, sq->tso_hdrs_phys);
592                 sq->tso_hdrs = NULL;
593         }
594
595         /* Free pending skbs in the queue */
596         smp_rmb();
597         while (sq->head != sq->tail) {
598                 skb = (struct sk_buff *)sq->skbuff[sq->head];
599                 if (!skb || !sq->xdp_page)
600                         goto next;
601
602                 page = (struct page *)sq->xdp_page[sq->head];
603                 if (!page)
604                         goto next;
605                 else
606                         put_page(page);
607
608                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
609                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
610                 if (hdr->dont_send) {
611                         /* Get actual TSO descriptors and unmap them */
612                         tso_sqe =
613                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
614                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
615                                                  tso_sqe->subdesc_cnt);
616                 } else {
617                         nicvf_unmap_sndq_buffers(nic, sq, sq->head,
618                                                  hdr->subdesc_cnt);
619                 }
620                 if (skb)
621                         dev_kfree_skb_any(skb);
622 next:
623                 sq->head++;
624                 sq->head &= (sq->dmem.q_len - 1);
625         }
626         kfree(sq->skbuff);
627         kfree(sq->xdp_page);
628         nicvf_free_q_desc_mem(nic, &sq->dmem);
629 }
630
631 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
632                                     struct queue_set *qs, int qidx)
633 {
634         /* Disable send queue */
635         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
636         /* Check if SQ is stopped */
637         if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
638                 return;
639         /* Reset send queue */
640         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
641 }
642
643 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
644                                     struct queue_set *qs, int qidx)
645 {
646         union nic_mbx mbx = {};
647
648         /* Make sure all packets in the pipeline are written back into mem */
649         mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
650         nicvf_send_msg_to_pf(nic, &mbx);
651 }
652
653 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
654                                     struct queue_set *qs, int qidx)
655 {
656         /* Disable timer threshold (doesn't get reset upon CQ reset */
657         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
658         /* Disable completion queue */
659         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
660         /* Reset completion queue */
661         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
662 }
663
664 static void nicvf_reclaim_rbdr(struct nicvf *nic,
665                                struct rbdr *rbdr, int qidx)
666 {
667         u64 tmp, fifo_state;
668         int timeout = 10;
669
670         /* Save head and tail pointers for feeing up buffers */
671         rbdr->head = nicvf_queue_reg_read(nic,
672                                           NIC_QSET_RBDR_0_1_HEAD,
673                                           qidx) >> 3;
674         rbdr->tail = nicvf_queue_reg_read(nic,
675                                           NIC_QSET_RBDR_0_1_TAIL,
676                                           qidx) >> 3;
677
678         /* If RBDR FIFO is in 'FAIL' state then do a reset first
679          * before relaiming.
680          */
681         fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
682         if (((fifo_state >> 62) & 0x03) == 0x3)
683                 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
684                                       qidx, NICVF_RBDR_RESET);
685
686         /* Disable RBDR */
687         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
688         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
689                 return;
690         while (1) {
691                 tmp = nicvf_queue_reg_read(nic,
692                                            NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
693                                            qidx);
694                 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
695                         break;
696                 usleep_range(1000, 2000);
697                 timeout--;
698                 if (!timeout) {
699                         netdev_err(nic->netdev,
700                                    "Failed polling on prefetch status\n");
701                         return;
702                 }
703         }
704         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
705                               qidx, NICVF_RBDR_RESET);
706
707         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
708                 return;
709         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
710         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
711                 return;
712 }
713
714 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
715 {
716         u64 rq_cfg;
717         int sqs;
718
719         rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
720
721         /* Enable first VLAN stripping */
722         if (features & NETIF_F_HW_VLAN_CTAG_RX)
723                 rq_cfg |= (1ULL << 25);
724         else
725                 rq_cfg &= ~(1ULL << 25);
726         nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
727
728         /* Configure Secondary Qsets, if any */
729         for (sqs = 0; sqs < nic->sqs_count; sqs++)
730                 if (nic->snicvf[sqs])
731                         nicvf_queue_reg_write(nic->snicvf[sqs],
732                                               NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
733 }
734
735 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
736 {
737         union nic_mbx mbx = {};
738
739         /* Reset all RQ/SQ and VF stats */
740         mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
741         mbx.reset_stat.rx_stat_mask = 0x3FFF;
742         mbx.reset_stat.tx_stat_mask = 0x1F;
743         mbx.reset_stat.rq_stat_mask = 0xFFFF;
744         mbx.reset_stat.sq_stat_mask = 0xFFFF;
745         nicvf_send_msg_to_pf(nic, &mbx);
746 }
747
748 /* Configures receive queue */
749 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
750                                    int qidx, bool enable)
751 {
752         union nic_mbx mbx = {};
753         struct rcv_queue *rq;
754         struct rq_cfg rq_cfg;
755
756         rq = &qs->rq[qidx];
757         rq->enable = enable;
758
759         /* Disable receive queue */
760         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
761
762         if (!rq->enable) {
763                 nicvf_reclaim_rcv_queue(nic, qs, qidx);
764                 xdp_rxq_info_unreg(&rq->xdp_rxq);
765                 return;
766         }
767
768         rq->cq_qs = qs->vnic_id;
769         rq->cq_idx = qidx;
770         rq->start_rbdr_qs = qs->vnic_id;
771         rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
772         rq->cont_rbdr_qs = qs->vnic_id;
773         rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
774         /* all writes of RBDR data to be loaded into L2 Cache as well*/
775         rq->caching = 1;
776
777         /* Driver have no proper error path for failed XDP RX-queue info reg */
778         WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0);
779
780         /* Send a mailbox msg to PF to config RQ */
781         mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
782         mbx.rq.qs_num = qs->vnic_id;
783         mbx.rq.rq_num = qidx;
784         mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
785                           (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
786                           (rq->cont_qs_rbdr_idx << 8) |
787                           (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
788         nicvf_send_msg_to_pf(nic, &mbx);
789
790         mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
791         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
792                      (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
793                      (qs->vnic_id << 0);
794         nicvf_send_msg_to_pf(nic, &mbx);
795
796         /* RQ drop config
797          * Enable CQ drop to reserve sufficient CQEs for all tx packets
798          */
799         mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
800         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
801                      (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
802                      (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
803         nicvf_send_msg_to_pf(nic, &mbx);
804
805         if (!nic->sqs_mode && (qidx == 0)) {
806                 /* Enable checking L3/L4 length and TCP/UDP checksums
807                  * Also allow IPv6 pkts with zero UDP checksum.
808                  */
809                 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
810                                       (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
811                 nicvf_config_vlan_stripping(nic, nic->netdev->features);
812         }
813
814         /* Enable Receive queue */
815         memset(&rq_cfg, 0, sizeof(struct rq_cfg));
816         rq_cfg.ena = 1;
817         rq_cfg.tcp_ena = 0;
818         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
819 }
820
821 /* Configures completion queue */
822 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
823                             int qidx, bool enable)
824 {
825         struct cmp_queue *cq;
826         struct cq_cfg cq_cfg;
827
828         cq = &qs->cq[qidx];
829         cq->enable = enable;
830
831         if (!cq->enable) {
832                 nicvf_reclaim_cmp_queue(nic, qs, qidx);
833                 return;
834         }
835
836         /* Reset completion queue */
837         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
838
839         if (!cq->enable)
840                 return;
841
842         spin_lock_init(&cq->lock);
843         /* Set completion queue base address */
844         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
845                               qidx, (u64)(cq->dmem.phys_base));
846
847         /* Enable Completion queue */
848         memset(&cq_cfg, 0, sizeof(struct cq_cfg));
849         cq_cfg.ena = 1;
850         cq_cfg.reset = 0;
851         cq_cfg.caching = 0;
852         cq_cfg.qsize = ilog2(qs->cq_len >> 10);
853         cq_cfg.avg_con = 0;
854         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
855
856         /* Set threshold value for interrupt generation */
857         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
858         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
859                               qidx, CMP_QUEUE_TIMER_THRESH);
860 }
861
862 /* Configures transmit queue */
863 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
864                                    int qidx, bool enable)
865 {
866         union nic_mbx mbx = {};
867         struct snd_queue *sq;
868         struct sq_cfg sq_cfg;
869
870         sq = &qs->sq[qidx];
871         sq->enable = enable;
872
873         if (!sq->enable) {
874                 nicvf_reclaim_snd_queue(nic, qs, qidx);
875                 return;
876         }
877
878         /* Reset send queue */
879         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
880
881         sq->cq_qs = qs->vnic_id;
882         sq->cq_idx = qidx;
883
884         /* Send a mailbox msg to PF to config SQ */
885         mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
886         mbx.sq.qs_num = qs->vnic_id;
887         mbx.sq.sq_num = qidx;
888         mbx.sq.sqs_mode = nic->sqs_mode;
889         mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
890         nicvf_send_msg_to_pf(nic, &mbx);
891
892         /* Set queue base address */
893         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
894                               qidx, (u64)(sq->dmem.phys_base));
895
896         /* Enable send queue  & set queue size */
897         memset(&sq_cfg, 0, sizeof(struct sq_cfg));
898         sq_cfg.ena = 1;
899         sq_cfg.reset = 0;
900         sq_cfg.ldwb = 0;
901         sq_cfg.qsize = ilog2(qs->sq_len >> 10);
902         sq_cfg.tstmp_bgx_intf = 0;
903         /* CQ's level at which HW will stop processing SQEs to avoid
904          * transmitting a pkt with no space in CQ to post CQE_TX.
905          */
906         sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
907         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
908
909         /* Set threshold value for interrupt generation */
910         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
911
912         /* Set queue:cpu affinity for better load distribution */
913         if (cpu_online(qidx)) {
914                 cpumask_set_cpu(qidx, &sq->affinity_mask);
915                 netif_set_xps_queue(nic->netdev,
916                                     &sq->affinity_mask, qidx);
917         }
918 }
919
920 /* Configures receive buffer descriptor ring */
921 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
922                               int qidx, bool enable)
923 {
924         struct rbdr *rbdr;
925         struct rbdr_cfg rbdr_cfg;
926
927         rbdr = &qs->rbdr[qidx];
928         nicvf_reclaim_rbdr(nic, rbdr, qidx);
929         if (!enable)
930                 return;
931
932         /* Set descriptor base address */
933         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
934                               qidx, (u64)(rbdr->dmem.phys_base));
935
936         /* Enable RBDR  & set queue size */
937         /* Buffer size should be in multiples of 128 bytes */
938         memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
939         rbdr_cfg.ena = 1;
940         rbdr_cfg.reset = 0;
941         rbdr_cfg.ldwb = 0;
942         rbdr_cfg.qsize = RBDR_SIZE;
943         rbdr_cfg.avg_con = 0;
944         rbdr_cfg.lines = rbdr->dma_size / 128;
945         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
946                               qidx, *(u64 *)&rbdr_cfg);
947
948         /* Notify HW */
949         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
950                               qidx, qs->rbdr_len - 1);
951
952         /* Set threshold value for interrupt generation */
953         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
954                               qidx, rbdr->thresh - 1);
955 }
956
957 /* Requests PF to assign and enable Qset */
958 void nicvf_qset_config(struct nicvf *nic, bool enable)
959 {
960         union nic_mbx mbx = {};
961         struct queue_set *qs = nic->qs;
962         struct qs_cfg *qs_cfg;
963
964         if (!qs) {
965                 netdev_warn(nic->netdev,
966                             "Qset is still not allocated, don't init queues\n");
967                 return;
968         }
969
970         qs->enable = enable;
971         qs->vnic_id = nic->vf_id;
972
973         /* Send a mailbox msg to PF to config Qset */
974         mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
975         mbx.qs.num = qs->vnic_id;
976         mbx.qs.sqs_count = nic->sqs_count;
977
978         mbx.qs.cfg = 0;
979         qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
980         if (qs->enable) {
981                 qs_cfg->ena = 1;
982 #ifdef __BIG_ENDIAN
983                 qs_cfg->be = 1;
984 #endif
985                 qs_cfg->vnic = qs->vnic_id;
986                 /* Enable Tx timestamping capability */
987                 if (nic->ptp_clock)
988                         qs_cfg->send_tstmp_ena = 1;
989         }
990         nicvf_send_msg_to_pf(nic, &mbx);
991 }
992
993 static void nicvf_free_resources(struct nicvf *nic)
994 {
995         int qidx;
996         struct queue_set *qs = nic->qs;
997
998         /* Free receive buffer descriptor ring */
999         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1000                 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1001
1002         /* Free completion queue */
1003         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1004                 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1005
1006         /* Free send queue */
1007         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1008                 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1009 }
1010
1011 static int nicvf_alloc_resources(struct nicvf *nic)
1012 {
1013         int qidx;
1014         struct queue_set *qs = nic->qs;
1015
1016         /* Alloc receive buffer descriptor ring */
1017         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1018                 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1019                                     DMA_BUFFER_LEN))
1020                         goto alloc_fail;
1021         }
1022
1023         /* Alloc send queue */
1024         for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1025                 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1026                         goto alloc_fail;
1027         }
1028
1029         /* Alloc completion queue */
1030         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1031                 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1032                         goto alloc_fail;
1033         }
1034
1035         return 0;
1036 alloc_fail:
1037         nicvf_free_resources(nic);
1038         return -ENOMEM;
1039 }
1040
1041 int nicvf_set_qset_resources(struct nicvf *nic)
1042 {
1043         struct queue_set *qs;
1044
1045         qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1046         if (!qs)
1047                 return -ENOMEM;
1048         nic->qs = qs;
1049
1050         /* Set count of each queue */
1051         qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1052         qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1053         qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1054         qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1055
1056         /* Set queue lengths */
1057         qs->rbdr_len = RCV_BUF_COUNT;
1058         qs->sq_len = SND_QUEUE_LEN;
1059         qs->cq_len = CMP_QUEUE_LEN;
1060
1061         nic->rx_queues = qs->rq_cnt;
1062         nic->tx_queues = qs->sq_cnt;
1063         nic->xdp_tx_queues = 0;
1064
1065         return 0;
1066 }
1067
1068 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1069 {
1070         bool disable = false;
1071         struct queue_set *qs = nic->qs;
1072         struct queue_set *pqs = nic->pnicvf->qs;
1073         int qidx;
1074
1075         if (!qs)
1076                 return 0;
1077
1078         /* Take primary VF's queue lengths.
1079          * This is needed to take queue lengths set from ethtool
1080          * into consideration.
1081          */
1082         if (nic->sqs_mode && pqs) {
1083                 qs->cq_len = pqs->cq_len;
1084                 qs->sq_len = pqs->sq_len;
1085         }
1086
1087         if (enable) {
1088                 if (nicvf_alloc_resources(nic))
1089                         return -ENOMEM;
1090
1091                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1092                         nicvf_snd_queue_config(nic, qs, qidx, enable);
1093                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1094                         nicvf_cmp_queue_config(nic, qs, qidx, enable);
1095                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1096                         nicvf_rbdr_config(nic, qs, qidx, enable);
1097                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1098                         nicvf_rcv_queue_config(nic, qs, qidx, enable);
1099         } else {
1100                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1101                         nicvf_rcv_queue_config(nic, qs, qidx, disable);
1102                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1103                         nicvf_rbdr_config(nic, qs, qidx, disable);
1104                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1105                         nicvf_snd_queue_config(nic, qs, qidx, disable);
1106                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1107                         nicvf_cmp_queue_config(nic, qs, qidx, disable);
1108
1109                 nicvf_free_resources(nic);
1110         }
1111
1112         /* Reset RXQ's stats.
1113          * SQ's stats will get reset automatically once SQ is reset.
1114          */
1115         nicvf_reset_rcv_queue_stats(nic);
1116
1117         return 0;
1118 }
1119
1120 /* Get a free desc from SQ
1121  * returns descriptor ponter & descriptor number
1122  */
1123 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1124 {
1125         int qentry;
1126
1127         qentry = sq->tail;
1128         if (!sq->is_xdp)
1129                 atomic_sub(desc_cnt, &sq->free_cnt);
1130         else
1131                 sq->xdp_free_cnt -= desc_cnt;
1132         sq->tail += desc_cnt;
1133         sq->tail &= (sq->dmem.q_len - 1);
1134
1135         return qentry;
1136 }
1137
1138 /* Rollback to previous tail pointer when descriptors not used */
1139 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1140                                           int qentry, int desc_cnt)
1141 {
1142         sq->tail = qentry;
1143         atomic_add(desc_cnt, &sq->free_cnt);
1144 }
1145
1146 /* Free descriptor back to SQ for future use */
1147 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1148 {
1149         if (!sq->is_xdp)
1150                 atomic_add(desc_cnt, &sq->free_cnt);
1151         else
1152                 sq->xdp_free_cnt += desc_cnt;
1153         sq->head += desc_cnt;
1154         sq->head &= (sq->dmem.q_len - 1);
1155 }
1156
1157 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1158 {
1159         qentry++;
1160         qentry &= (sq->dmem.q_len - 1);
1161         return qentry;
1162 }
1163
1164 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1165 {
1166         u64 sq_cfg;
1167
1168         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1169         sq_cfg |= NICVF_SQ_EN;
1170         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1171         /* Ring doorbell so that H/W restarts processing SQEs */
1172         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1173 }
1174
1175 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1176 {
1177         u64 sq_cfg;
1178
1179         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1180         sq_cfg &= ~NICVF_SQ_EN;
1181         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1182 }
1183
1184 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1185                               int qidx)
1186 {
1187         u64 head, tail;
1188         struct sk_buff *skb;
1189         struct nicvf *nic = netdev_priv(netdev);
1190         struct sq_hdr_subdesc *hdr;
1191
1192         head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1193         tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1194         while (sq->head != head) {
1195                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1196                 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1197                         nicvf_put_sq_desc(sq, 1);
1198                         continue;
1199                 }
1200                 skb = (struct sk_buff *)sq->skbuff[sq->head];
1201                 if (skb)
1202                         dev_kfree_skb_any(skb);
1203                 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1204                 atomic64_add(hdr->tot_len,
1205                              (atomic64_t *)&netdev->stats.tx_bytes);
1206                 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1207         }
1208 }
1209
1210 /* XDP Transmit APIs */
1211 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1212                            struct snd_queue *sq, int sq_num)
1213 {
1214         if (!sq->xdp_desc_cnt)
1215                 return;
1216
1217         /* make sure all memory stores are done before ringing doorbell */
1218         wmb();
1219
1220         /* Inform HW to xmit all TSO segments */
1221         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1222                               sq_num, sq->xdp_desc_cnt);
1223         sq->xdp_desc_cnt = 0;
1224 }
1225
1226 static inline void
1227 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1228                              int subdesc_cnt, u64 data, int len)
1229 {
1230         struct sq_hdr_subdesc *hdr;
1231
1232         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1233         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1234         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1235         hdr->subdesc_cnt = subdesc_cnt;
1236         hdr->tot_len = len;
1237         hdr->post_cqe = 1;
1238         sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1239 }
1240
1241 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1242                             u64 bufaddr, u64 dma_addr, u16 len)
1243 {
1244         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1245         int qentry;
1246
1247         if (subdesc_cnt > sq->xdp_free_cnt)
1248                 return 0;
1249
1250         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1251
1252         nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1253
1254         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1255         nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1256
1257         sq->xdp_desc_cnt += subdesc_cnt;
1258
1259         return 1;
1260 }
1261
1262 /* Calculate no of SQ subdescriptors needed to transmit all
1263  * segments of this TSO packet.
1264  * Taken from 'Tilera network driver' with a minor modification.
1265  */
1266 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1267 {
1268         struct skb_shared_info *sh = skb_shinfo(skb);
1269         unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1270         unsigned int data_len = skb->len - sh_len;
1271         unsigned int p_len = sh->gso_size;
1272         long f_id = -1;    /* id of the current fragment */
1273         long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1274         long f_used = 0;  /* bytes used from the current fragment */
1275         long n;            /* size of the current piece of payload */
1276         int num_edescs = 0;
1277         int segment;
1278
1279         for (segment = 0; segment < sh->gso_segs; segment++) {
1280                 unsigned int p_used = 0;
1281
1282                 /* One edesc for header and for each piece of the payload. */
1283                 for (num_edescs++; p_used < p_len; num_edescs++) {
1284                         /* Advance as needed. */
1285                         while (f_used >= f_size) {
1286                                 f_id++;
1287                                 f_size = skb_frag_size(&sh->frags[f_id]);
1288                                 f_used = 0;
1289                         }
1290
1291                         /* Use bytes from the current fragment. */
1292                         n = p_len - p_used;
1293                         if (n > f_size - f_used)
1294                                 n = f_size - f_used;
1295                         f_used += n;
1296                         p_used += n;
1297                 }
1298
1299                 /* The last segment may be less than gso_size. */
1300                 data_len -= p_len;
1301                 if (data_len < p_len)
1302                         p_len = data_len;
1303         }
1304
1305         /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1306         return num_edescs + sh->gso_segs;
1307 }
1308
1309 #define POST_CQE_DESC_COUNT 2
1310
1311 /* Get the number of SQ descriptors needed to xmit this skb */
1312 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1313 {
1314         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1315
1316         if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1317                 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1318                 return subdesc_cnt;
1319         }
1320
1321         /* Dummy descriptors to get TSO pkt completion notification */
1322         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1323                 subdesc_cnt += POST_CQE_DESC_COUNT;
1324
1325         if (skb_shinfo(skb)->nr_frags)
1326                 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1327
1328         return subdesc_cnt;
1329 }
1330
1331 /* Add SQ HEADER subdescriptor.
1332  * First subdescriptor for every send descriptor.
1333  */
1334 static inline void
1335 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1336                          int subdesc_cnt, struct sk_buff *skb, int len)
1337 {
1338         int proto;
1339         struct sq_hdr_subdesc *hdr;
1340         union {
1341                 struct iphdr *v4;
1342                 struct ipv6hdr *v6;
1343                 unsigned char *hdr;
1344         } ip;
1345
1346         ip.hdr = skb_network_header(skb);
1347         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1348         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1349         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1350
1351         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1352                 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1353                  * segment transmitted on 88xx.
1354                  */
1355                 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1356         } else {
1357                 sq->skbuff[qentry] = (u64)skb;
1358                 /* Enable notification via CQE after processing SQE */
1359                 hdr->post_cqe = 1;
1360                 /* No of subdescriptors following this */
1361                 hdr->subdesc_cnt = subdesc_cnt;
1362         }
1363         hdr->tot_len = len;
1364
1365         /* Offload checksum calculation to HW */
1366         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1367                 if (ip.v4->version == 4)
1368                         hdr->csum_l3 = 1; /* Enable IP csum calculation */
1369                 hdr->l3_offset = skb_network_offset(skb);
1370                 hdr->l4_offset = skb_transport_offset(skb);
1371
1372                 proto = (ip.v4->version == 4) ? ip.v4->protocol :
1373                         ip.v6->nexthdr;
1374
1375                 switch (proto) {
1376                 case IPPROTO_TCP:
1377                         hdr->csum_l4 = SEND_L4_CSUM_TCP;
1378                         break;
1379                 case IPPROTO_UDP:
1380                         hdr->csum_l4 = SEND_L4_CSUM_UDP;
1381                         break;
1382                 case IPPROTO_SCTP:
1383                         hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1384                         break;
1385                 }
1386         }
1387
1388         if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1389                 hdr->tso = 1;
1390                 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1391                 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1392                 /* For non-tunneled pkts, point this to L2 ethertype */
1393                 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1394                 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1395         }
1396
1397         /* Check if timestamp is requested */
1398         if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1399                 skb_tx_timestamp(skb);
1400                 return;
1401         }
1402
1403         /* Tx timestamping not supported along with TSO, so ignore request */
1404         if (skb_shinfo(skb)->gso_size)
1405                 return;
1406
1407         /* HW supports only a single outstanding packet to timestamp */
1408         if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1409                 return;
1410
1411         /* Mark the SKB for later reference */
1412         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1413
1414         /* Finally enable timestamp generation
1415          * Since 'post_cqe' is also set, two CQEs will be posted
1416          * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1417          */
1418         hdr->tstmp = 1;
1419 }
1420
1421 /* SQ GATHER subdescriptor
1422  * Must follow HDR descriptor
1423  */
1424 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1425                                                int size, u64 data)
1426 {
1427         struct sq_gather_subdesc *gather;
1428
1429         qentry &= (sq->dmem.q_len - 1);
1430         gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1431
1432         memset(gather, 0, SND_QUEUE_DESC_SIZE);
1433         gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1434         gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1435         gather->size = size;
1436         gather->addr = data;
1437 }
1438
1439 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1440  * packet so that a CQE is posted as a notifation for transmission of
1441  * TSO packet.
1442  */
1443 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1444                                             int tso_sqe, struct sk_buff *skb)
1445 {
1446         struct sq_imm_subdesc *imm;
1447         struct sq_hdr_subdesc *hdr;
1448
1449         sq->skbuff[qentry] = (u64)skb;
1450
1451         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1452         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1453         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1454         /* Enable notification via CQE after processing SQE */
1455         hdr->post_cqe = 1;
1456         /* There is no packet to transmit here */
1457         hdr->dont_send = 1;
1458         hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1459         hdr->tot_len = 1;
1460         /* Actual TSO header SQE index, needed for cleanup */
1461         hdr->rsvd2 = tso_sqe;
1462
1463         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1464         imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1465         memset(imm, 0, SND_QUEUE_DESC_SIZE);
1466         imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1467         imm->len = 1;
1468 }
1469
1470 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1471                                      int sq_num, int desc_cnt)
1472 {
1473         struct netdev_queue *txq;
1474
1475         txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1476                                   skb_get_queue_mapping(skb));
1477
1478         netdev_tx_sent_queue(txq, skb->len);
1479
1480         /* make sure all memory stores are done before ringing doorbell */
1481         smp_wmb();
1482
1483         /* Inform HW to xmit all TSO segments */
1484         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1485                               sq_num, desc_cnt);
1486 }
1487
1488 /* Segment a TSO packet into 'gso_size' segments and append
1489  * them to SQ for transfer
1490  */
1491 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1492                                int sq_num, int qentry, struct sk_buff *skb)
1493 {
1494         struct tso_t tso;
1495         int seg_subdescs = 0, desc_cnt = 0;
1496         int seg_len, total_len, data_left;
1497         int hdr_qentry = qentry;
1498         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1499
1500         tso_start(skb, &tso);
1501         total_len = skb->len - hdr_len;
1502         while (total_len > 0) {
1503                 char *hdr;
1504
1505                 /* Save Qentry for adding HDR_SUBDESC at the end */
1506                 hdr_qentry = qentry;
1507
1508                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1509                 total_len -= data_left;
1510
1511                 /* Add segment's header */
1512                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1513                 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1514                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1515                 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1516                                             sq->tso_hdrs_phys +
1517                                             qentry * TSO_HEADER_SIZE);
1518                 /* HDR_SUDESC + GATHER */
1519                 seg_subdescs = 2;
1520                 seg_len = hdr_len;
1521
1522                 /* Add segment's payload fragments */
1523                 while (data_left > 0) {
1524                         int size;
1525
1526                         size = min_t(int, tso.size, data_left);
1527
1528                         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1529                         nicvf_sq_add_gather_subdesc(sq, qentry, size,
1530                                                     virt_to_phys(tso.data));
1531                         seg_subdescs++;
1532                         seg_len += size;
1533
1534                         data_left -= size;
1535                         tso_build_data(skb, &tso, size);
1536                 }
1537                 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1538                                          seg_subdescs - 1, skb, seg_len);
1539                 sq->skbuff[hdr_qentry] = (u64)NULL;
1540                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1541
1542                 desc_cnt += seg_subdescs;
1543         }
1544         /* Save SKB in the last segment for freeing */
1545         sq->skbuff[hdr_qentry] = (u64)skb;
1546
1547         nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1548
1549         this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1550         return 1;
1551 }
1552
1553 /* Append an skb to a SQ for packet transfer. */
1554 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1555                         struct sk_buff *skb, u8 sq_num)
1556 {
1557         int i, size;
1558         int subdesc_cnt, hdr_sqe = 0;
1559         int qentry;
1560         u64 dma_addr;
1561
1562         subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1563         if (subdesc_cnt > atomic_read(&sq->free_cnt))
1564                 goto append_fail;
1565
1566         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1567
1568         /* Check if its a TSO packet */
1569         if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1570                 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1571
1572         /* Add SQ header subdesc */
1573         nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1574                                  skb, skb->len);
1575         hdr_sqe = qentry;
1576
1577         /* Add SQ gather subdescs */
1578         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1579         size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1580         /* HW will ensure data coherency, CPU sync not required */
1581         dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1582                                       offset_in_page(skb->data), size,
1583                                       DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1584         if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1585                 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1586                 return 0;
1587         }
1588
1589         nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1590
1591         /* Check for scattered buffer */
1592         if (!skb_is_nonlinear(skb))
1593                 goto doorbell;
1594
1595         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1596                 const struct skb_frag_struct *frag;
1597
1598                 frag = &skb_shinfo(skb)->frags[i];
1599
1600                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1601                 size = skb_frag_size(frag);
1602                 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1603                                               skb_frag_page(frag),
1604                                               frag->page_offset, size,
1605                                               DMA_TO_DEVICE,
1606                                               DMA_ATTR_SKIP_CPU_SYNC);
1607                 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1608                         /* Free entire chain of mapped buffers
1609                          * here 'i' = frags mapped + above mapped skb->data
1610                          */
1611                         nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1612                         nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1613                         return 0;
1614                 }
1615                 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1616         }
1617
1618 doorbell:
1619         if (nic->t88 && skb_shinfo(skb)->gso_size) {
1620                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1621                 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1622         }
1623
1624         nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1625
1626         return 1;
1627
1628 append_fail:
1629         /* Use original PCI dev for debug log */
1630         nic = nic->pnicvf;
1631         netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1632         return 0;
1633 }
1634
1635 static inline unsigned frag_num(unsigned i)
1636 {
1637 #ifdef __BIG_ENDIAN
1638         return (i & ~3) + 3 - (i & 3);
1639 #else
1640         return i;
1641 #endif
1642 }
1643
1644 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1645                                    u64 buf_addr, bool xdp)
1646 {
1647         struct page *page = NULL;
1648         int len = RCV_FRAG_LEN;
1649
1650         if (xdp) {
1651                 page = virt_to_page(phys_to_virt(buf_addr));
1652                 /* Check if it's a recycled page, if not
1653                  * unmap the DMA mapping.
1654                  *
1655                  * Recycled page holds an extra reference.
1656                  */
1657                 if (page_ref_count(page) != 1)
1658                         return;
1659
1660                 len += XDP_PACKET_HEADROOM;
1661                 /* Receive buffers in XDP mode are mapped from page start */
1662                 dma_addr &= PAGE_MASK;
1663         }
1664         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1665                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1666 }
1667
1668 /* Returns SKB for a received packet */
1669 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1670                                   struct cqe_rx_t *cqe_rx, bool xdp)
1671 {
1672         int frag;
1673         int payload_len = 0;
1674         struct sk_buff *skb = NULL;
1675         struct page *page;
1676         int offset;
1677         u16 *rb_lens = NULL;
1678         u64 *rb_ptrs = NULL;
1679         u64 phys_addr;
1680
1681         rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1682         /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1683          * CQE_RX at word6, hence buffer pointers move by word
1684          *
1685          * Use existing 'hw_tso' flag which will be set for all chips
1686          * except 88xx pass1 instead of a additional cache line
1687          * access (or miss) by using pci dev's revision.
1688          */
1689         if (!nic->hw_tso)
1690                 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1691         else
1692                 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1693
1694         for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1695                 payload_len = rb_lens[frag_num(frag)];
1696                 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1697                 if (!phys_addr) {
1698                         if (skb)
1699                                 dev_kfree_skb_any(skb);
1700                         return NULL;
1701                 }
1702
1703                 if (!frag) {
1704                         /* First fragment */
1705                         nicvf_unmap_rcv_buffer(nic,
1706                                                *rb_ptrs - cqe_rx->align_pad,
1707                                                phys_addr, xdp);
1708                         skb = nicvf_rb_ptr_to_skb(nic,
1709                                                   phys_addr - cqe_rx->align_pad,
1710                                                   payload_len);
1711                         if (!skb)
1712                                 return NULL;
1713                         skb_reserve(skb, cqe_rx->align_pad);
1714                         skb_put(skb, payload_len);
1715                 } else {
1716                         /* Add fragments */
1717                         nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1718                         page = virt_to_page(phys_to_virt(phys_addr));
1719                         offset = phys_to_virt(phys_addr) - page_address(page);
1720                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1721                                         offset, payload_len, RCV_FRAG_LEN);
1722                 }
1723                 /* Next buffer pointer */
1724                 rb_ptrs++;
1725         }
1726         return skb;
1727 }
1728
1729 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1730 {
1731         u64 reg_val;
1732
1733         switch (int_type) {
1734         case NICVF_INTR_CQ:
1735                 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1736                 break;
1737         case NICVF_INTR_SQ:
1738                 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1739                 break;
1740         case NICVF_INTR_RBDR:
1741                 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1742                 break;
1743         case NICVF_INTR_PKT_DROP:
1744                 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1745                 break;
1746         case NICVF_INTR_TCP_TIMER:
1747                 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1748                 break;
1749         case NICVF_INTR_MBOX:
1750                 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1751                 break;
1752         case NICVF_INTR_QS_ERR:
1753                 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1754                 break;
1755         default:
1756                 reg_val = 0;
1757         }
1758
1759         return reg_val;
1760 }
1761
1762 /* Enable interrupt */
1763 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1764 {
1765         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1766
1767         if (!mask) {
1768                 netdev_dbg(nic->netdev,
1769                            "Failed to enable interrupt: unknown type\n");
1770                 return;
1771         }
1772         nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1773                         nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1774 }
1775
1776 /* Disable interrupt */
1777 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1778 {
1779         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1780
1781         if (!mask) {
1782                 netdev_dbg(nic->netdev,
1783                            "Failed to disable interrupt: unknown type\n");
1784                 return;
1785         }
1786
1787         nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1788 }
1789
1790 /* Clear interrupt */
1791 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1792 {
1793         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1794
1795         if (!mask) {
1796                 netdev_dbg(nic->netdev,
1797                            "Failed to clear interrupt: unknown type\n");
1798                 return;
1799         }
1800
1801         nicvf_reg_write(nic, NIC_VF_INT, mask);
1802 }
1803
1804 /* Check if interrupt is enabled */
1805 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1806 {
1807         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1808         /* If interrupt type is unknown, we treat it disabled. */
1809         if (!mask) {
1810                 netdev_dbg(nic->netdev,
1811                            "Failed to check interrupt enable: unknown type\n");
1812                 return 0;
1813         }
1814
1815         return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1816 }
1817
1818 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1819 {
1820         struct rcv_queue *rq;
1821
1822 #define GET_RQ_STATS(reg) \
1823         nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1824                             (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1825
1826         rq = &nic->qs->rq[rq_idx];
1827         rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1828         rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1829 }
1830
1831 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1832 {
1833         struct snd_queue *sq;
1834
1835 #define GET_SQ_STATS(reg) \
1836         nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1837                             (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1838
1839         sq = &nic->qs->sq[sq_idx];
1840         sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1841         sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1842 }
1843
1844 /* Check for errors in the receive cmp.queue entry */
1845 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1846 {
1847         netif_err(nic, rx_err, nic->netdev,
1848                   "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1849                   cqe_rx->err_level, cqe_rx->err_opcode);
1850
1851         switch (cqe_rx->err_opcode) {
1852         case CQ_RX_ERROP_RE_PARTIAL:
1853                 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1854                 break;
1855         case CQ_RX_ERROP_RE_JABBER:
1856                 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1857                 break;
1858         case CQ_RX_ERROP_RE_FCS:
1859                 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1860                 break;
1861         case CQ_RX_ERROP_RE_RX_CTL:
1862                 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1863                 break;
1864         case CQ_RX_ERROP_PREL2_ERR:
1865                 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1866                 break;
1867         case CQ_RX_ERROP_L2_MAL:
1868                 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1869                 break;
1870         case CQ_RX_ERROP_L2_OVERSIZE:
1871                 this_cpu_inc(nic->drv_stats->rx_oversize);
1872                 break;
1873         case CQ_RX_ERROP_L2_UNDERSIZE:
1874                 this_cpu_inc(nic->drv_stats->rx_undersize);
1875                 break;
1876         case CQ_RX_ERROP_L2_LENMISM:
1877                 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1878                 break;
1879         case CQ_RX_ERROP_L2_PCLP:
1880                 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1881                 break;
1882         case CQ_RX_ERROP_IP_NOT:
1883                 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1884                 break;
1885         case CQ_RX_ERROP_IP_CSUM_ERR:
1886                 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1887                 break;
1888         case CQ_RX_ERROP_IP_MAL:
1889                 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1890                 break;
1891         case CQ_RX_ERROP_IP_MALD:
1892                 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1893                 break;
1894         case CQ_RX_ERROP_IP_HOP:
1895                 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1896                 break;
1897         case CQ_RX_ERROP_L3_PCLP:
1898                 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1899                 break;
1900         case CQ_RX_ERROP_L4_MAL:
1901                 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1902                 break;
1903         case CQ_RX_ERROP_L4_CHK:
1904                 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1905                 break;
1906         case CQ_RX_ERROP_UDP_LEN:
1907                 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1908                 break;
1909         case CQ_RX_ERROP_L4_PORT:
1910                 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1911                 break;
1912         case CQ_RX_ERROP_TCP_FLAG:
1913                 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1914                 break;
1915         case CQ_RX_ERROP_TCP_OFFSET:
1916                 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1917                 break;
1918         case CQ_RX_ERROP_L4_PCLP:
1919                 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1920                 break;
1921         case CQ_RX_ERROP_RBDR_TRUNC:
1922                 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1923                 break;
1924         }
1925
1926         return 1;
1927 }
1928
1929 /* Check for errors in the send cmp.queue entry */
1930 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1931 {
1932         switch (cqe_tx->send_status) {
1933         case CQ_TX_ERROP_DESC_FAULT:
1934                 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1935                 break;
1936         case CQ_TX_ERROP_HDR_CONS_ERR:
1937                 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1938                 break;
1939         case CQ_TX_ERROP_SUBDC_ERR:
1940                 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1941                 break;
1942         case CQ_TX_ERROP_MAX_SIZE_VIOL:
1943                 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1944                 break;
1945         case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1946                 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1947                 break;
1948         case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1949                 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1950                 break;
1951         case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1952                 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1953                 break;
1954         case CQ_TX_ERROP_LOCK_VIOL:
1955                 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1956                 break;
1957         case CQ_TX_ERROP_DATA_FAULT:
1958                 this_cpu_inc(nic->drv_stats->tx_data_fault);
1959                 break;
1960         case CQ_TX_ERROP_TSTMP_CONFLICT:
1961                 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1962                 break;
1963         case CQ_TX_ERROP_TSTMP_TIMEOUT:
1964                 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1965                 break;
1966         case CQ_TX_ERROP_MEM_FAULT:
1967                 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1968                 break;
1969         case CQ_TX_ERROP_CK_OVERLAP:
1970                 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1971                 break;
1972         case CQ_TX_ERROP_CK_OFLOW:
1973                 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1974                 break;
1975         }
1976
1977         return 1;
1978 }