device property: preserve usecount for node passed to of_fwnode_graph_get_port_parent()
[sfrench/cifs-2.6.git] / drivers / net / ethernet / cavium / thunder / nicvf_main.c
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23
24 #include "nic_reg.h"
25 #include "nic.h"
26 #include "nicvf_queues.h"
27 #include "thunder_bgx.h"
28
29 #define DRV_NAME        "thunder-nicvf"
30 #define DRV_VERSION     "1.0"
31
32 /* Supported devices */
33 static const struct pci_device_id nicvf_id_table[] = {
34         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
35                          PCI_DEVICE_ID_THUNDER_NIC_VF,
36                          PCI_VENDOR_ID_CAVIUM,
37                          PCI_SUBSYS_DEVID_88XX_NIC_VF) },
38         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
39                          PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
40                          PCI_VENDOR_ID_CAVIUM,
41                          PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
42         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
43                          PCI_DEVICE_ID_THUNDER_NIC_VF,
44                          PCI_VENDOR_ID_CAVIUM,
45                          PCI_SUBSYS_DEVID_81XX_NIC_VF) },
46         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
47                          PCI_DEVICE_ID_THUNDER_NIC_VF,
48                          PCI_VENDOR_ID_CAVIUM,
49                          PCI_SUBSYS_DEVID_83XX_NIC_VF) },
50         { 0, }  /* end of table */
51 };
52
53 MODULE_AUTHOR("Sunil Goutham");
54 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
55 MODULE_LICENSE("GPL v2");
56 MODULE_VERSION(DRV_VERSION);
57 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
58
59 static int debug = 0x00;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "Debug message level bitmap");
62
63 static int cpi_alg = CPI_ALG_NONE;
64 module_param(cpi_alg, int, S_IRUGO);
65 MODULE_PARM_DESC(cpi_alg,
66                  "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
67
68 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
69 {
70         if (nic->sqs_mode)
71                 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
72         else
73                 return qidx;
74 }
75
76 /* The Cavium ThunderX network controller can *only* be found in SoCs
77  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
78  * registers on this platform are implicitly strongly ordered with respect
79  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
80  * with no memory barriers in this driver.  The readq()/writeq() functions add
81  * explicit ordering operation which in this case are redundant, and only
82  * add overhead.
83  */
84
85 /* Register read/write APIs */
86 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
87 {
88         writeq_relaxed(val, nic->reg_base + offset);
89 }
90
91 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
92 {
93         return readq_relaxed(nic->reg_base + offset);
94 }
95
96 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
97                            u64 qidx, u64 val)
98 {
99         void __iomem *addr = nic->reg_base + offset;
100
101         writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
102 }
103
104 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
105 {
106         void __iomem *addr = nic->reg_base + offset;
107
108         return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110
111 /* VF -> PF mailbox communication */
112 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
113 {
114         u64 *msg = (u64 *)mbx;
115
116         nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
117         nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
118 }
119
120 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
121 {
122         int timeout = NIC_MBOX_MSG_TIMEOUT;
123         int sleep = 10;
124
125         nic->pf_acked = false;
126         nic->pf_nacked = false;
127
128         nicvf_write_to_mbx(nic, mbx);
129
130         /* Wait for previous message to be acked, timeout 2sec */
131         while (!nic->pf_acked) {
132                 if (nic->pf_nacked) {
133                         netdev_err(nic->netdev,
134                                    "PF NACK to mbox msg 0x%02x from VF%d\n",
135                                    (mbx->msg.msg & 0xFF), nic->vf_id);
136                         return -EINVAL;
137                 }
138                 msleep(sleep);
139                 if (nic->pf_acked)
140                         break;
141                 timeout -= sleep;
142                 if (!timeout) {
143                         netdev_err(nic->netdev,
144                                    "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
145                                    (mbx->msg.msg & 0xFF), nic->vf_id);
146                         return -EBUSY;
147                 }
148         }
149         return 0;
150 }
151
152 /* Checks if VF is able to comminicate with PF
153 * and also gets the VNIC number this VF is associated to.
154 */
155 static int nicvf_check_pf_ready(struct nicvf *nic)
156 {
157         union nic_mbx mbx = {};
158
159         mbx.msg.msg = NIC_MBOX_MSG_READY;
160         if (nicvf_send_msg_to_pf(nic, &mbx)) {
161                 netdev_err(nic->netdev,
162                            "PF didn't respond to READY msg\n");
163                 return 0;
164         }
165
166         return 1;
167 }
168
169 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
170 {
171         if (bgx->rx)
172                 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
173         else
174                 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
175 }
176
177 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
178 {
179         union nic_mbx mbx = {};
180         u64 *mbx_data;
181         u64 mbx_addr;
182         int i;
183
184         mbx_addr = NIC_VF_PF_MAILBOX_0_1;
185         mbx_data = (u64 *)&mbx;
186
187         for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
188                 *mbx_data = nicvf_reg_read(nic, mbx_addr);
189                 mbx_data++;
190                 mbx_addr += sizeof(u64);
191         }
192
193         netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
194         switch (mbx.msg.msg) {
195         case NIC_MBOX_MSG_READY:
196                 nic->pf_acked = true;
197                 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
198                 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
199                 nic->node = mbx.nic_cfg.node_id;
200                 if (!nic->set_mac_pending)
201                         ether_addr_copy(nic->netdev->dev_addr,
202                                         mbx.nic_cfg.mac_addr);
203                 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
204                 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
205                 nic->link_up = false;
206                 nic->duplex = 0;
207                 nic->speed = 0;
208                 break;
209         case NIC_MBOX_MSG_ACK:
210                 nic->pf_acked = true;
211                 break;
212         case NIC_MBOX_MSG_NACK:
213                 nic->pf_nacked = true;
214                 break;
215         case NIC_MBOX_MSG_RSS_SIZE:
216                 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
217                 nic->pf_acked = true;
218                 break;
219         case NIC_MBOX_MSG_BGX_STATS:
220                 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
221                 nic->pf_acked = true;
222                 break;
223         case NIC_MBOX_MSG_BGX_LINK_CHANGE:
224                 nic->pf_acked = true;
225                 nic->link_up = mbx.link_status.link_up;
226                 nic->duplex = mbx.link_status.duplex;
227                 nic->speed = mbx.link_status.speed;
228                 nic->mac_type = mbx.link_status.mac_type;
229                 if (nic->link_up) {
230                         netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
231                                     nic->speed,
232                                     nic->duplex == DUPLEX_FULL ?
233                                     "Full" : "Half");
234                         netif_carrier_on(nic->netdev);
235                         netif_tx_start_all_queues(nic->netdev);
236                 } else {
237                         netdev_info(nic->netdev, "Link is Down\n");
238                         netif_carrier_off(nic->netdev);
239                         netif_tx_stop_all_queues(nic->netdev);
240                 }
241                 break;
242         case NIC_MBOX_MSG_ALLOC_SQS:
243                 nic->sqs_count = mbx.sqs_alloc.qs_count;
244                 nic->pf_acked = true;
245                 break;
246         case NIC_MBOX_MSG_SNICVF_PTR:
247                 /* Primary VF: make note of secondary VF's pointer
248                  * to be used while packet transmission.
249                  */
250                 nic->snicvf[mbx.nicvf.sqs_id] =
251                         (struct nicvf *)mbx.nicvf.nicvf;
252                 nic->pf_acked = true;
253                 break;
254         case NIC_MBOX_MSG_PNICVF_PTR:
255                 /* Secondary VF/Qset: make note of primary VF's pointer
256                  * to be used while packet reception, to handover packet
257                  * to primary VF's netdev.
258                  */
259                 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
260                 nic->pf_acked = true;
261                 break;
262         case NIC_MBOX_MSG_PFC:
263                 nic->pfc.autoneg = mbx.pfc.autoneg;
264                 nic->pfc.fc_rx = mbx.pfc.fc_rx;
265                 nic->pfc.fc_tx = mbx.pfc.fc_tx;
266                 nic->pf_acked = true;
267                 break;
268         default:
269                 netdev_err(nic->netdev,
270                            "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
271                 break;
272         }
273         nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
274 }
275
276 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
277 {
278         union nic_mbx mbx = {};
279
280         mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
281         mbx.mac.vf_id = nic->vf_id;
282         ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
283
284         return nicvf_send_msg_to_pf(nic, &mbx);
285 }
286
287 static void nicvf_config_cpi(struct nicvf *nic)
288 {
289         union nic_mbx mbx = {};
290
291         mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
292         mbx.cpi_cfg.vf_id = nic->vf_id;
293         mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
294         mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
295
296         nicvf_send_msg_to_pf(nic, &mbx);
297 }
298
299 static void nicvf_get_rss_size(struct nicvf *nic)
300 {
301         union nic_mbx mbx = {};
302
303         mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
304         mbx.rss_size.vf_id = nic->vf_id;
305         nicvf_send_msg_to_pf(nic, &mbx);
306 }
307
308 void nicvf_config_rss(struct nicvf *nic)
309 {
310         union nic_mbx mbx = {};
311         struct nicvf_rss_info *rss = &nic->rss_info;
312         int ind_tbl_len = rss->rss_size;
313         int i, nextq = 0;
314
315         mbx.rss_cfg.vf_id = nic->vf_id;
316         mbx.rss_cfg.hash_bits = rss->hash_bits;
317         while (ind_tbl_len) {
318                 mbx.rss_cfg.tbl_offset = nextq;
319                 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
320                                                RSS_IND_TBL_LEN_PER_MBX_MSG);
321                 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
322                           NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
323
324                 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
325                         mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
326
327                 nicvf_send_msg_to_pf(nic, &mbx);
328
329                 ind_tbl_len -= mbx.rss_cfg.tbl_len;
330         }
331 }
332
333 void nicvf_set_rss_key(struct nicvf *nic)
334 {
335         struct nicvf_rss_info *rss = &nic->rss_info;
336         u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
337         int idx;
338
339         for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
340                 nicvf_reg_write(nic, key_addr, rss->key[idx]);
341                 key_addr += sizeof(u64);
342         }
343 }
344
345 static int nicvf_rss_init(struct nicvf *nic)
346 {
347         struct nicvf_rss_info *rss = &nic->rss_info;
348         int idx;
349
350         nicvf_get_rss_size(nic);
351
352         if (cpi_alg != CPI_ALG_NONE) {
353                 rss->enable = false;
354                 rss->hash_bits = 0;
355                 return 0;
356         }
357
358         rss->enable = true;
359
360         netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
361         nicvf_set_rss_key(nic);
362
363         rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
364         nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
365
366         rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
367
368         for (idx = 0; idx < rss->rss_size; idx++)
369                 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
370                                                                nic->rx_queues);
371         nicvf_config_rss(nic);
372         return 1;
373 }
374
375 /* Request PF to allocate additional Qsets */
376 static void nicvf_request_sqs(struct nicvf *nic)
377 {
378         union nic_mbx mbx = {};
379         int sqs;
380         int sqs_count = nic->sqs_count;
381         int rx_queues = 0, tx_queues = 0;
382
383         /* Only primary VF should request */
384         if (nic->sqs_mode ||  !nic->sqs_count)
385                 return;
386
387         mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
388         mbx.sqs_alloc.vf_id = nic->vf_id;
389         mbx.sqs_alloc.qs_count = nic->sqs_count;
390         if (nicvf_send_msg_to_pf(nic, &mbx)) {
391                 /* No response from PF */
392                 nic->sqs_count = 0;
393                 return;
394         }
395
396         /* Return if no Secondary Qsets available */
397         if (!nic->sqs_count)
398                 return;
399
400         if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
401                 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
402
403         tx_queues = nic->tx_queues + nic->xdp_tx_queues;
404         if (tx_queues > MAX_SND_QUEUES_PER_QS)
405                 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
406
407         /* Set no of Rx/Tx queues in each of the SQsets */
408         for (sqs = 0; sqs < nic->sqs_count; sqs++) {
409                 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
410                 mbx.nicvf.vf_id = nic->vf_id;
411                 mbx.nicvf.sqs_id = sqs;
412                 nicvf_send_msg_to_pf(nic, &mbx);
413
414                 nic->snicvf[sqs]->sqs_id = sqs;
415                 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
416                         nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
417                         rx_queues -= MAX_RCV_QUEUES_PER_QS;
418                 } else {
419                         nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
420                         rx_queues = 0;
421                 }
422
423                 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
424                         nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
425                         tx_queues -= MAX_SND_QUEUES_PER_QS;
426                 } else {
427                         nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
428                         tx_queues = 0;
429                 }
430
431                 nic->snicvf[sqs]->qs->cq_cnt =
432                 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
433
434                 /* Initialize secondary Qset's queues and its interrupts */
435                 nicvf_open(nic->snicvf[sqs]->netdev);
436         }
437
438         /* Update stack with actual Rx/Tx queue count allocated */
439         if (sqs_count != nic->sqs_count)
440                 nicvf_set_real_num_queues(nic->netdev,
441                                           nic->tx_queues, nic->rx_queues);
442 }
443
444 /* Send this Qset's nicvf pointer to PF.
445  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
446  * so that packets received by these Qsets can use primary VF's netdev
447  */
448 static void nicvf_send_vf_struct(struct nicvf *nic)
449 {
450         union nic_mbx mbx = {};
451
452         mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
453         mbx.nicvf.sqs_mode = nic->sqs_mode;
454         mbx.nicvf.nicvf = (u64)nic;
455         nicvf_send_msg_to_pf(nic, &mbx);
456 }
457
458 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
459 {
460         union nic_mbx mbx = {};
461
462         mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
463         nicvf_send_msg_to_pf(nic, &mbx);
464 }
465
466 int nicvf_set_real_num_queues(struct net_device *netdev,
467                               int tx_queues, int rx_queues)
468 {
469         int err = 0;
470
471         err = netif_set_real_num_tx_queues(netdev, tx_queues);
472         if (err) {
473                 netdev_err(netdev,
474                            "Failed to set no of Tx queues: %d\n", tx_queues);
475                 return err;
476         }
477
478         err = netif_set_real_num_rx_queues(netdev, rx_queues);
479         if (err)
480                 netdev_err(netdev,
481                            "Failed to set no of Rx queues: %d\n", rx_queues);
482         return err;
483 }
484
485 static int nicvf_init_resources(struct nicvf *nic)
486 {
487         int err;
488
489         /* Enable Qset */
490         nicvf_qset_config(nic, true);
491
492         /* Initialize queues and HW for data transfer */
493         err = nicvf_config_data_transfer(nic, true);
494         if (err) {
495                 netdev_err(nic->netdev,
496                            "Failed to alloc/config VF's QSet resources\n");
497                 return err;
498         }
499
500         return 0;
501 }
502
503 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
504                                 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
505                                 struct sk_buff **skb)
506 {
507         struct xdp_buff xdp;
508         struct page *page;
509         u32 action;
510         u16 len, offset = 0;
511         u64 dma_addr, cpu_addr;
512         void *orig_data;
513
514         /* Retrieve packet buffer's DMA address and length */
515         len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
516         dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
517
518         cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
519         if (!cpu_addr)
520                 return false;
521         cpu_addr = (u64)phys_to_virt(cpu_addr);
522         page = virt_to_page((void *)cpu_addr);
523
524         xdp.data_hard_start = page_address(page);
525         xdp.data = (void *)cpu_addr;
526         xdp.data_end = xdp.data + len;
527         orig_data = xdp.data;
528
529         rcu_read_lock();
530         action = bpf_prog_run_xdp(prog, &xdp);
531         rcu_read_unlock();
532
533         /* Check if XDP program has changed headers */
534         if (orig_data != xdp.data) {
535                 len = xdp.data_end - xdp.data;
536                 offset = orig_data - xdp.data;
537                 dma_addr -= offset;
538         }
539
540         switch (action) {
541         case XDP_PASS:
542                 /* Check if it's a recycled page, if not
543                  * unmap the DMA mapping.
544                  *
545                  * Recycled page holds an extra reference.
546                  */
547                 if (page_ref_count(page) == 1) {
548                         dma_addr &= PAGE_MASK;
549                         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
550                                              RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
551                                              DMA_FROM_DEVICE,
552                                              DMA_ATTR_SKIP_CPU_SYNC);
553                 }
554
555                 /* Build SKB and pass on packet to network stack */
556                 *skb = build_skb(xdp.data,
557                                  RCV_FRAG_LEN - cqe_rx->align_pad + offset);
558                 if (!*skb)
559                         put_page(page);
560                 else
561                         skb_put(*skb, len);
562                 return false;
563         case XDP_TX:
564                 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
565                 return true;
566         default:
567                 bpf_warn_invalid_xdp_action(action);
568         case XDP_ABORTED:
569                 trace_xdp_exception(nic->netdev, prog, action);
570         case XDP_DROP:
571                 /* Check if it's a recycled page, if not
572                  * unmap the DMA mapping.
573                  *
574                  * Recycled page holds an extra reference.
575                  */
576                 if (page_ref_count(page) == 1) {
577                         dma_addr &= PAGE_MASK;
578                         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
579                                              RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
580                                              DMA_FROM_DEVICE,
581                                              DMA_ATTR_SKIP_CPU_SYNC);
582                 }
583                 put_page(page);
584                 return true;
585         }
586         return false;
587 }
588
589 static void nicvf_snd_pkt_handler(struct net_device *netdev,
590                                   struct cqe_send_t *cqe_tx,
591                                   int budget, int *subdesc_cnt,
592                                   unsigned int *tx_pkts, unsigned int *tx_bytes)
593 {
594         struct sk_buff *skb = NULL;
595         struct page *page;
596         struct nicvf *nic = netdev_priv(netdev);
597         struct snd_queue *sq;
598         struct sq_hdr_subdesc *hdr;
599         struct sq_hdr_subdesc *tso_sqe;
600
601         sq = &nic->qs->sq[cqe_tx->sq_idx];
602
603         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
604         if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
605                 return;
606
607         /* Check for errors */
608         if (cqe_tx->send_status)
609                 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
610
611         /* Is this a XDP designated Tx queue */
612         if (sq->is_xdp) {
613                 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
614                 /* Check if it's recycled page or else unmap DMA mapping */
615                 if (page && (page_ref_count(page) == 1))
616                         nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
617                                                  hdr->subdesc_cnt);
618
619                 /* Release page reference for recycling */
620                 if (page)
621                         put_page(page);
622                 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
623                 *subdesc_cnt += hdr->subdesc_cnt + 1;
624                 return;
625         }
626
627         skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
628         if (skb) {
629                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
630                 if (hdr->dont_send) {
631                         /* Get actual TSO descriptors and free them */
632                         tso_sqe =
633                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
634                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
635                                                  tso_sqe->subdesc_cnt);
636                         *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
637                 } else {
638                         nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
639                                                  hdr->subdesc_cnt);
640                 }
641                 *subdesc_cnt += hdr->subdesc_cnt + 1;
642                 prefetch(skb);
643                 (*tx_pkts)++;
644                 *tx_bytes += skb->len;
645                 napi_consume_skb(skb, budget);
646                 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
647         } else {
648                 /* In case of SW TSO on 88xx, only last segment will have
649                  * a SKB attached, so just free SQEs here.
650                  */
651                 if (!nic->hw_tso)
652                         *subdesc_cnt += hdr->subdesc_cnt + 1;
653         }
654 }
655
656 static inline void nicvf_set_rxhash(struct net_device *netdev,
657                                     struct cqe_rx_t *cqe_rx,
658                                     struct sk_buff *skb)
659 {
660         u8 hash_type;
661         u32 hash;
662
663         if (!(netdev->features & NETIF_F_RXHASH))
664                 return;
665
666         switch (cqe_rx->rss_alg) {
667         case RSS_ALG_TCP_IP:
668         case RSS_ALG_UDP_IP:
669                 hash_type = PKT_HASH_TYPE_L4;
670                 hash = cqe_rx->rss_tag;
671                 break;
672         case RSS_ALG_IP:
673                 hash_type = PKT_HASH_TYPE_L3;
674                 hash = cqe_rx->rss_tag;
675                 break;
676         default:
677                 hash_type = PKT_HASH_TYPE_NONE;
678                 hash = 0;
679         }
680
681         skb_set_hash(skb, hash, hash_type);
682 }
683
684 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
685                                   struct napi_struct *napi,
686                                   struct cqe_rx_t *cqe_rx, struct snd_queue *sq)
687 {
688         struct sk_buff *skb = NULL;
689         struct nicvf *nic = netdev_priv(netdev);
690         struct nicvf *snic = nic;
691         int err = 0;
692         int rq_idx;
693
694         rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
695
696         if (nic->sqs_mode) {
697                 /* Use primary VF's 'nicvf' struct */
698                 nic = nic->pnicvf;
699                 netdev = nic->netdev;
700         }
701
702         /* Check for errors */
703         if (cqe_rx->err_level || cqe_rx->err_opcode) {
704                 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
705                 if (err && !cqe_rx->rb_cnt)
706                         return;
707         }
708
709         /* For XDP, ignore pkts spanning multiple pages */
710         if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
711                 /* Packet consumed by XDP */
712                 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, &skb))
713                         return;
714         } else {
715                 skb = nicvf_get_rcv_skb(snic, cqe_rx,
716                                         nic->xdp_prog ? true : false);
717         }
718
719         if (!skb)
720                 return;
721
722         if (netif_msg_pktdata(nic)) {
723                 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
724                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
725                                skb->data, skb->len, true);
726         }
727
728         /* If error packet, drop it here */
729         if (err) {
730                 dev_kfree_skb_any(skb);
731                 return;
732         }
733
734         nicvf_set_rxhash(netdev, cqe_rx, skb);
735
736         skb_record_rx_queue(skb, rq_idx);
737         if (netdev->hw_features & NETIF_F_RXCSUM) {
738                 /* HW by default verifies TCP/UDP/SCTP checksums */
739                 skb->ip_summed = CHECKSUM_UNNECESSARY;
740         } else {
741                 skb_checksum_none_assert(skb);
742         }
743
744         skb->protocol = eth_type_trans(skb, netdev);
745
746         /* Check for stripped VLAN */
747         if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
748                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
749                                        ntohs((__force __be16)cqe_rx->vlan_tci));
750
751         if (napi && (netdev->features & NETIF_F_GRO))
752                 napi_gro_receive(napi, skb);
753         else
754                 netif_receive_skb(skb);
755 }
756
757 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
758                                  struct napi_struct *napi, int budget)
759 {
760         int processed_cqe, work_done = 0, tx_done = 0;
761         int cqe_count, cqe_head;
762         int subdesc_cnt = 0;
763         struct nicvf *nic = netdev_priv(netdev);
764         struct queue_set *qs = nic->qs;
765         struct cmp_queue *cq = &qs->cq[cq_idx];
766         struct cqe_rx_t *cq_desc;
767         struct netdev_queue *txq;
768         struct snd_queue *sq = &qs->sq[cq_idx];
769         unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
770
771         spin_lock_bh(&cq->lock);
772 loop:
773         processed_cqe = 0;
774         /* Get no of valid CQ entries to process */
775         cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
776         cqe_count &= CQ_CQE_COUNT;
777         if (!cqe_count)
778                 goto done;
779
780         /* Get head of the valid CQ entries */
781         cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
782         cqe_head &= 0xFFFF;
783
784         while (processed_cqe < cqe_count) {
785                 /* Get the CQ descriptor */
786                 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
787                 cqe_head++;
788                 cqe_head &= (cq->dmem.q_len - 1);
789                 /* Initiate prefetch for next descriptor */
790                 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
791
792                 if ((work_done >= budget) && napi &&
793                     (cq_desc->cqe_type != CQE_TYPE_SEND)) {
794                         break;
795                 }
796
797                 switch (cq_desc->cqe_type) {
798                 case CQE_TYPE_RX:
799                         nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq);
800                         work_done++;
801                 break;
802                 case CQE_TYPE_SEND:
803                         nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
804                                               budget, &subdesc_cnt,
805                                               &tx_pkts, &tx_bytes);
806                         tx_done++;
807                 break;
808                 case CQE_TYPE_INVALID:
809                 case CQE_TYPE_RX_SPLIT:
810                 case CQE_TYPE_RX_TCP:
811                 case CQE_TYPE_SEND_PTP:
812                         /* Ignore for now */
813                 break;
814                 }
815                 processed_cqe++;
816         }
817
818         /* Ring doorbell to inform H/W to reuse processed CQEs */
819         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
820                               cq_idx, processed_cqe);
821
822         if ((work_done < budget) && napi)
823                 goto loop;
824
825 done:
826         /* Update SQ's descriptor free count */
827         if (subdesc_cnt)
828                 nicvf_put_sq_desc(sq, subdesc_cnt);
829
830         txq_idx = nicvf_netdev_qidx(nic, cq_idx);
831         /* Handle XDP TX queues */
832         if (nic->pnicvf->xdp_prog) {
833                 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
834                         nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
835                         goto out;
836                 }
837                 nic = nic->pnicvf;
838                 txq_idx -= nic->pnicvf->xdp_tx_queues;
839         }
840
841         /* Wakeup TXQ if its stopped earlier due to SQ full */
842         if (tx_done ||
843             (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
844                 netdev = nic->pnicvf->netdev;
845                 txq = netdev_get_tx_queue(netdev, txq_idx);
846                 if (tx_pkts)
847                         netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
848
849                 /* To read updated queue and carrier status */
850                 smp_mb();
851                 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
852                         netif_tx_wake_queue(txq);
853                         nic = nic->pnicvf;
854                         this_cpu_inc(nic->drv_stats->txq_wake);
855                         netif_warn(nic, tx_err, netdev,
856                                    "Transmit queue wakeup SQ%d\n", txq_idx);
857                 }
858         }
859
860 out:
861         spin_unlock_bh(&cq->lock);
862         return work_done;
863 }
864
865 static int nicvf_poll(struct napi_struct *napi, int budget)
866 {
867         u64  cq_head;
868         int  work_done = 0;
869         struct net_device *netdev = napi->dev;
870         struct nicvf *nic = netdev_priv(netdev);
871         struct nicvf_cq_poll *cq;
872
873         cq = container_of(napi, struct nicvf_cq_poll, napi);
874         work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
875
876         if (work_done < budget) {
877                 /* Slow packet rate, exit polling */
878                 napi_complete_done(napi, work_done);
879                 /* Re-enable interrupts */
880                 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
881                                                cq->cq_idx);
882                 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
883                 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
884                                       cq->cq_idx, cq_head);
885                 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
886         }
887         return work_done;
888 }
889
890 /* Qset error interrupt handler
891  *
892  * As of now only CQ errors are handled
893  */
894 static void nicvf_handle_qs_err(unsigned long data)
895 {
896         struct nicvf *nic = (struct nicvf *)data;
897         struct queue_set *qs = nic->qs;
898         int qidx;
899         u64 status;
900
901         netif_tx_disable(nic->netdev);
902
903         /* Check if it is CQ err */
904         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
905                 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
906                                               qidx);
907                 if (!(status & CQ_ERR_MASK))
908                         continue;
909                 /* Process already queued CQEs and reconfig CQ */
910                 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
911                 nicvf_sq_disable(nic, qidx);
912                 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
913                 nicvf_cmp_queue_config(nic, qs, qidx, true);
914                 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
915                 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
916
917                 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
918         }
919
920         netif_tx_start_all_queues(nic->netdev);
921         /* Re-enable Qset error interrupt */
922         nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
923 }
924
925 static void nicvf_dump_intr_status(struct nicvf *nic)
926 {
927         netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
928                    nicvf_reg_read(nic, NIC_VF_INT));
929 }
930
931 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
932 {
933         struct nicvf *nic = (struct nicvf *)nicvf_irq;
934         u64 intr;
935
936         nicvf_dump_intr_status(nic);
937
938         intr = nicvf_reg_read(nic, NIC_VF_INT);
939         /* Check for spurious interrupt */
940         if (!(intr & NICVF_INTR_MBOX_MASK))
941                 return IRQ_HANDLED;
942
943         nicvf_handle_mbx_intr(nic);
944
945         return IRQ_HANDLED;
946 }
947
948 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
949 {
950         struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
951         struct nicvf *nic = cq_poll->nicvf;
952         int qidx = cq_poll->cq_idx;
953
954         nicvf_dump_intr_status(nic);
955
956         /* Disable interrupts */
957         nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
958
959         /* Schedule NAPI */
960         napi_schedule_irqoff(&cq_poll->napi);
961
962         /* Clear interrupt */
963         nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
964
965         return IRQ_HANDLED;
966 }
967
968 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
969 {
970         struct nicvf *nic = (struct nicvf *)nicvf_irq;
971         u8 qidx;
972
973
974         nicvf_dump_intr_status(nic);
975
976         /* Disable RBDR interrupt and schedule softirq */
977         for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
978                 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
979                         continue;
980                 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
981                 tasklet_hi_schedule(&nic->rbdr_task);
982                 /* Clear interrupt */
983                 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
984         }
985
986         return IRQ_HANDLED;
987 }
988
989 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
990 {
991         struct nicvf *nic = (struct nicvf *)nicvf_irq;
992
993         nicvf_dump_intr_status(nic);
994
995         /* Disable Qset err interrupt and schedule softirq */
996         nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
997         tasklet_hi_schedule(&nic->qs_err_task);
998         nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
999
1000         return IRQ_HANDLED;
1001 }
1002
1003 static void nicvf_set_irq_affinity(struct nicvf *nic)
1004 {
1005         int vec, cpu;
1006
1007         for (vec = 0; vec < nic->num_vec; vec++) {
1008                 if (!nic->irq_allocated[vec])
1009                         continue;
1010
1011                 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1012                         return;
1013                  /* CQ interrupts */
1014                 if (vec < NICVF_INTR_ID_SQ)
1015                         /* Leave CPU0 for RBDR and other interrupts */
1016                         cpu = nicvf_netdev_qidx(nic, vec) + 1;
1017                 else
1018                         cpu = 0;
1019
1020                 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1021                                 nic->affinity_mask[vec]);
1022                 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1023                                       nic->affinity_mask[vec]);
1024         }
1025 }
1026
1027 static int nicvf_register_interrupts(struct nicvf *nic)
1028 {
1029         int irq, ret = 0;
1030
1031         for_each_cq_irq(irq)
1032                 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1033                         nic->pnicvf->netdev->name,
1034                         nicvf_netdev_qidx(nic, irq));
1035
1036         for_each_sq_irq(irq)
1037                 sprintf(nic->irq_name[irq], "%s-sq-%d",
1038                         nic->pnicvf->netdev->name,
1039                         nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1040
1041         for_each_rbdr_irq(irq)
1042                 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1043                         nic->pnicvf->netdev->name,
1044                         nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1045
1046         /* Register CQ interrupts */
1047         for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1048                 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1049                                   nicvf_intr_handler,
1050                                   0, nic->irq_name[irq], nic->napi[irq]);
1051                 if (ret)
1052                         goto err;
1053                 nic->irq_allocated[irq] = true;
1054         }
1055
1056         /* Register RBDR interrupt */
1057         for (irq = NICVF_INTR_ID_RBDR;
1058              irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1059                 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1060                                   nicvf_rbdr_intr_handler,
1061                                   0, nic->irq_name[irq], nic);
1062                 if (ret)
1063                         goto err;
1064                 nic->irq_allocated[irq] = true;
1065         }
1066
1067         /* Register QS error interrupt */
1068         sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1069                 nic->pnicvf->netdev->name,
1070                 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1071         irq = NICVF_INTR_ID_QS_ERR;
1072         ret = request_irq(pci_irq_vector(nic->pdev, irq),
1073                           nicvf_qs_err_intr_handler,
1074                           0, nic->irq_name[irq], nic);
1075         if (ret)
1076                 goto err;
1077
1078         nic->irq_allocated[irq] = true;
1079
1080         /* Set IRQ affinities */
1081         nicvf_set_irq_affinity(nic);
1082
1083 err:
1084         if (ret)
1085                 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1086
1087         return ret;
1088 }
1089
1090 static void nicvf_unregister_interrupts(struct nicvf *nic)
1091 {
1092         struct pci_dev *pdev = nic->pdev;
1093         int irq;
1094
1095         /* Free registered interrupts */
1096         for (irq = 0; irq < nic->num_vec; irq++) {
1097                 if (!nic->irq_allocated[irq])
1098                         continue;
1099
1100                 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1101                 free_cpumask_var(nic->affinity_mask[irq]);
1102
1103                 if (irq < NICVF_INTR_ID_SQ)
1104                         free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1105                 else
1106                         free_irq(pci_irq_vector(pdev, irq), nic);
1107
1108                 nic->irq_allocated[irq] = false;
1109         }
1110
1111         /* Disable MSI-X */
1112         pci_free_irq_vectors(pdev);
1113         nic->num_vec = 0;
1114 }
1115
1116 /* Initialize MSIX vectors and register MISC interrupt.
1117  * Send READY message to PF to check if its alive
1118  */
1119 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1120 {
1121         int ret = 0;
1122         int irq = NICVF_INTR_ID_MISC;
1123
1124         /* Return if mailbox interrupt is already registered */
1125         if (nic->pdev->msix_enabled)
1126                 return 0;
1127
1128         /* Enable MSI-X */
1129         nic->num_vec = pci_msix_vec_count(nic->pdev);
1130         ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1131                                     PCI_IRQ_MSIX);
1132         if (ret < 0) {
1133                 netdev_err(nic->netdev,
1134                            "Req for #%d msix vectors failed\n", nic->num_vec);
1135                 return 1;
1136         }
1137
1138         sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1139         /* Register Misc interrupt */
1140         ret = request_irq(pci_irq_vector(nic->pdev, irq),
1141                           nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1142
1143         if (ret)
1144                 return ret;
1145         nic->irq_allocated[irq] = true;
1146
1147         /* Enable mailbox interrupt */
1148         nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1149
1150         /* Check if VF is able to communicate with PF */
1151         if (!nicvf_check_pf_ready(nic)) {
1152                 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1153                 nicvf_unregister_interrupts(nic);
1154                 return 1;
1155         }
1156
1157         return 0;
1158 }
1159
1160 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1161 {
1162         struct nicvf *nic = netdev_priv(netdev);
1163         int qid = skb_get_queue_mapping(skb);
1164         struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1165         struct nicvf *snic;
1166         struct snd_queue *sq;
1167         int tmp;
1168
1169         /* Check for minimum packet length */
1170         if (skb->len <= ETH_HLEN) {
1171                 dev_kfree_skb(skb);
1172                 return NETDEV_TX_OK;
1173         }
1174
1175         /* In XDP case, initial HW tx queues are used for XDP,
1176          * but stack's queue mapping starts at '0', so skip the
1177          * Tx queues attached to Rx queues for XDP.
1178          */
1179         if (nic->xdp_prog)
1180                 qid += nic->xdp_tx_queues;
1181
1182         snic = nic;
1183         /* Get secondary Qset's SQ structure */
1184         if (qid >= MAX_SND_QUEUES_PER_QS) {
1185                 tmp = qid / MAX_SND_QUEUES_PER_QS;
1186                 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1187                 if (!snic) {
1188                         netdev_warn(nic->netdev,
1189                                     "Secondary Qset#%d's ptr not initialized\n",
1190                                     tmp - 1);
1191                         dev_kfree_skb(skb);
1192                         return NETDEV_TX_OK;
1193                 }
1194                 qid = qid % MAX_SND_QUEUES_PER_QS;
1195         }
1196
1197         sq = &snic->qs->sq[qid];
1198         if (!netif_tx_queue_stopped(txq) &&
1199             !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1200                 netif_tx_stop_queue(txq);
1201
1202                 /* Barrier, so that stop_queue visible to other cpus */
1203                 smp_mb();
1204
1205                 /* Check again, incase another cpu freed descriptors */
1206                 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1207                         netif_tx_wake_queue(txq);
1208                 } else {
1209                         this_cpu_inc(nic->drv_stats->txq_stop);
1210                         netif_warn(nic, tx_err, netdev,
1211                                    "Transmit ring full, stopping SQ%d\n", qid);
1212                 }
1213                 return NETDEV_TX_BUSY;
1214         }
1215
1216         return NETDEV_TX_OK;
1217 }
1218
1219 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1220 {
1221         struct nicvf_cq_poll *cq_poll;
1222         int qidx;
1223
1224         for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1225                 cq_poll = nic->napi[qidx];
1226                 if (!cq_poll)
1227                         continue;
1228                 nic->napi[qidx] = NULL;
1229                 kfree(cq_poll);
1230         }
1231 }
1232
1233 int nicvf_stop(struct net_device *netdev)
1234 {
1235         int irq, qidx;
1236         struct nicvf *nic = netdev_priv(netdev);
1237         struct queue_set *qs = nic->qs;
1238         struct nicvf_cq_poll *cq_poll = NULL;
1239         union nic_mbx mbx = {};
1240
1241         mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1242         nicvf_send_msg_to_pf(nic, &mbx);
1243
1244         netif_carrier_off(netdev);
1245         netif_tx_stop_all_queues(nic->netdev);
1246         nic->link_up = false;
1247
1248         /* Teardown secondary qsets first */
1249         if (!nic->sqs_mode) {
1250                 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1251                         if (!nic->snicvf[qidx])
1252                                 continue;
1253                         nicvf_stop(nic->snicvf[qidx]->netdev);
1254                         nic->snicvf[qidx] = NULL;
1255                 }
1256         }
1257
1258         /* Disable RBDR & QS error interrupts */
1259         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1260                 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1261                 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1262         }
1263         nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1264         nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1265
1266         /* Wait for pending IRQ handlers to finish */
1267         for (irq = 0; irq < nic->num_vec; irq++)
1268                 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1269
1270         tasklet_kill(&nic->rbdr_task);
1271         tasklet_kill(&nic->qs_err_task);
1272         if (nic->rb_work_scheduled)
1273                 cancel_delayed_work_sync(&nic->rbdr_work);
1274
1275         for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1276                 cq_poll = nic->napi[qidx];
1277                 if (!cq_poll)
1278                         continue;
1279                 napi_synchronize(&cq_poll->napi);
1280                 /* CQ intr is enabled while napi_complete,
1281                  * so disable it now
1282                  */
1283                 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1284                 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1285                 napi_disable(&cq_poll->napi);
1286                 netif_napi_del(&cq_poll->napi);
1287         }
1288
1289         netif_tx_disable(netdev);
1290
1291         for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1292                 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1293
1294         /* Free resources */
1295         nicvf_config_data_transfer(nic, false);
1296
1297         /* Disable HW Qset */
1298         nicvf_qset_config(nic, false);
1299
1300         /* disable mailbox interrupt */
1301         nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1302
1303         nicvf_unregister_interrupts(nic);
1304
1305         nicvf_free_cq_poll(nic);
1306
1307         /* Clear multiqset info */
1308         nic->pnicvf = nic;
1309
1310         return 0;
1311 }
1312
1313 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1314 {
1315         union nic_mbx mbx = {};
1316
1317         mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1318         mbx.frs.max_frs = mtu;
1319         mbx.frs.vf_id = nic->vf_id;
1320
1321         return nicvf_send_msg_to_pf(nic, &mbx);
1322 }
1323
1324 int nicvf_open(struct net_device *netdev)
1325 {
1326         int cpu, err, qidx;
1327         struct nicvf *nic = netdev_priv(netdev);
1328         struct queue_set *qs = nic->qs;
1329         struct nicvf_cq_poll *cq_poll = NULL;
1330         union nic_mbx mbx = {};
1331
1332         netif_carrier_off(netdev);
1333
1334         err = nicvf_register_misc_interrupt(nic);
1335         if (err)
1336                 return err;
1337
1338         /* Register NAPI handler for processing CQEs */
1339         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1340                 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1341                 if (!cq_poll) {
1342                         err = -ENOMEM;
1343                         goto napi_del;
1344                 }
1345                 cq_poll->cq_idx = qidx;
1346                 cq_poll->nicvf = nic;
1347                 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1348                                NAPI_POLL_WEIGHT);
1349                 napi_enable(&cq_poll->napi);
1350                 nic->napi[qidx] = cq_poll;
1351         }
1352
1353         /* Check if we got MAC address from PF or else generate a radom MAC */
1354         if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1355                 eth_hw_addr_random(netdev);
1356                 nicvf_hw_set_mac_addr(nic, netdev);
1357         }
1358
1359         if (nic->set_mac_pending) {
1360                 nic->set_mac_pending = false;
1361                 nicvf_hw_set_mac_addr(nic, netdev);
1362         }
1363
1364         /* Init tasklet for handling Qset err interrupt */
1365         tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1366                      (unsigned long)nic);
1367
1368         /* Init RBDR tasklet which will refill RBDR */
1369         tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1370                      (unsigned long)nic);
1371         INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1372
1373         /* Configure CPI alorithm */
1374         nic->cpi_alg = cpi_alg;
1375         if (!nic->sqs_mode)
1376                 nicvf_config_cpi(nic);
1377
1378         nicvf_request_sqs(nic);
1379         if (nic->sqs_mode)
1380                 nicvf_get_primary_vf_struct(nic);
1381
1382         /* Configure receive side scaling and MTU */
1383         if (!nic->sqs_mode) {
1384                 nicvf_rss_init(nic);
1385                 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1386                 if (err)
1387                         goto cleanup;
1388
1389                 /* Clear percpu stats */
1390                 for_each_possible_cpu(cpu)
1391                         memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1392                                sizeof(struct nicvf_drv_stats));
1393         }
1394
1395         err = nicvf_register_interrupts(nic);
1396         if (err)
1397                 goto cleanup;
1398
1399         /* Initialize the queues */
1400         err = nicvf_init_resources(nic);
1401         if (err)
1402                 goto cleanup;
1403
1404         /* Make sure queue initialization is written */
1405         wmb();
1406
1407         nicvf_reg_write(nic, NIC_VF_INT, -1);
1408         /* Enable Qset err interrupt */
1409         nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1410
1411         /* Enable completion queue interrupt */
1412         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1413                 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1414
1415         /* Enable RBDR threshold interrupt */
1416         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1417                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1418
1419         /* Send VF config done msg to PF */
1420         mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1421         nicvf_write_to_mbx(nic, &mbx);
1422
1423         return 0;
1424 cleanup:
1425         nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1426         nicvf_unregister_interrupts(nic);
1427         tasklet_kill(&nic->qs_err_task);
1428         tasklet_kill(&nic->rbdr_task);
1429 napi_del:
1430         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1431                 cq_poll = nic->napi[qidx];
1432                 if (!cq_poll)
1433                         continue;
1434                 napi_disable(&cq_poll->napi);
1435                 netif_napi_del(&cq_poll->napi);
1436         }
1437         nicvf_free_cq_poll(nic);
1438         return err;
1439 }
1440
1441 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1442 {
1443         struct nicvf *nic = netdev_priv(netdev);
1444         int orig_mtu = netdev->mtu;
1445
1446         netdev->mtu = new_mtu;
1447
1448         if (!netif_running(netdev))
1449                 return 0;
1450
1451         if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1452                 netdev->mtu = orig_mtu;
1453                 return -EINVAL;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1460 {
1461         struct sockaddr *addr = p;
1462         struct nicvf *nic = netdev_priv(netdev);
1463
1464         if (!is_valid_ether_addr(addr->sa_data))
1465                 return -EADDRNOTAVAIL;
1466
1467         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1468
1469         if (nic->pdev->msix_enabled) {
1470                 if (nicvf_hw_set_mac_addr(nic, netdev))
1471                         return -EBUSY;
1472         } else {
1473                 nic->set_mac_pending = true;
1474         }
1475
1476         return 0;
1477 }
1478
1479 void nicvf_update_lmac_stats(struct nicvf *nic)
1480 {
1481         int stat = 0;
1482         union nic_mbx mbx = {};
1483
1484         if (!netif_running(nic->netdev))
1485                 return;
1486
1487         mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1488         mbx.bgx_stats.vf_id = nic->vf_id;
1489         /* Rx stats */
1490         mbx.bgx_stats.rx = 1;
1491         while (stat < BGX_RX_STATS_COUNT) {
1492                 mbx.bgx_stats.idx = stat;
1493                 if (nicvf_send_msg_to_pf(nic, &mbx))
1494                         return;
1495                 stat++;
1496         }
1497
1498         stat = 0;
1499
1500         /* Tx stats */
1501         mbx.bgx_stats.rx = 0;
1502         while (stat < BGX_TX_STATS_COUNT) {
1503                 mbx.bgx_stats.idx = stat;
1504                 if (nicvf_send_msg_to_pf(nic, &mbx))
1505                         return;
1506                 stat++;
1507         }
1508 }
1509
1510 void nicvf_update_stats(struct nicvf *nic)
1511 {
1512         int qidx, cpu;
1513         u64 tmp_stats = 0;
1514         struct nicvf_hw_stats *stats = &nic->hw_stats;
1515         struct nicvf_drv_stats *drv_stats;
1516         struct queue_set *qs = nic->qs;
1517
1518 #define GET_RX_STATS(reg) \
1519         nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1520 #define GET_TX_STATS(reg) \
1521         nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1522
1523         stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1524         stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1525         stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1526         stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1527         stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1528         stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1529         stats->rx_drop_red = GET_RX_STATS(RX_RED);
1530         stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1531         stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1532         stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1533         stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1534         stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1535         stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1536         stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1537
1538         stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1539         stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1540         stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1541         stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1542         stats->tx_drops = GET_TX_STATS(TX_DROP);
1543
1544         /* On T88 pass 2.0, the dummy SQE added for TSO notification
1545          * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1546          * pointed by dummy SQE and results in tx_drops counter being
1547          * incremented. Subtracting it from tx_tso counter will give
1548          * exact tx_drops counter.
1549          */
1550         if (nic->t88 && nic->hw_tso) {
1551                 for_each_possible_cpu(cpu) {
1552                         drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1553                         tmp_stats += drv_stats->tx_tso;
1554                 }
1555                 stats->tx_drops = tmp_stats - stats->tx_drops;
1556         }
1557         stats->tx_frames = stats->tx_ucast_frames +
1558                            stats->tx_bcast_frames +
1559                            stats->tx_mcast_frames;
1560         stats->rx_frames = stats->rx_ucast_frames +
1561                            stats->rx_bcast_frames +
1562                            stats->rx_mcast_frames;
1563         stats->rx_drops = stats->rx_drop_red +
1564                           stats->rx_drop_overrun;
1565
1566         /* Update RQ and SQ stats */
1567         for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1568                 nicvf_update_rq_stats(nic, qidx);
1569         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1570                 nicvf_update_sq_stats(nic, qidx);
1571 }
1572
1573 static void nicvf_get_stats64(struct net_device *netdev,
1574                               struct rtnl_link_stats64 *stats)
1575 {
1576         struct nicvf *nic = netdev_priv(netdev);
1577         struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1578
1579         nicvf_update_stats(nic);
1580
1581         stats->rx_bytes = hw_stats->rx_bytes;
1582         stats->rx_packets = hw_stats->rx_frames;
1583         stats->rx_dropped = hw_stats->rx_drops;
1584         stats->multicast = hw_stats->rx_mcast_frames;
1585
1586         stats->tx_bytes = hw_stats->tx_bytes;
1587         stats->tx_packets = hw_stats->tx_frames;
1588         stats->tx_dropped = hw_stats->tx_drops;
1589
1590 }
1591
1592 static void nicvf_tx_timeout(struct net_device *dev)
1593 {
1594         struct nicvf *nic = netdev_priv(dev);
1595
1596         netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1597
1598         this_cpu_inc(nic->drv_stats->tx_timeout);
1599         schedule_work(&nic->reset_task);
1600 }
1601
1602 static void nicvf_reset_task(struct work_struct *work)
1603 {
1604         struct nicvf *nic;
1605
1606         nic = container_of(work, struct nicvf, reset_task);
1607
1608         if (!netif_running(nic->netdev))
1609                 return;
1610
1611         nicvf_stop(nic->netdev);
1612         nicvf_open(nic->netdev);
1613         netif_trans_update(nic->netdev);
1614 }
1615
1616 static int nicvf_config_loopback(struct nicvf *nic,
1617                                  netdev_features_t features)
1618 {
1619         union nic_mbx mbx = {};
1620
1621         mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1622         mbx.lbk.vf_id = nic->vf_id;
1623         mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1624
1625         return nicvf_send_msg_to_pf(nic, &mbx);
1626 }
1627
1628 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1629                                             netdev_features_t features)
1630 {
1631         struct nicvf *nic = netdev_priv(netdev);
1632
1633         if ((features & NETIF_F_LOOPBACK) &&
1634             netif_running(netdev) && !nic->loopback_supported)
1635                 features &= ~NETIF_F_LOOPBACK;
1636
1637         return features;
1638 }
1639
1640 static int nicvf_set_features(struct net_device *netdev,
1641                               netdev_features_t features)
1642 {
1643         struct nicvf *nic = netdev_priv(netdev);
1644         netdev_features_t changed = features ^ netdev->features;
1645
1646         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1647                 nicvf_config_vlan_stripping(nic, features);
1648
1649         if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1650                 return nicvf_config_loopback(nic, features);
1651
1652         return 0;
1653 }
1654
1655 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1656 {
1657         u8 cq_count, txq_count;
1658
1659         /* Set XDP Tx queue count same as Rx queue count */
1660         if (!bpf_attached)
1661                 nic->xdp_tx_queues = 0;
1662         else
1663                 nic->xdp_tx_queues = nic->rx_queues;
1664
1665         /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1666          * needs to be allocated, check how many.
1667          */
1668         txq_count = nic->xdp_tx_queues + nic->tx_queues;
1669         cq_count = max(nic->rx_queues, txq_count);
1670         if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1671                 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1672                 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1673         } else {
1674                 nic->sqs_count = 0;
1675         }
1676
1677         /* Set primary Qset's resources */
1678         nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1679         nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1680         nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1681
1682         /* Update stack */
1683         nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1684 }
1685
1686 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1687 {
1688         struct net_device *dev = nic->netdev;
1689         bool if_up = netif_running(nic->netdev);
1690         struct bpf_prog *old_prog;
1691         bool bpf_attached = false;
1692
1693         /* For now just support only the usual MTU sized frames */
1694         if (prog && (dev->mtu > 1500)) {
1695                 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1696                             dev->mtu);
1697                 return -EOPNOTSUPP;
1698         }
1699
1700         /* ALL SQs attached to CQs i.e same as RQs, are treated as
1701          * XDP Tx queues and more Tx queues are allocated for
1702          * network stack to send pkts out.
1703          *
1704          * No of Tx queues are either same as Rx queues or whatever
1705          * is left in max no of queues possible.
1706          */
1707         if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1708                 netdev_warn(dev,
1709                             "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1710                             nic->max_queues);
1711                 return -ENOMEM;
1712         }
1713
1714         if (if_up)
1715                 nicvf_stop(nic->netdev);
1716
1717         old_prog = xchg(&nic->xdp_prog, prog);
1718         /* Detach old prog, if any */
1719         if (old_prog)
1720                 bpf_prog_put(old_prog);
1721
1722         if (nic->xdp_prog) {
1723                 /* Attach BPF program */
1724                 nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1725                 if (!IS_ERR(nic->xdp_prog))
1726                         bpf_attached = true;
1727         }
1728
1729         /* Calculate Tx queues needed for XDP and network stack */
1730         nicvf_set_xdp_queues(nic, bpf_attached);
1731
1732         if (if_up) {
1733                 /* Reinitialize interface, clean slate */
1734                 nicvf_open(nic->netdev);
1735                 netif_trans_update(nic->netdev);
1736         }
1737
1738         return 0;
1739 }
1740
1741 static int nicvf_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
1742 {
1743         struct nicvf *nic = netdev_priv(netdev);
1744
1745         /* To avoid checks while retrieving buffer address from CQE_RX,
1746          * do not support XDP for T88 pass1.x silicons which are anyway
1747          * not in use widely.
1748          */
1749         if (pass1_silicon(nic->pdev))
1750                 return -EOPNOTSUPP;
1751
1752         switch (xdp->command) {
1753         case XDP_SETUP_PROG:
1754                 return nicvf_xdp_setup(nic, xdp->prog);
1755         case XDP_QUERY_PROG:
1756                 xdp->prog_attached = !!nic->xdp_prog;
1757                 xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1758                 return 0;
1759         default:
1760                 return -EINVAL;
1761         }
1762 }
1763
1764 static const struct net_device_ops nicvf_netdev_ops = {
1765         .ndo_open               = nicvf_open,
1766         .ndo_stop               = nicvf_stop,
1767         .ndo_start_xmit         = nicvf_xmit,
1768         .ndo_change_mtu         = nicvf_change_mtu,
1769         .ndo_set_mac_address    = nicvf_set_mac_address,
1770         .ndo_get_stats64        = nicvf_get_stats64,
1771         .ndo_tx_timeout         = nicvf_tx_timeout,
1772         .ndo_fix_features       = nicvf_fix_features,
1773         .ndo_set_features       = nicvf_set_features,
1774         .ndo_xdp                = nicvf_xdp,
1775 };
1776
1777 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1778 {
1779         struct device *dev = &pdev->dev;
1780         struct net_device *netdev;
1781         struct nicvf *nic;
1782         int    err, qcount;
1783         u16    sdevid;
1784
1785         err = pci_enable_device(pdev);
1786         if (err) {
1787                 dev_err(dev, "Failed to enable PCI device\n");
1788                 return err;
1789         }
1790
1791         err = pci_request_regions(pdev, DRV_NAME);
1792         if (err) {
1793                 dev_err(dev, "PCI request regions failed 0x%x\n", err);
1794                 goto err_disable_device;
1795         }
1796
1797         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1798         if (err) {
1799                 dev_err(dev, "Unable to get usable DMA configuration\n");
1800                 goto err_release_regions;
1801         }
1802
1803         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1804         if (err) {
1805                 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1806                 goto err_release_regions;
1807         }
1808
1809         qcount = netif_get_num_default_rss_queues();
1810
1811         /* Restrict multiqset support only for host bound VFs */
1812         if (pdev->is_virtfn) {
1813                 /* Set max number of queues per VF */
1814                 qcount = min_t(int, num_online_cpus(),
1815                                (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1816         }
1817
1818         netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1819         if (!netdev) {
1820                 err = -ENOMEM;
1821                 goto err_release_regions;
1822         }
1823
1824         pci_set_drvdata(pdev, netdev);
1825
1826         SET_NETDEV_DEV(netdev, &pdev->dev);
1827
1828         nic = netdev_priv(netdev);
1829         nic->netdev = netdev;
1830         nic->pdev = pdev;
1831         nic->pnicvf = nic;
1832         nic->max_queues = qcount;
1833
1834         /* MAP VF's configuration registers */
1835         nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1836         if (!nic->reg_base) {
1837                 dev_err(dev, "Cannot map config register space, aborting\n");
1838                 err = -ENOMEM;
1839                 goto err_free_netdev;
1840         }
1841
1842         nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
1843         if (!nic->drv_stats) {
1844                 err = -ENOMEM;
1845                 goto err_free_netdev;
1846         }
1847
1848         err = nicvf_set_qset_resources(nic);
1849         if (err)
1850                 goto err_free_netdev;
1851
1852         /* Check if PF is alive and get MAC address for this VF */
1853         err = nicvf_register_misc_interrupt(nic);
1854         if (err)
1855                 goto err_free_netdev;
1856
1857         nicvf_send_vf_struct(nic);
1858
1859         if (!pass1_silicon(nic->pdev))
1860                 nic->hw_tso = true;
1861
1862         /* Get iommu domain for iova to physical addr conversion */
1863         nic->iommu_domain = iommu_get_domain_for_dev(dev);
1864
1865         pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
1866         if (sdevid == 0xA134)
1867                 nic->t88 = true;
1868
1869         /* Check if this VF is in QS only mode */
1870         if (nic->sqs_mode)
1871                 return 0;
1872
1873         err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
1874         if (err)
1875                 goto err_unregister_interrupts;
1876
1877         netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
1878                                NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
1879                                NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1880                                NETIF_F_HW_VLAN_CTAG_RX);
1881
1882         netdev->hw_features |= NETIF_F_RXHASH;
1883
1884         netdev->features |= netdev->hw_features;
1885         netdev->hw_features |= NETIF_F_LOOPBACK;
1886
1887         netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1888                                 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
1889
1890         netdev->netdev_ops = &nicvf_netdev_ops;
1891         netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
1892
1893         /* MTU range: 64 - 9200 */
1894         netdev->min_mtu = NIC_HW_MIN_FRS;
1895         netdev->max_mtu = NIC_HW_MAX_FRS;
1896
1897         INIT_WORK(&nic->reset_task, nicvf_reset_task);
1898
1899         err = register_netdev(netdev);
1900         if (err) {
1901                 dev_err(dev, "Failed to register netdevice\n");
1902                 goto err_unregister_interrupts;
1903         }
1904
1905         nic->msg_enable = debug;
1906
1907         nicvf_set_ethtool_ops(netdev);
1908
1909         return 0;
1910
1911 err_unregister_interrupts:
1912         nicvf_unregister_interrupts(nic);
1913 err_free_netdev:
1914         pci_set_drvdata(pdev, NULL);
1915         if (nic->drv_stats)
1916                 free_percpu(nic->drv_stats);
1917         free_netdev(netdev);
1918 err_release_regions:
1919         pci_release_regions(pdev);
1920 err_disable_device:
1921         pci_disable_device(pdev);
1922         return err;
1923 }
1924
1925 static void nicvf_remove(struct pci_dev *pdev)
1926 {
1927         struct net_device *netdev = pci_get_drvdata(pdev);
1928         struct nicvf *nic;
1929         struct net_device *pnetdev;
1930
1931         if (!netdev)
1932                 return;
1933
1934         nic = netdev_priv(netdev);
1935         pnetdev = nic->pnicvf->netdev;
1936
1937         /* Check if this Qset is assigned to different VF.
1938          * If yes, clean primary and all secondary Qsets.
1939          */
1940         if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
1941                 unregister_netdev(pnetdev);
1942         nicvf_unregister_interrupts(nic);
1943         pci_set_drvdata(pdev, NULL);
1944         if (nic->drv_stats)
1945                 free_percpu(nic->drv_stats);
1946         free_netdev(netdev);
1947         pci_release_regions(pdev);
1948         pci_disable_device(pdev);
1949 }
1950
1951 static void nicvf_shutdown(struct pci_dev *pdev)
1952 {
1953         nicvf_remove(pdev);
1954 }
1955
1956 static struct pci_driver nicvf_driver = {
1957         .name = DRV_NAME,
1958         .id_table = nicvf_id_table,
1959         .probe = nicvf_probe,
1960         .remove = nicvf_remove,
1961         .shutdown = nicvf_shutdown,
1962 };
1963
1964 static int __init nicvf_init_module(void)
1965 {
1966         pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1967
1968         return pci_register_driver(&nicvf_driver);
1969 }
1970
1971 static void __exit nicvf_cleanup_module(void)
1972 {
1973         pci_unregister_driver(&nicvf_driver);
1974 }
1975
1976 module_init(nicvf_init_module);
1977 module_exit(nicvf_cleanup_module);