Merge branches 'clk-ingenic', 'clk-mtk-mux', 'clk-qcom-sdm845-pcie', 'clk-mtk-crit...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  *
22  * Updated to the driver model and the PHY abstraction layer
23  * by Maciej W. Rozycki.
24  */
25
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>      /* Processor type for cache alignment. */
49
50 /* Operational parameters that usually are not changed. */
51
52 #define CONFIG_SBMAC_COALESCE
53
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT  (2*HZ)
56
57
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60
61 /* A few user-configurable values which may be modified when a driver
62    module is loaded. */
63
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, 0444);
67 MODULE_PARM_DESC(debug, "Debug messages");
68
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, 0444);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, 0444);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, 0444);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, 0444);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT                   K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT                   PHY_POLL
115 #endif
116
117 /**********************************************************************
118  *  Simple types
119  ********************************************************************* */
120
121 enum sbmac_speed {
122         sbmac_speed_none = 0,
123         sbmac_speed_10 = SPEED_10,
124         sbmac_speed_100 = SPEED_100,
125         sbmac_speed_1000 = SPEED_1000,
126 };
127
128 enum sbmac_duplex {
129         sbmac_duplex_none = -1,
130         sbmac_duplex_half = DUPLEX_HALF,
131         sbmac_duplex_full = DUPLEX_FULL,
132 };
133
134 enum sbmac_fc {
135         sbmac_fc_none,
136         sbmac_fc_disabled,
137         sbmac_fc_frame,
138         sbmac_fc_collision,
139         sbmac_fc_carrier,
140 };
141
142 enum sbmac_state {
143         sbmac_state_uninit,
144         sbmac_state_off,
145         sbmac_state_on,
146         sbmac_state_broken,
147 };
148
149
150 /**********************************************************************
151  *  Macros
152  ********************************************************************* */
153
154
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156                           (d)->sbdma_dscrtable : (d)->f+1)
157
158
159 #define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
160
161 #define SBMAC_MAX_TXDESCR       256
162 #define SBMAC_MAX_RXDESCR       256
163
164 #define ENET_PACKET_SIZE        1518
165 /*#define ENET_PACKET_SIZE      9216 */
166
167 /**********************************************************************
168  *  DMA Descriptor structure
169  ********************************************************************* */
170
171 struct sbdmadscr {
172         uint64_t  dscr_a;
173         uint64_t  dscr_b;
174 };
175
176 /**********************************************************************
177  *  DMA Controller structure
178  ********************************************************************* */
179
180 struct sbmacdma {
181
182         /*
183          * This stuff is used to identify the channel and the registers
184          * associated with it.
185          */
186         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
187                                                    MAC */
188         int                     sbdma_channel;  /* channel number */
189         int                     sbdma_txdir;    /* direction (1=transmit) */
190         int                     sbdma_maxdescr; /* total # of descriptors
191                                                    in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193         int                     sbdma_int_pktcnt;
194                                                 /* # descriptors rx/tx
195                                                    before interrupt */
196         int                     sbdma_int_timeout;
197                                                 /* # usec rx/tx interrupt */
198 #endif
199         void __iomem            *sbdma_config0; /* DMA config register 0 */
200         void __iomem            *sbdma_config1; /* DMA config register 1 */
201         void __iomem            *sbdma_dscrbase;
202                                                 /* descriptor base address */
203         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
204         void __iomem            *sbdma_curdscr; /* current descriptor
205                                                    address */
206         void __iomem            *sbdma_oodpktlost;
207                                                 /* pkt drop (rx only) */
208
209         /*
210          * This stuff is for maintenance of the ring
211          */
212         void                    *sbdma_dscrtable_unaligned;
213         struct sbdmadscr        *sbdma_dscrtable;
214                                                 /* base of descriptor table */
215         struct sbdmadscr        *sbdma_dscrtable_end;
216                                                 /* end of descriptor table */
217         struct sk_buff          **sbdma_ctxtable;
218                                                 /* context table, one
219                                                    per descr */
220         dma_addr_t              sbdma_dscrtable_phys;
221                                                 /* and also the phys addr */
222         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
223         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
224                                                    to remove */
225 };
226
227
228 /**********************************************************************
229  *  Ethernet softc structure
230  ********************************************************************* */
231
232 struct sbmac_softc {
233
234         /*
235          * Linux-specific things
236          */
237         struct net_device       *sbm_dev;       /* pointer to linux device */
238         struct napi_struct      napi;
239         struct phy_device       *phy_dev;       /* the associated PHY device */
240         struct mii_bus          *mii_bus;       /* the MII bus */
241         spinlock_t              sbm_lock;       /* spin lock */
242         int                     sbm_devflags;   /* current device flags */
243
244         /*
245          * Controller-specific things
246          */
247         void __iomem            *sbm_base;      /* MAC's base address */
248         enum sbmac_state        sbm_state;      /* current state */
249
250         void __iomem            *sbm_macenable; /* MAC Enable Register */
251         void __iomem            *sbm_maccfg;    /* MAC Config Register */
252         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
253         void __iomem            *sbm_framecfg;  /* Frame Config Register */
254         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
255         void __iomem            *sbm_isr;       /* Interrupt Status Register */
256         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
257         void __iomem            *sbm_mdio;      /* MDIO Register */
258
259         enum sbmac_speed        sbm_speed;      /* current speed */
260         enum sbmac_duplex       sbm_duplex;     /* current duplex */
261         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
262         int                     sbm_pause;      /* current pause setting */
263         int                     sbm_link;       /* current link state */
264
265         unsigned char           sbm_hwaddr[ETH_ALEN];
266
267         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
268         struct sbmacdma         sbm_rxdma;
269         int                     rx_hw_checksum;
270         int                     sbe_idx;
271 };
272
273
274 /**********************************************************************
275  *  Externs
276  ********************************************************************* */
277
278 /**********************************************************************
279  *  Prototypes
280  ********************************************************************* */
281
282 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
283                           int txrx, int maxdescr);
284 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
286                                struct sk_buff *m);
287 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
288 static void sbdma_emptyring(struct sbmacdma *d);
289 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
290 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
291                             int work_to_do, int poll);
292 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293                              int poll);
294 static int sbmac_initctx(struct sbmac_softc *s);
295 static void sbmac_channel_start(struct sbmac_softc *s);
296 static void sbmac_channel_stop(struct sbmac_softc *s);
297 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
298                                                 enum sbmac_state);
299 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr);
301 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
302 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
303 static void sbmac_setmulti(struct sbmac_softc *sc);
304 static int sbmac_init(struct platform_device *pldev, long long base);
305 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
306 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
307                             enum sbmac_fc fc);
308
309 static int sbmac_open(struct net_device *dev);
310 static void sbmac_tx_timeout (struct net_device *dev);
311 static void sbmac_set_rx_mode(struct net_device *dev);
312 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
313 static int sbmac_close(struct net_device *dev);
314 static int sbmac_poll(struct napi_struct *napi, int budget);
315
316 static void sbmac_mii_poll(struct net_device *dev);
317 static int sbmac_mii_probe(struct net_device *dev);
318
319 static void sbmac_mii_sync(void __iomem *sbm_mdio);
320 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
321                                int bitcnt);
322 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
323 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
324                            u16 val);
325
326
327 /**********************************************************************
328  *  Globals
329  ********************************************************************* */
330
331 static char sbmac_string[] = "sb1250-mac";
332
333 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
334
335
336 /**********************************************************************
337  *  MDIO constants
338  ********************************************************************* */
339
340 #define MII_COMMAND_START       0x01
341 #define MII_COMMAND_READ        0x02
342 #define MII_COMMAND_WRITE       0x01
343 #define MII_COMMAND_ACK         0x02
344
345 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
346
347 #define ENABLE          1
348 #define DISABLE         0
349
350 /**********************************************************************
351  *  SBMAC_MII_SYNC(sbm_mdio)
352  *
353  *  Synchronize with the MII - send a pattern of bits to the MII
354  *  that will guarantee that it is ready to accept a command.
355  *
356  *  Input parameters:
357  *         sbm_mdio - address of the MAC's MDIO register
358  *
359  *  Return value:
360  *         nothing
361  ********************************************************************* */
362
363 static void sbmac_mii_sync(void __iomem *sbm_mdio)
364 {
365         int cnt;
366         uint64_t bits;
367         int mac_mdio_genc;
368
369         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
370
371         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
372
373         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
374
375         for (cnt = 0; cnt < 32; cnt++) {
376                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
377                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378         }
379 }
380
381 /**********************************************************************
382  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
383  *
384  *  Send some bits to the MII.  The bits to be sent are right-
385  *  justified in the 'data' parameter.
386  *
387  *  Input parameters:
388  *         sbm_mdio - address of the MAC's MDIO register
389  *         data     - data to send
390  *         bitcnt   - number of bits to send
391  ********************************************************************* */
392
393 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
394                                int bitcnt)
395 {
396         int i;
397         uint64_t bits;
398         unsigned int curmask;
399         int mac_mdio_genc;
400
401         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
402
403         bits = M_MAC_MDIO_DIR_OUTPUT;
404         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
405
406         curmask = 1 << (bitcnt - 1);
407
408         for (i = 0; i < bitcnt; i++) {
409                 if (data & curmask)
410                         bits |= M_MAC_MDIO_OUT;
411                 else bits &= ~M_MAC_MDIO_OUT;
412                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
413                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
414                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415                 curmask >>= 1;
416         }
417 }
418
419
420
421 /**********************************************************************
422  *  SBMAC_MII_READ(bus, phyaddr, regidx)
423  *  Read a PHY register.
424  *
425  *  Input parameters:
426  *         bus     - MDIO bus handle
427  *         phyaddr - PHY's address
428  *         regnum  - index of register to read
429  *
430  *  Return value:
431  *         value read, or 0xffff if an error occurred.
432  ********************************************************************* */
433
434 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
435 {
436         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
437         void __iomem *sbm_mdio = sc->sbm_mdio;
438         int idx;
439         int error;
440         int regval;
441         int mac_mdio_genc;
442
443         /*
444          * Synchronize ourselves so that the PHY knows the next
445          * thing coming down is a command
446          */
447         sbmac_mii_sync(sbm_mdio);
448
449         /*
450          * Send the data to the PHY.  The sequence is
451          * a "start" command (2 bits)
452          * a "read" command (2 bits)
453          * the PHY addr (5 bits)
454          * the register index (5 bits)
455          */
456         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
457         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
458         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
459         sbmac_mii_senddata(sbm_mdio, regidx, 5);
460
461         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
462
463         /*
464          * Switch the port around without a clock transition.
465          */
466         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
467
468         /*
469          * Send out a clock pulse to signal we want the status
470          */
471         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472                      sbm_mdio);
473         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475         /*
476          * If an error occurred, the PHY will signal '1' back
477          */
478         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
479
480         /*
481          * Issue an 'idle' clock pulse, but keep the direction
482          * the same.
483          */
484         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
485                      sbm_mdio);
486         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
487
488         regval = 0;
489
490         for (idx = 0; idx < 16; idx++) {
491                 regval <<= 1;
492
493                 if (error == 0) {
494                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
495                                 regval |= 1;
496                 }
497
498                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
499                              sbm_mdio);
500                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
501         }
502
503         /* Switch back to output */
504         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
505
506         if (error == 0)
507                 return regval;
508         return 0xffff;
509 }
510
511
512 /**********************************************************************
513  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
514  *
515  *  Write a value to a PHY register.
516  *
517  *  Input parameters:
518  *         bus     - MDIO bus handle
519  *         phyaddr - PHY to use
520  *         regidx  - register within the PHY
521  *         regval  - data to write to register
522  *
523  *  Return value:
524  *         0 for success
525  ********************************************************************* */
526
527 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
528                            u16 regval)
529 {
530         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
531         void __iomem *sbm_mdio = sc->sbm_mdio;
532         int mac_mdio_genc;
533
534         sbmac_mii_sync(sbm_mdio);
535
536         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
537         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
538         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
539         sbmac_mii_senddata(sbm_mdio, regidx, 5);
540         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
541         sbmac_mii_senddata(sbm_mdio, regval, 16);
542
543         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
544
545         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
546
547         return 0;
548 }
549
550
551
552 /**********************************************************************
553  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
554  *
555  *  Initialize a DMA channel context.  Since there are potentially
556  *  eight DMA channels per MAC, it's nice to do this in a standard
557  *  way.
558  *
559  *  Input parameters:
560  *         d - struct sbmacdma (DMA channel context)
561  *         s - struct sbmac_softc (pointer to a MAC)
562  *         chan - channel number (0..1 right now)
563  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
564  *      maxdescr - number of descriptors
565  *
566  *  Return value:
567  *         nothing
568  ********************************************************************* */
569
570 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
571                           int txrx, int maxdescr)
572 {
573 #ifdef CONFIG_SBMAC_COALESCE
574         int int_pktcnt, int_timeout;
575 #endif
576
577         /*
578          * Save away interesting stuff in the structure
579          */
580
581         d->sbdma_eth       = s;
582         d->sbdma_channel   = chan;
583         d->sbdma_txdir     = txrx;
584
585 #if 0
586         /* RMON clearing */
587         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
588 #endif
589
590         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
591         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
592         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
598         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
599         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
600         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
601         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
602         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
603         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
604         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
605         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
606         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
607         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
608         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
609         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
610         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
611
612         /*
613          * initialize register pointers
614          */
615
616         d->sbdma_config0 =
617                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
618         d->sbdma_config1 =
619                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
620         d->sbdma_dscrbase =
621                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
622         d->sbdma_dscrcnt =
623                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
624         d->sbdma_curdscr =
625                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
626         if (d->sbdma_txdir)
627                 d->sbdma_oodpktlost = NULL;
628         else
629                 d->sbdma_oodpktlost =
630                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
631
632         /*
633          * Allocate memory for the ring
634          */
635
636         d->sbdma_maxdescr = maxdescr;
637
638         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
639                                                sizeof(*d->sbdma_dscrtable),
640                                                GFP_KERNEL);
641
642         /*
643          * The descriptor table must be aligned to at least 16 bytes or the
644          * MAC will corrupt it.
645          */
646         d->sbdma_dscrtable = (struct sbdmadscr *)
647                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
648                                    sizeof(*d->sbdma_dscrtable));
649
650         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
651
652         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
653
654         /*
655          * And context table
656          */
657
658         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
659                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
660
661 #ifdef CONFIG_SBMAC_COALESCE
662         /*
663          * Setup Rx/Tx DMA coalescing defaults
664          */
665
666         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
667         if ( int_pktcnt ) {
668                 d->sbdma_int_pktcnt = int_pktcnt;
669         } else {
670                 d->sbdma_int_pktcnt = 1;
671         }
672
673         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
674         if ( int_timeout ) {
675                 d->sbdma_int_timeout = int_timeout;
676         } else {
677                 d->sbdma_int_timeout = 0;
678         }
679 #endif
680
681 }
682
683 /**********************************************************************
684  *  SBDMA_CHANNEL_START(d)
685  *
686  *  Initialize the hardware registers for a DMA channel.
687  *
688  *  Input parameters:
689  *         d - DMA channel to init (context must be previously init'd
690  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
691  *
692  *  Return value:
693  *         nothing
694  ********************************************************************* */
695
696 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
697 {
698         /*
699          * Turn on the DMA channel
700          */
701
702 #ifdef CONFIG_SBMAC_COALESCE
703         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
704                        0, d->sbdma_config1);
705         __raw_writeq(M_DMA_EOP_INT_EN |
706                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
707                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
708                        0, d->sbdma_config0);
709 #else
710         __raw_writeq(0, d->sbdma_config1);
711         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
712                        0, d->sbdma_config0);
713 #endif
714
715         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
716
717         /*
718          * Initialize ring pointers
719          */
720
721         d->sbdma_addptr = d->sbdma_dscrtable;
722         d->sbdma_remptr = d->sbdma_dscrtable;
723 }
724
725 /**********************************************************************
726  *  SBDMA_CHANNEL_STOP(d)
727  *
728  *  Initialize the hardware registers for a DMA channel.
729  *
730  *  Input parameters:
731  *         d - DMA channel to init (context must be previously init'd
732  *
733  *  Return value:
734  *         nothing
735  ********************************************************************* */
736
737 static void sbdma_channel_stop(struct sbmacdma *d)
738 {
739         /*
740          * Turn off the DMA channel
741          */
742
743         __raw_writeq(0, d->sbdma_config1);
744
745         __raw_writeq(0, d->sbdma_dscrbase);
746
747         __raw_writeq(0, d->sbdma_config0);
748
749         /*
750          * Zero ring pointers
751          */
752
753         d->sbdma_addptr = NULL;
754         d->sbdma_remptr = NULL;
755 }
756
757 static inline void sbdma_align_skb(struct sk_buff *skb,
758                                    unsigned int power2, unsigned int offset)
759 {
760         unsigned char *addr = skb->data;
761         unsigned char *newaddr = PTR_ALIGN(addr, power2);
762
763         skb_reserve(skb, newaddr - addr + offset);
764 }
765
766
767 /**********************************************************************
768  *  SBDMA_ADD_RCVBUFFER(d,sb)
769  *
770  *  Add a buffer to the specified DMA channel.   For receive channels,
771  *  this queues a buffer for inbound packets.
772  *
773  *  Input parameters:
774  *         sc - softc structure
775  *          d - DMA channel descriptor
776  *         sb - sk_buff to add, or NULL if we should allocate one
777  *
778  *  Return value:
779  *         0 if buffer could not be added (ring is full)
780  *         1 if buffer added successfully
781  ********************************************************************* */
782
783
784 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
785                                struct sk_buff *sb)
786 {
787         struct net_device *dev = sc->sbm_dev;
788         struct sbdmadscr *dsc;
789         struct sbdmadscr *nextdsc;
790         struct sk_buff *sb_new = NULL;
791         int pktsize = ENET_PACKET_SIZE;
792
793         /* get pointer to our current place in the ring */
794
795         dsc = d->sbdma_addptr;
796         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
797
798         /*
799          * figure out if the ring is full - if the next descriptor
800          * is the same as the one that we're going to remove from
801          * the ring, the ring is full
802          */
803
804         if (nextdsc == d->sbdma_remptr) {
805                 return -ENOSPC;
806         }
807
808         /*
809          * Allocate a sk_buff if we don't already have one.
810          * If we do have an sk_buff, reset it so that it's empty.
811          *
812          * Note: sk_buffs don't seem to be guaranteed to have any sort
813          * of alignment when they are allocated.  Therefore, allocate enough
814          * extra space to make sure that:
815          *
816          *    1. the data does not start in the middle of a cache line.
817          *    2. The data does not end in the middle of a cache line
818          *    3. The buffer can be aligned such that the IP addresses are
819          *       naturally aligned.
820          *
821          *  Remember, the SOCs MAC writes whole cache lines at a time,
822          *  without reading the old contents first.  So, if the sk_buff's
823          *  data portion starts in the middle of a cache line, the SOC
824          *  DMA will trash the beginning (and ending) portions.
825          */
826
827         if (sb == NULL) {
828                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
829                                                SMP_CACHE_BYTES * 2 +
830                                                NET_IP_ALIGN);
831                 if (sb_new == NULL)
832                         return -ENOBUFS;
833
834                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
835         }
836         else {
837                 sb_new = sb;
838                 /*
839                  * nothing special to reinit buffer, it's already aligned
840                  * and sb->data already points to a good place.
841                  */
842         }
843
844         /*
845          * fill in the descriptor
846          */
847
848 #ifdef CONFIG_SBMAC_COALESCE
849         /*
850          * Do not interrupt per DMA transfer.
851          */
852         dsc->dscr_a = virt_to_phys(sb_new->data) |
853                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
854 #else
855         dsc->dscr_a = virt_to_phys(sb_new->data) |
856                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
857                 M_DMA_DSCRA_INTERRUPT;
858 #endif
859
860         /* receiving: no options */
861         dsc->dscr_b = 0;
862
863         /*
864          * fill in the context
865          */
866
867         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
868
869         /*
870          * point at next packet
871          */
872
873         d->sbdma_addptr = nextdsc;
874
875         /*
876          * Give the buffer to the DMA engine.
877          */
878
879         __raw_writeq(1, d->sbdma_dscrcnt);
880
881         return 0;                                       /* we did it */
882 }
883
884 /**********************************************************************
885  *  SBDMA_ADD_TXBUFFER(d,sb)
886  *
887  *  Add a transmit buffer to the specified DMA channel, causing a
888  *  transmit to start.
889  *
890  *  Input parameters:
891  *         d - DMA channel descriptor
892  *         sb - sk_buff to add
893  *
894  *  Return value:
895  *         0 transmit queued successfully
896  *         otherwise error code
897  ********************************************************************* */
898
899
900 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
901 {
902         struct sbdmadscr *dsc;
903         struct sbdmadscr *nextdsc;
904         uint64_t phys;
905         uint64_t ncb;
906         int length;
907
908         /* get pointer to our current place in the ring */
909
910         dsc = d->sbdma_addptr;
911         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
912
913         /*
914          * figure out if the ring is full - if the next descriptor
915          * is the same as the one that we're going to remove from
916          * the ring, the ring is full
917          */
918
919         if (nextdsc == d->sbdma_remptr) {
920                 return -ENOSPC;
921         }
922
923         /*
924          * Under Linux, it's not necessary to copy/coalesce buffers
925          * like it is on NetBSD.  We think they're all contiguous,
926          * but that may not be true for GBE.
927          */
928
929         length = sb->len;
930
931         /*
932          * fill in the descriptor.  Note that the number of cache
933          * blocks in the descriptor is the number of blocks
934          * *spanned*, so we need to add in the offset (if any)
935          * while doing the calculation.
936          */
937
938         phys = virt_to_phys(sb->data);
939         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
940
941         dsc->dscr_a = phys |
942                 V_DMA_DSCRA_A_SIZE(ncb) |
943 #ifndef CONFIG_SBMAC_COALESCE
944                 M_DMA_DSCRA_INTERRUPT |
945 #endif
946                 M_DMA_ETHTX_SOP;
947
948         /* transmitting: set outbound options and length */
949
950         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
951                 V_DMA_DSCRB_PKT_SIZE(length);
952
953         /*
954          * fill in the context
955          */
956
957         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
958
959         /*
960          * point at next packet
961          */
962
963         d->sbdma_addptr = nextdsc;
964
965         /*
966          * Give the buffer to the DMA engine.
967          */
968
969         __raw_writeq(1, d->sbdma_dscrcnt);
970
971         return 0;                                       /* we did it */
972 }
973
974
975
976
977 /**********************************************************************
978  *  SBDMA_EMPTYRING(d)
979  *
980  *  Free all allocated sk_buffs on the specified DMA channel;
981  *
982  *  Input parameters:
983  *         d  - DMA channel
984  *
985  *  Return value:
986  *         nothing
987  ********************************************************************* */
988
989 static void sbdma_emptyring(struct sbmacdma *d)
990 {
991         int idx;
992         struct sk_buff *sb;
993
994         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
995                 sb = d->sbdma_ctxtable[idx];
996                 if (sb) {
997                         dev_kfree_skb(sb);
998                         d->sbdma_ctxtable[idx] = NULL;
999                 }
1000         }
1001 }
1002
1003
1004 /**********************************************************************
1005  *  SBDMA_FILLRING(d)
1006  *
1007  *  Fill the specified DMA channel (must be receive channel)
1008  *  with sk_buffs
1009  *
1010  *  Input parameters:
1011  *         sc - softc structure
1012  *          d - DMA channel
1013  *
1014  *  Return value:
1015  *         nothing
1016  ********************************************************************* */
1017
1018 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019 {
1020         int idx;
1021
1022         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024                         break;
1025         }
1026 }
1027
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device *netdev)
1030 {
1031         struct sbmac_softc *sc = netdev_priv(netdev);
1032         int irq = sc->sbm_dev->irq;
1033
1034         __raw_writeq(0, sc->sbm_imr);
1035
1036         sbmac_intr(irq, netdev);
1037
1038 #ifdef CONFIG_SBMAC_COALESCE
1039         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041         sc->sbm_imr);
1042 #else
1043         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045 #endif
1046 }
1047 #endif
1048
1049 /**********************************************************************
1050  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051  *
1052  *  Process "completed" receive buffers on the specified DMA channel.
1053  *
1054  *  Input parameters:
1055  *            sc - softc structure
1056  *             d - DMA channel context
1057  *    work_to_do - no. of packets to process before enabling interrupt
1058  *                 again (for NAPI)
1059  *          poll - 1: using polling (for NAPI)
1060  *
1061  *  Return value:
1062  *         nothing
1063  ********************************************************************* */
1064
1065 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066                             int work_to_do, int poll)
1067 {
1068         struct net_device *dev = sc->sbm_dev;
1069         int curidx;
1070         int hwidx;
1071         struct sbdmadscr *dsc;
1072         struct sk_buff *sb;
1073         int len;
1074         int work_done = 0;
1075         int dropped = 0;
1076
1077         prefetch(d);
1078
1079 again:
1080         /* Check if the HW dropped any frames */
1081         dev->stats.rx_fifo_errors
1082             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084
1085         while (work_to_do-- > 0) {
1086                 /*
1087                  * figure out where we are (as an index) and where
1088                  * the hardware is (also as an index)
1089                  *
1090                  * This could be done faster if (for example) the
1091                  * descriptor table was page-aligned and contiguous in
1092                  * both virtual and physical memory -- you could then
1093                  * just compare the low-order bits of the virtual address
1094                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095                  */
1096
1097                 dsc = d->sbdma_remptr;
1098                 curidx = dsc - d->sbdma_dscrtable;
1099
1100                 prefetch(dsc);
1101                 prefetch(&d->sbdma_ctxtable[curidx]);
1102
1103                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104                          d->sbdma_dscrtable_phys) /
1105                         sizeof(*d->sbdma_dscrtable);
1106
1107                 /*
1108                  * If they're the same, that means we've processed all
1109                  * of the descriptors up to (but not including) the one that
1110                  * the hardware is working on right now.
1111                  */
1112
1113                 if (curidx == hwidx)
1114                         goto done;
1115
1116                 /*
1117                  * Otherwise, get the packet's sk_buff ptr back
1118                  */
1119
1120                 sb = d->sbdma_ctxtable[curidx];
1121                 d->sbdma_ctxtable[curidx] = NULL;
1122
1123                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124
1125                 /*
1126                  * Check packet status.  If good, process it.
1127                  * If not, silently drop it and put it back on the
1128                  * receive ring.
1129                  */
1130
1131                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132
1133                         /*
1134                          * Add a new buffer to replace the old one.  If we fail
1135                          * to allocate a buffer, we're going to drop this
1136                          * packet and put it right back on the receive ring.
1137                          */
1138
1139                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140                                      -ENOBUFS)) {
1141                                 dev->stats.rx_dropped++;
1142                                 /* Re-add old buffer */
1143                                 sbdma_add_rcvbuffer(sc, d, sb);
1144                                 /* No point in continuing at the moment */
1145                                 printk(KERN_ERR "dropped packet (1)\n");
1146                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147                                 goto done;
1148                         } else {
1149                                 /*
1150                                  * Set length into the packet
1151                                  */
1152                                 skb_put(sb,len);
1153
1154                                 /*
1155                                  * Buffer has been replaced on the
1156                                  * receive ring.  Pass the buffer to
1157                                  * the kernel
1158                                  */
1159                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160                                 /* Check hw IPv4/TCP checksum if supported */
1161                                 if (sc->rx_hw_checksum == ENABLE) {
1162                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1165                                                 /* don't need to set sb->csum */
1166                                         } else {
1167                                                 skb_checksum_none_assert(sb);
1168                                         }
1169                                 }
1170                                 prefetch(sb->data);
1171                                 prefetch((const void *)(((char *)sb->data)+32));
1172                                 if (poll)
1173                                         dropped = netif_receive_skb(sb);
1174                                 else
1175                                         dropped = netif_rx(sb);
1176
1177                                 if (dropped == NET_RX_DROP) {
1178                                         dev->stats.rx_dropped++;
1179                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180                                         goto done;
1181                                 }
1182                                 else {
1183                                         dev->stats.rx_bytes += len;
1184                                         dev->stats.rx_packets++;
1185                                 }
1186                         }
1187                 } else {
1188                         /*
1189                          * Packet was mangled somehow.  Just drop it and
1190                          * put it back on the receive ring.
1191                          */
1192                         dev->stats.rx_errors++;
1193                         sbdma_add_rcvbuffer(sc, d, sb);
1194                 }
1195
1196
1197                 /*
1198                  * .. and advance to the next buffer.
1199                  */
1200
1201                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202                 work_done++;
1203         }
1204         if (!poll) {
1205                 work_to_do = 32;
1206                 goto again; /* collect fifo drop statistics again */
1207         }
1208 done:
1209         return work_done;
1210 }
1211
1212 /**********************************************************************
1213  *  SBDMA_TX_PROCESS(sc,d)
1214  *
1215  *  Process "completed" transmit buffers on the specified DMA channel.
1216  *  This is normally called within the interrupt service routine.
1217  *  Note that this isn't really ideal for priority channels, since
1218  *  it processes all of the packets on a given channel before
1219  *  returning.
1220  *
1221  *  Input parameters:
1222  *      sc - softc structure
1223  *       d - DMA channel context
1224  *    poll - 1: using polling (for NAPI)
1225  *
1226  *  Return value:
1227  *         nothing
1228  ********************************************************************* */
1229
1230 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231                              int poll)
1232 {
1233         struct net_device *dev = sc->sbm_dev;
1234         int curidx;
1235         int hwidx;
1236         struct sbdmadscr *dsc;
1237         struct sk_buff *sb;
1238         unsigned long flags;
1239         int packets_handled = 0;
1240
1241         spin_lock_irqsave(&(sc->sbm_lock), flags);
1242
1243         if (d->sbdma_remptr == d->sbdma_addptr)
1244           goto end_unlock;
1245
1246         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248
1249         for (;;) {
1250                 /*
1251                  * figure out where we are (as an index) and where
1252                  * the hardware is (also as an index)
1253                  *
1254                  * This could be done faster if (for example) the
1255                  * descriptor table was page-aligned and contiguous in
1256                  * both virtual and physical memory -- you could then
1257                  * just compare the low-order bits of the virtual address
1258                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259                  */
1260
1261                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262
1263                 /*
1264                  * If they're the same, that means we've processed all
1265                  * of the descriptors up to (but not including) the one that
1266                  * the hardware is working on right now.
1267                  */
1268
1269                 if (curidx == hwidx)
1270                         break;
1271
1272                 /*
1273                  * Otherwise, get the packet's sk_buff ptr back
1274                  */
1275
1276                 dsc = &(d->sbdma_dscrtable[curidx]);
1277                 sb = d->sbdma_ctxtable[curidx];
1278                 d->sbdma_ctxtable[curidx] = NULL;
1279
1280                 /*
1281                  * Stats
1282                  */
1283
1284                 dev->stats.tx_bytes += sb->len;
1285                 dev->stats.tx_packets++;
1286
1287                 /*
1288                  * for transmits, we just free buffers.
1289                  */
1290
1291                 dev_consume_skb_irq(sb);
1292
1293                 /*
1294                  * .. and advance to the next buffer.
1295                  */
1296
1297                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298
1299                 packets_handled++;
1300
1301         }
1302
1303         /*
1304          * Decide if we should wake up the protocol or not.
1305          * Other drivers seem to do this when we reach a low
1306          * watermark on the transmit queue.
1307          */
1308
1309         if (packets_handled)
1310                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1311
1312 end_unlock:
1313         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314
1315 }
1316
1317
1318
1319 /**********************************************************************
1320  *  SBMAC_INITCTX(s)
1321  *
1322  *  Initialize an Ethernet context structure - this is called
1323  *  once per MAC on the 1250.  Memory is allocated here, so don't
1324  *  call it again from inside the ioctl routines that bring the
1325  *  interface up/down
1326  *
1327  *  Input parameters:
1328  *         s - sbmac context structure
1329  *
1330  *  Return value:
1331  *         0
1332  ********************************************************************* */
1333
1334 static int sbmac_initctx(struct sbmac_softc *s)
1335 {
1336
1337         /*
1338          * figure out the addresses of some ports
1339          */
1340
1341         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349
1350         /*
1351          * Initialize the DMA channels.  Right now, only one per MAC is used
1352          * Note: Only do this _once_, as it allocates memory from the kernel!
1353          */
1354
1355         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357
1358         /*
1359          * initial state is OFF
1360          */
1361
1362         s->sbm_state = sbmac_state_off;
1363
1364         return 0;
1365 }
1366
1367
1368 static void sbdma_uninitctx(struct sbmacdma *d)
1369 {
1370         kfree(d->sbdma_dscrtable_unaligned);
1371         d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1372
1373         kfree(d->sbdma_ctxtable);
1374         d->sbdma_ctxtable = NULL;
1375 }
1376
1377
1378 static void sbmac_uninitctx(struct sbmac_softc *sc)
1379 {
1380         sbdma_uninitctx(&(sc->sbm_txdma));
1381         sbdma_uninitctx(&(sc->sbm_rxdma));
1382 }
1383
1384
1385 /**********************************************************************
1386  *  SBMAC_CHANNEL_START(s)
1387  *
1388  *  Start packet processing on this MAC.
1389  *
1390  *  Input parameters:
1391  *         s - sbmac structure
1392  *
1393  *  Return value:
1394  *         nothing
1395  ********************************************************************* */
1396
1397 static void sbmac_channel_start(struct sbmac_softc *s)
1398 {
1399         uint64_t reg;
1400         void __iomem *port;
1401         uint64_t cfg,fifo,framecfg;
1402         int idx, th_value;
1403
1404         /*
1405          * Don't do this if running
1406          */
1407
1408         if (s->sbm_state == sbmac_state_on)
1409                 return;
1410
1411         /*
1412          * Bring the controller out of reset, but leave it off.
1413          */
1414
1415         __raw_writeq(0, s->sbm_macenable);
1416
1417         /*
1418          * Ignore all received packets
1419          */
1420
1421         __raw_writeq(0, s->sbm_rxfilter);
1422
1423         /*
1424          * Calculate values for various control registers.
1425          */
1426
1427         cfg = M_MAC_RETRY_EN |
1428                 M_MAC_TX_HOLD_SOP_EN |
1429                 V_MAC_TX_PAUSE_CNT_16K |
1430                 M_MAC_AP_STAT_EN |
1431                 M_MAC_FAST_SYNC |
1432                 M_MAC_SS_EN |
1433                 0;
1434
1435         /*
1436          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1437          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1438          * Use a larger RD_THRSH for gigabit
1439          */
1440         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1441                 th_value = 28;
1442         else
1443                 th_value = 64;
1444
1445         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1446                 ((s->sbm_speed == sbmac_speed_1000)
1447                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1448                 V_MAC_TX_RL_THRSH(4) |
1449                 V_MAC_RX_PL_THRSH(4) |
1450                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1451                 V_MAC_RX_RL_THRSH(8) |
1452                 0;
1453
1454         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1455                 V_MAC_MAX_FRAMESZ_DEFAULT |
1456                 V_MAC_BACKOFF_SEL(1);
1457
1458         /*
1459          * Clear out the hash address map
1460          */
1461
1462         port = s->sbm_base + R_MAC_HASH_BASE;
1463         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1464                 __raw_writeq(0, port);
1465                 port += sizeof(uint64_t);
1466         }
1467
1468         /*
1469          * Clear out the exact-match table
1470          */
1471
1472         port = s->sbm_base + R_MAC_ADDR_BASE;
1473         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1474                 __raw_writeq(0, port);
1475                 port += sizeof(uint64_t);
1476         }
1477
1478         /*
1479          * Clear out the DMA Channel mapping table registers
1480          */
1481
1482         port = s->sbm_base + R_MAC_CHUP0_BASE;
1483         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1484                 __raw_writeq(0, port);
1485                 port += sizeof(uint64_t);
1486         }
1487
1488
1489         port = s->sbm_base + R_MAC_CHLO0_BASE;
1490         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1491                 __raw_writeq(0, port);
1492                 port += sizeof(uint64_t);
1493         }
1494
1495         /*
1496          * Program the hardware address.  It goes into the hardware-address
1497          * register as well as the first filter register.
1498          */
1499
1500         reg = sbmac_addr2reg(s->sbm_hwaddr);
1501
1502         port = s->sbm_base + R_MAC_ADDR_BASE;
1503         __raw_writeq(reg, port);
1504         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1505
1506         __raw_writeq(reg, port);
1507
1508         /*
1509          * Set the receive filter for no packets, and write values
1510          * to the various config registers
1511          */
1512
1513         __raw_writeq(0, s->sbm_rxfilter);
1514         __raw_writeq(0, s->sbm_imr);
1515         __raw_writeq(framecfg, s->sbm_framecfg);
1516         __raw_writeq(fifo, s->sbm_fifocfg);
1517         __raw_writeq(cfg, s->sbm_maccfg);
1518
1519         /*
1520          * Initialize DMA channels (rings should be ok now)
1521          */
1522
1523         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1524         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1525
1526         /*
1527          * Configure the speed, duplex, and flow control
1528          */
1529
1530         sbmac_set_speed(s,s->sbm_speed);
1531         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1532
1533         /*
1534          * Fill the receive ring
1535          */
1536
1537         sbdma_fillring(s, &(s->sbm_rxdma));
1538
1539         /*
1540          * Turn on the rest of the bits in the enable register
1541          */
1542
1543 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1544         __raw_writeq(M_MAC_RXDMA_EN0 |
1545                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1546 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1547         __raw_writeq(M_MAC_RXDMA_EN0 |
1548                        M_MAC_TXDMA_EN0 |
1549                        M_MAC_RX_ENABLE |
1550                        M_MAC_TX_ENABLE, s->sbm_macenable);
1551 #else
1552 #error invalid SiByte MAC configuration
1553 #endif
1554
1555 #ifdef CONFIG_SBMAC_COALESCE
1556         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1557                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1558 #else
1559         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1560                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1561 #endif
1562
1563         /*
1564          * Enable receiving unicasts and broadcasts
1565          */
1566
1567         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1568
1569         /*
1570          * we're running now.
1571          */
1572
1573         s->sbm_state = sbmac_state_on;
1574
1575         /*
1576          * Program multicast addresses
1577          */
1578
1579         sbmac_setmulti(s);
1580
1581         /*
1582          * If channel was in promiscuous mode before, turn that on
1583          */
1584
1585         if (s->sbm_devflags & IFF_PROMISC) {
1586                 sbmac_promiscuous_mode(s,1);
1587         }
1588
1589 }
1590
1591
1592 /**********************************************************************
1593  *  SBMAC_CHANNEL_STOP(s)
1594  *
1595  *  Stop packet processing on this MAC.
1596  *
1597  *  Input parameters:
1598  *         s - sbmac structure
1599  *
1600  *  Return value:
1601  *         nothing
1602  ********************************************************************* */
1603
1604 static void sbmac_channel_stop(struct sbmac_softc *s)
1605 {
1606         /* don't do this if already stopped */
1607
1608         if (s->sbm_state == sbmac_state_off)
1609                 return;
1610
1611         /* don't accept any packets, disable all interrupts */
1612
1613         __raw_writeq(0, s->sbm_rxfilter);
1614         __raw_writeq(0, s->sbm_imr);
1615
1616         /* Turn off ticker */
1617
1618         /* XXX */
1619
1620         /* turn off receiver and transmitter */
1621
1622         __raw_writeq(0, s->sbm_macenable);
1623
1624         /* We're stopped now. */
1625
1626         s->sbm_state = sbmac_state_off;
1627
1628         /*
1629          * Stop DMA channels (rings should be ok now)
1630          */
1631
1632         sbdma_channel_stop(&(s->sbm_rxdma));
1633         sbdma_channel_stop(&(s->sbm_txdma));
1634
1635         /* Empty the receive and transmit rings */
1636
1637         sbdma_emptyring(&(s->sbm_rxdma));
1638         sbdma_emptyring(&(s->sbm_txdma));
1639
1640 }
1641
1642 /**********************************************************************
1643  *  SBMAC_SET_CHANNEL_STATE(state)
1644  *
1645  *  Set the channel's state ON or OFF
1646  *
1647  *  Input parameters:
1648  *         state - new state
1649  *
1650  *  Return value:
1651  *         old state
1652  ********************************************************************* */
1653 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1654                                                 enum sbmac_state state)
1655 {
1656         enum sbmac_state oldstate = sc->sbm_state;
1657
1658         /*
1659          * If same as previous state, return
1660          */
1661
1662         if (state == oldstate) {
1663                 return oldstate;
1664         }
1665
1666         /*
1667          * If new state is ON, turn channel on
1668          */
1669
1670         if (state == sbmac_state_on) {
1671                 sbmac_channel_start(sc);
1672         }
1673         else {
1674                 sbmac_channel_stop(sc);
1675         }
1676
1677         /*
1678          * Return previous state
1679          */
1680
1681         return oldstate;
1682 }
1683
1684
1685 /**********************************************************************
1686  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1687  *
1688  *  Turn on or off promiscuous mode
1689  *
1690  *  Input parameters:
1691  *         sc - softc
1692  *      onoff - 1 to turn on, 0 to turn off
1693  *
1694  *  Return value:
1695  *         nothing
1696  ********************************************************************* */
1697
1698 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1699 {
1700         uint64_t reg;
1701
1702         if (sc->sbm_state != sbmac_state_on)
1703                 return;
1704
1705         if (onoff) {
1706                 reg = __raw_readq(sc->sbm_rxfilter);
1707                 reg |= M_MAC_ALLPKT_EN;
1708                 __raw_writeq(reg, sc->sbm_rxfilter);
1709         }
1710         else {
1711                 reg = __raw_readq(sc->sbm_rxfilter);
1712                 reg &= ~M_MAC_ALLPKT_EN;
1713                 __raw_writeq(reg, sc->sbm_rxfilter);
1714         }
1715 }
1716
1717 /**********************************************************************
1718  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1719  *
1720  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1721  *
1722  *  Input parameters:
1723  *         sc - softc
1724  *
1725  *  Return value:
1726  *         nothing
1727  ********************************************************************* */
1728
1729 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1730 {
1731         uint64_t reg;
1732
1733         /* Hard code the off set to 15 for now */
1734         reg = __raw_readq(sc->sbm_rxfilter);
1735         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1736         __raw_writeq(reg, sc->sbm_rxfilter);
1737
1738         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1739            later does.  */
1740         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1741                 sc->rx_hw_checksum = DISABLE;
1742         } else {
1743                 sc->rx_hw_checksum = ENABLE;
1744         }
1745 }
1746
1747
1748 /**********************************************************************
1749  *  SBMAC_ADDR2REG(ptr)
1750  *
1751  *  Convert six bytes into the 64-bit register value that
1752  *  we typically write into the SBMAC's address/mcast registers
1753  *
1754  *  Input parameters:
1755  *         ptr - pointer to 6 bytes
1756  *
1757  *  Return value:
1758  *         register value
1759  ********************************************************************* */
1760
1761 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1762 {
1763         uint64_t reg = 0;
1764
1765         ptr += 6;
1766
1767         reg |= (uint64_t) *(--ptr);
1768         reg <<= 8;
1769         reg |= (uint64_t) *(--ptr);
1770         reg <<= 8;
1771         reg |= (uint64_t) *(--ptr);
1772         reg <<= 8;
1773         reg |= (uint64_t) *(--ptr);
1774         reg <<= 8;
1775         reg |= (uint64_t) *(--ptr);
1776         reg <<= 8;
1777         reg |= (uint64_t) *(--ptr);
1778
1779         return reg;
1780 }
1781
1782
1783 /**********************************************************************
1784  *  SBMAC_SET_SPEED(s,speed)
1785  *
1786  *  Configure LAN speed for the specified MAC.
1787  *  Warning: must be called when MAC is off!
1788  *
1789  *  Input parameters:
1790  *         s - sbmac structure
1791  *         speed - speed to set MAC to (see enum sbmac_speed)
1792  *
1793  *  Return value:
1794  *         1 if successful
1795  *      0 indicates invalid parameters
1796  ********************************************************************* */
1797
1798 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1799 {
1800         uint64_t cfg;
1801         uint64_t framecfg;
1802
1803         /*
1804          * Save new current values
1805          */
1806
1807         s->sbm_speed = speed;
1808
1809         if (s->sbm_state == sbmac_state_on)
1810                 return 0;       /* save for next restart */
1811
1812         /*
1813          * Read current register values
1814          */
1815
1816         cfg = __raw_readq(s->sbm_maccfg);
1817         framecfg = __raw_readq(s->sbm_framecfg);
1818
1819         /*
1820          * Mask out the stuff we want to change
1821          */
1822
1823         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1824         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1825                       M_MAC_SLOT_SIZE);
1826
1827         /*
1828          * Now add in the new bits
1829          */
1830
1831         switch (speed) {
1832         case sbmac_speed_10:
1833                 framecfg |= V_MAC_IFG_RX_10 |
1834                         V_MAC_IFG_TX_10 |
1835                         K_MAC_IFG_THRSH_10 |
1836                         V_MAC_SLOT_SIZE_10;
1837                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1838                 break;
1839
1840         case sbmac_speed_100:
1841                 framecfg |= V_MAC_IFG_RX_100 |
1842                         V_MAC_IFG_TX_100 |
1843                         V_MAC_IFG_THRSH_100 |
1844                         V_MAC_SLOT_SIZE_100;
1845                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1846                 break;
1847
1848         case sbmac_speed_1000:
1849                 framecfg |= V_MAC_IFG_RX_1000 |
1850                         V_MAC_IFG_TX_1000 |
1851                         V_MAC_IFG_THRSH_1000 |
1852                         V_MAC_SLOT_SIZE_1000;
1853                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1854                 break;
1855
1856         default:
1857                 return 0;
1858         }
1859
1860         /*
1861          * Send the bits back to the hardware
1862          */
1863
1864         __raw_writeq(framecfg, s->sbm_framecfg);
1865         __raw_writeq(cfg, s->sbm_maccfg);
1866
1867         return 1;
1868 }
1869
1870 /**********************************************************************
1871  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1872  *
1873  *  Set Ethernet duplex and flow control options for this MAC
1874  *  Warning: must be called when MAC is off!
1875  *
1876  *  Input parameters:
1877  *         s - sbmac structure
1878  *         duplex - duplex setting (see enum sbmac_duplex)
1879  *         fc - flow control setting (see enum sbmac_fc)
1880  *
1881  *  Return value:
1882  *         1 if ok
1883  *         0 if an invalid parameter combination was specified
1884  ********************************************************************* */
1885
1886 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1887                             enum sbmac_fc fc)
1888 {
1889         uint64_t cfg;
1890
1891         /*
1892          * Save new current values
1893          */
1894
1895         s->sbm_duplex = duplex;
1896         s->sbm_fc = fc;
1897
1898         if (s->sbm_state == sbmac_state_on)
1899                 return 0;       /* save for next restart */
1900
1901         /*
1902          * Read current register values
1903          */
1904
1905         cfg = __raw_readq(s->sbm_maccfg);
1906
1907         /*
1908          * Mask off the stuff we're about to change
1909          */
1910
1911         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1912
1913
1914         switch (duplex) {
1915         case sbmac_duplex_half:
1916                 switch (fc) {
1917                 case sbmac_fc_disabled:
1918                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1919                         break;
1920
1921                 case sbmac_fc_collision:
1922                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1923                         break;
1924
1925                 case sbmac_fc_carrier:
1926                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1927                         break;
1928
1929                 case sbmac_fc_frame:            /* not valid in half duplex */
1930                 default:                        /* invalid selection */
1931                         return 0;
1932                 }
1933                 break;
1934
1935         case sbmac_duplex_full:
1936                 switch (fc) {
1937                 case sbmac_fc_disabled:
1938                         cfg |= V_MAC_FC_CMD_DISABLED;
1939                         break;
1940
1941                 case sbmac_fc_frame:
1942                         cfg |= V_MAC_FC_CMD_ENABLED;
1943                         break;
1944
1945                 case sbmac_fc_collision:        /* not valid in full duplex */
1946                 case sbmac_fc_carrier:          /* not valid in full duplex */
1947                 default:
1948                         return 0;
1949                 }
1950                 break;
1951         default:
1952                 return 0;
1953         }
1954
1955         /*
1956          * Send the bits back to the hardware
1957          */
1958
1959         __raw_writeq(cfg, s->sbm_maccfg);
1960
1961         return 1;
1962 }
1963
1964
1965
1966
1967 /**********************************************************************
1968  *  SBMAC_INTR()
1969  *
1970  *  Interrupt handler for MAC interrupts
1971  *
1972  *  Input parameters:
1973  *         MAC structure
1974  *
1975  *  Return value:
1976  *         nothing
1977  ********************************************************************* */
1978 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1979 {
1980         struct net_device *dev = (struct net_device *) dev_instance;
1981         struct sbmac_softc *sc = netdev_priv(dev);
1982         uint64_t isr;
1983         int handled = 0;
1984
1985         /*
1986          * Read the ISR (this clears the bits in the real
1987          * register, except for counter addr)
1988          */
1989
1990         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1991
1992         if (isr == 0)
1993                 return IRQ_RETVAL(0);
1994         handled = 1;
1995
1996         /*
1997          * Transmits on channel 0
1998          */
1999
2000         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2001                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2002
2003         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2004                 if (napi_schedule_prep(&sc->napi)) {
2005                         __raw_writeq(0, sc->sbm_imr);
2006                         __napi_schedule(&sc->napi);
2007                         /* Depend on the exit from poll to reenable intr */
2008                 }
2009                 else {
2010                         /* may leave some packets behind */
2011                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
2012                                          SBMAC_MAX_RXDESCR * 2, 0);
2013                 }
2014         }
2015         return IRQ_RETVAL(handled);
2016 }
2017
2018 /**********************************************************************
2019  *  SBMAC_START_TX(skb,dev)
2020  *
2021  *  Start output on the specified interface.  Basically, we
2022  *  queue as many buffers as we can until the ring fills up, or
2023  *  we run off the end of the queue, whichever comes first.
2024  *
2025  *  Input parameters:
2026  *
2027  *
2028  *  Return value:
2029  *         nothing
2030  ********************************************************************* */
2031 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2032 {
2033         struct sbmac_softc *sc = netdev_priv(dev);
2034         unsigned long flags;
2035
2036         /* lock eth irq */
2037         spin_lock_irqsave(&sc->sbm_lock, flags);
2038
2039         /*
2040          * Put the buffer on the transmit ring.  If we
2041          * don't have room, stop the queue.
2042          */
2043
2044         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2045                 /* XXX save skb that we could not send */
2046                 netif_stop_queue(dev);
2047                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2048
2049                 return NETDEV_TX_BUSY;
2050         }
2051
2052         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2053
2054         return NETDEV_TX_OK;
2055 }
2056
2057 /**********************************************************************
2058  *  SBMAC_SETMULTI(sc)
2059  *
2060  *  Reprogram the multicast table into the hardware, given
2061  *  the list of multicasts associated with the interface
2062  *  structure.
2063  *
2064  *  Input parameters:
2065  *         sc - softc
2066  *
2067  *  Return value:
2068  *         nothing
2069  ********************************************************************* */
2070
2071 static void sbmac_setmulti(struct sbmac_softc *sc)
2072 {
2073         uint64_t reg;
2074         void __iomem *port;
2075         int idx;
2076         struct netdev_hw_addr *ha;
2077         struct net_device *dev = sc->sbm_dev;
2078
2079         /*
2080          * Clear out entire multicast table.  We do this by nuking
2081          * the entire hash table and all the direct matches except
2082          * the first one, which is used for our station address
2083          */
2084
2085         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2086                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2087                 __raw_writeq(0, port);
2088         }
2089
2090         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2091                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2092                 __raw_writeq(0, port);
2093         }
2094
2095         /*
2096          * Clear the filter to say we don't want any multicasts.
2097          */
2098
2099         reg = __raw_readq(sc->sbm_rxfilter);
2100         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2101         __raw_writeq(reg, sc->sbm_rxfilter);
2102
2103         if (dev->flags & IFF_ALLMULTI) {
2104                 /*
2105                  * Enable ALL multicasts.  Do this by inverting the
2106                  * multicast enable bit.
2107                  */
2108                 reg = __raw_readq(sc->sbm_rxfilter);
2109                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2110                 __raw_writeq(reg, sc->sbm_rxfilter);
2111                 return;
2112         }
2113
2114
2115         /*
2116          * Progam new multicast entries.  For now, only use the
2117          * perfect filter.  In the future we'll need to use the
2118          * hash filter if the perfect filter overflows
2119          */
2120
2121         /* XXX only using perfect filter for now, need to use hash
2122          * XXX if the table overflows */
2123
2124         idx = 1;                /* skip station address */
2125         netdev_for_each_mc_addr(ha, dev) {
2126                 if (idx == MAC_ADDR_COUNT)
2127                         break;
2128                 reg = sbmac_addr2reg(ha->addr);
2129                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2130                 __raw_writeq(reg, port);
2131                 idx++;
2132         }
2133
2134         /*
2135          * Enable the "accept multicast bits" if we programmed at least one
2136          * multicast.
2137          */
2138
2139         if (idx > 1) {
2140                 reg = __raw_readq(sc->sbm_rxfilter);
2141                 reg |= M_MAC_MCAST_EN;
2142                 __raw_writeq(reg, sc->sbm_rxfilter);
2143         }
2144 }
2145
2146 static const struct net_device_ops sbmac_netdev_ops = {
2147         .ndo_open               = sbmac_open,
2148         .ndo_stop               = sbmac_close,
2149         .ndo_start_xmit         = sbmac_start_tx,
2150         .ndo_set_rx_mode        = sbmac_set_rx_mode,
2151         .ndo_tx_timeout         = sbmac_tx_timeout,
2152         .ndo_do_ioctl           = sbmac_mii_ioctl,
2153         .ndo_validate_addr      = eth_validate_addr,
2154         .ndo_set_mac_address    = eth_mac_addr,
2155 #ifdef CONFIG_NET_POLL_CONTROLLER
2156         .ndo_poll_controller    = sbmac_netpoll,
2157 #endif
2158 };
2159
2160 /**********************************************************************
2161  *  SBMAC_INIT(dev)
2162  *
2163  *  Attach routine - init hardware and hook ourselves into linux
2164  *
2165  *  Input parameters:
2166  *         dev - net_device structure
2167  *
2168  *  Return value:
2169  *         status
2170  ********************************************************************* */
2171
2172 static int sbmac_init(struct platform_device *pldev, long long base)
2173 {
2174         struct net_device *dev = platform_get_drvdata(pldev);
2175         int idx = pldev->id;
2176         struct sbmac_softc *sc = netdev_priv(dev);
2177         unsigned char *eaddr;
2178         uint64_t ea_reg;
2179         int i;
2180         int err;
2181
2182         sc->sbm_dev = dev;
2183         sc->sbe_idx = idx;
2184
2185         eaddr = sc->sbm_hwaddr;
2186
2187         /*
2188          * Read the ethernet address.  The firmware left this programmed
2189          * for us in the ethernet address register for each mac.
2190          */
2191
2192         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2193         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2194         for (i = 0; i < 6; i++) {
2195                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2196                 ea_reg >>= 8;
2197         }
2198
2199         for (i = 0; i < 6; i++) {
2200                 dev->dev_addr[i] = eaddr[i];
2201         }
2202
2203         /*
2204          * Initialize context (get pointers to registers and stuff), then
2205          * allocate the memory for the descriptor tables.
2206          */
2207
2208         sbmac_initctx(sc);
2209
2210         /*
2211          * Set up Linux device callins
2212          */
2213
2214         spin_lock_init(&(sc->sbm_lock));
2215
2216         dev->netdev_ops = &sbmac_netdev_ops;
2217         dev->watchdog_timeo = TX_TIMEOUT;
2218         dev->min_mtu = 0;
2219         dev->max_mtu = ENET_PACKET_SIZE;
2220
2221         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2222
2223         dev->irq                = UNIT_INT(idx);
2224
2225         /* This is needed for PASS2 for Rx H/W checksum feature */
2226         sbmac_set_iphdr_offset(sc);
2227
2228         sc->mii_bus = mdiobus_alloc();
2229         if (sc->mii_bus == NULL) {
2230                 err = -ENOMEM;
2231                 goto uninit_ctx;
2232         }
2233
2234         sc->mii_bus->name = sbmac_mdio_string;
2235         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2236                 pldev->name, idx);
2237         sc->mii_bus->priv = sc;
2238         sc->mii_bus->read = sbmac_mii_read;
2239         sc->mii_bus->write = sbmac_mii_write;
2240
2241         sc->mii_bus->parent = &pldev->dev;
2242         /*
2243          * Probe PHY address
2244          */
2245         err = mdiobus_register(sc->mii_bus);
2246         if (err) {
2247                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2248                        dev->name);
2249                 goto free_mdio;
2250         }
2251         platform_set_drvdata(pldev, sc->mii_bus);
2252
2253         err = register_netdev(dev);
2254         if (err) {
2255                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2256                        sbmac_string, idx);
2257                 goto unreg_mdio;
2258         }
2259
2260         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2261
2262         if (sc->rx_hw_checksum == ENABLE)
2263                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2264
2265         /*
2266          * Display Ethernet address (this is called during the config
2267          * process so we need to finish off the config message that
2268          * was being displayed)
2269          */
2270         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2271                dev->name, base, eaddr);
2272
2273         return 0;
2274 unreg_mdio:
2275         mdiobus_unregister(sc->mii_bus);
2276 free_mdio:
2277         mdiobus_free(sc->mii_bus);
2278 uninit_ctx:
2279         sbmac_uninitctx(sc);
2280         return err;
2281 }
2282
2283
2284 static int sbmac_open(struct net_device *dev)
2285 {
2286         struct sbmac_softc *sc = netdev_priv(dev);
2287         int err;
2288
2289         if (debug > 1)
2290                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2291
2292         /*
2293          * map/route interrupt (clear status first, in case something
2294          * weird is pending; we haven't initialized the mac registers
2295          * yet)
2296          */
2297
2298         __raw_readq(sc->sbm_isr);
2299         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2300         if (err) {
2301                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2302                        dev->irq);
2303                 goto out_err;
2304         }
2305
2306         sc->sbm_speed = sbmac_speed_none;
2307         sc->sbm_duplex = sbmac_duplex_none;
2308         sc->sbm_fc = sbmac_fc_none;
2309         sc->sbm_pause = -1;
2310         sc->sbm_link = 0;
2311
2312         /*
2313          * Attach to the PHY
2314          */
2315         err = sbmac_mii_probe(dev);
2316         if (err)
2317                 goto out_unregister;
2318
2319         /*
2320          * Turn on the channel
2321          */
2322
2323         sbmac_set_channel_state(sc,sbmac_state_on);
2324
2325         netif_start_queue(dev);
2326
2327         sbmac_set_rx_mode(dev);
2328
2329         phy_start(sc->phy_dev);
2330
2331         napi_enable(&sc->napi);
2332
2333         return 0;
2334
2335 out_unregister:
2336         free_irq(dev->irq, dev);
2337 out_err:
2338         return err;
2339 }
2340
2341 static int sbmac_mii_probe(struct net_device *dev)
2342 {
2343         struct sbmac_softc *sc = netdev_priv(dev);
2344         struct phy_device *phy_dev;
2345
2346         phy_dev = phy_find_first(sc->mii_bus);
2347         if (!phy_dev) {
2348                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2349                 return -ENXIO;
2350         }
2351
2352         phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2353                               &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2354         if (IS_ERR(phy_dev)) {
2355                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2356                 return PTR_ERR(phy_dev);
2357         }
2358
2359         /* Remove any features not supported by the controller */
2360         phy_set_max_speed(phy_dev, SPEED_1000);
2361         phy_support_asym_pause(phy_dev);
2362
2363         phy_attached_info(phy_dev);
2364
2365         sc->phy_dev = phy_dev;
2366
2367         return 0;
2368 }
2369
2370
2371 static void sbmac_mii_poll(struct net_device *dev)
2372 {
2373         struct sbmac_softc *sc = netdev_priv(dev);
2374         struct phy_device *phy_dev = sc->phy_dev;
2375         unsigned long flags;
2376         enum sbmac_fc fc;
2377         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2378
2379         link_chg = (sc->sbm_link != phy_dev->link);
2380         speed_chg = (sc->sbm_speed != phy_dev->speed);
2381         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2382         pause_chg = (sc->sbm_pause != phy_dev->pause);
2383
2384         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2385                 return;                                 /* Hmmm... */
2386
2387         if (!phy_dev->link) {
2388                 if (link_chg) {
2389                         sc->sbm_link = phy_dev->link;
2390                         sc->sbm_speed = sbmac_speed_none;
2391                         sc->sbm_duplex = sbmac_duplex_none;
2392                         sc->sbm_fc = sbmac_fc_disabled;
2393                         sc->sbm_pause = -1;
2394                         pr_info("%s: link unavailable\n", dev->name);
2395                 }
2396                 return;
2397         }
2398
2399         if (phy_dev->duplex == DUPLEX_FULL) {
2400                 if (phy_dev->pause)
2401                         fc = sbmac_fc_frame;
2402                 else
2403                         fc = sbmac_fc_disabled;
2404         } else
2405                 fc = sbmac_fc_collision;
2406         fc_chg = (sc->sbm_fc != fc);
2407
2408         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2409                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2410
2411         spin_lock_irqsave(&sc->sbm_lock, flags);
2412
2413         sc->sbm_speed = phy_dev->speed;
2414         sc->sbm_duplex = phy_dev->duplex;
2415         sc->sbm_fc = fc;
2416         sc->sbm_pause = phy_dev->pause;
2417         sc->sbm_link = phy_dev->link;
2418
2419         if ((speed_chg || duplex_chg || fc_chg) &&
2420             sc->sbm_state != sbmac_state_off) {
2421                 /*
2422                  * something changed, restart the channel
2423                  */
2424                 if (debug > 1)
2425                         pr_debug("%s: restarting channel "
2426                                  "because PHY state changed\n", dev->name);
2427                 sbmac_channel_stop(sc);
2428                 sbmac_channel_start(sc);
2429         }
2430
2431         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2432 }
2433
2434
2435 static void sbmac_tx_timeout (struct net_device *dev)
2436 {
2437         struct sbmac_softc *sc = netdev_priv(dev);
2438         unsigned long flags;
2439
2440         spin_lock_irqsave(&sc->sbm_lock, flags);
2441
2442
2443         netif_trans_update(dev); /* prevent tx timeout */
2444         dev->stats.tx_errors++;
2445
2446         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2447
2448         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2449 }
2450
2451
2452
2453
2454 static void sbmac_set_rx_mode(struct net_device *dev)
2455 {
2456         unsigned long flags;
2457         struct sbmac_softc *sc = netdev_priv(dev);
2458
2459         spin_lock_irqsave(&sc->sbm_lock, flags);
2460         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2461                 /*
2462                  * Promiscuous changed.
2463                  */
2464
2465                 if (dev->flags & IFF_PROMISC) {
2466                         sbmac_promiscuous_mode(sc,1);
2467                 }
2468                 else {
2469                         sbmac_promiscuous_mode(sc,0);
2470                 }
2471         }
2472         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2473
2474         /*
2475          * Program the multicasts.  Do this every time.
2476          */
2477
2478         sbmac_setmulti(sc);
2479
2480 }
2481
2482 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2483 {
2484         struct sbmac_softc *sc = netdev_priv(dev);
2485
2486         if (!netif_running(dev) || !sc->phy_dev)
2487                 return -EINVAL;
2488
2489         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2490 }
2491
2492 static int sbmac_close(struct net_device *dev)
2493 {
2494         struct sbmac_softc *sc = netdev_priv(dev);
2495
2496         napi_disable(&sc->napi);
2497
2498         phy_stop(sc->phy_dev);
2499
2500         sbmac_set_channel_state(sc, sbmac_state_off);
2501
2502         netif_stop_queue(dev);
2503
2504         if (debug > 1)
2505                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2506
2507         phy_disconnect(sc->phy_dev);
2508         sc->phy_dev = NULL;
2509         free_irq(dev->irq, dev);
2510
2511         sbdma_emptyring(&(sc->sbm_txdma));
2512         sbdma_emptyring(&(sc->sbm_rxdma));
2513
2514         return 0;
2515 }
2516
2517 static int sbmac_poll(struct napi_struct *napi, int budget)
2518 {
2519         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2520         int work_done;
2521
2522         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2523         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2524
2525         if (work_done < budget) {
2526                 napi_complete_done(napi, work_done);
2527
2528 #ifdef CONFIG_SBMAC_COALESCE
2529                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2530                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2531                              sc->sbm_imr);
2532 #else
2533                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2534                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2535 #endif
2536         }
2537
2538         return work_done;
2539 }
2540
2541
2542 static int sbmac_probe(struct platform_device *pldev)
2543 {
2544         struct net_device *dev;
2545         struct sbmac_softc *sc;
2546         void __iomem *sbm_base;
2547         struct resource *res;
2548         u64 sbmac_orig_hwaddr;
2549         int err;
2550
2551         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2552         BUG_ON(!res);
2553         sbm_base = ioremap_nocache(res->start, resource_size(res));
2554         if (!sbm_base) {
2555                 printk(KERN_ERR "%s: unable to map device registers\n",
2556                        dev_name(&pldev->dev));
2557                 err = -ENOMEM;
2558                 goto out_out;
2559         }
2560
2561         /*
2562          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2563          * value for us by the firmware if we're going to use this MAC.
2564          * If we find a zero, skip this MAC.
2565          */
2566         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2567         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2568                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2569         if (sbmac_orig_hwaddr == 0) {
2570                 err = 0;
2571                 goto out_unmap;
2572         }
2573
2574         /*
2575          * Okay, cool.  Initialize this MAC.
2576          */
2577         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2578         if (!dev) {
2579                 err = -ENOMEM;
2580                 goto out_unmap;
2581         }
2582
2583         platform_set_drvdata(pldev, dev);
2584         SET_NETDEV_DEV(dev, &pldev->dev);
2585
2586         sc = netdev_priv(dev);
2587         sc->sbm_base = sbm_base;
2588
2589         err = sbmac_init(pldev, res->start);
2590         if (err)
2591                 goto out_kfree;
2592
2593         return 0;
2594
2595 out_kfree:
2596         free_netdev(dev);
2597         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2598
2599 out_unmap:
2600         iounmap(sbm_base);
2601
2602 out_out:
2603         return err;
2604 }
2605
2606 static int sbmac_remove(struct platform_device *pldev)
2607 {
2608         struct net_device *dev = platform_get_drvdata(pldev);
2609         struct sbmac_softc *sc = netdev_priv(dev);
2610
2611         unregister_netdev(dev);
2612         sbmac_uninitctx(sc);
2613         mdiobus_unregister(sc->mii_bus);
2614         mdiobus_free(sc->mii_bus);
2615         iounmap(sc->sbm_base);
2616         free_netdev(dev);
2617
2618         return 0;
2619 }
2620
2621 static struct platform_driver sbmac_driver = {
2622         .probe = sbmac_probe,
2623         .remove = sbmac_remove,
2624         .driver = {
2625                 .name = sbmac_string,
2626         },
2627 };
2628
2629 module_platform_driver(sbmac_driver);
2630 MODULE_LICENSE("GPL");