Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_addr(priv, d, addr);
108         dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455         struct bcmgenet_priv *priv = netdev_priv(dev);
456
457         /* Turn on the clock */
458         return clk_prepare_enable(priv->clk);
459 }
460
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463         struct bcmgenet_priv *priv = netdev_priv(dev);
464
465         /* Turn off the clock */
466         clk_disable_unprepare(priv->clk);
467 }
468
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470                                        struct ethtool_link_ksettings *cmd)
471 {
472         struct bcmgenet_priv *priv = netdev_priv(dev);
473
474         if (!netif_running(dev))
475                 return -EINVAL;
476
477         if (!priv->phydev)
478                 return -ENODEV;
479
480         return phy_ethtool_ksettings_get(priv->phydev, cmd);
481 }
482
483 static int bcmgenet_set_link_ksettings(struct net_device *dev,
484                                        const struct ethtool_link_ksettings *cmd)
485 {
486         struct bcmgenet_priv *priv = netdev_priv(dev);
487
488         if (!netif_running(dev))
489                 return -EINVAL;
490
491         if (!priv->phydev)
492                 return -ENODEV;
493
494         return phy_ethtool_ksettings_set(priv->phydev, cmd);
495 }
496
497 static int bcmgenet_set_rx_csum(struct net_device *dev,
498                                 netdev_features_t wanted)
499 {
500         struct bcmgenet_priv *priv = netdev_priv(dev);
501         u32 rbuf_chk_ctrl;
502         bool rx_csum_en;
503
504         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
505
506         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
507
508         /* enable rx checksumming */
509         if (rx_csum_en)
510                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
511         else
512                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
513         priv->desc_rxchk_en = rx_csum_en;
514
515         /* If UniMAC forwards CRC, we need to skip over it to get
516          * a valid CHK bit to be set in the per-packet status word
517         */
518         if (rx_csum_en && priv->crc_fwd_en)
519                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
520         else
521                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
522
523         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
524
525         return 0;
526 }
527
528 static int bcmgenet_set_tx_csum(struct net_device *dev,
529                                 netdev_features_t wanted)
530 {
531         struct bcmgenet_priv *priv = netdev_priv(dev);
532         bool desc_64b_en;
533         u32 tbuf_ctrl, rbuf_ctrl;
534
535         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
536         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
537
538         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
539
540         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
541         if (desc_64b_en) {
542                 tbuf_ctrl |= RBUF_64B_EN;
543                 rbuf_ctrl |= RBUF_64B_EN;
544         } else {
545                 tbuf_ctrl &= ~RBUF_64B_EN;
546                 rbuf_ctrl &= ~RBUF_64B_EN;
547         }
548         priv->desc_64b_en = desc_64b_en;
549
550         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
551         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
552
553         return 0;
554 }
555
556 static int bcmgenet_set_features(struct net_device *dev,
557                                  netdev_features_t features)
558 {
559         netdev_features_t changed = features ^ dev->features;
560         netdev_features_t wanted = dev->wanted_features;
561         int ret = 0;
562
563         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
564                 ret = bcmgenet_set_tx_csum(dev, wanted);
565         if (changed & (NETIF_F_RXCSUM))
566                 ret = bcmgenet_set_rx_csum(dev, wanted);
567
568         return ret;
569 }
570
571 static u32 bcmgenet_get_msglevel(struct net_device *dev)
572 {
573         struct bcmgenet_priv *priv = netdev_priv(dev);
574
575         return priv->msg_enable;
576 }
577
578 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
579 {
580         struct bcmgenet_priv *priv = netdev_priv(dev);
581
582         priv->msg_enable = level;
583 }
584
585 static int bcmgenet_get_coalesce(struct net_device *dev,
586                                  struct ethtool_coalesce *ec)
587 {
588         struct bcmgenet_priv *priv = netdev_priv(dev);
589
590         ec->tx_max_coalesced_frames =
591                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
592                                          DMA_MBUF_DONE_THRESH);
593         ec->rx_max_coalesced_frames =
594                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
595                                          DMA_MBUF_DONE_THRESH);
596         ec->rx_coalesce_usecs =
597                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
598
599         return 0;
600 }
601
602 static int bcmgenet_set_coalesce(struct net_device *dev,
603                                  struct ethtool_coalesce *ec)
604 {
605         struct bcmgenet_priv *priv = netdev_priv(dev);
606         unsigned int i;
607         u32 reg;
608
609         /* Base system clock is 125Mhz, DMA timeout is this reference clock
610          * divided by 1024, which yields roughly 8.192us, our maximum value
611          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
612          */
613         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
614             ec->tx_max_coalesced_frames == 0 ||
615             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
617                 return -EINVAL;
618
619         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
620                 return -EINVAL;
621
622         /* GENET TDMA hardware does not support a configurable timeout, but will
623          * always generate an interrupt either after MBDONE packets have been
624          * transmitted, or when the ring is emtpy.
625          */
626         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
627             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
628                 return -EOPNOTSUPP;
629
630         /* Program all TX queues with the same values, as there is no
631          * ethtool knob to do coalescing on a per-queue basis
632          */
633         for (i = 0; i < priv->hw_params->tx_queues; i++)
634                 bcmgenet_tdma_ring_writel(priv, i,
635                                           ec->tx_max_coalesced_frames,
636                                           DMA_MBUF_DONE_THRESH);
637         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
638                                   ec->tx_max_coalesced_frames,
639                                   DMA_MBUF_DONE_THRESH);
640
641         for (i = 0; i < priv->hw_params->rx_queues; i++) {
642                 bcmgenet_rdma_ring_writel(priv, i,
643                                           ec->rx_max_coalesced_frames,
644                                           DMA_MBUF_DONE_THRESH);
645
646                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
647                 reg &= ~DMA_TIMEOUT_MASK;
648                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
649                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
650         }
651
652         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
653                                   ec->rx_max_coalesced_frames,
654                                   DMA_MBUF_DONE_THRESH);
655
656         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
657         reg &= ~DMA_TIMEOUT_MASK;
658         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
659         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
660
661         return 0;
662 }
663
664 /* standard ethtool support functions. */
665 enum bcmgenet_stat_type {
666         BCMGENET_STAT_NETDEV = -1,
667         BCMGENET_STAT_MIB_RX,
668         BCMGENET_STAT_MIB_TX,
669         BCMGENET_STAT_RUNT,
670         BCMGENET_STAT_MISC,
671         BCMGENET_STAT_SOFT,
672 };
673
674 struct bcmgenet_stats {
675         char stat_string[ETH_GSTRING_LEN];
676         int stat_sizeof;
677         int stat_offset;
678         enum bcmgenet_stat_type type;
679         /* reg offset from UMAC base for misc counters */
680         u16 reg_offset;
681 };
682
683 #define STAT_NETDEV(m) { \
684         .stat_string = __stringify(m), \
685         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
686         .stat_offset = offsetof(struct net_device_stats, m), \
687         .type = BCMGENET_STAT_NETDEV, \
688 }
689
690 #define STAT_GENET_MIB(str, m, _type) { \
691         .stat_string = str, \
692         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
693         .stat_offset = offsetof(struct bcmgenet_priv, m), \
694         .type = _type, \
695 }
696
697 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
698 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
699 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
700 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
701
702 #define STAT_GENET_MISC(str, m, offset) { \
703         .stat_string = str, \
704         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
705         .stat_offset = offsetof(struct bcmgenet_priv, m), \
706         .type = BCMGENET_STAT_MISC, \
707         .reg_offset = offset, \
708 }
709
710
711 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
712  * between the end of TX stats and the beginning of the RX RUNT
713  */
714 #define BCMGENET_STAT_OFFSET    0xc
715
716 /* Hardware counters must be kept in sync because the order/offset
717  * is important here (order in structure declaration = order in hardware)
718  */
719 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
720         /* general stats */
721         STAT_NETDEV(rx_packets),
722         STAT_NETDEV(tx_packets),
723         STAT_NETDEV(rx_bytes),
724         STAT_NETDEV(tx_bytes),
725         STAT_NETDEV(rx_errors),
726         STAT_NETDEV(tx_errors),
727         STAT_NETDEV(rx_dropped),
728         STAT_NETDEV(tx_dropped),
729         STAT_NETDEV(multicast),
730         /* UniMAC RSV counters */
731         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
732         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
733         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
734         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
735         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
736         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
737         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
738         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
739         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
740         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
741         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
742         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
743         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
744         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
745         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
746         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
747         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
748         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
749         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
750         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
751         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
752         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
753         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
754         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
755         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
756         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
757         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
758         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
759         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
760         /* UniMAC TSV counters */
761         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
762         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
763         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
764         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
765         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
766         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
767         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
768         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
769         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
770         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
771         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
772         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
773         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
774         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
775         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
776         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
777         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
778         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
779         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
780         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
781         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
782         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
783         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
784         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
785         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
786         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
787         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
788         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
789         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
790         /* UniMAC RUNT counters */
791         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
792         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
793         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
794         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
795         /* Misc UniMAC counters */
796         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
797                         UMAC_RBUF_OVFL_CNT_V1),
798         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
799                         UMAC_RBUF_ERR_CNT_V1),
800         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
801         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
802         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
803         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
804 };
805
806 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
807
808 static void bcmgenet_get_drvinfo(struct net_device *dev,
809                                  struct ethtool_drvinfo *info)
810 {
811         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
812         strlcpy(info->version, "v2.0", sizeof(info->version));
813 }
814
815 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
816 {
817         switch (string_set) {
818         case ETH_SS_STATS:
819                 return BCMGENET_STATS_LEN;
820         default:
821                 return -EOPNOTSUPP;
822         }
823 }
824
825 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
826                                  u8 *data)
827 {
828         int i;
829
830         switch (stringset) {
831         case ETH_SS_STATS:
832                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
833                         memcpy(data + i * ETH_GSTRING_LEN,
834                                bcmgenet_gstrings_stats[i].stat_string,
835                                ETH_GSTRING_LEN);
836                 }
837                 break;
838         }
839 }
840
841 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
842 {
843         u16 new_offset;
844         u32 val;
845
846         switch (offset) {
847         case UMAC_RBUF_OVFL_CNT_V1:
848                 if (GENET_IS_V2(priv))
849                         new_offset = RBUF_OVFL_CNT_V2;
850                 else
851                         new_offset = RBUF_OVFL_CNT_V3PLUS;
852
853                 val = bcmgenet_rbuf_readl(priv, new_offset);
854                 /* clear if overflowed */
855                 if (val == ~0)
856                         bcmgenet_rbuf_writel(priv, 0, new_offset);
857                 break;
858         case UMAC_RBUF_ERR_CNT_V1:
859                 if (GENET_IS_V2(priv))
860                         new_offset = RBUF_ERR_CNT_V2;
861                 else
862                         new_offset = RBUF_ERR_CNT_V3PLUS;
863
864                 val = bcmgenet_rbuf_readl(priv, new_offset);
865                 /* clear if overflowed */
866                 if (val == ~0)
867                         bcmgenet_rbuf_writel(priv, 0, new_offset);
868                 break;
869         default:
870                 val = bcmgenet_umac_readl(priv, offset);
871                 /* clear if overflowed */
872                 if (val == ~0)
873                         bcmgenet_umac_writel(priv, 0, offset);
874                 break;
875         }
876
877         return val;
878 }
879
880 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
881 {
882         int i, j = 0;
883
884         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
885                 const struct bcmgenet_stats *s;
886                 u8 offset = 0;
887                 u32 val = 0;
888                 char *p;
889
890                 s = &bcmgenet_gstrings_stats[i];
891                 switch (s->type) {
892                 case BCMGENET_STAT_NETDEV:
893                 case BCMGENET_STAT_SOFT:
894                         continue;
895                 case BCMGENET_STAT_RUNT:
896                         offset += BCMGENET_STAT_OFFSET;
897                         /* fall through */
898                 case BCMGENET_STAT_MIB_TX:
899                         offset += BCMGENET_STAT_OFFSET;
900                         /* fall through */
901                 case BCMGENET_STAT_MIB_RX:
902                         val = bcmgenet_umac_readl(priv,
903                                                   UMAC_MIB_START + j + offset);
904                         offset = 0;     /* Reset Offset */
905                         break;
906                 case BCMGENET_STAT_MISC:
907                         if (GENET_IS_V1(priv)) {
908                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
909                                 /* clear if overflowed */
910                                 if (val == ~0)
911                                         bcmgenet_umac_writel(priv, 0,
912                                                              s->reg_offset);
913                         } else {
914                                 val = bcmgenet_update_stat_misc(priv,
915                                                                 s->reg_offset);
916                         }
917                         break;
918                 }
919
920                 j += s->stat_sizeof;
921                 p = (char *)priv + s->stat_offset;
922                 *(u32 *)p = val;
923         }
924 }
925
926 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
927                                        struct ethtool_stats *stats,
928                                        u64 *data)
929 {
930         struct bcmgenet_priv *priv = netdev_priv(dev);
931         int i;
932
933         if (netif_running(dev))
934                 bcmgenet_update_mib_counters(priv);
935
936         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
937                 const struct bcmgenet_stats *s;
938                 char *p;
939
940                 s = &bcmgenet_gstrings_stats[i];
941                 if (s->type == BCMGENET_STAT_NETDEV)
942                         p = (char *)&dev->stats;
943                 else
944                         p = (char *)priv;
945                 p += s->stat_offset;
946                 if (sizeof(unsigned long) != sizeof(u32) &&
947                     s->stat_sizeof == sizeof(unsigned long))
948                         data[i] = *(unsigned long *)p;
949                 else
950                         data[i] = *(u32 *)p;
951         }
952 }
953
954 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
955 {
956         struct bcmgenet_priv *priv = netdev_priv(dev);
957         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
958         u32 reg;
959
960         if (enable && !priv->clk_eee_enabled) {
961                 clk_prepare_enable(priv->clk_eee);
962                 priv->clk_eee_enabled = true;
963         }
964
965         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
966         if (enable)
967                 reg |= EEE_EN;
968         else
969                 reg &= ~EEE_EN;
970         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
971
972         /* Enable EEE and switch to a 27Mhz clock automatically */
973         reg = __raw_readl(priv->base + off);
974         if (enable)
975                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
976         else
977                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
978         __raw_writel(reg, priv->base + off);
979
980         /* Do the same for thing for RBUF */
981         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
982         if (enable)
983                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
984         else
985                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
986         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
987
988         if (!enable && priv->clk_eee_enabled) {
989                 clk_disable_unprepare(priv->clk_eee);
990                 priv->clk_eee_enabled = false;
991         }
992
993         priv->eee.eee_enabled = enable;
994         priv->eee.eee_active = enable;
995 }
996
997 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
998 {
999         struct bcmgenet_priv *priv = netdev_priv(dev);
1000         struct ethtool_eee *p = &priv->eee;
1001
1002         if (GENET_IS_V1(priv))
1003                 return -EOPNOTSUPP;
1004
1005         e->eee_enabled = p->eee_enabled;
1006         e->eee_active = p->eee_active;
1007         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1008
1009         return phy_ethtool_get_eee(priv->phydev, e);
1010 }
1011
1012 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1013 {
1014         struct bcmgenet_priv *priv = netdev_priv(dev);
1015         struct ethtool_eee *p = &priv->eee;
1016         int ret = 0;
1017
1018         if (GENET_IS_V1(priv))
1019                 return -EOPNOTSUPP;
1020
1021         p->eee_enabled = e->eee_enabled;
1022
1023         if (!p->eee_enabled) {
1024                 bcmgenet_eee_enable_set(dev, false);
1025         } else {
1026                 ret = phy_init_eee(priv->phydev, 0);
1027                 if (ret) {
1028                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1029                         return ret;
1030                 }
1031
1032                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1033                 bcmgenet_eee_enable_set(dev, true);
1034         }
1035
1036         return phy_ethtool_set_eee(priv->phydev, e);
1037 }
1038
1039 /* standard ethtool support functions. */
1040 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1041         .begin                  = bcmgenet_begin,
1042         .complete               = bcmgenet_complete,
1043         .get_strings            = bcmgenet_get_strings,
1044         .get_sset_count         = bcmgenet_get_sset_count,
1045         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1046         .get_drvinfo            = bcmgenet_get_drvinfo,
1047         .get_link               = ethtool_op_get_link,
1048         .get_msglevel           = bcmgenet_get_msglevel,
1049         .set_msglevel           = bcmgenet_set_msglevel,
1050         .get_wol                = bcmgenet_get_wol,
1051         .set_wol                = bcmgenet_set_wol,
1052         .get_eee                = bcmgenet_get_eee,
1053         .set_eee                = bcmgenet_set_eee,
1054         .nway_reset             = phy_ethtool_nway_reset,
1055         .get_coalesce           = bcmgenet_get_coalesce,
1056         .set_coalesce           = bcmgenet_set_coalesce,
1057         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1058         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1059 };
1060
1061 /* Power down the unimac, based on mode. */
1062 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1063                                 enum bcmgenet_power_mode mode)
1064 {
1065         int ret = 0;
1066         u32 reg;
1067
1068         switch (mode) {
1069         case GENET_POWER_CABLE_SENSE:
1070                 phy_detach(priv->phydev);
1071                 break;
1072
1073         case GENET_POWER_WOL_MAGIC:
1074                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1075                 break;
1076
1077         case GENET_POWER_PASSIVE:
1078                 /* Power down LED */
1079                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1080                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1081                         reg |= (EXT_PWR_DOWN_PHY |
1082                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1083                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1084
1085                         bcmgenet_phy_power_set(priv->dev, false);
1086                 }
1087                 break;
1088         default:
1089                 break;
1090         }
1091
1092         return 0;
1093 }
1094
1095 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1096                               enum bcmgenet_power_mode mode)
1097 {
1098         u32 reg;
1099
1100         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1101                 return;
1102
1103         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1104
1105         switch (mode) {
1106         case GENET_POWER_PASSIVE:
1107                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1108                                 EXT_PWR_DOWN_BIAS);
1109                 /* fallthrough */
1110         case GENET_POWER_CABLE_SENSE:
1111                 /* enable APD */
1112                 reg |= EXT_PWR_DN_EN_LD;
1113                 break;
1114         case GENET_POWER_WOL_MAGIC:
1115                 bcmgenet_wol_power_up_cfg(priv, mode);
1116                 return;
1117         default:
1118                 break;
1119         }
1120
1121         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1122         if (mode == GENET_POWER_PASSIVE) {
1123                 bcmgenet_phy_power_set(priv->dev, true);
1124                 bcmgenet_mii_reset(priv->dev);
1125         }
1126 }
1127
1128 /* ioctl handle special commands that are not present in ethtool. */
1129 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1130 {
1131         struct bcmgenet_priv *priv = netdev_priv(dev);
1132         int val = 0;
1133
1134         if (!netif_running(dev))
1135                 return -EINVAL;
1136
1137         switch (cmd) {
1138         case SIOCGMIIPHY:
1139         case SIOCGMIIREG:
1140         case SIOCSMIIREG:
1141                 if (!priv->phydev)
1142                         val = -ENODEV;
1143                 else
1144                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
1145                 break;
1146
1147         default:
1148                 val = -EINVAL;
1149                 break;
1150         }
1151
1152         return val;
1153 }
1154
1155 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1156                                          struct bcmgenet_tx_ring *ring)
1157 {
1158         struct enet_cb *tx_cb_ptr;
1159
1160         tx_cb_ptr = ring->cbs;
1161         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1162
1163         /* Advancing local write pointer */
1164         if (ring->write_ptr == ring->end_ptr)
1165                 ring->write_ptr = ring->cb_ptr;
1166         else
1167                 ring->write_ptr++;
1168
1169         return tx_cb_ptr;
1170 }
1171
1172 /* Simple helper to free a control block's resources */
1173 static void bcmgenet_free_cb(struct enet_cb *cb)
1174 {
1175         dev_kfree_skb_any(cb->skb);
1176         cb->skb = NULL;
1177         dma_unmap_addr_set(cb, dma_addr, 0);
1178 }
1179
1180 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1181 {
1182         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1183                                  INTRL2_CPU_MASK_SET);
1184 }
1185
1186 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1187 {
1188         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1189                                  INTRL2_CPU_MASK_CLEAR);
1190 }
1191
1192 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1193 {
1194         bcmgenet_intrl2_1_writel(ring->priv,
1195                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1196                                  INTRL2_CPU_MASK_SET);
1197 }
1198
1199 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1200 {
1201         bcmgenet_intrl2_1_writel(ring->priv,
1202                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1203                                  INTRL2_CPU_MASK_CLEAR);
1204 }
1205
1206 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1207 {
1208         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1209                                  INTRL2_CPU_MASK_SET);
1210 }
1211
1212 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1213 {
1214         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1215                                  INTRL2_CPU_MASK_CLEAR);
1216 }
1217
1218 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1219 {
1220         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1221                                  INTRL2_CPU_MASK_CLEAR);
1222 }
1223
1224 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1225 {
1226         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1227                                  INTRL2_CPU_MASK_SET);
1228 }
1229
1230 /* Unlocked version of the reclaim routine */
1231 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1232                                           struct bcmgenet_tx_ring *ring)
1233 {
1234         struct bcmgenet_priv *priv = netdev_priv(dev);
1235         struct device *kdev = &priv->pdev->dev;
1236         struct enet_cb *tx_cb_ptr;
1237         unsigned int pkts_compl = 0;
1238         unsigned int bytes_compl = 0;
1239         unsigned int c_index;
1240         unsigned int txbds_ready;
1241         unsigned int txbds_processed = 0;
1242
1243         /* Compute how many buffers are transmitted since last xmit call */
1244         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1245         c_index &= DMA_C_INDEX_MASK;
1246
1247         if (likely(c_index >= ring->c_index))
1248                 txbds_ready = c_index - ring->c_index;
1249         else
1250                 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1251
1252         netif_dbg(priv, tx_done, dev,
1253                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1254                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1255
1256         /* Reclaim transmitted buffers */
1257         while (txbds_processed < txbds_ready) {
1258                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1259                 if (tx_cb_ptr->skb) {
1260                         pkts_compl++;
1261                         bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1262                         dma_unmap_single(kdev,
1263                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1264                                          dma_unmap_len(tx_cb_ptr, dma_len),
1265                                          DMA_TO_DEVICE);
1266                         bcmgenet_free_cb(tx_cb_ptr);
1267                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1268                         dma_unmap_page(kdev,
1269                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1270                                        dma_unmap_len(tx_cb_ptr, dma_len),
1271                                        DMA_TO_DEVICE);
1272                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1273                 }
1274
1275                 txbds_processed++;
1276                 if (likely(ring->clean_ptr < ring->end_ptr))
1277                         ring->clean_ptr++;
1278                 else
1279                         ring->clean_ptr = ring->cb_ptr;
1280         }
1281
1282         ring->free_bds += txbds_processed;
1283         ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1284
1285         dev->stats.tx_packets += pkts_compl;
1286         dev->stats.tx_bytes += bytes_compl;
1287
1288         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1289                                   pkts_compl, bytes_compl);
1290
1291         return pkts_compl;
1292 }
1293
1294 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1295                                 struct bcmgenet_tx_ring *ring)
1296 {
1297         unsigned int released;
1298         unsigned long flags;
1299
1300         spin_lock_irqsave(&ring->lock, flags);
1301         released = __bcmgenet_tx_reclaim(dev, ring);
1302         spin_unlock_irqrestore(&ring->lock, flags);
1303
1304         return released;
1305 }
1306
1307 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1308 {
1309         struct bcmgenet_tx_ring *ring =
1310                 container_of(napi, struct bcmgenet_tx_ring, napi);
1311         unsigned int work_done = 0;
1312         struct netdev_queue *txq;
1313         unsigned long flags;
1314
1315         spin_lock_irqsave(&ring->lock, flags);
1316         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1317         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1318                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1319                 netif_tx_wake_queue(txq);
1320         }
1321         spin_unlock_irqrestore(&ring->lock, flags);
1322
1323         if (work_done == 0) {
1324                 napi_complete(napi);
1325                 ring->int_enable(ring);
1326
1327                 return 0;
1328         }
1329
1330         return budget;
1331 }
1332
1333 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1334 {
1335         struct bcmgenet_priv *priv = netdev_priv(dev);
1336         int i;
1337
1338         if (netif_is_multiqueue(dev)) {
1339                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1340                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1341         }
1342
1343         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1344 }
1345
1346 /* Transmits a single SKB (either head of a fragment or a single SKB)
1347  * caller must hold priv->lock
1348  */
1349 static int bcmgenet_xmit_single(struct net_device *dev,
1350                                 struct sk_buff *skb,
1351                                 u16 dma_desc_flags,
1352                                 struct bcmgenet_tx_ring *ring)
1353 {
1354         struct bcmgenet_priv *priv = netdev_priv(dev);
1355         struct device *kdev = &priv->pdev->dev;
1356         struct enet_cb *tx_cb_ptr;
1357         unsigned int skb_len;
1358         dma_addr_t mapping;
1359         u32 length_status;
1360         int ret;
1361
1362         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1363
1364         if (unlikely(!tx_cb_ptr))
1365                 BUG();
1366
1367         tx_cb_ptr->skb = skb;
1368
1369         skb_len = skb_headlen(skb);
1370
1371         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1372         ret = dma_mapping_error(kdev, mapping);
1373         if (ret) {
1374                 priv->mib.tx_dma_failed++;
1375                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1376                 dev_kfree_skb(skb);
1377                 return ret;
1378         }
1379
1380         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1381         dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1382         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1383                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1384                         DMA_TX_APPEND_CRC;
1385
1386         if (skb->ip_summed == CHECKSUM_PARTIAL)
1387                 length_status |= DMA_TX_DO_CSUM;
1388
1389         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1390
1391         return 0;
1392 }
1393
1394 /* Transmit a SKB fragment */
1395 static int bcmgenet_xmit_frag(struct net_device *dev,
1396                               skb_frag_t *frag,
1397                               u16 dma_desc_flags,
1398                               struct bcmgenet_tx_ring *ring)
1399 {
1400         struct bcmgenet_priv *priv = netdev_priv(dev);
1401         struct device *kdev = &priv->pdev->dev;
1402         struct enet_cb *tx_cb_ptr;
1403         unsigned int frag_size;
1404         dma_addr_t mapping;
1405         int ret;
1406
1407         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1408
1409         if (unlikely(!tx_cb_ptr))
1410                 BUG();
1411
1412         tx_cb_ptr->skb = NULL;
1413
1414         frag_size = skb_frag_size(frag);
1415
1416         mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1417         ret = dma_mapping_error(kdev, mapping);
1418         if (ret) {
1419                 priv->mib.tx_dma_failed++;
1420                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1421                           __func__);
1422                 return ret;
1423         }
1424
1425         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1426         dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1427
1428         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1429                     (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1430                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1431
1432         return 0;
1433 }
1434
1435 /* Reallocate the SKB to put enough headroom in front of it and insert
1436  * the transmit checksum offsets in the descriptors
1437  */
1438 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1439                                             struct sk_buff *skb)
1440 {
1441         struct status_64 *status = NULL;
1442         struct sk_buff *new_skb;
1443         u16 offset;
1444         u8 ip_proto;
1445         u16 ip_ver;
1446         u32 tx_csum_info;
1447
1448         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1449                 /* If 64 byte status block enabled, must make sure skb has
1450                  * enough headroom for us to insert 64B status block.
1451                  */
1452                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1453                 dev_kfree_skb(skb);
1454                 if (!new_skb) {
1455                         dev->stats.tx_dropped++;
1456                         return NULL;
1457                 }
1458                 skb = new_skb;
1459         }
1460
1461         skb_push(skb, sizeof(*status));
1462         status = (struct status_64 *)skb->data;
1463
1464         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1465                 ip_ver = htons(skb->protocol);
1466                 switch (ip_ver) {
1467                 case ETH_P_IP:
1468                         ip_proto = ip_hdr(skb)->protocol;
1469                         break;
1470                 case ETH_P_IPV6:
1471                         ip_proto = ipv6_hdr(skb)->nexthdr;
1472                         break;
1473                 default:
1474                         return skb;
1475                 }
1476
1477                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1478                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1479                                 (offset + skb->csum_offset);
1480
1481                 /* Set the length valid bit for TCP and UDP and just set
1482                  * the special UDP flag for IPv4, else just set to 0.
1483                  */
1484                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1485                         tx_csum_info |= STATUS_TX_CSUM_LV;
1486                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1487                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1488                 } else {
1489                         tx_csum_info = 0;
1490                 }
1491
1492                 status->tx_csum_info = tx_csum_info;
1493         }
1494
1495         return skb;
1496 }
1497
1498 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1499 {
1500         struct bcmgenet_priv *priv = netdev_priv(dev);
1501         struct bcmgenet_tx_ring *ring = NULL;
1502         struct netdev_queue *txq;
1503         unsigned long flags = 0;
1504         int nr_frags, index;
1505         u16 dma_desc_flags;
1506         int ret;
1507         int i;
1508
1509         index = skb_get_queue_mapping(skb);
1510         /* Mapping strategy:
1511          * queue_mapping = 0, unclassified, packet xmited through ring16
1512          * queue_mapping = 1, goes to ring 0. (highest priority queue
1513          * queue_mapping = 2, goes to ring 1.
1514          * queue_mapping = 3, goes to ring 2.
1515          * queue_mapping = 4, goes to ring 3.
1516          */
1517         if (index == 0)
1518                 index = DESC_INDEX;
1519         else
1520                 index -= 1;
1521
1522         ring = &priv->tx_rings[index];
1523         txq = netdev_get_tx_queue(dev, ring->queue);
1524
1525         nr_frags = skb_shinfo(skb)->nr_frags;
1526
1527         spin_lock_irqsave(&ring->lock, flags);
1528         if (ring->free_bds <= (nr_frags + 1)) {
1529                 if (!netif_tx_queue_stopped(txq)) {
1530                         netif_tx_stop_queue(txq);
1531                         netdev_err(dev,
1532                                    "%s: tx ring %d full when queue %d awake\n",
1533                                    __func__, index, ring->queue);
1534                 }
1535                 ret = NETDEV_TX_BUSY;
1536                 goto out;
1537         }
1538
1539         if (skb_padto(skb, ETH_ZLEN)) {
1540                 ret = NETDEV_TX_OK;
1541                 goto out;
1542         }
1543
1544         /* Retain how many bytes will be sent on the wire, without TSB inserted
1545          * by transmit checksum offload
1546          */
1547         GENET_CB(skb)->bytes_sent = skb->len;
1548
1549         /* set the SKB transmit checksum */
1550         if (priv->desc_64b_en) {
1551                 skb = bcmgenet_put_tx_csum(dev, skb);
1552                 if (!skb) {
1553                         ret = NETDEV_TX_OK;
1554                         goto out;
1555                 }
1556         }
1557
1558         dma_desc_flags = DMA_SOP;
1559         if (nr_frags == 0)
1560                 dma_desc_flags |= DMA_EOP;
1561
1562         /* Transmit single SKB or head of fragment list */
1563         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1564         if (ret) {
1565                 ret = NETDEV_TX_OK;
1566                 goto out;
1567         }
1568
1569         /* xmit fragment */
1570         for (i = 0; i < nr_frags; i++) {
1571                 ret = bcmgenet_xmit_frag(dev,
1572                                          &skb_shinfo(skb)->frags[i],
1573                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1574                                          ring);
1575                 if (ret) {
1576                         ret = NETDEV_TX_OK;
1577                         goto out;
1578                 }
1579         }
1580
1581         skb_tx_timestamp(skb);
1582
1583         /* Decrement total BD count and advance our write pointer */
1584         ring->free_bds -= nr_frags + 1;
1585         ring->prod_index += nr_frags + 1;
1586         ring->prod_index &= DMA_P_INDEX_MASK;
1587
1588         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1589
1590         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1591                 netif_tx_stop_queue(txq);
1592
1593         if (!skb->xmit_more || netif_xmit_stopped(txq))
1594                 /* Packets are ready, update producer index */
1595                 bcmgenet_tdma_ring_writel(priv, ring->index,
1596                                           ring->prod_index, TDMA_PROD_INDEX);
1597 out:
1598         spin_unlock_irqrestore(&ring->lock, flags);
1599
1600         return ret;
1601 }
1602
1603 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1604                                           struct enet_cb *cb)
1605 {
1606         struct device *kdev = &priv->pdev->dev;
1607         struct sk_buff *skb;
1608         struct sk_buff *rx_skb;
1609         dma_addr_t mapping;
1610
1611         /* Allocate a new Rx skb */
1612         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1613         if (!skb) {
1614                 priv->mib.alloc_rx_buff_failed++;
1615                 netif_err(priv, rx_err, priv->dev,
1616                           "%s: Rx skb allocation failed\n", __func__);
1617                 return NULL;
1618         }
1619
1620         /* DMA-map the new Rx skb */
1621         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1622                                  DMA_FROM_DEVICE);
1623         if (dma_mapping_error(kdev, mapping)) {
1624                 priv->mib.rx_dma_failed++;
1625                 dev_kfree_skb_any(skb);
1626                 netif_err(priv, rx_err, priv->dev,
1627                           "%s: Rx skb DMA mapping failed\n", __func__);
1628                 return NULL;
1629         }
1630
1631         /* Grab the current Rx skb from the ring and DMA-unmap it */
1632         rx_skb = cb->skb;
1633         if (likely(rx_skb))
1634                 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1635                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1636
1637         /* Put the new Rx skb on the ring */
1638         cb->skb = skb;
1639         dma_unmap_addr_set(cb, dma_addr, mapping);
1640         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1641
1642         /* Return the current Rx skb to caller */
1643         return rx_skb;
1644 }
1645
1646 /* bcmgenet_desc_rx - descriptor based rx process.
1647  * this could be called from bottom half, or from NAPI polling method.
1648  */
1649 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1650                                      unsigned int budget)
1651 {
1652         struct bcmgenet_priv *priv = ring->priv;
1653         struct net_device *dev = priv->dev;
1654         struct enet_cb *cb;
1655         struct sk_buff *skb;
1656         u32 dma_length_status;
1657         unsigned long dma_flag;
1658         int len;
1659         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1660         unsigned int p_index;
1661         unsigned int discards;
1662         unsigned int chksum_ok = 0;
1663
1664         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1665
1666         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1667                    DMA_P_INDEX_DISCARD_CNT_MASK;
1668         if (discards > ring->old_discards) {
1669                 discards = discards - ring->old_discards;
1670                 dev->stats.rx_missed_errors += discards;
1671                 dev->stats.rx_errors += discards;
1672                 ring->old_discards += discards;
1673
1674                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1675                 if (ring->old_discards >= 0xC000) {
1676                         ring->old_discards = 0;
1677                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1678                                                   RDMA_PROD_INDEX);
1679                 }
1680         }
1681
1682         p_index &= DMA_P_INDEX_MASK;
1683
1684         if (likely(p_index >= ring->c_index))
1685                 rxpkttoprocess = p_index - ring->c_index;
1686         else
1687                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1688                                  p_index;
1689
1690         netif_dbg(priv, rx_status, dev,
1691                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1692
1693         while ((rxpktprocessed < rxpkttoprocess) &&
1694                (rxpktprocessed < budget)) {
1695                 cb = &priv->rx_cbs[ring->read_ptr];
1696                 skb = bcmgenet_rx_refill(priv, cb);
1697
1698                 if (unlikely(!skb)) {
1699                         dev->stats.rx_dropped++;
1700                         goto next;
1701                 }
1702
1703                 if (!priv->desc_64b_en) {
1704                         dma_length_status =
1705                                 dmadesc_get_length_status(priv, cb->bd_addr);
1706                 } else {
1707                         struct status_64 *status;
1708
1709                         status = (struct status_64 *)skb->data;
1710                         dma_length_status = status->length_status;
1711                 }
1712
1713                 /* DMA flags and length are still valid no matter how
1714                  * we got the Receive Status Vector (64B RSB or register)
1715                  */
1716                 dma_flag = dma_length_status & 0xffff;
1717                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1718
1719                 netif_dbg(priv, rx_status, dev,
1720                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1721                           __func__, p_index, ring->c_index,
1722                           ring->read_ptr, dma_length_status);
1723
1724                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1725                         netif_err(priv, rx_status, dev,
1726                                   "dropping fragmented packet!\n");
1727                         dev->stats.rx_errors++;
1728                         dev_kfree_skb_any(skb);
1729                         goto next;
1730                 }
1731
1732                 /* report errors */
1733                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1734                                                 DMA_RX_OV |
1735                                                 DMA_RX_NO |
1736                                                 DMA_RX_LG |
1737                                                 DMA_RX_RXER))) {
1738                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1739                                   (unsigned int)dma_flag);
1740                         if (dma_flag & DMA_RX_CRC_ERROR)
1741                                 dev->stats.rx_crc_errors++;
1742                         if (dma_flag & DMA_RX_OV)
1743                                 dev->stats.rx_over_errors++;
1744                         if (dma_flag & DMA_RX_NO)
1745                                 dev->stats.rx_frame_errors++;
1746                         if (dma_flag & DMA_RX_LG)
1747                                 dev->stats.rx_length_errors++;
1748                         dev->stats.rx_errors++;
1749                         dev_kfree_skb_any(skb);
1750                         goto next;
1751                 } /* error packet */
1752
1753                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1754                              priv->desc_rxchk_en;
1755
1756                 skb_put(skb, len);
1757                 if (priv->desc_64b_en) {
1758                         skb_pull(skb, 64);
1759                         len -= 64;
1760                 }
1761
1762                 if (likely(chksum_ok))
1763                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1764
1765                 /* remove hardware 2bytes added for IP alignment */
1766                 skb_pull(skb, 2);
1767                 len -= 2;
1768
1769                 if (priv->crc_fwd_en) {
1770                         skb_trim(skb, len - ETH_FCS_LEN);
1771                         len -= ETH_FCS_LEN;
1772                 }
1773
1774                 /*Finish setting up the received SKB and send it to the kernel*/
1775                 skb->protocol = eth_type_trans(skb, priv->dev);
1776                 dev->stats.rx_packets++;
1777                 dev->stats.rx_bytes += len;
1778                 if (dma_flag & DMA_RX_MULT)
1779                         dev->stats.multicast++;
1780
1781                 /* Notify kernel */
1782                 napi_gro_receive(&ring->napi, skb);
1783                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1784
1785 next:
1786                 rxpktprocessed++;
1787                 if (likely(ring->read_ptr < ring->end_ptr))
1788                         ring->read_ptr++;
1789                 else
1790                         ring->read_ptr = ring->cb_ptr;
1791
1792                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1793                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1794         }
1795
1796         return rxpktprocessed;
1797 }
1798
1799 /* Rx NAPI polling method */
1800 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1801 {
1802         struct bcmgenet_rx_ring *ring = container_of(napi,
1803                         struct bcmgenet_rx_ring, napi);
1804         unsigned int work_done;
1805
1806         work_done = bcmgenet_desc_rx(ring, budget);
1807
1808         if (work_done < budget) {
1809                 napi_complete_done(napi, work_done);
1810                 ring->int_enable(ring);
1811         }
1812
1813         return work_done;
1814 }
1815
1816 /* Assign skb to RX DMA descriptor. */
1817 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1818                                      struct bcmgenet_rx_ring *ring)
1819 {
1820         struct enet_cb *cb;
1821         struct sk_buff *skb;
1822         int i;
1823
1824         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1825
1826         /* loop here for each buffer needing assign */
1827         for (i = 0; i < ring->size; i++) {
1828                 cb = ring->cbs + i;
1829                 skb = bcmgenet_rx_refill(priv, cb);
1830                 if (skb)
1831                         dev_kfree_skb_any(skb);
1832                 if (!cb->skb)
1833                         return -ENOMEM;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1840 {
1841         struct device *kdev = &priv->pdev->dev;
1842         struct enet_cb *cb;
1843         int i;
1844
1845         for (i = 0; i < priv->num_rx_bds; i++) {
1846                 cb = &priv->rx_cbs[i];
1847
1848                 if (dma_unmap_addr(cb, dma_addr)) {
1849                         dma_unmap_single(kdev,
1850                                          dma_unmap_addr(cb, dma_addr),
1851                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1852                         dma_unmap_addr_set(cb, dma_addr, 0);
1853                 }
1854
1855                 if (cb->skb)
1856                         bcmgenet_free_cb(cb);
1857         }
1858 }
1859
1860 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1861 {
1862         u32 reg;
1863
1864         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1865         if (enable)
1866                 reg |= mask;
1867         else
1868                 reg &= ~mask;
1869         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1870
1871         /* UniMAC stops on a packet boundary, wait for a full-size packet
1872          * to be processed
1873          */
1874         if (enable == 0)
1875                 usleep_range(1000, 2000);
1876 }
1877
1878 static int reset_umac(struct bcmgenet_priv *priv)
1879 {
1880         struct device *kdev = &priv->pdev->dev;
1881         unsigned int timeout = 0;
1882         u32 reg;
1883
1884         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1885         bcmgenet_rbuf_ctrl_set(priv, 0);
1886         udelay(10);
1887
1888         /* disable MAC while updating its registers */
1889         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1890
1891         /* issue soft reset, wait for it to complete */
1892         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1893         while (timeout++ < 1000) {
1894                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1895                 if (!(reg & CMD_SW_RESET))
1896                         return 0;
1897
1898                 udelay(1);
1899         }
1900
1901         if (timeout == 1000) {
1902                 dev_err(kdev,
1903                         "timeout waiting for MAC to come out of reset\n");
1904                 return -ETIMEDOUT;
1905         }
1906
1907         return 0;
1908 }
1909
1910 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1911 {
1912         /* Mask all interrupts.*/
1913         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1914         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1915         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1916         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1917         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1918         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1919 }
1920
1921 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1922 {
1923         u32 int0_enable = 0;
1924
1925         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1926          * and MoCA PHY
1927          */
1928         if (priv->internal_phy) {
1929                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1930         } else if (priv->ext_phy) {
1931                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1932         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1933                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1934                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1935         }
1936         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1937 }
1938
1939 static int init_umac(struct bcmgenet_priv *priv)
1940 {
1941         struct device *kdev = &priv->pdev->dev;
1942         int ret;
1943         u32 reg;
1944         u32 int0_enable = 0;
1945         u32 int1_enable = 0;
1946         int i;
1947
1948         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1949
1950         ret = reset_umac(priv);
1951         if (ret)
1952                 return ret;
1953
1954         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1955         /* clear tx/rx counter */
1956         bcmgenet_umac_writel(priv,
1957                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1958                              UMAC_MIB_CTRL);
1959         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1960
1961         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1962
1963         /* init rx registers, enable ip header optimization */
1964         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1965         reg |= RBUF_ALIGN_2B;
1966         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1967
1968         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1969                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1970
1971         bcmgenet_intr_disable(priv);
1972
1973         /* Enable Rx default queue 16 interrupts */
1974         int0_enable |= UMAC_IRQ_RXDMA_DONE;
1975
1976         /* Enable Tx default queue 16 interrupts */
1977         int0_enable |= UMAC_IRQ_TXDMA_DONE;
1978
1979         /* Configure backpressure vectors for MoCA */
1980         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1981                 reg = bcmgenet_bp_mc_get(priv);
1982                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1983
1984                 /* bp_mask: back pressure mask */
1985                 if (netif_is_multiqueue(priv->dev))
1986                         reg |= priv->hw_params->bp_in_mask;
1987                 else
1988                         reg &= ~priv->hw_params->bp_in_mask;
1989                 bcmgenet_bp_mc_set(priv, reg);
1990         }
1991
1992         /* Enable MDIO interrupts on GENET v3+ */
1993         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1994                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1995
1996         /* Enable Rx priority queue interrupts */
1997         for (i = 0; i < priv->hw_params->rx_queues; ++i)
1998                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1999
2000         /* Enable Tx priority queue interrupts */
2001         for (i = 0; i < priv->hw_params->tx_queues; ++i)
2002                 int1_enable |= (1 << i);
2003
2004         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2005         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2006
2007         /* Enable rx/tx engine.*/
2008         dev_dbg(kdev, "done init umac\n");
2009
2010         return 0;
2011 }
2012
2013 /* Initialize a Tx ring along with corresponding hardware registers */
2014 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2015                                   unsigned int index, unsigned int size,
2016                                   unsigned int start_ptr, unsigned int end_ptr)
2017 {
2018         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2019         u32 words_per_bd = WORDS_PER_BD(priv);
2020         u32 flow_period_val = 0;
2021
2022         spin_lock_init(&ring->lock);
2023         ring->priv = priv;
2024         ring->index = index;
2025         if (index == DESC_INDEX) {
2026                 ring->queue = 0;
2027                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2028                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2029         } else {
2030                 ring->queue = index + 1;
2031                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2032                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2033         }
2034         ring->cbs = priv->tx_cbs + start_ptr;
2035         ring->size = size;
2036         ring->clean_ptr = start_ptr;
2037         ring->c_index = 0;
2038         ring->free_bds = size;
2039         ring->write_ptr = start_ptr;
2040         ring->cb_ptr = start_ptr;
2041         ring->end_ptr = end_ptr - 1;
2042         ring->prod_index = 0;
2043
2044         /* Set flow period for ring != 16 */
2045         if (index != DESC_INDEX)
2046                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2047
2048         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2049         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2050         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2051         /* Disable rate control for now */
2052         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2053                                   TDMA_FLOW_PERIOD);
2054         bcmgenet_tdma_ring_writel(priv, index,
2055                                   ((size << DMA_RING_SIZE_SHIFT) |
2056                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2057
2058         /* Set start and end address, read and write pointers */
2059         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2060                                   DMA_START_ADDR);
2061         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2062                                   TDMA_READ_PTR);
2063         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2064                                   TDMA_WRITE_PTR);
2065         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2066                                   DMA_END_ADDR);
2067 }
2068
2069 /* Initialize a RDMA ring */
2070 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2071                                  unsigned int index, unsigned int size,
2072                                  unsigned int start_ptr, unsigned int end_ptr)
2073 {
2074         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2075         u32 words_per_bd = WORDS_PER_BD(priv);
2076         int ret;
2077
2078         ring->priv = priv;
2079         ring->index = index;
2080         if (index == DESC_INDEX) {
2081                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2082                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2083         } else {
2084                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2085                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2086         }
2087         ring->cbs = priv->rx_cbs + start_ptr;
2088         ring->size = size;
2089         ring->c_index = 0;
2090         ring->read_ptr = start_ptr;
2091         ring->cb_ptr = start_ptr;
2092         ring->end_ptr = end_ptr - 1;
2093
2094         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2095         if (ret)
2096                 return ret;
2097
2098         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2099         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2100         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2101         bcmgenet_rdma_ring_writel(priv, index,
2102                                   ((size << DMA_RING_SIZE_SHIFT) |
2103                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2104         bcmgenet_rdma_ring_writel(priv, index,
2105                                   (DMA_FC_THRESH_LO <<
2106                                    DMA_XOFF_THRESHOLD_SHIFT) |
2107                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2108
2109         /* Set start and end address, read and write pointers */
2110         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2111                                   DMA_START_ADDR);
2112         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2113                                   RDMA_READ_PTR);
2114         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2115                                   RDMA_WRITE_PTR);
2116         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2117                                   DMA_END_ADDR);
2118
2119         return ret;
2120 }
2121
2122 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2123 {
2124         unsigned int i;
2125         struct bcmgenet_tx_ring *ring;
2126
2127         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2128                 ring = &priv->tx_rings[i];
2129                 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2130         }
2131
2132         ring = &priv->tx_rings[DESC_INDEX];
2133         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2134 }
2135
2136 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2137 {
2138         unsigned int i;
2139         struct bcmgenet_tx_ring *ring;
2140
2141         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2142                 ring = &priv->tx_rings[i];
2143                 napi_enable(&ring->napi);
2144         }
2145
2146         ring = &priv->tx_rings[DESC_INDEX];
2147         napi_enable(&ring->napi);
2148 }
2149
2150 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2151 {
2152         unsigned int i;
2153         struct bcmgenet_tx_ring *ring;
2154
2155         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2156                 ring = &priv->tx_rings[i];
2157                 napi_disable(&ring->napi);
2158         }
2159
2160         ring = &priv->tx_rings[DESC_INDEX];
2161         napi_disable(&ring->napi);
2162 }
2163
2164 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2165 {
2166         unsigned int i;
2167         struct bcmgenet_tx_ring *ring;
2168
2169         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2170                 ring = &priv->tx_rings[i];
2171                 netif_napi_del(&ring->napi);
2172         }
2173
2174         ring = &priv->tx_rings[DESC_INDEX];
2175         netif_napi_del(&ring->napi);
2176 }
2177
2178 /* Initialize Tx queues
2179  *
2180  * Queues 0-3 are priority-based, each one has 32 descriptors,
2181  * with queue 0 being the highest priority queue.
2182  *
2183  * Queue 16 is the default Tx queue with
2184  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2185  *
2186  * The transmit control block pool is then partitioned as follows:
2187  * - Tx queue 0 uses tx_cbs[0..31]
2188  * - Tx queue 1 uses tx_cbs[32..63]
2189  * - Tx queue 2 uses tx_cbs[64..95]
2190  * - Tx queue 3 uses tx_cbs[96..127]
2191  * - Tx queue 16 uses tx_cbs[128..255]
2192  */
2193 static void bcmgenet_init_tx_queues(struct net_device *dev)
2194 {
2195         struct bcmgenet_priv *priv = netdev_priv(dev);
2196         u32 i, dma_enable;
2197         u32 dma_ctrl, ring_cfg;
2198         u32 dma_priority[3] = {0, 0, 0};
2199
2200         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2201         dma_enable = dma_ctrl & DMA_EN;
2202         dma_ctrl &= ~DMA_EN;
2203         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2204
2205         dma_ctrl = 0;
2206         ring_cfg = 0;
2207
2208         /* Enable strict priority arbiter mode */
2209         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2210
2211         /* Initialize Tx priority queues */
2212         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2213                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2214                                       i * priv->hw_params->tx_bds_per_q,
2215                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2216                 ring_cfg |= (1 << i);
2217                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2218                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2219                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2220         }
2221
2222         /* Initialize Tx default queue 16 */
2223         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2224                               priv->hw_params->tx_queues *
2225                               priv->hw_params->tx_bds_per_q,
2226                               TOTAL_DESC);
2227         ring_cfg |= (1 << DESC_INDEX);
2228         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2229         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2230                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2231                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2232
2233         /* Set Tx queue priorities */
2234         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2235         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2236         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2237
2238         /* Initialize Tx NAPI */
2239         bcmgenet_init_tx_napi(priv);
2240
2241         /* Enable Tx queues */
2242         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2243
2244         /* Enable Tx DMA */
2245         if (dma_enable)
2246                 dma_ctrl |= DMA_EN;
2247         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2248 }
2249
2250 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2251 {
2252         unsigned int i;
2253         struct bcmgenet_rx_ring *ring;
2254
2255         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2256                 ring = &priv->rx_rings[i];
2257                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2258         }
2259
2260         ring = &priv->rx_rings[DESC_INDEX];
2261         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2262 }
2263
2264 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2265 {
2266         unsigned int i;
2267         struct bcmgenet_rx_ring *ring;
2268
2269         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2270                 ring = &priv->rx_rings[i];
2271                 napi_enable(&ring->napi);
2272         }
2273
2274         ring = &priv->rx_rings[DESC_INDEX];
2275         napi_enable(&ring->napi);
2276 }
2277
2278 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2279 {
2280         unsigned int i;
2281         struct bcmgenet_rx_ring *ring;
2282
2283         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2284                 ring = &priv->rx_rings[i];
2285                 napi_disable(&ring->napi);
2286         }
2287
2288         ring = &priv->rx_rings[DESC_INDEX];
2289         napi_disable(&ring->napi);
2290 }
2291
2292 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2293 {
2294         unsigned int i;
2295         struct bcmgenet_rx_ring *ring;
2296
2297         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2298                 ring = &priv->rx_rings[i];
2299                 netif_napi_del(&ring->napi);
2300         }
2301
2302         ring = &priv->rx_rings[DESC_INDEX];
2303         netif_napi_del(&ring->napi);
2304 }
2305
2306 /* Initialize Rx queues
2307  *
2308  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2309  * used to direct traffic to these queues.
2310  *
2311  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2312  */
2313 static int bcmgenet_init_rx_queues(struct net_device *dev)
2314 {
2315         struct bcmgenet_priv *priv = netdev_priv(dev);
2316         u32 i;
2317         u32 dma_enable;
2318         u32 dma_ctrl;
2319         u32 ring_cfg;
2320         int ret;
2321
2322         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2323         dma_enable = dma_ctrl & DMA_EN;
2324         dma_ctrl &= ~DMA_EN;
2325         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2326
2327         dma_ctrl = 0;
2328         ring_cfg = 0;
2329
2330         /* Initialize Rx priority queues */
2331         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2332                 ret = bcmgenet_init_rx_ring(priv, i,
2333                                             priv->hw_params->rx_bds_per_q,
2334                                             i * priv->hw_params->rx_bds_per_q,
2335                                             (i + 1) *
2336                                             priv->hw_params->rx_bds_per_q);
2337                 if (ret)
2338                         return ret;
2339
2340                 ring_cfg |= (1 << i);
2341                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2342         }
2343
2344         /* Initialize Rx default queue 16 */
2345         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2346                                     priv->hw_params->rx_queues *
2347                                     priv->hw_params->rx_bds_per_q,
2348                                     TOTAL_DESC);
2349         if (ret)
2350                 return ret;
2351
2352         ring_cfg |= (1 << DESC_INDEX);
2353         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2354
2355         /* Initialize Rx NAPI */
2356         bcmgenet_init_rx_napi(priv);
2357
2358         /* Enable rings */
2359         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2360
2361         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2362         if (dma_enable)
2363                 dma_ctrl |= DMA_EN;
2364         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2365
2366         return 0;
2367 }
2368
2369 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2370 {
2371         int ret = 0;
2372         int timeout = 0;
2373         u32 reg;
2374         u32 dma_ctrl;
2375         int i;
2376
2377         /* Disable TDMA to stop add more frames in TX DMA */
2378         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2379         reg &= ~DMA_EN;
2380         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2381
2382         /* Check TDMA status register to confirm TDMA is disabled */
2383         while (timeout++ < DMA_TIMEOUT_VAL) {
2384                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2385                 if (reg & DMA_DISABLED)
2386                         break;
2387
2388                 udelay(1);
2389         }
2390
2391         if (timeout == DMA_TIMEOUT_VAL) {
2392                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2393                 ret = -ETIMEDOUT;
2394         }
2395
2396         /* Wait 10ms for packet drain in both tx and rx dma */
2397         usleep_range(10000, 20000);
2398
2399         /* Disable RDMA */
2400         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2401         reg &= ~DMA_EN;
2402         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2403
2404         timeout = 0;
2405         /* Check RDMA status register to confirm RDMA is disabled */
2406         while (timeout++ < DMA_TIMEOUT_VAL) {
2407                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2408                 if (reg & DMA_DISABLED)
2409                         break;
2410
2411                 udelay(1);
2412         }
2413
2414         if (timeout == DMA_TIMEOUT_VAL) {
2415                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2416                 ret = -ETIMEDOUT;
2417         }
2418
2419         dma_ctrl = 0;
2420         for (i = 0; i < priv->hw_params->rx_queues; i++)
2421                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2422         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2423         reg &= ~dma_ctrl;
2424         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2425
2426         dma_ctrl = 0;
2427         for (i = 0; i < priv->hw_params->tx_queues; i++)
2428                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2429         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2430         reg &= ~dma_ctrl;
2431         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2432
2433         return ret;
2434 }
2435
2436 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2437 {
2438         int i;
2439         struct netdev_queue *txq;
2440
2441         bcmgenet_fini_rx_napi(priv);
2442         bcmgenet_fini_tx_napi(priv);
2443
2444         /* disable DMA */
2445         bcmgenet_dma_teardown(priv);
2446
2447         for (i = 0; i < priv->num_tx_bds; i++) {
2448                 if (priv->tx_cbs[i].skb != NULL) {
2449                         dev_kfree_skb(priv->tx_cbs[i].skb);
2450                         priv->tx_cbs[i].skb = NULL;
2451                 }
2452         }
2453
2454         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2455                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2456                 netdev_tx_reset_queue(txq);
2457         }
2458
2459         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2460         netdev_tx_reset_queue(txq);
2461
2462         bcmgenet_free_rx_buffers(priv);
2463         kfree(priv->rx_cbs);
2464         kfree(priv->tx_cbs);
2465 }
2466
2467 /* init_edma: Initialize DMA control register */
2468 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2469 {
2470         int ret;
2471         unsigned int i;
2472         struct enet_cb *cb;
2473
2474         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2475
2476         /* Initialize common Rx ring structures */
2477         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2478         priv->num_rx_bds = TOTAL_DESC;
2479         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2480                                GFP_KERNEL);
2481         if (!priv->rx_cbs)
2482                 return -ENOMEM;
2483
2484         for (i = 0; i < priv->num_rx_bds; i++) {
2485                 cb = priv->rx_cbs + i;
2486                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2487         }
2488
2489         /* Initialize common TX ring structures */
2490         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2491         priv->num_tx_bds = TOTAL_DESC;
2492         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2493                                GFP_KERNEL);
2494         if (!priv->tx_cbs) {
2495                 kfree(priv->rx_cbs);
2496                 return -ENOMEM;
2497         }
2498
2499         for (i = 0; i < priv->num_tx_bds; i++) {
2500                 cb = priv->tx_cbs + i;
2501                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2502         }
2503
2504         /* Init rDma */
2505         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2506
2507         /* Initialize Rx queues */
2508         ret = bcmgenet_init_rx_queues(priv->dev);
2509         if (ret) {
2510                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2511                 bcmgenet_free_rx_buffers(priv);
2512                 kfree(priv->rx_cbs);
2513                 kfree(priv->tx_cbs);
2514                 return ret;
2515         }
2516
2517         /* Init tDma */
2518         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2519
2520         /* Initialize Tx queues */
2521         bcmgenet_init_tx_queues(priv->dev);
2522
2523         return 0;
2524 }
2525
2526 /* Interrupt bottom half */
2527 static void bcmgenet_irq_task(struct work_struct *work)
2528 {
2529         unsigned long flags;
2530         unsigned int status;
2531         struct bcmgenet_priv *priv = container_of(
2532                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2533
2534         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2535
2536         spin_lock_irqsave(&priv->lock, flags);
2537         status = priv->irq0_stat;
2538         priv->irq0_stat = 0;
2539         spin_unlock_irqrestore(&priv->lock, flags);
2540
2541         if (status & UMAC_IRQ_MPD_R) {
2542                 netif_dbg(priv, wol, priv->dev,
2543                           "magic packet detected, waking up\n");
2544                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2545         }
2546
2547         /* Link UP/DOWN event */
2548         if (status & UMAC_IRQ_LINK_EVENT)
2549                 phy_mac_interrupt(priv->phydev,
2550                                   !!(status & UMAC_IRQ_LINK_UP));
2551 }
2552
2553 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2554 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2555 {
2556         struct bcmgenet_priv *priv = dev_id;
2557         struct bcmgenet_rx_ring *rx_ring;
2558         struct bcmgenet_tx_ring *tx_ring;
2559         unsigned int index, status;
2560
2561         /* Read irq status */
2562         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2563                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2564
2565         /* clear interrupts */
2566         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2567
2568         netif_dbg(priv, intr, priv->dev,
2569                   "%s: IRQ=0x%x\n", __func__, status);
2570
2571         /* Check Rx priority queue interrupts */
2572         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2573                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2574                         continue;
2575
2576                 rx_ring = &priv->rx_rings[index];
2577
2578                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2579                         rx_ring->int_disable(rx_ring);
2580                         __napi_schedule_irqoff(&rx_ring->napi);
2581                 }
2582         }
2583
2584         /* Check Tx priority queue interrupts */
2585         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2586                 if (!(status & BIT(index)))
2587                         continue;
2588
2589                 tx_ring = &priv->tx_rings[index];
2590
2591                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2592                         tx_ring->int_disable(tx_ring);
2593                         __napi_schedule_irqoff(&tx_ring->napi);
2594                 }
2595         }
2596
2597         return IRQ_HANDLED;
2598 }
2599
2600 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2601 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2602 {
2603         struct bcmgenet_priv *priv = dev_id;
2604         struct bcmgenet_rx_ring *rx_ring;
2605         struct bcmgenet_tx_ring *tx_ring;
2606         unsigned int status;
2607         unsigned long flags;
2608
2609         /* Read irq status */
2610         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2611                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2612
2613         /* clear interrupts */
2614         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2615
2616         netif_dbg(priv, intr, priv->dev,
2617                   "IRQ=0x%x\n", status);
2618
2619         if (status & UMAC_IRQ_RXDMA_DONE) {
2620                 rx_ring = &priv->rx_rings[DESC_INDEX];
2621
2622                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2623                         rx_ring->int_disable(rx_ring);
2624                         __napi_schedule_irqoff(&rx_ring->napi);
2625                 }
2626         }
2627
2628         if (status & UMAC_IRQ_TXDMA_DONE) {
2629                 tx_ring = &priv->tx_rings[DESC_INDEX];
2630
2631                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2632                         tx_ring->int_disable(tx_ring);
2633                         __napi_schedule_irqoff(&tx_ring->napi);
2634                 }
2635         }
2636
2637         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2638                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2639                 wake_up(&priv->wq);
2640         }
2641
2642         /* all other interested interrupts handled in bottom half */
2643         status &= (UMAC_IRQ_LINK_EVENT |
2644                    UMAC_IRQ_MPD_R);
2645         if (status) {
2646                 /* Save irq status for bottom-half processing. */
2647                 spin_lock_irqsave(&priv->lock, flags);
2648                 priv->irq0_stat |= status;
2649                 spin_unlock_irqrestore(&priv->lock, flags);
2650
2651                 schedule_work(&priv->bcmgenet_irq_work);
2652         }
2653
2654         return IRQ_HANDLED;
2655 }
2656
2657 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2658 {
2659         struct bcmgenet_priv *priv = dev_id;
2660
2661         pm_wakeup_event(&priv->pdev->dev, 0);
2662
2663         return IRQ_HANDLED;
2664 }
2665
2666 #ifdef CONFIG_NET_POLL_CONTROLLER
2667 static void bcmgenet_poll_controller(struct net_device *dev)
2668 {
2669         struct bcmgenet_priv *priv = netdev_priv(dev);
2670
2671         /* Invoke the main RX/TX interrupt handler */
2672         disable_irq(priv->irq0);
2673         bcmgenet_isr0(priv->irq0, priv);
2674         enable_irq(priv->irq0);
2675
2676         /* And the interrupt handler for RX/TX priority queues */
2677         disable_irq(priv->irq1);
2678         bcmgenet_isr1(priv->irq1, priv);
2679         enable_irq(priv->irq1);
2680 }
2681 #endif
2682
2683 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2684 {
2685         u32 reg;
2686
2687         reg = bcmgenet_rbuf_ctrl_get(priv);
2688         reg |= BIT(1);
2689         bcmgenet_rbuf_ctrl_set(priv, reg);
2690         udelay(10);
2691
2692         reg &= ~BIT(1);
2693         bcmgenet_rbuf_ctrl_set(priv, reg);
2694         udelay(10);
2695 }
2696
2697 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2698                                  unsigned char *addr)
2699 {
2700         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2701                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2702         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2703 }
2704
2705 /* Returns a reusable dma control register value */
2706 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2707 {
2708         u32 reg;
2709         u32 dma_ctrl;
2710
2711         /* disable DMA */
2712         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2713         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2714         reg &= ~dma_ctrl;
2715         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2716
2717         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2718         reg &= ~dma_ctrl;
2719         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2720
2721         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2722         udelay(10);
2723         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2724
2725         return dma_ctrl;
2726 }
2727
2728 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2729 {
2730         u32 reg;
2731
2732         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2733         reg |= dma_ctrl;
2734         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2735
2736         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2737         reg |= dma_ctrl;
2738         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2739 }
2740
2741 /* bcmgenet_hfb_clear
2742  *
2743  * Clear Hardware Filter Block and disable all filtering.
2744  */
2745 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2746 {
2747         u32 i;
2748
2749         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2750         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2751         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2752
2753         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2754                 bcmgenet_rdma_writel(priv, 0x0, i);
2755
2756         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2757                 bcmgenet_hfb_reg_writel(priv, 0x0,
2758                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2759
2760         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2761                         priv->hw_params->hfb_filter_size; i++)
2762                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2763 }
2764
2765 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2766 {
2767         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2768                 return;
2769
2770         bcmgenet_hfb_clear(priv);
2771 }
2772
2773 static void bcmgenet_netif_start(struct net_device *dev)
2774 {
2775         struct bcmgenet_priv *priv = netdev_priv(dev);
2776
2777         /* Start the network engine */
2778         bcmgenet_enable_rx_napi(priv);
2779         bcmgenet_enable_tx_napi(priv);
2780
2781         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2782
2783         netif_tx_start_all_queues(dev);
2784
2785         /* Monitor link interrupts now */
2786         bcmgenet_link_intr_enable(priv);
2787
2788         phy_start(priv->phydev);
2789 }
2790
2791 static int bcmgenet_open(struct net_device *dev)
2792 {
2793         struct bcmgenet_priv *priv = netdev_priv(dev);
2794         unsigned long dma_ctrl;
2795         u32 reg;
2796         int ret;
2797
2798         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2799
2800         /* Turn on the clock */
2801         clk_prepare_enable(priv->clk);
2802
2803         /* If this is an internal GPHY, power it back on now, before UniMAC is
2804          * brought out of reset as absolutely no UniMAC activity is allowed
2805          */
2806         if (priv->internal_phy)
2807                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2808
2809         /* take MAC out of reset */
2810         bcmgenet_umac_reset(priv);
2811
2812         ret = init_umac(priv);
2813         if (ret)
2814                 goto err_clk_disable;
2815
2816         /* disable ethernet MAC while updating its registers */
2817         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2818
2819         /* Make sure we reflect the value of CRC_CMD_FWD */
2820         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2821         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2822
2823         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2824
2825         if (priv->internal_phy) {
2826                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2827                 reg |= EXT_ENERGY_DET_MASK;
2828                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2829         }
2830
2831         /* Disable RX/TX DMA and flush TX queues */
2832         dma_ctrl = bcmgenet_dma_disable(priv);
2833
2834         /* Reinitialize TDMA and RDMA and SW housekeeping */
2835         ret = bcmgenet_init_dma(priv);
2836         if (ret) {
2837                 netdev_err(dev, "failed to initialize DMA\n");
2838                 goto err_clk_disable;
2839         }
2840
2841         /* Always enable ring 16 - descriptor ring */
2842         bcmgenet_enable_dma(priv, dma_ctrl);
2843
2844         /* HFB init */
2845         bcmgenet_hfb_init(priv);
2846
2847         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2848                           dev->name, priv);
2849         if (ret < 0) {
2850                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2851                 goto err_fini_dma;
2852         }
2853
2854         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2855                           dev->name, priv);
2856         if (ret < 0) {
2857                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2858                 goto err_irq0;
2859         }
2860
2861         ret = bcmgenet_mii_probe(dev);
2862         if (ret) {
2863                 netdev_err(dev, "failed to connect to PHY\n");
2864                 goto err_irq1;
2865         }
2866
2867         bcmgenet_netif_start(dev);
2868
2869         return 0;
2870
2871 err_irq1:
2872         free_irq(priv->irq1, priv);
2873 err_irq0:
2874         free_irq(priv->irq0, priv);
2875 err_fini_dma:
2876         bcmgenet_fini_dma(priv);
2877 err_clk_disable:
2878         if (priv->internal_phy)
2879                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2880         clk_disable_unprepare(priv->clk);
2881         return ret;
2882 }
2883
2884 static void bcmgenet_netif_stop(struct net_device *dev)
2885 {
2886         struct bcmgenet_priv *priv = netdev_priv(dev);
2887
2888         netif_tx_stop_all_queues(dev);
2889         phy_stop(priv->phydev);
2890         bcmgenet_intr_disable(priv);
2891         bcmgenet_disable_rx_napi(priv);
2892         bcmgenet_disable_tx_napi(priv);
2893
2894         /* Wait for pending work items to complete. Since interrupts are
2895          * disabled no new work will be scheduled.
2896          */
2897         cancel_work_sync(&priv->bcmgenet_irq_work);
2898
2899         priv->old_link = -1;
2900         priv->old_speed = -1;
2901         priv->old_duplex = -1;
2902         priv->old_pause = -1;
2903 }
2904
2905 static int bcmgenet_close(struct net_device *dev)
2906 {
2907         struct bcmgenet_priv *priv = netdev_priv(dev);
2908         int ret;
2909
2910         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2911
2912         bcmgenet_netif_stop(dev);
2913
2914         /* Really kill the PHY state machine and disconnect from it */
2915         phy_disconnect(priv->phydev);
2916
2917         /* Disable MAC receive */
2918         umac_enable_set(priv, CMD_RX_EN, false);
2919
2920         ret = bcmgenet_dma_teardown(priv);
2921         if (ret)
2922                 return ret;
2923
2924         /* Disable MAC transmit. TX DMA disabled have to done before this */
2925         umac_enable_set(priv, CMD_TX_EN, false);
2926
2927         /* tx reclaim */
2928         bcmgenet_tx_reclaim_all(dev);
2929         bcmgenet_fini_dma(priv);
2930
2931         free_irq(priv->irq0, priv);
2932         free_irq(priv->irq1, priv);
2933
2934         if (priv->internal_phy)
2935                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2936
2937         clk_disable_unprepare(priv->clk);
2938
2939         return ret;
2940 }
2941
2942 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2943 {
2944         struct bcmgenet_priv *priv = ring->priv;
2945         u32 p_index, c_index, intsts, intmsk;
2946         struct netdev_queue *txq;
2947         unsigned int free_bds;
2948         unsigned long flags;
2949         bool txq_stopped;
2950
2951         if (!netif_msg_tx_err(priv))
2952                 return;
2953
2954         txq = netdev_get_tx_queue(priv->dev, ring->queue);
2955
2956         spin_lock_irqsave(&ring->lock, flags);
2957         if (ring->index == DESC_INDEX) {
2958                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2959                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2960         } else {
2961                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2962                 intmsk = 1 << ring->index;
2963         }
2964         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2965         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2966         txq_stopped = netif_tx_queue_stopped(txq);
2967         free_bds = ring->free_bds;
2968         spin_unlock_irqrestore(&ring->lock, flags);
2969
2970         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2971                   "TX queue status: %s, interrupts: %s\n"
2972                   "(sw)free_bds: %d (sw)size: %d\n"
2973                   "(sw)p_index: %d (hw)p_index: %d\n"
2974                   "(sw)c_index: %d (hw)c_index: %d\n"
2975                   "(sw)clean_p: %d (sw)write_p: %d\n"
2976                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2977                   ring->index, ring->queue,
2978                   txq_stopped ? "stopped" : "active",
2979                   intsts & intmsk ? "enabled" : "disabled",
2980                   free_bds, ring->size,
2981                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
2982                   ring->c_index, c_index & DMA_C_INDEX_MASK,
2983                   ring->clean_ptr, ring->write_ptr,
2984                   ring->cb_ptr, ring->end_ptr);
2985 }
2986
2987 static void bcmgenet_timeout(struct net_device *dev)
2988 {
2989         struct bcmgenet_priv *priv = netdev_priv(dev);
2990         u32 int0_enable = 0;
2991         u32 int1_enable = 0;
2992         unsigned int q;
2993
2994         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2995
2996         for (q = 0; q < priv->hw_params->tx_queues; q++)
2997                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
2998         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
2999
3000         bcmgenet_tx_reclaim_all(dev);
3001
3002         for (q = 0; q < priv->hw_params->tx_queues; q++)
3003                 int1_enable |= (1 << q);
3004
3005         int0_enable = UMAC_IRQ_TXDMA_DONE;
3006
3007         /* Re-enable TX interrupts if disabled */
3008         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3009         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3010
3011         netif_trans_update(dev);
3012
3013         dev->stats.tx_errors++;
3014
3015         netif_tx_wake_all_queues(dev);
3016 }
3017
3018 #define MAX_MC_COUNT    16
3019
3020 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3021                                          unsigned char *addr,
3022                                          int *i,
3023                                          int *mc)
3024 {
3025         u32 reg;
3026
3027         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3028                              UMAC_MDF_ADDR + (*i * 4));
3029         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3030                              addr[4] << 8 | addr[5],
3031                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3032         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3033         reg |= (1 << (MAX_MC_COUNT - *mc));
3034         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3035         *i += 2;
3036         (*mc)++;
3037 }
3038
3039 static void bcmgenet_set_rx_mode(struct net_device *dev)
3040 {
3041         struct bcmgenet_priv *priv = netdev_priv(dev);
3042         struct netdev_hw_addr *ha;
3043         int i, mc;
3044         u32 reg;
3045
3046         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3047
3048         /* Promiscuous mode */
3049         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3050         if (dev->flags & IFF_PROMISC) {
3051                 reg |= CMD_PROMISC;
3052                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3053                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3054                 return;
3055         } else {
3056                 reg &= ~CMD_PROMISC;
3057                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3058         }
3059
3060         /* UniMac doesn't support ALLMULTI */
3061         if (dev->flags & IFF_ALLMULTI) {
3062                 netdev_warn(dev, "ALLMULTI is not supported\n");
3063                 return;
3064         }
3065
3066         /* update MDF filter */
3067         i = 0;
3068         mc = 0;
3069         /* Broadcast */
3070         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3071         /* my own address.*/
3072         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3073         /* Unicast list*/
3074         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3075                 return;
3076
3077         if (!netdev_uc_empty(dev))
3078                 netdev_for_each_uc_addr(ha, dev)
3079                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3080         /* Multicast */
3081         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3082                 return;
3083
3084         netdev_for_each_mc_addr(ha, dev)
3085                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3086 }
3087
3088 /* Set the hardware MAC address. */
3089 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3090 {
3091         struct sockaddr *addr = p;
3092
3093         /* Setting the MAC address at the hardware level is not possible
3094          * without disabling the UniMAC RX/TX enable bits.
3095          */
3096         if (netif_running(dev))
3097                 return -EBUSY;
3098
3099         ether_addr_copy(dev->dev_addr, addr->sa_data);
3100
3101         return 0;
3102 }
3103
3104 static const struct net_device_ops bcmgenet_netdev_ops = {
3105         .ndo_open               = bcmgenet_open,
3106         .ndo_stop               = bcmgenet_close,
3107         .ndo_start_xmit         = bcmgenet_xmit,
3108         .ndo_tx_timeout         = bcmgenet_timeout,
3109         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3110         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3111         .ndo_do_ioctl           = bcmgenet_ioctl,
3112         .ndo_set_features       = bcmgenet_set_features,
3113 #ifdef CONFIG_NET_POLL_CONTROLLER
3114         .ndo_poll_controller    = bcmgenet_poll_controller,
3115 #endif
3116 };
3117
3118 /* Array of GENET hardware parameters/characteristics */
3119 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3120         [GENET_V1] = {
3121                 .tx_queues = 0,
3122                 .tx_bds_per_q = 0,
3123                 .rx_queues = 0,
3124                 .rx_bds_per_q = 0,
3125                 .bp_in_en_shift = 16,
3126                 .bp_in_mask = 0xffff,
3127                 .hfb_filter_cnt = 16,
3128                 .qtag_mask = 0x1F,
3129                 .hfb_offset = 0x1000,
3130                 .rdma_offset = 0x2000,
3131                 .tdma_offset = 0x3000,
3132                 .words_per_bd = 2,
3133         },
3134         [GENET_V2] = {
3135                 .tx_queues = 4,
3136                 .tx_bds_per_q = 32,
3137                 .rx_queues = 0,
3138                 .rx_bds_per_q = 0,
3139                 .bp_in_en_shift = 16,
3140                 .bp_in_mask = 0xffff,
3141                 .hfb_filter_cnt = 16,
3142                 .qtag_mask = 0x1F,
3143                 .tbuf_offset = 0x0600,
3144                 .hfb_offset = 0x1000,
3145                 .hfb_reg_offset = 0x2000,
3146                 .rdma_offset = 0x3000,
3147                 .tdma_offset = 0x4000,
3148                 .words_per_bd = 2,
3149                 .flags = GENET_HAS_EXT,
3150         },
3151         [GENET_V3] = {
3152                 .tx_queues = 4,
3153                 .tx_bds_per_q = 32,
3154                 .rx_queues = 0,
3155                 .rx_bds_per_q = 0,
3156                 .bp_in_en_shift = 17,
3157                 .bp_in_mask = 0x1ffff,
3158                 .hfb_filter_cnt = 48,
3159                 .hfb_filter_size = 128,
3160                 .qtag_mask = 0x3F,
3161                 .tbuf_offset = 0x0600,
3162                 .hfb_offset = 0x8000,
3163                 .hfb_reg_offset = 0xfc00,
3164                 .rdma_offset = 0x10000,
3165                 .tdma_offset = 0x11000,
3166                 .words_per_bd = 2,
3167                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3168                          GENET_HAS_MOCA_LINK_DET,
3169         },
3170         [GENET_V4] = {
3171                 .tx_queues = 4,
3172                 .tx_bds_per_q = 32,
3173                 .rx_queues = 0,
3174                 .rx_bds_per_q = 0,
3175                 .bp_in_en_shift = 17,
3176                 .bp_in_mask = 0x1ffff,
3177                 .hfb_filter_cnt = 48,
3178                 .hfb_filter_size = 128,
3179                 .qtag_mask = 0x3F,
3180                 .tbuf_offset = 0x0600,
3181                 .hfb_offset = 0x8000,
3182                 .hfb_reg_offset = 0xfc00,
3183                 .rdma_offset = 0x2000,
3184                 .tdma_offset = 0x4000,
3185                 .words_per_bd = 3,
3186                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3187                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3188         },
3189 };
3190
3191 /* Infer hardware parameters from the detected GENET version */
3192 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3193 {
3194         struct bcmgenet_hw_params *params;
3195         u32 reg;
3196         u8 major;
3197         u16 gphy_rev;
3198
3199         if (GENET_IS_V4(priv)) {
3200                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3201                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3202                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3203                 priv->version = GENET_V4;
3204         } else if (GENET_IS_V3(priv)) {
3205                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3206                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3207                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3208                 priv->version = GENET_V3;
3209         } else if (GENET_IS_V2(priv)) {
3210                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3211                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3212                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3213                 priv->version = GENET_V2;
3214         } else if (GENET_IS_V1(priv)) {
3215                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3216                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3217                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3218                 priv->version = GENET_V1;
3219         }
3220
3221         /* enum genet_version starts at 1 */
3222         priv->hw_params = &bcmgenet_hw_params[priv->version];
3223         params = priv->hw_params;
3224
3225         /* Read GENET HW version */
3226         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3227         major = (reg >> 24 & 0x0f);
3228         if (major == 5)
3229                 major = 4;
3230         else if (major == 0)
3231                 major = 1;
3232         if (major != priv->version) {
3233                 dev_err(&priv->pdev->dev,
3234                         "GENET version mismatch, got: %d, configured for: %d\n",
3235                         major, priv->version);
3236         }
3237
3238         /* Print the GENET core version */
3239         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3240                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3241
3242         /* Store the integrated PHY revision for the MDIO probing function
3243          * to pass this information to the PHY driver. The PHY driver expects
3244          * to find the PHY major revision in bits 15:8 while the GENET register
3245          * stores that information in bits 7:0, account for that.
3246          *
3247          * On newer chips, starting with PHY revision G0, a new scheme is
3248          * deployed similar to the Starfighter 2 switch with GPHY major
3249          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3250          * is reserved as well as special value 0x01ff, we have a small
3251          * heuristic to check for the new GPHY revision and re-arrange things
3252          * so the GPHY driver is happy.
3253          */
3254         gphy_rev = reg & 0xffff;
3255
3256         /* This is reserved so should require special treatment */
3257         if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3258                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3259                 return;
3260         }
3261
3262         /* This is the good old scheme, just GPHY major, no minor nor patch */
3263         if ((gphy_rev & 0xf0) != 0)
3264                 priv->gphy_rev = gphy_rev << 8;
3265
3266         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3267         else if ((gphy_rev & 0xff00) != 0)
3268                 priv->gphy_rev = gphy_rev;
3269
3270 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3271         if (!(params->flags & GENET_HAS_40BITS))
3272                 pr_warn("GENET does not support 40-bits PA\n");
3273 #endif
3274
3275         pr_debug("Configuration for version: %d\n"
3276                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3277                 "BP << en: %2d, BP msk: 0x%05x\n"
3278                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3279                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3280                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3281                 "Words/BD: %d\n",
3282                 priv->version,
3283                 params->tx_queues, params->tx_bds_per_q,
3284                 params->rx_queues, params->rx_bds_per_q,
3285                 params->bp_in_en_shift, params->bp_in_mask,
3286                 params->hfb_filter_cnt, params->qtag_mask,
3287                 params->tbuf_offset, params->hfb_offset,
3288                 params->hfb_reg_offset,
3289                 params->rdma_offset, params->tdma_offset,
3290                 params->words_per_bd);
3291 }
3292
3293 static const struct of_device_id bcmgenet_match[] = {
3294         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3295         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3296         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3297         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3298         { },
3299 };
3300 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3301
3302 static int bcmgenet_probe(struct platform_device *pdev)
3303 {
3304         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3305         struct device_node *dn = pdev->dev.of_node;
3306         const struct of_device_id *of_id = NULL;
3307         struct bcmgenet_priv *priv;
3308         struct net_device *dev;
3309         const void *macaddr;
3310         struct resource *r;
3311         int err = -EIO;
3312         const char *phy_mode_str;
3313
3314         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3315         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3316                                  GENET_MAX_MQ_CNT + 1);
3317         if (!dev) {
3318                 dev_err(&pdev->dev, "can't allocate net device\n");
3319                 return -ENOMEM;
3320         }
3321
3322         if (dn) {
3323                 of_id = of_match_node(bcmgenet_match, dn);
3324                 if (!of_id)
3325                         return -EINVAL;
3326         }
3327
3328         priv = netdev_priv(dev);
3329         priv->irq0 = platform_get_irq(pdev, 0);
3330         priv->irq1 = platform_get_irq(pdev, 1);
3331         priv->wol_irq = platform_get_irq(pdev, 2);
3332         if (!priv->irq0 || !priv->irq1) {
3333                 dev_err(&pdev->dev, "can't find IRQs\n");
3334                 err = -EINVAL;
3335                 goto err;
3336         }
3337
3338         if (dn) {
3339                 macaddr = of_get_mac_address(dn);
3340                 if (!macaddr) {
3341                         dev_err(&pdev->dev, "can't find MAC address\n");
3342                         err = -EINVAL;
3343                         goto err;
3344                 }
3345         } else {
3346                 macaddr = pd->mac_address;
3347         }
3348
3349         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3350         priv->base = devm_ioremap_resource(&pdev->dev, r);
3351         if (IS_ERR(priv->base)) {
3352                 err = PTR_ERR(priv->base);
3353                 goto err;
3354         }
3355
3356         spin_lock_init(&priv->lock);
3357
3358         SET_NETDEV_DEV(dev, &pdev->dev);
3359         dev_set_drvdata(&pdev->dev, dev);
3360         ether_addr_copy(dev->dev_addr, macaddr);
3361         dev->watchdog_timeo = 2 * HZ;
3362         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3363         dev->netdev_ops = &bcmgenet_netdev_ops;
3364
3365         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3366
3367         /* Set hardware features */
3368         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3369                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3370
3371         /* Request the WOL interrupt and advertise suspend if available */
3372         priv->wol_irq_disabled = true;
3373         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3374                                dev->name, priv);
3375         if (!err)
3376                 device_set_wakeup_capable(&pdev->dev, 1);
3377
3378         /* Set the needed headroom to account for any possible
3379          * features enabling/disabling at runtime
3380          */
3381         dev->needed_headroom += 64;
3382
3383         netdev_boot_setup_check(dev);
3384
3385         priv->dev = dev;
3386         priv->pdev = pdev;
3387         if (of_id)
3388                 priv->version = (enum bcmgenet_version)of_id->data;
3389         else
3390                 priv->version = pd->genet_version;
3391
3392         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3393         if (IS_ERR(priv->clk)) {
3394                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3395                 priv->clk = NULL;
3396         }
3397
3398         clk_prepare_enable(priv->clk);
3399
3400         bcmgenet_set_hw_params(priv);
3401
3402         /* Mii wait queue */
3403         init_waitqueue_head(&priv->wq);
3404         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3405         priv->rx_buf_len = RX_BUF_LENGTH;
3406         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3407
3408         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3409         if (IS_ERR(priv->clk_wol)) {
3410                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3411                 priv->clk_wol = NULL;
3412         }
3413
3414         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3415         if (IS_ERR(priv->clk_eee)) {
3416                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3417                 priv->clk_eee = NULL;
3418         }
3419
3420         /* If this is an internal GPHY, power it on now, before UniMAC is
3421          * brought out of reset as absolutely no UniMAC activity is allowed
3422          */
3423         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3424             !strcasecmp(phy_mode_str, "internal"))
3425                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3426
3427         err = reset_umac(priv);
3428         if (err)
3429                 goto err_clk_disable;
3430
3431         err = bcmgenet_mii_init(dev);
3432         if (err)
3433                 goto err_clk_disable;
3434
3435         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3436          * just the ring 16 descriptor based TX
3437          */
3438         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3439         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3440
3441         /* libphy will determine the link state */
3442         netif_carrier_off(dev);
3443
3444         /* Turn off the main clock, WOL clock is handled separately */
3445         clk_disable_unprepare(priv->clk);
3446
3447         err = register_netdev(dev);
3448         if (err)
3449                 goto err;
3450
3451         return err;
3452
3453 err_clk_disable:
3454         clk_disable_unprepare(priv->clk);
3455 err:
3456         free_netdev(dev);
3457         return err;
3458 }
3459
3460 static int bcmgenet_remove(struct platform_device *pdev)
3461 {
3462         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3463
3464         dev_set_drvdata(&pdev->dev, NULL);
3465         unregister_netdev(priv->dev);
3466         bcmgenet_mii_exit(priv->dev);
3467         free_netdev(priv->dev);
3468
3469         return 0;
3470 }
3471
3472 #ifdef CONFIG_PM_SLEEP
3473 static int bcmgenet_suspend(struct device *d)
3474 {
3475         struct net_device *dev = dev_get_drvdata(d);
3476         struct bcmgenet_priv *priv = netdev_priv(dev);
3477         int ret;
3478
3479         if (!netif_running(dev))
3480                 return 0;
3481
3482         bcmgenet_netif_stop(dev);
3483
3484         if (!device_may_wakeup(d))
3485                 phy_suspend(priv->phydev);
3486
3487         netif_device_detach(dev);
3488
3489         /* Disable MAC receive */
3490         umac_enable_set(priv, CMD_RX_EN, false);
3491
3492         ret = bcmgenet_dma_teardown(priv);
3493         if (ret)
3494                 return ret;
3495
3496         /* Disable MAC transmit. TX DMA disabled have to done before this */
3497         umac_enable_set(priv, CMD_TX_EN, false);
3498
3499         /* tx reclaim */
3500         bcmgenet_tx_reclaim_all(dev);
3501         bcmgenet_fini_dma(priv);
3502
3503         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3504         if (device_may_wakeup(d) && priv->wolopts) {
3505                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3506                 clk_prepare_enable(priv->clk_wol);
3507         } else if (priv->internal_phy) {
3508                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3509         }
3510
3511         /* Turn off the clocks */
3512         clk_disable_unprepare(priv->clk);
3513
3514         return ret;
3515 }
3516
3517 static int bcmgenet_resume(struct device *d)
3518 {
3519         struct net_device *dev = dev_get_drvdata(d);
3520         struct bcmgenet_priv *priv = netdev_priv(dev);
3521         unsigned long dma_ctrl;
3522         int ret;
3523         u32 reg;
3524
3525         if (!netif_running(dev))
3526                 return 0;
3527
3528         /* Turn on the clock */
3529         ret = clk_prepare_enable(priv->clk);
3530         if (ret)
3531                 return ret;
3532
3533         /* If this is an internal GPHY, power it back on now, before UniMAC is
3534          * brought out of reset as absolutely no UniMAC activity is allowed
3535          */
3536         if (priv->internal_phy)
3537                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3538
3539         bcmgenet_umac_reset(priv);
3540
3541         ret = init_umac(priv);
3542         if (ret)
3543                 goto out_clk_disable;
3544
3545         /* From WOL-enabled suspend, switch to regular clock */
3546         if (priv->wolopts)
3547                 clk_disable_unprepare(priv->clk_wol);
3548
3549         phy_init_hw(priv->phydev);
3550         /* Speed settings must be restored */
3551         bcmgenet_mii_config(priv->dev);
3552
3553         /* disable ethernet MAC while updating its registers */
3554         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3555
3556         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3557
3558         if (priv->internal_phy) {
3559                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3560                 reg |= EXT_ENERGY_DET_MASK;
3561                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3562         }
3563
3564         if (priv->wolopts)
3565                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3566
3567         /* Disable RX/TX DMA and flush TX queues */
3568         dma_ctrl = bcmgenet_dma_disable(priv);
3569
3570         /* Reinitialize TDMA and RDMA and SW housekeeping */
3571         ret = bcmgenet_init_dma(priv);
3572         if (ret) {
3573                 netdev_err(dev, "failed to initialize DMA\n");
3574                 goto out_clk_disable;
3575         }
3576
3577         /* Always enable ring 16 - descriptor ring */
3578         bcmgenet_enable_dma(priv, dma_ctrl);
3579
3580         netif_device_attach(dev);
3581
3582         if (!device_may_wakeup(d))
3583                 phy_resume(priv->phydev);
3584
3585         if (priv->eee.eee_enabled)
3586                 bcmgenet_eee_enable_set(dev, true);
3587
3588         bcmgenet_netif_start(dev);
3589
3590         return 0;
3591
3592 out_clk_disable:
3593         if (priv->internal_phy)
3594                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3595         clk_disable_unprepare(priv->clk);
3596         return ret;
3597 }
3598 #endif /* CONFIG_PM_SLEEP */
3599
3600 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3601
3602 static struct platform_driver bcmgenet_driver = {
3603         .probe  = bcmgenet_probe,
3604         .remove = bcmgenet_remove,
3605         .driver = {
3606                 .name   = "bcmgenet",
3607                 .of_match_table = bcmgenet_match,
3608                 .pm     = &bcmgenet_pm_ops,
3609         },
3610 };
3611 module_platform_driver(bcmgenet_driver);
3612
3613 MODULE_AUTHOR("Broadcom Corporation");
3614 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3615 MODULE_ALIAS("platform:bcmgenet");
3616 MODULE_LICENSE("GPL");